WO2024019003A1 - Torque pulsation measurement method and torque pulsation measurement device for permanent magnet motor and method for manufacturing permanent magnet motor - Google Patents

Torque pulsation measurement method and torque pulsation measurement device for permanent magnet motor and method for manufacturing permanent magnet motor Download PDF

Info

Publication number
WO2024019003A1
WO2024019003A1 PCT/JP2023/026007 JP2023026007W WO2024019003A1 WO 2024019003 A1 WO2024019003 A1 WO 2024019003A1 JP 2023026007 W JP2023026007 W JP 2023026007W WO 2024019003 A1 WO2024019003 A1 WO 2024019003A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque pulsation
permanent magnet
magnet motor
torque
rotor
Prior art date
Application number
PCT/JP2023/026007
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 坂上
健 岡本
旭涛 李
Original Assignee
三菱電機株式会社
三菱電機ビルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ビルソリューションズ株式会社 filed Critical 三菱電機株式会社
Publication of WO2024019003A1 publication Critical patent/WO2024019003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque

Definitions

  • the present disclosure relates to a method of measuring torque pulsations that occur during rotation of a permanent magnet motor.
  • a torque sensor is provided between a test motor to be measured and a load motor, and the test motor is rotated by the load motor, and the torque pulsation generated at that time is Measuring torque fluctuations.
  • torque fluctuations are calculated from a command value of current applied to a test motor controlled at a constant speed, without using a load motor or a torque sensor. are doing.
  • Patent Document 1 requires a process of connecting a load motor and a torque sensor, and this process hinders productivity improvement. Furthermore, there is a problem in that the cost of a measuring device such as a torque sensor is required, leading to an increase in production costs.
  • the present disclosure has been made to solve the above-mentioned problems, and does not require mechanical connection of a load motor or a torque sensor to a permanent magnet motor, and eliminates torque pulsation even in a state where constant speed control is not possible.
  • the purpose of this invention is to provide a torque pulsation measurement method that can measure torque pulsation.
  • a permanent magnet motor torque pulsation measuring method includes a permanent magnet motor that includes an iron core that guides magnetic flux, a stator that has a coil that is insulated from the iron core and that can generate a rotating magnetic field, and a magnet that generates magnetic flux. It has a rotor rotatably fixed to a stator that guides magnetic flux, and a speed detector that detects the mechanical angular velocity of the rotor.
  • the torque pulsation measurement method is to measure each angular acceleration obtained by differentiating the mechanical angular velocity detected by a speed detector while the output shaft of the permanent magnet motor is not driven externally and is driven by the permanent magnet motor. It includes a calculation step of calculating torque pulsation by decomposing the angle into frequency components of orders that are integral multiples and multiplying by the moment of inertia.
  • the method for manufacturing a permanent magnet motor includes a step of determining the quality of the permanent magnet motor based on the torque pulsation calculated using the torque pulsation measuring method, after the permanent magnet motor is assembled.
  • the permanent magnet motor includes an iron core that guides magnetic flux, a stator that is insulated from the iron core and has a coil that can generate a rotating magnetic field, and a stator that generates magnetic flux. It includes a rotor that is rotatably fixed to a stator that has a magnet and guides magnetic flux, and a speed detector that detects the mechanical angular velocity of the rotor.
  • the torque pulsation measuring device measures each angular acceleration obtained by differentiating the mechanical angular velocity detected by the speed detector while the output shaft of the permanent magnet motor is not driven externally and is driven by the permanent magnet motor. It includes the step of calculating the inertial torque pulsation obtained by decomposing the angle into frequency components of orders that are integral multiples and multiplying by the moment of inertia.
  • acceleration variation can be frequency converted and torque pulsation can be calculated using the moment of inertia. Therefore, torque pulsation can be measured without requiring mechanical connection of a load motor or a torque sensor to the permanent magnet motor to be measured.
  • FIG. 3 is a diagram showing a control block of the torque pulsation measuring method according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a permanent magnet motor that is a measurement target. It is a figure which shows the signal output by the encoder as a position detector when a rotor is rotated in the forward direction.
  • 3 is a flowchart illustrating an example of a procedure of a torque pulsation measuring method.
  • FIG. 2 is a hardware configuration diagram of a control device that implements the torque pulsation measuring method according to the first embodiment.
  • 7 is a diagram showing an operation flow of the torque pulsation measuring device according to Embodiment 3.
  • FIG. 1 is a diagram showing a control block of the torque pulsation measuring method according to the first embodiment.
  • FIG. 1 is a diagram showing a control block of the torque pulsation measuring method according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a permanent magnet motor (hereinafter referred to as "motor”) Mt that is a measurement target.
  • motor a permanent magnet motor
  • the motor Mt includes a stator 1 and a rotor 2.
  • the stator 1 has an iron core 10 made of a laminated body through which magnetic flux passes.
  • the iron core 10 has a plurality of teeth 11 that are evenly arranged in the circumferential direction, which is the direction of rotation, and each extend in the radial direction.
  • Three-phase windings 12 represented by a U-phase winding 12U, a V-phase winding 12V, and a W-phase winding 12W are provided between adjacent teeth 11 through predetermined connections.
  • Insulators made of insulating paper 13 or resin are inserted between the windings 12 and the iron core 10 and between adjacent windings 12 in order to insulate them from each other.
  • the rotor 2 is provided inside the stator 1 in the radial direction.
  • a magnet 21 is provided on the outer surface of the rotor 2 in the radial direction.
  • a yoke 22 for passing magnetic flux is provided on the inner peripheral side of the magnet 21.
  • a shaft 23 is provided at the center of the yoke 22, and is rotatably held by a bearing (not shown).
  • the magnetic flux generated by energizing the winding 12 attracts or repels the magnetic flux created by the magnet 21 of the rotor 2, and the magnetic flux generated by energizing the winding 12 attracts the iron of the rotor 2. This generates torque and rotates the rotor 2.
  • the magnitudes of the d-axis current I d and the q-axis current I q in the coordinate system of the d-axis and q-axis rotating together with the rotor 2 are the current I U flowing through the U-phase winding 12U and the current I flowing through the V-phase winding 12V.
  • V , the current IW flowing through the W-phase winding 12W, and the electrical angle ⁇ e of the rotor 2 it can be expressed as in the following equation (1).
  • the torque ⁇ (t) generated by the motor Mt is expressed by the following formula (2) using the d-axis current I d , the q-axis current I q , the induced voltage constant K a , the d-axis inductance L d , and the q-axis inductance L q It can be expressed as
  • N p is the number of pole pairs, and is a parameter determined when designing the motor Mt. In the case of the motor Mt shown in FIG. 2, the number of pole pairs Np is five.
  • the equation of motion around the rotor 2 is expressed as the following equation (3).
  • ⁇ ⁇ (t) is a disturbance component, which is loss torque generated in bearings, lubricant sealing structures, etc., and torque generated due to magnets and iron attracting each other between rotor 2 and stator 1. .
  • torque pulsation a component that changes depending on the rotation angle
  • torque loss is generally known to be speed dependent, it is undesirable to measure torque pulsation under conditions where there are large speed fluctuations. Therefore, feedback control is performed so that the motor Mt can be operated so that the mechanical angular velocity detected by a speed detector, which will be described later, is kept as constant as possible.
  • the moment of inertia J of the rotor 2 can be grasped as a parameter of the motor Mt when designing the motor Mt.
  • the moment of inertia J is also called inertia.
  • the speed command unit 31 gives a predetermined operating speed ⁇ o as the command speed.
  • the operating speed corresponds to the rotation speed.
  • the speed calculation unit 32 differentiates the position signal input from the position detector 41 attached to the motor Mt, and outputs a speed signal obtained by the differentiation.
  • the speed signal corresponds to the actual speed.
  • the speed signal from the speed calculation section 32 is subtracted from the command speed ⁇ o from the speed command section 31, and the speed difference, which is the subtracted value, is input to the torque command section 33.
  • the torque command unit 33 calculates the command torque such that the speed signal is slow relative to the command signal, the speed signal is accelerated, and the speed signal is fast relative to the command signal, the speed signal is decelerated. If the calculation in the torque command unit 33 is only proportional control, it will oscillate and not converge, so it is desirable to combine differential control and integral control.
  • the current control unit 34 calculates the q-axis current Iq and d-axis current Id that satisfy the command torque calculated by the torque command unit 33, and can realize the calculated q-axis current Iq and d-axis current Id .
  • Each phase current corresponds to a switching command for the elements of the inverter 42.
  • the inverter 42 determines a duty ratio so that the current for each phase is calculated by the current control unit 34, and applies a voltage supplied from a bus (not shown) to the motor Mt.
  • the motor Mt generates a torque that accelerates or decelerates by applying voltage, that is, by driving current.
  • the position of the motor Mt is detected by a position detector 41.
  • the current calculation unit 35 measures the drive current flowing through the motor Mt by voltage application from the inverter 42, and provides feedback to the current control unit 34 so that the q-axis current Iq and the d-axis current Id become desired currents. put on.
  • an encoder (not shown) can be used as the position detector 41.
  • the encoder outputs an A-phase signal and a B-phase signal according to the mechanical angular velocity of the rotor 2. It is assumed that the A-phase signal switches at a cycle of RES times while the rotor 2 rotates once, and the B-phase signal switches at a cycle of RES times while the rotor 2 rotates once.
  • FIG. 3 is a diagram showing a signal output by the encoder when the rotor 2 is rotated in the forward direction.
  • the A-phase signal changes from the low potential side to the high potential side after a period of time t0 during which the rotor 2 rotates by a certain rotation angle has elapsed. After that, when time t0 further elapses, the A-phase signal changes from the high potential side to the low potential side. Further, the B-phase signal switches between the high potential side and the low potential side with a time difference of "t0 ⁇ 2" from the A-phase signal.
  • the B-phase signal changes from the low-potential side to the high-potential side at the timing when time "t0 ⁇ 2" has elapsed. . Further, after the A-phase signal falls from the high potential side to the low potential side, the B-phase signal changes from the high potential side to the low potential side at a timing when time "t0/2" has elapsed.
  • the position detector 41 and the speed calculation section 32 correspond to a speed detector. Feedback control is performed so that the mechanical angular velocity detected by this speed detector maintains a constant operating speed ⁇ o .
  • FIG. 4 is a flowchart showing an example of the procedure of the torque pulsation measuring method.
  • step S1 a voltage V UV generated between the U-phase winding 12U leading to the U-phase power supply and the V-phase winding 12V leading to the V-phase power supply, and the voltage V UV generated between the V-phase winding 12V and the W-phase power supply Measure the voltage V VW generated between the W-phase winding 12W leading to the W-phase winding 12W.
  • the d-axis voltage Vd is calculated using the measured voltage and the rotation angle of the rotor 2, and the phases of the position detector 41 and the rotor 2 are matched so that Vd becomes small. Note that when the phases of the position detector 41 and the rotor 2 are matched in advance using an absolute position detection sensor, such a step of matching the phases can be made unnecessary.
  • step S2 when the magnitude of the amplitude of the torque pulsation to be detected is ⁇ r and the frequency of the torque pulsation with respect to the rotation angle, which is a mechanical angle, is f, the rotational speed ⁇ m , which is the mechanical angular velocity of the rotor 2, is ⁇ m ⁇
  • the rotational speed ⁇ m is determined so as to satisfy the relationship f ⁇ r . Note that in steps S1 and S2, no load for rotating the rotor 2 is attached to the rotor 2, and the output shaft of the motor Mt is not driven from the outside but is in a self-propelled state driven by the motor Mt. It's rotating.
  • the number of signal switching RES of the position detector 41 is preferably selected such that M in the following equation (6) is an integer.
  • a second calculation method for the rotational speed of the rotor 2 will be explained.
  • the A-phase signal changes from low potential side to high potential side, or vice versa, and then the B-phase signal changes from low potential side to high potential side, or vice versa.
  • the time interval ⁇ t2 it can be calculated as shown in the following equation (10).
  • the first calculation method for the rotational speed of the rotor 2 is effective, but if there is a sufficient change in the signal in the time interval of ⁇ t, If this is not possible, it will not be possible to detect minute changes in the rotor's rotational speed. Conversely, if the value of the speed calculation period ⁇ t is increased, a delay occurs in the rotor speed feedback, which deteriorates speed stability, which is not preferable.
  • the speed in the speed calculation period is calculated from the first calculation method or the second calculation method of the rotational speed of the rotor 2 at each time.
  • the angular acceleration of the rotor 2 at that time can be calculated.
  • the differentiation of discrete values use central differentiation, and divide the difference between the velocity one point before the time you want to find and the speed one point after the time you want to find by twice the time interval. Arithmetic is preferred. This is because the error can be made smaller compared to forward and backward differences, and when forward and backward differences are used, the time shifts from the center, but with centered differences, such time shifts do not occur. .
  • a second calculation method for calculating the differential value is a method using Fourier transform.
  • the measurement result ⁇ e (t) of the rotational speed of the rotor 2 is expressed as in the following equation (14).
  • the coefficient A k in each order component can be determined by Fourier transformation.
  • T 0 is the time of the analysis interval
  • N is the number of data points in the analysis interval
  • i is an imaginary unit.
  • the coefficient A k from 1 to N ⁇ 2 can be obtained using Fourier transform as shown in equation (15) below.
  • exp(ix) is an exponential function of a complex number, and has a relationship as shown in equation (16) below.
  • i is an imaginary unit.
  • Cooley-Tukey type algorithm which calculates components of each order at high speed, and it is possible to use this algorithm. can.
  • the current pulsation calculation unit 36 energizes the motor Mt to measure the pulsation of torque generated by the motor Mt (step S3).
  • the method for measuring torque pulsation will be explained below.
  • the d-axis current I d and the q-axis current I q are determined using the above equation (1).
  • the value of the torque generated by the motor Mt at each time is calculated using the known induced voltage constant K a , d-axis inductance L d , q-axis inductance L q and the above equation (2).
  • the frequency component T k of the torque generated by the motor Mt is calculated by dividing into each order component as shown in the following equation (18).
  • the frequency component T k of the torque from 1 to N ⁇ 2 can be obtained as shown in the following equation (19) using Fourier transform.
  • the torque pulsation of the desired order can be obtained by the following equation (22) by analyzing data at a time K times the order of the desired torque pulsation. T K - J ⁇ A K ⁇ i ⁇ 2K ⁇ T 0 ...(22)
  • the amplitude A k of the torque pulsation can be expressed as in the following equation (23) using the absolute value of a complex number.
  • FIG. 5 is a hardware configuration diagram of the control device 3 as a torque pulsation measuring device (also see Embodiment 3 described later) that implements the above torque pulsation measuring method.
  • the control device 3 corresponds to a computer that can execute a torque pulsation measurement program, and can be realized by a processing circuit.
  • the processing circuit includes at least one processor 30a and at least one memory 30b.
  • each function of the control device 3 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 30b. At least one processor 30a reads and executes a program stored in at least one memory 30b. At least one processor 30a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP.
  • at least one memory 30b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, etc.
  • the processing circuit may be configured to include at least one dedicated hardware (not shown).
  • the processing circuit is implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • torque pulsation is measured by adding the pulsating component of the current, an external sensor and a load motor are required compared to the case where only the pulsating component of the inertial torque is calculated.
  • Torque pulsation can be measured with high accuracy without Furthermore, compared to calculations using only current pulsations, since speed fluctuations contribute to torque pulsations, torque pulsations can be measured with high accuracy without the need for external sensors or load motors.
  • the measurement of torque pulsation as described above is performed in a process such as a shipping test of the permanent magnet motor Mt after the permanent magnet motor Mt is assembled. At this time, it is possible to determine whether the permanent magnet motor Mt is good or bad based on the measured torque pulsation, for example, based on a comparison result between the measured torque pulsation and a threshold value.
  • the process of determining the quality of the permanent magnet motor Mt in this way can constitute a method of manufacturing the permanent magnet motor Mt.
  • the present embodiment by keeping the d-axis current I d constant, it becomes easy to calculate the magnitude of the torque generated by the motor Mt, and it is possible to reduce the causes of measurement errors in torque pulsation. As a result, the measurement accuracy of torque pulsation can be improved.
  • the torque pulsation can be obtained without depending on the d-axis inductance L d or the q-axis inductance L q , and the calculation of the torque pulsation can be simplified. desirable.
  • the d-axis current flows, torque pulsations depending on the induced voltage harmonics may occur, so by setting the d-axis current I d to 0, the generated torque pulsations can be reduced, and the torque The measurement accuracy of pulsation can be improved.
  • FIG. 6 is a diagram showing an operation flow of the torque pulsation measuring device according to the third embodiment. In this embodiment, torque pulsation is measured by the procedure shown in FIG.
  • step 1 the motor Mt is attached to the torque pulsation measuring device (control device 3).
  • step 2 the motor Mt is rotated by free running, and the voltage between the terminals of the motor Mt (for example, the line voltage between the U phase and the V phase) and rotation speed are measured after the power is cut off.
  • step 3 the induced voltage constant T k is calculated by dividing the voltage measured in step 2 by the rotational speed. It is also possible to calculate the speed in step 3 from the period of voltage fluctuation without measuring the speed in step 2, and to calculate the induced voltage constant T k using the calculated speed.
  • step 4 the motor Mt is rotated by a constant speed command. As in the first embodiment, current and speed are acquired.
  • step 5 torque pulsation is calculated using the induced voltage constant Tk calculated in step 3 and the speed and current obtained in step 4, as in the first embodiment.
  • Tk the induced voltage constant
  • the target torque fluctuation can be quickly measured after step 4.
  • the motor Mt is removed in step 6.
  • steps 2 and 3 may be performed after step 5, it is preferable to perform them before step 5.
  • a torque pulsation measuring device that can measure torque pulsation with high accuracy, similar to Embodiment 1, is obtained.

