WO2021171679A1 - Motor drive device, outdoor unit of air conditioner using same, and motor drive control method - Google Patents

Motor drive device, outdoor unit of air conditioner using same, and motor drive control method Download PDF

Info

Publication number
WO2021171679A1
WO2021171679A1 PCT/JP2020/037987 JP2020037987W WO2021171679A1 WO 2021171679 A1 WO2021171679 A1 WO 2021171679A1 JP 2020037987 W JP2020037987 W JP 2020037987W WO 2021171679 A1 WO2021171679 A1 WO 2021171679A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
axis
motor
current
unit
Prior art date
Application number
PCT/JP2020/037987
Other languages
French (fr)
Japanese (ja)
Inventor
矩也 中尾
戸張 和明
友啓 杉野
Original Assignee
株式会社日立パワーデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーデバイス filed Critical 株式会社日立パワーデバイス
Priority to CN202080094872.2A priority Critical patent/CN115004537A/en
Priority to DE112020005654.6T priority patent/DE112020005654T5/en
Publication of WO2021171679A1 publication Critical patent/WO2021171679A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/12Vibration or noise prevention thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/04Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for very low speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Definitions

  • the present invention relates to a motor drive device for driving a motor (motor) and its control, and particularly relates to a technique effective when applied to drive control of a motor (motor) used in an application requiring quietness.
  • the induced voltage of the permanent magnet synchronous motor contains only the fundamental wave component, but in reality, there are spatial harmonic components such as the fifth-order component and the seventh-order component on the three-phase stationary coordinates.
  • the distortion component of this induced voltage contributes to the pulsation of the motor torque, and this fluctuating torque becomes the excitation source of mechanical resonance, so that noise and vibration are generated.
  • Noise and vibration caused by mechanical resonance can be reduced, for example, by providing anti-vibration rubber at the location where the motor is fixed or at the rotating bearing.
  • this method has problems that the structure becomes complicated as the number of parts increases and the cost further increases.
  • torque pulsation suppression control a technique for suppressing torque pulsation, which is an excitation source of mechanical resonance
  • Patent Document 1 states that "current control that captures the stator current as a vector signal on a dq synchronous coordinate system with two orthogonal axes whose d-axis phase is the N-pole phase of the rotor and controls it to follow the final current command value.
  • the means, the compensation signal generation means for generating the compensation signal for compensating the initial torque command value or the initial current command value, and the generated compensation signal are used to compensate the initial torque command value or the initial current command value, and finally.
  • a drive control device for a synchronous electric motor including a final current command value generating means for generating a current command value, in which a part or all of the harmonic components contained in the induced voltage are extracted in real time, and the induced induction is extracted in real time.
  • a drive control device for a synchronous electric motor characterized in that the compensation signal generation means is configured so as to generate a compensation signal using at least a voltage harmonic component, a stator current equivalent value, and a rotor speed equivalent value. It is disclosed.
  • Patent Document 2 states that "when the switching element is turned on and off by a switching command based on a dead time length command that determines the length of the dead time, which is a protection period for turning the switching element off.
  • a power conversion device for obtaining a compensation amount for compensating for a voltage command value by using a current value supplied from a power conversion unit to a load or a voltage command value for generating a switching command is disclosed.
  • Patent Document 3 includes "a power conversion circuit for driving a permanent magnet motor and a control unit for controlling the power conversion circuit, and the control unit includes a voltage command generation unit and a torque pulsation compensation unit.
  • the torque pulsation compensation unit includes an amplitude generation unit, a correction voltage generation unit, and an addition unit.
  • the voltage command generation unit outputs a voltage command
  • the amplitude generation unit outputs a correction voltage amplitude.
  • the correction voltage generation unit outputs a correction voltage command from the correction voltage amplitude and the rotor position
  • the addition unit outputs a corrected voltage command from the voltage command and the correction voltage command to the corrected voltage command.
  • a motor drive device for operating the power conversion circuit based on the above is disclosed.
  • the distortion component of the induced voltage in the permanent magnet synchronous motor includes order components such as 5th order and 7th order on the three-phase stationary coordinates as described above. These order components appear as sixth order components on the two-axis Cartesian coordinates (hereinafter, dq coordinates) synchronized with the electrical rotation of the motor. From this, by constructing an observer as disclosed in Patent Document 1 on the dq coordinates, a distortion component of the induced voltage corresponding to the disturbance is based on the sixth-order component included in the control command and the sensor information. Can be estimated.
  • the inverter supplies electric power to the motor by operating the switching element, and sets a period (hereinafter, also referred to as a dead time) in which the switching element is turned off at the same time in order to prevent a short circuit between the upper and lower arms.
  • a dead time a period in which the switching element is turned off at the same time in order to prevent a short circuit between the upper and lower arms.
  • the output voltage of the inverter deviates from the command voltage, and a sixth-order disturbance voltage is generated on the dq coordinates.
  • Patent Document 2 discloses an effective means for separating the above-mentioned two influences from the detected current.
  • the length of the dead time which is usually set to be constant, is changed in a cycle other than the sixth order to avoid interference with the distortion component of the induced voltage that changes in the sixth order cycle.
  • Patent Document 2 compensates for output voltage distortion caused by an inverter, but it is considered that more effective torque pulsation suppression control can be realized by combining existing means for compensating for induced voltage distortion caused by a motor.
  • it is necessary to ensure that the lower end value of the width setting does not fall below the off period required to prevent a short circuit between the upper and lower arms, which complicates the control design. It ends up.
  • an object of the present invention is a motor drive device capable of effectively suppressing torque pulsation due to induced voltage distortion caused by a motor and output voltage distortion caused by an inverter, an outdoor unit of an air conditioner using the motor drive device, and a motor drive control method. Is to provide.
  • the present invention includes a power conversion circuit that supplies power to a motor, a control unit that controls the power conversion circuit, and a current sensor that detects a three-phase current energized in the motor.
  • the control unit is based on a command voltage calculation unit that calculates a command voltage that contributes to driving the motor and each component that separates the three-phase detection current detected by the current sensor into components that are orthogonal to each other.
  • a pulsating current detector that generates the first component and the second component that extract the pulsation component of each component, and the first compensation command voltage that compensates for the torque pulsation caused by the structure of the motor based on the first component are output.
  • It has a torque pulsation compensating unit that compensates for the output voltage distortion caused by the dead time of the power conversion circuit based on the second component, and a dead time compensating unit that outputs a second compensation command voltage based on the second component. It is characterized in that the torque pulsation and the output voltage distortion are reduced by correcting the command voltage with the compensation command voltage and the second compensation command voltage.
  • the present invention comprises a permanent magnet synchronous motor, a motor drive device for driving the permanent magnet synchronous motor, a fan connected to the permanent magnet synchronous motor, a frame for mounting the permanent magnet synchronous motor, and a compressor device.
  • the motor drive device is a motor drive device having the above-mentioned characteristics.
  • the first component and the second component obtained by detecting the three-phase current energized in the motor, separating the detected three-phase detection current into components orthogonal to each other, and extracting the pulsation component of each component are used.
  • the first compensation command voltage is generated based on the first component to compensate for the torque pulsation caused by the structure of the motor, and the output voltage distortion due to the dead time of the power conversion circuit is generated based on the second component.
  • the torque pulsation and the output voltage distortion are corrected. It is characterized by reduction.
  • a motor drive device capable of effectively suppressing torque pulsation due to induced voltage distortion caused by a motor and output voltage distortion caused by an inverter, an outdoor unit of an air conditioner using the motor drive device, and a motor drive control method. can do.
  • FIG. 1 It is a figure which shows the structure of the motor drive device which concerns on Example 1 of this invention. It is a figure which expressed a part of the structure of FIG. 1 on the dq coordinate. It is a figure which shows an example of the voltage distortion waveform for each factor. It is a figure which shows the locus of a current vector and a voltage distortion component when only a q-axis current is energized. It is a figure which shows the structure of the pulsation current detection part 116 of FIG. It is a figure which shows the structure of the torque pulsation compensation part 109 of FIG. It is a figure which shows the structure of the dead time compensation part 112 of FIG.
  • FIG. 1 is a configuration diagram of a motor drive device of this embodiment.
  • the motor drive device 100 of this embodiment is a power supply that supplies electric power to a command speed generating unit 102, a control unit 103, and a permanent magnet synchronous motor 101 (hereinafter, also simply referred to as “motor”). It includes a conversion circuit 104 (hereinafter, also referred to as an “inverter”) and a current sensor 105.
  • the motor drive device 100 includes the command speed generation unit 102, but it may be provided inside the control unit 103 or outside the motor drive device 100.
  • the control unit 103 has a three-phase command voltage Vu *, Vv *, Vw based on the command speed ⁇ r * given by the command speed generation unit 102 and the three-phase detection currents Iu, Iv, Iw detected by the current sensor 105. * Is output to control the rotation speed of the motor 101.
  • the currents of all three phases are detected by the current sensor 105, but even if one of the two phases is detected by the current sensor 105 and the remaining one phase is calculated by the control unit 103. good.
  • the power conversion circuit 104 performs PWM (Pulse Width Modulation) control based on the three-phase command voltages Vu *, Vv *, and Vw * output from the control unit 103, and generates a pulsed output voltage to generate a pulse-shaped output voltage to generate the motor 101. To drive.
  • PWM Pulse Width Modulation
  • the control unit 103 has a basic configuration of vector control.
  • the command speed ⁇ r * input from the command speed generation unit 102 to the control unit 103 is multiplied by the gain "motor pole number P / 2" by the gain multiplication unit 106, and the electric angular velocity (P / 2) and ⁇ r * are calculated.
  • NS The command speed ⁇ r * input from the command speed generation unit 102 to the control unit 103 is multiplied by the gain "motor pole number P / 2" by the gain multiplication unit 106, and the electric angular velocity (P / 2) and ⁇ r * are calculated.
  • NS the gain multiplication unit 106
  • the d-axis command current Id * set in advance
  • the q-axis command current Iq * calculated from the q-axis detection current Iqc via the LPF (Low Pass Filter) 108
  • the electric angular velocity (P). / 2) ⁇ Calculate the d-axis and q-axis command voltages Vdc * and Vqc * based on ⁇ r * and the set value of the motor constant.
  • the d-axis and q-axis command voltages Vdc * and Vqc * are command voltages of a DC amount that contributes to the rotation of the motor 101.
  • the torque pulsation compensation unit 109 calculates the d-axis and q-axis compensation command voltages ⁇ Vd * and ⁇ Vq * for compensating for the influence of the induced voltage distortion caused by the motor.
  • the d-axis and q-axis compensation command voltages ⁇ Vd * and ⁇ Vq * are added to the d-axis and q-axis command voltages Vdc * and Vqc * by the adder 110, and the compensated d-axis and q-axis command voltages Vdc **, Vqc ** is generated.
  • the addition unit 110 is composed of addition units 110a and 110b.
  • the dq / 3-phase conversion unit 111 converts the compensated d-axis and q-axis command voltages Vdc ** and Vqc ** into three-phase command voltages Vu *, Vv * and Vw * based on the rotor position ⁇ dc.
  • the dead time compensation unit 112 generates three-phase compensation command voltages ⁇ Vu *, ⁇ Vv *, and ⁇ Vw * for compensating for the influence of output voltage distortion caused by the inverter.
  • the three-phase compensation command voltage ⁇ Vu *, ⁇ Vv *, ⁇ Vw * is added to the three-phase command voltage Vu *, Vv *, Vw * by the adder 113, and the compensated three-phase command voltage Vu **, Vv ** , Vw ** are generated and input to the power conversion circuit 104.
  • the addition unit 113 is composed of addition units 113a, 113b, 113c.
  • the d-axis and q-axis command voltages Vdc * and Vqc *, the d-axis and q-axis detection currents Idc and Iqc, the electric angular velocity (P / 2) and ⁇ r *, and the motor constants are set.
  • the axis error ⁇ c which is the phase deviation between the control axis (dc axis) and the magnetic flux axis (d axis) of the motor, is calculated.
  • the electric angular velocity is controlled by PLL (Phase Locked Loop) so that ⁇ c becomes zero, and the rotor position ⁇ dc is calculated by integrating the obtained values. That is, this embodiment constitutes sensorless vector control that does not require a position sensor.
  • the three-phase / dq conversion unit 115 converts the three-phase detection currents Iu, Iv, and Iw into the d-axis and q-axis detection currents Idc and Iqc based on the rotor position ⁇ dc.
  • the first component Ih1 ⁇ and the second component which are the pulsating components of the d-axis and q-axis detection currents Idc and Iqc, based on the rotor position ⁇ dc and the d-axis and q-axis detection currents Idc and Iqc. Extract Ih2 ⁇ .
  • the first component Ih1 ⁇ is input to the torque pulsation compensation unit 109, and the second component Ih2 ⁇ is input to the dead time compensation unit 112, each of which is used for estimating parameters related to compensation control.
  • the command voltage calculation unit 107 is based on the d-axis command current Id *, the q-axis command current Iq *, the electric angular velocity (P / 2), ⁇ r *, and the set values of the motor constants according to the following equation (1). Then, the d-axis and q-axis command voltages Vdc * and Vqc * are calculated.
  • R represents the winding resistance
  • Ld represents the d-axis inductance
  • Lq represents the q-axis inductance
  • Ke represents the induced voltage coefficient
  • the superscript * means the set value of each motor constant.
  • the command voltage calculation unit 107 uses a constant value set in advance as the d-axis command current Id *, and uses the value obtained by applying the low-pass filter processing to the q-axis detection current Iqc as the q-axis command current Iq * by LPF108. Perform the calculation of 1).
  • the d-axis and q-axis command voltages Vdc * and Vqc *, the d-axis and q-axis detection currents Idc and Iqc, the electric angular velocity ⁇ 1c, and the motor constant are determined according to the following equation (2).
  • the axis error ⁇ c is calculated based on the set value.
  • the electric angular velocity ⁇ 1c is a signal obtained by adjusting the electric angular velocity so that the axial error ⁇ c becomes zero by the PLL.
  • the rotor position detection unit 114 calculates the rotor position ⁇ dc by integrating the electric angular velocity ⁇ 1c.
  • FIG. 2 illustrates the elements necessary for explanation in the configuration shown in FIG. 1, and does not show the torque pulsation compensation unit 109 or the dead time compensation unit 112. Further, the permanent magnet synchronous motor 200 is shown by an equivalent model on the dq coordinates.
  • the distortion components Kehd and Kehq of the induced voltage coefficients on the d-axis and the q-axis are multiplied by the electric angular velocity (P / 2) and ⁇ r (P / 2) and ⁇ r and Kehd, (P / 2). ) ⁇ ⁇ r ⁇ Kehq is subtracted.
  • the subtraction units 201a and 201b equivalently represent the influence of the induced voltage distortion caused by the motor on the dq coordinates.
  • the output voltage distortions Vtdd and Vtdq due to the dead time on the d-axis and the q-axis are subtracted.
  • the subtraction units 202a and 202b equivalently represent the influence of the output voltage distortion caused by the inverter on the dq coordinates.
  • the permanent magnet synchronous motor 200 is energized with pulsating components Idh and Iqh in addition to the direct current components Id ⁇ and Iq ⁇ on the d-axis and q-axis, respectively.
  • the q-axis current “Iq ⁇ + Iqh” is converted into the q-axis command current Iq * via the LPF 108 and fed back to the command voltage calculation unit 107.
  • the d-axis and q-axis command voltages Vdc * and Vqc * generated by the command voltage calculation unit 107 become DC quantities, and only the DC components Id ⁇ and Iq ⁇ of the d-axis and q-axis currents are controlled.
  • Td is the length of the dead time
  • fc is the carrier frequency
  • VDC is the DC voltage applied to the inverter
  • sign (i) means the polarity of the detected current of each phase.
  • FIG. 3 shows the induced voltage distortion “(P / 2) ⁇ ⁇ r ⁇ Kehd, (P / 2) ⁇ ⁇ r. "Kehq" and the output voltage distortion “Vtdd, Vtdq” caused by the inverter are illustrated.
  • the induced voltage distortion “(P / 2) ⁇ ⁇ r ⁇ Kehd, (P / 2) ⁇ ⁇ r ⁇ Kehq” caused by the motor has the same amplitude on both the d-axis and the q-axis.
  • the pulsating voltage is 90 ° out of phase with each other.
  • the output voltage distortion "Vtdd, Vtdq” caused by the inverter has a sawtooth shape on the d-axis and a half-wave shape on the q-axis, and the shapes are pulsating voltages that are significantly different from each other.
  • Vtdd on the d-axis side is larger than Vtdq on the q-axis side, the output voltage distortion caused by the inverter appears prominently on the d-axis side, that is, on the non-energized shaft side. You can see that.
  • I is a current vector (only the q-axis current is energized)
  • X is a locus of induced voltage distortion caused by a motor
  • Y is a locus of output voltage distortion caused by an inverter.
  • X has a circular locus, while Y has a half-moon locus.
  • the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter are expressed by the following equations (4) and (5), respectively.
  • Keh ⁇ is the amplitude of Kehd and Kehq.
  • Vtdd ⁇ and Vtdq ⁇ are the amplitudes of Vtdd and Vtdq.
  • the pulsation current detection unit 116 that extracts the pulsation components of the d-axis and q-axis detection currents Idc and Iqc from the characteristics of the output voltage distortion caused by the inverter is configured as shown in FIG.
  • the second component Ih2 ⁇ used in the dead time compensation unit 112 is extracted from the d-axis detection current Idc. ing.
  • the current phase is delayed by 90 ° with respect to the voltage phase, and moreover, it is mainly from equation (5).
  • Vtdd which is a component, is a function of sin ⁇ d
  • the multiplication unit 501 detects the influence of the output voltage distortion caused by the inverter by multiplying the d-axis detection current Idc by cos6 ⁇ dc.
  • the LPF502 extracts the DC amount of Idc ⁇ cos6 ⁇ dc, which is the calculation result of the multiplication unit 501, and outputs the second component Ih2 ⁇ .
