WO2021171551A1 - Object with metal film - Google Patents

Object with metal film Download PDF

Info

Publication number
WO2021171551A1
WO2021171551A1 PCT/JP2020/008286 JP2020008286W WO2021171551A1 WO 2021171551 A1 WO2021171551 A1 WO 2021171551A1 JP 2020008286 W JP2020008286 W JP 2020008286W WO 2021171551 A1 WO2021171551 A1 WO 2021171551A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
metal film
film forming
metal
Prior art date
Application number
PCT/JP2020/008286
Other languages
French (fr)
Japanese (ja)
Inventor
猿渡 哲也
浩幸 上山
吉岡 尚規
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2022502772A priority Critical patent/JPWO2021171551A1/ja
Priority to CN202080092190.8A priority patent/CN114929926A/en
Priority to PCT/JP2020/008286 priority patent/WO2021171551A1/en
Priority to TW110104536A priority patent/TWI765565B/en
Publication of WO2021171551A1 publication Critical patent/WO2021171551A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces

Definitions

  • the present invention relates to an object with a metal film.
  • a thin conductive layer called a seed layer is formed on the surface of the insulator by electroless plating, and this seed layer is used as an electrode for seeding. Electroplating of metal on top of the layer is performed.
  • a method of forming a seed layer on the surface of an insulator it is known that minute irregularities are formed on the surface of the insulator by etching or the like, a catalyst such as palladium is added thereto, and then electroless plating is performed. (Patent Document 1).
  • the object with a metal film according to the first aspect is located between a base material containing resin or glass, a metal film covering at least a part of the base material, and the base material and the metal film, and constitutes the metal film.
  • a first layer containing an oxide of the metal as a main component and a second layer between the base material and the first layer containing the oxide of the composition of the base material as a main component are provided.
  • the adhesion strength of the first layer to the second layer is 3 [N / cm] or more.
  • FIG. 1 is a diagram illustrating an object with a metal film according to an embodiment.
  • 1 (a) shows a perspective view of an object with a metal film
  • FIG. 1 (b) shows a cross-sectional view of the object with a metal film
  • FIG. 1 (c) shows an enlarged cross-sectional view of the object with a metal film.
  • FIG. 2 is a cross-sectional view of the film forming apparatus.
  • 3A and 3B are views for explaining changes in the metal film before and after the heat treatment
  • FIG. 3A is a diagram showing the state of the object to be treated and the metal film before the heat treatment
  • FIG. 3B is a diagram after the heat treatment.
  • FIG. 4 is a diagram showing an example of a film forming method.
  • FIG. 5 is a diagram showing a process of forming a plating layer.
  • FIG. 1A is a perspective view of an object 61 with a metal film
  • the object 61 with a metal film is, for example, a printed circuit board containing a base material 50 made of flat glass or resin.
  • a metal film 55 as a wiring member is formed on a part of the front surface 50d of the base material 50.
  • FIG. 1B shows a cross-sectional view of an object 61 with a metal film in a cross section perpendicular to the front surface 50d.
  • the metal film 55 is formed on at least a part of the back surface 50e.
  • a through hole 50h penetrating from the front surface 50d to the back surface 50e is formed in a part of the front surface 50d of the base material 50 which is a flat plate, and at least among a part of the through holes 50h.
  • a metal 55h made of the same material as the metal film 55 is formed on the side surface. The metal 55h may be filled in the entire inside of the through hole 50h.
  • FIG. 1 (c) shows an enlarged cross-sectional view of the metal film-attached object 61 in the vicinity of the front surface 50d of the base material 50 in the region 62 shown by the broken line quadrangle in FIG. 1 (b).
  • the base material oxide film layer 52, the metal oxide layer 53, and the seed layer 51d are arranged in order from the front surface 50d.
  • a plating layer 54d is formed.
  • the base material oxide film layer 52 is a layer containing an oxide of a component contained in the base material 50 as a main component
  • the metal oxide layer 53 is a layer containing a metal oxide contained in the seed layer 51d as a main component. Is.
  • the seed layer 51d is a conductive layer used when forming the plating layer 54d by electrolytic plating, and is formed by forming a metal such as copper on the front surface 50d by a film forming method such as sputtering.
  • the plating layer 54d is formed by forming a metal such as copper by electrolytic plating or the like with the seed layer 51d as an electrode.
  • FIG. 1C shows an enlarged cross-sectional view of the front surface 50d of the base material 50 as an example, but the structure of the back surface 50e of the base material 50 is also upside down, except that the structure is upside down. Is similar to the structure shown in FIG. 1 (c).
  • the seed layer formed on the back surface 50e is referred to as a seed layer 51e as described later, and the plating layer formed on the back surface 50e is referred to as a plating layer 54e as described later.
  • the seed layer 51d and the seed layer 51e are also referred to as a seed layer 51 together or respectively.
  • the plating layer 54d and the plating layer 54e are also referred to as a plating layer 54 together or respectively.
  • the seed layer 51 and the plating layer 54 are also referred to as a metal film 55 together or respectively.
  • the metal film 55 is not limited to the one including both the seed layer 51 and the plating layer 54 described above, and the plating layer 54 may be omitted.
  • the metal oxide layer 53 formed between the base material 50 and the metal film 55 is also referred to as a first layer.
  • the base material oxide film layer 52 formed between the first layer and the base material 50 is also referred to as a second layer.
  • the seed layer 51 is also formed inside the through hole 50h, and the above-mentioned first layer and second layer are also formed between the inner surface of the through hole 50h of the base material 50 and the seed layer 51.
  • the metal oxide layer 53 contains, for example, 80% or more of the metal oxide constituting the metal film 55 by weight.
  • the seed layer 51 is copper having a thickness of 300 nm, and the thickness of the second layer (silicon oxide which is the base material oxide film layer 52) is 2.2 nm, the first layer (metal oxide) is used.
  • the measured value of the adhesion strength in the absence of the layer 53 (copper oxide) is 0.1 [N / cm] or less.
  • the measured value of the adhesion strength when the first layer (copper oxide) and the second layer (silicon oxide) are formed between the base material 50 and the seed layer 51 is 3 to 5.5 [. It turned out to improve to N / cm].
  • the first layer (metal oxide layer 53) and the second layer (base material oxide film layer 52) are formed between the base material 50 and the seed layer 51.
  • the adhesion strength between the base material 50 and the seed layer 51 is improved to 3 [N / cm] or more. Therefore, the adhesion strength of the first layer 53 to the second layer 52 is also 3 [N / cm] or more. Since the adhesion strength is guaranteed as described above, the metal film 55 can be stably used as the conductive layer or the reflective film.
  • the thickness of the second layer can be, for example, 2 nm or more and 5 nm or less. When the thickness of the second layer is 2 nm or more and 5 nm or less, the bonding force between the base material 50 and the metal film 55 via the first layer and the second layer can be further enhanced.
  • the thickness of the first layer (metal oxide layer 53) is, for example, 0.5 nm or more and 5 nm or less. When the thickness of the first layer is 0.5 nm or more and 5 nm or less, the bonding force between the base material 50 and the metal film 55 via the first layer and the second layer can be further enhanced.
  • the metals contained in the seed layers 51d and 51e and the plating layers 54d and 54e are not limited to the above-mentioned copper, and alloys containing copper, other metals such as nickel, aluminum and chromium, and alloys containing them. It may be.
  • the metal film 55 may be formed only on a part of the base material 50 such as one side, or may be formed over the front surface of the base material 50.
  • the base material 50 does not have to have a through hole 50h formed.
  • the object 61 with a metal film is not limited to the above-mentioned printed circuit board, and may be, for example, an electronic component having a wiring layer formed on its surface, an optical component, or an ornament, and has an arbitrary shape. And it can be an object of any purpose.
  • FIG. 2 is a cross-sectional view showing the film forming apparatus 100.
  • the film forming apparatus 100 includes a pressure-resistant chamber 1 having a pressure-resistant structure, and inside the pressure-resistant chamber 1, a plasma processing chamber 2, a film-forming processing chamber 3, and a heat treatment chamber 4 separated by partition walls 5a and 5b are provided.
  • the partition wall 5a is provided with an opening 6a connecting the plasma processing chamber 2 and the film forming processing chamber 3, and the opening 6a can be opened and closed by the opening / closing door 7a.
  • the opening 6a and the opening / closing door 7a form an opening / closing device structure that communicates with and shuts off the plasma processing chamber 2 and the film forming processing chamber 3.
  • the partition wall 5b is provided with an opening 6b connecting the film forming processing chamber 3 and the heat treatment chamber 4, and the opening 6b can be opened and closed by the opening / closing door 7b.
  • the opening 6b and the opening / closing door 7b form an opening / closing device structure that communicates and shuts off the film forming processing chamber 3 and the heat treatment chamber 4.
  • the film forming apparatus 100 further includes a control device 8.
  • a plasma generation source 15 is provided in the plasma processing chamber 2.
  • the plasma generation source 15 a general plasma generation source that generates high-density plasma can be used.
  • the plasma generation source 15 is supplied with electric power from the plasma power supply 19 via the power supply line 20 and is grounded by the ground wiring 21.
  • a power source 19 that generates an AC or DC voltage (mainly a negative voltage) having an RF frequency (for example, 13.56 MHz) is adopted.
  • the processing target (deposition target) of the film forming apparatus 100 is referred to as a processing target object 50.
  • the processing target object 50 is in the plasma processing chamber 2, it is in the processing object 50a, when it is in the film forming processing chamber 3, it is in the processing object 50b, and in the heat treatment chamber 4.
  • the processing target object 50 is referred to as a processing target object 50c, respectively.
  • a first holding mechanism 23 for holding the processing object 50a of the plasma processing is provided on the side of the plasma processing chamber 2 opposite to the plasma generation source 15. Further, a first decompression pump 25a is connected to the plasma processing chamber 2 via a decompression pipe 26, and the inside of the plasma processing chamber 2 is provided by the first decompression pump 25a as a decompression mechanism and the decompression pipe 26. The pressure can be reduced. The first decompression pump 25a is controlled by the control signal S3 from the control device 8.
  • the plasma generation source 15 and the first holding mechanism 23 can also be interpreted as a plasma processing unit.
  • the film forming apparatus 100 reacts with the reaction gas supply pipe 16 connected to the closed space 22 and the reaction gas supply device 17 connected to the reaction gas supply pipe 16 extending outside the pressure resistant chamber 1.
  • a control valve 18 for adjusting the flow rate of the reaction gas supplied from the gas supply device 17 to control the pressure in the closed space 22 is further provided.
  • the adjustment of the opening degree of the control valve 18 is controlled by the control signal S1 from the control device 8.
  • the control valve 18 is provided in the reaction gas supply device 17.
  • the reaction gas is supplied to the reaction gas supply device 17 via, for example, a factory pipe 28, but it may be supplied from a gas cylinder.
  • the film forming processing chamber 3 inside the pressure resistant chamber 1 is provided with a second holding mechanism 35b for holding the object to be processed 50b, and a sputter electrode 33 composed of an electrode portion 31 and a target material 32.
  • a target material 32 copper is used as an example.
  • an alloy containing aluminum, another metal, or the above-mentioned metal can also be used.
  • the sputter electrode 33 is connected to a sputter power supply 34.
  • the sputter power supply 34 can supply 10 kW or more, more preferably 30 kW or more, to the sputter electrode 33.
  • the sputtering power supply 34 is controlled by the control signal S5 from the control device 8.
  • the sputter electrode 33 and the second holding mechanism 35b can also be interpreted as a film forming portion.
  • the sputtering electrode 33 or the electrode portion 31 thereof can also be interpreted as a film forming source that supplies a film material to be formed on the object to be processed 50b.
  • a second decompression pump 25b is connected to the film forming processing chamber 3 via a decompression pipe 37, and the inside of the film forming processing chamber 3 is provided by the second decompression pump 25b as a decompression mechanism and the decompression pipe 37. The pressure can be reduced.
  • the second decompression pump 25b is controlled by the control signal S4 from the control device 8.
  • the film forming apparatus 100 further includes an inert gas supply pipe 41 for supplying an inert gas such as argon into the film forming processing chamber 3, an inert gas supply device 38 connected to the inert gas supply pipe 41, and the like.
  • control valve 39 that controls the pressure in the film forming processing chamber 3 by adjusting the flow rate of the inert gas supplied from the inert gas supply device 38.
  • the control valve 39 is provided on the inert gas supply device 38.
  • the adjustment of the opening degree of the control valve 39 is controlled by the control signal S6 from the control device 8.
  • the inert gas is supplied to the inert gas supply device 38 via, for example, the factory pipe 40, but it may be supplied from a gas cylinder.
  • a third holding mechanism 35c for holding the processing object 50c and a heater 42 for heating and heat-treating the processing object 50c held by the third holding mechanism 35c are provided. It is equipped.
  • the heater 42 a lamp, a sheathed heater or the like used for so-called annealing treatment can be used. Electric power is supplied to the heater 42 from the heater power supply 43 arranged outside the pressure-resistant chamber 1.
  • the heater power supply 43 is controlled by the control signal S8 from the control device 8.
  • a third decompression pump 25c is connected to the heat treatment chamber 4 via a decompression pipe 44, and the inside of the heat treatment chamber 4 can be decompressed by the third decompression pump 25c as a decompression mechanism and the decompression pipe 44. can.
  • the third decompression pump 25c is controlled by the control signal S7 from the control device 8.
  • the heater 42 and the third holding mechanism 35c can also be interpreted as a heat treatment unit.
  • the film forming apparatus 100 conveys the processing object 50a for which the plasma processing has been completed from the first holding mechanism 23 in the plasma processing chamber 2 to the second holding mechanism 35b in the film forming processing chamber 3 without being exposed to the atmosphere. It has a first transport mechanism 30a. Further, in the film forming apparatus 100, the processing object 50b for which the film forming process has been completed is not exposed to the atmosphere from the second holding mechanism 35b in the film forming processing chamber 3, and the third holding mechanism 35c in the heat treatment chamber 4 is not exposed. It has a second transport mechanism 30b for transporting to.
  • the object to be processed 50a to be filmed is carried into the plasma processing chamber 2 by a carry-in mechanism (not shown) and held by the first holding mechanism 23.
  • the carry-in mechanism (not shown) preferably has a load lock chamber.
  • control device 8 When the control device 8 sends the control signal S3 to the first decompression pump 25a, the pressure inside the plasma processing chamber 2 is reduced, and when the control device 8 sends the control signal S1 to the control valve 18, a predetermined pressure is set in the plasma generation source 15. Reaction gas is supplied. Then, the control device 8 sends the control signal S2 to the plasma power supply 19, so that the plasma generation source 15 is supplied with the plasma power supply 19 via the power supply line 20 for alternating current or direct current of RF frequency (for example, 13.56 MHz). A voltage (mainly a negative voltage) is applied. As a result, an electric discharge is generated in the plasma generation source 15, and the electrons generated by the electric discharge turn the reaction gas into plasma.
  • RF frequency for example, 13.56 MHz
  • the plasma generated by the plasma generation source 15 drifts in the plasma processing chamber 2 from right to left by a distance d in FIG. 2 and reaches the processing object 50a.
  • the plasma is hot at the stage of being emitted from the plasma generation source 15, heat energy is lost due to collision with the reaction gas existing in the plasma processing chamber 2 while drifting in the plasma processing chamber 2, so that the processing target is When the object 50a is reached, the temperature of the plasma has dropped. Therefore, in the film forming apparatus 100, it is possible to suppress the temperature increase of the processing object 50a during the plasma processing.
  • part of the plasma has changed from the plasma (charged state) to the activated state (radical state) due to collision with the reaction gas. Therefore, the object to be treated 50a is exposed not only to the plasma of the reaction gas but also to the reaction gas in the activated state (radical state).
  • the reaction gas in the plasma state and the reaction gas in the activated state are referred to as highly reactive reaction gases.
  • activating the surface of the object to be treated 50a by the reaction gas in the plasma state and the reaction gas in the radical state is called plasma treatment.
  • the plasma treatment activates the surface of the object to be treated 50a and improves the bondability with the metal atom.
  • the processing object 50a for which the plasma processing has been completed is not exposed to the atmosphere from the first holding mechanism 23 in the plasma processing chamber 2 by the first transport mechanism 30a provided in the plasma processing chamber 2. It is conveyed to the second holding mechanism 35b in 3.
  • the control device 8 sends the control signal S5 to the sputtering power supply 34, so that a large amount of electric power is applied to the sputtering electrode 33. ..
  • the inert gas in the vicinity of the sputtering electrode 33 in the film forming processing chamber 3 is ionized, accelerated by the electric field of the sputtering electrode 33 and collides with the target material 32, and atoms of copper or other metal constituting the target material 32. Is released into the film forming processing chamber 3 and deposited on the object to be processed 50b.
  • metal atoms are formed on the surface of the object to be treated 50b activated by the above-mentioned plasma treatment without the activated portion being inactivated by water vapor, oxygen, or the like in the atmosphere. Therefore, it is possible to form a metal film having high bondability with the object to be treated, that is, high adhesion.
  • the pressure inside the sputtering apparatus is generally reduced to about 0.1 Pa to perform the film formation. If the pressure in the sputtering apparatus is higher than this, it is difficult to remove impurities such as water remaining in the sputtering apparatus or released from the object to be treated, and as a result, impurities are mixed in the membrane and the quality of the membrane is improved. This is because it decreases.
  • the object to be treated 50b is a resin
  • the amount of impurities released from the object to be processed 50b is large and the impurities are continuously released for a long period of time. It is difficult to reduce the pressure to about 1 Pa to form a film.
  • the sputtering power source 34 is 10 kW or more with respect to the sputtering electrode 33. More preferably, it is provided with a device capable of inputting a power of 30 kW or more.
  • the electric power input to the sputter electrode 33 When the electric power input to the sputter electrode 33 is large, the amount of metal atoms such as copper emitted from the target material 32 increases and the metal atoms are emitted as compared with the case where a normal electric power of less than 10 kW is input. The kinetic energy of the body also increases. As a result, in the film forming apparatus 100, the concentration of impurities in the film forming processing chamber 3 is relatively reduced with respect to the concentration of metal atoms, so that the purity of the film formed on the object to be processed 50b is improved. ..
  • the molecules constituting the processing object 50b and the metal atom are stably bonded to each other, so that the film has higher adhesion to the processing object 50b. Can be formed.
  • the metal atom released from the target material 32 travels straight in the film forming processing chamber 3, but its traveling direction is diffused (scattered) by the collision with the inert gas in the film forming processing chamber 3.
  • the metal atom that collides with the inert gas and scatters and loses the kinetic energy cannot adhere to the object to be processed with sufficient strength. ..
  • the object to be treated has an uneven shape, only metal atoms that are scattered and lose kinetic energy are irradiated on the side surface portion of the uneven shape, so that a uniform film formation is performed on the object to be processed having the uneven shape. It was difficult.
  • the metal atom since the kinetic energy of the metal atom when it is released from the target material 32 is large, the metal atom has sufficient kinetic energy even after being scattered by the inert gas. Therefore, since the treated object 50b is irradiated with metal atoms having various traveling directions and having a large kinetic energy due to scattering, a uniform film is formed even on the processed object 50b having an uneven shape. It is possible to make a film.
  • the pressure in the film forming processing chamber 3 is about 0.5 Pa to 5 Pa.
  • the pressure is 0.5 Pa or less, it is difficult to sufficiently scatter the metal atoms when released from the target material 32, and when the pressure is about 5 Pa or more, the concentration of impurities in the film forming processing chamber 3 becomes high and the quality of the film becomes poor. It may decrease.
  • the pressure in the film forming processing chamber 3 may be less than 0.5 Pa, and the electric power applied to the sputter electrode 33 may be less than 10 kW.
  • the film forming source is not limited to the above-mentioned sputtering electrode 33, and may be a vapor deposition apparatus or a CVD apparatus.
  • the processing object 50b for which the film forming process in the film forming processing chamber 3 has been completed is separated from the second holding mechanism 35b in the film forming processing chamber 3 by the second transport mechanism 30b provided in the film forming processing chamber 3. It is conveyed to the third holding mechanism 35c in the heat treatment chamber 4 without being exposed to the atmosphere. Prior to this transfer, the control device 8 sends a control signal S7 to the third decompression pump 25c to depressurize the inside of the heat treatment chamber 4.
  • the control device 8 sends a control signal S8 to the power supply 43 for the heater, so that power is applied to the heater 42 and the object to be processed 50c is processed. Is heated. That is, so-called annealing is performed on the object to be processed 50c.