Abstract

The present disclosure provides a torque pulsation measurement method for a permanent magnet motor provided with a stator that has an iron core guiding magnetic flux and a coil insulated from the iron core and capable of generating a rotating magnetic field, a rotor that has a magnet generating magnetic flux and that is rotatably fixed to the stator guiding magnetic flux, and a velocity detector that detects the mechanical angular velocity of the rotor. The torque pulsation measurement method includes a calculation step for calculating, in a state in which an output shaft of the permanent magnet motor is not driven from outside and is driven by the permanent magnet motor, torque pulsation by decomposing each angular acceleration obtained by differentiating the mechanical angular velocity detected by the velocity detector into a frequency component of an order that is an integral multiple of a rotation angle and multiplying the frequency component by an inertia moment.

Description

永久磁石モーターのトルク脈動測定方法及びトルク脈動測定装置並びに永久磁石モーターの製造方法Permanent magnet motor torque pulsation measurement method, torque pulsation measurement device, and permanent magnet motor manufacturing method
 本開示は、永久磁石モーターの回転時に発生するトルク脈動を測定する方法に関する。 The present disclosure relates to a method of measuring torque pulsations that occur during rotation of a permanent magnet motor.
 下記特許文献1に開示されたトルク脈動測定方法では、測定対象となる供試モーターと負荷用モーターとの間にトルクセンサーを設け、供試モーターを負荷用モーターにより回転させ、その際に発生するトルクの変動を測定している。 In the torque pulsation measuring method disclosed in Patent Document 1 below, a torque sensor is provided between a test motor to be measured and a load motor, and the test motor is rotated by the load motor, and the torque pulsation generated at that time is Measuring torque fluctuations.
 また、下記特許文献2に開示されたトルク脈動測定方法では、負荷用モーターやトルクセンサーを用いずに、一定速に制御された供試モーターに通電する電流の指令値から、トルクの変動を計算している。 In addition, in the torque pulsation measuring method disclosed in Patent Document 2 below, torque fluctuations are calculated from a command value of current applied to a test motor controlled at a constant speed, without using a load motor or a torque sensor. are doing.
特開2005-188941号公報Japanese Patent Application Publication No. 2005-188941 特開平7-210221号公報Japanese Patent Application Publication No. 7-210221
 特許文献1の方式では、負荷用モーターやトルクセンサーを接続する工程が必要であり、その工程が生産性向上の妨げとなっている。また、トルクセンサーなどの測定装置の費用が必要となり、生産コストの上昇を招来するという問題点がある。 The method of Patent Document 1 requires a process of connecting a load motor and a torque sensor, and this process hinders productivity improvement. Furthermore, there is a problem in that the cost of a measuring device such as a torque sensor is required, leading to an increase in production costs.
 特許文献2の方式では、速度を一定に保つことが、測定を実現するための必要条件となっている。特許文献2に記載のようにフィードバック制御を行う場合、指令速度からのずれをトルクにフィードバックするため、必ず速度の変動が発生し、一定速制御することができない。速度脈動が存在する場合、慣性トルクに依存したトルク脈動分が発生しているため、トルク脈動の測定誤差が発生するという問題点がある。 In the method of Patent Document 2, keeping the speed constant is a necessary condition for realizing measurement. When feedback control is performed as described in Patent Document 2, the deviation from the command speed is fed back to the torque, so speed fluctuations always occur and constant speed control cannot be performed. When speed pulsation exists, there is a problem in that a torque pulsation component that depends on inertia torque occurs, resulting in an error in the measurement of torque pulsation.
 本開示は、上記のような問題点を解決するためになされたものであり、永久磁石モーターに対する負荷用モーターやトルクセンサーの機械的接続を必要とせず、一定速制御ができない状態においてもトルク脈動を測定できるトルク脈動測定方法を提供することを目的としている。 The present disclosure has been made to solve the above-mentioned problems, and does not require mechanical connection of a load motor or a torque sensor to a permanent magnet motor, and eliminates torque pulsation even in a state where constant speed control is not possible. The purpose of this invention is to provide a torque pulsation measurement method that can measure torque pulsation.
 本開示に係る永久磁石モーターのトルク脈動測定方法は、永久磁石モーターが、磁束を導く鉄心、及び鉄心に対して絶縁され、回転磁界を発生可能なコイルを有するステーターと、磁束を発生させる磁石を有し、磁束を導くステーターに対して回転自在に固定されたローターと、ローターの機械角速度を検出する速度検出器を備える。トルク脈動測定方法は、永久磁石モーターの出力軸が外部から駆動されず、永久磁石モーターによって駆動されている状態で、速度検出器で検出された機械角速度を微分して得た各角加速度を回転角に対して整数倍の次数の周波数成分に分解し、慣性モーメントを乗じることでトルク脈動を演算する演算工程を含む。 A permanent magnet motor torque pulsation measuring method according to the present disclosure includes a permanent magnet motor that includes an iron core that guides magnetic flux, a stator that has a coil that is insulated from the iron core and that can generate a rotating magnetic field, and a magnet that generates magnetic flux. It has a rotor rotatably fixed to a stator that guides magnetic flux, and a speed detector that detects the mechanical angular velocity of the rotor. The torque pulsation measurement method is to measure each angular acceleration obtained by differentiating the mechanical angular velocity detected by a speed detector while the output shaft of the permanent magnet motor is not driven externally and is driven by the permanent magnet motor. It includes a calculation step of calculating torque pulsation by decomposing the angle into frequency components of orders that are integral multiples and multiplying by the moment of inertia.
 また、本開示に係る永久磁石モーターの製造方法は、永久磁石モーターを組み上げた後、上記トルク脈動測定方法を用いて演算したトルク脈動に基づいて、永久磁石モーターの良否を判定する工程を含む。 Further, the method for manufacturing a permanent magnet motor according to the present disclosure includes a step of determining the quality of the permanent magnet motor based on the torque pulsation calculated using the torque pulsation measuring method, after the permanent magnet motor is assembled.
 また、本開示に係る永久磁石モーターのトルク脈動測定装置は、永久磁石モーターが、磁束を導く鉄心、及び鉄心に対して絶縁され、回転磁界を発生可能なコイルを有するステーターと、磁束を発生させる磁石を有し、磁束を導くステーターに対して回転自在に固定されたローターと、ローターの機械角速度を検出する速度検出器を備える。トルク脈動測定装置は、永久磁石モーターの出力軸が外部から駆動されず、永久磁石モーターによって駆動されている状態で、速度検出器で検出された機械角速度を微分して得た各角加速度を回転角に対して整数倍の次数の周波数成分に分解し、慣性モーメントを乗じることで得られる慣性トルク脈動を演算する工程を含む。 Further, in the torque pulsation measuring device for a permanent magnet motor according to the present disclosure, the permanent magnet motor includes an iron core that guides magnetic flux, a stator that is insulated from the iron core and has a coil that can generate a rotating magnetic field, and a stator that generates magnetic flux. It includes a rotor that is rotatably fixed to a stator that has a magnet and guides magnetic flux, and a speed detector that detects the mechanical angular velocity of the rotor. The torque pulsation measuring device measures each angular acceleration obtained by differentiating the mechanical angular velocity detected by the speed detector while the output shaft of the permanent magnet motor is not driven externally and is driven by the permanent magnet motor. It includes the step of calculating the inertial torque pulsation obtained by decomposing the angle into frequency components of orders that are integral multiples and multiplying by the moment of inertia.
 本開示によれば、速度変動がある状態でも、電流の変動以外に、加速度の変動を周波数変換し、慣性モーメントを利用してトルク脈動を演算することができる。従って、測定対象である永久磁石モーターに対して負荷用モーターやトルクセンサーの機械的接続を必要とすることなく、トルク脈動を測定することができる。 According to the present disclosure, even in a state where there is speed variation, in addition to current variation, acceleration variation can be frequency converted and torque pulsation can be calculated using the moment of inertia. Therefore, torque pulsation can be measured without requiring mechanical connection of a load motor or a torque sensor to the permanent magnet motor to be measured.
実施の形態1によるトルク脈動測定方法の制御ブロックを示す図である。FIG. 3 is a diagram showing a control block of the torque pulsation measuring method according to the first embodiment. 測定対象である永久磁石モーターを示す概略図である。FIG. 2 is a schematic diagram showing a permanent magnet motor that is a measurement target. ローターを正方向に回転させたときに位置検出器としてのエンコーダーが出力する信号を示す図である。It is a figure which shows the signal output by the encoder as a position detector when a rotor is rotated in the forward direction. トルク脈動測定方法の手順の一例を示すフローチャートである。3 is a flowchart illustrating an example of a procedure of a torque pulsation measuring method. 実施の形態1によるトルク脈動測定方法を実施する制御装置のハードウェア構成図である。FIG. 2 is a hardware configuration diagram of a control device that implements the torque pulsation measuring method according to the first embodiment. 実施の形態3によるトルク脈動測定装置の動作フローを示す図である。7 is a diagram showing an operation flow of the torque pulsation measuring device according to Embodiment 3. FIG.
 以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、説明を簡略化または省略する。 Hereinafter, embodiments will be described with reference to the drawings. Common or corresponding elements in each figure are denoted by the same reference numerals, and description thereof will be simplified or omitted.
実施の形態1.
