WO2021170125A1 - 一种激光接收电路、一种激光雷达及一种车辆 - Google Patents

一种激光接收电路、一种激光雷达及一种车辆 Download PDF

Info

Publication number
WO2021170125A1
WO2021170125A1 PCT/CN2021/078315 CN2021078315W WO2021170125A1 WO 2021170125 A1 WO2021170125 A1 WO 2021170125A1 CN 2021078315 W CN2021078315 W CN 2021078315W WO 2021170125 A1 WO2021170125 A1 WO 2021170125A1
Authority
WO
WIPO (PCT)
Prior art keywords
bleeder
signal
diode
circuit
amplifier
Prior art date
Application number
PCT/CN2021/078315
Other languages
English (en)
French (fr)
Inventor
谈敏
庞志远
蔡中华
何世栋
张化红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021170125A1 publication Critical patent/WO2021170125A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • the embodiments of the present application relate to the technical field of photoelectric signal conversion, and in particular, to a laser receiving circuit, a laser radar, and a vehicle.
  • optical transmission systems have put forward higher requirements for the accuracy and flexibility of optical receiving modules.
  • laser radar devices that use laser signals for distance measurement
  • the current signal corresponding to the laser signal fluctuates greatly, which will easily lead to the amplification of the current signal.
  • the transimpedance amplifier is in a saturated state, which cannot truly and accurately reflect the fluctuation of the current signal, resulting in a small dynamic range of the laser receiving circuit.
  • embodiments of the present application provide a laser receiving circuit, a laser radar, and a vehicle that have a larger dynamic adjustment range when receiving a laser signal.
  • a laser receiving circuit which includes a laser receiver, a transimpedance amplifier, and a bleeder circuit.
  • the laser receiver is used to receive laser signals and convert the laser signals into current signals.
  • the amplifying input terminal of the transimpedance amplifier receives the current signal from the laser receiver, and converts the current signal into a voltage signal and outputs it from the amplified output terminal.
  • a bleeder circuit is electrically connected between the amplifying input terminal and the ground terminal of the laser receiver, and the bleeder circuit includes a plurality of sub-bleed circuits. When the current signal reaches different threshold ranges, different numbers of sub-bleeder circuits are activated, and each sub-bleeder circuit bleeds the current signal input to the transimpedance amplifier to the ground terminal when it is activated.
  • the multiple sub-bleeder circuits are divided into N stages, where N is an integer greater than or equal to 2, and the sub-bleeder circuits of each stage include one sub-bleeder circuit.
  • the current signal corresponding to the activation of the i-1th stage sub-bleeder circuit is smaller than the current signal corresponding to the activation of the i-th stage bleeder circuit, and i is greater than 1 and less than Or equal to N.
  • each of the sub-bleeding circuits includes at least one bleeder diode, and the voltage that controls the conduction of the bleeder diode in each sub-bleeding circuit is different, when the bleeder diode When turned on, the sub-bleeder circuit is controlled to start, and the voltage for starting each sub-bleeder circuit corresponds to the magnitude of the current signal, and the magnitude of the current signal is the same as the number of opened sub-bleeder circuits Related department. Corresponding to the current signal to control the conduction of the bleeder diode in the sub-bleeder circuit, and then accurately control the timing of starting each sub-bleeder current to ensure that each sub-bleed circuit is accurately turned on.
  • each of the sub-bleeder circuits includes at least one bleeder diode, and the voltage that controls the conduction of the bleeder diode in each sub-bleeder circuit is different.
  • the bleeder diode is conductive
  • the voltage of the i-th stage sub-bleeder circuit is greater than the voltage of the i-1th stage of the bleeder circuit. That is, the voltage of the N-level sub-bleeding circuit that starts each level of the sub-bleeding circuit increases step by step.
  • the multi-level bleeder circuit adjusts the bleeder degree of the current signal step by step according to the magnitude of the current signal, thereby dynamically bleeding the current signal exceeding the threshold range, and realizing the dynamic adjustment of the received laser signal and current signal.
  • the first-stage bleeder circuit includes a first bleeder diode, and the first bleeder diode is electrically connected between the amplifying input terminal of the transimpedance amplifier and the ground terminal.
  • the i-level bleeder circuit includes a bleeder resistor and i-1 bleeder diodes, wherein the bleeder resistor and the i-1 bleeder diodes are connected in series with the amplifying input end of the transimpedance amplifier and the ground end.
  • the first-stage bleeder circuit includes a first bleeder diode
  • the second-stage bleeder circuit includes a bleeder resistor and a bleeder diode
  • the third-stage bleeder circuit includes a bleeder diode. Discharge resistor and two bleeder diodes.
  • the anode of the first bleeder diode is electrically connected to the amplifying input end of the transimpedance amplifier, and the cathode of the first bleeder diode is electrically connected to the amplifying input terminal of the transimpedance amplifier.