  • the heater 42 heats the temperature of the object to be treated 50c to a temperature of 100 ° C. or higher, more preferably about 300 ° C. to 550 ° C.
  • the control device 8 and the heater power supply 43 are heated so that the temperature of the object to be treated 50c does not exceed the lowest temperature of its melting point, glass transition or softening point.
  • the object to be processed 50b formed in the film forming processing chamber 3 can be conveyed to the heat treatment chamber 4 without being exposed to the atmosphere, and the heat treatment (annealing) can be performed in the heat treatment chamber 4 under reduced pressure. .. Therefore, the thin film such as copper or other metal formed in the film forming processing chamber 3 can be annealed while preventing the surface from being oxidized by oxygen in the atmosphere. As a result, the adhesion between the film formed in the film forming processing chamber 3 and the object to be processed 50c can be further improved.
  • the heat-treated object 50c is carried out from the heat treatment chamber 4 (and the pressure-resistant chamber 1) by a carry-out mechanism (not shown).
  • the carry-out mechanism (not shown) preferably has a load lock chamber.
  • the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 are provided in the pressure-resistant chamber 1, but the configuration in the pressure-resistant chamber 1 is limited to this. It is not something that can be done.
  • the partition walls 5a and 5b that separate the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 may be abolished.
  • the plasma generation source 15, the first holding mechanism 23, the sputtering electrode 33, the second holding mechanism 35b, the heater 42, the third holding mechanism 35c, and the like are still arranged in the pressure resistant chamber 1. ..
  • the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 can be formed in separate pressure-resistant chambers.
  • a transport path capable of depressurizing or replacing gas with an inert gas is provided between the plasma processing chamber 2 and the film forming processing chamber 3 and between the film forming processing chamber 3 and the heat treatment chamber 4. Is desirable.
  • the objects to be processed 50a and 50b processed in the previous processing chamber can be transported to the next processing chamber without being exposed to the atmosphere.
  • the separate pressure-resistant chambers and the decompression or gas-replaceable transport paths connecting them can be interpreted as one pressure-resistant chamber as a whole.
  • the pressures in the respective treatment chambers are independent. It is preferable in that it can be controlled. As a result, the plasma treatment in the plasma processing chamber 2, the film formation treatment in the film formation processing chamber 3, and the heat treatment in the heat treatment chamber 4 can be performed in parallel, further increasing the processing capacity of the film formation apparatus 100. Can be improved. Further, since the contamination between the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 can be minimized, the quality of the film to be formed can be further improved.
  • At least one of the first holding mechanism 23 for holding the processing target object 50a in the plasma processing chamber 2 and the second holding mechanism 35b for holding the processing target object 50b in the film forming processing chamber 3 is the processing target object 50a.
  • 50b may have a rotation mechanism for rotating the objects to be processed 50a and 50b during the processing so that the processing to 50b becomes uniform.
  • the first holding mechanism 23 may be provided on the side surface 29 of the plasma processing chamber 2 opposite to the plasma generation source 15.
  • the mechanism for reducing the pressure in the pressure-resistant chamber 1 is not limited to the above-mentioned first to third pressure reducing pumps 25a to 25c, and for example, low pressure such as vacuum is supplied to the pressure reducing pipes 26 and 37 via the pressure regulating valve. It may be connected with a power pipe for a factory.
  • the control device 8 controls the pressure in the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 by issuing an opening / closing command to the pressure regulating valve.
  • first film forming method an example of a film forming method suitable for manufacturing the metal film-attached object 61 of the embodiment (hereinafter, referred to as “first film forming method”) will be described with reference to FIG.
  • the first film forming method is performed by using the above-mentioned film forming apparatus 100, and includes at least a part of the following steps.
  • the processing object 50a is arranged at a position separated from the above-mentioned plasma generation source 15 installed in the plasma processing chamber 2 in the pressure-resistant chamber 1 by a predetermined distance. At this time, the distance from the plasma generation source 15 to the object to be processed 50a is defined as the distance d.
  • the opening / closing door 7a between the plasma processing chamber 2 and the film forming processing chamber 3 is closed.
  • the inside of the plasma processing chamber 2 is decompressed by the first decompression pump 25a as a decompression mechanism and the decompression pipe 26. At this time, the first decompression pump 25a is controlled by the control signal S3 from the control device 8.
  • the decompression in the plasma processing chamber 2 is more than the arrangement of the processing object described above. Will be done before.
  • the reaction gas is supplied from the reaction gas supply device 17 into the plasma generation source 15 via the reaction gas supply pipe 16, and electric power is applied to the plasma generation source 15 from the plasma power supply 19.
  • the reaction gas in the plasma state and the reaction gas in the activated state are generated from the plasma generation source 15.
  • the control device 8 stops the supply of the reaction gas into the plasma generation source 15 or reduces the supply amount, stops the application of electric power to the plasma generation source 15, and ends the plasma processing. do.
  • the reaction gas used in the above-mentioned plasma treatment can be oxygen as an example.
  • the plasma treatment of the object to be treated 50a is performed using not only the reaction gas in the plasma state but also the reaction gas in the activated state (radical state). Has the characteristic of being able to. Therefore, the efficiency of plasma treatment can be further improved by using oxygen having strong reactivity in the radical state as the reaction gas in the plasma treatment method in the first film forming method.
  • the reaction gas can also be nitrogen.
  • the object to be treated 50a one containing a resin as a main component can be used. Since resins generally have low heat resistance, it has been difficult to perform conventional plasma treatment that heats the object to be treated.
  • the first film forming method is suitable for use on the processing object 50a containing a resin as a main component because the temperature of the processing object 50a can be prevented by using the above-mentioned film forming apparatus 100.
  • the object to be processed 50a containing glass as a main component can be used.
  • Glass is generally vulnerable to sudden temperature changes, making it difficult to perform conventional plasma treatment.
  • the first film forming method can prevent the temperature of the object to be processed 50a from becoming high by using the above-mentioned film forming apparatus 100, it is suitable to be used for the object to be processed 50a containing glass as a main component.
  • the plasma-treated processing object 50a is transported from the plasma processing chamber 2 to the film-forming processing chamber 3 by the first transport mechanism 30a.
  • the opening / closing door 7a between the plasma processing chamber 2 and the film forming processing chamber 3 is opened prior to the transportation, and the opening / closing door 7a is closed after the transportation.
  • the object to be processed 50a is held by the second holding mechanism 35b in the film forming processing chamber 3.
  • the processing object 50a that has been conveyed and held by the second holding mechanism 35b in the film forming processing chamber 3 is referred to as a processing object 50b.
  • the object to be processed A film formation (sputtering) is performed on 50b.
  • power of 10 kW or more, more preferably 30 kW or more is supplied from the sputtering power supply 34 to the sputtering electrode 33.
  • the amount of metal atoms such as copper emitted from the target material 32 can be increased and the kinetic energy of the metal atoms can be increased as compared with the case where a normal electric power (several kW) is applied.
  • a film having high purity and high adhesion to the object to be treated 50b can be formed.
  • the pressure in the film forming processing chamber 3 at the time of film forming (sputtering) processing is about 0.5 Pa to 5 Pa.
  • the pressure in the film forming processing chamber 3 at the time of film forming (sputtering) processing is about 0.5 Pa to 5 Pa.
  • impurities may be mixed in the film and the quality of the film may be deteriorated.
  • the object to be treated 50b is a resin, it is difficult to reduce the pressure at the time of film formation to about 0.5 Pa or less due to the outgas from the object to be treated 50b.
  • the pressure in the film forming processing chamber 3 may be set to less than 0.5 Pa, and the power applied to the sputtering electrode 33 may be set to less than 10 kW for sputtering.
  • the film formation is not limited to sputtering, but can also be performed by using vapor deposition, CVD, or the like. However, in sputtering, as compared with other film forming methods, atoms constituting the film collide with the object to be treated 50b with higher energy, which is preferable in that a film having better adhesion can be formed.
  • the object to be processed 50b formed in the film forming processing chamber 3 is conveyed from the film forming processing chamber 3 to the heat treatment chamber 4 by the second conveying mechanism 30b.
  • the opening / closing door 7b between the film forming processing chamber 3 and the heat treatment chamber 4 is opened prior to the transportation, and the opening / closing door 7b is closed after the transportation.
  • the object to be treated 50b is held by the third holding mechanism 35c in the heat treatment chamber 4.
  • the object to be processed 50b that has been conveyed and held by the third holding mechanism 35c in the heat treatment chamber 4 is referred to as an object to be processed 50c.
  • the control device 8 sends a control signal S8 to the power supply 43 for the heater, so that power is applied to the heater 42 and the object to be processed 50c is processed. Is heated. That is, heat treatment, so-called annealing, is performed on the object to be treated 50c.
  • the temperature of the object to be treated 50c is preferably 100 ° C. or higher, more preferably 300 ° C. to 550 ° C. or higher. However, it is preferable to heat the object to be treated so that the temperature of the object to be treated does not exceed the lowest temperature of its melting point, glass transition or softening point. If the heating temperature is lower than 100 ° C., a sufficient annealing effect cannot be obtained, and if the temperature exceeds the lowest of the melting point, glass transition or softening point of the object to be treated 50c, the object to be treated 50c may be deformed.
  • the heating time of the object to be treated 50c is 1 minute or more, more preferably 3 minutes or more, and in order to shorten the treatment time (improve productivity), it is preferably 1 hour or less, more preferably 20 minutes or less. good. If the heating time is less than 1 minute, a sufficient annealing effect cannot be obtained, and if the heating time exceeds 1 hour, the productivity may decrease.
  • FIG. 3 is a diagram illustrating changes in the metal film 55 formed in the above-mentioned film forming step before and after the heat treatment, and FIG. 3 (a) is formed on the front surface 50d of the object to be treated 50.
  • FIG. 3B is a partially enlarged view showing the state of the metal film 55 before the heat treatment and showing the state after the heat treatment.
  • a deformed product in which the composition of the object to be treated 50 has undergone alteration such as oxidation by the above-mentioned plasma treatment is contained.
  • the base material oxide film layer 52a is formed.
  • the deformed product that has undergone alteration such as oxidation by plasma treatment is, for example, an oxide of the composition of the treatment target 50 in the case of treatment with oxygen plasma, and the composition of the treatment target 50 in the case of treatment with nitrogen plasma. It is a nitride of things.
  • a part of the molecular structure (for example, a functional group) constituting the composition of the object to be treated 50, which is partially cleaved by the plasma treatment is also included.
  • the object to be processed 50b formed in the film forming processing chamber 3 is conveyed to the heat treatment chamber 4 without being exposed to the atmosphere, and the heat treatment chamber 4 is subjected to heat treatment (annealing) under reduced pressure. Therefore, the thin film such as copper or other metal formed in the film forming processing chamber 3 can be annealed while preventing the surface from being oxidized by oxygen in the atmosphere. As a result, the adhesion between the film formed in the film forming processing chamber 3 and the object to be processed 50c can be further improved.
  • the thickness T53 of the metal oxide layer 53 (first layer) changes depending on the temperature and time of the heat treatment (annealing). Therefore, the temperature and time of the heat treatment (annealing) can be set so that the thickness of the first layer becomes an appropriate thickness.
  • the first layer (metal oxide layer 53) and the bonding force between the base material 50 and the metal film 55 via the second layer can be further enhanced.
  • the thickness T53 of the metal oxide layer 53 (first layer) is 0.5 nm or more and 5 nm or less, the base material 50 and the metal film 55 pass through the first layer and the second layer. The bonding force can be further increased.
  • the thickness T52 of 52 is smaller than the thickness of the base material oxide film layer 52a before the heat treatment.
  • the heat-treated object 50c is carried out from the heat treatment chamber 4 (and the pressure-resistant chamber 1) by a carry-out mechanism (not shown).
  • a carry-out mechanism not shown.
  • the plasma treatment, the film formation treatment, and the heat treatment are performed in the plasma treatment chamber 2, the film formation treatment chamber 3, and the heat treatment chamber 4, which are both partitioned by the partition walls 5a and 5b in the pressure resistant chamber 1, respectively.
  • the place where each process is performed is not limited to this.
  • plasma treatment, film formation treatment, and heat treatment may be performed in the pressure resistant chamber 1 without partition walls 5a and 5b.
  • each process can be performed in a separate pressure resistant chamber.
  • the space between the plasma processing chamber 2 and the film forming processing chamber 3 and the film forming processing chamber 3 and the heat treatment chamber 4 pass through a transport path capable of decompression or gas replacement with an inert gas. It is desirable to carry it out.
  • the objects to be processed 50a and 50b processed in the previous processing chamber can be transported to the next processing chamber without being exposed to the atmosphere.
  • the first to third holding mechanisms 23, 35b, 35c for holding the objects to be processed 50a to 50c are provided with a rotation function for rotating the objects to be processed 50a to 50c, so that the objects to be processed 50a to 50c can be uniformly processed. Therefore, the objects to be processed 50a to 50b may be rotated during the processing.
  • the above processing procedure can be performed by executing a program stored in the control device 8 in advance. Alternatively, a sequence circuit may be mounted on the control device 8.
  • the object to be treated 50 is, for example, a substrate made of a material containing resin or glass, and a plurality of through holes 50h connecting the front surface 50d and the back surface 50e are formed. ..
  • FIG. 4A shows a state in which the plasma treatment described in the first film forming method described above is performed on the front surface 50d of the object 50 to be processed in the second film forming method.
  • the plasma treatment with the oxygen radical O * is performed in the plasma treatment chamber 2 of the film forming apparatus 100 shown in FIG.
  • the object to be processed 50 is inverted, and the back surface 50e is plasma-treated as shown in FIG. 4 (b).
  • the oxygen radical O * is irradiated not only on the front surface 50d and the back surface 50e of the object to be treated 50 but also on the inner surface of the through hole 50h to activate these portions.
  • the object to be processed 50 is moved from the plasma processing chamber 2 of the film forming apparatus 100 shown in FIG. 2 to the film forming processing chamber 3, and as shown in FIG. 4 (c), with respect to the front surface 50d.
  • a metal such as copper (Cu) is formed by sputtering.
  • the object to be processed 50 since the object to be processed 50 has various traveling directions due to scattering and is irradiated with copper atoms having a large kinetic energy, the inner surface of the through hole 50h is also highly adhered to.
  • a metal can be formed with the property.
  • the object to be treated 50 is inverted, and as shown in FIG. 4D, a metal is formed on the inner side surfaces of the back surface 50e and the through hole 50h.
  • the processing order of the front surface 50d and the back surface 50e in the plasma treatment and the film forming treatment may be reversed from the above-mentioned order.
  • seed layers 51d and 51e which are metal films, are formed on the front surface 50d, the back surface 50e, and the inner surface of the through hole 50h of the object to be treated 50.
  • the processed object 50 on which the seed layers 51d and 51e shown in FIG. 4 (e) are formed is referred to as a processed object 60 with a seed layer.
  • the thickness of the seed layer 51 is, for example, about 100 nm to 500 nm.
  • the diameter of the through hole 50h is 20 ⁇ m to 50 ⁇ m on the front surface 50d and the back surface 50e, and 15 ⁇ m to 20 ⁇ m on the intermediate portion between the front surface 50d and the back surface 50e. That is, the inner diameter may be large in the vicinity of the front surface 50d and the back surface 50e, and the inner diameter may be relatively small inside.
  • the object to be treated 50 (the object to be treated with the seed layer shown in FIG. 4E) is not exposed to the atmosphere from the film forming processing chamber 3 of the film forming apparatus 100 shown in FIG. 2 to the heat treatment chamber 4. It is moved and heat-treated (annealed) under reduced pressure. The heat treatment is performed under the conditions (temperature, time) shown in the first film forming method described above.
  • the seed layer 51 formed on the front surface 50d and the back surface 50e of the object to be processed 50 in the above steps can be selectively removed by photolithography to form a seed layer 51 having a predetermined pattern shape. can.
  • the seed layer 51 is not formed in the masked portion, and other than that.
  • the seed layer 51 can also be formed on the surface of the surface.
  • the material of the seed layers 51d and 51e to be formed is not limited to copper, and may be an alloy containing copper, other metals such as aluminum, chromium, and nickel, and alloys containing them.
  • FIG. 5 is a diagram showing this electrolytic plating process, in which the object 60 to be treated with the seed layer is immersed in the electrolytic solution 46 of the electrolytic plating apparatus 45, and the surface of the seed layer 51 is connected to the power supply 47.
  • the lead wire 49a is connected.
  • a counter electrode 48 is installed in the electrolytic solution 46, and a conducting wire 49b connected to the power supply 47 is connected to the counter electrode 48.
  • the electrolytic solution 46 contains copper ions as an example, and by applying a potential lower than that of the conductor 49b to the conductor 49a by a predetermined potential difference, copper is deposited on the surface of the seed layer 51 of the object 60 to be treated with the seed layer. Electroplating is performed. As the counter electrode 48, a copper plate is used as an example. Since the electrolytic solution 46 also permeates the inside of the through hole 50h and the seed layer 51 is formed on the inner surface of the through hole 50h, copper is also plated inside the through hole 50h. Also in the electrolytic plating step, the surface of the seed layer 51 can be partially plated by masking a part of the surface of the seed layer 51 in advance.
  • the printed circuit board shown in FIG. 1 is completed as an example of the object 61 with a metal film.
  • the above-mentioned plating step is not limited to the above-mentioned electroplating, and may be performed by electroless plating or in combination with electroless plating and electroless plating.
  • the plating step may be omitted.
  • the plating step in the second film forming method may be applied to the above-mentioned first film forming method. That is, in the first film forming method described above, the plating step may be performed on the object 50 to be processed after the heat treatment described above.
  • the object with a metal film is located between a base material containing resin or glass, a metal film covering at least a part of the base material, and the base material and the metal film, and is described above.
  • the adhesion strength of the first layer to the second layer is 3 [N / cm] or more.
  • the object with a metal film according to another aspect is the object with a metal film according to the first item, wherein the thickness of the second layer is 2 nm or more and 5 nm or less.
  • the adhesion of the metal film 55 to the base material 50 via the first layer and the second layer can be further enhanced.
  • the object with a metal film according to another aspect is the object with a metal film according to the first item, wherein the thickness of the first layer is 0.5 nm or more and 5 nm or less.
  • the adhesion of the metal film 55 to the base material 50 via the first layer and the second layer can be further enhanced.
  • the object with a metal film according to another aspect is the object with a metal film according to the first item, wherein the thickness of the second layer is 2 nm or more and 5 nm or less, and the first item is described.
  • the thickness of the layer is 0.5 nm or more and 5 nm or less.
  • the object with a metal film according to another aspect is the object with a metal film according to any one of items 1 to 4, wherein the base material is a flat plate having a through hole.
  • the metal film, the first layer, and the second layer are provided on at least a part of the inner surface of the through hole.
  • the object with a metal film according to another aspect is the object with a metal film according to the fifth aspect, wherein the main component of the metal film is copper. As a result, it is possible to realize an object with a metal film, which is a printed circuit board having low electrical resistance.
  • the object with a metal film according to another aspect is the object with a metal film according to any one of items 1 to 4, wherein the adhesion strength of the metal film to the base material is high. 3, [N / cm] or more. Therefore, it is possible to realize an object with a metal film having a metal film having high peel resistance.
  • 61 Object with metal film, 50, 50a to 50d: Base material (object to be treated), 51, 51d, 51e: Seed layer, 52: Base material oxide film layer (second layer), 53: Metal oxide layer ( 1st layer), 54, 54d, 54e: metal plating layer, 55: metal film, 100: film forming apparatus, 1: pressure resistant chamber, 2: plasma processing room, 3: film forming processing room, 4: heat treatment room, 8 : Control device, 15: Plasma source, 16: Reaction gas supply pipe, 17: Reaction gas supply device, 18: Control valve, 19: Plasma power supply, 23: First holding mechanism, 25a: First pressure reducing pump, 25b : 2nd decompression pump, 25c: 3rd decompression pump, 33: Sputter electrode, 34: Spatter power supply, 35b: 2nd holding mechanism, 35c: 3rd holding mechanism