 図1は、実施の形態1によるトルク脈動測定方法の制御ブロックを示す図である。図2は、測定対象である永久磁石モーター(以下「モーター」と称する)Mtを示す概略図である。
Embodiment 1.
FIG. 1 is a diagram showing a control block of the torque pulsation measuring method according to the first embodiment. FIG. 2 is a schematic diagram showing a permanent magnet motor (hereinafter referred to as "motor") Mt that is a measurement target.
 モーターMtは、ステーター1と、ローター2を備える。ステーター1は、磁束を通す積層体で作られた鉄心10を有する。鉄心10は、回転方向である周方向に均等に配列され、径方向に夫々のびる複数のティース11を有する。隣接するティース11の間には、所定の接続によって、U相巻線12U、V相巻線12V、W相巻線12Wで表される3相の巻線12が設けられている。巻線12と鉄心10の間と、隣接する巻線12の間には、互いを絶縁するために、絶縁紙13や樹脂からなる絶縁体が夫々挿入されている。 The motor Mt includes a stator 1 and a rotor 2. The stator 1 has an iron core 10 made of a laminated body through which magnetic flux passes. The iron core 10 has a plurality of teeth 11 that are evenly arranged in the circumferential direction, which is the direction of rotation, and each extend in the radial direction. Three-phase windings 12 represented by a U-phase winding 12U, a V-phase winding 12V, and a W-phase winding 12W are provided between adjacent teeth 11 through predetermined connections. Insulators made of insulating paper 13 or resin are inserted between the windings 12 and the iron core 10 and between adjacent windings 12 in order to insulate them from each other.
 ローター2は、ステーター1の径方向内側に設けられている。ローター2の径方向外側の表面には磁石21が設けられている。磁石21の内周側には、磁束を通すためのヨーク22が設けられている。ヨーク22の中心には軸23が設けられており、図示しない軸受けにより回転自在に保持されている。 The rotor 2 is provided inside the stator 1 in the radial direction. A magnet 21 is provided on the outer surface of the rotor 2 in the radial direction. A yoke 22 for passing magnetic flux is provided on the inner peripheral side of the magnet 21. A shaft 23 is provided at the center of the yoke 22, and is rotatably held by a bearing (not shown).
 巻線12に通電することにより発生する磁束が、ローター2の磁石21が作る磁束と引き合う力や反発する力、また巻線12に通電することにより発生する磁束が、ローター2の鉄と引き合う力によりトルクを発生させ、ローター2が回転する。 The magnetic flux generated by energizing the winding 12 attracts or repels the magnetic flux created by the magnet 21 of the rotor 2, and the magnetic flux generated by energizing the winding 12 attracts the iron of the rotor 2. This generates torque and rotates the rotor 2.
 ローター2とともに回転するd軸、q軸の座標系におけるd軸電流I、q軸電流Iの大きさは、U相巻線12Uに流れる電流I、V相巻線12Vに流れる電流I、W相巻線12Wに流れる電流Iと、ローター2の電気角角度θを用いて、下式(1)のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
The magnitudes of the d-axis current I d and the q-axis current I q in the coordinate system of the d-axis and q-axis rotating together with the rotor 2 are the current I U flowing through the U-phase winding 12U and the current I flowing through the V-phase winding 12V. V , the current IW flowing through the W-phase winding 12W, and the electrical angle θe of the rotor 2, it can be expressed as in the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 モーターMtで発生するトルクτ(t)は、d軸電流I、q軸電流I、誘起電圧定数K、d軸インダクタンスL、q軸インダクタンスLを用いて、下式(2)のように、表すことができる。
Figure JPOXMLDOC01-appb-M000002
The torque τ(t) generated by the motor Mt is expressed by the following formula (2) using the d-axis current I d , the q-axis current I q , the induced voltage constant K a , the d-axis inductance L d , and the q-axis inductance L q It can be expressed as
Figure JPOXMLDOC01-appb-M000002
 上式(2)中、Nは、極対数であり、モーターMtの設計時に決定するパラメーターである。図2に示すモーターMtの場合、極対数Nは5となる。ローター2の慣性モーメントをJ、機械角速度をωとすると、ローター2周りの運動方程式は、下式(3)のように表される。
Figure JPOXMLDOC01-appb-M000003
In the above formula (2), N p is the number of pole pairs, and is a parameter determined when designing the motor Mt. In the case of the motor Mt shown in FIG. 2, the number of pole pairs Np is five. When the moment of inertia of the rotor 2 is J and the mechanical angular velocity is ω m , the equation of motion around the rotor 2 is expressed as the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 ここで、τε(t)は、外乱成分であり、軸受けや潤滑剤の封止構造などで発生するロストルクや、ローター2とステーター1の間で磁石と鉄が引き合うことにより発生するトルクである。このなかで、回転角度に依存して変化する成分がトルク脈動と呼ばれ、振動や位置、速度制御の不安定性の原因となる。ロストルクは一般的に速度依存性があることが知られているため、大きな速度変動がある状態でトルク脈動を測定することは望ましくない。そこで、後述する速度検出器で検出された機械角速度がなるべく一定速度を保つようにモーターMtを運転できるようにフィードバック制御をする。 Here, τ ε (t) is a disturbance component, which is loss torque generated in bearings, lubricant sealing structures, etc., and torque generated due to magnets and iron attracting each other between rotor 2 and stator 1. . Among these, a component that changes depending on the rotation angle is called torque pulsation, which causes vibration and instability in position and speed control. Since torque loss is generally known to be speed dependent, it is undesirable to measure torque pulsation under conditions where there are large speed fluctuations. Therefore, feedback control is performed so that the motor Mt can be operated so that the mechanical angular velocity detected by a speed detector, which will be described later, is kept as constant as possible.
 ローター2の慣性モーメントJは、モーターMtの設計時にそのモーターMtのパラメーターとして把握することができる。慣性モーメントJは、イナーシャとも称される。誘起電圧定数Kは、電流を流さない状態でローター2をωの速度で回転させることでd軸電流Iを0、q軸電流Iを0とすると共に、下式(4)においてd軸電圧V=0とすることで導かれる下式(5)を解いて求めることができる。下式(4)及び下式(5)中、Vqはq軸電圧である。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
The moment of inertia J of the rotor 2 can be grasped as a parameter of the motor Mt when designing the motor Mt. The moment of inertia J is also called inertia. The induced voltage constant K e can be calculated by rotating the rotor 2 at a speed of ω r with no current flowing, setting the d-axis current I d to 0 and the q-axis current I q to 0, and using the following equation (4). It can be obtained by solving the following equation (5), which is derived by setting the d-axis voltage V d =0. In the following equations (4) and (5), Vq is the q-axis voltage.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 次に、本実施の形態におけるモーターMtの運転制御状態について説明する。 Next, the operation control state of the motor Mt in this embodiment will be explained.
 速度指令部31は、指令速度として所定の運転速度ωoを与える。運転速度は、回転速度に相当する。速度演算部32は、モーターMtに付設された位置検出器41から入力された位置信号を微分し、微分により得られた速度信号を出力する。速度信号は、実速度に相当する。速度指令部31からの指令速度ωoに対して、速度演算部32からの速度信号が減算され、減算値である速度差がトルク指令部33に入力される。トルク指令部33は、指令信号に対して速度信号が遅いときは加速するように、指令信号に対して速度信号が速いときは減速するように、指令トルクを演算する。トルク指令部33での演算が比例制御のみの場合、発振して収束しないことから、微分制御や積分制御を組み合わせることが望ましい。 The speed command unit 31 gives a predetermined operating speed ω o as the command speed. The operating speed corresponds to the rotation speed. The speed calculation unit 32 differentiates the position signal input from the position detector 41 attached to the motor Mt, and outputs a speed signal obtained by the differentiation. The speed signal corresponds to the actual speed. The speed signal from the speed calculation section 32 is subtracted from the command speed ω o from the speed command section 31, and the speed difference, which is the subtracted value, is input to the torque command section 33. The torque command unit 33 calculates the command torque such that the speed signal is slow relative to the command signal, the speed signal is accelerated, and the speed signal is fast relative to the command signal, the speed signal is decelerated. If the calculation in the torque command unit 33 is only proportional control, it will oscillate and not converge, so it is desirable to combine differential control and integral control.
 電流制御部34では、トルク指令部33で演算した指令トルクを満たすようなq軸電流Iとd軸電流Iを演算し、演算したq軸電流Iとd軸電流Iを実現できるU相電流、V相電流、W相電流を算出する。各相電流は、インバーター42の素子のスイッチング指令に相当する。インバーター42は、電流制御部34で算出された各相電流となるようにデューティー比を決定し、図示省略する母線から供給される電圧をモーターMtに印加する。モーターMtは、電圧印加により、即ち、駆動電流により、加速、または減速するトルクを発生する。モーターMtの位置は、位置検出器41より検出される。 The current control unit 34 calculates the q-axis current Iq and d-axis current Id that satisfy the command torque calculated by the torque command unit 33, and can realize the calculated q-axis current Iq and d-axis current Id . Calculate the U-phase current, V-phase current, and W-phase current. Each phase current corresponds to a switching command for the elements of the inverter 42. The inverter 42 determines a duty ratio so that the current for each phase is calculated by the current control unit 34, and applies a voltage supplied from a bus (not shown) to the motor Mt. The motor Mt generates a torque that accelerates or decelerates by applying voltage, that is, by driving current. The position of the motor Mt is detected by a position detector 41.
 電流演算部35では、インバーター42からの電圧印加によってモーターMtに流れる駆動電流を測定し、q軸電流Iとd軸電流Iが所望の電流となるように、電流制御部34にフィードバックをかける。 The current calculation unit 35 measures the drive current flowing through the motor Mt by voltage application from the inverter 42, and provides feedback to the current control unit 34 so that the q-axis current Iq and the d-axis current Id become desired currents. put on.