  • a voltage generated when the current signal flows through the transresistance is used as a voltage for controlling the conduction of the first bleeder diode.
  • the bleeder resistor is electrically connected between the amplifying input terminal and the anodes of the i-1 bleeder diodes, and the cathodes of the i-1 bleeder diodes It is electrically connected to the ground terminal, and the voltage generated when the current signal flows through the transresistance and the bleeder resistor is used as a voltage for controlling the conduction of the i-1 bleeder diodes.
  • the number of bleeder diodes increases step by step. By adjusting the number of bleeder diodes and the resistance of the bleeder resistor, different conduction voltages can be set correspondingly, accurately and accurately. The voltage for starting the bleeder circuits of all levels is flexibly set.
  • the second-stage bleeder circuit when N is 3, includes a first bleeder resistor and a second bleeder diode connected in series, and the first bleeder resistor is electrically connected to the span Between the amplifying input terminal of the resistance amplifier and the anode of the second bleeder diode, the cathode of the first bleeder diode is electrically connected to the ground terminal.
  • the first bleeder diode in the first-stage bleeder circuit when the current signal is less than the first current threshold, the first bleeder diode in the first-stage bleeder circuit is not turned on, and the middle of the transimpedance amplifier
  • the resistance voltage has a linear relationship with the output current.
  • the first bleeder diode When the current signal increases and is greater than the first current threshold and less than the second current threshold, the first bleeder diode is turned on, and part of the current signal passes through the first bleeder circuit in the first stage.
  • the bleeder diode is transmitted to the ground terminal.
  • the i-1 bleeder diodes in the i-th stage bleeder circuit are turned on, and part of the current signal passes through the i-th stage bleeder circuit.
  • the bleeder resistance and the i-1 bleeder diodes are transmitted to the ground terminal.
  • the ith current threshold is greater than the (i-1)th current threshold and greater than the first current threshold.
  • the multi-stage bleeder circuit provides the starting voltage for the bleeder diodes in the sub-bleed circuits of different levels according to the magnitude of the current signal, so as to accurately start the sub-bleed circuits of different levels and numbers according to the magnitude of the current signal to accurately adjust the current
  • the degree of signal discharge can dynamically discharge and adjust the current signal.
  • the second bleeder diode when N is 3, when the current signal increases and is greater than the second current threshold and less than the third current threshold, the second bleeder diode is turned on, and part of the current signal passes through the The first bleeder resistor and the first bleeder diode are transmitted to the ground terminal.
  • the third bleeder diode and the fourth bleeder diode are turned on, and part of the current signal passes through the second bleeder resistor and the third bleeder diode.
  • the diode and the fourth bleeder diode are transmitted to the ground terminal.
  • the values of the first current threshold, the second current threshold, and the third current threshold gradually increase.
  • each bleeder circuit includes a bleeder control switch, and the bleeder switch controls whether the sub-bleeder circuit in which the bleeder control switch is located is activated or not according to the magnitude of the current signal. Perform current discharge. According to the magnitude of the current signal, different control signals are provided to the corresponding sub-bleeder circuit, so that the electronic components in the corresponding sub-bleed circuit are in the conductive path, so that the corresponding level of the sub-bleed circuit can be activated accurately according to the magnitude of the current signal.
  • the first-stage bleeder circuit includes a first bleeder control switch, and the first bleeder control switch is connected in series with the first bleeder diode.
  • the first bleeder controls When the switch is turned on, the first-stage bleeder circuit is turned on, and when the current signal is greater than a first current threshold, a part of the current signal is bleeded.
  • the i-th bleeder circuit includes an i-th bleeder control switch, and the i-th bleeder control switch is connected in series with the i-1 bleeder diodes.
  • the The i-th bleeder circuit When the second bleeder control switch is turned on, the The i-th bleeder circuit is turned on and bleeds part of the current signal when the current signal is greater than the i-th current threshold, and the i-th current threshold is greater than the i-1 current threshold and greater than the first current Threshold.
  • the multi-stage bleeder circuit controls the sub-bleeder circuits of different levels to be in the conductive path according to the control signal corresponding to the magnitude of the current signal, so as to accurately activate the sub-bleeder circuits of different levels according to the magnitude of the current signal, and then accurately adjust the current signal.
  • the degree of discharge is used to dynamically discharge and adjust the current signal.
  • the second-stage bleeder circuit when N is 3, includes a second bleeder control switch, and the second bleeder control switch is connected in series with the second bleeder diode.
  • the second bleeder control switch When the second bleeder control switch is turned on, the second-stage bleeder circuit is turned on, and when the current signal is greater than the current corresponding to the voltage at which the second bleeder diode is activated, bleed part of the current signal .
  • the third-stage bleeder circuit includes a third bleeder control switch, the third bleeder control switch is connected in series with the fourth bleeder diode, and when the third bleeder control switch is turned on, the first The three-stage bleeder circuit is turned on and when the current signal is greater than the current corresponding to the voltages of the third bleeder diode and the fourth bleeder diode, a part of the current signal is bleeded.