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An object with a metal film is provided with a substrate containing a resin or a glass, a metal film covering at least part of the substrate, a first layer that is between the substrate and the metal film and contains an oxide of a metal as the major component, the metal being the same as a metal constituting the metal film, and a second layer that is between the substrate and the first layer and contains an oxide of a composition as the major component, the composition being the same as a composition of the substrate. Adhesive strength of the first layer to the second layer is at least 3 N/cm.

Description

金属膜付物体Object with metal film
 本発明は、金属膜付物体に関する。 The present invention relates to an object with a metal film.
 ガラスなどの無機材料からなる絶縁体の表面に金属めっきにより導電膜を形成するために、絶縁体の表面に無電解めっきによりシード層と呼ばれる薄い導電層を形成し、このシード層を電極としてシード層の上に金属を電解めっきすることが行われている。
 絶縁体の表面へのシード層の形成方法として、絶縁体の表面にエッチング処理等で微小な凹凸を形成し、そこにパラジウム等の触媒を添加したうえで、無電解めっきを行うことが知られている(特許文献1)。
In order to form a conductive film by metal plating on the surface of an insulator made of an inorganic material such as glass, a thin conductive layer called a seed layer is formed on the surface of the insulator by electroless plating, and this seed layer is used as an electrode for seeding. Electroplating of metal on top of the layer is performed.
As a method of forming a seed layer on the surface of an insulator, it is known that minute irregularities are formed on the surface of the insulator by etching or the like, a catalyst such as palladium is added thereto, and then electroless plating is performed. (Patent Document 1).
日本国特許5615881号公報Japanese Patent No. 5615881
 従来の金属膜付物体は、ミラー部材、ライト部材、ドアハンドル部材、アンテナ部材といった車両部材への採用や、ノートPCや携帯電話(スマートフォン)といった意匠品への採用が期待されているが、基材と金属膜との密着性が十分でなく、剥離が生じ易いという課題があった。さらに電子回路における電流の流れる回路部への採用も同様に期待されているが、剥離が課題となっている。 Conventional objects with metal films are expected to be used in vehicle members such as mirror members, light members, door handle members, and antenna members, and in design products such as notebook PCs and mobile phones (smartphones). There is a problem that the adhesion between the material and the metal film is not sufficient and peeling is likely to occur. Further, it is also expected to be adopted in a circuit part in which a current flows in an electronic circuit, but peeling is an issue.
 第1の態様による金属膜付物体は、樹脂またはガラスを含む基材と、前記基材の少なくとも一部を覆う金属膜と、前記基材と前記金属膜との間にあって、前記金属膜を構成する金属の酸化物を主成分とする第1層と、前記基材と前記第1層との間にあって、前記基材の組成物の酸化物を主成分とする第2層と、を備え、前記第2層に対する前記第1層の密着強度が3[N/cm]以上である。 The object with a metal film according to the first aspect is located between a base material containing resin or glass, a metal film covering at least a part of the base material, and the base material and the metal film, and constitutes the metal film. A first layer containing an oxide of the metal as a main component and a second layer between the base material and the first layer containing the oxide of the composition of the base material as a main component are provided. The adhesion strength of the first layer to the second layer is 3 [N / cm] or more.
 本発明によれば、樹脂やガラス等の基材に対して密着性の高い金属膜を有する、金属膜付物体を実現できる。 According to the present invention, it is possible to realize an object with a metal film having a metal film having high adhesion to a base material such as resin or glass.
図1は、実施形態の金属膜付物体を説明する図。図1(a)は金属膜付物体の斜視図を示し、図1(b)は金属膜付物体の断面図を示し、図1(c)は金属膜付物体の拡大断面図を示す。FIG. 1 is a diagram illustrating an object with a metal film according to an embodiment. 1 (a) shows a perspective view of an object with a metal film, FIG. 1 (b) shows a cross-sectional view of the object with a metal film, and FIG. 1 (c) shows an enlarged cross-sectional view of the object with a metal film. 図2は、成膜装置の断面図。FIG. 2 is a cross-sectional view of the film forming apparatus. 図3は、熱処理の前後での金属膜の変化を説明する図であり、図3(a)は熱処理前の処理対象物および金属膜の状態を示す図、図3(b)は熱処理後の処理対象物および金属膜の状態を示す図。3A and 3B are views for explaining changes in the metal film before and after the heat treatment, FIG. 3A is a diagram showing the state of the object to be treated and the metal film before the heat treatment, and FIG. 3B is a diagram after the heat treatment. The figure which shows the state of a processing object and a metal film. 図4は、成膜方法の例を示す図。FIG. 4 is a diagram showing an example of a film forming method. 図5は、めっき層形成の工程を示す図。FIG. 5 is a diagram showing a process of forming a plating layer.
(金属膜付物体の実施形態)
 以下、図1を参照して、実施形態の金属膜付物体61について説明する。図1(a)は金属膜付物体61の斜視図であり、金属膜付物体61は、一例として平板形状のガラスまたは樹脂からなる基材50を含むプリント基板である。基材50のおもて面50dの一部には、配線部材としての金属膜55が形成されている。
(Implementation of an object with a metal film)
Hereinafter, the metal film-attached object 61 of the embodiment will be described with reference to FIG. FIG. 1A is a perspective view of an object 61 with a metal film, and the object 61 with a metal film is, for example, a printed circuit board containing a base material 50 made of flat glass or resin. A metal film 55 as a wiring member is formed on a part of the front surface 50d of the base material 50.
 図1(b)は、おもて面50dに垂直な断面における金属膜付物体61の断面図を示す。平板である基材50には、上述のとおりおもて面50dに金属膜55が形成されているのみでなく、裏面50eの少なくとも一部にも金属膜55が形成されている。また、平板である基材50のおもて面50dの一部には、おもて面50dから裏面50eまで貫通する貫通孔50hが形成されており、かつ少なくとも一部の貫通孔50hの内側面には、金属膜55と同じ材料から成る金属55hが形成されている。貫通孔50hの内部の全てに上記の金属55hが充填されていても良い。 FIG. 1B shows a cross-sectional view of an object 61 with a metal film in a cross section perpendicular to the front surface 50d. On the flat base material 50, not only the metal film 55 is formed on the front surface 50d as described above, but also the metal film 55 is formed on at least a part of the back surface 50e. Further, a through hole 50h penetrating from the front surface 50d to the back surface 50e is formed in a part of the front surface 50d of the base material 50 which is a flat plate, and at least among a part of the through holes 50h. A metal 55h made of the same material as the metal film 55 is formed on the side surface. The metal 55h may be filled in the entire inside of the through hole 50h.
 図1(c)は、図1(b)に破線の四角形で示した領域62における、金属膜付物体61の、基材50のおもて面50d近傍の拡大断面図を示す。実施形態の金属膜付物体61の基材50のおもて面50dには、おもて面50dから近い順に、基材酸化膜層52と、金属酸化物層53と、シード層51dと、めっき層54dとが形成されている。基材酸化膜層52は、基材50に含まれる成分の酸化物を主成分とする層であり、金属酸化物層53は、シード層51dに含まれる金属の酸化物を主成分とする層である。 FIG. 1 (c) shows an enlarged cross-sectional view of the metal film-attached object 61 in the vicinity of the front surface 50d of the base material 50 in the region 62 shown by the broken line quadrangle in FIG. 1 (b). On the front surface 50d of the base material 50 of the metal film-attached object 61 of the embodiment, the base material oxide film layer 52, the metal oxide layer 53, and the seed layer 51d are arranged in order from the front surface 50d. A plating layer 54d is formed. The base material oxide film layer 52 is a layer containing an oxide of a component contained in the base material 50 as a main component, and the metal oxide layer 53 is a layer containing a metal oxide contained in the seed layer 51d as a main component. Is.
 シード層51dは、電解めっきによりめっき層54dを形成する際に使用する導電層であり、銅等の金属をスパッタ等の成膜方法で、おもて面50dに成膜したものである。
 めっき層54dは、シード層51dを電極として銅等の金属を電解めっき等により成膜したものである。
The seed layer 51d is a conductive layer used when forming the plating layer 54d by electrolytic plating, and is formed by forming a metal such as copper on the front surface 50d by a film forming method such as sputtering.
The plating layer 54d is formed by forming a metal such as copper by electrolytic plating or the like with the seed layer 51d as an electrode.
 図1(c)は、一例として、基材50のおもて面50dの拡大断面図を示しているが、基材50の裏面50eについても、その構造は、上下が反転することを除いては、図1(c)に示した構造と同様である。裏面50eに形成されたシード層は後述するようにシード層51eと呼び、裏面50eに形成されためっき層は後述するようにめっき層54eと呼ぶ。 FIG. 1C shows an enlarged cross-sectional view of the front surface 50d of the base material 50 as an example, but the structure of the back surface 50e of the base material 50 is also upside down, except that the structure is upside down. Is similar to the structure shown in FIG. 1 (c). The seed layer formed on the back surface 50e is referred to as a seed layer 51e as described later, and the plating layer formed on the back surface 50e is referred to as a plating layer 54e as described later.
 本明細書では、シード層51dとシード層51eとを、合わせて、またはそれぞれ、シード層51とも呼ぶ。また、めっき層54dとめっき層54eとを、合わせて、またはそれぞれ、めっき層54とも呼ぶ。
 本明細書では、シード層51とめっき層54とを、合わせて、またはそれぞれ、金属膜55とも呼ぶ。なお、金属膜55は、上述のシード層51とめっき層54とを、ともに含むものに限られるわけではなく、めっき層54が省略されたものであっても良い。
In the present specification, the seed layer 51d and the seed layer 51e are also referred to as a seed layer 51 together or respectively. Further, the plating layer 54d and the plating layer 54e are also referred to as a plating layer 54 together or respectively.
In the present specification, the seed layer 51 and the plating layer 54 are also referred to as a metal film 55 together or respectively. The metal film 55 is not limited to the one including both the seed layer 51 and the plating layer 54 described above, and the plating layer 54 may be omitted.
 本明細書では、基材50と金属膜55との間に形成されている金属酸化物層53を、第1層とも呼ぶ。また、第1層と基材50との間に形成されている基材酸化膜層52を、第2層とも呼ぶ。
 なお、貫通孔50hの内部にもシード層51は形成されており、基材50の貫通孔50hの内側面とシード層51との間にも上述の第1層および第2層が形成されている。
 なお、金属酸化物層53とは、金属膜55を構成する金属の酸化物が、一例として重量比で80%以上含まれているものである。
In the present specification, the metal oxide layer 53 formed between the base material 50 and the metal film 55 is also referred to as a first layer. Further, the base material oxide film layer 52 formed between the first layer and the base material 50 is also referred to as a second layer.
The seed layer 51 is also formed inside the through hole 50h, and the above-mentioned first layer and second layer are also formed between the inner surface of the through hole 50h of the base material 50 and the seed layer 51. There is.
The metal oxide layer 53 contains, for example, 80% or more of the metal oxide constituting the metal film 55 by weight.
基材50がガラス、シード層51が300nmの厚さの銅、第2層(基材酸化膜層52である酸化珪素)の厚さが2.2nmの場合において、第1層(金属酸化物層53である酸化銅)が存在しない場合の密着強度の実測値は、0.1[N/cm]以下である。これに対し、基材50とシード層51との間に第1層(酸化銅)および第2層(酸化珪素)が形成されている場合の密着強度の実測値は、3~5.5[N/cm]に向上することが判明した。 When the base material 50 is glass, the seed layer 51 is copper having a thickness of 300 nm, and the thickness of the second layer (silicon oxide which is the base material oxide film layer 52) is 2.2 nm, the first layer (metal oxide) is used. The measured value of the adhesion strength in the absence of the layer 53 (copper oxide) is 0.1 [N / cm] or less. On the other hand, the measured value of the adhesion strength when the first layer (copper oxide) and the second layer (silicon oxide) are formed between the base material 50 and the seed layer 51 is 3 to 5.5 [. It turned out to improve to N / cm].
 すなわち、実施形態の金属膜付物体61においては、基材50とシード層51との間に第1層(金属酸化物層53)および第2層(基材酸化膜層52)が形成されていることにより、基材50とシード層51との間の密着強度が3[N/cm]以上に向上している。従って、第2層52に対する前記第1層53の密着強度についても、3[N/cm]以上の強度が達成されている。 そして、上記のように密着強度が担保されているため、金属膜55を導電層または反射膜として安定的に使用することが可能となる。 That is, in the object with a metal film 61 of the embodiment, the first layer (metal oxide layer 53) and the second layer (base material oxide film layer 52) are formed between the base material 50 and the seed layer 51. As a result, the adhesion strength between the base material 50 and the seed layer 51 is improved to 3 [N / cm] or more. Therefore, the adhesion strength of the first layer 53 to the second layer 52 is also 3 [N / cm] or more. Since the adhesion strength is guaranteed as described above, the metal film 55 can be stably used as the conductive layer or the reflective film.
 第2層(基材酸化膜層52)の厚さは、一例として、2nm以上、かつ5nm以下とすることができる。第2層の厚さが、2nm以上、かつ5nm以下であるとき、第1層および第2層を介しての基材50と金属膜55との接合力を、一層高めることができる。
 第1層(金属酸化物層53)の厚さは、一例として、0.5nm以上、かつ5nm以下である。第1層の厚さが、0.5nm以上、かつ5nm以下であるとき、第1層および第2層を介しての基材50と金属膜55との接合力をさらに高めることができる。
The thickness of the second layer (base material oxide film layer 52) can be, for example, 2 nm or more and 5 nm or less. When the thickness of the second layer is 2 nm or more and 5 nm or less, the bonding force between the base material 50 and the metal film 55 via the first layer and the second layer can be further enhanced.
The thickness of the first layer (metal oxide layer 53) is, for example, 0.5 nm or more and 5 nm or less. When the thickness of the first layer is 0.5 nm or more and 5 nm or less, the bonding force between the base material 50 and the metal film 55 via the first layer and the second layer can be further enhanced.
 なお、シード層51d、51eおよびめっき層54d,54eに含まれる金属は、上述の銅に限られるわけではなく、銅を含む合金や、ニッケル、アルミニウム、クロム等の他の金属およびそれらを含む合金であっても良い。金属膜55は、基材50の片面等の一部の面のみに形成されていても良く、基材50の前面に渡って形成されていても良い。基材50には貫通孔50hが形成されていなくても良い。
 なお、金属膜付物体61は、上述のプリント基板に限定されるものではなく、例えば、表面に配線層形成されている電子部品、または、光学部品あるいは装飾品であっても良く、任意の形状および任意の用途の物体であって構わない。
The metals contained in the seed layers 51d and 51e and the plating layers 54d and 54e are not limited to the above-mentioned copper, and alloys containing copper, other metals such as nickel, aluminum and chromium, and alloys containing them. It may be. The metal film 55 may be formed only on a part of the base material 50 such as one side, or may be formed over the front surface of the base material 50. The base material 50 does not have to have a through hole 50h formed.
The object 61 with a metal film is not limited to the above-mentioned printed circuit board, and may be, for example, an electronic component having a wiring layer formed on its surface, an optical component, or an ornament, and has an arbitrary shape. And it can be an object of any purpose.
(成膜装置)
 以下、図2を参照して実施形態の金属膜付物体61の製造に適した成膜装置について説明する。図2は成膜装置100を示す断面図である。
 成膜装置100は耐圧構造の耐圧チャンバ1を備え、耐圧チャンバ1の内部には、隔壁5a、5bにより隔てられたプラズマ処理室2、成膜処理室3、および熱処理室4を備えている。隔壁5aには、プラズマ処理室2および成膜処理室3をつなぐ開口部6aが設けられ、開口部6aは、開閉扉7aにより開閉可能となっている。開口部6aと開閉扉7aは、プラズマ処理室2と成膜処理室3とを連通、遮断する開閉機構成を構成している。隔壁5bには、成膜処理室3および熱処理室4をつなぐ開口部6bが設けられ、開口部6bは、開閉扉7bにより開閉可能となっている。開口部6bと開閉扉7bは、成膜処理室3と熱処理室4とを連通、遮断する開閉機構成を構成している。
 成膜装置100はさらに制御装置8を備えている。
(Film formation equipment)
Hereinafter, a film forming apparatus suitable for manufacturing the object 61 with a metal film of the embodiment will be described with reference to FIG. FIG. 2 is a cross-sectional view showing the film forming apparatus 100.
The film forming apparatus 100 includes a pressure-resistant chamber 1 having a pressure-resistant structure, and inside the pressure-resistant chamber 1, a plasma processing chamber 2, a film-forming processing chamber 3, and a heat treatment chamber 4 separated by partition walls 5a and 5b are provided. The partition wall 5a is provided with an opening 6a connecting the plasma processing chamber 2 and the film forming processing chamber 3, and the opening 6a can be opened and closed by the opening / closing door 7a. The opening 6a and the opening / closing door 7a form an opening / closing device structure that communicates with and shuts off the plasma processing chamber 2 and the film forming processing chamber 3. The partition wall 5b is provided with an opening 6b connecting the film forming processing chamber 3 and the heat treatment chamber 4, and the opening 6b can be opened and closed by the opening / closing door 7b. The opening 6b and the opening / closing door 7b form an opening / closing device structure that communicates and shuts off the film forming processing chamber 3 and the heat treatment chamber 4.
The film forming apparatus 100 further includes a control device 8.
 プラズマ処理室2内には、プラズマ発生源15が備えられている。プラズマ発生源15としては、高密度プラズマを発生する一般的なプラズマ発生源を用いることができる。プラズマ発生源15には、電力供給線20を介してプラズマ用電源19から電力が供給されるとともに、接地配線21により接地されている。プラズマ用電源19は、たとえば、RF周波数(例えば13.56MHz)の交流または直流の電圧(主に負電圧)を発生するものが採用される。 A plasma generation source 15 is provided in the plasma processing chamber 2. As the plasma generation source 15, a general plasma generation source that generates high-density plasma can be used. The plasma generation source 15 is supplied with electric power from the plasma power supply 19 via the power supply line 20 and is grounded by the ground wiring 21. As the plasma power supply 19, for example, a power source 19 that generates an AC or DC voltage (mainly a negative voltage) having an RF frequency (for example, 13.56 MHz) is adopted.
 以下では、成膜装置100の処理対象(成膜対象)を処理対象物50と呼ぶ。ただし、混同を避けるために、処理対象物50が、プラズマ処理室2内にあるときは処理対象物50aと、成膜処理室3内にあるときは処理対象物50bと、熱処理室4内にあるときは処理対象物50を処理対象物50cと、それぞれ呼ぶ。 Hereinafter, the processing target (deposition target) of the film forming apparatus 100 is referred to as a processing target object 50. However, in order to avoid confusion, when the processing object 50 is in the plasma processing chamber 2, it is in the processing object 50a, when it is in the film forming processing chamber 3, it is in the processing object 50b, and in the heat treatment chamber 4. In some cases, the processing target object 50 is referred to as a processing target object 50c, respectively.
 プラズマ処理室2内のプラズマ発生源15とは反対側には、プラズマ処理の処理対象物50aを保持するための第1保持機構23が設けられている。
 また、プラズマ処理室2には、減圧用配管26を介して第1減圧ポンプ25aが接続されており、減圧機構としての第1減圧ポンプ25aおよび減圧用配管26により、プラズマ処理室2の内部を減圧することができる。
 第1減圧ポンプ25aは、制御装置8からの制御信号S3によって制御される。
 プラズマ発生源15と第1保持機構23とは、プラズマ処理部と解釈することもできる。
On the side of the plasma processing chamber 2 opposite to the plasma generation source 15, a first holding mechanism 23 for holding the processing object 50a of the plasma processing is provided.
Further, a first decompression pump 25a is connected to the plasma processing chamber 2 via a decompression pipe 26, and the inside of the plasma processing chamber 2 is provided by the first decompression pump 25a as a decompression mechanism and the decompression pipe 26. The pressure can be reduced.
The first decompression pump 25a is controlled by the control signal S3 from the control device 8.
The plasma generation source 15 and the first holding mechanism 23 can also be interpreted as a plasma processing unit.
 成膜装置100は、上記密閉空間22に接続された反応ガス供給管16と、耐圧チャンバ1の外側に延在している反応ガス供給管16に接続されている反応ガス供給器17と、反応ガス供給器17から供給される反応ガスの流量を調節して密閉空間22内の圧力を制御する制御弁18とをさらに備えている。制御弁18の開度の調整は、制御装置8からの制御信号S1によって制御される。図2の例では、制御弁18は反応ガス供給器17に設けられている。反応ガス供給器17には、例えば工場配管28を介して反応ガスが供給されるが、ガスボンベから供給されるものとしても良い。 The film forming apparatus 100 reacts with the reaction gas supply pipe 16 connected to the closed space 22 and the reaction gas supply device 17 connected to the reaction gas supply pipe 16 extending outside the pressure resistant chamber 1. A control valve 18 for adjusting the flow rate of the reaction gas supplied from the gas supply device 17 to control the pressure in the closed space 22 is further provided. The adjustment of the opening degree of the control valve 18 is controlled by the control signal S1 from the control device 8. In the example of FIG. 2, the control valve 18 is provided in the reaction gas supply device 17. The reaction gas is supplied to the reaction gas supply device 17 via, for example, a factory pipe 28, but it may be supplied from a gas cylinder.
 耐圧チャンバ1の内部の成膜処理室3には、処理対象物50bを保持するための第2保持機構35b、および電極部31とターゲット材料32とからなるスパッタ電極33が備えられている。ターゲット材料32としては、一例として銅が使用される。ターゲット材料32としては、アルミニウムや他の金属や上記の金属を含む合金を用いることもできる。スパッタ電極33は、スパッタ用電源34に接続されている。 The film forming processing chamber 3 inside the pressure resistant chamber 1 is provided with a second holding mechanism 35b for holding the object to be processed 50b, and a sputter electrode 33 composed of an electrode portion 31 and a target material 32. As the target material 32, copper is used as an example. As the target material 32, an alloy containing aluminum, another metal, or the above-mentioned metal can also be used. The sputter electrode 33 is connected to a sputter power supply 34.
 スパッタ用電源34は、スパッタ電極33に対し10kW以上、さらに望ましくは30kW以上の電力を投入することができる。スパッタ用電源34は、制御装置8からの制御信号S5によって制御される。
 スパッタ電極33および第2保持機構35bは、成膜部と解釈することもできる。
 スパッタ電極33またはその電極部31は、処理対象物50b上に成膜する膜の材料を供給する成膜源と解釈することもできる。