 位置検出器41としては、例えば、エンコーダー(図示省略)を用いることができる。エンコーダーは、ローター2の機械角速度に応じてA相の信号とB相の信号を出力する。ローター2が1回転する間にA相の信号がRES回の周期で切り替わるものとし、ローター2が1回転する間に、B相の信号がRES回の周期で切り替わるものとする。図3は、ローター2を正方向に回転させたときにエンコーダーが出力する信号を示す図である。例えば、ローター2が正方向に回転している場合、一定の回転角回転する時間t0が経過すると、A相の信号が低電位側から高電位側に変化する。その後、時間t0が更に経過すると、A相の信号が高電位側から低電位側に変化する。また、B相の信号は、A相の信号から時間「t0÷2」だけずれて、高電位側と低電位側が切り替わる。本実施の形態では、A相の信号が低電位側から高電位側に立ち上がった後、時間「t0÷2」が経過したタイミングで、B相の信号が低電位側から高電位側に変化する。また、A相の信号が高電位側から低電位側に立ち下がった後、時間「t0÷2」が経過したタイミングで、B相の信号が高電位側から低電位側に変化する。位置検出器41と速度演算部32は、速度検出器に相当する。この速度検出器で検出された機械角速度が一定の運転速度ωoを保つようにフィードバック制御をしている。 As the position detector 41, for example, an encoder (not shown) can be used. The encoder outputs an A-phase signal and a B-phase signal according to the mechanical angular velocity of the rotor 2. It is assumed that the A-phase signal switches at a cycle of RES times while the rotor 2 rotates once, and the B-phase signal switches at a cycle of RES times while the rotor 2 rotates once. FIG. 3 is a diagram showing a signal output by the encoder when the rotor 2 is rotated in the forward direction. For example, when the rotor 2 is rotating in the forward direction, the A-phase signal changes from the low potential side to the high potential side after a period of time t0 during which the rotor 2 rotates by a certain rotation angle has elapsed. After that, when time t0 further elapses, the A-phase signal changes from the high potential side to the low potential side. Further, the B-phase signal switches between the high potential side and the low potential side with a time difference of "t0÷2" from the A-phase signal. In this embodiment, after the A-phase signal rises from the low-potential side to the high-potential side, the B-phase signal changes from the low-potential side to the high-potential side at the timing when time "t0÷2" has elapsed. . Further, after the A-phase signal falls from the high potential side to the low potential side, the B-phase signal changes from the high potential side to the low potential side at a timing when time "t0/2" has elapsed. The position detector 41 and the speed calculation section 32 correspond to a speed detector. Feedback control is performed so that the mechanical angular velocity detected by this speed detector maintains a constant operating speed ωo .
 その他制御ブロックに表される電流脈動演算部36、速度脈動演算部37、トルク脈動演算部38の詳細については、後述する。なお、速度演算部32、トルク指令部33、電流制御部34、電流演算部35、電流脈動演算部36、速度脈動演算部37、トルク脈動演算部38は、後述するメモリ30bに記憶されたプログラムをプロセッサ30aが実行することによって演算される機能である。 Details of the current pulsation calculation unit 36, speed pulsation calculation unit 37, and torque pulsation calculation unit 38 represented in the other control blocks will be described later. Note that the speed calculation section 32, torque command section 33, current control section 34, current calculation section 35, current pulsation calculation section 36, speed pulsation calculation section 37, and torque pulsation calculation section 38 are based on a program stored in the memory 30b, which will be described later. This is a function calculated by the processor 30a executing.
 次に、トルク脈動の測定手順(演算工程)について説明する。図4は、トルク脈動測定方法の手順の一例を示すフローチャートである。 Next, the torque pulsation measurement procedure (calculation process) will be explained. FIG. 4 is a flowchart showing an example of the procedure of the torque pulsation measuring method.
 先ず、高速でローター2を回転させる(ステップS1)。ステップS1では、U相の給電部に通じるU相巻線12UとV相の給電部に通じるV相巻線12Vの間に発生する電圧VUVと、V相巻線12VとW相の給電部に通じるW相巻線12Wの間に発生する電圧VVWを測定する。W相巻線12WとU相巻線12Uの間に発生する電圧VWUは、VWU=-VUV-VVWで求めてもよいし、直接測定してもよい。測定した電圧と、ローター2の回転角度を用いてd軸電圧Vを計算し、Vが小さくなるように、位置検出器41とローター2の位相を合わせる。なお、絶対位置検出センサーを用いて、予め位置検出器41とローター2の位相を合わせておく場合、このような位相を合わせる工程を不要とすることもできる。 First, the rotor 2 is rotated at high speed (step S1). In step S1, a voltage V UV generated between the U-phase winding 12U leading to the U-phase power supply and the V-phase winding 12V leading to the V-phase power supply, and the voltage V UV generated between the V-phase winding 12V and the W-phase power supply Measure the voltage V VW generated between the W-phase winding 12W leading to the W-phase winding 12W. The voltage V WU generated between the W-phase winding 12W and the U-phase winding 12U may be determined by V WU = -V UV -V VW , or may be directly measured. The d-axis voltage Vd is calculated using the measured voltage and the rotation angle of the rotor 2, and the phases of the position detector 41 and the rotor 2 are matched so that Vd becomes small. Note that when the phases of the position detector 41 and the rotor 2 are matched in advance using an absolute position detection sensor, such a step of matching the phases can be made unnecessary.
 続いて、低速でローター2を回転させる(ステップS2)。ステップS2では、検出したいトルク脈動の振幅の大きさをτ、機械角である回転角に対するトルク脈動の周波数をfとしたとき、ローター2の機械角速度である回転速度ωが、ω×f<τの関係を満たすよう回転速度ωを決定する。
 なお、ステップS1およびS2において、ローター2には、ローター2を回転させる負荷が取り付けられておらず、モーターMtの出力軸は、外部から駆動されず、モーターMtによって駆動される自走の状態で回転している。
Subsequently, the rotor 2 is rotated at low speed (step S2). In step S2, when the magnitude of the amplitude of the torque pulsation to be detected is τ r and the frequency of the torque pulsation with respect to the rotation angle, which is a mechanical angle, is f, the rotational speed ω m , which is the mechanical angular velocity of the rotor 2, is ω m × The rotational speed ω m is determined so as to satisfy the relationship f<τ r .
Note that in steps S1 and S2, no load for rotating the rotor 2 is attached to the rotor 2, and the output shaft of the motor Mt is not driven from the outside but is in a self-propelled state driven by the motor Mt. It's rotating.
 分析したい機械角に対する周波数をfとしたときに、位置検出器41の信号切り替え回数RESは、下式(6)のMが整数となるように、選ぶのがよい。 When the frequency for the mechanical angle to be analyzed is f, the number of signal switching RES of the position detector 41 is preferably selected such that M in the following equation (6) is an integer.
 分析したい機械角に対する周波数をfとしたときに、位置検出器41の信号切り替え回数RESは、下式(6)のMが整数となるように、選ぶのがよい。
RES×4=f×M・・・(6)
When the frequency for the mechanical angle to be analyzed is f, the signal switching frequency RES of the position detector 41 is preferably selected such that M in the following equation (6) is an integer.
RES×4=f×M...(6)
 また、速度指令ωに対して、ローター2の回転速度ωが十分に追従しているとき、1回転にかかる時間は、下式(7)で表される。
2π÷ω・・・(7)
Further, when the rotational speed ω m of the rotor 2 sufficiently follows the speed command ω 0 , the time required for one rotation is expressed by the following equation (7).
2π÷ω 0 ...(7)
 このため、分析したい機械角に対する周波数fの時間が下式(8)で表されるため、この整数倍の時間を記録することができる。
2π÷ω÷f・・・(8)
Therefore, since the time of frequency f with respect to the mechanical angle to be analyzed is expressed by the following equation (8), it is possible to record a time that is an integral multiple of this.
2π÷ω 0 ÷f...(8)
 このとき、分析したい機械角に対する周波数f以外の周波数成分が大きく含まれるとき、それら周波数成分の整数倍ともなるように測定時間を決めることが望ましい。 At this time, when a large number of frequency components other than the frequency f for the mechanical angle to be analyzed are included, it is desirable to determine the measurement time so that it is an integral multiple of those frequency components.
 なお、ローター2が正方向と反対の方向に回転する場合、A相の信号とB相の信号が変化する順序が逆転する。この場合、B相の信号が低電位側から高電位側に変化した後、時間「t0÷2」が経過したタイミングで、A相の信号が低電位側から高電位側に変化する。同様に、B相の信号が高電位側から低電位側に変化した後、時間「t0÷2」が経過したタイミングでA相の信号が高電位側から低電位側に変化する。 Note that when the rotor 2 rotates in the opposite direction to the forward direction, the order in which the A-phase signal and the B-phase signal change is reversed. In this case, after the B-phase signal changes from the low potential side to the high potential side, the A-phase signal changes from the low potential side to the high potential side at a timing when time "t0÷2" has elapsed. Similarly, after the B-phase signal changes from the high potential side to the low potential side, the A-phase signal changes from the high potential side to the low potential side at a timing when time "t0÷2" has elapsed.
 次に、ローター2の回転速度の第1の演算方法について説明する。回転速度を演算するには、一定時間Δtの間に発生するA相の信号の低電位側から高電位側への切り替わり、A相の信号の高電位側から低電位側への切り替わり、B相の信号の低電位側から高電位側への切り替わり、B相の信号の高電位側から低電位側への切り替わりの回数を計測する。時間Δtの間の切り替わりの回数がn回とすると、ローター2の回転速度ωは、下式(9)のように求めることができる。
Figure JPOXMLDOC01-appb-M000006
Next, a first method of calculating the rotational speed of the rotor 2 will be explained. To calculate the rotation speed, we need to calculate the switching of the A-phase signal from the low potential side to the high potential side, the switching of the A-phase signal from the high potential side to the low potential side, and the B-phase signal that occurs during a certain period of time Δt. The number of times the B-phase signal switches from the low potential side to the high potential side and the B phase signal switches from the high potential side to the low potential side are measured. Assuming that the number of times of switching during the time Δt is n, the rotational speed ω m of the rotor 2 can be obtained as shown in the following equation (9).