  • the anode of the first bleeder diode is electrically connected to the amplifying input terminal of the transimpedance amplifier, and the cathode of the first bleeder diode is electrically connected to the first bleeder
  • the first conductive terminal of the control switch, the second conductive terminal of the first bleed control switch is electrically connected to the ground terminal, and the first control terminal of the first bleed control switch is used to receive a first control Signal, the first control signal is used to control the first bleeder switch to be turned on or off.
  • the 2i-1 conductive terminal of the i-th bleeder control switch is electrically connected to the cathode of the i-1 bleeder diode, and the 2i-th conductive terminal of the i-th bleed control switch is electrically connected to the The ground terminal, the i-th control terminal of the i-th bleeder control switch is used to receive an i-th control signal, and the i-th control signal is used to control the i-th bleed switch to be turned on or off.
  • the first control signal and the i-th control signal are respectively voltage signals corresponding to the current signal.
  • the size of the current signal can automatically select the opening of different levels and different numbers of sub-bleeding circuits.
  • the opening of the sub-bleeding circuits of each level in the bleeder circuit can be automatically selected according to the size of the current signal to target the current signal's discharge. Realize automatic closed-loop dynamic adjustment control.
  • the second-stage bleeder circuit when N is 3, includes a first bleeder resistor and a second bleeder diode connected in series, and the first bleeder resistor is electrically connected to the span Between the amplifying input end of the resistance amplifier and the anode of the second bleeder diode, the cathode of the first bleeder diode is electrically connected to the third conductive end of the second bleeder control switch, and the second The fourth conductive terminal of the bleed control switch is electrically connected to the ground terminal, the second control terminal of the second bleed control switch is used to receive a second control signal, and the second control signal is used to control the The second relief switch is turned on or off.
  • the third-stage bleeder circuit includes a second bleeder resistor, a third bleeder diode, and a fourth bleeder diode connected in series, and the second bleeder resistor is electrically connected to the amplifying input end of the transimpedance amplifier and Between the anodes of the third bleeder diode, the cathode of the third bleeder diode is electrically connected to the anode of the fourth bleeder diode, and the cathode of the fourth bleeder diode is electrically connected to the The fifth conductive terminal of the third bleed control switch, the sixth conductive terminal of the third bleed control switch is electrically connected to the ground terminal, and the third control terminal of the third bleed control switch is used to receive the third A control signal, the third control signal is used to control the third bleeder switch to be turned on or off.
  • the first control signal, the second control signal, and the third control signal are respectively voltage signals corresponding to the current signal.
  • the first-stage bleeder circuit includes a first bleeder diode and a first amplifier connected in series, and a control terminal of the first amplifier is used to receive a first control signal, and the first control The signal is used to control the input voltage of the first amplifier.
  • the input voltage of the first amplifier corresponds to the voltage that controls the conduction of the first bleeder diode.
  • the i-th bleeder circuit includes an i-th bleeder diode and an i-th amplifier connected in series, a control terminal of the i-th amplifier is used to receive an i-th control signal, and the i-th control signal is used to control the i-th control signal.
  • the input voltage of the amplifier corresponds to the voltage that controls the conduction of the i-th bleeder diode.
  • the multi-stage bleeder circuit controls the activation of the amplifiers in the sub-bleed circuits of different levels according to the control signal corresponding to the magnitude of the current signal, so as to accurately activate the sub-bleed circuits of different levels according to the magnitude of the current signal, thereby accurately adjusting the current signal
  • the degree of discharge is used to dynamically discharge and adjust the current signal.
  • the second-stage bleeder circuit when N is 3, includes a second bleeder diode and a second amplifier connected in series, and the control terminal of the second amplifier is used to receive the second control signal, The second control signal is used to control the input voltage of the second amplifier, and the input voltage of the second amplifier corresponds to the voltage that controls the conduction of the second bleeder diode.
  • the third stage bleeder circuit includes a third bleeder diode and a third amplifier connected in series.
  • the control terminal of the third amplifier is used to receive a third control signal, and the third control signal is used to control the third
  • the input voltage of the third amplifier corresponds to the voltage that controls the conduction of the third bleeder diode.
  • the anode of the first bleeder diode in the first-stage bleeder circuit is electrically connected to the input terminal of the transimpedance amplifier, and the cathode of the first bleeder diode passes through the
  • the first amplifier is electrically connected to the ground terminal, the control terminal of the first amplifier is a power input terminal of the first amplifier, and the first control signal is a power supply voltage for starting the first amplifier.
  • the anode of the i-th bleeder diode is electrically connected to the input terminal of the transimpedance amplifier
  • the cathode of the i-th bleeder diode is electrically connected to the input terminal of the transimpedance amplifier through the second amplifier.
  • the ground terminal, the control terminal of the i-th amplifier is a power input terminal of the i-th amplifier
  • the i-th control signal is a power supply voltage for starting the i-th amplifier.