The sputter power supply 34 can supply 10 kW or more, more preferably 30 kW or more, to the sputter electrode 33. The sputtering power supply 34 is controlled by the control signal S5 from the control device 8.
The sputter electrode 33 and the second holding mechanism 35b can also be interpreted as a film forming portion.
The sputtering electrode 33 or the electrode portion 31 thereof can also be interpreted as a film forming source that supplies a film material to be formed on the object to be processed 50b.
 成膜処理室3には、減圧用配管37を介して第2減圧ポンプ25bが接続されており、減圧機構としての第2減圧ポンプ25bおよび減圧用配管37により、成膜処理室3の内部を減圧することができる。第2減圧ポンプ25bは、制御装置8からの制御信号S4によって制御される。
 成膜装置100はさらに、成膜処理室3内にアルゴン等の不活性ガスを供給する不活性ガス供給管41と、不活性ガス供給管41に接続されている不活性ガス供給器38と、不活性ガス供給器38から供給される不活性ガスの流量を調節して成膜処理室3内の圧力を制御する制御弁39とを備えている。図2の例では、制御弁39は不活性ガス供給器38に設けられている。制御弁39の開度の調整は、制御装置8からの制御信号S6によって制御される。不活性ガス供給器38には、例えば工場配管40を介して不活性ガスが供給されるが、ガスボンベから供給されるものとしても良い。
A second decompression pump 25b is connected to the film forming processing chamber 3 via a decompression pipe 37, and the inside of the film forming processing chamber 3 is provided by the second decompression pump 25b as a decompression mechanism and the decompression pipe 37. The pressure can be reduced. The second decompression pump 25b is controlled by the control signal S4 from the control device 8.
The film forming apparatus 100 further includes an inert gas supply pipe 41 for supplying an inert gas such as argon into the film forming processing chamber 3, an inert gas supply device 38 connected to the inert gas supply pipe 41, and the like. It is provided with a control valve 39 that controls the pressure in the film forming processing chamber 3 by adjusting the flow rate of the inert gas supplied from the inert gas supply device 38. In the example of FIG. 2, the control valve 39 is provided on the inert gas supply device 38. The adjustment of the opening degree of the control valve 39 is controlled by the control signal S6 from the control device 8. The inert gas is supplied to the inert gas supply device 38 via, for example, the factory pipe 40, but it may be supplied from a gas cylinder.
 耐圧チャンバ1の内部の熱処理室4には、処理対象物50cを保持するための第3保持機構35c、第3保持機構35cに保持された処理対象物50cを加熱し熱処理するためのヒータ42が備えられている。ヒータ42には、いわゆるアニール処理に使用されるランプやシーズヒータ等を用いることができる。
 ヒータ42には、耐圧チャンバ1の外部に配置されるヒータ用電源43から、電力が供給される。ヒータ用電源43は、制御装置8からの制御信号S8によって制御される。
In the heat treatment chamber 4 inside the pressure-resistant chamber 1, a third holding mechanism 35c for holding the processing object 50c and a heater 42 for heating and heat-treating the processing object 50c held by the third holding mechanism 35c are provided. It is equipped. As the heater 42, a lamp, a sheathed heater or the like used for so-called annealing treatment can be used.
Electric power is supplied to the heater 42 from the heater power supply 43 arranged outside the pressure-resistant chamber 1. The heater power supply 43 is controlled by the control signal S8 from the control device 8.
 熱処理室4には、減圧用配管44を介して第3減圧ポンプ25cが接続されており、減圧機構としての第3減圧ポンプ25cおよび減圧用配管44により、熱処理室4の内部を減圧することができる。第3減圧ポンプ25cは、制御装置8からの制御信号S7によって制御される。
 ヒータ42および第3保持機構35cは、熱処理部と解釈することもできる。
A third decompression pump 25c is connected to the heat treatment chamber 4 via a decompression pipe 44, and the inside of the heat treatment chamber 4 can be decompressed by the third decompression pump 25c as a decompression mechanism and the decompression pipe 44. can. The third decompression pump 25c is controlled by the control signal S7 from the control device 8.
The heater 42 and the third holding mechanism 35c can also be interpreted as a heat treatment unit.
 成膜装置100は、プラズマ処理が終了した処理対象物50aを、プラズマ処理室2内の第1保持機構23から、大気に晒されることなく成膜処理室3内の第2保持機構35bに搬送する、第1搬送機構30aを有している。
 また、成膜装置100は、成膜処理が終了した処理対象物50bを、成膜処理室3内の第2保持機構35bから、大気に晒されることなく熱処理室4内の第3保持機構35cに搬送する、第2搬送機構30bを有している。
The film forming apparatus 100 conveys the processing object 50a for which the plasma processing has been completed from the first holding mechanism 23 in the plasma processing chamber 2 to the second holding mechanism 35b in the film forming processing chamber 3 without being exposed to the atmosphere. It has a first transport mechanism 30a.
Further, in the film forming apparatus 100, the processing object 50b for which the film forming process has been completed is not exposed to the atmosphere from the second holding mechanism 35b in the film forming processing chamber 3, and the third holding mechanism 35c in the heat treatment chamber 4 is not exposed. It has a second transport mechanism 30b for transporting to.
 成膜装置100において、成膜処理を行う際には、成膜すべき処理対象物50aは不図示の搬入機構によりプラズマ処理室2内に搬入されて第1保持機構23に保持される。不図示の搬入機構は、ロードロック室を有するものであることが好ましい。処理対象物50aの搬入時には、プラズマ処理室2と成膜処理室3の間の開閉扉7aは閉じておく。 When the film forming process is performed in the film forming apparatus 100, the object to be processed 50a to be filmed is carried into the plasma processing chamber 2 by a carry-in mechanism (not shown) and held by the first holding mechanism 23. The carry-in mechanism (not shown) preferably has a load lock chamber. When the object to be processed 50a is brought in, the opening / closing door 7a between the plasma processing chamber 2 and the film forming processing chamber 3 is closed.
 制御装置8が第1減圧ポンプ25aに制御信号S3を送ることによりプラズマ処理室2内が減圧され、制御装置8が制御弁18に制御信号S1を送ることによりプラズマ発生源15内に所定の圧力の反応ガスが供給される。そして、制御装置8がプラズマ用電源19に制御信号S2を送ることにより、プラズマ発生源15にはプラズマ用電源19により電力供給線20を介してRF周波数(例えば13.56MHz)の交流または直流の電圧(主に負電圧)が印加される。これにより、プラズマ発生源15内で放電を発生させ、放電により生じた電子が反応ガスをプラズマ化する。 When the control device 8 sends the control signal S3 to the first decompression pump 25a, the pressure inside the plasma processing chamber 2 is reduced, and when the control device 8 sends the control signal S1 to the control valve 18, a predetermined pressure is set in the plasma generation source 15. Reaction gas is supplied. Then, the control device 8 sends the control signal S2 to the plasma power supply 19, so that the plasma generation source 15 is supplied with the plasma power supply 19 via the power supply line 20 for alternating current or direct current of RF frequency (for example, 13.56 MHz). A voltage (mainly a negative voltage) is applied. As a result, an electric discharge is generated in the plasma generation source 15, and the electrons generated by the electric discharge turn the reaction gas into plasma.
 プラズマ発生源15で発生したプラズマは、プラズマ処理室2内を図2中で右から左に距離dだけドリフトして、処理対象物50aに達する。
 プラズマ発生源15から放出された段階ではプラズマは高温であるが、プラズマ処理室2内をドリフト中に、プラズマ処理室2内に存在する反応ガスとの衝突などにより熱エネルギーを失うため、処理対象物50aに達した時点ではプラズマの温度は低下している。
 従って、成膜装置100では、プラズマ処理中の処理対象物50aの高温化を抑制することができる。
The plasma generated by the plasma generation source 15 drifts in the plasma processing chamber 2 from right to left by a distance d in FIG. 2 and reaches the processing object 50a.
Although the plasma is hot at the stage of being emitted from the plasma generation source 15, heat energy is lost due to collision with the reaction gas existing in the plasma processing chamber 2 while drifting in the plasma processing chamber 2, so that the processing target is When the object 50a is reached, the temperature of the plasma has dropped.
Therefore, in the film forming apparatus 100, it is possible to suppress the temperature increase of the processing object 50a during the plasma processing.
 また、反応ガスとの衝突などにより、プラズマの一部は、プラズマ(帯電状態)から活性化状態(ラジカル状態)に変化している。よって、処理対象物50aは、反応ガスのプラズマのみではなく、活性化状態(ラジカル状態)の反応ガスにも晒されることになる。本明細書では、プラズマ状態の反応ガスと活性化状態(ラジカル状態)の反応ガスを、高反応性化された反応ガスと呼ぶ。また、プラズマ状態の反応ガスとラジカル状態の反応ガスにより、処理対象物50aの表面を活性化することをプラズマ処理と呼ぶ。 In addition, part of the plasma has changed from the plasma (charged state) to the activated state (radical state) due to collision with the reaction gas. Therefore, the object to be treated 50a is exposed not only to the plasma of the reaction gas but also to the reaction gas in the activated state (radical state). In the present specification, the reaction gas in the plasma state and the reaction gas in the activated state (radical state) are referred to as highly reactive reaction gases. Further, activating the surface of the object to be treated 50a by the reaction gas in the plasma state and the reaction gas in the radical state is called plasma treatment.
 プラズマ処理により、処理対象物50aの表面は活性化され、金属原子との結合性が向上する。
 プラズマ処理が終了した処理対象物50aは、プラズマ処理室2内に設けられている第1搬送機構30aによりプラズマ処理室2内の第1保持機構23から、大気に晒されることなく成膜処理室3内の第2保持機構35bに搬送される。
The plasma treatment activates the surface of the object to be treated 50a and improves the bondability with the metal atom.
The processing object 50a for which the plasma processing has been completed is not exposed to the atmosphere from the first holding mechanism 23 in the plasma processing chamber 2 by the first transport mechanism 30a provided in the plasma processing chamber 2. It is conveyed to the second holding mechanism 35b in 3.
 処理対象物50bが成膜処理室3内の第2保持機構35bに保持されると、制御装置8がスパッタ用電源34に制御信号S5を送ることにより、スパッタ電極33に大電力が投入される。この電力により成膜処理室3内のスパッタ電極33近傍の不活性ガスがイオン化され、スパッタ電極33の電場により加速されターゲット材料32に衝突し、ターゲット材料32を構成する銅または他の金属の原子が成膜処理室3内に放出され、処理対象物50b上に堆積する。
 すなわち、上述のプラズマ処理により活性化されている処理対象物50bの表面に対し、その活性化された部分が大気中の水蒸気や酸素等により不活性化されることがないまま金属原子が成膜されるため、処理対象物50bとの結合性の高い、すなわち密着性の高い金属膜を成膜することができる。
When the object to be processed 50b is held by the second holding mechanism 35b in the film forming processing chamber 3, the control device 8 sends the control signal S5 to the sputtering power supply 34, so that a large amount of electric power is applied to the sputtering electrode 33. .. By this power, the inert gas in the vicinity of the sputtering electrode 33 in the film forming processing chamber 3 is ionized, accelerated by the electric field of the sputtering electrode 33 and collides with the target material 32, and atoms of copper or other metal constituting the target material 32. Is released into the film forming processing chamber 3 and deposited on the object to be processed 50b.
That is, metal atoms are formed on the surface of the object to be treated 50b activated by the above-mentioned plasma treatment without the activated portion being inactivated by water vapor, oxygen, or the like in the atmosphere. Therefore, it is possible to form a metal film having high bondability with the object to be treated, that is, high adhesion.
 従来のスパッタ装置では、成膜する膜の純度を高めるために、スパッタ装置内の圧力を0.1Pa程度に減圧して成膜を行うのが一般的である。スパッタ装置内の圧力がこれより高いと、スパッタ装置内に残留する、あるいは処理対象物から放出される水等の不純物の除去が困難であり、その結果、不純物が膜に混入し膜の品質が低下するためである。
 しかし、特に処理対象物50bが樹脂である場合には、処理対象物50bから放出される不純物の量が多く、かつ、長時間にわたって不純物を放出し続けるため、従来のスパッタ装置のように、0.1Pa程度に減圧して成膜を行うことは困難である。
In a conventional sputtering apparatus, in order to increase the purity of the film to be formed, the pressure inside the sputtering apparatus is generally reduced to about 0.1 Pa to perform the film formation. If the pressure in the sputtering apparatus is higher than this, it is difficult to remove impurities such as water remaining in the sputtering apparatus or released from the object to be treated, and as a result, impurities are mixed in the membrane and the quality of the membrane is improved. This is because it decreases.
However, especially when the object to be treated 50b is a resin, the amount of impurities released from the object to be processed 50b is large and the impurities are continuously released for a long period of time. It is difficult to reduce the pressure to about 1 Pa to form a film.
 そこで、成膜装置100では、処理対象物50bから放出される不純物の量が多くても高性能な膜を成膜可能とするために、スパッタ用電源34として、スパッタ電極33に対し10kW以上、さらに望ましくは30kW以上の電力を投入することができるものを備えている。 Therefore, in the film forming apparatus 100, in order to enable film formation of a high-performance film even if the amount of impurities released from the object to be processed 50b is large, the sputtering power source 34 is 10 kW or more with respect to the sputtering electrode 33. More preferably, it is provided with a device capable of inputting a power of 30 kW or more.
 スパッタ電極33投入される電力が大電力であると、通常の10kw未満の電力が投入される場合に比べて、ターゲット材料32から放出される銅等の金属原子の量が増大するとともに、金属原子の持つ運動エネルギーも増大する。この結果、成膜装置100では、成膜処理室3内の不純物の濃度が金属原子の濃度に対して相対的に低下することで、処理対象物50bに成膜される膜の純度が向上する。さらに、処理対象物50bに衝突する金属原子の運動エネルギーが大きいことにより、処理対象物50bを構成する分子と金属原子とが安定的に結合するため、処理対象物50bに対する密着性がさらに高い膜を成膜することができる。 When the electric power input to the sputter electrode 33 is large, the amount of metal atoms such as copper emitted from the target material 32 increases and the metal atoms are emitted as compared with the case where a normal electric power of less than 10 kW is input. The kinetic energy of the body also increases. As a result, in the film forming apparatus 100, the concentration of impurities in the film forming processing chamber 3 is relatively reduced with respect to the concentration of metal atoms, so that the purity of the film formed on the object to be processed 50b is improved. .. Further, since the kinetic energy of the metal atom colliding with the processing object 50b is large, the molecules constituting the processing object 50b and the metal atom are stably bonded to each other, so that the film has higher adhesion to the processing object 50b. Can be formed.
 ターゲット材料32から放出された金属原子は成膜処理室3内を直進するが、成膜処理室3内の不活性ガスとの衝突により、その進行方向が拡散(散乱)される。ただし、従来のスパッタ装置では、金属原子の運動エネルギーが低いため、不活性ガスと衝突し散乱して運動エネルギーを失った金属原子は、処理対象物に十分な強度で密着することができなかった。このため、処理対象物に凹凸形状があると、その凹凸形状の側面部分には散乱されて運動エネルギーを失った金属原子しか照射されないため、凹凸形状を有する処理対象物に均一な成膜を行うことは困難であった。 The metal atom released from the target material 32 travels straight in the film forming processing chamber 3, but its traveling direction is diffused (scattered) by the collision with the inert gas in the film forming processing chamber 3. However, in the conventional sputtering apparatus, since the kinetic energy of the metal atom is low, the metal atom that collides with the inert gas and scatters and loses the kinetic energy cannot adhere to the object to be processed with sufficient strength. .. For this reason, if the object to be treated has an uneven shape, only metal atoms that are scattered and lose kinetic energy are irradiated on the side surface portion of the uneven shape, so that a uniform film formation is performed on the object to be processed having the uneven shape. It was difficult.
 しかし、成膜装置100では、ターゲット材料32から放出される際の金属原子の運動エネルギーが大きいため、不活性ガスによる散乱後も金属原子は十分な運動エネルギーを有する。従って、処理対象物50bには、散乱により種々の進行方向を有し、かつ運動エネルギーの大きな金属原子が照射されるため、凹凸形状を有する処理対象物50bに対しても、均一な膜を成膜させることが可能である。 However, in the film forming apparatus 100, since the kinetic energy of the metal atom when it is released from the target material 32 is large, the metal atom has sufficient kinetic energy even after being scattered by the inert gas. Therefore, since the treated object 50b is irradiated with metal atoms having various traveling directions and having a large kinetic energy due to scattering, a uniform film is formed even on the processed object 50b having an uneven shape. It is possible to make a film.
 凹凸形状を有する処理対象物に対しても均一な膜を成膜させるためには、成膜処理室3内の圧力は、0.5Paから5Pa程度とすることが望ましい。圧力が0.5Pa以下では、ターゲット材料32から放出される際の金属原子を十分に散乱させることが難しく、5Pa程度以上では、成膜処理室3内の不純物の濃度が高くなり膜の質が低下する恐れがある。 In order to form a uniform film on a processing object having an uneven shape, it is desirable that the pressure in the film forming processing chamber 3 is about 0.5 Pa to 5 Pa. When the pressure is 0.5 Pa or less, it is difficult to sufficiently scatter the metal atoms when released from the target material 32, and when the pressure is about 5 Pa or more, the concentration of impurities in the film forming processing chamber 3 becomes high and the quality of the film becomes poor. It may decrease.
 なお、表面に凹凸が少ない処理対象物50bを処理対象とする場合には、成膜処理室3内の圧力を0.5Pa未満とし、スパッタ電極33に投入する電力を10kW未満としても良い。
 また、成膜源は、上述のスパッタ電極33に限らず、蒸着装置やCVD装置であっても良い。
When the object to be processed 50b having less unevenness on the surface is to be processed, the pressure in the film forming processing chamber 3 may be less than 0.5 Pa, and the electric power applied to the sputter electrode 33 may be less than 10 kW.
Further, the film forming source is not limited to the above-mentioned sputtering electrode 33, and may be a vapor deposition apparatus or a CVD apparatus.
 成膜処理室3での成膜処理が終了した処理対象物50bは、成膜処理室3内に設けられている第2搬送機構30bにより成膜処理室3内の第2保持機構35bから、大気に晒されることなく熱処理室4内の第3保持機構35cに搬送される。この搬送に先立って、制御装置8が第3減圧ポンプ25cに制御信号S7を送ることにより熱処理室4内を減圧しておく。 The processing object 50b for which the film forming process in the film forming processing chamber 3 has been completed is separated from the second holding mechanism 35b in the film forming processing chamber 3 by the second transport mechanism 30b provided in the film forming processing chamber 3. It is conveyed to the third holding mechanism 35c in the heat treatment chamber 4 without being exposed to the atmosphere. Prior to this transfer, the control device 8 sends a control signal S7 to the third decompression pump 25c to depressurize the inside of the heat treatment chamber 4.
 処理対象物50cが熱処理室4内の第3保持機構35cに保持されると、制御装置8がヒータ用電源43に制御信号S8を送ることにより、ヒータ42に電力が投入され、処理対象物50cが加熱される。すなわち、処理対象物50cに対して、いわゆるアニールが行われる。
 ヒータ42は、処理対象物50cの温度を、温度が100℃以上、より好ましくは300℃~550℃程度に加熱する。ただし、制御装置8およびヒータ用電源43は、処理対象物50cの温度が、その融点、ガラス転移転または軟化点のうちの最も低い温度を超えないように加熱することが好ましい。
When the object to be processed 50c is held by the third holding mechanism 35c in the heat treatment chamber 4, the control device 8 sends a control signal S8 to the power supply 43 for the heater, so that power is applied to the heater 42 and the object to be processed 50c is processed. Is heated. That is, so-called annealing is performed on the object to be processed 50c.
The heater 42 heats the temperature of the object to be treated 50c to a temperature of 100 ° C. or higher, more preferably about 300 ° C. to 550 ° C. However, it is preferable that the control device 8 and the heater power supply 43 are heated so that the temperature of the object to be treated 50c does not exceed the lowest temperature of its melting point, glass transition or softening point.
 成膜装置100においては、成膜処理室3で成膜された処理対象物50bを大気に晒すことなく熱処理室4に搬送し、熱処理室4において減圧下で熱処理(アニール)を行うことができる。このため、成膜処理室3で成膜された銅や他の金属等の薄膜を、その表面が大気中の酸素により酸化されることを防止しつつ、アニールすることができる。これにより、成膜処理室3で成膜した膜と処理対象物50cとの密着性を一層向上させることができる。 In the film forming apparatus 100, the object to be processed 50b formed in the film forming processing chamber 3 can be conveyed to the heat treatment chamber 4 without being exposed to the atmosphere, and the heat treatment (annealing) can be performed in the heat treatment chamber 4 under reduced pressure. .. Therefore, the thin film such as copper or other metal formed in the film forming processing chamber 3 can be annealed while preventing the surface from being oxidized by oxygen in the atmosphere. As a result, the adhesion between the film formed in the film forming processing chamber 3 and the object to be processed 50c can be further improved.
 熱処理が終了した処理対象物50cは不図示の搬出機構により熱処理室4(および耐圧チャンバ1)から搬出される。不図示の搬出機構は、ロードロック室を有するものであることが好ましい。 The heat-treated object 50c is carried out from the heat treatment chamber 4 (and the pressure-resistant chamber 1) by a carry-out mechanism (not shown). The carry-out mechanism (not shown) preferably has a load lock chamber.
 なお、上記の成膜装置100においては、耐圧チャンバ1内にプラズマ処理室2、成膜処理室3、および熱処理室4が設けられるものとしたが、耐圧チャンバ1内の構成は、これに限られるものではない。
 例えば、プラズマ処理室2、成膜処理室3、および熱処理室4をそれぞれ区切る隔壁5a、5bを廃止しても良い。この場合にも、プラズマ発生源15、第1保持機構23、スパッタ電極33、第2保持機構35b、ヒータ42、第3保持機構35c等は、耐圧チャンバ1内に配置されることに変わりはない。
In the above-mentioned film forming apparatus 100, the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 are provided in the pressure-resistant chamber 1, but the configuration in the pressure-resistant chamber 1 is limited to this. It is not something that can be done.