Figure JPOXMLDOC01-appb-M000006
 ローター2の回転速度の第2の演算方法について説明する。前述のエンコーダーの信号を用いてA相の信号が低電位側から高電位側に、またはその逆に変化してから、B相の信号の低電位側から高電位側へ、またはその逆に変化するまでの時間間隔Δt2を用いて、下式(10)のように求めることができる。
Figure JPOXMLDOC01-appb-M000007
A second calculation method for the rotational speed of the rotor 2 will be explained. Using the aforementioned encoder signal, the A-phase signal changes from low potential side to high potential side, or vice versa, and then the B-phase signal changes from low potential side to high potential side, or vice versa. Using the time interval Δt2, it can be calculated as shown in the following equation (10).
Figure JPOXMLDOC01-appb-M000007
 上式(9)中のΔtの時間間隔に十分な信号の変化がある場合、ローター2の回転速度の第1の演算方法が有効であるが、Δtの時間間隔に十分な信号の変化が見られない場合、ローターの回転速度の微小な変化を捉えることができなくなる。逆に、速度演算周期Δtの値を大きくした場合、ローターの速度フィードバックに遅れが生じ、速度安定性が悪くなるため、好ましくない。 If there is a sufficient change in the signal in the time interval of Δt in the above equation (9), the first calculation method for the rotational speed of the rotor 2 is effective, but if there is a sufficient change in the signal in the time interval of Δt, If this is not possible, it will not be possible to detect minute changes in the rotor's rotational speed. Conversely, if the value of the speed calculation period Δt is increased, a delay occurs in the rotor speed feedback, which deteriorates speed stability, which is not preferable.
 ローター2の回転速度によってトルク脈動の大きさはほぼ変化しない。平均的なロストルクと、モーターMtが釣り合っている状態を考える。速度振幅をAとおくと、下式(11)のような関係が成り立つ。
Figure JPOXMLDOC01-appb-M000008
The magnitude of torque pulsation does not substantially change depending on the rotational speed of the rotor 2. Consider a state in which the average loss torque and the motor Mt are balanced. Letting the velocity amplitude be A, a relationship as shown in the following equation (11) holds true.
Figure JPOXMLDOC01-appb-M000008
 上式(11)中、ωは機械角振動数である。上式(11)を速度振幅Aについて解くと、下式(12)となる。
Figure JPOXMLDOC01-appb-M000009
In the above formula (11), ω is the mechanical angular frequency. When the above equation (11) is solved for the velocity amplitude A, the following equation (12) is obtained.
Figure JPOXMLDOC01-appb-M000009
 上式(12)によれば、ローター2の回転速度が速くなればなるほど、速度振幅Aが小さくなることがわかる。ローター2の回転速度の変動の分解能と、目標とする測定したいトルク脈動の精度によって、下式(13)の関係を満たす必要がある。これより、測定精度を確保するためには、ローター2の回転速度を遅くすることが好ましい。
Figure JPOXMLDOC01-appb-M000010
According to the above equation (12), it can be seen that the faster the rotational speed of the rotor 2, the smaller the speed amplitude A becomes. Depending on the resolution of the rotational speed fluctuation of the rotor 2 and the accuracy of the target torque pulsation to be measured, it is necessary to satisfy the relationship shown in the following equation (13). Therefore, in order to ensure measurement accuracy, it is preferable to slow down the rotational speed of the rotor 2.
Figure JPOXMLDOC01-appb-M000010
 次に、速度脈動演算部37において、ローター2の回転速度の脈動である電流トルク脈動、ならびに加速度の脈動である慣性トルク脈動を演算する方法について説明する。それぞれの時間においてローター2の回転速度の第1の演算方法または、第2の演算方法から速度演算周期における速度を計算する。次に、得られた速度を分析時間において微分することで、その時間におけるローター2の角加速度を計算することができる。離散値の微分において、中心微分を使い、求めようとする時間の1点前の値と、求めようとする時間の1点後の速度の差を、時間間隔の2倍で割り算する中心差分による演算が望ましい。これは、前進差分や後退差分に比べて誤差を小さくできること、また前進差分や後退差分とした場合、時間が中心からずれるが、中心差分ではこのような時間のずれが起きないことが理由である。 Next, a method for calculating current torque pulsations, which are pulsations in the rotational speed of the rotor 2, and inertia torque pulsations, which are pulsations in acceleration, in the speed pulsation calculation unit 37 will be described. The speed in the speed calculation period is calculated from the first calculation method or the second calculation method of the rotational speed of the rotor 2 at each time. Next, by differentiating the obtained velocity with respect to the analysis time, the angular acceleration of the rotor 2 at that time can be calculated. In the differentiation of discrete values, use central differentiation, and divide the difference between the velocity one point before the time you want to find and the speed one point after the time you want to find by twice the time interval. Arithmetic is preferred. This is because the error can be made smaller compared to forward and backward differences, and when forward and backward differences are used, the time shifts from the center, but with centered differences, such time shifts do not occur. .
 微分値を計算する第2の演算方法として、フーリエ変換を用いる方法が挙げられる。ローター2の回転速度の測定結果ω(t)は、下式(14)のように表される。
Figure JPOXMLDOC01-appb-M000011
A second calculation method for calculating the differential value is a method using Fourier transform. The measurement result ω e (t) of the rotational speed of the rotor 2 is expressed as in the following equation (14).
Figure JPOXMLDOC01-appb-M000011
 フーリエ変換により、各次数成分における係数Aを求めることができる。ここで、Tは分析区間の時間、Nは分析区間におけるデータの点数、iは虚数単位である。1からN÷2までの係数Aはフーリエ変換を用いて、下式(15)のように求めることができる。
Figure JPOXMLDOC01-appb-M000012
The coefficient A k in each order component can be determined by Fourier transformation. Here, T 0 is the time of the analysis interval, N is the number of data points in the analysis interval, and i is an imaginary unit. The coefficient A k from 1 to N÷2 can be obtained using Fourier transform as shown in equation (15) below.
Figure JPOXMLDOC01-appb-M000012
 ここで、exp(ix)は、複素数の指数関数であり、下式(16)のような関係がある。iは虚数単位である。
Figure JPOXMLDOC01-appb-M000013
Here, exp(ix) is an exponential function of a complex number, and has a relationship as shown in equation (16) below. i is an imaginary unit.
Figure JPOXMLDOC01-appb-M000013
 この演算は、上式を使ったやり方と同一の結果を得る方式として、Cooley-Tukey型のアルゴリズムとして、各次数の成分を高速に演算する方式が広く知られており、このアルゴリズムを用いることができる。
Figure JPOXMLDOC01-appb-M000014
For this calculation, a method that obtains the same result as using the above formula is a widely known method called the Cooley-Tukey type algorithm, which calculates components of each order at high speed, and it is possible to use this algorithm. can.
Figure JPOXMLDOC01-appb-M000014
 上式(17)の関係から、ローター2の角加速度の各次数における成分を計算することができる。この場合、速度演算周期とデータ取得周期が一致していない場合においても、容易に速度の変化を計算することができる。 From the relationship in equation (17) above, the components of the angular acceleration of the rotor 2 in each order can be calculated. In this case, even if the speed calculation cycle and the data acquisition cycle do not match, the change in speed can be easily calculated.
 このため、角加速度の変動を周波数変換することで、慣性トルクの脈動成分を計算することができるといった従来にない顕著な効果を奏する。 Therefore, by converting the frequency of fluctuations in angular acceleration, it is possible to calculate the pulsating component of inertial torque, which is a remarkable effect not seen in the past.
 次に、電流脈動演算部36によりモーターMtに通電させることによってモーターMtが発生するトルクの脈動を測定する(ステップS3)。以下、トルク脈動の測定方法について説明する。上式(1)を用いてd軸電流Iとq軸電流Iを求める。既知の誘起電圧定数K、d軸インダクタンスL、q軸インダクタンスLと上式(2)を用いて各時間におけるモーターMtが発生するトルクの値を計算する。 Next, the current pulsation calculation unit 36 energizes the motor Mt to measure the pulsation of torque generated by the motor Mt (step S3). The method for measuring torque pulsation will be explained below. The d-axis current I d and the q-axis current I q are determined using the above equation (1). The value of the torque generated by the motor Mt at each time is calculated using the known induced voltage constant K a , d-axis inductance L d , q-axis inductance L q and the above equation (2).
 ローター2の回転速度の微分により角加速度を計算したときと同様に、各次数成分に分けて、下式(18)のようにモーターMtが発生するトルクの周波数成分Tを計算する。
Figure JPOXMLDOC01-appb-M000015
 1からN÷2までのトルクの周波数成分Tは、フーリエ変換を用いて、下式(19)のように求めることができる。
Figure JPOXMLDOC01-appb-M000016
Similar to when calculating the angular acceleration by differentiating the rotational speed of the rotor 2, the frequency component T k of the torque generated by the motor Mt is calculated by dividing into each order component as shown in the following equation (18).
Figure JPOXMLDOC01-appb-M000015
The frequency component T k of the torque from 1 to N÷2 can be obtained as shown in the following equation (19) using Fourier transform.
Figure JPOXMLDOC01-appb-M000016
 最後に、トルク脈動演算部38にて、ローター2とステーター1の間で磁石と鉄が引き合うことにより発生するトルク脈動τεを求める方法について、上式(3)を用いて説明する。上式(3)に上式(17)と上式(18)を代入することで、下式(20)が得られる。
Figure JPOXMLDOC01-appb-M000017
Finally, a method for determining the torque pulsation τ ε generated by the magnet and iron attracting each other between the rotor 2 and the stator 1 in the torque pulsation calculation unit 38 will be explained using the above equation (3). By substituting the above equation (17) and the above equation (18) into the above equation (3), the following equation (20) is obtained.
Figure JPOXMLDOC01-appb-M000017
 上式(20)をトルク脈動τεについて解くと、下式(21)となる。
Figure JPOXMLDOC01-appb-M000018
When the above equation (20) is solved for the torque pulsation τ ε , the following equation (21) is obtained.