  • the first component Ih1 ⁇ used in the torque pulsation compensation unit 109 is extracted from the q-axis detection current Iqc as an effect of the induced voltage distortion caused by the motor.
  • (P / 2), ⁇ r, and Kehq are functions of cos6 ⁇ d, so the multiplication unit 504 multiplies the q-axis detection current Iqc by sin6 ⁇ dc.
  • the LPF505 extracts the DC amount of Iqc ⁇ sin6 ⁇ dc, which is the calculation result of the multiplication unit 504, and outputs the first component Ih1 ⁇ .
  • the pulsating current detection unit 116 includes the LPF502 and the LPF505, but these LPFs may be deleted. This is because the torque pulsation compensation unit 109 and the dead time compensation unit 112 have integral control based on the first component Ih1 ⁇ and the second component Ih2 ⁇ , and as a result, the exchange amount of Idc ⁇ cos6 ⁇ dc and Iqc ⁇ sin6 ⁇ dc is cancelled. Because it is done. Details will be described later.
  • FIG. 6 is a configuration diagram of the torque pulsation compensation unit 109.
  • the torque pulsation compensation unit 109 compensates for the torque pulsation generated by the induced voltage distortion caused by the motor based on the first component Ih1 ⁇ extracted by the pulsation current detection unit 116 and the electric angular velocity (P / 2) ⁇ r *.
  • the d-axis and q-axis compensation command voltages ⁇ Vd * and ⁇ Vq * are generated for this purpose.
  • the integration control unit 600 generates an adjustment signal ⁇ Keh ⁇ according to the first component Ih1 ⁇ of the current pulsation.
  • the adjustment signal ⁇ Keh ⁇ is added to the initial value Keh0 ⁇ set by the initial value setting unit 602 in the addition unit 601 to generate the set value Keh * ⁇ .
  • the sin6 ⁇ dc generated by the sin6 ⁇ dc signal generation unit 603 and the electric angular velocity (P / 2) / ⁇ r * are multiplied by Keh * ⁇ in the multiplication units 604 and 607, respectively, and the d-axis compensation command voltage ⁇ Vd * is generated.
  • cos6 ⁇ dc generated by the cos6 ⁇ dc signal generation unit 605 and the electric angular velocity (P / 2) / ⁇ r * are multiplied by Keh * ⁇ in the multiplication units 606 and 608, respectively, to generate the q-axis compensation command voltage ⁇ Vq *. ..
  • the value set in the initial value setting unit 602 is set to the initial value Keh0 ⁇ , but it is possible to set an arbitrary value in terms of control, and zero may be set.
  • the d-axis and q-axis compensation command voltages ⁇ Vd * and ⁇ Vq * are added to the d-axis and q-axis command voltages Vdc * and Vqc * by the adder 110, and the compensated d-axis and q-axis are added.
  • Command voltages Vdc ** and Vqc ** are generated.
  • FIG. 7 is a configuration diagram of the dead time compensation unit 112.
  • the dead time compensation unit 112 is based on the second component Ih2 ⁇ extracted by the pulsating current detection unit 116 and the three-phase detection currents Iu, Iv, Iw, and the three-phase compensation unit 112 is used to compensate for the influence of the output voltage distortion caused by the inverter. Compensation command voltages ⁇ Vu *, ⁇ Vv *, and ⁇ Vw * are generated.
  • the integration control unit 700 generates an adjustment signal ⁇ Vtd ⁇ according to the second component Ih2 ⁇ of the current pulsation.
  • the adjustment signal ⁇ Vtd ⁇ is added to the initial value Vtd0 ⁇ set by the initial value setting unit 701 in the addition unit 702, and the set value Vtd * ⁇ is generated.
  • the signal of 1 or -1 corresponding to the polarity of the U-phase detection current Iu generated by the sign function unit 703 is multiplied by Vtd * ⁇ in the multiplication unit 704, and the U-phase compensation command voltage ⁇ Vu * is generated.
  • the signal generated by the sign function unit 705 is multiplied by Vtd * ⁇ in the multiplication unit 706 to generate the V-phase compensation command voltage ⁇ Vv *.
  • the signal generated by the sign function unit 707 is multiplied by Vtd * ⁇ in the multiplication unit 708, and the W phase compensation command voltage ⁇ Vw * is generated.
  • the value set by the initial value setting unit 701 is set to the initial value Vtd0 ⁇ , but it is possible to set an arbitrary value in terms of control, and zero may be set.
  • the three-phase compensation command voltages ⁇ Vu *, ⁇ Vv *, and ⁇ Vw * are added to the three-phase command voltages Vu *, Vv *, and Vw * by the adder 113, and the three-phase compensation command voltage after compensation is applied.
  • Vu **, Vv **, Vw ** are generated.
  • the three-phase compensation command voltages ⁇ Vu *, ⁇ Vv *, and ⁇ Vw * converted into dq-axis components are defined as ⁇ Vd ** and ⁇ Vq **, and these command voltages are the d-axis and q-axis command voltages Vdc * and Vqc.
  • the sum of * is defined as Vd *** and Vq ***.
  • Vtdd and Vtdq added by the addition units 202a and 202b are ⁇ Vd ** and Vqc * in Vdc ***, respectively. It is offset by ⁇ Vq ** in **, and the effect of output voltage distortion caused by the inverter is compensated.
  • FIG. 8 shows the operation waveform of this embodiment.
  • the d-axis command current Id * is set to zero
  • the initial value Keh0 ⁇ of the torque pulsation compensation unit 109 and the initial value Vtd0 ⁇ of the dead time compensation unit 112 are set to zero.
  • the time T1 is the time when the torque pulsation compensation unit 109 starts the operation (the integration control unit 600 starts the operation)
  • the time T2 is the time when the dead time compensation unit 112 starts the operation (the integration control unit 700 operates). Indicates the time (to start).
  • the torque pulsation compensating unit 109 When the torque pulsation compensating unit 109 operates at time T1 ⁇ t ⁇ T2, the pulsation component of the q-axis detection current Iqc decreases, and the setting ratio of the set value Keh * ⁇ to the actual value Keh ⁇ increases. You can see that. This is because the set value Keh * ⁇ is adjusted by the integration control unit 600 based on the first component Ih1 ⁇ of the current pulsation, that is, the pulsation component of the q-axis detection current Iqc.
  • the pulsation component of the d-axis detection current Idc decreases, and the set ratio of the set value Vtd * ⁇ to the actual value Vtd ⁇ increases.
  • the set value Vtd * ⁇ is adjusted by the integral control unit 700 based on the second component Ih2 ⁇ of the current pulsation, that is, the pulsation component of the d-axis detected current.
  • the setting ratio of the set value Keh * ⁇ to the actual value Keh ⁇ is also changing at the same time. This is because the influence of the output voltage distortion Vtdq caused by the inverter in the torque pulsation compensation unit 109 is compensated by the dead time compensation unit 112, and the error contained in the adjustment signal ⁇ Keh ⁇ generated by the integration control unit 600 is removed. ..
  • a motor driving device according to a second embodiment of the present invention and a control method thereof will be described with reference to FIGS. 9 to 11.
  • the torque pulsation compensation unit 109 and the dead time compensation unit 112 operate to compensate for the effects of the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter in FIG. 2 (addition units 201a and 201b).
  • the term added by the addition units 202a and 202b is canceled), and the constant d-axis and q-axis currents Id ⁇ and Iq ⁇ that do not include the pulsating components Idh and Iqh are energized. That is, the torque pulsation reduction effect is obtained by bringing the current waveform distorted by various factors closer to an ideal sinusoidal shape.
  • the effect of the induced voltage distortion caused by the motor in the multiplication units 203 and 204 remains, so that the torque pulsation reduction effect can be obtained. Will be limited. (See the torque waveform in FIG. 8) Therefore, in order to compensate for the torque pulsation, for example, the method disclosed in Patent Document 3 may be used. That is, the q-axis current may be intentionally controlled to pulsate so that the torque pulsation is canceled out.
  • FIG. 9 is a configuration diagram of the motor drive device of this embodiment.
  • the torque pulsation compensation unit 109 in the configuration of the first embodiment (FIG. 1) is replaced with the torque pulsation compensation unit 109'.
  • FIG. 10 shows the configuration of the torque pulsation compensation unit 109'.
  • the difference from the torque pulsation compensation unit 109 of the first embodiment (FIG. 1) is that the q-axis detection current Iqc is input, the compensation voltage calculation unit 1000, the LPF (low-pass filter) 1002, and the multiplication unit 1003, 1004. , 1006, 1007 and addition units 1005, 1008 are added.
  • the LPF (low-pass filter) 1002 extracts the DC amount of the q-axis detection current Iqc and generates Iqc ⁇ .
  • the set value Keh * ⁇ of the distortion component of the induced voltage coefficient, Iqc ⁇ by LPF1002, and the electric angular velocity (P / 2) / ⁇ r * are input to the compensation voltage calculation unit 1000, and are based on the following equation (6). Therefore, the first d-axis compensation command voltage ⁇ Vd1 * ⁇ , the second d-axis compensation command voltage ⁇ Vd2 * ⁇ , the first q-axis compensation command voltage ⁇ Vq1 * ⁇ , and the second q-axis compensation command voltage ⁇ Vq2 * ⁇ are generated.
  • ⁇ Vd1 * ⁇ and ⁇ Vd2 * ⁇ which are the calculation results of the compensation voltage calculation unit 1000, are multiplied by sin6 ⁇ dc and cos6 ⁇ dc in the multiplication unit 1003 and the multiplication unit 1004, respectively, and ⁇ Vd1 * ⁇ ⁇ sin6 ⁇ dc and ⁇ Vd2 * ⁇ ⁇ cos6 ⁇ dc are generated. NS. After that, these calculation results are added by the addition unit 1005 to generate the d-axis compensation command voltage ⁇ Vd *.
  • the q-axis current represented by the equation (7) is energized in a steady state.
  • the torque pulsation can be reduced by the ratio " ⁇ Keh ⁇ / Ke" with respect to the configuration of the first embodiment.
  • FIG. 11 shows the operation waveform of this embodiment.
  • the operating conditions are the same as in the case of the first embodiment shown in FIG. 8, except that the torque pulsation compensating unit 109 is replaced with the torque pulsation compensating unit 109'.
  • FIG. 8 which is the operation waveform of the first embodiment, the torque and current waveforms are different.
  • the q-axis current Iq intentionally containing the pulsation component is energized at time T1 ⁇ t, and a higher torque pulsation reduction effect is obtained.
  • the distortion component Keh ⁇ of the induced voltage coefficient can be estimated from the detected current, and based on the obtained Keh ⁇ .
  • the torque pulsation can be canceled more effectively.
  • a motor drive device according to a third embodiment of the present invention and a control method thereof will be described with reference to FIGS. 12 to 14.
  • the output voltage distortion caused by the inverter appears prominently on the non-energized shaft side. From this, if the directions of the energized shaft and the non-energized shaft can be grasped by observing the direction of the current vector, the same control operation as in the first and second embodiments can be realized under other energized conditions.
  • FIG. 12 shows a diagram showing the current vector I', the locus X'of the induced voltage distortion caused by the motor, and the locus Y'of the output voltage distortion caused by the inverter when the current phase ⁇ is set to 45 °.
  • the loci X and X' are similar, and it can be seen that the influence of the induced voltage distortion caused by the motor does not depend on the current.
  • the loci Y and Y' are different from each other, and the influence of the output voltage distortion caused by the inverter changes with the direction of the current vector. Assuming that the direction of the current vector, that is, the energizing direction is the ⁇ axis and the non-energizing direction shifted 90 ° clockwise is the ⁇ axis, the influence of the output voltage distortion caused by the inverter appears remarkably on the ⁇ axis.
  • FIG. 13 is a configuration diagram of the motor drive device of this embodiment.
  • the pulsating current detection unit 116 in the configuration of Example 1 (FIG. 1) is replaced with the pulsating current detection unit 116'in consideration of the relationship between the direction of the current vector and the influence of the output voltage distortion caused by the inverter. be.
  • the torque pulsation compensating unit 109 is included, but the torque pulsation compensating unit 109'shown in the second embodiment may be used instead.
  • FIG. 14 shows the configuration of the pulsating current detection unit 116'.
  • the difference from the pulsating current detection unit 116 of the first embodiment (FIG. 5) is that the current phase calculation unit 1400, the dq / ⁇ conversion unit 1401 and the addition unit 1402 are added.
  • the current phase calculation unit 1400 calculates the current phase ⁇ "tan-1 (-Idc / Iqc)" based on the d-axis and q-axis detection currents Idc and Iqc.
  • the dq / ⁇ conversion unit 1401 calculates the following equation (8) based on the current phase ⁇ .
  • the current vector is separated into a ⁇ -axis component in the non-energized direction and a ⁇ -axis component in the energized direction.
  • the ⁇ -axis detection current I ⁇ c is multiplied by cos6 ⁇ dc'by the multiplication unit 1405, and the second component Ih2 ⁇ of the current pulsation is generated via the LPF502.
  • the ⁇ -axis detection current I ⁇ c is multiplied by sin6 ⁇ dc'by the multiplication unit 1406, and the first component Ih1 ⁇ of the current pulsation is generated via the LPF505.
  • the operation after the first component Ih1 ⁇ and the second component Ih2 ⁇ of the current pulsation are generated by the pulsation current detection unit 116' is the same as that of the first and second embodiments.
  • FIG. 15 shows an example in which the motor drive device according to any one of the first to third embodiments is applied to a fan motor system mounted on an outdoor unit of an air conditioner.
  • the outdoor unit 1500 is equipped with a fan motor drive device 1501, a compressor motor drive device 1502, a fan motor 1503, a fan 1504, a frame 1505, and a compressor device 1506.
  • the fan motor drive device 1501 is a motor drive device according to any one of the above-described first to third embodiments.
  • the AC power supply 1507 is connected to the compressor motor drive device 1502.
  • the compressor motor drive device 1502 rectifies the supplied AC voltage VAC to a DC voltage VDC and drives the compressor device 1506.
  • the compressor motor drive device 1502 also supplies the fan motor drive device 1501 with a DC voltage VDC, and further outputs a motor speed command ⁇ r *.
  • the fan motor drive device 1501 operates based on the input motor speed command ⁇ r *, and supplies a three-phase voltage to the fan motor 1503. As a result, the fan motor 1503 is driven, and the connected fan 1504 rotates. The above is the operation of the fan motor system.
  • the outdoor unit of an air conditioner it is common to mount an inexpensive arithmetic unit on the fan motor drive device 1501 in order to reduce the cost. Further, the fan motor 1503 is often not provided with a position sensor. Even in such an application, torque pulsation suppression control can be realized by using the motor drive device according to the present invention as a drive device for a fan motor. As a result, the vibration to the frame 1505 caused by the fan motor 1503 is reduced, and the noise emitted from the outdoor unit unit 1500 can be reduced.
  • the motor drive device does not require preliminary tests or adjustment work, and is therefore very easy to apply. Further, since the torque pulsation suppression control is autonomous, the present invention can be applied to the existing equipment in which it is difficult to measure the motor characteristics.
  • the motor drive device according to the first to third embodiments can also be used as a drive device for a compressor motor.
  • the present invention can be applied to any motor drive device having a basic configuration of vector control.
  • the motor drive device based on the position sensorless method has been described as an example, but the present invention is also applied to a motor drive device including a position sensor such as an encoder, a resolver, and a magnetic pole position sensor. can do.
  • the present invention can be applied to a configuration in which a position sensor is added to the motor 101 shown in FIGS. 1, 9, and 13 and speed feedback control based on the information of the position sensor is added to the control unit 103.
  • the deviation of the d-axis command current Id * and the d-axis detection current Idc and the deviation of the q-axis command current Iq * and the q-axis detection current Iqc can also be applied to a configuration including current feedback control based on the above.
  • the response band of the constructed current feedback control should be designed to be sufficiently lower than the fluctuation frequency of the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter.
  • the information contained in the d-axis and q-axis detection currents Idc and Iqc becomes the same as that of the first to third embodiments, and the appropriate operation according to the present invention becomes possible.
  • Examples 1 to 3 it has been described that the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter fluctuate in the 6th order, but the fluctuation period is other than the 6th order (12th order, 24th order, etc.). Even in such cases, the present invention can be applied in the same manner.
  • the influence of the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter is detected and compensated based on the d-axis and q-axis detection currents which are one of the detection signals. It is a control to perform.
  • the detection signal instead of the command signal, the influence of modeling error, calculation error, etc. can be eliminated as much as possible, and the above control can be performed with high accuracy.
  • the present invention realizes the torque pulsation suppression control that operates autonomously only by the existing sensor.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above examples have been described in detail to aid in understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • 100 Motor drive device, 101 ... Permanent magnet synchronous motor (motor), 102 ... Command speed generator, 103 ... Control unit, 104 ... Power conversion circuit, 105 ... Current sensor, 106 ... Gain multiplication unit, 107 ... Command voltage calculation Unit, 108 ... LPF (low pass filter), 109, 109'... torque pulsation compensation unit, 110, 110a, 110b ... addition unit, 111 ... dq / 3 phase conversion unit, 112 ... dead time compensation unit, 113, 113a, 113b , 113c ... Addition unit, 114 ... Rotor position detection unit, 115 ... 3-phase / dq conversion unit, 116, 116'... Pulsating current detection unit, 200 ...
  • Permanent magnet synchronous motor (dq coordinate model), 201a, 201b ... Addition Unit, 202a, 202b ... Addition part, 203,204 ... Multiplying part, 500 ... cos6 ⁇ dc signal generation part, 503 ... sin6 ⁇ dc signal generation part, 501,504 ... Multiplying part, 502,505 ... LPF (low pass filter), 600 ... Integration Control unit, 601 ... Addition unit, 602 ... Initial value setting unit, 603 ... sin6 ⁇ dc signal generation unit, 604,606,607,608 ... Multiplication unit, 605 ... cos6 ⁇ dc signal generation unit, 700 ... Integration control unit, 701 ... Initial value Setting unit, 702 ...
  • Frame 1506 ... Compressor device, 1507 ... AC Power supply, ⁇ r ... motor speed, ⁇ r * ... command speed (motor speed command), electric angular speed obtained by ⁇ 1c ... PLL, Vu *, Vv *, Vw * ... three-phase command voltage, Vdc *, Vqc * ... d-axis and q-axis command voltage, ⁇ Vd *, ⁇ Vq * ... d-axis and q-axis compensation command voltage, Vdc **, Vqc ** ... d-axis and q-axis command voltage after compensation, ⁇ Vu *, ⁇ Vv *, ⁇ Vw * ...
  • Three-phase Compensation command voltage Vu **, Vv **, Vw ** ... Three-phase compensation command voltage after compensation, Iu, Iv, Iw ... Three-phase detection current, Id, Iq ... d-axis and q-axis Current, Idc, Iqc ... d-axis and q-axis detection current, Ih1 ⁇ , Ih2 ⁇ ... first and second components of current pulsation, ⁇ d ... rotor position, ⁇ dc ... rotor position estimate, ⁇ c ... axis error , ⁇ m ... motor torque, P ... number of motor poles, R ... winding resistance, Ld, Lq ...
  • Ke ... induced voltage coefficient Kehd, Kehq ... d-axis and q-axis induced voltage coefficient Pulsating component (distortion component), Keh ⁇ ... Kehd and Kehq amplitude values, Keh * ⁇ ... amplitude value Keh ⁇ setting value, ⁇ Keh ⁇ ... Keih * ⁇ calculation adjustment value, Keh0 ⁇ ... Keih * ⁇ calculation
  • Vtd Three-phase stationary coordinate component of output voltage distortion caused by inverter, Vtdd, Vtdq ... D-axis and q-axis component of output voltage distortion caused by inverter, Vtd ⁇ ...
  • second amplitude (first d-axis compensation command voltage, second d-axis compensation command voltage) ⁇ Vq1 * ⁇ , ⁇ Vq2 * ⁇ ...
  • the first amplitude and second amplitude of the q-axis compensation voltage (first q-axis compensation command voltage) , Second q-axis compensation command voltage), I ⁇ c, I ⁇ c ... ⁇ -axis and ⁇ -axis detection current, ⁇ ... current phase, VAC ... AC voltage, VDC ... DC voltage.

