WO2021171425A1 - Dc power supply device, refrigerant cycle device, air conditioner, and refrigerator - Google Patents

Dc power supply device, refrigerant cycle device, air conditioner, and refrigerator Download PDF

Info

Publication number
WO2021171425A1
WO2021171425A1 PCT/JP2020/007772 JP2020007772W WO2021171425A1 WO 2021171425 A1 WO2021171425 A1 WO 2021171425A1 JP 2020007772 W JP2020007772 W JP 2020007772W WO 2021171425 A1 WO2021171425 A1 WO 2021171425A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
semiconductor
semiconductor switches
radiator
Prior art date
Application number
PCT/JP2020/007772
Other languages
French (fr)
Japanese (ja)
Inventor
和寛 山田
拓人 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/007772 priority Critical patent/WO2021171425A1/en
Publication of WO2021171425A1 publication Critical patent/WO2021171425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a DC power supply device, a refrigeration cycle device, an air conditioner, and a refrigerator that convert alternating current into direct current.
  • the semiconductor switch used in the DC power supply is used by being placed on the upper surface of the heat radiating plate in order to suppress the temperature rise due to switching.
  • the heat dissipation plate since the heat dissipation plate has the same potential as the drain or source of the semiconductor switch, when a plurality of semiconductor switches are arranged on the upper surface of the heat dissipation plate, the drains and sources having different polarities of each semiconductor switch are used. It will be connected via the heat dissipation plate. Since such a connection may lead to a failure of the DC power supply device, it is necessary to keep the semiconductor switch and the heat sink in an insulated state.
  • an insulating layer is formed between the back surface of the semiconductor switch and the heat radiating plate, whereby the semiconductor switch and the heat radiating plate are in an insulated state.
  • Patent Document 1 has a problem that a thick insulating layer is required to secure the insulation distance of the functional insulation between the semiconductor switches, and the manufacturing cost of the DC power supply device becomes high.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a DC power supply device capable of reducing manufacturing costs while sufficiently securing an insulation distance for functional insulation between semiconductor switches.
  • the DC power supply device of the present disclosure includes a plurality of DC power supply devices based on a rectifier circuit composed of a plurality of semiconductor switches and the current value of the current flowing from the AC power supply to the rectifier circuit.
  • a control unit that controls the open / closed state of the semiconductor switch, a radiator plate connected to each of the plurality of semiconductor switches, a radiator connected to the plurality of radiator plates, and a radiator that dissipates heat generated by the semiconductor switch.
  • the semiconductor switch and the heat sink are composed of a resin-sealed semiconductor package, and each semiconductor package is connected to the radiator.
  • the DC power supply device has an effect that the manufacturing cost can be reduced while sufficiently securing the insulation distance of the functional insulation between the semiconductor switches.
  • FIG. 1 is a diagram showing a configuration of a DC power supply device according to the first embodiment.
  • FIG. 1 illustrates a DC power supply device 100, an AC power supply 1, and a load 8.
  • the DC power supply device 100 of the first embodiment has the same circuit configuration as the DC power supply device.
  • the DC power supply device 100 is connected to the AC power supply 1 and the load 8.
  • the DC power supply device 100 converts the AC voltage supplied from the AC power supply 1 into a DC voltage, and drives the load 8 using the DC power.
  • the power supply voltage of the AC power supply 1 is Vs
  • the current flowing from the AC power supply 1 into the rectifier circuit 50A is Is.
  • the DC power supply device 100 includes a reactor 2, semiconductor switches 3, 4, 5, 6, capacitors 7, current detection elements 9, 10, current detection units 11, 12, control units 13, and a voltage detection unit 14. And a drive unit 15.
  • the semiconductor switches 3 to 6 form a rectifier circuit 50A.
  • the reactor 2 is inserted between one input end of the rectifier circuit 50A and the AC power supply 1.
  • the rectifier circuit 50A converts the AC voltage output from the AC power supply 1 into a DC voltage.
  • the semiconductor switches 3 to 6 forming the rectifying circuit 50A are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the rectifier circuit 50A may have a configuration in which a diode is inserted in parallel with each of the semiconductor switches 3 to 6.
  • Each of the semiconductor switches 3 to 6 is arranged on different heat radiating plates.
  • the semiconductor switches 3 to 6 and the heat radiating plate are packaged by being covered with an insulating resin.
  • the package in which the semiconductor switches 3 to 6 and the heat radiating plate are housed is referred to as a semiconductor package.
  • a total of four semiconductor packages corresponding to the semiconductor switches 3 to 6 are mounted on the radiator 16A, which will be described later.
  • a capacitor 7 is connected between the output ends of the rectifier circuit 50A, and this capacitor 7 smoothes the DC voltage output from the rectifier circuit 50A.
  • a load 8 is connected to both ends of the capacitor 7.
  • the current detection elements 9 and 10 are a current transformer, a shunt resistor, and the like.
  • the current detection element 9 is connected between the capacitor 7 and the load 8, and the current detection element 10 is connected between the AC power supply 1 and the rectifier circuit 50A. These current detecting elements 9 and 10 detect the current value at the connection position.
  • the current detection units 11 and 12 convert the current values detected by the current detection elements 9 and 10 into values within a range (within a low voltage) that can be handled by the control unit 13 and output them.
  • the current detection units 11 and 12 are realized by an amplifier or the like.
  • the voltage detection unit 14 detects the DC voltage, which is the voltage across the capacitor 7, converts it to a value within the range (within the low voltage) that the control unit 13 can handle, and outputs it.
  • the voltage detection unit 14 is also realized by an amplifier or the like.
  • the control unit 13 of the semiconductor switches 3 to 6 is based on the input value (signal indicating the current value) from the current detection units 11 and 12 and the input value (signal indicating the voltage value) from the voltage detection unit 14. Controls the open / closed state (on or off).
  • the control unit 13 is realized by a microcomputer or the like.
  • the drive unit 15 converts the drive signals s1, s2, s3, s4 for controlling the semiconductor switches 3 to 6 generated by the control unit 13 into a voltage level that can be driven by the semiconductor switches 3 to 6 and drives the semiconductor switches 3 to 6. It is output as signals S1, S2, S3, S4.
  • the drive unit 15 is realized by a level shift circuit or the like.
  • the number of semiconductor switches included in the rectifier circuit 50A is not limited to four, and may be any number as long as it is two or more.
  • FIG. 2 is a top view showing a configuration of a rectifier circuit included in the DC power supply device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing a configuration of a rectifier circuit included in the DC power supply device according to the first embodiment.
  • FIG. 3 shows a cross-sectional configuration of the rectifier circuit 50A when the rectifier circuit 50A is cut along the line III-III shown in FIG.
  • the two axes in the plane parallel to the upper surface of the base plate 161 included in the radiator 16A and orthogonal to each other are defined as the X axis and the Y axis. Further, the axis orthogonal to the X-axis and the Y-axis is defined as the Z-axis.
  • the semiconductor switches 3 to 6 included in the rectifier circuit 50A are housed in the semiconductor packages 23 to 26, respectively.
  • the semiconductor switch 3 is arranged on the heat radiating plate 18, and the semiconductor switch 3 and the heat radiating plate 18 are covered with the resin 40.
  • the semiconductor switch 4 is arranged on the heat radiating plate 18, and the semiconductor switch 4 and the heat radiating plate 18 are covered with the resin 40.
  • the semiconductor switch 5 is arranged on the heat radiating plate 18, and the semiconductor switch 5 and the heat radiating plate 18 are covered with the resin 40.
  • the semiconductor switch 6 is arranged on the heat radiating plate 18, and the semiconductor switch 6 and the heat radiating plate 18 are covered with the resin 40.
  • the thickness of the portion of the resin 40 that is arranged on the bottom surface of the heat radiating plate 18 is a thickness (insulation distance) that can sufficiently secure functional insulation between the semiconductor switches 3 to 6.
  • the heat radiating plate 18 has the same potential as the drain or source of the semiconductor switches 3 to 6.
  • the semiconductor packages 23 to 26 are arranged on the radiator 16A, which is a metal object for heat dissipation.
  • the radiator 16A has a base plate 161 to which the semiconductor packages 23 to 26 are attached, and fins 162 that dissipate heat from the base plate 161.
  • the base plate 161 has a plate shape having an upper surface and a lower surface parallel to the XY plane.
  • the semiconductor packages 23 to 26 are arranged on the upper surface of the base plate 161 and the fins 162 extend in the Z direction from the bottom surface of the base plate 161.
  • Silicon grease 17 is applied to the upper surface of the base plate 161, and the base plate 161 and the semiconductor packages 23 to 26 are joined via the silicon grease 17.