Figure JPOXMLDOC01-appb-M000018
 exp(i×x)は互いに直交性があるため、機械角に対して直交する成分のトルク脈動τεすなわち同じ周波数の成分がそれぞれ足し合わせられる。求めようとする次数のトルク脈動は、求めようとするトルク脈動の次数のK倍の時間においてデータを分析すると、下式(22)が得られる。
   T-J×A×i×2Kπ÷T・・・(22)
Since exp(i×x) are orthogonal to each other, torque ripples τ ε of components orthogonal to the mechanical angle, that is, components of the same frequency are added together. The torque pulsation of the desired order can be obtained by the following equation (22) by analyzing data at a time K times the order of the desired torque pulsation.
T K - J×A K ×i×2Kπ÷T 0 ...(22)
 このとき、トルク脈動の振幅Aは複素数の絶対値を用いて、下式(23)のように表すことができる。
   |T-J×A×i×2Kπ÷T|・・・(23)
At this time, the amplitude A k of the torque pulsation can be expressed as in the following equation (23) using the absolute value of a complex number.
|T K - J×A K ×i×2Kπ÷T 0 |...(23)
 図5は、上記トルク脈動測定方法を実施するトルク脈動測定装置(後述する実施の形態3も参照)としての制御装置3のハードウェア構成図である。制御装置3は、トルク脈動測定プログラムを実行可能なコンピュータに相当し、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ30aと少なくとも1つのメモリ30bとを備える。 FIG. 5 is a hardware configuration diagram of the control device 3 as a torque pulsation measuring device (also see Embodiment 3 described later) that implements the above torque pulsation measuring method. The control device 3 corresponds to a computer that can execute a torque pulsation measurement program, and can be realized by a processing circuit. For example, the processing circuit includes at least one processor 30a and at least one memory 30b.
 処理回路が少なくとも1つのプロセッサ30aと少なくとも1つのメモリ30bとを備える場合、制御装置3の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ30bに格納される。少なくとも1つのプロセッサ30aは、少なくとも1つのメモリ30bに記憶されたプログラムを読み出して実行する。少なくとも1つのプロセッサ30aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ30bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。 When the processing circuit includes at least one processor 30a and at least one memory 30b, each function of the control device 3 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 30b. At least one processor 30a reads and executes a program stored in at least one memory 30b. At least one processor 30a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP. For example, at least one memory 30b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, etc.
 また、処理回路が少なくとも1つの専用のハードウェア(図示省略)を備えるように構成してもよい。この場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。 Additionally, the processing circuit may be configured to include at least one dedicated hardware (not shown). In this case, the processing circuit is implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 以上説明したように、本実施の形態では、電流の脈動成分を追加してトルク脈動を測定するため、慣性トルクの脈動成分のみを計算する場合と比較して、外部のセンサーや負荷モーターを必要とせず、精度よくトルク脈動を測定することができる。また、電流の脈動のみを用いて計算する場合と比較して、速度変動がトルク脈動に寄与するため、外部のセンサーや負荷モーターを必要とせず、精度よくトルク脈動を測定することができる。 As explained above, in this embodiment, since the torque pulsation is measured by adding the pulsating component of the current, an external sensor and a load motor are required compared to the case where only the pulsating component of the inertial torque is calculated. Torque pulsation can be measured with high accuracy without Furthermore, compared to calculations using only current pulsations, since speed fluctuations contribute to torque pulsations, torque pulsations can be measured with high accuracy without the need for external sensors or load motors.
 なお、上記のようなトルク脈動の測定は、永久磁石モーターMtが組み上がった後、永久磁石モーターMtの出荷試験等の工程で行われる。その際、測定したトルク脈動に基づいて、例えば、測定したトルク脈動と閾値の比較結果に基づいて、永久磁石モーターMtの良否を判定することができる。このように永久磁石モーターMtの良否を判定する工程は、永久磁石モーターMtの製造方法を構成することができる。 Note that the measurement of torque pulsation as described above is performed in a process such as a shipping test of the permanent magnet motor Mt after the permanent magnet motor Mt is assembled. At this time, it is possible to determine whether the permanent magnet motor Mt is good or bad based on the measured torque pulsation, for example, based on a comparison result between the measured torque pulsation and a threshold value. The process of determining the quality of the permanent magnet motor Mt in this way can constitute a method of manufacturing the permanent magnet motor Mt.
実施の形態2.
 実施の形態2は、インバーター42へ指令するd軸電流Iを一定とした点が、実施の形態1と相違する。以下、この相違点を中心に、説明する。上式(2)にI(t)=Iを代入することで、下式(24)のように変形することができる。
Figure JPOXMLDOC01-appb-M000019
Embodiment 2.
The second embodiment differs from the first embodiment in that the d-axis current Id commanded to the inverter 42 is kept constant. This difference will be mainly explained below. By substituting I d (t)=I d into the above equation (2), it can be transformed as shown in the below equation (24).
Figure JPOXMLDOC01-appb-M000019
 このとき、モーターMtで発生するトルクτ(t)はI(t)にのみ時間依存するため、上式(18)のモーターMtが発生するトルクの周波数成分は、下式(25)のように表すことができる。
Figure JPOXMLDOC01-appb-M000020
At this time, since the torque τ(t) generated by the motor Mt is time dependent only on I q (t), the frequency component of the torque generated by the motor Mt in the above equation (18) can be expressed as in the below equation (25). It can be expressed as
Figure JPOXMLDOC01-appb-M000020
 本実施の形態によれば、d軸電流Iを一定にすることで、モーターMtが発生するトルクの大きさの演算が容易となり、トルク脈動の測定誤差の要因を減らすことができる。その結果、トルク脈動の測定精度を向上させることができる。 According to the present embodiment, by keeping the d-axis current I d constant, it becomes easy to calculate the magnitude of the torque generated by the motor Mt, and it is possible to reduce the causes of measurement errors in torque pulsation. As a result, the measurement accuracy of torque pulsation can be improved.
 さらに、d軸電流Iを0とした場合、d軸インダクタンスLやq軸インダクタンスLに依存することなくトルク脈動を求めることができ、トルク脈動の演算を簡略にすることができるため、望ましい。また、d軸電流を流すと、誘起電圧高調波に依存するトルク脈動が発生し得るため、d軸電流Iを0とすることで、発生するトルク脈動を小さくできることと相俟って、トルク脈動の測定精度を向上させることができる。 Furthermore, when the d-axis current I d is set to 0, the torque pulsation can be obtained without depending on the d-axis inductance L d or the q-axis inductance L q , and the calculation of the torque pulsation can be simplified. desirable. In addition, when the d-axis current flows, torque pulsations depending on the induced voltage harmonics may occur, so by setting the d-axis current I d to 0, the generated torque pulsations can be reduced, and the torque The measurement accuracy of pulsation can be improved.
実施の形態3.
 図6は、実施の形態3によるトルク脈動測定装置の動作フローを示す図である。本実施の形態では、図6に示す手順でトルク脈動を測定する。
Embodiment 3.
FIG. 6 is a diagram showing an operation flow of the torque pulsation measuring device according to the third embodiment. In this embodiment, torque pulsation is measured by the procedure shown in FIG.
 まず、工程1にて、モーターMtをトルク脈動測定装置(制御装置3)に取り付ける。次に、工程2にて、モーターMtを自走にて回転させ、電源を遮断した後のモーターMtの端子間の電圧(例えばU相とV相との線間電圧)と回転速度を測定する。次に、工程3にて、工程2で測定された電圧を回転速度で割ることにより、誘起電圧定数Tを演算する。工程2で速度を測定せず、電圧の変動の周期から工程3で速度を演算し、演算した速度を用いて誘起電圧定数Tを演算することもできる。次に、工程4にて、一定速指令により、モーターMtを回転させる。実施の形態1と同様に、電流と速度を取得する。次に、工程5にて、実施の形態1と同様に、工程3で計算した誘起電圧定数Tと工程4で取得した速度および電流を用いてトルク脈動を演算する。誘起電圧定数Tの演算を工程5の前に行うことで、工程4の後で素早く目標のトルク変動を測定することができる。測定が完了すると、工程6にてモーターMtを取り外す。なお、工程2および工程3を工程5の後に行ってもよいが、工程5の前に行う方が望ましい。 First, in step 1, the motor Mt is attached to the torque pulsation measuring device (control device 3). Next, in step 2, the motor Mt is rotated by free running, and the voltage between the terminals of the motor Mt (for example, the line voltage between the U phase and the V phase) and rotation speed are measured after the power is cut off. . Next, in step 3, the induced voltage constant T k is calculated by dividing the voltage measured in step 2 by the rotational speed. It is also possible to calculate the speed in step 3 from the period of voltage fluctuation without measuring the speed in step 2, and to calculate the induced voltage constant T k using the calculated speed. Next, in step 4, the motor Mt is rotated by a constant speed command. As in the first embodiment, current and speed are acquired. Next, in step 5, torque pulsation is calculated using the induced voltage constant Tk calculated in step 3 and the speed and current obtained in step 4, as in the first embodiment. By calculating the induced voltage constant Tk before step 5, the target torque fluctuation can be quickly measured after step 4. When the measurement is completed, the motor Mt is removed in step 6. Although steps 2 and 3 may be performed after step 5, it is preferable to perform them before step 5.
 本実施の形態によれば、実施の形態1と同様に精度よくトルク脈動を測定することができるトルク脈動測定装置が得られる。 According to the present embodiment, a torque pulsation measuring device that can measure torque pulsation with high accuracy, similar to Embodiment 1, is obtained.
 1…ステーター、 10…鉄心、 12…巻線、 2…ローター、 21…磁石、 3…制御装置(トルク脈動測定装置)、 41…位置検出器(速度検出器)、 J…慣性モーメント 1... Stator, 10... Iron core, 12... Winding, 2... Rotor, 21... Magnet, 3... Control device (torque pulsation measuring device), 41... Position detector (speed detector), J... Moment of inertia