Abstract

Provided are a motor drive device capable of effectively suppressing an induced voltage distortion caused by a motor and torque ripples due to an output voltage distortion caused by an inverter, an outdoor unit of an air conditioner using the motor drive device, and a motor drive control method. The motor drive device is provided with a power conversion circuit for supplying power to a motor, a control unit for controlling the power conversion circuit, and a current sensor for detecting three-phase current that energizes the motor. The control unit has: a command voltage calculation unit for calculating a command voltage contributing to the driving of the motor; a ripple current detection unit for separating the the three-phase detection current detected by the current sensor into components orthogonal to each other and generating, on the basis of each of the components, a first component and a second component which are obtained by extracting ripple components of each of the components; a torque ripple compensation unit for outputting a first compensation command voltage for compensating, on the basis of the first component, torque ripples caused by the structure of the motor; and a dead time compensation unit for outputting a second compensation command voltage for compensating, on the basis of the second component, an output voltage distortion caused by the dead time of the power conversion circuit. The motor drive device is characterized by reducing the torque ripples and the output voltage distortion by correcting the command voltage using the first compensation command voltage and the second compensation command voltage.

Description

モータ駆動装置およびそれを用いた空気調和機の室外機、モータ駆動制御方法Motor drive device and outdoor unit of air conditioner using it, motor drive control method
 本発明は、モータ(電動機)を駆動するモータ駆動装置とその制御に係り、特に、静音性が求められる用途で使用されるモータ(電動機)の駆動制御に適用して有効な技術に関する。 The present invention relates to a motor drive device for driving a motor (motor) and its control, and particularly relates to a technique effective when applied to drive control of a motor (motor) used in an application requiring quietness.
 永久磁石同期モータの誘起電圧は理想的には基本波成分のみを含むが、実際には三相静止座標上において5次成分や7次成分といった空間高調波成分が存在する。この誘起電圧の歪み成分はモータトルクが脈動する一因となり、この変動するトルクが機械共振の励起源となることで、騒音や振動が発生する。 Ideally, the induced voltage of the permanent magnet synchronous motor contains only the fundamental wave component, but in reality, there are spatial harmonic components such as the fifth-order component and the seventh-order component on the three-phase stationary coordinates. The distortion component of this induced voltage contributes to the pulsation of the motor torque, and this fluctuating torque becomes the excitation source of mechanical resonance, so that noise and vibration are generated.
 機械共振によって生じる騒音や振動は、例えば、モータを固定する箇所や回転軸受け部に防振ゴムを設けることで軽減できる。しかし、この方法では部品点数の増加に伴い構造が複雑化すること、さらにコストが増加することが問題となる。 Noise and vibration caused by mechanical resonance can be reduced, for example, by providing anti-vibration rubber at the location where the motor is fixed or at the rotating bearing. However, this method has problems that the structure becomes complicated as the number of parts increases and the cost further increases.
 このことから、防振ゴムのような部材を用いることなく、永久磁石同期モータの制御方法により機械共振の励起源であるトルク脈動を抑制する技術(以下、トルク脈動抑制制御と称する)の開発が進められている。 For this reason, the development of a technique for suppressing torque pulsation, which is an excitation source of mechanical resonance (hereinafter referred to as torque pulsation suppression control), has been developed by a control method of a permanent magnet synchronous motor without using a member such as anti-vibration rubber. It is being advanced.
 制御によってトルク脈動を抑制する場合、制御指令を生成するにあたり、誘起電圧の歪み成分がどの程度含まれているかを把握しておく必要がある。一つの手段として、誘起電圧波形を含むモータ特性を事前に測定しておく方法が考えられるが、不特定のモータに対して個別の測定を行うことは容易ではない。また、既設の製品等ではモータ特性の測定が困難な場合もある。 When suppressing torque pulsation by control, it is necessary to understand how much the distortion component of the induced voltage is included when generating the control command. As one means, a method of measuring the motor characteristics including the induced voltage waveform in advance can be considered, but it is not easy to perform individual measurement for an unspecified motor. In addition, it may be difficult to measure motor characteristics with existing products.
 本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には「固定子電流を、回転子N極位相をd軸位相とする直交2軸のdq同期座標系上のベクトル信号として捕らえ、最終電流指令値に追従するように制御する電流制御手段と、初期トルク指令値あるいは初期電流指令値を補償するための補償信号を生成する補償信号生成手段と、生成した補償信号を用いて初期トルク指令値あるいは初期電流指令値を補償して、最終電流指令値を生成する最終電流指令値生成手段と、を備える同期電動機の駆動制御装置であって、誘起電圧に含まれる高調波成分の一部または全部を実時間抽出し、実時間抽出した誘起電圧高調波成分と固定子電流相当値と回転子速度相当値とを少なくとも用いて補償信号を生成するように、該補償信号生成手段を構成したことを特徴とする同期電動機の駆動制御装置」が開示されている。 As a background technology in this technical field, for example, there is a technology such as Patent Document 1. Patent Document 1 states that "current control that captures the stator current as a vector signal on a dq synchronous coordinate system with two orthogonal axes whose d-axis phase is the N-pole phase of the rotor and controls it to follow the final current command value. The means, the compensation signal generation means for generating the compensation signal for compensating the initial torque command value or the initial current command value, and the generated compensation signal are used to compensate the initial torque command value or the initial current command value, and finally. A drive control device for a synchronous electric motor including a final current command value generating means for generating a current command value, in which a part or all of the harmonic components contained in the induced voltage are extracted in real time, and the induced induction is extracted in real time. A drive control device for a synchronous electric motor, characterized in that the compensation signal generation means is configured so as to generate a compensation signal using at least a voltage harmonic component, a stator current equivalent value, and a rotor speed equivalent value. It is disclosed.
 特許文献1のようにモータ駆動装置内で制御指令やセンサ情報を基に所望のパラメータをオンラインで推定することにより、不特定のモータが搭載されるファンやポンプ等の用途であっても高い汎用性を実現することができる。 By estimating desired parameters online based on control commands and sensor information in the motor drive device as in Patent Document 1, it is highly versatile even for applications such as fans and pumps on which unspecified motors are mounted. Sex can be realized.
 また、特許文献2には「スイッチング素子をオフ状態とする保護期間であるデッドタイムの長さを決定するデッドタイムの長さ指令に基づいたスイッチング指令によってスイッチング素子がオンおよびオフ動作されたときの電力変換部から負荷へ供給される電流値またはスイッチング指令を生成するための電圧指令値を用いて、電圧指令値を補償する補償量を求める電力変換装置」が開示されている。 Further, Patent Document 2 states that "when the switching element is turned on and off by a switching command based on a dead time length command that determines the length of the dead time, which is a protection period for turning the switching element off. A power conversion device for obtaining a compensation amount for compensating for a voltage command value by using a current value supplied from a power conversion unit to a load or a voltage command value for generating a switching command is disclosed.
 また、特許文献3には「永久磁石モータを駆動する電力変換回路と、前記電力変換回路を制御する制御部とを備え、前記制御部は、電圧指令生成部と、トルク脈動補償部とを含み、前記トルク脈動補償部は、振幅生成部と、補正電圧生成部と、加算部とを含み、前記電圧指令生成部は電圧指令を出力し、前記振幅生成部は補正電圧振幅を出力し、前記補正電圧生成部は前記補正電圧振幅と回転子位置とから補正電圧指令を出力し、前記加算部は前記電圧指令と前記補正電圧指令とから補正後電圧指令を出力し、前記補正後電圧指令に基づいて前記電力変換回路を動作させるモータ駆動装置」が開示されている。 Further, Patent Document 3 includes "a power conversion circuit for driving a permanent magnet motor and a control unit for controlling the power conversion circuit, and the control unit includes a voltage command generation unit and a torque pulsation compensation unit. The torque pulsation compensation unit includes an amplitude generation unit, a correction voltage generation unit, and an addition unit. The voltage command generation unit outputs a voltage command, and the amplitude generation unit outputs a correction voltage amplitude. The correction voltage generation unit outputs a correction voltage command from the correction voltage amplitude and the rotor position, and the addition unit outputs a corrected voltage command from the voltage command and the correction voltage command to the corrected voltage command. A motor drive device for operating the power conversion circuit based on the above is disclosed.
特開2012-100510号公報Japanese Unexamined Patent Publication No. 2012-100510 特開2018-182901号公報Japanese Unexamined Patent Publication No. 2018-182901 特開2017-229126号公報JP-A-2017-229126
 ところで、永久磁石同期モータにおける誘起電圧の歪み成分は、先に述べたように三相静止座標上において5次、7次といった次数成分を含んでいる。これらの次数成分は、モータの電気的な回転に同期した二軸直交座標(以下、dq座標)上においては、6次成分となって現れる。このことから、dq座標上において上記特許文献1に開示されているようなオブザーバを構築することで、制御指令やセンサ情報に含まれる6次成分を基に、外乱に相当する誘起電圧の歪み成分を推定することができる。 By the way, the distortion component of the induced voltage in the permanent magnet synchronous motor includes order components such as 5th order and 7th order on the three-phase stationary coordinates as described above. These order components appear as sixth order components on the two-axis Cartesian coordinates (hereinafter, dq coordinates) synchronized with the electrical rotation of the motor. From this, by constructing an observer as disclosed in Patent Document 1 on the dq coordinates, a distortion component of the induced voltage corresponding to the disturbance is based on the sixth-order component included in the control command and the sensor information. Can be estimated.
 しかしながら、複数の要因で制御指令やセンサ情報に6次成分を含有する場合、特許文献1に開示されているような方法では要因毎に影響を切り分けられないため、誘起電圧の歪み成分を精度良く推定できなくなるという課題があった。 However, when the control command or the sensor information contains the sixth component due to a plurality of factors, the influence cannot be separated for each factor by the method disclosed in Patent Document 1, so that the distortion component of the induced voltage can be accurately determined. There was a problem that it could not be estimated.
 制御指令やセンサ情報に6次成分を含有する他の要因としては、インバータ起因の出力電圧誤差がある。インバータはスイッチング素子を動作させることでモータに電力を供給しており、上下アーム間の短絡を防止するためにスイッチング素子を同時にオフさせる期間(以下、デッドタイムとも称する)を設定する。これに伴い、インバータの出力電圧は指令電圧に対してずれが生じ、dq座標上において6次の外乱電圧が発生する。 Another factor that contains the 6th component in the control command and sensor information is the output voltage error caused by the inverter. The inverter supplies electric power to the motor by operating the switching element, and sets a period (hereinafter, also referred to as a dead time) in which the switching element is turned off at the same time in order to prevent a short circuit between the upper and lower arms. Along with this, the output voltage of the inverter deviates from the command voltage, and a sixth-order disturbance voltage is generated on the dq coordinates.
 以上のことから、モータ起因の誘起電圧歪みと、インバータ起因の出力電圧歪みが同時に存在する中でトルク脈動抑制制御を実現する場合、これらの影響を制御指令やセンサ情報の中から切り分け、個別に関連パラメータを推定して補償する手段が必要となる。 From the above, when torque pulsation suppression control is realized in the presence of motor-induced voltage distortion and inverter-induced output voltage distortion at the same time, these effects are separated from the control commands and sensor information and individually. Means are needed to estimate and compensate for the relevant parameters.
 上記特許文献2では、検出電流の中から上記2つの影響を分離する有効な手段が開示されている。この方法では、通常一定に設定されるデッドタイムの長さを6次以外の周期で変化させることで、6次周期で変化する誘起電圧の歪み成分との干渉を回避している。 The above-mentioned Patent Document 2 discloses an effective means for separating the above-mentioned two influences from the detected current. In this method, the length of the dead time, which is usually set to be constant, is changed in a cycle other than the sixth order to avoid interference with the distortion component of the induced voltage that changes in the sixth order cycle.
 特許文献2はインバータ起因の出力電圧歪みを補償するものであるが、モータ起因の誘起電圧歪みを補償する既存の手段を組み合わせることで、より効果的なトルク脈動抑制制御を実現できると考えられる。しかしながら、デッドタイムの長さを変化させる場合、幅を有する設定の下端値が上下アーム間の短絡を防止するために必要なオフ期間を下回らないようにする必要があり、制御設計が複雑化してしまう。 Patent Document 2 compensates for output voltage distortion caused by an inverter, but it is considered that more effective torque pulsation suppression control can be realized by combining existing means for compensating for induced voltage distortion caused by a motor. However, when changing the length of the dead time, it is necessary to ensure that the lower end value of the width setting does not fall below the off period required to prevent a short circuit between the upper and lower arms, which complicates the control design. It ends up.
 また、ファンやポンプ用途では安価な駆動装置を用いており、特許文献2のようにデッドタイム時間を周期的に変化させることが困難な場合があった。 In addition, since an inexpensive drive device is used for fan and pump applications, it may be difficult to change the dead time time periodically as in Patent Document 2.
 そこで、本発明の目的は、モータ起因の誘起電圧歪み及びインバータ起因の出力電圧歪みによるトルク脈動を効果的に抑制可能なモータ駆動装置およびそれを用いた空気調和機の室外機、モータ駆動制御方法を提供することにある。 Therefore, an object of the present invention is a motor drive device capable of effectively suppressing torque pulsation due to induced voltage distortion caused by a motor and output voltage distortion caused by an inverter, an outdoor unit of an air conditioner using the motor drive device, and a motor drive control method. Is to provide.
 上記課題を解決するために、本発明は、モータに電力を供給する電力変換回路と、前記電力変換回路を制御する制御部と、前記モータに通電される三相電流を検出する電流センサと、を備え、前記制御部は、前記モータの駆動に寄与する指令電圧を演算する指令電圧演算部と、前記電流センサにより検出した三相検出電流を互いに直交する成分に分離した各成分に基づいて前記各成分の脈動分を抽出した第一成分と第二成分を生成する脈動電流検出部と、前記第一成分に基づいて前記モータの構造に起因するトルク脈動を補償する第一補償指令電圧を出力するトルク脈動補償部と、前記第二成分に基づいて前記電力変換回路のデッドタイムに起因する出力電圧歪みを補償する第二補償指令電圧を出力するデッドタイム補償部と、を有し、前記第一補償指令電圧および前記第二補償指令電圧により前記指令電圧を補正することで、前記トルク脈動および前記出力電圧歪みを低減することを特徴とする。 In order to solve the above problems, the present invention includes a power conversion circuit that supplies power to a motor, a control unit that controls the power conversion circuit, and a current sensor that detects a three-phase current energized in the motor. The control unit is based on a command voltage calculation unit that calculates a command voltage that contributes to driving the motor and each component that separates the three-phase detection current detected by the current sensor into components that are orthogonal to each other. A pulsating current detector that generates the first component and the second component that extract the pulsation component of each component, and the first compensation command voltage that compensates for the torque pulsation caused by the structure of the motor based on the first component are output. It has a torque pulsation compensating unit that compensates for the output voltage distortion caused by the dead time of the power conversion circuit based on the second component, and a dead time compensating unit that outputs a second compensation command voltage based on the second component. It is characterized in that the torque pulsation and the output voltage distortion are reduced by correcting the command voltage with the compensation command voltage and the second compensation command voltage.
 また、本発明は、永久磁石同期モータと、前記永久磁石同期モータを駆動するモータ駆動装置と、前記永久磁石同期モータに接続されるファンと、前記永久磁石同期モータを取り付けるフレームと、圧縮機装置システムと、を備える空気調和機の室外機において、前記モータ駆動装置は、上記の特徴を有するモータ駆動装置であることを特徴とする。 Further, the present invention comprises a permanent magnet synchronous motor, a motor drive device for driving the permanent magnet synchronous motor, a fan connected to the permanent magnet synchronous motor, a frame for mounting the permanent magnet synchronous motor, and a compressor device. In the outdoor unit of the air conditioner including the system, the motor drive device is a motor drive device having the above-mentioned characteristics.
 また、本発明は、モータに通電される三相電流を検出し、当該検出した三相検出電流を互いに直交する成分に分離して各成分の脈動分を抽出した第一成分と第二成分を生成し、前記第一成分に基づいて前記モータの構造に起因するトルク脈動を補償する第一補償指令電圧を生成し、前記第二成分に基づいて電力変換回路のデッドタイムに起因する出力電圧歪みを補償する第二補償指令電圧を生成し、前記第一補償指令電圧および前記第二補償指令電圧により前記モータの駆動に寄与する指令電圧を補正することで、前記トルク脈動および前記出力電圧歪みを低減することを特徴とする。 Further, in the present invention, the first component and the second component obtained by detecting the three-phase current energized in the motor, separating the detected three-phase detection current into components orthogonal to each other, and extracting the pulsation component of each component are used. The first compensation command voltage is generated based on the first component to compensate for the torque pulsation caused by the structure of the motor, and the output voltage distortion due to the dead time of the power conversion circuit is generated based on the second component. By generating a second compensation command voltage that compensates for the above and correcting the command voltage that contributes to driving the motor by the first compensation command voltage and the second compensation command voltage, the torque pulsation and the output voltage distortion are corrected. It is characterized by reduction.
 本発明によれば、モータ起因の誘起電圧歪み及びインバータ起因の出力電圧歪みによるトルク脈動を効果的に抑制可能なモータ駆動装置およびそれを用いた空気調和機の室外機、モータ駆動制御方法を提供することができる。 According to the present invention, there is provided a motor drive device capable of effectively suppressing torque pulsation due to induced voltage distortion caused by a motor and output voltage distortion caused by an inverter, an outdoor unit of an air conditioner using the motor drive device, and a motor drive control method. can do.
 これにより、予備試験等による事前調整を必要とせずにモータの騒音や振動を低減可能で、多様なモータに対応可能な汎用性の高いモータ駆動装置とそれを用いた空気調和機の室外機、モータ駆動制御方法を実現できる。 As a result, it is possible to reduce motor noise and vibration without the need for pre-adjustment by preliminary tests, etc., and a highly versatile motor drive device that can handle a variety of motors and an outdoor unit of an air conditioner that uses it. A motor drive control method can be realized.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the explanation of the following embodiments.
本発明の実施例1に係るモータ駆動装置の構成を示す図である。It is a figure which shows the structure of the motor drive device which concerns on Example 1 of this invention. 図1の構成の一部をdq座標上で表現した図である。It is a figure which expressed a part of the structure of FIG. 1 on the dq coordinate. 要因毎の電圧歪み波形の一例を示す図である。It is a figure which shows an example of the voltage distortion waveform for each factor. q軸電流のみを通電した場合の電流ベクトルおよび電圧歪み成分の軌跡を示す図である。It is a figure which shows the locus of a current vector and a voltage distortion component when only a q-axis current is energized. 図1の脈動電流検出部116の構成を示す図である。It is a figure which shows the structure of the pulsation current detection part 116 of FIG. 図1のトルク脈動補償部109の構成を示す図である。It is a figure which shows the structure of the torque pulsation compensation part 109 of FIG. 図1のデッドタイム補償部112の構成を示す図である。It is a figure which shows the structure of the dead time compensation part 112 of FIG. 本発明の実施例1に係るモータ駆動装置の動作波形の一例を示す図である。It is a figure which shows an example of the operation waveform of the motor drive device which concerns on Example 1 of this invention. 本発明の実施例2に係るモータ駆動装置の構成を示す図である。It is a figure which shows the structure of the motor drive device which concerns on Example 2 of this invention. 図9のトルク脈動補償部109’の構成を示す図である。It is a figure which shows the structure of the torque pulsation compensation part 109'of FIG. 本発明の実施例2に係るモータ駆動装置の動作波形の一例を示す図である。It is a figure which shows an example of the operation waveform of the motor drive device which concerns on Example 2 of this invention. d軸およびq軸電流を通電した場合の電流ベクトルおよび電圧歪み成分の軌跡を示す図である。It is a figure which shows the locus of the current vector and the voltage distortion component when the d-axis and q-axis currents are energized. 本発明の実施例3に係るモータ駆動装置の構成を示す図である。It is a figure which shows the structure of the motor drive device which concerns on Example 3 of this invention. 図13の脈動電流検出部116’の構成を示す図である。It is a figure which shows the structure of the pulsation current detection part 116' of FIG. 本発明の実施例4に係る空気調和機の室外機を示す図である。It is a figure which shows the outdoor unit of the air conditioner which concerns on Example 4 of this invention.