  • the silicon grease 17 fills the gap generated between the joints between the semiconductor packages 23 to 26 and the radiator 16A, and suppresses an increase in thermal resistance.
  • Each of the semiconductor packages 23 to 26 includes a source connection terminal 20S connected to the source of the MOSFET, a gate connection terminal 20G connected to the gate of the MOSFET, and a drain connection terminal 20D connected to the drain of the MOSFET. ing.
  • the semiconductor packages 23 to 26 are attached to the radiator 16A by screws 21 extending in the Z direction, respectively.
  • the semiconductor packages 23 to 26 are arranged in consideration of the restrictions on heat dissipation and the restrictions on circuit design. That is, on the radiator 16A, the silicon greases 17 of the semiconductor packages 23 to 26 are separated by a specific distance so as not to overlap with the other silicon greases 17.
  • the semiconductor switches 3 to 6 are connected to the radiator 16A via the heat sink 18, the resin 40, and the silicon grease 17. Therefore, for example, between the semiconductor switches 3 and 5, the heat sink 18 of the semiconductor switch 3, the resin 40 of the semiconductor switch 3, the silicon grease 17 of the semiconductor switch 3, the radiator 16A, and the silicon grease 17 of the semiconductor switch 5 And the resin 40 of the semiconductor switch 5 and the heat sink 18 of the semiconductor switch 5 are connected to each other.
  • the insulation distance of the functional insulation between the semiconductor switches 3 to 6 is increased. Can be taken sufficiently.
  • the DC power supply device 100 of the first embodiment does not require an insulating layer between the semiconductor switches 3 to 6 and the radiator 16A, and the semiconductor packages 23 to 26 may be arranged on the radiator 16A. , The desired insulation distance can be easily obtained. Further, since the DC power supply device 100 does not require an insulating layer between the semiconductor switches 3 to 6 and the radiator 16A, the number of steps can be reduced.
  • the drive signal s1 for driving the semiconductor switch 3 output from the control unit 13 and the drive signal s4 for driving the semiconductor switch 6 operate on and off at the same timing or close to the same timing.
  • the drive signal s2 for driving the semiconductor switch 4 output from the control unit 13 and the drive signal s3 for driving the semiconductor switch 5 operate on and off at the same timing or close to the same timing.
  • the DC power supply device 100 performs synchronous rectification by these on / off operations.
  • the heat radiating plate 18 arranged on the back surface of the semiconductor switches 3 to 6 is sealed with the resin 40, and the drain or the source is insulated between the semiconductor switches 3 to 6. It is a package. As a result, a sufficient insulation distance for functional insulation between the semiconductor switches 3 to 6 can be secured.
  • the manufacturing cost of the DC power supply device 100 can be reduced.
  • the rectifier circuit 50A can be miniaturized.
  • the semiconductor switches 3 to 6 are sealed with the resin 40, it is possible to prevent the user of the DC power supply device 100 from touching the radiator 16A and getting an electric shock with a simple configuration.
  • Embodiment 2 Next, the second embodiment will be described with reference to FIGS. 4 and 5.
  • the radiator is grounded.
  • FIG. 4 is a top view showing the configuration of the rectifier circuit included in the DC power supply device according to the second embodiment.
  • FIG. 5 is a cross-sectional view showing a configuration of a rectifier circuit included in the DC power supply device according to the second embodiment.
  • FIG. 5 shows a cross-sectional configuration of the rectifier circuit 50B when the rectifier circuit 50B is cut along the VV line shown in FIG.
  • FIGS. 4 and 5 the components that achieve the same functions as the radiator 16A of the first embodiment shown in FIGS. 2 and 3 are designated by the same reference numerals, and redundant description will be omitted. ..
  • the DC power supply device 100 includes a rectifier circuit 50B instead of the rectifier circuit 50A.
  • the rectifier circuit 50B of the second embodiment includes a grounded radiator 16B instead of the radiator 16A as compared with the rectifier circuit 50A of the first embodiment.
  • the radiator 16B is made of a conductive material, for example, metal. By grounding the radiator 16B to the ground, the coupling capacitance parasitic between the semiconductor switches 3 to 6 and the radiator 16B is reduced, so that the leakage current due to common mode noise can be reduced.
  • the radiator 16B is grounded, it is possible to reduce the coupling capacitance parasitic between the semiconductor switches 3 to 6 and the radiator 16B. Therefore, the leakage current due to common mode noise can be reduced.
  • the DC power supply device 100 executes control for switching between synchronous rectification and full-wave rectification (asynchronous rectification) according to the current value.
  • the MOSFET Since the MOSFET has a built-in parasitic diode, a current flows through the parasitic diode in the gate-off state, and a conduction loss occurs in the parasitic diode.
  • a diode When a diode is connected in parallel to the MOSFET, a current flows through the diode connected in parallel, and a conduction loss occurs in this diode.
  • FIG. 6 is a diagram showing an example of the relationship between the current value of the MOSFET included in the DC power supply device according to the third embodiment and the conduction loss.
  • the horizontal axis of the graph shown in FIG. 6 is the current value flowing through the semiconductor switches 3 to 6, and the vertical axis is the conduction loss (loss value) when rectified.
  • the conduction loss waveform 31 in the gate-on state of the MOSFETs constituting the semiconductor switches 3 to 6 and the conduction loss waveform 32 in the gate-off state (that is, the parasitic diode of the MOSFET) are shown.
  • the rectifier circuit 50A becomes a bridge rectifier.
  • the conduction loss can be reduced by performing synchronous rectification using the MOSFET, and in the region where the current value exceeds A1, the full wave is used by using the parasitic diode.
  • the conduction loss can be reduced by performing rectification.
  • the conduction loss can be made smaller by performing synchronous rectification by conducting the MOSFET in the gate-on state than by performing full-wave rectification in the gate-off state.
  • the control unit 13 selects synchronous rectification in the region where the current value is A1 or less. That is, when the current value is A1 or less, the control unit 13 executes the first rectification operation of converting the AC voltage into the DC voltage by switching the semiconductor switches 3 to 6.
  • the control unit 13 selects full-wave rectification performed by using the parasitic diodes of the semiconductor switches 3 to 6 in the region where the current value exceeds A1. That is, when the current value is larger than A1, the control unit 13 converts the AC voltage into a DC voltage by using the parasitic diode in the semiconductor switches 3 to 6 by constantly turning off the semiconductor switches 3 to 6. The second rectification operation is performed. When the diode is connected in parallel to the MOSFET, the control unit 13 executes the second rectification operation by using the diode connected in parallel to the semiconductor switches 3 to 6.
  • the DC power supply device 100 may calculate the magnitude of the current flowing through each of the semiconductor switches 3 to 6 from the value of the current output from the AC power supply 1 (Is), or from the value of the current flowing through the load 8. You may calculate.
  • the element heat generation from the semiconductor switches 3 to 6 can be reduced.
  • FIG. 7 is a diagram showing a configuration of an air conditioner including a DC power supply device according to any one of the first to third embodiments.
  • the DC power supply device 100 can be applied to a refrigeration cycle device such as a refrigerator and an air conditioner 400.
  • a refrigeration cycle device such as a refrigerator and an air conditioner 400.
  • an example in which the DC power supply device 100 is applied to an air conditioner 400 which is an example of a refrigeration cycle device, will be described.
  • the air conditioner 400 includes an AC power supply 1, a motor drive device 150, a compressor 505, and a refrigeration cycle unit 506.
  • the AC power supply 1 is connected to the motor drive device 150, the motor drive device 150 is connected to the compressor 505, and the compressor 505 is connected to the refrigeration cycle unit 506.
  • the motor drive device 150 includes a DC power supply device 100 and an inverter (not shown).
  • the DC power supply device 100 is connected to an inverter, and the inverter is connected to the motor 42 of the compressor 505.
  • a motor 42 is connected to the output side of the motor drive device 150, and the motor 42 is connected to the compression element 504.
  • the compressor 505 includes a motor 42 and a compression element 504.
  • the refrigeration cycle unit 506 is configured to include a four-way valve 506a, an indoor heat exchanger 506b, an expansion valve 506c, and an outdoor heat exchanger 506d.
  • the flow path of the refrigerant circulating inside the air conditioner 400 is from the compression element 504 via the four-way valve 506a, the indoor heat exchanger 506b, the expansion valve 506c, the outdoor heat exchanger 506d, and again via the four-way valve 506a. Therefore, it is configured to return to the compression element 504.
  • the motor drive device 150 receives AC power from the AC power supply 1 and rotates the motor 42.
  • the compression element 504 executes a compression operation of the refrigerant by rotating the motor 42, and the refrigerant can be circulated inside the refrigeration cycle unit 506.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Abstract