For example, the partition walls 5a and 5b that separate the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 may be abolished. In this case as well, the plasma generation source 15, the first holding mechanism 23, the sputtering electrode 33, the second holding mechanism 35b, the heater 42, the third holding mechanism 35c, and the like are still arranged in the pressure resistant chamber 1. ..
 あるいは、プラズマ処理室2、成膜処理室3、および熱処理室4を、別々の耐圧チャンバで形成することもできる。ただし、この場合には、プラズマ処理室2と成膜処理室3の間、および成膜処理室3と熱処理室4の間に、減圧可能または不活性ガスによるガス置換が可能な搬送路を設けることが望ましい。この場合にも、前の処理室で処理した処理対象物50a、50bを、大気に晒すことなく次の処理室に搬送することができる。なお、この別々の耐圧チャンバとそれをつなぐ減圧またはガス置換可能な搬送路とは、一体として1つの耐圧チャンバと解釈することができる。 Alternatively, the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 can be formed in separate pressure-resistant chambers. However, in this case, a transport path capable of depressurizing or replacing gas with an inert gas is provided between the plasma processing chamber 2 and the film forming processing chamber 3 and between the film forming processing chamber 3 and the heat treatment chamber 4. Is desirable. In this case as well, the objects to be processed 50a and 50b processed in the previous processing chamber can be transported to the next processing chamber without being exposed to the atmosphere. It should be noted that the separate pressure-resistant chambers and the decompression or gas-replaceable transport paths connecting them can be interpreted as one pressure-resistant chamber as a whole.
 プラズマ処理室2と成膜処理室3、および熱処理室4とを、隔壁5a、5bを介して、あるいは搬送路を介して別々の処理室とする場合には、それぞれの処理室内の圧力を独立して制御することができる点で好ましい。これにより、プラズマ処理室2でのプラズマ処理、成膜処理室3での成膜処理、および熱処理室4での熱処理を、並列して行うことが可能となり、成膜装置100の処理能力を一層向上させることができる。また、プラズマ処理室2、成膜処理室3、および熱処理室4の間の相互のコンタミネーションを最小限とすることができるので、成膜される膜の品質を一層向上することができる。 When the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 are separated into treatment chambers via partition walls 5a and 5b or via a transport path, the pressures in the respective treatment chambers are independent. It is preferable in that it can be controlled. As a result, the plasma treatment in the plasma processing chamber 2, the film formation treatment in the film formation processing chamber 3, and the heat treatment in the heat treatment chamber 4 can be performed in parallel, further increasing the processing capacity of the film formation apparatus 100. Can be improved. Further, since the contamination between the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 can be minimized, the quality of the film to be formed can be further improved.
 また、プラズマ処理室2内で処理対象物50aを保持する第1保持機構23、および成膜処理室3内で処理対象物50bを保持する第2保持機構35bの少なくとも一方は、処理対象物50a,50bへの処理が均一になるように、処理中に処理対象物50a、50bを回転させる回転機構を有していても良い。 Further, at least one of the first holding mechanism 23 for holding the processing target object 50a in the plasma processing chamber 2 and the second holding mechanism 35b for holding the processing target object 50b in the film forming processing chamber 3 is the processing target object 50a. , 50b may have a rotation mechanism for rotating the objects to be processed 50a and 50b during the processing so that the processing to 50b becomes uniform.
 また、第1保持機構23は、プラズマ処理室2内の、プラズマ発生源15と反対側の側面29に設けても良い。
 なお、耐圧チャンバ1内を減圧する機構は、上述の第1~第3減圧ポンプ25a~25cに限らず、例えば、減圧用配管26、37に、調圧弁を介して真空等の低圧が供給される工場用力配管を接続したものであっても良い。この場合には、制御装置8は、調圧弁に対して開閉指令を行うことにより、プラズマ処理室2、成膜処理室3、および熱処理室4内の圧力を制御する。
Further, the first holding mechanism 23 may be provided on the side surface 29 of the plasma processing chamber 2 opposite to the plasma generation source 15.
The mechanism for reducing the pressure in the pressure-resistant chamber 1 is not limited to the above-mentioned first to third pressure reducing pumps 25a to 25c, and for example, low pressure such as vacuum is supplied to the pressure reducing pipes 26 and 37 via the pressure regulating valve. It may be connected with a power pipe for a factory. In this case, the control device 8 controls the pressure in the plasma processing chamber 2, the film forming processing chamber 3, and the heat treatment chamber 4 by issuing an opening / closing command to the pressure regulating valve.
(成膜方法)
 以下、図2を参照して実施形態の金属膜付物体61の製造に適した成膜方法の一例(以下、「第1成膜方法」と呼ぶ)について説明する。
 第1成膜方法は、上述の成膜装置100を使用して行うものであり、かつ、以下の工程を少なくとも一部を含むものである。
(Film formation method)
Hereinafter, an example of a film forming method suitable for manufacturing the metal film-attached object 61 of the embodiment (hereinafter, referred to as “first film forming method”) will be described with reference to FIG.
The first film forming method is performed by using the above-mentioned film forming apparatus 100, and includes at least a part of the following steps.
 (処理対象物の搬入)
 耐圧チャンバ1内のプラズマ処理室2に設置されている上述のプラズマ発生源15から所定距離だけ離れた位置に、処理対象物50aを配置する。このとき、プラズマ発生源15から処理対象物50aまでの距離を、距離dとする。
 プラズマ処理室2内に処理対象物50aを搬入する際には、プラズマ処理室2と成膜処理室3の間の開閉扉7aは閉じておく。
(Bringing in the object to be processed)
The processing object 50a is arranged at a position separated from the above-mentioned plasma generation source 15 installed in the plasma processing chamber 2 in the pressure-resistant chamber 1 by a predetermined distance. At this time, the distance from the plasma generation source 15 to the object to be processed 50a is defined as the distance d.
When the object to be processed 50a is carried into the plasma processing chamber 2, the opening / closing door 7a between the plasma processing chamber 2 and the film forming processing chamber 3 is closed.
 (プラズマ処理室内の減圧)
 プラズマ処理室2内を、減圧機構としての第1減圧ポンプ25aおよび減圧用配管26により、減圧する。このとき、第1減圧ポンプ25aは制御装置8からの制御信号S3により制御される。
 なお、プラズマ処理室2に、上述のように不図示のロードロック室および搬入機構が設けられている場合には、このプラズマ処理室2内の減圧は、上述の処理対象物の配置よりも、前に行われることになる。
(Decompression in the plasma processing chamber)
The inside of the plasma processing chamber 2 is decompressed by the first decompression pump 25a as a decompression mechanism and the decompression pipe 26. At this time, the first decompression pump 25a is controlled by the control signal S3 from the control device 8.
When the plasma processing chamber 2 is provided with a load lock chamber and a carry-in mechanism (not shown) as described above, the decompression in the plasma processing chamber 2 is more than the arrangement of the processing object described above. Will be done before.
 (プラズマ処理)
 反応ガス供給器17から反応ガス供給管16を介してプラズマ発生源15内に反応ガスを供給するとともに、プラズマ用電源19からプラズマ発生源15に電力を印加する。これにより、プラズマ発生源15からプラズマ状態の反応ガスおよび活性化状態(ラジカル状態)の反応ガスが発生する。この反応ガスに処理対象物50aを晒すことにより、処理対象物50aのプラズマ処理を行う。
 所定時間の経過後、制御装置8は、プラズマ発生源15内への反応ガスの供給を停止または供給量の削減を行うとともに、プラズマ発生源15への電力の印加を中止し、プラズマ処理を終了する。
(Plasma processing)
The reaction gas is supplied from the reaction gas supply device 17 into the plasma generation source 15 via the reaction gas supply pipe 16, and electric power is applied to the plasma generation source 15 from the plasma power supply 19. As a result, the reaction gas in the plasma state and the reaction gas in the activated state (radical state) are generated from the plasma generation source 15. By exposing the treatment target object 50a to this reaction gas, plasma treatment of the treatment target object 50a is performed.
After the elapse of a predetermined time, the control device 8 stops the supply of the reaction gas into the plasma generation source 15 or reduces the supply amount, stops the application of electric power to the plasma generation source 15, and ends the plasma processing. do.
 第1成膜方法において、上述のプラズマ処理で使用する反応ガスは、一例として酸素とすることができる。
 上述したとおり、第1成膜方法におけるプラズマ処理方法は、プラズマ状態の反応ガスのみでなく、活性化状態(ラジカル状態)の反応ガスをも使用して、処理対象物50aのプラズマ処理を行うことができる特徴を有する。従って、第1成膜方法におけるプラズマ処理方法での反応ガスとして、ラジカル状態において強力な反応性を有する酸素を使用することで、プラズマ処理の効率を一層向上させることができる。
 なお、反応ガスは、窒素とすることもできる。
In the first film forming method, the reaction gas used in the above-mentioned plasma treatment can be oxygen as an example.
As described above, in the plasma treatment method in the first film forming method, the plasma treatment of the object to be treated 50a is performed using not only the reaction gas in the plasma state but also the reaction gas in the activated state (radical state). Has the characteristic of being able to. Therefore, the efficiency of plasma treatment can be further improved by using oxygen having strong reactivity in the radical state as the reaction gas in the plasma treatment method in the first film forming method.
The reaction gas can also be nitrogen.
 一例として、処理対象物50aとして、樹脂を主成分とするものを使用することができる。
 樹脂は一般に耐熱性が低いため、処理対象物を高温化してしまう従来のプラズマ処理を行うことは困難であった。しかし、第1成膜方法は、上述の成膜装置100を使用することで処理対象物50aの高温化を防止できるので、樹脂を主成分とした処理対象物50aに使用して好適である。
As an example, as the object to be treated 50a, one containing a resin as a main component can be used.
Since resins generally have low heat resistance, it has been difficult to perform conventional plasma treatment that heats the object to be treated. However, the first film forming method is suitable for use on the processing object 50a containing a resin as a main component because the temperature of the processing object 50a can be prevented by using the above-mentioned film forming apparatus 100.
 一例として、ガラスを主成分とした処理対象物50aとすることができる。
 ガラスは、一般に急な温度変化に弱く、従来のプラズマ処理を行うことは困難であった。しかし、第1成膜方法は、上述の成膜装置100を使用することで処理対象物50aの高温化を防止できるので、ガラスを主成分とした処理対象物50aに使用して好適である。
As an example, the object to be processed 50a containing glass as a main component can be used.
Glass is generally vulnerable to sudden temperature changes, making it difficult to perform conventional plasma treatment. However, since the first film forming method can prevent the temperature of the object to be processed 50a from becoming high by using the above-mentioned film forming apparatus 100, it is suitable to be used for the object to be processed 50a containing glass as a main component.
(処理対象物の搬送)
 プラズマ処理された処理対象物50aは、第1搬送機構30aにより、プラズマ処理室2から成膜処理室3に搬送される。搬送に先立って、プラズマ処理室2と成膜処理室3の間の開閉扉7aが開けられ、搬送後には開閉扉7aは閉められる。
 処理対象物50aは、成膜処理室3内の第2保持機構35bに保持される。搬送され、成膜処理室3内の第2保持機構35bに保持された処理対象物50aを、処理対象物50bと呼ぶ。
(Transportation of objects to be processed)
The plasma-treated processing object 50a is transported from the plasma processing chamber 2 to the film-forming processing chamber 3 by the first transport mechanism 30a. The opening / closing door 7a between the plasma processing chamber 2 and the film forming processing chamber 3 is opened prior to the transportation, and the opening / closing door 7a is closed after the transportation.
The object to be processed 50a is held by the second holding mechanism 35b in the film forming processing chamber 3. The processing object 50a that has been conveyed and held by the second holding mechanism 35b in the film forming processing chamber 3 is referred to as a processing object 50b.
(成膜処理)
 不活性ガス供給器38から不活性ガス供給管41を介して成膜処理室3内に不活性ガスを供給するとともに、スパッタ用電源34からスパッタ電極33に電力を供給することで、処理対象物50bに対する成膜(スパッタリング)を行う。
 スパッタリングに際して、スパッタ用電源34からスパッタ電極33に10kW以上、より好ましくは30kW以上の電力が供給されることが好ましい。これにより通常程度の電力(数kW)を投入する場合に比べ、ターゲット材料32から放出される銅等の金属原子の量が増大するとともに、金属原子の持つ運動エネルギーを増大させることができる。その結果、上述のとおり、純度が高く、かつ処理対象物50bとの密着性の高い膜を成膜することができる。
(Film film processing)
By supplying the inert gas from the inert gas supply device 38 to the film forming processing chamber 3 via the inert gas supply pipe 41 and supplying power from the sputtering power supply 34 to the sputtering electrode 33, the object to be processed A film formation (sputtering) is performed on 50b.
At the time of sputtering, it is preferable that power of 10 kW or more, more preferably 30 kW or more is supplied from the sputtering power supply 34 to the sputtering electrode 33. As a result, the amount of metal atoms such as copper emitted from the target material 32 can be increased and the kinetic energy of the metal atoms can be increased as compared with the case where a normal electric power (several kW) is applied. As a result, as described above, a film having high purity and high adhesion to the object to be treated 50b can be formed.
 さらに、成膜(スパッタリング)処理時の成膜処理室3内の圧力を、0.5Paから5Pa程度とすることが好ましい。従来のスパッタリング処理においては、このような低真空下で成膜を行うと、膜内に不純物が混入して膜の品質が低下する恐れがあった。また、処理対象物50bが樹脂の場合、処理対象物50bからのアウトガスにより、成膜時の圧力を0.5Pa程度以下に減圧することは難しかった。 Further, it is preferable that the pressure in the film forming processing chamber 3 at the time of film forming (sputtering) processing is about 0.5 Pa to 5 Pa. In the conventional sputtering process, if the film is formed under such a low vacuum, impurities may be mixed in the film and the quality of the film may be deteriorated. Further, when the object to be treated 50b is a resin, it is difficult to reduce the pressure at the time of film formation to about 0.5 Pa or less due to the outgas from the object to be treated 50b.
 しかし、スパッタ電極33に10kW以上の大電力を投入することにより上述のとおり膜内への不純物の混入が防止されるので、0.5Paから5Pa程度の圧力下でも、純度が高く、かつ処理対象物50bとの密着性の高い膜を成膜することができる。
 さらに、成膜(スパッタリング)処理時の成膜処理室3内の圧力を、0.5Paから5Pa程度とすることにより、上述のとおり凹凸形状を有する処理対象物50bに対しても均一な膜を成膜させることができる。
However, by applying a large power of 10 kW or more to the sputter electrode 33, impurities are prevented from being mixed into the film as described above, so that the purity is high and the object to be treated is high even under a pressure of about 0.5 Pa to 5 Pa. A film having high adhesion to the object 50b can be formed.
Further, by setting the pressure in the film forming processing chamber 3 at the time of film forming (sputtering) processing to about 0.5 Pa to 5 Pa, a uniform film can be obtained even with respect to the object to be processed 50b having an uneven shape as described above. A film can be formed.
 なお、処理対象物50bの表面に凹凸が少ない場合には、成膜処理室3内の圧力を0.5Pa未満とし、スパッタ電極33に投入する電力を10kW未満としてスパッタリングを行っても良い。
 また、成膜は、スパッタリングに限らず、蒸着やCVD等を用いて行うこともできる。ただし、スパッタリングにおいては、他の成膜方法に比べて、膜を構成する原子がより高エネルギーで処理対象物50bに衝突するため、より密着性の良い膜を形成できる点で好ましい。
When the surface of the object to be processed 50b has few irregularities, the pressure in the film forming processing chamber 3 may be set to less than 0.5 Pa, and the power applied to the sputtering electrode 33 may be set to less than 10 kW for sputtering.
Further, the film formation is not limited to sputtering, but can also be performed by using vapor deposition, CVD, or the like. However, in sputtering, as compared with other film forming methods, atoms constituting the film collide with the object to be treated 50b with higher energy, which is preferable in that a film having better adhesion can be formed.
(処理対象物の搬送)
 成膜処理室3で成膜された処理対象物50bは、第2搬送機構30bにより、成膜処理室3から熱処理室4に搬送される。搬送に先立って、成膜処理室3と熱処理室4との間の開閉扉7bが開けられ、搬送後には開閉扉7bは閉められる。
 処理対象物50bは、熱処理室4内の第3保持機構35cに保持される。搬送され、熱処理室4内の第3保持機構35cに保持された処理対象物50bを、処理対象物50cと呼ぶ。
(Transportation of objects to be processed)
The object to be processed 50b formed in the film forming processing chamber 3 is conveyed from the film forming processing chamber 3 to the heat treatment chamber 4 by the second conveying mechanism 30b. The opening / closing door 7b between the film forming processing chamber 3 and the heat treatment chamber 4 is opened prior to the transportation, and the opening / closing door 7b is closed after the transportation.
The object to be treated 50b is held by the third holding mechanism 35c in the heat treatment chamber 4. The object to be processed 50b that has been conveyed and held by the third holding mechanism 35c in the heat treatment chamber 4 is referred to as an object to be processed 50c.
(熱処理)
 処理対象物50cが熱処理室4内の第3保持機構35cに保持されると、制御装置8がヒータ用電源43に制御信号S8を送ることにより、ヒータ42に電力が投入され、処理対象物50cが加熱される。すなわち、処理対象物50cに対して、熱処理、いわゆるアニールが行われる。
(Heat treatment)
When the object to be processed 50c is held by the third holding mechanism 35c in the heat treatment chamber 4, the control device 8 sends a control signal S8 to the power supply 43 for the heater, so that power is applied to the heater 42 and the object to be processed 50c is processed. Is heated. That is, heat treatment, so-called annealing, is performed on the object to be treated 50c.
 処理対象物50cの加熱は、処理対象物50cの温度が100℃以上、より好ましくは300℃~550℃程度に加熱することが好ましい。ただし、処理対象物50cの温度が、その融点、ガラス転移転または軟化点のうちの最も低い温度を超えないように加熱することが好ましい。
 加熱温度が100℃より低いと十分なアニール効果が得られず、処理対象物50cの融点、ガラス転移転または軟化点のうちの最も低い温度を超えると処理対象物50cが変形する恐れがある。
The temperature of the object to be treated 50c is preferably 100 ° C. or higher, more preferably 300 ° C. to 550 ° C. or higher. However, it is preferable to heat the object to be treated so that the temperature of the object to be treated does not exceed the lowest temperature of its melting point, glass transition or softening point.
If the heating temperature is lower than 100 ° C., a sufficient annealing effect cannot be obtained, and if the temperature exceeds the lowest of the melting point, glass transition or softening point of the object to be treated 50c, the object to be treated 50c may be deformed.
 処理対象物50cの加熱時間は、1分以上、さらに好ましくは3分以上であり、処理時間の短縮(生産性の向上)のために、1時間以下、さらに好ましくは20分以下とするのが良い。
 加熱時間が1分未満であると十分なアニール効果が得られず、加熱時間が1時間を超えると生産性が低下する恐れがある。
The heating time of the object to be treated 50c is 1 minute or more, more preferably 3 minutes or more, and in order to shorten the treatment time (improve productivity), it is preferably 1 hour or less, more preferably 20 minutes or less. good.
If the heating time is less than 1 minute, a sufficient annealing effect cannot be obtained, and if the heating time exceeds 1 hour, the productivity may decrease.
 図3は、前述の成膜工程で成膜された金属膜55の熱処理の前後での変化を説明する図であり、図3(a)は処理対象物50のおもて面50dに形成された金属膜55の熱処理前の状態を示し、図3(b)は熱処理後の状態を示す、部分拡大図である。 FIG. 3 is a diagram illustrating changes in the metal film 55 formed in the above-mentioned film forming step before and after the heat treatment, and FIG. 3 (a) is formed on the front surface 50d of the object to be treated 50. FIG. 3B is a partially enlarged view showing the state of the metal film 55 before the heat treatment and showing the state after the heat treatment.
 図3(a)に示す熱処理前には、処理対象物50と金属膜55の間には、処理対象物50の組成物が上述のプラズマ処理により酸化等の変質を受けた変形物を含む、基材酸化膜層52aが形成されている。プラズマ処理により酸化等の変質を受けた変形物とは、例えば、酸素プラズマによる処理であれば処理対象物50の組成物の酸化物であり、窒素プラズマによる処理であれば処理対象物50の組成物の窒化物である。また、プラズマ処理により部分的に切断された、処理対象物50の組成物を構成する分子構造の一部(例えば官能基)も含まれる。 Before the heat treatment shown in FIG. 3A, between the object to be treated 50 and the metal film 55, a deformed product in which the composition of the object to be treated 50 has undergone alteration such as oxidation by the above-mentioned plasma treatment is contained. The base material oxide film layer 52a is formed. The deformed product that has undergone alteration such as oxidation by plasma treatment is, for example, an oxide of the composition of the treatment target 50 in the case of treatment with oxygen plasma, and the composition of the treatment target 50 in the case of treatment with nitrogen plasma. It is a nitride of things. In addition, a part of the molecular structure (for example, a functional group) constituting the composition of the object to be treated 50, which is partially cleaved by the plasma treatment, is also included.
 この状態から、金属膜55の形成された処理対象物50を熱処理(アニール)すると、基材酸化膜層52a中に含まれていた酸素または窒素が、熱により金属膜55中の金属原子と反応する。その結果、基材酸化膜層52aと金属膜55の間に、金属膜55を構成する金属の酸化物または窒化物を主成分とする金属酸化物層(または金属窒化物層)53が形成される。 From this state, when the object to be treated 50 on which the metal film 55 is formed is heat-treated (annealed), oxygen or nitrogen contained in the base material oxide film layer 52a reacts with the metal atoms in the metal film 55 by heat. do. As a result, a metal oxide layer (or metal nitride layer) 53 containing the metal oxide or nitride constituting the metal film 55 as a main component is formed between the base material oxide film layer 52a and the metal film 55. NS.
 第1成膜方法においては、成膜処理室3で成膜された処理対象物50bを大気に晒すことなく熱処理室4に搬送し、熱処理室4において減圧下で熱処理(アニール)を行う。このため、成膜処理室3で成膜された銅や他の金属等の薄膜を、その表面が大気中の酸素により酸化されることを防止しつつ、アニールすることができる。これにより、成膜処理室3で成膜した膜と処理対象物50cとの密着性を一層向上させることができる。 In the first film forming method, the object to be processed 50b formed in the film forming processing chamber 3 is conveyed to the heat treatment chamber 4 without being exposed to the atmosphere, and the heat treatment chamber 4 is subjected to heat treatment (annealing) under reduced pressure. Therefore, the thin film such as copper or other metal formed in the film forming processing chamber 3 can be annealed while preventing the surface from being oxidized by oxygen in the atmosphere. As a result, the adhesion between the film formed in the film forming processing chamber 3 and the object to be processed 50c can be further improved.