  • the first control signal and the i-th control signal are voltages converted by the current signal through a voltage dividing element, and the power supply voltages of the first amplifier and the i-th amplifier are different.
  • the voltage corresponding to the magnitude of the current signal is used as the power supply voltage of the amplifier, thereby controlling the activation of the amplifiers in the sub-bleeder circuits of different levels, so that the sub-bleeding circuits of different levels can be accurately activated according to the magnitude of the current signal, and then the current signal can be adjusted accurately.
  • the degree of discharge is used to dynamically discharge and adjust the current signal.
  • the anode of the second bleeder diode is electrically connected to the input terminal of the transimpedance amplifier, and the cathode of the second bleeder diode passes through the second amplifier It is electrically connected to the ground terminal, the control terminal of the second amplifier is a power input terminal of the second amplifier, and the second control signal is a power supply voltage for starting the second amplifier.
  • the anode of the third bleeder diode is electrically connected to the input terminal of the transimpedance amplifier, the cathode of the third bleeder diode is electrically connected to the ground terminal through the third amplifier, and the third
  • the control terminal of the amplifier is the power input terminal of the third amplifier, and the second control signal is the power supply voltage for starting the third amplifier.
  • the first control signal, the second control signal, and the three control signals are voltage signals corresponding to current signals, and the power supply voltages of the first amplifier, the second amplifier, and the third amplifier are different.
  • a laser radar which includes a laser emitting module, a laser receiving module, and a main control unit.
  • the laser emitting module is used to convert an electrical signal into a laser signal for transmission, and the laser receiving module receives the laser signal reflected from a detection object, converts the laser signal into an electrical signal, and transmits it to the host
  • the main control unit judges the distance of the detected object according to the reflected laser signal.
  • the laser receiving module includes the aforementioned laser receiving circuit.
  • the bleeder circuit determines the degree of bleeder for the current signal according to the magnitude of the current signal, so that the current exceeding the threshold range can be flexibly bleeded dynamically to ensure that the current provided to the transimpedance amplification is at In a relatively stable range, the input signal of the transimpedance amplifier is prevented from reaching saturation, which further makes the dynamic range of the laser signal receiving link larger, and ensures that the laser radar can enable a larger range of laser signals.
  • an automobile in an implementation manner of the present application, includes the aforementioned lidar.
  • the lidar When the lidar is used to perform a distance test on the detection target during driving, it can accurately adapt to a laser with a larger variation range. Signal.
  • Fig. 2 is a circuit block diagram of the laser signal converter shown in Fig. 1;
  • Fig. 3 is a schematic diagram of a specific circuit structure of the laser signal converter shown in Fig. 2;
  • FIG. 4 is a schematic diagram of a specific circuit structure of the bleeder circuit shown in FIG. 3 in the first embodiment of the application;
  • Fig. 5 is a graph showing the relationship between the current signal received by the transimpedance amplifier and the transimpedance voltage when the bleeder circuit shown in Fig. 4 works;
  • FIG. 6 is a schematic diagram of a specific circuit structure of the bleeder circuit shown in FIG. 3 in the second embodiment of the application;
  • FIG. 7 is a schematic diagram of a specific circuit structure of the bleeder circuit shown in FIG. 3 in the third embodiment of the application;
  • Fig. 8 is a schematic diagram of a car running scene in an embodiment of the application.
  • FIG. 1 is a functional block diagram of the laser signal converter 10 in an embodiment of the application, including a circuit board assembly 2, a laser emitting module (Transmitter Optical Sub-Assembly, TOSA) 3, a laser receiving module (Receiver Optical) Sub-Assembly, ROSA) 4.
  • the laser signal converter 10 also includes other functional modules that are not shown in the figure for supporting the circuit board module 2, the laser emitting module 3, and the laser receiving module 4, for example, are provided on the circuit board module 2.
  • the laser signal converter 10 is used as a laser radar to perform distance measurement, and the distance test is performed by the laser signal, that is, the distance of surrounding objects is judged according to the laser signal received by the laser receiving module 4, for example, for detecting objects The specific distance.
  • the laser emitting module 3 and the laser receiving module 4 are electrically connected to the circuit board module 2, and the connection method can be connected by welding or connected by a flexible circuit board.
  • the laser emitting module 3 and the laser receiving module 4 are electrically connected to the main control unit 101 and the optical drive processing module 102 through conductive lines (not shown) on the circuit board 2, and the main control unit 101 and the optical drive processing module 102 cooperates to control the data transmission rate between the laser emitting module 3 and the laser receiving module 4, and the main control unit 101 processes the data to be transmitted and received.
  • the laser emitting module 3 is used to convert electrical signals into laser signals for emission, that is, the laser emitting module 3 serves as a laser emitting circuit.
  • the laser receiving module 4 receives the laser signal reflected from the detection object, converts the laser signal into an electrical signal, and transmits it to the optical drive processing module 102.