A DC power supply device (100) comprises: a matching circuit (50A) constituted by semiconductor switches (3-6); a control unit (13) which controls the open/closed state of the semiconductor switches (3-6) on the basis of the current value of the current flowing from an AC power supply (1) to the matching circuit (50A); heat dissipation plates (18) connected to the respective semiconductor switches (3-6); and a radiator (16A) to which the heat dissipation plates (18) are connected and which dissipates the heat generated by the semiconductor switches (3-6). The semiconductor switches (3-6) and the heat dissipation plates (18) are configured from semiconductor packages (23-26) that are sealed by using a resin (40), and the semiconductor packages (23-26) are connected to the radiator (16A).

Description

直流電源装置、冷凍サイクル装置、空気調和機および冷蔵庫DC power supply, refrigeration cycle device, air conditioner and refrigerator
 本開示は、交流を直流に変換する直流電源装置、冷凍サイクル装置、空気調和機および冷蔵庫に関する。 The present disclosure relates to a DC power supply device, a refrigeration cycle device, an air conditioner, and a refrigerator that convert alternating current into direct current.
 直流電源装置に用いられる半導体スイッチは、スイッチングによる温度上昇を抑制するため、放熱板の上面に配置されて使用される。この直流電源装置では、放熱板が半導体スイッチのドレインまたはソースと同電位であるので、複数の半導体スイッチが放熱板の上面に配置される場合には、各半導体スイッチの極性の異なるドレインおよびソースが放熱板を介して接続されてしまう。このような接続は、直流電源装置の故障に繋がる場合があるので、半導体スイッチと放熱板とは、絶縁状態にしておく必要がある。 The semiconductor switch used in the DC power supply is used by being placed on the upper surface of the heat radiating plate in order to suppress the temperature rise due to switching. In this DC power supply, since the heat dissipation plate has the same potential as the drain or source of the semiconductor switch, when a plurality of semiconductor switches are arranged on the upper surface of the heat dissipation plate, the drains and sources having different polarities of each semiconductor switch are used. It will be connected via the heat dissipation plate. Since such a connection may lead to a failure of the DC power supply device, it is necessary to keep the semiconductor switch and the heat sink in an insulated state.
 特許文献1に記載の直流電源装置では、半導体スイッチの裏面と放熱板との間に絶縁層が形成されており、これにより、半導体スイッチと放熱板とを絶縁状態にしている。 In the DC power supply device described in Patent Document 1, an insulating layer is formed between the back surface of the semiconductor switch and the heat radiating plate, whereby the semiconductor switch and the heat radiating plate are in an insulated state.
特開2009-164536号公報Japanese Unexamined Patent Publication No. 2009-164536
 しかしながら、上記特許文献1の技術では、半導体スイッチ間の機能絶縁の絶縁距離を確保するためには厚い絶縁層が必要となり、直流電源装置の製造コストが高くなるという問題があった。 However, the technique of Patent Document 1 has a problem that a thick insulating layer is required to secure the insulation distance of the functional insulation between the semiconductor switches, and the manufacturing cost of the DC power supply device becomes high.
 本開示は、上記に鑑みてなされたものであって、半導体スイッチ間の機能絶縁の絶縁距離を十分に確保しつつ製造コストを低減することができる直流電源装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a DC power supply device capable of reducing manufacturing costs while sufficiently securing an insulation distance for functional insulation between semiconductor switches.
 上述した課題を解決し、目的を達成するために、本開示の直流電源装置は、複数の半導体スイッチで構成された整流回路と、交流電源から整流回路に流れる電流の電流値に基づいて、複数の半導体スイッチの開閉状態を制御する制御部と、複数の半導体スイッチのそれぞれに接続された放熱板と、複数の放熱板が接続されるとともに半導体スイッチが発生させた熱を放熱する放熱器と、を備える。半導体スイッチと放熱板とは、樹脂で封止された半導体パッケージで構成され、それぞれの半導体パッケージが、放熱器に接続されている。 In order to solve the above-mentioned problems and achieve the object, the DC power supply device of the present disclosure includes a plurality of DC power supply devices based on a rectifier circuit composed of a plurality of semiconductor switches and the current value of the current flowing from the AC power supply to the rectifier circuit. A control unit that controls the open / closed state of the semiconductor switch, a radiator plate connected to each of the plurality of semiconductor switches, a radiator connected to the plurality of radiator plates, and a radiator that dissipates heat generated by the semiconductor switch. To be equipped. The semiconductor switch and the heat sink are composed of a resin-sealed semiconductor package, and each semiconductor package is connected to the radiator.
 本開示にかかる直流電源装置は、半導体スイッチ間の機能絶縁の絶縁距離を十分に確保しつつ製造コストを低減することができるという効果を奏する。 The DC power supply device according to the present disclosure has an effect that the manufacturing cost can be reduced while sufficiently securing the insulation distance of the functional insulation between the semiconductor switches.
実施の形態1にかかる直流電源装置の構成を示す図The figure which shows the structure of the DC power supply device which concerns on Embodiment 1. 実施の形態1にかかる直流電源装置が備える整流回路の構成を示す上面図Top view showing the configuration of the rectifier circuit included in the DC power supply device according to the first embodiment. 実施の形態1にかかる直流電源装置が備える整流回路の構成を示す断面図A cross-sectional view showing a configuration of a rectifier circuit included in the DC power supply device according to the first embodiment. 実施の形態2にかかる直流電源装置が備える整流回路の構成を示す上面図Top view showing the configuration of the rectifier circuit included in the DC power supply device according to the second embodiment. 実施の形態2にかかる直流電源装置が備える整流回路の構成を示す断面図A cross-sectional view showing a configuration of a rectifier circuit included in the DC power supply device according to the second embodiment. 実施の形態3にかかる直流電源装置が備えるMOSFETの電流値と導通損失との関係の一例を示す図The figure which shows an example of the relationship between the current value of the MOSFET included in the DC power supply device which concerns on Embodiment 3 and the conduction loss. 実施の形態1から3のいずれかにかかる直流電源装置を備えた空気調和機の構成を示す図The figure which shows the structure of the air conditioner provided with the DC power supply device which concerns on one of Embodiments 1 to 3.
 以下に、本開示の実施の形態にかかる直流電源装置、冷凍サイクル装置、空気調和機および冷蔵庫を図面に基づいて詳細に説明する。 Hereinafter, the DC power supply device, the refrigeration cycle device, the air conditioner, and the refrigerator according to the embodiment of the present disclosure will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる直流電源装置の構成を示す図である。図1では、直流電源装置100と、交流電源1と、負荷8とを図示している。実施の形態1の直流電源装置100は、直流電源装置と同様の回路構成を有している。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a DC power supply device according to the first embodiment. FIG. 1 illustrates a DC power supply device 100, an AC power supply 1, and a load 8. The DC power supply device 100 of the first embodiment has the same circuit configuration as the DC power supply device.
 直流電源装置100は、交流電源1および負荷8に接続されている。直流電源装置100は、交流電源1から供給される交流電圧を直流電圧に変換し、直流電力を用いて負荷8を駆動する。交流電源1の電源電圧がVsであり、交流電源1から整流回路50Aへ流れ込む電流がIsである。 The DC power supply device 100 is connected to the AC power supply 1 and the load 8. The DC power supply device 100 converts the AC voltage supplied from the AC power supply 1 into a DC voltage, and drives the load 8 using the DC power. The power supply voltage of the AC power supply 1 is Vs, and the current flowing from the AC power supply 1 into the rectifier circuit 50A is Is.
 直流電源装置100は、リアクタ2と、半導体スイッチ3,4,5,6と、コンデンサ7と、電流検出素子9,10と、電流検出部11,12と、制御部13と、電圧検出部14と、駆動部15とを備える。半導体スイッチ3~6は、整流回路50Aを形成している。 The DC power supply device 100 includes a reactor 2, semiconductor switches 3, 4, 5, 6, capacitors 7, current detection elements 9, 10, current detection units 11, 12, control units 13, and a voltage detection unit 14. And a drive unit 15. The semiconductor switches 3 to 6 form a rectifier circuit 50A.
 リアクタ2は、整流回路50Aの一方の入力端と交流電源1との間に挿入されている。 The reactor 2 is inserted between one input end of the rectifier circuit 50A and the AC power supply 1.
 整流回路50Aは、交流電源1から出力された交流電圧を直流電圧に変換する。整流回路50Aを形成している半導体スイッチ3~6は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金属酸化膜半導体電界効果トランジスタ)である。整流回路50Aは、半導体スイッチ3~6のそれぞれに対して並列にダイオードが挿入された構成としてもよい。 The rectifier circuit 50A converts the AC voltage output from the AC power supply 1 into a DC voltage. The semiconductor switches 3 to 6 forming the rectifying circuit 50A are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors). The rectifier circuit 50A may have a configuration in which a diode is inserted in parallel with each of the semiconductor switches 3 to 6.