 以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, examples of the present invention will be described with reference to the drawings. In each drawing, the same components are designated by the same reference numerals, and the detailed description of overlapping portions will be omitted.
 図1から図8を参照して、本発明の実施例1のモータ駆動装置とその制御方法について説明する。 The motor drive device according to the first embodiment of the present invention and its control method will be described with reference to FIGS. 1 to 8.
 図1は、本実施例のモータ駆動装置の構成図である。図1に示すように、本実施例のモータ駆動装置100は、指令速度発生部102と、制御部103と、永久磁石同期モータ101(以下、単に「モータ」とも呼ぶ)に電力を供給する電力変換回路104(以下、「インバータ」とも呼ぶ)と、電流センサ105と、を備える。本実施例では、モータ駆動装置100が指令速度発生部102を備えるが、制御部103の中、あるいはモータ駆動装置100の外に備える構成であってもよい。 FIG. 1 is a configuration diagram of a motor drive device of this embodiment. As shown in FIG. 1, the motor drive device 100 of this embodiment is a power supply that supplies electric power to a command speed generating unit 102, a control unit 103, and a permanent magnet synchronous motor 101 (hereinafter, also simply referred to as “motor”). It includes a conversion circuit 104 (hereinafter, also referred to as an “inverter”) and a current sensor 105. In this embodiment, the motor drive device 100 includes the command speed generation unit 102, but it may be provided inside the control unit 103 or outside the motor drive device 100.
 制御部103は、指令速度発生部102より与えられる指令速度ωr*と、電流センサ105にて検出される三相検出電流Iu,Iv,Iwに基づき、三相指令電圧Vu*,Vv*,Vw*を出力し、モータ101の回転速度制御を行う。本実施例では、三相全ての電流を電流センサ105で検出しているが、いずれか二相分を電流センサ105で検出し、残りの一相を制御部103で演算する構成であってもよい。 The control unit 103 has a three-phase command voltage Vu *, Vv *, Vw based on the command speed ωr * given by the command speed generation unit 102 and the three-phase detection currents Iu, Iv, Iw detected by the current sensor 105. * Is output to control the rotation speed of the motor 101. In this embodiment, the currents of all three phases are detected by the current sensor 105, but even if one of the two phases is detected by the current sensor 105 and the remaining one phase is calculated by the control unit 103. good.
 電力変換回路104は、制御部103から出力される三相指令電圧Vu*,Vv*,Vw*に基づき、PWM(Pulse Width Modulation)制御を行い、パルス状の出力電圧を発生させることでモータ101を駆動する。 The power conversion circuit 104 performs PWM (Pulse Width Modulation) control based on the three-phase command voltages Vu *, Vv *, and Vw * output from the control unit 103, and generates a pulsed output voltage to generate a pulse-shaped output voltage to generate the motor 101. To drive.
 制御部103は、ベクトル制御を基本構成としている。指令速度発生部102より制御部103に入力される指令速度ωr*は、ゲイン乗算部106でゲイン「モータ極数P/2」が乗算され、電気角速度(P/2)・ωr*が演算される。 The control unit 103 has a basic configuration of vector control. The command speed ωr * input from the command speed generation unit 102 to the control unit 103 is multiplied by the gain "motor pole number P / 2" by the gain multiplication unit 106, and the electric angular velocity (P / 2) and ωr * are calculated. NS.
 指令電圧演算部107では、予め設定されるd軸指令電流Id*と、q軸検出電流IqcからLPF(Low Pass Filter)108を介して算出されるq軸指令電流Iq*と、電気角速度(P/2)・ωr*と、モータ定数の設定値に基づいて、d軸およびq軸指令電圧Vdc*,Vqc*を演算する。d軸およびq軸指令電圧Vdc*,Vqc*は、モータ101の回転に寄与する直流量の指令電圧である。 In the command voltage calculation unit 107, the d-axis command current Id * set in advance, the q-axis command current Iq * calculated from the q-axis detection current Iqc via the LPF (Low Pass Filter) 108, and the electric angular velocity (P). / 2) ・ Calculate the d-axis and q-axis command voltages Vdc * and Vqc * based on ωr * and the set value of the motor constant. The d-axis and q-axis command voltages Vdc * and Vqc * are command voltages of a DC amount that contributes to the rotation of the motor 101.
 トルク脈動補償部109は、モータ起因の誘起電圧歪みの影響を補償するためのd軸およびq軸補償指令電圧ΔVd*,ΔVq*を演算する。d軸およびq軸補償指令電圧ΔVd*,ΔVq*は、加算部110にてd軸およびq軸指令電圧Vdc*,Vqc*に加算され、補償後のd軸およびq軸指令電圧Vdc**,Vqc**が生成される。尚、加算部110は、加算部110a,110bで構成されている。 The torque pulsation compensation unit 109 calculates the d-axis and q-axis compensation command voltages ΔVd * and ΔVq * for compensating for the influence of the induced voltage distortion caused by the motor. The d-axis and q-axis compensation command voltages ΔVd * and ΔVq * are added to the d-axis and q-axis command voltages Vdc * and Vqc * by the adder 110, and the compensated d-axis and q-axis command voltages Vdc **, Vqc ** is generated. The addition unit 110 is composed of addition units 110a and 110b.
 dq/3相変換部111は、回転子位置θdcに基づき、補償後のd軸およびq軸指令電圧Vdc**,Vqc**を三相指令電圧Vu*,Vv*,Vw*に変換する。 The dq / 3-phase conversion unit 111 converts the compensated d-axis and q-axis command voltages Vdc ** and Vqc ** into three-phase command voltages Vu *, Vv * and Vw * based on the rotor position θdc.
 デッドタイム補償部112は、インバータ起因の出力電圧歪みの影響を補償するための三相補償指令電圧ΔVu*,ΔVv*,ΔVw*を生成する。三相補償指令電圧ΔVu*,ΔVv*,ΔVw*は、加算部113にて三相指令電圧Vu*,Vv*,Vw*に加算され、補償後の三相指令電圧Vu**,Vv**,Vw**が生成され、電力変換回路104に入力される。尚、加算部113は、加算部113a,113b,113cで構成されている。 The dead time compensation unit 112 generates three-phase compensation command voltages ΔVu *, ΔVv *, and ΔVw * for compensating for the influence of output voltage distortion caused by the inverter. The three-phase compensation command voltage ΔVu *, ΔVv *, ΔVw * is added to the three-phase command voltage Vu *, Vv *, Vw * by the adder 113, and the compensated three-phase command voltage Vu **, Vv ** , Vw ** are generated and input to the power conversion circuit 104. The addition unit 113 is composed of addition units 113a, 113b, 113c.
 回転子位置検出部114では、d軸およびq軸指令電圧Vdc*,Vqc*と、d軸およびq軸検出電流Idc,Iqcと、電気角速度(P/2)・ωr*と、モータ定数の設定値に基づいて、制御軸(dc軸)とモータの磁束軸(d軸)との位相偏差である軸誤差Δθcを演算する。そして、PLL(Phase Locked Loop)によりΔθcがゼロとなるように電気角速度を制御し、得られた値を積分することで回転子位置θdcを演算する。すなわち、本実施例は位置センサを不要とするセンサレスベクトル制御を構成するものである。 In the rotor position detection unit 114, the d-axis and q-axis command voltages Vdc * and Vqc *, the d-axis and q-axis detection currents Idc and Iqc, the electric angular velocity (P / 2) and ωr *, and the motor constants are set. Based on the value, the axis error Δθc, which is the phase deviation between the control axis (dc axis) and the magnetic flux axis (d axis) of the motor, is calculated. Then, the electric angular velocity is controlled by PLL (Phase Locked Loop) so that Δθc becomes zero, and the rotor position θdc is calculated by integrating the obtained values. That is, this embodiment constitutes sensorless vector control that does not require a position sensor.
 3相/dq変換部115では、回転子位置θdcに基づき、三相検出電流Iu,Iv,Iwをd軸およびq軸検出電流Idc,Iqcに変換する。 The three-phase / dq conversion unit 115 converts the three-phase detection currents Iu, Iv, and Iw into the d-axis and q-axis detection currents Idc and Iqc based on the rotor position θdc.
 脈動電流検出部116では、回転子位置θdcと、d軸およびq軸検出電流Idc,Iqcに基づき、d軸およびq軸検出電流Idc,Iqcの脈動分である第一成分Ih1 ̄と第二成分Ih2 ̄を抽出する。第一成分Ih1 ̄はトルク脈動補償部109、第二成分Ih2 ̄はデッドタイム補償部112に入力され、それぞれにおいて補償制御に関わるパラメータの推定演算に利用される。 In the pulsating current detection unit 116, the first component Ih1 ̄ and the second component, which are the pulsating components of the d-axis and q-axis detection currents Idc and Iqc, based on the rotor position θdc and the d-axis and q-axis detection currents Idc and Iqc. Extract Ih2 ̄. The first component Ih1  ̄ is input to the torque pulsation compensation unit 109, and the second component Ih2  ̄ is input to the dead time compensation unit 112, each of which is used for estimating parameters related to compensation control.
 すなわち、本実施例では、モータ起因の誘起電圧歪みの影響と、インバータ起因の出力電圧歪みの影響がd軸およびq軸検出電流Idc,Iqcの脈動分として現れるものとし、その情報を脈動電流検出部116にて適切に抽出することで制御を行うものである。 That is, in this embodiment, it is assumed that the influence of the induced voltage distortion caused by the motor and the influence of the output voltage distortion caused by the inverter appear as the pulsation component of the d-axis and q-axis detection currents Idc and Iqc, and the information is used for pulsating current detection. Control is performed by appropriately extracting in unit 116.
 以上が、本実施例の基本構成である。 The above is the basic configuration of this embodiment.
 指令電圧演算部107では、以下の式(1)に従って、d軸指令電流Id*と、q軸指令電流Iq*と、電気角速度(P/2)・ωr*と、モータ定数の設定値に基づいて、d軸およびq軸指令電圧Vdc*,Vqc*を演算する。 The command voltage calculation unit 107 is based on the d-axis command current Id *, the q-axis command current Iq *, the electric angular velocity (P / 2), ωr *, and the set values of the motor constants according to the following equation (1). Then, the d-axis and q-axis command voltages Vdc * and Vqc * are calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Rは巻線抵抗、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Keは誘起電圧係数をそれぞれ表し、上付き文字*は各モータ定数の設定値を意味する。 In equation (1), R represents the winding resistance, Ld represents the d-axis inductance, Lq represents the q-axis inductance, Ke represents the induced voltage coefficient, and the superscript * means the set value of each motor constant.
 指令電圧演算部107では、d軸指令電流Id*として予め設定した一定値を用い、q軸指令電流Iq*としてq軸検出電流IqcにLPF108によりローパスフィルタ処理を施した値を用いて、式(1)の演算を行う。 The command voltage calculation unit 107 uses a constant value set in advance as the d-axis command current Id *, and uses the value obtained by applying the low-pass filter processing to the q-axis detection current Iqc as the q-axis command current Iq * by LPF108. Perform the calculation of 1).
 このことから、モータ101が一定速度で駆動される定常状態においては、d軸指令電流Id*,q軸指令電流Iq*は一定となり、d軸およびq軸指令電圧Vdc*,Vqc*も同様に一定となる。 From this, in the steady state in which the motor 101 is driven at a constant speed, the d-axis command current Id * and the q-axis command current Iq * are constant, and the d-axis and q-axis command voltages Vdc * and Vqc * are also constant. It becomes constant.
 回転子位置検出部114では、以下の式(2)に従って、d軸およびq軸指令電圧Vdc*,Vqc*と、d軸およびq軸検出電流Idc,Iqcと、電気角速度ω1cと、モータ定数の設定値に基づいて、軸誤差Δθcを演算する。 In the rotor position detection unit 114, the d-axis and q-axis command voltages Vdc * and Vqc *, the d-axis and q-axis detection currents Idc and Iqc, the electric angular velocity ω1c, and the motor constant are determined according to the following equation (2). The axis error Δθc is calculated based on the set value.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)において、電気角速度ω1cはPLLにより軸誤差Δθcがゼロとなるように電気角速度を調整することで得られる信号である。回転子位置検出部114では、電気角速度ω1cを積分することで、回転子位置θdcを演算する。 In the equation (2), the electric angular velocity ω1c is a signal obtained by adjusting the electric angular velocity so that the axial error Δθc becomes zero by the PLL. The rotor position detection unit 114 calculates the rotor position θdc by integrating the electric angular velocity ω1c.
 以上の構成でモータ101を駆動すると、先に述べたようにモータ起因の誘起電圧歪みの影響と、インバータ起因の出力電圧歪みの影響がd軸およびq軸検出電流Idc,Iqcの脈動分として現れる。この原理について、図2を用いて以下に説明する。 When the motor 101 is driven with the above configuration, the influence of the induced voltage distortion caused by the motor and the influence of the output voltage distortion caused by the inverter appear as the pulsations of the d-axis and q-axis detection currents Idc and Iqc as described above. .. This principle will be described below with reference to FIG.
 図2は、図1に示す構成の内、説明に必要な要素を図示したものであり、トルク脈動補償部109やデッドタイム補償部112は示していない。また、永久磁石同期モータ200はdq座標上の等価モデルで示している。減算部201a,201bでは、d軸およびq軸上の誘起電圧係数の歪み成分Kehd、Kehqに電気角速度(P/2)・ωrを乗算した(P/2)・ωr・Kehd、(P/2)・ωr・Kehqが減算される。 FIG. 2 illustrates the elements necessary for explanation in the configuration shown in FIG. 1, and does not show the torque pulsation compensation unit 109 or the dead time compensation unit 112. Further, the permanent magnet synchronous motor 200 is shown by an equivalent model on the dq coordinates. In the subtraction units 201a and 201b, the distortion components Kehd and Kehq of the induced voltage coefficients on the d-axis and the q-axis are multiplied by the electric angular velocity (P / 2) and ωr (P / 2) and ωr and Kehd, (P / 2). ) ・ Ωr ・ Kehq is subtracted.
 すなわち、減算部201a,201bは、モータ起因の誘起電圧歪みの影響をdq座標上で等価的に表現したものである。 That is, the subtraction units 201a and 201b equivalently represent the influence of the induced voltage distortion caused by the motor on the dq coordinates.
 減算部202a,202bでは、d軸およびq軸上のデッドタイムによる出力電圧歪みVtdd、Vtdqが減算される。 In the subtraction units 202a and 202b, the output voltage distortions Vtdd and Vtdq due to the dead time on the d-axis and the q-axis are subtracted.
 すなわち、減算部202a,202bは、インバータ起因の出力電圧歪みの影響をdq座標上で等価的に表現したものである。 That is, the subtraction units 202a and 202b equivalently represent the influence of the output voltage distortion caused by the inverter on the dq coordinates.
 なお、図2において、実線の矢印は「直流量+交流量」、点線の矢印は「直流量のみ」を含むことを表す。 In FIG. 2, the solid arrow indicates that "DC amount + AC amount", and the dotted arrow indicates that "DC amount only" is included.
 図2に示すように、モータ起因の誘起電圧歪みと、インバータ起因の出力電圧歪みが存在する場合、指令電圧演算部107で生成されるd軸およびq軸指令電圧Vdc*,Vqc*それぞれに交流量である「(P/2)・ωr・Kehd+Vtdd」と「(P/2)・ωr・Kehq+Vtdq」が減算される。 As shown in FIG. 2, when the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter are present, the d-axis and q-axis command voltages Vdc * and Vqc * generated by the command voltage calculation unit 107 are AC. The quantities "(P / 2) -ωr-Kehd + Vtdd" and "(P / 2) -ωr-Kehq + Vtdq" are subtracted.
 その結果、永久磁石同期モータ200には、d軸およびq軸それぞれにおいて直流分Id ̄,Iq ̄に加えて、脈動分Idh、Iqhが通電される。これらの電流の内、q軸電流「Iq ̄+Iqh」はLPF108を介してq軸指令電流Iq*に変換されて指令電圧演算部107へとフィードバックされる。このとき、LPF108のカットオフ周波数をq軸電流の脈動分Iqhの変動周波数よりも十分に小さくし、Iq*=Iq ̄となるように設定されるものとする。 As a result, the permanent magnet synchronous motor 200 is energized with pulsating components Idh and Iqh in addition to the direct current components Id ̄ and Iq ̄ on the d-axis and q-axis, respectively. Of these currents, the q-axis current “Iq ̄ + Iqh” is converted into the q-axis command current Iq * via the LPF 108 and fed back to the command voltage calculation unit 107. At this time, the cutoff frequency of the LPF 108 is set to be sufficiently smaller than the fluctuation frequency of the pulsation component Iqh of the q-axis current so that Iq * = Iq ̄.
 これにより、指令電圧演算部107で生成されるd軸およびq軸指令電圧Vdc*,Vqc*は直流量となり、d軸およびq軸電流の直流分Id ̄、Iq ̄のみが制御される。 As a result, the d-axis and q-axis command voltages Vdc * and Vqc * generated by the command voltage calculation unit 107 become DC quantities, and only the DC components Id ̄ and Iq ̄ of the d-axis and q-axis currents are controlled.
 一方、脈動分Idh、Iqhは指令電圧演算部107に関係なくそのまま残存するため、これらの電流脈動分を検出することで、モータ起因の誘起電圧歪み「(P/2)・ωr・Kehd,(P/2)・ωr・Kehq」とインバータ起因の出力電圧歪み「Vtdd,Vtdq」の影響を観測することができる。 On the other hand, since the pulsation components Idh and Iqh remain as they are regardless of the command voltage calculation unit 107, by detecting these current pulsation components, the induced voltage distortion “(P / 2) ・ ωr ・ Kehd, The effects of "P / 2) ・ ωr ・ Kehq” and the output voltage distortion “Vtdd, Vtdq” caused by the inverter can be observed.
 ここで、d軸およびq軸の誘起電圧係数の歪み成分は互いに等しくなるものとする(Kehd=Kehq)。また、デッドタイムによる出力電圧歪みは、静止座標上において以下の式(3)で表されるものとする。 Here, it is assumed that the distortion components of the induced voltage coefficients on the d-axis and the q-axis are equal to each other (Kehd = Kehq). Further, the output voltage distortion due to the dead time shall be expressed by the following equation (3) on the static coordinates.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)において、Tdはデッドタイムの長さ、fcはキャリア周波数、VDCはインバータに印加される直流電圧であり、sign(i)は各相の検出電流の極性を意味する。 In the formula (3), Td is the length of the dead time, fc is the carrier frequency, VDC is the DC voltage applied to the inverter, and sign (i) means the polarity of the detected current of each phase.
 図3は、モータにq軸側のみ電流が通電される場合において(d軸電流はゼロ)、モータ起因の誘起電圧歪み「(P/2)・ωr・Kehd,(P/2)・ωr・Kehq」とインバータ起因の出力電圧歪み「Vtdd,Vtdq」を図示したものである。 FIG. 3 shows the induced voltage distortion “(P / 2) ・ ωr ・ Kehd, (P / 2) ・ ωr. "Kehq" and the output voltage distortion "Vtdd, Vtdq" caused by the inverter are illustrated.
 図3に示すように、モータ起因の誘起電圧歪み「(P/2)・ωr・Kehd,(P/2)・ωr・Kehq」は、d軸、q軸上において振幅はともに同一であり、位相が互いに90°ずれた脈動電圧となる。一方、インバータ起因の出力電圧歪み「Vtdd,Vtdq」は、d軸上において鋸波状、q軸上において半波状となり、形状が互いに大きく異なる脈動電圧となる。 As shown in FIG. 3, the induced voltage distortion “(P / 2) ・ ωr ・ Kehd, (P / 2) ・ ωr ・ Kehq” caused by the motor has the same amplitude on both the d-axis and the q-axis. The pulsating voltage is 90 ° out of phase with each other. On the other hand, the output voltage distortion "Vtdd, Vtdq" caused by the inverter has a sawtooth shape on the d-axis and a half-wave shape on the q-axis, and the shapes are pulsating voltages that are significantly different from each other.
 脈動振幅の観点で見ると、q軸側のVtdqに比べてd軸側のVtddの方が大きいことから、インバータ起因の出力電圧歪みはd軸側、すなわち非通電軸側に顕著に現れていることが分かる。 From the viewpoint of pulsation amplitude, since Vtdd on the d-axis side is larger than Vtdq on the q-axis side, the output voltage distortion caused by the inverter appears prominently on the d-axis side, that is, on the non-energized shaft side. You can see that.
 この特性をdq座標上で図示すると、図4に示すように表現することができる。図4において、Iは電流ベクトル(q軸電流のみ通電)、Xはモータ起因の誘起電圧歪みの軌跡、Yはインバータ起因の出力電圧歪みの軌跡である。Xは円状の軌跡になるのに対して、Yは半月状の軌跡となる。 When this characteristic is illustrated on the dq coordinates, it can be expressed as shown in FIG. In FIG. 4, I is a current vector (only the q-axis current is energized), X is a locus of induced voltage distortion caused by a motor, and Y is a locus of output voltage distortion caused by an inverter. X has a circular locus, while Y has a half-moon locus.
 また、6次成分のみに着目して数式で表現すると、モータ起因の誘起電圧歪みと、インバータ起因の出力電圧歪みはそれぞれ以下の式(4)と式(5)で表される。 Further, when expressed by a mathematical formula focusing only on the sixth-order component, the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter are expressed by the following equations (4) and (5), respectively.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 但し、式(4)において、Keh ̄はKehdおよびKehqの振幅である。また、式(5)において、Vtdd ̄とVtdq ̄はVtddとVtdqの振幅である。 However, in equation (4), Keh ̄ is the amplitude of Kehd and Kehq. Further, in the equation (5), Vtdd ̄ and Vtdq ̄ are the amplitudes of Vtdd and Vtdq.
 本実施例では、インバータ起因の出力電圧歪みにおける特徴から、d軸およびq軸検出電流Idc,Iqcの脈動分を抽出する脈動電流検出部116を図5に示す構成としている。 In this embodiment, the pulsation current detection unit 116 that extracts the pulsation components of the d-axis and q-axis detection currents Idc and Iqc from the characteristics of the output voltage distortion caused by the inverter is configured as shown in FIG.