  • the circuit in the laser receiving module 4 that performs photoelectric signal conversion processing for the laser signal is used as the laser receiving circuit.
  • the main control unit 101 can output corresponding control signals to the optical drive processing module 102, the laser emission module 3, and the laser receiving module 4 according to the corresponding instruction signals, and then control the drive processing module 102 to cooperate with the laser emission module 3 in accordance with the instructions
  • the laser signal is transmitted, or the light driving processing module 102 is controlled to cooperate with the laser receiving module 4 to receive the laser signal reflected from the detected object according to the instruction.
  • the main control unit 101 calculates the distance of the detected object (not shown) according to the reflected laser signal.
  • FIG. 2 is a circuit block diagram of the laser electrical signal converter 10 shown in FIG. 1
  • FIG. 3 is a specific circuit structure of the laser electrical signal converter 10 shown in FIG. 2.
  • the laser receiving circuit in the laser receiving module 4 includes a laser receiver 41, a trans-impedance amplifier (TIA) 42 and a bleeder circuit 43 that are electrically connected to each other.
  • the receiver 41 is electrically connected to the transimpedance amplifier 42.
  • the laser receiver 41 is used to receive a laser signal and convert the laser signal into a current signal Iin. Specifically, the laser receiver 41 generates a pulse current after receiving a laser signal, the pulse current is the current signal Iin, and the current signal is output from the laser conversion output terminal O1 of the laser receiver 41, for detecting objects at different distances or at the same distance For detection objects with different reflectivity, the intensity of the reflected laser signal is different, and the magnitude of the corresponding current signal Iin is also different.
  • the transimpedance amplifier 42 includes an amplifying input terminal IN2 and an amplifying output terminal O2.
  • the amplifying input terminal IN2 of the transimpedance amplifier 32 is electrically connected to the laser conversion output terminal O1 of the laser receiver 41, and from the optical receiver 41 through the amplifying input terminal IN2
  • the current signal Iin is received, and the current signal Iin is converted into a voltage signal and output from the amplified output terminal O2, and the gain ratio for converting the current signal Iin into a voltage signal can be adjusted as required.
  • the bleeder circuit 43 is used to dynamically bleed the current that exceeds the threshold range in the pulse current generated by the laser receiver 41 to ensure that the current provided to the transimpedance amplifier 42 is in a relatively stable range and prevent the input signal of the transimpedance amplifier 42 It reaches saturation, so that the dynamic range of the laser signal and the current signal Iin in the laser signal receiving link is relatively large.
  • the light emitting module 3 converts the current signal Iin corresponding to the data signal into an optical signal and transmits it to the detection object.
  • the light emitting module 3 includes a light emitter 31 composed of photoelectric conversion diodes, where the photoelectric conversion diode as the light emitter 31 may be a laser diode.
  • the photoelectric conversion diodes of the laser receiver 41 and the laser transmitter 31 may be Avalanche Photodiode (APD).
  • APD Avalanche Photodiode
  • the optical drive processing module 102 includes a limiting amplifier (LA) 1021 corresponding to the optical receiving module 4, a first clock and data recovery circuit (Lock And Data Recovery, CDR) 102a, and a corresponding optical transmitting module 3 The second clock and data recovery circuit 102b and the driving circuit 1023.
  • LA limiting amplifier
  • CDR Lock And Data Recovery
  • the limiting amplifier 1021 is used for limiting and amplifying the voltage signal converted and amplified by the transimpedance amplifier 42 to eliminate amplitude interference in the voltage signal.
  • the second clock and data recovery circuit 102b is electrically connected to the drive circuit 1023 to identify and encode the data signal provided by the functional module according to the clock, and then is converted into a current signal by the drive circuit 1023 and output to the light emitting module 3.
  • the module 3 outputs the corresponding laser signal according to the current signal.
  • the intensity of the laser reflection is different, and the resulting current range dynamically changes greatly.
  • the bleeder circuit 43 is aimed at the laser receiver. 41 generates a pulse current that exceeds the threshold range for dynamic discharge to ensure that the current supplied to the transimpedance amplifier 42 is in a relatively stable range, prevents the input signal of the transimpedance amplifier 42 from reaching saturation, and ensures that the laser signal is received in the link
  • the dynamic range for the laser signal and the current signal Iin is relatively large.
  • the bleeder circuit 43 includes a plurality of sub-bleed circuits for performing current bleeder, and the multiple sub-bleed circuits select and turn on a corresponding number of sub bleed circuits according to the magnitude of the pulse current output by the laser receiver 41 to perform current bleed.
  • the division of multiple sub-bleeding circuits is defined as N levels, where N is an integer greater than or equal to 2.
  • the sub-bleeding circuit of each level includes one of the sub-bleeding circuits, and the sub-bleeding circuits of each level There is a corresponding priority level when it is turned on, so that the sub-bleeding circuit of the corresponding level is automatically selected dynamically according to the current signal to discharge the current signal.