 半導体スイッチ3~6のそれぞれは、異なる放熱板上に配置されている。半導体スイッチ3~6および放熱板は、絶縁性の樹脂で覆われることによってパッケージされている。以下、半導体スイッチ3~6および放熱板が格納されたパッケージを、半導体パッケージという。半導体スイッチ3~6に対応する合計4つの半導体パッケージは、後述する放熱器16A上に取り付けられる。 Each of the semiconductor switches 3 to 6 is arranged on different heat radiating plates. The semiconductor switches 3 to 6 and the heat radiating plate are packaged by being covered with an insulating resin. Hereinafter, the package in which the semiconductor switches 3 to 6 and the heat radiating plate are housed is referred to as a semiconductor package. A total of four semiconductor packages corresponding to the semiconductor switches 3 to 6 are mounted on the radiator 16A, which will be described later.
 整流回路50Aの出力端間にはコンデンサ7が接続されており、このコンデンサ7は、整流回路50Aから出力された直流電圧を平滑化する。コンデンサ7の両端には負荷8が接続される。 A capacitor 7 is connected between the output ends of the rectifier circuit 50A, and this capacitor 7 smoothes the DC voltage output from the rectifier circuit 50A. A load 8 is connected to both ends of the capacitor 7.
 電流検出素子9,10は、カレントトランス、シャント抵抗などである。電流検出素子9は、コンデンサ7と負荷8との間に接続され、電流検出素子10は、交流電源1と整流回路50Aとの間に接続されている。これらの電流検出素子9,10は、接続位置における電流値を検出する。 The current detection elements 9 and 10 are a current transformer, a shunt resistor, and the like. The current detection element 9 is connected between the capacitor 7 and the load 8, and the current detection element 10 is connected between the AC power supply 1 and the rectifier circuit 50A. These current detecting elements 9 and 10 detect the current value at the connection position.
 電流検出部11,12は、電流検出素子9,10が検出した電流値を制御部13が取り扱い可能な範囲内(低電圧内)の値に変換して出力する。この電流検出部11,12は、増幅器等で実現される。 The current detection units 11 and 12 convert the current values detected by the current detection elements 9 and 10 into values within a range (within a low voltage) that can be handled by the control unit 13 and output them. The current detection units 11 and 12 are realized by an amplifier or the like.
 電圧検出部14は、コンデンサ7の両端電圧である直流電圧を検出し、制御部13が取り扱い可能な範囲内(低電圧内)の値に変換して出力する。この電圧検出部14も増幅器等で実現される。 The voltage detection unit 14 detects the DC voltage, which is the voltage across the capacitor 7, converts it to a value within the range (within the low voltage) that the control unit 13 can handle, and outputs it. The voltage detection unit 14 is also realized by an amplifier or the like.
 制御部13は、電流検出部11,12からの入力値(電流値を示す信号)と、電圧検出部14からの入力値(電圧値を示す信号)とに基づいて、半導体スイッチ3~6の開閉状態(オンまたはオフ)を制御する。制御部13は、マイクロコンピュータなどで実現される。 The control unit 13 of the semiconductor switches 3 to 6 is based on the input value (signal indicating the current value) from the current detection units 11 and 12 and the input value (signal indicating the voltage value) from the voltage detection unit 14. Controls the open / closed state (on or off). The control unit 13 is realized by a microcomputer or the like.
 駆動部15は、制御部13により生成された、半導体スイッチ3~6を制御するための駆動信号s1,s2,s3,s4を、半導体スイッチ3~6が駆動可能な電圧レベルに変換し、駆動信号S1,S2,S3,S4として出力する。駆動部15は、レベルシフト回路などで実現される。 The drive unit 15 converts the drive signals s1, s2, s3, s4 for controlling the semiconductor switches 3 to 6 generated by the control unit 13 into a voltage level that can be driven by the semiconductor switches 3 to 6 and drives the semiconductor switches 3 to 6. It is output as signals S1, S2, S3, S4. The drive unit 15 is realized by a level shift circuit or the like.
 なお、整流回路50Aが備える半導体スイッチの個数は、4つに限らず、2つ以上であればいくつであってもよい。 The number of semiconductor switches included in the rectifier circuit 50A is not limited to four, and may be any number as long as it is two or more.
 つぎに、半導体スイッチ3~6の配置について説明する。図2は、実施の形態1にかかる直流電源装置が備える整流回路の構成を示す上面図である。図3は、実施の形態1にかかる直流電源装置が備える整流回路の構成を示す断面図である。図3では、図2に示すIII-III線に沿って整流回路50Aを切断した場合の整流回路50Aの断面構成を示している。なお、放熱器16Aが備えるベース板161の上面と平行な面内の2つの軸であって互いに直交する2つの軸をX軸およびY軸とする。また、X軸およびY軸に直交する軸をZ軸とする。 Next, the arrangement of the semiconductor switches 3 to 6 will be described. FIG. 2 is a top view showing a configuration of a rectifier circuit included in the DC power supply device according to the first embodiment. FIG. 3 is a cross-sectional view showing a configuration of a rectifier circuit included in the DC power supply device according to the first embodiment. FIG. 3 shows a cross-sectional configuration of the rectifier circuit 50A when the rectifier circuit 50A is cut along the line III-III shown in FIG. The two axes in the plane parallel to the upper surface of the base plate 161 included in the radiator 16A and orthogonal to each other are defined as the X axis and the Y axis. Further, the axis orthogonal to the X-axis and the Y-axis is defined as the Z-axis.
 整流回路50Aに含まれる半導体スイッチ3~6は、それぞれ半導体パッケージ23~26に格納されている。半導体パッケージ23では、半導体スイッチ3が放熱板18上に配置されており、半導体スイッチ3および放熱板18が樹脂40で覆われている。半導体パッケージ24では、半導体スイッチ4が放熱板18上に配置されており、半導体スイッチ4および放熱板18が樹脂40で覆われている。半導体パッケージ25では、半導体スイッチ5が放熱板18上に配置されており、半導体スイッチ5および放熱板18が樹脂40で覆われている。半導体パッケージ26では、半導体スイッチ6が放熱板18上に配置されており、半導体スイッチ6および放熱板18が樹脂40で覆われている。 The semiconductor switches 3 to 6 included in the rectifier circuit 50A are housed in the semiconductor packages 23 to 26, respectively. In the semiconductor package 23, the semiconductor switch 3 is arranged on the heat radiating plate 18, and the semiconductor switch 3 and the heat radiating plate 18 are covered with the resin 40. In the semiconductor package 24, the semiconductor switch 4 is arranged on the heat radiating plate 18, and the semiconductor switch 4 and the heat radiating plate 18 are covered with the resin 40. In the semiconductor package 25, the semiconductor switch 5 is arranged on the heat radiating plate 18, and the semiconductor switch 5 and the heat radiating plate 18 are covered with the resin 40. In the semiconductor package 26, the semiconductor switch 6 is arranged on the heat radiating plate 18, and the semiconductor switch 6 and the heat radiating plate 18 are covered with the resin 40.
 樹脂40のうち放熱板18の底面に配置される部分の厚さは、半導体スイッチ3~6間の機能絶縁を十分に確保できる厚さ(絶縁距離)とする。放熱板18は、半導体スイッチ3~6のドレインまたはソースと同電位である。 The thickness of the portion of the resin 40 that is arranged on the bottom surface of the heat radiating plate 18 is a thickness (insulation distance) that can sufficiently secure functional insulation between the semiconductor switches 3 to 6. The heat radiating plate 18 has the same potential as the drain or source of the semiconductor switches 3 to 6.
 半導体パッケージ23~26は、放熱用の金属器などである放熱器16A上に配置されている。放熱器16Aは、半導体パッケージ23~26が取り付けられるベース板161と、ベース板161からの熱を放熱させるフィン162とを有している。ベース板161は、XY平面と平行な上面および底面を有した板状をなしている。半導体パッケージ23~26は、ベース板161の上面に配置され、フィン162は、ベース板161の底面からZ方向に延設されている。 The semiconductor packages 23 to 26 are arranged on the radiator 16A, which is a metal object for heat dissipation. The radiator 16A has a base plate 161 to which the semiconductor packages 23 to 26 are attached, and fins 162 that dissipate heat from the base plate 161. The base plate 161 has a plate shape having an upper surface and a lower surface parallel to the XY plane. The semiconductor packages 23 to 26 are arranged on the upper surface of the base plate 161 and the fins 162 extend in the Z direction from the bottom surface of the base plate 161.
 ベース板161の上面には、シリコングリース17が塗布されており、ベース板161と半導体パッケージ23~26とは、シリコングリース17を介して接合されている。シリコングリース17は、半導体パッケージ23~26と放熱器16Aとの接合間に生じる隙間を埋めるとともに、熱抵抗の増加を抑制する。 Silicon grease 17 is applied to the upper surface of the base plate 161, and the base plate 161 and the semiconductor packages 23 to 26 are joined via the silicon grease 17. The silicon grease 17 fills the gap generated between the joints between the semiconductor packages 23 to 26 and the radiator 16A, and suppresses an increase in thermal resistance.
 半導体パッケージ23~26は、それぞれ、MOSFETのソースに接続されるソース接続端子20Sと、MOSFETのゲートに接続されるゲート接続端子20Gと、MOSFETのドレインに接続されるドレイン接続端子20Dとを具備している。半導体パッケージ23~26は、それぞれ、Z方向に延びるねじ21によって、放熱器16Aに取り付けられている。 Each of the semiconductor packages 23 to 26 includes a source connection terminal 20S connected to the source of the MOSFET, a gate connection terminal 20G connected to the gate of the MOSFET, and a drain connection terminal 20D connected to the drain of the MOSFET. ing. The semiconductor packages 23 to 26 are attached to the radiator 16A by screws 21 extending in the Z direction, respectively.
 放熱器16A上では、半導体パッケージ23~26は放熱性の制約および回路設計上の制約を考慮して配置されている。すなわち、放熱器16A上では、各半導体パッケージ23~26のシリコングリース17が、他のシリコングリース17に重ならないよう特定の距離だけ離されている。 On the radiator 16A, the semiconductor packages 23 to 26 are arranged in consideration of the restrictions on heat dissipation and the restrictions on circuit design. That is, on the radiator 16A, the silicon greases 17 of the semiconductor packages 23 to 26 are separated by a specific distance so as not to overlap with the other silicon greases 17.