 金属酸化物層53(第1層)の厚さT53は、熱処理(アニール)の温度や時間により変化する。従って、熱処理(アニール)の温度や時間は、第1層の厚さが適切な厚さになるように設定することもできる。
 上述の金属膜付物体の実施形態で述べたとおり、基材酸化膜層52(第2層)の厚さT52が2nm以上、かつ5nm以下であるとき、第1層(金属酸化物層53)および第2層を介しての基材50と金属膜55との接合力を、一層高めることができる。また、金属酸化物層53(第1層)の厚さT53が、0.5nm以上、かつ5nm以下であるとき、第1層および第2層を介しての基材50と金属膜55との接合力を一層高めることができる。
The thickness T53 of the metal oxide layer 53 (first layer) changes depending on the temperature and time of the heat treatment (annealing). Therefore, the temperature and time of the heat treatment (annealing) can be set so that the thickness of the first layer becomes an appropriate thickness.
As described in the above-described embodiment of the metal film-attached object, when the thickness T52 of the base material oxide film layer 52 (second layer) is 2 nm or more and 5 nm or less, the first layer (metal oxide layer 53) And the bonding force between the base material 50 and the metal film 55 via the second layer can be further enhanced. Further, when the thickness T53 of the metal oxide layer 53 (first layer) is 0.5 nm or more and 5 nm or less, the base material 50 and the metal film 55 pass through the first layer and the second layer. The bonding force can be further increased.
 なお、基材酸化膜層52aに含まれていた酸素または窒素の一部は、金属膜55中の金属原子と反応により基材酸化膜層52aから失われるため、熱処理後の基材酸化膜層52の厚さT52は、熱処理前の基材酸化膜層52aの厚さより減少する。 Since a part of oxygen or nitrogen contained in the base material oxide film layer 52a is lost from the base material oxide film layer 52a by reacting with the metal atoms in the metal film 55, the base material oxide film layer after heat treatment is used. The thickness T52 of 52 is smaller than the thickness of the base material oxide film layer 52a before the heat treatment.
 熱処理が終了した処理対象物50cは不図示の搬出機構により熱処理室4(および耐圧チャンバ1)から搬出される。処理対象物50cの搬出時には、成膜処理室3と熱処理室4との間の開閉扉7bは閉じておく。 The heat-treated object 50c is carried out from the heat treatment chamber 4 (and the pressure-resistant chamber 1) by a carry-out mechanism (not shown). When the object to be processed 50c is carried out, the opening / closing door 7b between the film forming processing chamber 3 and the heat treatment chamber 4 is closed.
 上記の実施形態においては、共に耐圧チャンバ1内の隔壁5a、5bで仕切られたプラズマ処理室2、成膜処理室3および熱処理室4において、それぞれプラズマ処理、成膜処理、熱処理を行うとしたが、各処理を行う場所はこれに限られるものではない。
 例えば、隔壁5a、5bのない耐圧チャンバ1内でプラズマ処理、成膜処理、および熱処理を行っても良い。
 あるいは、各処理をそれぞれ別々の耐圧チャンバ内で行うこともできる。ただし、この場合には、プラズマ処理室2と成膜処理室3の間、および成膜処理室3と熱処理室4の間を、減圧可能または不活性ガスによるガス置換が可能な搬送路を経由して搬送することが望ましい。この場合にも、前の処理室で処理した処理対象物50a、50bを、大気に晒すことなく次の処理室に搬送することができる。
In the above embodiment, the plasma treatment, the film formation treatment, and the heat treatment are performed in the plasma treatment chamber 2, the film formation treatment chamber 3, and the heat treatment chamber 4, which are both partitioned by the partition walls 5a and 5b in the pressure resistant chamber 1, respectively. However, the place where each process is performed is not limited to this.
For example, plasma treatment, film formation treatment, and heat treatment may be performed in the pressure resistant chamber 1 without partition walls 5a and 5b.
Alternatively, each process can be performed in a separate pressure resistant chamber. However, in this case, the space between the plasma processing chamber 2 and the film forming processing chamber 3 and the film forming processing chamber 3 and the heat treatment chamber 4 pass through a transport path capable of decompression or gas replacement with an inert gas. It is desirable to carry it out. In this case as well, the objects to be processed 50a and 50b processed in the previous processing chamber can be transported to the next processing chamber without being exposed to the atmosphere.
 また、処理対象物50a~50cを保持する第1~第3保持機構23、35b、35cに処理対象物50a~50cを回転させる回転機能を持たせ、処理対象物50a~50cの処理が均一になるように、処理中に処理対象物50a~50bを回転させても良い。
 以上の処理手順は、予め制御装置8に格納したプログラムを実行して行うことができる。あるいは、制御装置8にシーケンス回路を実装して行うこともできる。
Further, the first to third holding mechanisms 23, 35b, 35c for holding the objects to be processed 50a to 50c are provided with a rotation function for rotating the objects to be processed 50a to 50c, so that the objects to be processed 50a to 50c can be uniformly processed. Therefore, the objects to be processed 50a to 50b may be rotated during the processing.
The above processing procedure can be performed by executing a program stored in the control device 8 in advance. Alternatively, a sequence circuit may be mounted on the control device 8.
(別の成膜方法)
 以下、図2から図5を参照して実施形態の金属膜付物体61の製造に適した成膜方法の他の一例(以下、「第2成膜方法」と呼ぶ)について説明する。ただし、第2成膜方法の大部分は、上述の第1成膜方法と共通するので、以下では、実施形態の成膜方法との相違点についてのみ説明する。
 第2成膜方法においては、処理対象物50は、一例として樹脂またはガラスを含む材料からなる基板であり、おもて面50dと裏面50eをつなぐ貫通孔50hが複数形成されているものである。
(Another film formation method)
Hereinafter, another example of a film forming method suitable for manufacturing the metal film-attached object 61 of the embodiment (hereinafter, referred to as “second film forming method”) will be described with reference to FIGS. 2 to 5. However, since most of the second film forming method is common to the first film forming method described above, only the differences from the film forming method of the embodiment will be described below.
In the second film forming method, the object to be treated 50 is, for example, a substrate made of a material containing resin or glass, and a plurality of through holes 50h connecting the front surface 50d and the back surface 50e are formed. ..
 図4(a)は、第2成膜方法において、処理対象物50のおもて面50dに対して、上述の第1成膜方法において説明したプラズマ処理を行っている状態を示す。酸素ラジカルO*によるプラズマ処理は、図2に示した成膜装置100のプラズマ処理室2内で行う。
 次に、処理対象物50を反転させ、図4(b)に示すとおり、裏面50eをプラズマ処理する。酸素ラジカルO*は、処理対象物50のおもて面50dおよび裏面50eのみでなく、貫通孔50hの内側面にも照射され、これらの部分を活性化する。
FIG. 4A shows a state in which the plasma treatment described in the first film forming method described above is performed on the front surface 50d of the object 50 to be processed in the second film forming method. The plasma treatment with the oxygen radical O * is performed in the plasma treatment chamber 2 of the film forming apparatus 100 shown in FIG.
Next, the object to be processed 50 is inverted, and the back surface 50e is plasma-treated as shown in FIG. 4 (b). The oxygen radical O * is irradiated not only on the front surface 50d and the back surface 50e of the object to be treated 50 but also on the inner surface of the through hole 50h to activate these portions.
 その後、処理対象物50を、図2に示した成膜装置100のプラズマ処理室2から成膜処理室3に移動させ、図4(c)に示すとおり、おもて面50dに対して、スパッタリングにより銅(Cu)等の金属を成膜する。上述の実施形態のスパッタリングにおいては、処理対象物50には、散乱により種々の進行方向を有し、かつ運動エネルギーの大きな銅原子が照射されるため、貫通孔50hの内側面にも、高い密着性をもって金属を成膜させることができる。 After that, the object to be processed 50 is moved from the plasma processing chamber 2 of the film forming apparatus 100 shown in FIG. 2 to the film forming processing chamber 3, and as shown in FIG. 4 (c), with respect to the front surface 50d. A metal such as copper (Cu) is formed by sputtering. In the sputtering of the above-described embodiment, since the object to be processed 50 has various traveling directions due to scattering and is irradiated with copper atoms having a large kinetic energy, the inner surface of the through hole 50h is also highly adhered to. A metal can be formed with the property.
 次に、処理対象物50を反転させ、図4(d)に示すとおり、裏面50eおよび貫通孔50hの内側面に、金属を成膜する。
 プラズマ処理および成膜処理における、おもて面50dと裏面50eの処理順は、それぞれ上述の順とは逆であっても良い。
Next, the object to be treated 50 is inverted, and as shown in FIG. 4D, a metal is formed on the inner side surfaces of the back surface 50e and the through hole 50h.
The processing order of the front surface 50d and the back surface 50e in the plasma treatment and the film forming treatment may be reversed from the above-mentioned order.
 以上の工程により、図4(e)に示すとおり、処理対象物50のおもて面50d、裏面50e、および貫通孔50hの内側面には、金属膜であるシード層51d、51eが形成される。図4(e)に示すシード層51d、51eが形成された処理対象物50を、シード層付処理対象物60と呼ぶ。 Through the above steps, as shown in FIG. 4E, seed layers 51d and 51e, which are metal films, are formed on the front surface 50d, the back surface 50e, and the inner surface of the through hole 50h of the object to be treated 50. NS. The processed object 50 on which the seed layers 51d and 51e shown in FIG. 4 (e) are formed is referred to as a processed object 60 with a seed layer.
 シード層51の厚さは、例えば100nmから500nm程度である。また、貫通孔50hの直径は、おもて面50dおよび裏面50eにおいて20μmから50μmとし、おもて面50dと裏面50eとの中間部分においては、15μmから20μmとする。すなわち、おもて面50dおよび裏面50e付近では内径が大きく、内部では内径を相対的に小さくする構成としても良い。 The thickness of the seed layer 51 is, for example, about 100 nm to 500 nm. The diameter of the through hole 50h is 20 μm to 50 μm on the front surface 50d and the back surface 50e, and 15 μm to 20 μm on the intermediate portion between the front surface 50d and the back surface 50e. That is, the inner diameter may be large in the vicinity of the front surface 50d and the back surface 50e, and the inner diameter may be relatively small inside.
 その後、処理対象物50(図4(e)に示したシード層付処理対象物60)を、図2に示した成膜装置100の成膜処理室3から熱処理室4に大気に晒すことなく移動させ、減圧下で熱処理(アニール)を行う。熱処理は、上述の第1成膜方法に示した条件(温度、時間)で行う。 After that, the object to be treated 50 (the object to be treated with the seed layer shown in FIG. 4E) is not exposed to the atmosphere from the film forming processing chamber 3 of the film forming apparatus 100 shown in FIG. 2 to the heat treatment chamber 4. It is moved and heat-treated (annealed) under reduced pressure. The heat treatment is performed under the conditions (temperature, time) shown in the first film forming method described above.
 以上の工程で処理対象物50のおもて面50d、裏面50eに形成したシード層51を、フォトリソグラフィ―により選択的に除去して、所定のパターン形状を有するシード層51を形成することができる。
 あるいは、上述のプラズマ処理に先立って、処理対象物50の表面(おもて面50d、裏面50e)の一部をマスキングすることで、マスキングした部分にはシード層51を形成せず、それ以外の面にシード層51を形成することもできる。
The seed layer 51 formed on the front surface 50d and the back surface 50e of the object to be processed 50 in the above steps can be selectively removed by photolithography to form a seed layer 51 having a predetermined pattern shape. can.
Alternatively, by masking a part of the front surface (front surface 50d, back surface 50e) of the object to be treated 50 prior to the above-mentioned plasma treatment, the seed layer 51 is not formed in the masked portion, and other than that. The seed layer 51 can also be formed on the surface of the surface.
 また、形成するシード層51d、51eの材料としては、銅に限らず、銅を含む合金や、アルミニウム、クロム、ニッケル等の他の金属およびそれらを含む合金であっても良い。 The material of the seed layers 51d and 51e to be formed is not limited to copper, and may be an alloy containing copper, other metals such as aluminum, chromium, and nickel, and alloys containing them.
 上述の熱処理の完了したシード層付処理対象物60に対し、シード層51を電極として電解めっきを行い、シード層51の上にめっき層54を形成する。
 図5は、この電解めっきの工程を表す図であり、シード層付処理対象物60は電解めっき装置45の電解液46中に浸され、シード層51の表面には、電源47に接続されている導線49aが接続されている。電解液46中には、対向電極48が設置されており、対向電極48には、電源47に接続されている導線49bが接続されている。
The object 60 with a seed layer that has been heat-treated is subjected to electrolytic plating using the seed layer 51 as an electrode to form a plating layer 54 on the seed layer 51.
FIG. 5 is a diagram showing this electrolytic plating process, in which the object 60 to be treated with the seed layer is immersed in the electrolytic solution 46 of the electrolytic plating apparatus 45, and the surface of the seed layer 51 is connected to the power supply 47. The lead wire 49a is connected. A counter electrode 48 is installed in the electrolytic solution 46, and a conducting wire 49b connected to the power supply 47 is connected to the counter electrode 48.
 電解液46は一例として銅イオンを含み、導線49aに導線49bよりも所定の電位差だけ低い電位を印加することにより、シード層付処理対象物60のシード層51の表面に銅が析出して、電解めっきが行われる。対向電極48としては、一例として銅板を使用する。電解液46は貫通孔50hの内部にも浸透し、また貫通孔50hの内側面にもシード層51が形成されているので、貫通孔50hの内部にも銅がめっきされる。
 なお、電解めっきの工程に際しても、事前にシード層51の表面の一部をマスクキングすることにより、シード層51の表面に部分的にめっきを施すこともできる。
The electrolytic solution 46 contains copper ions as an example, and by applying a potential lower than that of the conductor 49b to the conductor 49a by a predetermined potential difference, copper is deposited on the surface of the seed layer 51 of the object 60 to be treated with the seed layer. Electroplating is performed. As the counter electrode 48, a copper plate is used as an example. Since the electrolytic solution 46 also permeates the inside of the through hole 50h and the seed layer 51 is formed on the inner surface of the through hole 50h, copper is also plated inside the through hole 50h.
Also in the electrolytic plating step, the surface of the seed layer 51 can be partially plated by masking a part of the surface of the seed layer 51 in advance.
 電解めっきの工程の終了により、金属膜付物体61の一例として図1に示したプリント基板が完成する。
 なお、上述のめっき工程は、上述の電解めっきに限られるものではなく、無電解めっきにより、または電解めっきと無電解めっきを併用して行ってもよい。
By completing the electroplating process, the printed circuit board shown in FIG. 1 is completed as an example of the object 61 with a metal film.
The above-mentioned plating step is not limited to the above-mentioned electroplating, and may be performed by electroless plating or in combination with electroless plating and electroless plating.
 また、シード層51だけでも十分低い電気抵抗値が得られる場合には、めっき工程を省略しても良い。
 あるいは、第2成膜方法におけるめっき工程を、上述の第1成膜方法に適用しても良い。すなわち、上述の第1成膜方法において、めっき工程を上述の熱処理後の処理対象物50に対して行っても良い。
Further, if a sufficiently low electric resistance value can be obtained with the seed layer 51 alone, the plating step may be omitted.
Alternatively, the plating step in the second film forming method may be applied to the above-mentioned first film forming method. That is, in the first film forming method described above, the plating step may be performed on the object 50 to be processed after the heat treatment described above.
 上記では、種々の実施形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。また、各実施形態および変形例は、それぞれ単独で適用しても良いし、組み合わせて用いても良い。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Moreover, each embodiment and modification may be applied individually or may be used in combination. Other aspects conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention.
(態様)
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(Aspect)
It will be understood by those skilled in the art that the plurality of exemplary embodiments described above are specific examples of the following embodiments.
(第1項)一態様に係る金属膜付物体は、樹脂またはガラスを含む基材と、前記基材の少なくとも一部を覆う金属膜と、前記基材と前記金属膜との間にあって、前記金属膜を構成する金属の酸化物を主成分とする第1層と、前記基材と前記第1層との間にあって、前記基材の組成物の酸化物を主成分とする第2層と、を備え、前記第2層に対する前記第1層の密着強度が3[N/cm]以上である。
 この構成により、基材(処理対象物)50に対する金属膜55の密着力が高まり、剥離しにくい強靭な金属膜55を実現することができる。
(Item 1) The object with a metal film according to one embodiment is located between a base material containing resin or glass, a metal film covering at least a part of the base material, and the base material and the metal film, and is described above. A first layer containing a metal oxide as a main component constituting a metal film, and a second layer between the base material and the first layer containing an oxide of the composition of the base material as a main component. , And the adhesion strength of the first layer to the second layer is 3 [N / cm] or more.
With this configuration, the adhesion of the metal film 55 to the base material (object to be treated) 50 is enhanced, and a tough metal film 55 that is difficult to peel off can be realized.
(第2項)他の一態様に係る金属膜付物体は、第1項に記載の金属膜付物体において、前記第2層の厚さが、2nm以上、かつ5nm以下である。これにより、第1層および第2層を介しての基材50に対する金属膜55の密着力を一層高めることができる。 (Item 2) The object with a metal film according to another aspect is the object with a metal film according to the first item, wherein the thickness of the second layer is 2 nm or more and 5 nm or less. As a result, the adhesion of the metal film 55 to the base material 50 via the first layer and the second layer can be further enhanced.
(第3項)他の一態様に係る金属膜付物体は、第1項に記載の金属膜付物体において、前記第1層の厚さが、0.5nm以上、かつ5nm以下である。これにより、第1層および第2層を介しての基材50に対する金属膜55の密着力をさらに高めることができる。 (Item 3) The object with a metal film according to another aspect is the object with a metal film according to the first item, wherein the thickness of the first layer is 0.5 nm or more and 5 nm or less. As a result, the adhesion of the metal film 55 to the base material 50 via the first layer and the second layer can be further enhanced.
(第4項)他の一態様に係る金属膜付物体は、第1項に記載の金属膜付物体において、前記第2層の厚さが、2nm以上、かつ5nm以下であり、前記第1層の厚さが、0.5nm以上、かつ5nm以下である。これにより、第1層および第2層を介しての基材50に対する金属膜55の密着力をより一層高めることができる。 (Item 4) The object with a metal film according to another aspect is the object with a metal film according to the first item, wherein the thickness of the second layer is 2 nm or more and 5 nm or less, and the first item is described. The thickness of the layer is 0.5 nm or more and 5 nm or less. As a result, the adhesion of the metal film 55 to the base material 50 via the first layer and the second layer can be further enhanced.
(第5項)他の一態様に係る金属膜付物体は、第1項から第4項までのいずれか一項に記載の金属膜付物体において、前記基材は貫通孔を有する平板であり、前記貫通孔の内側面の少なくとも一部に、前記金属膜、前記第1層および前記第2層が設けられている。これにより、プリント基板であって、平板(基材50)のおもて面50dと裏面50eとの間に、導体による剥離耐性の高い配線(金属55h)が形成された、金属膜付物体61を実現することができる。 (Item 5) The object with a metal film according to another aspect is the object with a metal film according to any one of items 1 to 4, wherein the base material is a flat plate having a through hole. The metal film, the first layer, and the second layer are provided on at least a part of the inner surface of the through hole. As a result, an object 61 with a metal film, which is a printed circuit board and in which wiring (metal 55h) having high peel resistance due to a conductor is formed between the front surface 50d and the back surface 50e of the flat plate (base material 50). Can be realized.
(第6項)他の一態様に係る金属膜付物体は、第5項に記載の金属膜付物体において、前記金属膜の主成分が銅である。これにより、電気抵抗が小さいプリント基板である金属膜付物体を実現することができる。 (Section 6) The object with a metal film according to another aspect is the object with a metal film according to the fifth aspect, wherein the main component of the metal film is copper. As a result, it is possible to realize an object with a metal film, which is a printed circuit board having low electrical resistance.
(第7項)他の一態様に係る金属膜付物体は、第1項から第4項までのいずれか一項に記載の金属膜付物体において、前記基材に対する前記金属膜の密着強度が、3[N/cm]以上である。従って、剥離耐性の高い金属膜を有する金属膜付物体を実現できる。 (Section 7) The object with a metal film according to another aspect is the object with a metal film according to any one of items 1 to 4, wherein the adhesion strength of the metal film to the base material is high. 3, [N / cm] or more. Therefore, it is possible to realize an object with a metal film having a metal film having high peel resistance.
61:金属膜付物体、50,50a~50d:基材(処理対象物)、51,51d,51e:シード層、52:基材酸化膜層(第2層)、53:金属酸化物層(第1層)、54,54d,54e:金属めっき層、55:金属膜、100:成膜装置、1:耐圧チャンバ、2:プラズマ処理室、3:成膜処理室、4:熱処理室、8:制御装置、15:プラズマ発生源、16:反応ガス供給管、17:反応ガス供給器、18:制御弁、19:プラズマ用電源、23:第1保持機構、25a:第1減圧ポンプ、25b:第2減圧ポンプ、25c:第3減圧ポンプ、33:スパッタ電極、34:スパッタ用電源、35b:第2保持機構、35c:第3保持機構 61: Object with metal film, 50, 50a to 50d: Base material (object to be treated), 51, 51d, 51e: Seed layer, 52: Base material oxide film layer (second layer), 53: Metal oxide layer ( 1st layer), 54, 54d, 54e: metal plating layer, 55: metal film, 100: film forming apparatus, 1: pressure resistant chamber, 2: plasma processing room, 3: film forming processing room, 4: heat treatment room, 8 : Control device, 15: Plasma source, 16: Reaction gas supply pipe, 17: Reaction gas supply device, 18: Control valve, 19: Plasma power supply, 23: First holding mechanism, 25a: First pressure reducing pump, 25b : 2nd decompression pump, 25c: 3rd decompression pump, 33: Sputter electrode, 34: Spatter power supply, 35b: 2nd holding mechanism, 35c: 3rd holding mechanism