  • the current signal Iin corresponding to the turn-on of each stage of the sub-bleeder circuit increases in order of level, and the voltage that turns on the sub-bleeder circuit of each stage also increases in order of level.
  • the current signal corresponding to the first stage of the sub-bleeder circuit is smaller than the corresponding current signal when the second-stage bleeder circuit is started, and the i-1th stage sub-bleeder
  • the current signal corresponding to when the bleeder circuit is activated is less than the current signal corresponding to when the i-th stage bleeder circuit is activated; the corresponding current signal when the i-th stage sub-bleeder circuit is activated is smaller than the i+1-th stage bleeder
  • the magnitude of the current signal Iin is in the same phase relationship with the number of sub-bleeder circuits opened, that is, the larger the pulse current, the greater the number of opened sub-bleed circuits, and the stronger the current bleeding capability;
  • the smaller the current the smaller the number of opened sub-bleeding circuits and the weaker the current bleeder capability.
  • the number N of sub-bleeding circuits can be set according to the actual current adjustment range required. For example, for different application scenarios, there can be two sub-bleeding circuits, three sub-bleeding circuits, four sub-bleeding circuits, and so on.
  • FIG. 4 is a schematic diagram of the specific circuit structure of the bleeder circuit 43 shown in FIG. 3 in the first embodiment of the application.
  • the bleeder circuit 43a shown in FIG. 4 is a schematic diagram of the circuit structure in one implementation of the bleeder circuit 43 shown in FIG. 3.
  • the transimpedance amplifier 42 is provided with a feedback loop FB between the amplifying input terminal IN2 and the amplifying output terminal O2.
  • the feedback loop FB includes a transimpedance Rf and a feedback diode Df.
  • the anode of the feedback diode Df is electrically connected to the amplifying input terminal IN2
  • the cathode of the feedback diode Df is electrically connected to the amplifying output terminal O2 through a transresistance Rf.
  • the transresistance Rf is a resistance connected across the amplifying input terminal IN2 and the amplifying output terminal O2.
  • the bleeder circuit 43a includes a stage sub-bleeder circuit as an example. That is, when N is 3 in this embodiment, the three sub-bleed circuits are electrically connected to the laser receiver 41 and the receiving transimpedance amplifier 42. Between any one of the nodes and the ground terminal GND, that is, the three sub-bleeding circuits are electrically connected between the laser conversion output terminal O1 of the laser receiver 41 and the ground terminal GND, or in other words, the three sub-bleeding circuits are electrically connected to the ground terminal GND. It is connected between the amplifying input terminal IN2 of the transimpedance amplifier 42 and the ground terminal GND.
  • the three sub-bleeding circuits are defined as a first-stage bleeding circuit 431, a second-stage bleeding circuit 432, and a third-stage bleeding circuit 433, respectively.
  • the current signal Iin corresponding to when the first-stage bleeder circuit 431 is turned on is smaller than the corresponding current signal Iin when the second-stage bleeder circuit 432 is turned on, and the corresponding current signal Iin when the second-stage bleeder circuit 432 is turned on is smaller than that of the third stage.
  • the current signal Iin corresponding to when the bleeder circuit 433 is turned on that is, the current signal corresponding to the voltage of the first-stage bleeder circuit 431, the second-stage bleeder current 432, and the voltage of the third-stage bleeder circuit 433 is gradually increased.
  • a different number of sub-bleeding circuits are activated, so that the degree of bleeder for the current signal Iin can be automatically adjusted according to the size of the current signal Iin, and the size of the current signal Iin is different from that of the open circuit.
  • the number of sub-bleeder circuits is in phase relationship.
  • the in-phase relationship is: the larger the current signal Iin, the more the number of activated sub-bleeder circuits, and the greater the degree of bleeder for the current signal Iin; the smaller the current signal Iin, the number of activated sub-bleeder circuits The less, the less the leakage of the current signal Iin.
  • the first-stage bleeder circuit 431, the second-stage bleeder circuit 432, and the third-stage bleeder circuit 433 are started with different voltages, and the starting voltages of the three gradually increase.
  • Starting the first-stage bleeder circuit 431, the second-stage bleeder circuit 432, and the third-stage bleeder circuit 433 have a proportional relationship with the voltage signal Iin.
  • the first-stage bleeder circuit 431 includes a first bleeder diode D1, and the first bleeder diode D1 is electrically connected between the amplifying input terminal IN2 of the transimpedance amplifier and the ground terminal GND.
  • the i-th stage bleeder circuit includes a bleeder resistor and i-1 bleeder diodes, wherein the bleeder resistor and the i-1 bleeder diodes are connected in series The amplifying input terminal of the transimpedance amplifier and the ground terminal.
  • the first-stage bleeder circuit 431 includes a first bleeder diode D1.
  • the anode of the first bleeder diode D1 is electrically connected to the amplifying input terminal IN2 of the transimpedance amplifier 42, and the cathode of the first bleeder diode D1 is electrically connected to the ground terminal GND.