 このように、半導体スイッチ3~6は、放熱板18、樹脂40、およびシリコングリース17を介して放熱器16Aに接続されている。したがって、例えば、半導体スイッチ3,5間は、半導体スイッチ3の放熱板18と、半導体スイッチ3の樹脂40と、半導体スイッチ3のシリコングリース17と、放熱器16Aと、半導体スイッチ5のシリコングリース17と、半導体スイッチ5の樹脂40と、半導体スイッチ5の放熱板18とを介して接続されることとなる。 As described above, the semiconductor switches 3 to 6 are connected to the radiator 16A via the heat sink 18, the resin 40, and the silicon grease 17. Therefore, for example, between the semiconductor switches 3 and 5, the heat sink 18 of the semiconductor switch 3, the resin 40 of the semiconductor switch 3, the silicon grease 17 of the semiconductor switch 3, the radiator 16A, and the silicon grease 17 of the semiconductor switch 5 And the resin 40 of the semiconductor switch 5 and the heat sink 18 of the semiconductor switch 5 are connected to each other.
 このため、樹脂40のうち放熱板18の底面に配置される部分の厚さを特定の厚さまで厚くしておくことで、直流電源装置100では、半導体スイッチ3~6間の機能絶縁の絶縁距離を十分にとることができる。 Therefore, by increasing the thickness of the portion of the resin 40 arranged on the bottom surface of the heat radiating plate 18 to a specific thickness, in the DC power supply device 100, the insulation distance of the functional insulation between the semiconductor switches 3 to 6 is increased. Can be taken sufficiently.
 ところで、半導体スイッチと、放熱器との間に絶縁層を形成しようとすると、絶縁層の形成に位置ずれが生じやすいので、半導体スイッチ間の機能絶縁の絶縁距離にもばらつきが生じやすい。このため、所望の絶縁距離を得ることが困難であった。一方、実施の形態1の直流電源装置100は、半導体スイッチ3~6と、放熱器16Aとの間に絶縁層が不要であり、放熱器16A上に半導体パッケージ23~26を配置すればよいので、容易に所望の絶縁距離を得ることができる。また、直流電源装置100は、半導体スイッチ3~6と、放熱器16Aとの間に絶縁層が不要であるので、工程数を減らすことができる。 By the way, when an attempt is made to form an insulating layer between a semiconductor switch and a radiator, the formation of the insulating layer is likely to be displaced, so that the insulation distance of the functional insulation between the semiconductor switches is also likely to vary. Therefore, it has been difficult to obtain a desired insulation distance. On the other hand, the DC power supply device 100 of the first embodiment does not require an insulating layer between the semiconductor switches 3 to 6 and the radiator 16A, and the semiconductor packages 23 to 26 may be arranged on the radiator 16A. , The desired insulation distance can be easily obtained. Further, since the DC power supply device 100 does not require an insulating layer between the semiconductor switches 3 to 6 and the radiator 16A, the number of steps can be reduced.
 次に、直流電源装置100の動作について説明する。直流電源装置100では、制御部13から出力される半導体スイッチ3を駆動するための駆動信号s1と半導体スイッチ6を駆動するための駆動信号s4とが、同一またはそれに近いタイミングでオンオフ動作する。また、制御部13から出力される半導体スイッチ4を駆動するための駆動信号s2と半導体スイッチ5を駆動するための駆動信号s3とが、同一またはそれに近いタイミングでオンオフ動作する。直流電源装置100は、これらのオンオフ動作によって同期整流を行う。 Next, the operation of the DC power supply device 100 will be described. In the DC power supply device 100, the drive signal s1 for driving the semiconductor switch 3 output from the control unit 13 and the drive signal s4 for driving the semiconductor switch 6 operate on and off at the same timing or close to the same timing. Further, the drive signal s2 for driving the semiconductor switch 4 output from the control unit 13 and the drive signal s3 for driving the semiconductor switch 5 operate on and off at the same timing or close to the same timing. The DC power supply device 100 performs synchronous rectification by these on / off operations.
 このように、実施の形態1では、半導体スイッチ3~6の裏面に配置されている放熱板18が樹脂40で封止されており、半導体スイッチ3~6間で、ドレインまたはソースが絶縁されたパッケージとなっている。これにより、半導体スイッチ3~6間の機能絶縁における絶縁距離を十分に確保できる。 As described above, in the first embodiment, the heat radiating plate 18 arranged on the back surface of the semiconductor switches 3 to 6 is sealed with the resin 40, and the drain or the source is insulated between the semiconductor switches 3 to 6. It is a package. As a result, a sufficient insulation distance for functional insulation between the semiconductor switches 3 to 6 can be secured.
 また、半導体スイッチ3~6間の機能絶縁における絶縁距離を十分に確保できるので、半導体スイッチ3~6間の意図しない接続を防止でき、直流電源装置100の故障を防止できる。 Further, since a sufficient insulation distance in the functional insulation between the semiconductor switches 3 to 6 can be secured, an unintended connection between the semiconductor switches 3 to 6 can be prevented, and a failure of the DC power supply device 100 can be prevented.
 また、放熱板18と放熱器16との間に厚い絶縁層を配置する必要がないので、直流電源装置100の製造コストを低減することができる。 Further, since it is not necessary to arrange a thick insulating layer between the heat radiating plate 18 and the radiator 16, the manufacturing cost of the DC power supply device 100 can be reduced.
 また、1つの放熱器16Aに極性の異なる複数の半導体スイッチ3~6を取り付けることができるので、整流回路50Aを小型化できる。 Further, since a plurality of semiconductor switches 3 to 6 having different polarities can be attached to one radiator 16A, the rectifier circuit 50A can be miniaturized.
 また、半導体スイッチ3~6が樹脂40で封止されているので、直流電源装置100の使用者が放熱器16Aに触れて感電することを簡易な構成で防止できる。 Further, since the semiconductor switches 3 to 6 are sealed with the resin 40, it is possible to prevent the user of the DC power supply device 100 from touching the radiator 16A and getting an electric shock with a simple configuration.
実施の形態2.
 つぎに、図4および図5を用いて実施の形態2について説明する。実施の形態2では、放熱器がアース接地される。
Embodiment 2.
Next, the second embodiment will be described with reference to FIGS. 4 and 5. In the second embodiment, the radiator is grounded.
 図4は、実施の形態2にかかる直流電源装置が備える整流回路の構成を示す上面図である。図5は、実施の形態2にかかる直流電源装置が備える整流回路の構成を示す断面図である。図5では、図4に示すV-V線に沿って整流回路50Bを切断した場合の整流回路50Bの断面構成を示している。 FIG. 4 is a top view showing the configuration of the rectifier circuit included in the DC power supply device according to the second embodiment. FIG. 5 is a cross-sectional view showing a configuration of a rectifier circuit included in the DC power supply device according to the second embodiment. FIG. 5 shows a cross-sectional configuration of the rectifier circuit 50B when the rectifier circuit 50B is cut along the VV line shown in FIG.
 図4および図5の各構成要素のうち図2および図3に示す実施の形態1の放熱器16Aと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。 Of the components of FIGS. 4 and 5, the components that achieve the same functions as the radiator 16A of the first embodiment shown in FIGS. 2 and 3 are designated by the same reference numerals, and redundant description will be omitted. ..
 実施の形態2では、直流電源装置100が整流回路50Aの代わりに整流回路50Bを備えている。実施の形態2の整流回路50Bは、実施の形態1の整流回路50Aと比較して、放熱器16Aの代わりに、アース接地された放熱器16Bを備えている。 In the second embodiment, the DC power supply device 100 includes a rectifier circuit 50B instead of the rectifier circuit 50A. The rectifier circuit 50B of the second embodiment includes a grounded radiator 16B instead of the radiator 16A as compared with the rectifier circuit 50A of the first embodiment.
 放熱器16Bは導電性を有する材質、例えば金属によって形成されている。この放熱器16Bがアース接地されることで、半導体スイッチ3~6と放熱器16Bとの接合間に寄生する結合容量が低減するので、コモンモードノイズによる漏洩電流を低減することができる。 The radiator 16B is made of a conductive material, for example, metal. By grounding the radiator 16B to the ground, the coupling capacitance parasitic between the semiconductor switches 3 to 6 and the radiator 16B is reduced, so that the leakage current due to common mode noise can be reduced.
 このように、実施の形態2では、放熱器16Bがアース接地されているので、半導体スイッチ3~6と放熱器16Bとの接合間に寄生する結合容量を低減させることができる。したがって、コモンモードノイズによる漏洩電流を低減することができる。 As described above, in the second embodiment, since the radiator 16B is grounded, it is possible to reduce the coupling capacitance parasitic between the semiconductor switches 3 to 6 and the radiator 16B. Therefore, the leakage current due to common mode noise can be reduced.
実施の形態3.
 つぎに、図6を用いて実施の形態3について説明する。実施の形態3では、直流電源装置100が、同期整流と全波整流(非同期整流)とを電流値によって切り替える制御を実行する。
Embodiment 3.
Next, the third embodiment will be described with reference to FIG. In the third embodiment, the DC power supply device 100 executes control for switching between synchronous rectification and full-wave rectification (asynchronous rectification) according to the current value.
 MOSFETは、寄生ダイオードを内蔵しているので、ゲートオフ状態では、寄生ダイオードに電流が流れ、寄生ダイオードにて導通損失が発生する。なお、MOSFETにダイオードが並列接続されている場合には、並列接続されているダイオードに電流が流れ、このダイオードにて導通損失が発生する。 Since the MOSFET has a built-in parasitic diode, a current flows through the parasitic diode in the gate-off state, and a conduction loss occurs in the parasitic diode. When a diode is connected in parallel to the MOSFET, a current flows through the diode connected in parallel, and a conduction loss occurs in this diode.
 一方、ゲートオン状態では、MOSFETに電流が流れ、MOSFETにて導通損失が発生する。ゲートオフ状態での導通損失およびゲートオン状態での導通損失は、いずれもMOSFETに流れる電通値の大きさに応じて変化する。 On the other hand, in the gate-on state, a current flows through the MOSFET and a conduction loss occurs in the MOSFET. Both the conduction loss in the gate-off state and the conduction loss in the gate-on state change according to the magnitude of the power transmission value flowing through the MOSFET.