 先に述べたように、インバータ起因の出力電圧歪みは主として非通電軸であるd軸側に現れることから、デッドタイム補償部112で使用する第二成分Ih2 ̄をd軸検出電流Idcより抽出している。 As described above, since the output voltage distortion caused by the inverter appears mainly on the d-axis side, which is the non-energized shaft, the second component Ih2 ̄ used in the dead time compensation unit 112 is extracted from the d-axis detection current Idc. ing.
 より具体的には、Vtddの変動周波数が十分に速いと仮定(すなわち、モータ速度が十分に速いと仮定)すると、電流位相は電圧位相に対して90°遅れること、さらに式(5)より主成分であるVtddはsinθdの関数であることから、乗算部501にてd軸検出電流Idcにcos6θdcを乗算することでインバータ起因の出力電圧歪みの影響を検出する。LPF502では、乗算部501の演算結果であるIdc・cos6θdcの直流量を抽出し、第二成分Ih2 ̄を出力する。 More specifically, assuming that the fluctuation frequency of Vtdd is sufficiently fast (that is, assuming that the motor speed is sufficiently fast), the current phase is delayed by 90 ° with respect to the voltage phase, and moreover, it is mainly from equation (5). Since Vtdd, which is a component, is a function of sinθd, the multiplication unit 501 detects the influence of the output voltage distortion caused by the inverter by multiplying the d-axis detection current Idc by cos6θdc. The LPF502 extracts the DC amount of Idc · cos6θdc, which is the calculation result of the multiplication unit 501, and outputs the second component Ih2 ̄.
 一方、q軸検出電流Iqcからは、モータ起因の誘起電圧歪みの影響として、トルク脈動補償部109で使用する第一成分Ih1 ̄を抽出している。 On the other hand, the first component Ih1 ̄ used in the torque pulsation compensation unit 109 is extracted from the q-axis detection current Iqc as an effect of the induced voltage distortion caused by the motor.
 より具体的には、式(4)より(P/2)・ωr・Kehqはcos6θdの関数であることから、乗算部504にてq軸検出電流Iqcにsin6θdcを乗算する。LPF505では、乗算部504の演算結果であるIqc・sin6θdcの直流量を抽出し、第一成分Ih1 ̄を出力する。 More specifically, from equation (4), (P / 2), ωr, and Kehq are functions of cos6θd, so the multiplication unit 504 multiplies the q-axis detection current Iqc by sin6θdc. The LPF505 extracts the DC amount of Iqc · sin6θdc, which is the calculation result of the multiplication unit 504, and outputs the first component Ih1 ̄.
 本実施例では、脈動電流検出部116にLPF502とLPF505を含むが、これらのLPFを削除した構成としても良い。これは、トルク脈動補償部109とデッドタイム補償部112が、第一成分Ih1 ̄と第二成分Ih2 ̄に基づく積分制御を備えており、結果としてIdc・cos6θdcとIqc・sin6θdcの交流量がキャンセルされるためである。詳細については、後述する。 In this embodiment, the pulsating current detection unit 116 includes the LPF502 and the LPF505, but these LPFs may be deleted. This is because the torque pulsation compensation unit 109 and the dead time compensation unit 112 have integral control based on the first component Ih1 ̄ and the second component Ih2 ̄, and as a result, the exchange amount of Idc ・ cos6θdc and Iqc ・ sin6θdc is cancelled. Because it is done. Details will be described later.
 図6は、トルク脈動補償部109の構成図である。トルク脈動補償部109は、脈動電流検出部116にて抽出した第一成分Ih1 ̄と電気角速度(P/2)・ωr*を基に、モータ起因の誘起電圧歪みで発生するトルク脈動を補償するためのd軸およびq軸補償指令電圧ΔVd*,ΔVq*を生成する。 FIG. 6 is a configuration diagram of the torque pulsation compensation unit 109. The torque pulsation compensation unit 109 compensates for the torque pulsation generated by the induced voltage distortion caused by the motor based on the first component Ih1 ̄ extracted by the pulsation current detection unit 116 and the electric angular velocity (P / 2) ωr *. The d-axis and q-axis compensation command voltages ΔVd * and ΔVq * are generated for this purpose.
 先ず、積分制御部600において、電流脈動の第一成分Ih1 ̄に応じて調整信号ΔKeh ̄を生成する。調整信号ΔKeh ̄は、加算部601にて初期値設定部602で設定されている初期値Keh0 ̄に加算され、設定値Keh* ̄が生成される。 First, the integration control unit 600 generates an adjustment signal ΔKeh ̄ according to the first component Ih1 ̄ of the current pulsation. The adjustment signal ΔKeh ̄ is added to the initial value Keh0 ̄ set by the initial value setting unit 602 in the addition unit 601 to generate the set value Keh *  ̄.
 その後、sin6θdc信号生成部603で生成したsin6θdcと、電気角速度(P/2)・ωr*がそれぞれ乗算部604と607においてKeh* ̄に乗算され、d軸補償指令電圧ΔVd*が生成される。同様に、cos6θdc信号生成部605で生成したcos6θdcと、電気角速度(P/2)・ωr*がそれぞれ乗算部606と608においてKeh* ̄に乗算され、q軸補償指令電圧ΔVq*が生成される。 After that, the sin6θdc generated by the sin6θdc signal generation unit 603 and the electric angular velocity (P / 2) / ωr * are multiplied by Keh *  ̄ in the multiplication units 604 and 607, respectively, and the d-axis compensation command voltage ΔVd * is generated. Similarly, cos6θdc generated by the cos6θdc signal generation unit 605 and the electric angular velocity (P / 2) / ωr * are multiplied by Keh *  ̄ in the multiplication units 606 and 608, respectively, to generate the q-axis compensation command voltage ΔVq *. ..
 本実施例では、初期値設定部602で設定されている値を初期値Keh0 ̄としたが、制御上は任意の値を設定することが可能であり、ゼロを設定してもよい。 In this embodiment, the value set in the initial value setting unit 602 is set to the initial value Keh0 ̄, but it is possible to set an arbitrary value in terms of control, and zero may be set.
 図1に示すように、d軸およびq軸補償指令電圧ΔVd*,ΔVq*は加算部110にてd軸およびq軸指令電圧Vdc*,Vqc*に加算され、補償後のd軸およびq軸指令電圧Vdc**,Vqc**が生成される。 As shown in FIG. 1, the d-axis and q-axis compensation command voltages ΔVd * and ΔVq * are added to the d-axis and q-axis command voltages Vdc * and Vqc * by the adder 110, and the compensated d-axis and q-axis are added. Command voltages Vdc ** and Vqc ** are generated.
 図2において、d軸およびq軸指令電圧Vdc*,Vqc*に代わり補償後のd軸およびq軸指令電圧Vdc**,Vqc**を適用すると、永久磁石同期モータ200内の加算部201aと201bで加算される(P/2)・ωr・Kehdおよび(P/2)・ωr・Kehqがそれぞれ補償後のd軸指令電圧Vdc**内のd軸補償指令電圧ΔVd*と補償後のq軸指令電圧Vqc**内のq軸補償指令電圧ΔVq*によって相殺され、モータ起因の誘起電圧歪みの影響が補償される。 In FIG. 2, when the compensated d-axis and q-axis command voltages Vdc ** and Vqc ** are applied instead of the d-axis and q-axis command voltages Vdc * and Vqc *, the addition unit 201a in the permanent magnet synchronous motor 200 and The d-axis compensation command voltage ΔVd * and the compensated q in the d-axis command voltage Vdc ** after compensation for (P / 2), ωr, and Kehd and (P / 2), ωr, and Kehq, which are added in 201b, respectively. It is offset by the q-axis compensation command voltage ΔVq * in the shaft command voltage Vqc **, and the influence of the induced voltage distortion caused by the motor is compensated.
 図7は、デッドタイム補償部112の構成図である。デッドタイム補償部112は、脈動電流検出部116にて抽出した第二成分Ih2 ̄と三相検出電流Iu,Iv,Iwを基に、インバータ起因の出力電圧歪みの影響を補償するための三相補償指令電圧ΔVu*,ΔVv*,ΔVw*を生成する。 FIG. 7 is a configuration diagram of the dead time compensation unit 112. The dead time compensation unit 112 is based on the second component Ih2 ̄ extracted by the pulsating current detection unit 116 and the three-phase detection currents Iu, Iv, Iw, and the three-phase compensation unit 112 is used to compensate for the influence of the output voltage distortion caused by the inverter. Compensation command voltages ΔVu *, ΔVv *, and ΔVw * are generated.
 先ず、積分制御部700において、電流脈動の第二成分Ih2 ̄に応じて調整信号ΔVtd ̄を生成する。調整信号ΔVtd ̄は、加算部702にて初期値設定部701で設定されている初期値Vtd0 ̄に加算され、設定値Vtd* ̄が生成される。 First, the integration control unit 700 generates an adjustment signal ΔVtd ̄ according to the second component Ih2 ̄ of the current pulsation. The adjustment signal ΔVtd ̄ is added to the initial value Vtd0 ̄ set by the initial value setting unit 701 in the addition unit 702, and the set value Vtd *  ̄ is generated.
 その後、符号関数部703で生成したU相検出電流Iuの極性に対応した1又は-1の信号が乗算部704においてVtd* ̄に乗算され、U相補償指令電圧ΔVu*が生成される。同様に、符号関数部705で生成される信号が乗算部706においてVtd* ̄に乗算され、V相補償指令電圧ΔVv*が生成される。さらに、符号関数部707で生成される信号が乗算部708においてVtd* ̄に乗算され、W相補償指令電圧ΔVw*が生成される。 After that, the signal of 1 or -1 corresponding to the polarity of the U-phase detection current Iu generated by the sign function unit 703 is multiplied by Vtd *  ̄ in the multiplication unit 704, and the U-phase compensation command voltage ΔVu * is generated. Similarly, the signal generated by the sign function unit 705 is multiplied by Vtd *  ̄ in the multiplication unit 706 to generate the V-phase compensation command voltage ΔVv *. Further, the signal generated by the sign function unit 707 is multiplied by Vtd *  ̄ in the multiplication unit 708, and the W phase compensation command voltage ΔVw * is generated.
 本実施例では、初期値設定部701で設定されている値を初期値Vtd0 ̄としたが、制御上は任意の値を設定することが可能であり、ゼロを設定してもよい。 In this embodiment, the value set by the initial value setting unit 701 is set to the initial value Vtd0 ̄, but it is possible to set an arbitrary value in terms of control, and zero may be set.
 図1に示すように、三相補償指令電圧ΔVu*,ΔVv*,ΔVw*は加算部113にて三相指令電圧Vu*,Vv*,Vw*に加算され、補償後の三相補償指令電圧Vu**,Vv**,Vw**が生成される。 As shown in FIG. 1, the three-phase compensation command voltages ΔVu *, ΔVv *, and ΔVw * are added to the three-phase command voltages Vu *, Vv *, and Vw * by the adder 113, and the three-phase compensation command voltage after compensation is applied. Vu **, Vv **, Vw ** are generated.
 ここで、三相補償指令電圧ΔVu*,ΔVv*,ΔVw*をdq軸成分に変換したものをΔVd**、ΔVq**とし、これらの指令電圧をd軸およびq軸指令電圧Vdc*,Vqc*に加算したものをVd***、Vq***とする。 Here, the three-phase compensation command voltages ΔVu *, ΔVv *, and ΔVw * converted into dq-axis components are defined as ΔVd ** and ΔVq **, and these command voltages are the d-axis and q-axis command voltages Vdc * and Vqc. The sum of * is defined as Vd *** and Vq ***.
 図2において、Vdc*,Vqc*に代わりVdc***,Vqc***を適用すると、加算部202aと202bで加算されるVtddおよびVtdqがそれぞれVdc***内のΔVd**とVqc***内のΔVq**によって相殺され、インバータ起因の出力電圧歪みの影響が補償される。 In FIG. 2, when Vdc *** and Vqc *** are applied instead of Vdc * and Vqc *, Vtdd and Vtdq added by the addition units 202a and 202b are ΔVd ** and Vqc * in Vdc ***, respectively. It is offset by ΔVq ** in **, and the effect of output voltage distortion caused by the inverter is compensated.
 図8は、本実施例の動作波形を示したものである。但し、d軸指令電流Id*はゼロに設定し、トルク脈動補償部109の初期値Keh0 ̄とデッドタイム補償部112の初期値Vtd0 ̄はゼロに設定している。図8において、時刻T1はトルク脈動補償部109が動作を開始する(積分制御部600が動作を開始する)時間、時刻T2はデッドタイム補償部112が動作を開始する(積分制御部700が動作を開始する)時間を示している。 FIG. 8 shows the operation waveform of this embodiment. However, the d-axis command current Id * is set to zero, and the initial value Keh0 ̄ of the torque pulsation compensation unit 109 and the initial value Vtd0 ̄ of the dead time compensation unit 112 are set to zero. In FIG. 8, the time T1 is the time when the torque pulsation compensation unit 109 starts the operation (the integration control unit 600 starts the operation), and the time T2 is the time when the dead time compensation unit 112 starts the operation (the integration control unit 700 operates). Indicates the time (to start).
 時間T1<t<T2において、トルク脈動補償部109が動作すると、q軸検出電流Iqcの脈動分が低減していくとともに、設定値Keh* ̄の実際値Keh ̄に対する設定比率が増加していることが分かる。これは、電流脈動の第一成分Ih1 ̄、すなわちq軸検出電流Iqcの脈動分を基に積分制御部600によって設定値Keh* ̄が調整されたためである。 When the torque pulsation compensating unit 109 operates at time T1 <t <T2, the pulsation component of the q-axis detection current Iqc decreases, and the setting ratio of the set value Keh *  ̄ to the actual value Keh ̄ increases. You can see that. This is because the set value Keh *  ̄ is adjusted by the integration control unit 600 based on the first component Ih1  ̄ of the current pulsation, that is, the pulsation component of the q-axis detection current Iqc.
 しかし、比率Keh* ̄/Keh ̄は1未満となっており、「設定値Keh* ̄=実際値Keh ̄」とはなっていない。これは、図3に示すようにq軸側においてインバータ起因の出力電圧歪みVtdqが存在しており、積分制御部600で生成される調整信号ΔKeh ̄に誤差が含有しているためである。 However, the ratio Keh *  ̄ / Keh ̄ is less than 1, and it is not "set value Keh *  ̄ = actual value Keh ̄". This is because the output voltage distortion Vtdq caused by the inverter exists on the q-axis side as shown in FIG. 3, and the adjustment signal ΔKeh ̄ generated by the integration control unit 600 contains an error.
 時刻T2<tにおいて、デッドタイム補償部112が動作すると、d軸検出電流Idcの脈動分が低減していくとともに、設定値Vtd* ̄の実際値Vtd ̄に対する設定比率が増加していることが分かる。これは、電流脈動の第二成分Ih2 ̄、すなわちd軸検出電流の脈動分を基に積分制御部700によって設定値Vtd* ̄が調整されたためである。 When the dead time compensation unit 112 operates at time T2 <t, the pulsation component of the d-axis detection current Idc decreases, and the set ratio of the set value Vtd *  ̄ to the actual value Vtd  ̄ increases. I understand. This is because the set value Vtd *  ̄ is adjusted by the integral control unit 700 based on the second component Ih2  ̄ of the current pulsation, that is, the pulsation component of the d-axis detected current.
 また、設定値Keh* ̄の実際値Keh ̄に対する設定比率も同時に変化している。これは、トルク脈動補償部109におけるインバータ起因の出力電圧歪みVtdqの影響がデッドタイム補償部112によって補償され、積分制御部600で生成される調整信号ΔKeh ̄に含有する誤差が除去されたためである。 In addition, the setting ratio of the set value Keh *  ̄ to the actual value Keh ̄ is also changing at the same time. This is because the influence of the output voltage distortion Vtdq caused by the inverter in the torque pulsation compensation unit 109 is compensated by the dead time compensation unit 112, and the error contained in the adjustment signal ΔKeh ̄ generated by the integration control unit 600 is removed. ..
 結果として、比率Vtd* ̄/Vtd ̄と比率Keh* ̄/Keh ̄は共に1付近に収束し、「設定値Vtd* ̄=実際値Vtd ̄」および「設定値Keh* ̄=実際値Keh ̄」となるよう制御が行われている。 As a result, the ratio Vtd *  ̄ / Vtd ̄ and the ratio Keh *  ̄ / Keh ̄ both converge to around 1, and "set value Vtd *  ̄ = actual value Vtd ̄" and "set value Keh *  ̄ = actual value Keh ̄". The control is performed so as to be.
 このように、本発明はモータ起因の誘起電圧歪みと、インバータ起因の出力電圧歪みが同時に存在する中で、これら2つの影響を検出電流の中から切り分け、個別に関連パラメータを推定して補償(補正)することが可能である。 As described above, in the present invention, in the presence of the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter at the same time, these two effects are separated from the detected currents, and the related parameters are individually estimated and compensated (compensation). It is possible to correct).
 図8において、トルク脈動補償部109とデッドタイム補償部112の動作開始時間をずらしている(T1≠T2)が、これらの補償部の動作を同時に開始してもよい(T1=T2)。 In FIG. 8, the operation start times of the torque pulsation compensation unit 109 and the dead time compensation unit 112 are shifted (T1 ≠ T2), but the operations of these compensation units may be started at the same time (T1 = T2).
 図9から図11を参照して、本発明の実施例2のモータ駆動装置とその制御方法について説明する。 A motor driving device according to a second embodiment of the present invention and a control method thereof will be described with reference to FIGS. 9 to 11.
 実施例1では、トルク脈動補償部109とデッドタイム補償部112が動作することで、図2におけるモータ起因の誘起電圧歪みとインバータ起因の出力電圧歪みの影響が補償され(加算部201a,201bと加算部202a,202bで加算される項がキャンセルされ)、脈動分Idh,Iqhを含まない一定のd軸およびq軸電流Id ̄、Iq ̄が通電される。すなわち、諸要因で歪んだ電流波形を理想的な正弦波状に近づけることによってトルク脈動低減効果を得るものである。 In the first embodiment, the torque pulsation compensation unit 109 and the dead time compensation unit 112 operate to compensate for the effects of the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter in FIG. 2 ( addition units 201a and 201b). The term added by the addition units 202a and 202b is canceled), and the constant d-axis and q-axis currents Id ̄ and Iq ̄ that do not include the pulsating components Idh and Iqh are energized. That is, the torque pulsation reduction effect is obtained by bringing the current waveform distorted by various factors closer to an ideal sinusoidal shape.
 しかし、図2において一定のd軸およびq軸電流Id ̄,Iq ̄を通電したとしても、乗算部203,204におけるモータ起因の誘起電圧歪みの影響は残っているため、得られるトルク脈動低減効果は限定的となる。(図8のトルク波形を参照)
 そこで、上記のトルク脈動を補償するために、例えば上記特許文献3に開示されている方法を用いてもよい。すなわち、トルク脈動が相殺されるように、意図的にq軸電流を脈動させるように制御してもよい。
However, even if the constant d-axis and q-axis currents Id ̄ and Iq ̄ are energized in FIG. 2, the effect of the induced voltage distortion caused by the motor in the multiplication units 203 and 204 remains, so that the torque pulsation reduction effect can be obtained. Will be limited. (See the torque waveform in FIG. 8)
Therefore, in order to compensate for the torque pulsation, for example, the method disclosed in Patent Document 3 may be used. That is, the q-axis current may be intentionally controlled to pulsate so that the torque pulsation is canceled out.
 図9は、本実施例のモータ駆動装置の構成図である。本構成は、実施例1(図1)の構成におけるトルク脈動補償部109をトルク脈動補償部109’に置き換えたものである。 FIG. 9 is a configuration diagram of the motor drive device of this embodiment. In this configuration, the torque pulsation compensation unit 109 in the configuration of the first embodiment (FIG. 1) is replaced with the torque pulsation compensation unit 109'.
 図10に、トルク脈動補償部109’の構成を示す。実施例1(図1)のトルク脈動補償部109との違いは、q軸検出電流Iqcが入力されていること、補償電圧演算部1000と、LPF(ローパスフィルタ)1002と、乗算部1003,1004,1006,1007と、加算部1005,1008が付加されていることである。 FIG. 10 shows the configuration of the torque pulsation compensation unit 109'. The difference from the torque pulsation compensation unit 109 of the first embodiment (FIG. 1) is that the q-axis detection current Iqc is input, the compensation voltage calculation unit 1000, the LPF (low-pass filter) 1002, and the multiplication unit 1003, 1004. , 1006, 1007 and addition units 1005, 1008 are added.
 LPF(ローパスフィルタ)1002は、q軸検出電流Iqcの直流量を抽出し、Iqc ̄を生成する。 The LPF (low-pass filter) 1002 extracts the DC amount of the q-axis detection current Iqc and generates Iqc ̄.
 補償電圧演算部1000には、誘起電圧係数の歪み成分の設定値Keh* ̄と、LPF1002によるIqc ̄と、電気角速度(P/2)・ωr*が入力され、以下の式(6)に基づいて、第一d軸補償指令電圧ΔVd1* ̄、第二d軸補償指令電圧ΔVd2* ̄、第一q軸補償指令電圧ΔVq1* ̄、第二q軸補償指令電圧ΔVq2* ̄を生成する。 The set value Keh *  ̄ of the distortion component of the induced voltage coefficient, Iqc  ̄ by LPF1002, and the electric angular velocity (P / 2) / ωr * are input to the compensation voltage calculation unit 1000, and are based on the following equation (6). Therefore, the first d-axis compensation command voltage ΔVd1 *  ̄, the second d-axis compensation command voltage ΔVd2 *  ̄, the first q-axis compensation command voltage ΔVq1 *  ̄, and the second q-axis compensation command voltage ΔVq2 *  ̄ are generated.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 補償電圧演算部1000の演算結果であるΔVd1* ̄,ΔVd2* ̄には、それぞれ乗算部1003と乗算部1004においてsin6θdcとcos6θdcが乗算され、ΔVd1* ̄・sin6θdcとΔVd2* ̄・cos6θdcが生成される。その後、これらの演算結果は加算部1005で足し合わされてd軸補償指令電圧ΔVd*が生成される。 ΔVd1 *  ̄ and ΔVd2 *  ̄, which are the calculation results of the compensation voltage calculation unit 1000, are multiplied by sin6θdc and cos6θdc in the multiplication unit 1003 and the multiplication unit 1004, respectively, and ΔVd1 *  ̄ ・ sin6θdc and ΔVd2 *  ̄ ・ cos6θdc are generated. NS. After that, these calculation results are added by the addition unit 1005 to generate the d-axis compensation command voltage ΔVd *.
 同様に、ΔVq1* ̄,ΔVq2* ̄には、それぞれ乗算部1006と乗算部1007においてsin6θdcとcos6θdcが乗算され、ΔVq1* ̄・sin6θdcとΔVq2* ̄・cos6θdcが生成される。その後、これらの演算結果は加算部1008で足し合わされてq軸補償指令電圧ΔVq*が生成される。 Similarly, ΔVq1 *  ̄ and ΔVq2 *  ̄ are multiplied by sin6θdc and cos6θdc in the multiplication unit 1006 and the multiplication unit 1007, respectively, and ΔVq1 *  ̄ ・ sin6θdc and ΔVq2 *  ̄ ・ cos6θdc are generated. After that, these calculation results are added by the addition unit 1008 to generate the q-axis compensation command voltage ΔVq *.
 本実施例の構成で生成したd軸およびq軸補償指令電圧ΔVd*、ΔVq*を適用すると、定常状態において式(7)に示すq軸電流が通電される。 When the d-axis and q-axis compensation command voltages ΔVd * and ΔVq * generated in the configuration of this embodiment are applied, the q-axis current represented by the equation (7) is energized in a steady state.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(7)に示す脈動分を含むq軸電流が通電されることにより、実施例1の構成に対して、トルク脈動を比率「ΔKeh ̄/Ke」で低減することができる。 By energizing the q-axis current including the pulsation component shown in the formula (7), the torque pulsation can be reduced by the ratio "ΔKeh ̄ / Ke" with respect to the configuration of the first embodiment.