  • the voltage generated by the current signal Iin flowing through the transresistance Rf is used as the voltage for controlling the activation of the first bleeder diode D1, that is, the voltage (Iin*Rf) generated by the current signal Iin flowing through the transresistance Rf is used as the first stage of activation The voltage of the bleeder circuit 431.
  • the second-stage bleeder circuit 432 includes a first bleeder resistor R1 and a second bleeder diode D2 connected in series.
  • the first bleeder resistor R1 is electrically connected between the amplifying input terminal IN2 of the transimpedance amplifier 42 and the anode of the second bleeder diode D2, and the cathode of the first bleeder diode D1 is electrically connected to the ground terminal GND.
  • the current signal Iin flows through the trans-resistance Rf and the voltage generated by the second bleeder resistor R2 is used as the voltage for controlling the activation of the second bleeder diode D2.
  • the current signal Iin flows through the voltage Iin* generated by the trans-resistance Rf. (Rf-R2) is used as the voltage for starting the second-stage bleeder circuit 432.
  • the third-stage bleeder circuit 433 includes a second bleeder resistor R2, a third bleeder diode D3, and a fourth bleeder diode D4 connected in series.
  • the second bleeder resistor R2 is electrically connected between the amplifying input terminal IN2 of the transimpedance amplifier 42 and the anode of the third bleeder diode D3, and the cathode of the third bleeder diode D3 is electrically connected to the fourth bleeder diode
  • the anode of D4 and the cathode of the fourth bleeder diode D4 are electrically connected to the ground terminal GND.
  • the resistance value of the bleeder resistance of the bleeder circuit 43 and the turn-on voltage of the bleeder diode can be set and adjusted, so that the bleeder current of the bleeder circuit 43 can be adjusted more flexibly and dynamically.
  • FIG. 5 is a graph showing the relationship between the current signal Iin received by the transimpedance amplifier 42 and the transimpedance voltage when the bleeder circuit 43a shown in FIG. 4 is working.
  • Iin represents the self-amplified input of the transimpedance amplifier 42
  • the current input to the terminal IN2 of course, Iin also represents the current signal Iin output by the laser receiving circuit 41
  • U represents the voltage of the transimpedance Rf in the feedback loop
  • Vsat represents the saturation voltage of the transimpedance amplifier 42.
  • the transimpedance amplifier 42 When the bleeder circuit 43a is not activated or performs current bleeder for the current signal Iin, or when the bleeder circuit 43a is not provided, as shown in curve 1, the transimpedance amplifier 42 does not reach the saturation voltage Vsat.
  • the voltage of the amplifier 42 has a linear relationship with the output current Iin.
  • the transimpedance amplifier 42 reaches the saturation voltage Vsat, the transimpedance voltage of the transimpedance amplifier 42 does not change with the increase of the current signal, that is, the voltage output by the transimpedance amplifier 42 will continue to be maintained at the saturation voltage Vsat, which cannot reflect the current signal. Variety.
  • the bleeder circuit 43a When the bleeder circuit 43a is connected to the amplifying input terminal IN2 and activated, the current signal Iin output by the laser conversion output terminal O1 of the laser receiver 41 is less than the first current threshold Ith1, the first stage of the bleeder circuit 431 The bleeder diode D1 has not reached the turn-on voltage, and the first bleeder diode D1 is not turned on, that is, the first bleeder diode D1 is in an off state. Before the transimpedance amplifier 42 does not reach the saturation voltage Vsat, the voltage of the transimpedance amplifier 42 is equal to The output current Iin has a linear relationship.
  • the pulse current of the laser receiver 41 increases correspondingly.
  • the current signal Iin is greater than the first current threshold Ith1 and less than the second current threshold Ith2, that is, curve 2 as shown in FIG. 5, the first level The first bleeder diode D1 in the bleeder circuit 431 reaches the turn-on voltage, the first bleeder diode D1 is turned on, and a part of the current I1 of the current signal Iin is transmitted to the ground terminal GND via the first bleeder diode D1 and the ground terminal GND for leakage. Therefore, the current signal Iin transmitted to the transimpedance amplifier 42 is within a preset range.
  • the i-1 bleeder diodes in the i-th stage of the bleeder circuit are turned on, and part of the current
  • the signal is transmitted to the ground terminal via the bleeder resistor and the i-1 bleeder diode in the i-th stage bleeder circuit, wherein the i-th current threshold is greater than the i-1th current threshold and greater than The first current threshold.
  • the second bleeder diode D2 reaches the turn-on voltage, the second bleeder diode D2 is turned on, and another part of the current I2 in the current signal Iin is transmitted to the ground terminal through the first bleeder resistor R1, the first bleeder diode D1 and the ground terminal GND GND.