 図6は、実施の形態3にかかる直流電源装置が備えるMOSFETの電流値と導通損失との関係の一例を示す図である。図6に示すグラフの横軸は、半導体スイッチ3~6に流れる電流値であり、縦軸は整流した場合の導通損失(損失値)である。図6では、半導体スイッチ3~6を構成しているMOSFETのゲートオン状態における導通損失波形31と、ゲートオフ状態(すなわちMOSFETの寄生ダイオード)における導通損失波形32とを表している。半導体スイッチ3~6がゲートオフ状態で整流される場合には、整流回路50Aは、ブリッジ整流器となる。 FIG. 6 is a diagram showing an example of the relationship between the current value of the MOSFET included in the DC power supply device according to the third embodiment and the conduction loss. The horizontal axis of the graph shown in FIG. 6 is the current value flowing through the semiconductor switches 3 to 6, and the vertical axis is the conduction loss (loss value) when rectified. In FIG. 6, the conduction loss waveform 31 in the gate-on state of the MOSFETs constituting the semiconductor switches 3 to 6 and the conduction loss waveform 32 in the gate-off state (that is, the parasitic diode of the MOSFET) are shown. When the semiconductor switches 3 to 6 are rectified in the gate-off state, the rectifier circuit 50A becomes a bridge rectifier.
 図6に示すように、電流値がA1以下の領域では、MOSFETを用いて同期整流を行った方が導通損失を小さくでき、電流値がA1を超えた領域では、寄生ダイオードを用いて全波整流を行った方が導通損失を小さくできる。換言すると、電流値がA1以下であれば、ゲートオン状態にしてMOSFETを導通させることで同期整流を行った方が、ゲートオフ状態で全波整流を行うよりも導通損失を小さくできる。また、電流値がA1を超えた領域では、ゲートオフ状態にして寄生ダイオードを導通させることで全波整流を行った方が、ゲートオン状態で同期整流を行うよりも導通損失を小さくできる。 As shown in FIG. 6, in the region where the current value is A1 or less, the conduction loss can be reduced by performing synchronous rectification using the MOSFET, and in the region where the current value exceeds A1, the full wave is used by using the parasitic diode. The conduction loss can be reduced by performing rectification. In other words, if the current value is A1 or less, the conduction loss can be made smaller by performing synchronous rectification by conducting the MOSFET in the gate-on state than by performing full-wave rectification in the gate-off state. Further, in the region where the current value exceeds A1, it is possible to reduce the conduction loss by performing full-wave rectification by conducting the parasitic diode in the gate-off state as compared with performing synchronous rectification in the gate-on state.
 このため、実施の形態3では、制御部13は、電流値がA1以下の領域では同期整流を選択する。すなわち、電流値がA1以下の場合、制御部13は、半導体スイッチ3~6をスイッチングさせることによって交流電圧を直流電圧に変換する第1の整流動作を実行する。 Therefore, in the third embodiment, the control unit 13 selects synchronous rectification in the region where the current value is A1 or less. That is, when the current value is A1 or less, the control unit 13 executes the first rectification operation of converting the AC voltage into the DC voltage by switching the semiconductor switches 3 to 6.
 一方、制御部13は、電流値がA1を超えている領域では、半導体スイッチ3~6の寄生ダイオードを使用して行う全波整流を選択する。すなわち、電流値がA1よりも大きい場合、制御部13は、半導体スイッチ3~6を常時オフ状態とすることにより半導体スイッチ3~6内の寄生ダイオードを使用して交流電圧を直流電圧に変換する第2の整流動作を実行する。なお、MOSFETにダイオードが並列接続されている場合は、制御部13は、半導体スイッチ3~6に並列接続されたダイオードを使用して第2の整流動作を実行する。 On the other hand, the control unit 13 selects full-wave rectification performed by using the parasitic diodes of the semiconductor switches 3 to 6 in the region where the current value exceeds A1. That is, when the current value is larger than A1, the control unit 13 converts the AC voltage into a DC voltage by using the parasitic diode in the semiconductor switches 3 to 6 by constantly turning off the semiconductor switches 3 to 6. The second rectification operation is performed. When the diode is connected in parallel to the MOSFET, the control unit 13 executes the second rectification operation by using the diode connected in parallel to the semiconductor switches 3 to 6.
 直流電源装置100は、半導体スイッチ3~6のそれぞれに流れる電流の大きさを、交流電源1から出力される電流の値(Is)から計算してもよいし、負荷8に流れる電流の値から計算してもよい。 The DC power supply device 100 may calculate the magnitude of the current flowing through each of the semiconductor switches 3 to 6 from the value of the current output from the AC power supply 1 (Is), or from the value of the current flowing through the load 8. You may calculate.
 このように、実施の形態3によれば、MOSFETに流れる電流値に応じて同期整流と全波整流とを切り替えているので、半導体スイッチ3~6からの素子発熱を低減することができる。 As described above, according to the third embodiment, since the synchronous rectification and the full-wave rectification are switched according to the current value flowing through the MOSFET, the element heat generation from the semiconductor switches 3 to 6 can be reduced.
 ここで、実施の形態1から3で説明した直流電源装置100の応用例について説明する。図7は、実施の形態1から3のいずれかにかかる直流電源装置を備えた空気調和機の構成を示す図である。 Here, an application example of the DC power supply device 100 described in the first to third embodiments will be described. FIG. 7 is a diagram showing a configuration of an air conditioner including a DC power supply device according to any one of the first to third embodiments.
 直流電源装置100は、冷蔵庫、空気調和機400といった冷凍サイクル装置に適用することが可能である。ここでは、直流電源装置100が、冷凍サイクル装置の一例である空気調和機400に適用された例について説明する。空気調和機400は、交流電源1と、モータ駆動装置150と、圧縮機505と、冷凍サイクル部506とを備えている。 The DC power supply device 100 can be applied to a refrigeration cycle device such as a refrigerator and an air conditioner 400. Here, an example in which the DC power supply device 100 is applied to an air conditioner 400, which is an example of a refrigeration cycle device, will be described. The air conditioner 400 includes an AC power supply 1, a motor drive device 150, a compressor 505, and a refrigeration cycle unit 506.
 交流電源1は、モータ駆動装置150に接続され、モータ駆動装置150は、圧縮機505に接続され、圧縮機505は、冷凍サイクル部506に接続されている。モータ駆動装置150は、直流電源装置100と、図示しないインバータとを備えている。直流電源装置100は、インバータに接続され、インバータは、圧縮機505のモータ42に接続されている。 The AC power supply 1 is connected to the motor drive device 150, the motor drive device 150 is connected to the compressor 505, and the compressor 505 is connected to the refrigeration cycle unit 506. The motor drive device 150 includes a DC power supply device 100 and an inverter (not shown). The DC power supply device 100 is connected to an inverter, and the inverter is connected to the motor 42 of the compressor 505.
 モータ駆動装置150の出力側には、モータ42が接続されており、モータ42は、圧縮要素504に連結されている。圧縮機505は、モータ42と圧縮要素504とを備える。冷凍サイクル部506は、四方弁506a、室内熱交換器506b、膨張弁506cおよび室外熱交換器506dを含む態様で構成されている。 A motor 42 is connected to the output side of the motor drive device 150, and the motor 42 is connected to the compression element 504. The compressor 505 includes a motor 42 and a compression element 504. The refrigeration cycle unit 506 is configured to include a four-way valve 506a, an indoor heat exchanger 506b, an expansion valve 506c, and an outdoor heat exchanger 506d.
 空気調和機400の内部を循環する冷媒の流路は、圧縮要素504から、四方弁506a、室内熱交換器506b、膨張弁506c、室外熱交換器506dを経由し、再び四方弁506aを経由して、圧縮要素504へ戻る態様で構成されている。モータ駆動装置150は、交流電源1より交流電力の供給を受け、モータ42を回転させる。圧縮要素504は、モータ42が回転することによって、冷媒の圧縮動作を実行し、冷媒を冷凍サイクル部506の内部で循環させることができる。 The flow path of the refrigerant circulating inside the air conditioner 400 is from the compression element 504 via the four-way valve 506a, the indoor heat exchanger 506b, the expansion valve 506c, the outdoor heat exchanger 506d, and again via the four-way valve 506a. Therefore, it is configured to return to the compression element 504. The motor drive device 150 receives AC power from the AC power supply 1 and rotates the motor 42. The compression element 504 executes a compression operation of the refrigerant by rotating the motor 42, and the refrigerant can be circulated inside the refrigeration cycle unit 506.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1 交流電源、2 リアクタ、3~6 半導体スイッチ、7 コンデンサ、8 負荷、9,10 電流検出素子、11,12 電流検出部、13 制御部、14 電圧検出部、15 駆動部、16A,16B 放熱器、17 シリコングリース、18 放熱板、20D ドレイン接続端子、20G ゲート接続端子、20S ソース接続端子、21 ねじ、23~26 半導体パッケージ、31,32 導通損失波形、40 樹脂、42 モータ、50A,50B 整流回路、100 直流電源装置、150 モータ駆動装置、161 ベース板、162 フィン、400 空気調和機、504 圧縮要素、505 圧縮機、506 冷凍サイクル部、506a 四方弁、506b 室内熱交換器、506c 膨張弁、506d 室外熱交換器。 1 AC power supply, 2 reactor, 3 to 6 semiconductor switch, 7 capacitor, 8 load, 9, 10 current detection element, 11, 12 current detection unit, 13 control unit, 14 voltage detection unit, 15 drive unit, 16A, 16B heat sink Vessel, 17 silicon grease, 18 heat sink, 20D drain connection terminal, 20G gate connection terminal, 20S source connection terminal, 21 screw, 23-26 semiconductor package, 31, 32 conduction loss waveform, 40 resin, 42 motor, 50A, 50B Rectifier circuit, 100 DC power supply, 150 motor drive, 161 base plate, 162 fins, 400 air conditioner, 504 compression element, 505 compressor, 506 refrigeration cycle section, 506a four-way valve, 506b indoor heat exchanger, 506c expansion Valve, 506d outdoor heat exchanger.