 図11は、本実施例の動作波形を示したものである。動作条件は図8に示す実施例1の場合と同様であり、トルク脈動補償部109がトルク脈動補償部109’に置き換わっている点のみが異なる。実施例1の動作波形である図8と比較すると、トルクおよび電流波形が異なっている。本実施例では、時刻T1<tにおいて意図的に脈動分を含有させたq軸電流Iqが通電されており、より高いトルク脈動低減効果を得られていることが分かる。 FIG. 11 shows the operation waveform of this embodiment. The operating conditions are the same as in the case of the first embodiment shown in FIG. 8, except that the torque pulsation compensating unit 109 is replaced with the torque pulsation compensating unit 109'. Compared with FIG. 8, which is the operation waveform of the first embodiment, the torque and current waveforms are different. In this embodiment, it can be seen that the q-axis current Iq intentionally containing the pulsation component is energized at time T1 <t, and a higher torque pulsation reduction effect is obtained.
 このように、本実施例ではインバータ起因の出力電圧歪みが存在する条件下であっても、検出電流から誘起電圧係数の歪み成分Keh ̄を推定することができ、得られたKeh ̄に基づいて脈動電流を意図的に通電することで、より効果的にトルク脈動を相殺することができる。 As described above, in this embodiment, even under the condition that the output voltage distortion due to the inverter exists, the distortion component Keh ̄ of the induced voltage coefficient can be estimated from the detected current, and based on the obtained Keh ̄. By intentionally energizing the pulsating current, the torque pulsation can be canceled more effectively.
 図12から図14を参照して、本発明の実施例3のモータ駆動装置とその制御方法について説明する。 A motor drive device according to a third embodiment of the present invention and a control method thereof will be described with reference to FIGS. 12 to 14.
 先に述べたように、インバータ起因の出力電圧歪みは非通電軸側に顕著に現れる。このことから、電流ベクトルの向きを観測して通電軸と非通電軸の向きを把握することができれば、他の通電条件においても実施例1,2と同様の制御動作を実現できる。 As mentioned earlier, the output voltage distortion caused by the inverter appears prominently on the non-energized shaft side. From this, if the directions of the energized shaft and the non-energized shaft can be grasped by observing the direction of the current vector, the same control operation as in the first and second embodiments can be realized under other energized conditions.
 ここで、d軸電流Idとq軸電流Iqがなす角度を電流位相β(=tan-1(-Id/Iq))と定義する。電流位相βを45°に設定する場合において、電流ベクトルI’と、モータ起因の誘起電圧歪みの軌跡X’と、インバータ起因の出力電圧歪みの軌跡Y’を図示したものを図12に示す。 Here, the angle formed by the d-axis current Id and the q-axis current Iq is defined as the current phase β (= tan-1 (−Id / Iq)). FIG. 12 shows a diagram showing the current vector I', the locus X'of the induced voltage distortion caused by the motor, and the locus Y'of the output voltage distortion caused by the inverter when the current phase β is set to 45 °.
 q軸電流のみが通電される図4のケースと比較すると、軌跡XとX’は同様であり、モータ起因の誘起電圧歪みの影響は電流に依存しないことが分かる。一方、軌跡YとY’は互いに異なっており、インバータ起因の出力電圧歪みの影響は電流ベクトルの向きとともに変化している。電流ベクトルの向き、すなわち通電方向をδ軸とし、時計回りに90°位相がずれた非通電方向をγ軸とすると、インバータ起因の出力電圧歪みの影響はγ軸に顕著に現れる。 Compared with the case of FIG. 4 in which only the q-axis current is energized, the loci X and X'are similar, and it can be seen that the influence of the induced voltage distortion caused by the motor does not depend on the current. On the other hand, the loci Y and Y'are different from each other, and the influence of the output voltage distortion caused by the inverter changes with the direction of the current vector. Assuming that the direction of the current vector, that is, the energizing direction is the δ axis and the non-energizing direction shifted 90 ° clockwise is the γ axis, the influence of the output voltage distortion caused by the inverter appears remarkably on the γ axis.
 図13は、本実施例のモータ駆動装置の構成図である。本構成は、電流ベクトルの向きとインバータ起因の出力電圧歪みの影響の関係を考慮し、実施例1(図1)の構成における脈動電流検出部116を脈動電流検出部116’に置き換えたものである。本実施例(図13)では、トルク脈動補償部109を含む構成としているが、実施例2で示したトルク脈動補償部109’に置き換えた構成としてもよい。 FIG. 13 is a configuration diagram of the motor drive device of this embodiment. In this configuration, the pulsating current detection unit 116 in the configuration of Example 1 (FIG. 1) is replaced with the pulsating current detection unit 116'in consideration of the relationship between the direction of the current vector and the influence of the output voltage distortion caused by the inverter. be. In this embodiment (FIG. 13), the torque pulsation compensating unit 109 is included, but the torque pulsation compensating unit 109'shown in the second embodiment may be used instead.
 図14に、脈動電流検出部116’の構成を示す。実施例1(図5)の脈動電流検出部116との違いは、電流位相演算部1400と、dq/γδ変換部1401と、加算部1402が付加されていることである。 FIG. 14 shows the configuration of the pulsating current detection unit 116'. The difference from the pulsating current detection unit 116 of the first embodiment (FIG. 5) is that the current phase calculation unit 1400, the dq / γδ conversion unit 1401 and the addition unit 1402 are added.
 電流位相演算部1400はd軸およびq軸検出電流Idc,Iqcを基に電流位相β「tan-1(-Idc/Iqc)」を演算する。dq/γδ変換部1401は、電流位相βを基に以下の式(8)を演算する。 The current phase calculation unit 1400 calculates the current phase β "tan-1 (-Idc / Iqc)" based on the d-axis and q-axis detection currents Idc and Iqc. The dq / γδ conversion unit 1401 calculates the following equation (8) based on the current phase β.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)の演算により、電流ベクトルが非通電方向であるγ軸成分と通電方向であるδ軸成分に分離される。γ軸検出電流Iγcには、乗算部1405にてcos6θdc’が乗算され、LPF502を介して電流脈動の第二成分Ih2 ̄が生成される。同様に、δ軸検出電流Iδcには、乗算部1406にてsin6θdc’が乗算され、LPF505を介して電流脈動の第一成分Ih1 ̄が生成される。 By the calculation of equation (8), the current vector is separated into a γ-axis component in the non-energized direction and a δ-axis component in the energized direction. The γ-axis detection current Iγc is multiplied by cos6θdc'by the multiplication unit 1405, and the second component Ih2 ̄ of the current pulsation is generated via the LPF502. Similarly, the δ-axis detection current Iδc is multiplied by sin6θdc'by the multiplication unit 1406, and the first component Ih1 ̄ of the current pulsation is generated via the LPF505.
 脈動電流検出部116’にて、電流脈動の第一成分Ih1 ̄および第二成分Ih2 ̄が生成された後の動作は、実施例1および実施例2と同様である。 The operation after the first component Ih1  ̄ and the second component Ih2  ̄ of the current pulsation are generated by the pulsation current detection unit 116'is the same as that of the first and second embodiments.
 図15を参照して、本発明の実施例4の空気調和機の室外機について説明する。図15は、上記の実施例1から実施例3のいずれかの実施形態によるモータ駆動装置を、空気調和機の室外機に搭載されるファンモータシステムに適用した例を示している。 The outdoor unit of the air conditioner according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 15 shows an example in which the motor drive device according to any one of the first to third embodiments is applied to a fan motor system mounted on an outdoor unit of an air conditioner.
 室外機1500は、ファンモータ用駆動装置1501と、圧縮機モータ用駆動装置1502と、ファンモータ1503と、ファン1504と、フレーム1505と、圧縮機装置1506を搭載する。ファンモータ用駆動装置1501は、上記の実施例1から実施例3のいずれかの実施形態によるモータ駆動装置である。 The outdoor unit 1500 is equipped with a fan motor drive device 1501, a compressor motor drive device 1502, a fan motor 1503, a fan 1504, a frame 1505, and a compressor device 1506. The fan motor drive device 1501 is a motor drive device according to any one of the above-described first to third embodiments.
 室外機1500におけるファンモータシステムの動作を説明する。交流電源1507は、圧縮機モータ用駆動装置1502に接続される。圧縮機モータ用駆動装置1502は、供給される交流電圧VACを直流電圧VDCに整流し、圧縮機装置1506を駆動する。
同時に、圧縮機モータ用駆動装置1502は、ファンモータ用駆動装置1501にも直流電圧VDCを供給し、さらにモータ速度指令ωr*を出力する。
The operation of the fan motor system in the outdoor unit 1500 will be described. The AC power supply 1507 is connected to the compressor motor drive device 1502. The compressor motor drive device 1502 rectifies the supplied AC voltage VAC to a DC voltage VDC and drives the compressor device 1506.
At the same time, the compressor motor drive device 1502 also supplies the fan motor drive device 1501 with a DC voltage VDC, and further outputs a motor speed command ωr *.
 ファンモータ用駆動装置1501は、入力されたモータ速度指令ωr*に基づいて動作し、三相電圧をファンモータ1503に供給する。これにより、ファンモータ1503が駆動し、接続されたファン1504が回転する。以上が、ファンモータシステムの動作である。 The fan motor drive device 1501 operates based on the input motor speed command ωr *, and supplies a three-phase voltage to the fan motor 1503. As a result, the fan motor 1503 is driven, and the connected fan 1504 rotates. The above is the operation of the fan motor system.
 空気調和機の室外機では、低コスト化のために、ファンモータ用駆動装置1501に安価な演算装置を搭載するのが一般的である。また、ファンモータ1503には位置センサが付加されていない場合が多い。このような用途でも、本発明によるモータ駆動装置をファンモータ用駆動装置として用いることで、トルク脈動抑制制御を実現できる。その結果、ファンモータ1503に起因するフレーム1505への振動が低減され、室外機ユニット1500より放出される騒音を低減することができる。 In the outdoor unit of an air conditioner, it is common to mount an inexpensive arithmetic unit on the fan motor drive device 1501 in order to reduce the cost. Further, the fan motor 1503 is often not provided with a position sensor. Even in such an application, torque pulsation suppression control can be realized by using the motor drive device according to the present invention as a drive device for a fan motor. As a result, the vibration to the frame 1505 caused by the fan motor 1503 is reduced, and the noise emitted from the outdoor unit unit 1500 can be reduced.
 本発明によるモータ駆動装置は、予備試験や調整作業等が不要であるため、適用が非常に容易である。また、自律的なトルク脈動抑制制御であることから、モータ特性の測定が困難な既設の設備に対しても本発明を適用することができる。 The motor drive device according to the present invention does not require preliminary tests or adjustment work, and is therefore very easy to apply. Further, since the torque pulsation suppression control is autonomous, the present invention can be applied to the existing equipment in which it is difficult to measure the motor characteristics.
 なお、実施例1から実施例3の実施形態によるモータ駆動装置は、圧縮機モータ用駆動装置として用いることも可能である。要するに、ベクトル制御を基本構成とするモータ駆動装置であれば、本発明を適用することが可能である。 The motor drive device according to the first to third embodiments can also be used as a drive device for a compressor motor. In short, the present invention can be applied to any motor drive device having a basic configuration of vector control.
 また、実施例1から実施例3の実施形態では、位置センサレス方式によるモータ駆動装置を例に説明したが、エンコーダ、レゾルバ、磁極位置センサなどの位置センサを備えるモータ駆動装置にも本発明を適用することができる。例えば、図1,図9,図13に示すモータ101に位置センサを付加し、制御部103に位置センサの情報に基づく速度フィードバック制御を付加する構成としても、本発明を適用することができる。 Further, in the first to third embodiments, the motor drive device based on the position sensorless method has been described as an example, but the present invention is also applied to a motor drive device including a position sensor such as an encoder, a resolver, and a magnetic pole position sensor. can do. For example, the present invention can be applied to a configuration in which a position sensor is added to the motor 101 shown in FIGS. 1, 9, and 13 and speed feedback control based on the information of the position sensor is added to the control unit 103.
 また、図1,図9,図13の各指令電圧演算部107に代わり、d軸指令電流Id*とd軸検出電流Idcの偏差と、q軸指令電流Iq*とq軸検出電流Iqcの偏差に基づく電流フィードバック制御を含む構成としても、本発明を適用することができる。 Further, instead of the command voltage calculation unit 107 of FIGS. 1, 9, and 13, the deviation of the d-axis command current Id * and the d-axis detection current Idc and the deviation of the q-axis command current Iq * and the q-axis detection current Iqc. The present invention can also be applied to a configuration including current feedback control based on the above.
 この場合、構築される電流フィードバック制御の応答帯域は、モータ起因の誘起電圧歪みやインバータ起因の出力電圧歪みの変動周波数よりも十分に低く設計しておく。これにより、d軸およびq軸検出電流Idc、Iqcに含まれる情報が実施例1から実施例3の実施形態と同一となり、本発明による適切な動作が可能となる。 In this case, the response band of the constructed current feedback control should be designed to be sufficiently lower than the fluctuation frequency of the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter. As a result, the information contained in the d-axis and q-axis detection currents Idc and Iqc becomes the same as that of the first to third embodiments, and the appropriate operation according to the present invention becomes possible.
 実施例1から実施例3では、モータ起因の誘起電圧歪みとインバータ起因の出力電圧歪みが6次周期で変動するものとして説明したが、変動周期が6次以外(12次、24次など)となる場合であっても本発明を同様に適用することが可能である。 In Examples 1 to 3, it has been described that the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter fluctuate in the 6th order, but the fluctuation period is other than the 6th order (12th order, 24th order, etc.). Even in such cases, the present invention can be applied in the same manner.
 また、本発明の各実施例によれば、検出信号の一つであるd軸およびq軸検出電流に基づいて、モータ起因の誘起電圧歪み及びインバータ起因の出力電圧歪みの影響を検出して補償を行う制御である。指令信号ではなく、検出信号を用いることで、モデル化誤差や計算誤差等の影響を極力排して、高い精度で上記制御を行うことができる。 Further, according to each embodiment of the present invention, the influence of the induced voltage distortion caused by the motor and the output voltage distortion caused by the inverter is detected and compensated based on the d-axis and q-axis detection currents which are one of the detection signals. It is a control to perform. By using the detection signal instead of the command signal, the influence of modeling error, calculation error, etc. can be eliminated as much as possible, and the above control can be performed with high accuracy.
 検出信号を用いる場合、センサ等の追加に伴うコストの増加が懸念されるが、モータ駆動装置は電流センサを備える場合がほとんどである。すなわち本発明は、自律的に動作するトルク脈動抑制制御を既設センサのみで実現するものである。 When using a detection signal, there is a concern that the cost will increase due to the addition of sensors, etc., but most motor drive devices are equipped with a current sensor. That is, the present invention realizes the torque pulsation suppression control that operates autonomously only by the existing sensor.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施例は本発明に対する理解を助けるために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above examples have been described in detail to aid in understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 100…モータ駆動装置、101…永久磁石同期モータ(モータ)、102…指令速度発生部、103…制御部、104…電力変換回路、105…電流センサ、106…ゲイン乗算部、107…指令電圧演算部、108…LPF(ローパスフィルタ)、109,109’…トルク脈動補償部、110,110a,110b…加算部、111…dq/3相変換部、112…デッドタイム補償部、113,113a,113b,113c…加算部、114…回転子位置検出部、115…3相/dq変換部、116,116’…脈動電流検出部、200…永久磁石同期モータ(dq座標モデル)、201a,201b…加算部、202a,202b…加算部、203,204…乗算部、500…cos6θdc信号生成部、503…sin6θdc信号生成部、501,504…乗算部、502,505…LPF(ローパスフィルタ)、600…積分制御部、601…加算部、602…初期値設定部、603…sin6θdc信号生成部、604,606,607,608…乗算部、605…cos6θdc信号生成部、700…積分制御部、701…初期値設定部、702…加算部、703,705,707…符号関数部、704,706,708…乗算部、1000…補償電圧演算部、1002…LPF(ローパスフィルタ)、1003,1004,1006,1007…乗算部、1005,1008…加算部、1400…電流位相演算部、1401…dq/γδ変換部、1402…加算部、1403…cos6θdc’信号生成部、1404…sin6θdc’信号生成部、1405,1406…乗算部、1500…室外機(ユニット)、1501…ファンモータ用駆動装置、1502…圧縮機モータ用駆動装置、1503…ファンモータ、1504…ファン、1505…フレーム、1506…圧縮機装置、1507…交流電源、ωr…モータ速度、ωr*…指令速度(モータ速度指令)、ω1c…PLLにより得られる電気角速度、Vu*,Vv*,Vw*…三相指令電圧、Vdc*,Vqc*…d軸およびq軸指令電圧、ΔVd*,ΔVq*…d軸およびq軸補償指令電圧、Vdc**,Vqc**…補償後のd軸およびq軸指令電圧、ΔVu*,ΔVv*,ΔVw*…三相補償指令電圧、Vu**,Vv**,Vw**…補償後の三相補償指令電圧、Iu,Iv,Iw…三相検出電流、Id,Iq…d軸およびq軸電流、Idc,Iqc…d軸およびq軸検出電流、Ih1 ̄,Ih2 ̄…電流脈動の第一成分および第二成分、θd…回転子位置、θdc…回転子位置の推定値、Δθc…軸誤差、τm…モータトルク、P…モータ極数、R…巻線抵抗、Ld,Lq…d軸およびq軸インダクタンス、Ke…誘起電圧係数、Kehd,Kehq…d軸およびq軸上の誘起電圧係数の脈動成分(歪み成分)、Keh ̄…KehdおよびKehqの振幅値、Keh* ̄…振幅値Keh ̄の設定値、ΔKeh ̄…Keh* ̄の演算における調整値、Keh0 ̄…Keh* ̄の演算における初期値、Vtd…インバータ起因の出力電圧歪みの三相静止座標成分、Vtdd,Vtdq…インバータ起因の出力電圧歪みのd軸およびq軸成分、Vtd ̄…Vtdの振幅値、Vtd* ̄…振幅値Vtd ̄の設定値、ΔVtd ̄…振幅値Vtd* ̄の演算における調整値、Vtd0 ̄…振幅値Vtd* ̄の演算における初期値、ΔVd1* ̄,ΔVd2* ̄…d軸補償電圧の第一振幅および第二振幅(第一d軸補償指令電圧,第二d軸補償指令電圧)、ΔVq1* ̄,ΔVq2* ̄…q軸補償電圧の第一振幅および第二振幅(第一q軸補償指令電圧,第二q軸補償指令電圧)、Iγc,Iδc…γ軸およびδ軸検出電流、β…電流位相、VAC…交流電圧、VDC…直流電圧。 100 ... Motor drive device, 101 ... Permanent magnet synchronous motor (motor), 102 ... Command speed generator, 103 ... Control unit, 104 ... Power conversion circuit, 105 ... Current sensor, 106 ... Gain multiplication unit, 107 ... Command voltage calculation Unit, 108 ... LPF (low pass filter), 109, 109'... torque pulsation compensation unit, 110, 110a, 110b ... addition unit, 111 ... dq / 3 phase conversion unit, 112 ... dead time compensation unit, 113, 113a, 113b , 113c ... Addition unit, 114 ... Rotor position detection unit, 115 ... 3-phase / dq conversion unit, 116, 116'... Pulsating current detection unit, 200 ... Permanent magnet synchronous motor (dq coordinate model), 201a, 201b ... Addition Unit, 202a, 202b ... Addition part, 203,204 ... Multiplying part, 500 ... cos6θdc signal generation part, 503 ... sin6θdc signal generation part, 501,504 ... Multiplying part, 502,505 ... LPF (low pass filter), 600 ... Integration Control unit, 601 ... Addition unit, 602 ... Initial value setting unit, 603 ... sin6θdc signal generation unit, 604,606,607,608 ... Multiplication unit, 605 ... cos6θdc signal generation unit, 700 ... Integration control unit, 701 ... Initial value Setting unit, 702 ... Addition unit, 703,705,707 ... Code function unit, 704,706,708 ... Multiplication unit, 1000 ... Compensation voltage calculation unit, 1002 ... LPF (low pass filter), 1003,1004,1006,1007 ... Multiplying unit, 1005, 1008 ... Addition unit, 1400 ... Current phase calculation unit, 1401 ... dq / γδ conversion unit, 1402 ... Addition unit, 1403 ... cos6θdc'signal generation unit, 1404 ... sin6θdc' signal generation unit, 1405, 1406 ... Multiplying unit 1500 ... Outdoor unit (unit), 1501 ... Fan motor drive device, 1502 ... Compressor motor drive device, 1503 ... Fan motor, 1504 ... Fan, 1505 ... Frame, 1506 ... Compressor device, 1507 ... AC Power supply, ωr ... motor speed, ωr * ... command speed (motor speed command), electric angular speed obtained by ω1c ... PLL, Vu *, Vv *, Vw * ... three-phase command voltage, Vdc *, Vqc * ... d-axis and q-axis command voltage, ΔVd *, ΔVq * ... d-axis and q-axis compensation command voltage, Vdc **, Vqc ** ... d-axis and q-axis command voltage after compensation, ΔVu *, ΔVv *, ΔVw * ... Three-phase Compensation command voltage, Vu **, Vv **, Vw ** ... Three-phase compensation command voltage after compensation, Iu, Iv, Iw ... Three-phase detection current, Id, Iq ... d-axis and q-axis Current, Idc, Iqc ... d-axis and q-axis detection current, Ih1 ̄, Ih2 ̄ ... first and second components of current pulsation, θd ... rotor position, θdc ... rotor position estimate, Δθc ... axis error , Τm ... motor torque, P ... number of motor poles, R ... winding resistance, Ld, Lq ... d-axis and q-axis inductance, Ke ... induced voltage coefficient, Kehd, Kehq ... d-axis and q-axis induced voltage coefficient Pulsating component (distortion component), Keh  ̄… Kehd and Kehq amplitude values, Keh *  ̄… amplitude value Keh  ̄ setting value, ΔKeh  ̄… Keih *  ̄ calculation adjustment value, Keh0  ̄… Keih *  ̄ calculation Initial value, Vtd ... Three-phase stationary coordinate component of output voltage distortion caused by inverter, Vtdd, Vtdq ... D-axis and q-axis component of output voltage distortion caused by inverter, Vtd ̄ ... Vtd amplitude value, Vtd *  ̄ ... Vtd ̄ set value, ΔVtd ̄… Adjustment value in calculation of amplitude value Vtd *  ̄, Vtd0 ̄… Initial value in calculation of amplitude value Vtd *  ̄, ΔVd1 *  ̄, ΔVd2 *  ̄… First amplitude of d-axis compensation voltage And the second amplitude (first d-axis compensation command voltage, second d-axis compensation command voltage), ΔVq1 *  ̄, ΔVq2 *  ̄ ... The first amplitude and second amplitude of the q-axis compensation voltage (first q-axis compensation command voltage) , Second q-axis compensation command voltage), Iγc, Iδc ... γ-axis and δ-axis detection current, β ... current phase, VAC ... AC voltage, VDC ... DC voltage.