Claims (10)

  1.  磁束を導く鉄心、及び前記鉄心に対して絶縁され、回転磁界を発生可能なコイルを有するステーターと、磁束を発生させる磁石を有し、磁束を導く前記ステーターに対して回転自在に固定されたローターと、前記ローターの機械角速度を検出する速度検出器を備える永久磁石モーターのトルク脈動測定方法であって、
     前記永久磁石モーターの出力軸が外部から駆動されず、前記永久磁石モーターによって駆動されている状態で、前記速度検出器で検出された機械角速度を微分して得た各角加速度を回転角に対して整数倍の次数の周波数成分に分解し、慣性モーメントを乗じることで得られる慣性トルク脈動を演算する演算工程を含む永久磁石モーターのトルク脈動測定方法。
    An iron core that guides magnetic flux, a stator that has a coil that is insulated from the iron core and can generate a rotating magnetic field, and a rotor that has a magnet that generates magnetic flux and is rotatably fixed to the stator that guides the magnetic flux. and a method for measuring torque pulsation of a permanent magnet motor, comprising a speed detector that detects the mechanical angular velocity of the rotor,
    In a state where the output shaft of the permanent magnet motor is not driven externally and is driven by the permanent magnet motor, each angular acceleration obtained by differentiating the mechanical angular velocity detected by the speed detector is calculated with respect to the rotation angle. A method for measuring torque pulsation of a permanent magnet motor, which includes a calculation step of calculating the inertial torque pulsation obtained by decomposing the frequency components into integral multiple order frequency components and multiplying them by the moment of inertia.
  2.  前記速度検出器で検出される機械角速度が指定した一定の速度を保つようにフィードバック制御をしている請求項1に記載の永久磁石モーターのトルク脈動測定方法。 The method for measuring torque pulsation of a permanent magnet motor according to claim 1, wherein feedback control is performed so that the mechanical angular velocity detected by the speed detector maintains a specified constant speed.
  3.  前記永久磁石モーターに流れる電流により生じる回転角に対して整数倍の次数の周波数成分に分解し、これに誘起電圧定数を乗じることで計算した電流トルク脈動と、前記慣性トルク脈動の同じ周波数の成分を足し合わせることでトルク脈動を計算する請求項1または請求項2に記載の永久磁石モーターのトルク脈動測定方法。 Current torque pulsation calculated by decomposing the rotation angle caused by the current flowing through the permanent magnet motor into frequency components of an order of an integral multiple, and multiplying this by an induced voltage constant, and the same frequency component of the inertial torque pulsation. 3. The method for measuring torque pulsation of a permanent magnet motor according to claim 1 or 2, wherein the torque pulsation is calculated by adding up the torque pulsation.
  4.  d軸電流を一定として前記永久磁石モーターを駆動し、トルク脈動を演算する請求項1から請求項3のいずれか1項に記載の永久磁石モーターのトルク脈動測定方法。 The method for measuring torque pulsation of a permanent magnet motor according to any one of claims 1 to 3, wherein the permanent magnet motor is driven with a constant d-axis current and torque pulsation is calculated.
  5.  d軸電流を0として前記永久磁石モーターを駆動し、トルク脈動を演算する請求項1から請求項3のいずれか1項に記載の永久磁石モーターのトルク脈動測定方法。 The method for measuring torque pulsation of a permanent magnet motor according to any one of claims 1 to 3, wherein the permanent magnet motor is driven with a d-axis current of 0 and torque pulsation is calculated.
  6.  前記永久磁石モーターを組み上げた後、請求項1から請求項3のいずれか1項に記載のトルク脈動測定方法を用いて演算したトルク脈動に基づいて、前記永久磁石モーターの良否を判定する工程を含む永久磁石モーターの製造方法。 After the permanent magnet motor is assembled, the step of determining whether the permanent magnet motor is good or bad based on the torque pulsation calculated using the torque pulsation measuring method according to any one of claims 1 to 3. A method of manufacturing a permanent magnet motor, including:
  7.  磁束を導く鉄心、及び前記鉄心に対して絶縁され、回転磁界を発生可能なコイルを有するステーターと、磁束を発生させる磁石を有し、磁束を導く前記ステーターに対して回転自在に固定されたローターと、前記ローターの機械角速度を検出する速度検出器を備える永久磁石モーターのトルク脈動測定装置であって、
     前記永久磁石モーターの出力軸が外部から駆動されず、前記永久磁石モーターによって駆動されている状態で、前記速度検出器で検出された機械角速度を微分して得た各角加速度を回転角に対して整数倍の次数の周波数成分に分解し、慣性モーメントを乗じることで得られる慣性トルク脈動を演算する工程を含む永久磁石モーターのトルク脈動測定装置。
    An iron core that guides magnetic flux, a stator that has a coil that is insulated from the iron core and can generate a rotating magnetic field, and a rotor that has a magnet that generates magnetic flux and is rotatably fixed to the stator that guides the magnetic flux. and a torque pulsation measuring device for a permanent magnet motor, comprising a speed detector that detects the mechanical angular velocity of the rotor,
    In a state where the output shaft of the permanent magnet motor is not driven externally and is driven by the permanent magnet motor, each angular acceleration obtained by differentiating the mechanical angular velocity detected by the speed detector is calculated with respect to the rotation angle. A torque pulsation measurement device for a permanent magnet motor, which includes a step of calculating inertial torque pulsation obtained by decomposing the frequency components into integral multiple order frequency components and multiplying them by the moment of inertia.
  8.  前記速度検出器で検出される機械角速度が指定した一定の速度を保つようにフィードバック制御をしている請求項7に記載の永久磁石モーターのトルク脈動測定装置。 The torque pulsation measuring device for a permanent magnet motor according to claim 7, wherein feedback control is performed so that the mechanical angular velocity detected by the speed detector maintains a specified constant speed.
  9.  前記永久磁石モーターに流れる電流により生じる回転角に対して整数倍の次数の周波数成分に分解し、これに誘起電圧定数を乗じることで計算した電磁トルク脈動と、前記慣性トルク脈動の同じ周波数の成分を足し合わせることでトルク脈動を計算する請求項7または8に記載の永久磁石モーターのトルク脈動測定装置。 Electromagnetic torque pulsation calculated by decomposing the rotation angle caused by the current flowing in the permanent magnet motor into frequency components of an order of an integral multiple, and multiplying this by an induced voltage constant, and a component of the same frequency of the inertial torque pulsation. The torque pulsation measuring device for a permanent magnet motor according to claim 7 or 8, wherein the torque pulsation is calculated by adding up the torque pulsation.
  10.  トルク脈動を測定する前後に誘起電圧定数を測定することを特徴とする請求項7から請求項9のいずれか1項に記載の永久磁石モーターのトルク脈動測定装置。 The torque pulsation measuring device for a permanent magnet motor according to any one of claims 7 to 9, characterized in that an induced voltage constant is measured before and after measuring torque pulsations.
PCT/JP2023/026007 2022-07-19 2023-07-14 Torque pulsation measurement method and torque pulsation measurement device for permanent magnet motor and method for manufacturing permanent magnet motor WO2024019003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022114995 2022-07-19
JP2022-114995 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024019003A1 true WO2024019003A1 (en) 2024-01-25