Claims (7)

  1.  複数の半導体スイッチで構成された整流回路と、
     交流電源から前記整流回路に流れる電流の電流値に基づいて、前記複数の半導体スイッチの開閉状態を制御する制御部と、
     前記複数の半導体スイッチのそれぞれに接続された放熱板と、
     複数の前記放熱板が接続されるとともに前記半導体スイッチが発生させた熱を放熱する放熱器と、
     を備え、
     前記半導体スイッチと前記放熱板とは、樹脂で封止された半導体パッケージで構成され、
     それぞれの前記半導体パッケージが、前記放熱器に接続されている、
     直流電源装置。
    A rectifier circuit composed of multiple semiconductor switches and
    A control unit that controls the open / closed state of the plurality of semiconductor switches based on the current value of the current flowing from the AC power supply to the rectifier circuit.
    A heat sink connected to each of the plurality of semiconductor switches,
    A radiator in which a plurality of the heat sinks are connected and heat generated by the semiconductor switch is dissipated.
    With
    The semiconductor switch and the heat sink are composed of a semiconductor package sealed with a resin.
    Each of the semiconductor packages is connected to the radiator,
    DC power supply.
  2.  前記半導体スイッチは、金属酸化膜半導体電界効果トランジスタである、
     請求項1に記載の直流電源装置。
    The semiconductor switch is a metal oxide film semiconductor field effect transistor.
    The DC power supply device according to claim 1.
  3.  前記放熱器は、アース接地されている、
     請求項1または2に記載の直流電源装置。
    The radiator is grounded,
    The DC power supply device according to claim 1 or 2.
  4.  前記制御部は、
     前記半導体スイッチをスイッチングさせることによって交流電圧を直流電圧に変換する第1の整流動作と、前記半導体スイッチを常時オフ状態とすることによって交流電圧を直流電圧に変換する第2の整流動作と、の何れか一方を選択し、選択した整流動作を前記整流回路が実行するよう前記半導体スイッチを制御する、
     請求項1から3のいずれか1つに記載の直流電源装置。
    The control unit
    A first rectifying operation that converts an AC voltage into a DC voltage by switching the semiconductor switch, and a second rectifying operation that converts an AC voltage into a DC voltage by constantly turning off the semiconductor switch. One of them is selected, and the semiconductor switch is controlled so that the rectifying circuit executes the selected rectifying operation.
    The DC power supply device according to any one of claims 1 to 3.
  5.  請求項1から4のいずれか1つに記載の直流電源装置を具備する冷凍サイクル装置。 A refrigeration cycle device including the DC power supply device according to any one of claims 1 to 4.
  6.  請求項1から4のいずれか1つに記載の直流電源装置を具備する空気調和機。 An air conditioner including the DC power supply device according to any one of claims 1 to 4.
  7.  請求項1から4のいずれか1つに記載の直流電源装置を具備する冷蔵庫。 A refrigerator provided with the DC power supply device according to any one of claims 1 to 4.
PCT/JP2020/007772 2020-02-26 2020-02-26 Dc power supply device, refrigerant cycle device, air conditioner, and refrigerator WO2021171425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007772 WO2021171425A1 (en) 2020-02-26 2020-02-26 Dc power supply device, refrigerant cycle device, air conditioner, and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007772 WO2021171425A1 (en) 2020-02-26 2020-02-26 Dc power supply device, refrigerant cycle device, air conditioner, and refrigerator