Claims (7)

  1.  樹脂またはガラスを含む基材と、
     前記基材の少なくとも一部を覆う金属膜と、
     前記基材と前記金属膜との間にあって、前記金属膜を構成する金属の酸化物を主成分とする第1層と、
     前記基材と前記第1層との間にあって、前記基材の組成物の酸化物を主成分とする第2層と、を備え、
     前記第2層に対する前記第1層の密着強度が3[N/cm]以上である、金属膜付物体。
    With a substrate containing resin or glass,
    A metal film covering at least a part of the base material and
    A first layer between the base material and the metal film, which is mainly composed of an oxide of a metal constituting the metal film,
    A second layer, which is between the base material and the first layer and contains an oxide of the composition of the base material as a main component, is provided.
    An object with a metal film having an adhesion strength of the first layer to the second layer of 3 [N / cm] or more.
  2.  請求項1に記載の金属膜付物体において、
     前記第2層の厚さが、2nm以上、かつ5nm以下である、金属膜付物体。
    In the object with a metal film according to claim 1,
    An object with a metal film having a thickness of 2 nm or more and 5 nm or less in the second layer.
  3.  請求項1に記載の金属膜付物体において、
     前記第1層の厚さが、0.5nm以上、かつ5nm以下である、金属膜付物体。
    In the object with a metal film according to claim 1,
    An object with a metal film having a thickness of the first layer of 0.5 nm or more and 5 nm or less.
  4.  請求項1に記載の金属膜付物体において、
     前記第2層の厚さが、2nm以上、かつ5nm以下であり、
     前記第1層の厚さが、0.5nm以上、かつ5nm以下である、金属膜付物体。
    In the object with a metal film according to claim 1,
    The thickness of the second layer is 2 nm or more and 5 nm or less.
    An object with a metal film having a thickness of the first layer of 0.5 nm or more and 5 nm or less.
  5.  請求項1から請求項4までのいずれか一項に記載の金属膜付物体において、
     前記基材は貫通孔を有する平板であり、
     前記貫通孔の内側面の少なくとも一部に、前記金属膜、前記第1層および前記第2層が設けられている、金属膜付物体。
    In the object with a metal film according to any one of claims 1 to 4.
    The base material is a flat plate having through holes, and is
    An object with a metal film, wherein the metal film, the first layer, and the second layer are provided on at least a part of the inner surface of the through hole.
  6.  請求項5に記載の金属膜付物体において、
     前記金属膜の主成分が銅である、金属膜付物体。
    In the object with a metal film according to claim 5.
    An object with a metal film in which the main component of the metal film is copper.
  7.  請求項1から請求項4までのいずれか一項に記載の金属膜付物体において、
     前記基材に対する前記金属膜の密着強度が、3[N/cm]以上である、金属膜付物体。
    In the object with a metal film according to any one of claims 1 to 4.
    An object with a metal film having a metal film adhesion strength to the base material of 3 [N / cm] or more.
PCT/JP2020/008286 2020-02-28 2020-02-28 Object with metal film WO2021171551A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022502772A JPWO2021171551A1 (en) 2020-02-28 2020-02-28
CN202080092190.8A CN114929926A (en) 2020-02-28 2020-02-28 Object with metal film
PCT/JP2020/008286 WO2021171551A1 (en) 2020-02-28 2020-02-28 Object with metal film
TW110104536A TWI765565B (en) 2020-02-28 2021-02-05 object with metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008286 WO2021171551A1 (en) 2020-02-28 2020-02-28 Object with metal film