Claims (10)

  1.  モータに電力を供給する電力変換回路と、
     前記電力変換回路を制御する制御部と、
     前記モータに通電される三相電流を検出する電流センサと、を備え、
     前記制御部は、前記モータの駆動に寄与する指令電圧を演算する指令電圧演算部と、
     前記電流センサにより検出した三相検出電流を互いに直交する成分に分離した各成分に基づいて前記各成分の脈動分を抽出した第一成分と第二成分を生成する脈動電流検出部と、
     前記第一成分に基づいて前記モータの構造に起因するトルク脈動を補償する第一補償指令電圧を出力するトルク脈動補償部と、
     前記第二成分に基づいて前記電力変換回路のデッドタイムに起因する出力電圧歪みを補償する第二補償指令電圧を出力するデッドタイム補償部と、を有し、
     前記第一補償指令電圧および前記第二補償指令電圧により前記指令電圧を補正することで、前記トルク脈動および前記出力電圧歪みを低減することを特徴とするモータ駆動装置。
    A power conversion circuit that supplies power to the motor,
    A control unit that controls the power conversion circuit and
    A current sensor for detecting a three-phase current energized in the motor is provided.
    The control unit includes a command voltage calculation unit that calculates a command voltage that contributes to driving the motor.
    A pulsating current detection unit that generates a first component and a second component that extract the pulsation component of each component based on each component that separates the three-phase detection current detected by the current sensor into components that are orthogonal to each other.
    A torque pulsation compensating unit that outputs a first compensation command voltage that compensates for torque pulsation caused by the structure of the motor based on the first component.
    It has a dead time compensation unit that outputs a second compensation command voltage that compensates for output voltage distortion caused by the dead time of the power conversion circuit based on the second component.
    A motor drive device characterized in that the torque pulsation and the output voltage distortion are reduced by correcting the command voltage with the first compensation command voltage and the second compensation command voltage.
  2.  請求項1に記載のモータ駆動装置において、
     前記制御部は、前記三相検出電流をd軸電流およびq軸電流に変換する三相/dq変換部を有し、
     前記互いに直交する成分は、d軸成分とq軸成分であり、
     前記第一成分は、d軸成分およびq軸成分の内の一方の脈動分であり、
     前記第二成分は、d軸成分およびq軸成分の内の他方の脈動分であることを特徴とするモータ駆動装置。
    In the motor drive device according to claim 1,
    The control unit has a three-phase / dq conversion unit that converts the three-phase detection current into a d-axis current and a q-axis current.
    The components orthogonal to each other are a d-axis component and a q-axis component.
    The first component is a pulsating component of one of the d-axis component and the q-axis component.
    The motor driving device, wherein the second component is the pulsation component of the other of the d-axis component and the q-axis component.
  3.  請求項2に記載のモータ駆動装置において、
     前記制御部は、前記モータの回転子位置を検出する回転子位置検出部を有し、
     前記脈動電流検出部は、前記モータの回転子位置に応じて6n次(nは1以上の整数)で変動する正弦波信号もしくは余弦波信号を前記q軸電流に乗算することで前記第一成分の情報を含む信号を生成し、
     前記モータの回転子位置に応じて6n次で変動する正弦波信号もしくは余弦波信号を前記d軸電流に乗算することで前記第二成分の情報を含む信号を生成することを特徴とするモータ駆動装置。
    In the motor drive device according to claim 2,
    The control unit has a rotor position detecting unit that detects the rotor position of the motor.
    The pulsating current detection unit multiplies the q-axis current by a sine wave signal or a chord wave signal that fluctuates in the 6nth order (n is an integer of 1 or more) according to the rotor position of the motor to obtain the first component. Generates a signal containing the information of
    A motor drive characterized in that a signal including information on the second component is generated by multiplying the d-axis current by a sine wave signal or a chord wave signal that fluctuates in the 6nth order according to the rotor position of the motor. Device.
  4.  請求項1に記載のモータ駆動装置において、
     前記制御部は、前記三相検出電流をd軸電流およびq軸電流に変換する三相/dq変換部と、
     前記モータの回転子位置を検出する回転子位置検出部と、を有し、
     前記脈動電流検出部は、前記d軸電流および前記q軸電流を基にこれらの電流によって形成される電流ベクトルとq軸とが成す角に相当する電流位相を演算する電流位相演算部と、
     前記モータの回転子位置と前記電流位相を加算して補正後回転子位置を生成する加算部と、
     前記電流位相を基に前記d軸電流および前記q軸電流を前記電流ベクトルの向きと対向するδ軸上の成分と前記δ軸に対して90°位相がずれたγ軸の成分に変換するdq/γδ変換部と、を有し、
     前記補正後回転子位置に応じて6n次(nは1以上の整数)で変動する正弦波信号もしくは余弦波信号を前記δ軸上の電流に乗算することで前記第一成分の情報を含む信号を生成し、
     前記補正後回転子位置に応じて6n次で変動する正弦波信号もしくは余弦波信号を前記γ軸上の電流に乗算することで前記第二成分の情報を含む信号を生成することを特徴とするモータ駆動装置。
    In the motor drive device according to claim 1,
    The control unit includes a three-phase / dq conversion unit that converts the three-phase detection current into a d-axis current and a q-axis current.
    It has a rotor position detecting unit for detecting the rotor position of the motor, and has a rotor position detecting unit.
    The pulsating current detection unit includes a current phase calculation unit that calculates a current phase corresponding to an angle formed by a current vector formed by these currents based on the d-axis current and the q-axis current and the q-axis.
    An adder that adds the rotor position of the motor and the current phase to generate a corrected rotor position.
    Based on the current phase, the d-axis current and the q-axis current are converted into a component on the δ-axis facing the direction of the current vector and a component on the γ-axis that is 90 ° out of phase with respect to the δ-axis. It has a / γδ conversion unit and
    A signal containing information on the first component by multiplying the current on the δ axis by a sine wave signal or a chord wave signal that fluctuates in the 6nth order (n is an integer of 1 or more) according to the corrected rotor position. To generate
    It is characterized in that a signal including the information of the second component is generated by multiplying the current on the γ axis by a sine wave signal or a chord wave signal that fluctuates in the 6nth order according to the corrected rotor position. Motor drive.
  5.  請求項4に記載のモータ駆動装置において、
     前記トルク脈動補償部は、前記第一成分を基に積分制御によって前記モータの構造に起因する誘起電圧歪みに関する第一パラメータを演算し、
     前記第一パラメータと、前記モータの電気角速度と、前記回転子位置あるいは前記補正後回転子位置に応じて6n次で変動する正弦波信号もしくは余弦波信号を基にd軸補償指令電圧およびq軸補償指令電圧を生成することを特徴とするモータ駆動装置。
    In the motor drive device according to claim 4,
    The torque pulsation compensating unit calculates the first parameter related to the induced voltage distortion caused by the structure of the motor by integral control based on the first component.
    The d-axis compensation command voltage and the q-axis are based on the first parameter, the electric angular velocity of the motor, and the sine wave signal or cosine wave signal that fluctuates in the 6nth order depending on the rotor position or the corrected rotor position. A motor drive that produces a compensation command voltage.
  6.  請求項4に記載のモータ駆動装置において、
     前記トルク脈動補償部は、前記第一成分を基に積分制御によって前記モータの構造に起因する誘起電圧歪みに関する第一パラメータを演算し、
     前記第一パラメータと、前記q軸電流と、前記モータの電気角速度と、前記回転子位置あるいは前記補正後回転子位置に応じて6n次で変動する正弦波信号もしくは余弦波信号をもとにd軸補償指令電圧およびq軸補償指令電圧を生成することを特徴とするモータ駆動装置。
    In the motor drive device according to claim 4,
    The torque pulsation compensating unit calculates the first parameter related to the induced voltage distortion caused by the structure of the motor by integral control based on the first component.
    Based on the first parameter, the q-axis current, the electric angular velocity of the motor, and the sine wave signal or cosine wave signal that fluctuates in the 6nth order depending on the rotor position or the corrected rotor position, d. A motor drive that generates an axis compensation command voltage and a q-axis compensation command voltage.
  7.  請求項1に記載のモータ駆動装置において、
     前記デッドタイム補償部は、前記第二成分を基に積分制御によって前記電力変換回路のデッドタイムに起因する出力電圧歪みに関する第二パラメータを演算し、
     前記第二パラメータと、前記三相検出電流の情報を基に三相補償指令電圧を生成することを特徴とするモータ駆動装置。
    In the motor drive device according to claim 1,
    The dead time compensation unit calculates a second parameter related to output voltage distortion due to the dead time of the power conversion circuit by integral control based on the second component.
    A motor drive device characterized in that a three-phase compensation command voltage is generated based on the information of the second parameter and the three-phase detection current.
  8.  永久磁石同期モータと、
     前記永久磁石同期モータを駆動するモータ駆動装置と、
     前記永久磁石同期モータに接続されるファンと、
     前記永久磁石同期モータを取り付けるフレームと、
     圧縮機装置システムと、を備える空気調和機の室外機において、
     前記モータ駆動装置は、請求項1から7のいずれか1項に記載のモータ駆動装置であることを特徴とする空気調和機の室外機。
    Permanent magnet synchronous motor and
    A motor drive device that drives the permanent magnet synchronous motor,
    With the fan connected to the permanent magnet synchronous motor,
    The frame to which the permanent magnet synchronous motor is attached and
    In the outdoor unit of an air conditioner equipped with a compressor system
    The outdoor unit of an air conditioner, wherein the motor drive device is the motor drive device according to any one of claims 1 to 7.
  9.  モータに通電される三相電流を検出し、当該検出した三相検出電流を互いに直交する成分に分離して各成分の脈動分を抽出した第一成分と第二成分を生成し、
     前記第一成分に基づいて前記モータの構造に起因するトルク脈動を補償する第一補償指令電圧を生成し、
     前記第二成分に基づいて電力変換回路のデッドタイムに起因する出力電圧歪みを補償する第二補償指令電圧を生成し、
     前記第一補償指令電圧および前記第二補償指令電圧により前記モータの駆動に寄与する指令電圧を補正することで、前記トルク脈動および前記出力電圧歪みを低減することを特徴とするモータ駆動制御方法。
    The three-phase current energized in the motor is detected, the detected three-phase detection current is separated into components orthogonal to each other, and the pulsation component of each component is extracted to generate the first component and the second component.
    Based on the first component, a first compensation command voltage that compensates for torque pulsation due to the structure of the motor is generated.
    Based on the second component, a second compensation command voltage that compensates for output voltage distortion due to the dead time of the power conversion circuit is generated.
    A motor drive control method characterized in that torque pulsation and output voltage distortion are reduced by correcting a command voltage that contributes to driving the motor by the first compensation command voltage and the second compensation command voltage.
  10.  請求項9に記載のモータ駆動制御方法において、
     前記互いに直交する成分は、d軸成分とq軸成分であり、
     前記第一成分は、d軸成分およびq軸成分の内の一方の脈動分であり、
     前記第二成分は、d軸成分およびq軸成分の内の他方の脈動分であることを特徴とするモータ駆動制御方法。
    In the motor drive control method according to claim 9,
    The components orthogonal to each other are a d-axis component and a q-axis component.
    The first component is a pulsating component of one of the d-axis component and the q-axis component.
    A motor drive control method, wherein the second component is a pulsation component of the other of the d-axis component and the q-axis component.
PCT/JP2020/037987 2020-02-28 2020-10-07 Motor drive device, outdoor unit of air conditioner using same, and motor drive control method WO2021171679A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080094872.2A CN115004537A (en) 2020-02-28 2020-10-07 Motor drive device, outdoor unit of air conditioner using same, and motor drive control method
DE112020005654.6T DE112020005654T5 (en) 2020-02-28 2020-10-07 ENGINE DRIVE EQUIPMENT, OUTDOOR UNIT OF AN AIR CONDITIONING SYSTEM INCLUDING SAME, AND ENGINE DRIVE CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020032933A JP7213196B2 (en) 2020-02-28 2020-02-28 MOTOR DRIVE DEVICE, OUTDOOR UNIT OF AIR CONDITIONER USING THE SAME, MOTOR DRIVE CONTROL METHOD
JP2020-032933 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021171679A1 true WO2021171679A1 (en) 2021-09-02