Publications (1)

Publication Number Publication Date
WO2021171425A1 true WO2021171425A1 (en) 2021-09-02

Family

ID=77492095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007772 WO2021171425A1 (en) 2020-02-26 2020-02-26 Dc power supply device, refrigerant cycle device, air conditioner, and refrigerator

Country Status (1)

Country Link
WO (1) WO2021171425A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222291A (en) * 2011-04-13 2012-11-12 Mitsubishi Electric Corp Semiconductor package
JP2012244750A (en) * 2011-05-19 2012-12-10 Hitachi Ltd Semiconductor unit and power conversion apparatus
JP2013219919A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Noise reduction filter and electric power conversion device using the same
WO2014208450A1 (en) * 2013-06-24 2014-12-31 日産自動車株式会社 Electric power converter
JP2015099846A (en) * 2013-11-19 2015-05-28 株式会社豊田自動織機 Semiconductor device, and method of manufacturing the same
JP2016015466A (en) * 2014-06-13 2016-01-28 日産自動車株式会社 Semiconductor device
JP2017046374A (en) * 2015-08-24 2017-03-02 株式会社東芝 Electric power conversion system
JP2018068028A (en) * 2016-10-19 2018-04-26 日立ジョンソンコントロールズ空調株式会社 Electric power conversion system and air conditioner
WO2020017008A1 (en) * 2018-07-19 2020-01-23 三菱電機株式会社 Power conversion apparatus, motor drive apparatus, and air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222291A (en) * 2011-04-13 2012-11-12 Mitsubishi Electric Corp Semiconductor package
JP2012244750A (en) * 2011-05-19 2012-12-10 Hitachi Ltd Semiconductor unit and power conversion apparatus
JP2013219919A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Noise reduction filter and electric power conversion device using the same
WO2014208450A1 (en) * 2013-06-24 2014-12-31 日産自動車株式会社 Electric power converter
JP2015099846A (en) * 2013-11-19 2015-05-28 株式会社豊田自動織機 Semiconductor device, and method of manufacturing the same
JP2016015466A (en) * 2014-06-13 2016-01-28 日産自動車株式会社 Semiconductor device
JP2017046374A (en) * 2015-08-24 2017-03-02 株式会社東芝 Electric power conversion system
JP2018068028A (en) * 2016-10-19 2018-04-26 日立ジョンソンコントロールズ空調株式会社 Electric power conversion system and air conditioner
WO2020017008A1 (en) * 2018-07-19 2020-01-23 三菱電機株式会社 Power conversion apparatus, motor drive apparatus, and air conditioner

Similar Documents

Publication Publication Date Title
KR100534533B1 (en) A refrigerating apparatus and an inverter device used therein
US8884560B2 (en) Inverter device and air conditioner including the same
JP4984751B2 (en) Air conditioner converter
JP4494112B2 (en) Inverter control device for air conditioner and air conditioner
WO2019026293A1 (en) Power conversion device, motor drive device, and air conditioner
JP4687414B2 (en) Power semiconductor module
JP2022118033A (en) air conditioner
JP6935022B2 (en) Power converter, motor drive and air conditioner
JP6952901B2 (en) Power converter, motor drive and air conditioner
JP4879330B2 (en) Inverter control device for air conditioner
EP1981159A1 (en) Refrigeration cycle device
WO2021171425A1 (en) Dc power supply device, refrigerant cycle device, air conditioner, and refrigerator
JP5245468B2 (en) Gate drive circuit
WO2021090416A1 (en) Direct-current power supply device and air conditioner
JP5590015B2 (en) Inverter device and air conditioner equipped with the same
JP6811762B2 (en) Power conversion device and refrigeration cycle device equipped with this
Stalter et al. Silicon Carbide (SiC) D-MOS for grid-feeding solar-inverters
Lee et al. New PFC-integrated intelligent power module for home appliances
JP2007244183A (en) Single phase double voltage rectifier circuit and inverter device
US20190140553A1 (en) Ac/dc converter, module, power conversion device, and air conditioning apparatus
JP7325516B2 (en) Power conversion device, motor drive device and air conditioner
JP5800071B2 (en) Inverter device and air conditioner equipped with the same
JP2015233375A (en) Power factor improvement module and power conversion device employing the same
Hesener GaN power ICs drive Efficiency and Size Improvements in BLDC Motor Drive Applications
KR20140064068A (en) Semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20922113

Country of ref document: EP

Kind code of ref document: A1