Publications (1)

Publication Number Publication Date
WO2021171551A1 true WO2021171551A1 (en) 2021-09-02

Family

ID=77491147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008286 WO2021171551A1 (en) 2020-02-28 2020-02-28 Object with metal film

Country Status (4)

Country Link
JP (1) JPWO2021171551A1 (en)
CN (1) CN114929926A (en)
TW (1) TWI765565B (en)
WO (1) WO2021171551A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123343A (en) * 1995-11-02 1997-05-13 Mitsui Toatsu Chem Inc Laminate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037257A (en) * 1997-05-08 2000-03-14 Applied Materials, Inc. Sputter deposition and annealing of copper alloy metallization
CN1329979C (en) * 2002-12-26 2007-08-01 三井金属矿业株式会社 Film carrier tape for electronic part and its producing method
JP6236120B2 (en) * 2015-06-24 2017-11-22 Jx金属株式会社 Copper foil with carrier, laminate, laminate production method, printed wiring board production method, and electronic device production method
JP6541530B2 (en) * 2015-09-24 2019-07-10 三ツ星ベルト株式会社 Via-filled substrate, method for producing the same, and precursor thereof
TWI765595B (en) * 2016-08-31 2022-05-21 日商大日本印刷股份有限公司 Through-electrode substrate, method of manufacturing through-electrode substrate, and mounting substrate
CN112292473A (en) * 2018-06-01 2021-01-29 株式会社岛津制作所 Conductive film forming method and method for manufacturing wiring substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123343A (en) * 1995-11-02 1997-05-13 Mitsui Toatsu Chem Inc Laminate

Also Published As

Publication number Publication date
JPWO2021171551A1 (en) 2021-09-02
TWI765565B (en) 2022-05-21
CN114929926A (en) 2022-08-19
TW202146230A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2004067799A1 (en) Susceptor device for semiconductor processing, film forming apparatus, and film forming method
TW201920715A (en) Thermal spraying method of component for plasma processing apparatus and component for plasma processing apparatus
US20100264023A1 (en) Method for producing metal nitride film, metal oxide film, metal carbide film or film of composite material thereof, and production apparatus therefor
US5631498A (en) Thin film metallization process for improved metal to substrate adhesion
JP7270974B2 (en) Resin surface hydrophilization method, plasma treatment apparatus, and laminate manufacturing method
US6383573B1 (en) Process for manufacturing coated plastic body
WO2021171551A1 (en) Object with metal film
JP7146213B2 (en) Method for forming conductive film and method for manufacturing wiring board
US6083356A (en) Method and device for pre-treatment of substrates
JP2007092095A (en) Thin film deposition method, and thin film deposition apparatus
EP1021589A1 (en) Method of chemical vapor deposition of metal films
JP2022030210A (en) Conductive film forming method and method for producing wiring board
KR20200136826A (en) Film forming apparatus
KR20210106811A (en) Method manufacturing structure for flexible printed circuit board and device thereof
JP7317421B2 (en) laminate
JP4895897B2 (en) Thin film structure and manufacturing method thereof
JP2007221171A (en) Apparatus for forming different types of thin films
JP5468191B2 (en) Colored substrate manufacturing method and colored substrate
JP4931173B2 (en) Method for forming tantalum nitride film
JP4931172B2 (en) Method for forming tantalum nitride film
US20240120183A1 (en) Substrate processing method and substrate processing apparatus
WO2021199479A1 (en) Film formation device, device for controlling film formation device, and film formation method
WO2022102463A1 (en) Substrate treatment method and substrate treatment device
CN115989578A (en) Laminate and laminate manufacturing method
JP2004162098A (en) Resin-metal laminate structure and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921527

Country of ref document: EP

Kind code of ref document: A1