Family

ID=77490159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037987 WO2021171679A1 (en) 2020-02-28 2020-10-07 Motor drive device, outdoor unit of air conditioner using same, and motor drive control method

Country Status (4)

Country Link
JP (1) JP7213196B2 (en)
CN (1) CN115004537A (en)
DE (1) DE112020005654T5 (en)
WO (1) WO2021171679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4287497A1 (en) * 2022-05-31 2023-12-06 Robert Bosch GmbH Method for the silent operation of an electric motor device, an electric motor device and a heat engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019003A1 (en) * 2022-07-19 2024-01-25 三菱電機株式会社 Torque pulsation measurement method and torque pulsation measurement device for permanent magnet motor and method for manufacturing permanent magnet motor
WO2024038574A1 (en) * 2022-08-19 2024-02-22 三菱電機株式会社 Ac electric motor control device and air conditioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018900A (en) * 2001-06-29 2003-01-17 Nissan Motor Co Ltd Motor controller
JP2006141175A (en) * 2004-11-15 2006-06-01 Fuji Electric Holdings Co Ltd Motor control device of ac-ac direct converter
JP2007259698A (en) * 1997-10-31 2007-10-04 Hitachi Ltd Drive unit of electric vehicle
JP2010057218A (en) * 2008-08-26 2010-03-11 Meidensha Corp Pulsation suppression device of electric motor
JP2012044785A (en) * 2010-08-19 2012-03-01 Mitsubishi Electric Corp Control device of power converter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259698A (en) 2002-03-05 2003-09-12 Fuji Electric Co Ltd Method for correcting gain in three-phase current detector
JP5692572B2 (en) 2010-10-31 2015-04-01 新中 新二 Synchronous motor drive control device
JP6685184B2 (en) 2016-06-21 2020-04-22 株式会社 日立パワーデバイス Motor drive device and air conditioner outdoor unit using the same
JP6787236B2 (en) 2017-04-13 2020-11-18 三菱電機株式会社 Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259698A (en) * 1997-10-31 2007-10-04 Hitachi Ltd Drive unit of electric vehicle
JP2003018900A (en) * 2001-06-29 2003-01-17 Nissan Motor Co Ltd Motor controller
JP2006141175A (en) * 2004-11-15 2006-06-01 Fuji Electric Holdings Co Ltd Motor control device of ac-ac direct converter
JP2010057218A (en) * 2008-08-26 2010-03-11 Meidensha Corp Pulsation suppression device of electric motor
JP2012044785A (en) * 2010-08-19 2012-03-01 Mitsubishi Electric Corp Control device of power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4287497A1 (en) * 2022-05-31 2023-12-06 Robert Bosch GmbH Method for the silent operation of an electric motor device, an electric motor device and a heat engine

Also Published As

Publication number Publication date
DE112020005654T5 (en) 2022-11-24
JP2021136811A (en) 2021-09-13
CN115004537A (en) 2022-09-02
JP7213196B2 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2021171679A1 (en) Motor drive device, outdoor unit of air conditioner using same, and motor drive control method
JP4022630B2 (en) Power conversion control device, power conversion control method, and program for power conversion control
JP4357967B2 (en) Control device for synchronous reluctance motor
KR100655702B1 (en) Control method for permanent magnet synchronous motor and control system thereof
JP4221307B2 (en) Synchronous motor control device, electrical equipment and module
KR20050092000A (en) Estimating method and apparatus of rotor&#39;s location, controling method for motors, compressor and the storage media to read computer program executeing the method
JP3684203B2 (en) Motor control device
US20160156297A1 (en) Motor drive system, motor control apparatus and motor control method
WO2002039576A1 (en) Synchronous motor control method and device
JP2004328814A (en) Electric power steering device
TWI525981B (en) System, method and apparatus of sensor-less field oriented control for permanent magnet motor
JP2011211815A (en) Controller of permanent magnet motor
KR20080071055A (en) Control apparatus for rotary machine and method for measuring electrical constant of ac rotary machine using the control apparatus
TW201406044A (en) Angle estimation control systems and methods
US20040183496A1 (en) Motor control apparatus and motor control method
JP4425091B2 (en) Motor position sensorless control circuit
JP2010068581A (en) Electric motor drive unit
JP6541092B2 (en) Control device of permanent magnet synchronous motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
KR102621423B1 (en) Motor drive device and outdoor unit of air conditioner using it
JP7251424B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP2010022189A (en) Position sensorless control circuit for motor
JP5228435B2 (en) Inverter control device and control method thereof
JP3576509B2 (en) Motor control device
JP5034888B2 (en) Synchronous motor V / f control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921370

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20921370

Country of ref document: EP

Kind code of ref document: A1