Family

ID=89617748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026007 WO2024019003A1 (en) 2022-07-19 2023-07-14 Torque pulsation measurement method and torque pulsation measurement device for permanent magnet motor and method for manufacturing permanent magnet motor

Country Status (1)

Country Link
WO (1) WO2024019003A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100949A (en) * 2014-11-19 2016-05-30 学校法人 工学院大学 Torque ripple suppressing apparatus and torque ripple suppression method
JP2021136811A (en) * 2020-02-28 2021-09-13 株式会社 日立パワーデバイス Motor drive device and outdoor unit of air conditioner using the same, and motor drive control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100949A (en) * 2014-11-19 2016-05-30 学校法人 工学院大学 Torque ripple suppressing apparatus and torque ripple suppression method
JP2021136811A (en) * 2020-02-28 2021-09-13 株式会社 日立パワーデバイス Motor drive device and outdoor unit of air conditioner using the same, and motor drive control method

Similar Documents

Publication Publication Date Title
JP4805329B2 (en) Control device for calculating power consumption of industrial machinery
CN104052361B (en) Electric machine control system to compensate torque pulsation
JP4672236B2 (en) Control device for synchronous motor
US6566830B2 (en) Method and system for controlling a permanent magnet machine
JP4879649B2 (en) Electric motor control device
JP5243651B2 (en) Motor control device for controlling d-axis current of permanent magnet synchronous motor
JP6667076B2 (en) Motor control device and method of correcting torque constant in motor control device
JP5332400B2 (en) Torque pulsation suppression device and suppression method for electric motor
KR102588927B1 (en) Motor control method
US6774592B2 (en) Method and system for controlling a permanent magnet machine
JP5653898B2 (en) Permanent magnet motor control device
JP5267848B2 (en) Motor control device
JP2005218215A (en) Driving method and temperature-estimating method of pm motor
JP2009183062A (en) Motor controller
JP4110865B2 (en) Control system for permanent magnet motor
JP5172418B2 (en) Control device for electric motor system
JP2014230485A (en) Method for determining position and speed of rotor of synchronous electric machine by means of status observers
JP2000166278A (en) Control device of synchronous motor
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
JP5074318B2 (en) Rotor position estimation device for synchronous motor
WO2024019003A1 (en) Torque pulsation measurement method and torque pulsation measurement device for permanent magnet motor and method for manufacturing permanent magnet motor
JP2019033582A (en) Control device and control method
JP5273706B2 (en) Electric motor control device
CN113131818B (en) Hall sensor installation error identification method, device and motor control system
JP5106295B2 (en) Rotor position estimation device for synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842926

Country of ref document: EP

Kind code of ref document: A1