  • the third bleeder diode D3 and the fourth bleeder diode D4 in the third-stage bleeder circuit reach the turn-on voltage, and the third bleeder diode D3 and the fourth bleeder diode D4 are conducted, and another part of the current I3 in the current signal Iin is transmitted to the ground terminal GND via the second bleeder resistor R2, the third bleeder diode D3, the fourth bleeder diode D4 and the ground terminal GND .
  • the values of the first current threshold Ith1, the second current threshold Ith2, and the third current threshold Ith gradually increase.
  • the voltage that controls the conduction of the first bleeder diode D1, the second bleeder diode D2, and the third bleeder diode D3 may be the voltage after the current signal Iin is converted by the resistive element, for example, through the transresistance Rf. The voltage obtained by converting the current signal Iin.
  • the bleeder circuit 43 when N is 4, that is, if the bleeder circuit 43 includes four sub-bleed circuits, it can be further applied to a multi-stage bleeder circuit, where the current signal Iin is greater than the fourth The current threshold Ith4 is correspondingly turned on to further discharge the current signal Iin, where the fourth current threshold Ith4 is greater than the third current threshold Ith.
  • a plurality of sub-bleeding circuits corresponding to different input currents Iin in the bleeder circuit 43 can be set to correspond to gradually increasing current thresholds, which will not be repeated here.
  • the slope of the output current and the transimpedance voltage curve in the transimpedance amplifier 42 can be adjusted, which further improves the dynamic range of the input signal.
  • FIG. 6 is a schematic diagram of the specific circuit structure of the bleeder circuit 43 shown in FIG. 3 in the second embodiment of the application.
  • the bleeder circuit 43b shown in FIG. 6 is another implementation of the bleeder circuit 43 shown in FIG. 3.
  • the bleeder circuit 43b is basically the same as the bleeder circuit 43a shown in FIG. Specifically, each of the three sub-bleed circuits included in the bleeder circuit 43 is provided with a bleeder control switch, so that the sub bleeder circuits of the corresponding stage can be flexibly controlled to start and perform current bleeding according to external instructions.
  • the first-stage bleeder circuit 431 includes a first bleeder control switch K1, and the first bleeder control switch K1 is connected in series with the first bleeder diode D1.
  • the first bleeder control switch K1 is used to control whether the first-stage bleeder circuit 431 is turned on.
  • the first bleeder control switch K1 is in the on state, the first-stage bleeder circuit 431 is turned on, and when the current signal Iin is greater than the current corresponding to the turn-on voltage of the first bleeder diode D1, the current signal Iin exceeds the first The current of the current threshold Ith1 is discharged.
  • the i-th stage bleeder circuit includes an i-th bleeder control switch, and the i-th bleeder control switch is connected in series with the i-1 bleeder diodes.
  • the i-th bleeder circuit is turned on and bleeds part of the current signal when the current signal is greater than the i-th current threshold.
  • the second-stage bleeder circuit 432 includes a second bleeder control switch K2, and the second bleeder control switch K2 is connected in series with the second bleeder diode D2.
  • the second bleeder control switch K1 is used to control whether the second-stage bleeder circuit 432 is turned on.
  • the second bleeder control switch K2 is in the on state, the second-stage bleeder circuit 432 is turned on, and when the current signal Iin is greater than the current corresponding to the turn-on voltage of the second bleeder diode D2, the current signal Iin exceeds the second The current of the current threshold Ith2 is discharged.
  • the third-stage bleeder circuit 433 includes a third bleeder control switch K3, and the third bleeder control switch K3 is connected in series with the fourth bleeder diode D4. Among them, the third bleeder control switch K2 is used to control whether the third-stage bleeder circuit 433 is turned on. When the third bleeder control switch K3 is in the conducting state, the third-stage bleeder circuit 433 is turned on, and when the current signal Iin is greater than the current corresponding to the turn-on voltages of the third bleeder diode D3 and the fourth bleeder diode D4, The current in which the current signal Iin exceeds the third current threshold Ith3 is discharged.
  • the anode of the first bleeder diode D1 is electrically connected to the amplifying input terminal IN2 of the transimpedance amplifier 42, and the cathode of the first bleeder diode D1 is electrically connected to the first bleeder control switch K1.
  • a conductive terminal K11, the second conductive terminal K12 of the first bleeder control switch K1 is electrically connected to the ground terminal GND, and the first control terminal K1c of the first bleeder control switch K1 is used to receive the first control signal Sc1 .
  • the 2i-1th conductive end of the ith bleeder control switch is electrically connected to the cathode of the i-1 bleeder diode
  • the i-th bleeder control switch is electrically connected to the cathode of the i-1 bleeder diode.
  • the 2i-th conductive terminal of the switch is electrically connected to the ground terminal
  • the i-th control terminal of the i-th bleeder control switch is used to receive the i-th control signal
  • the i-th control signal is used to control the i-th bleeder The switch is turned on or off.
  • the second-stage bleeder circuit 432 includes a first bleeder resistor R1 and a second bleeder diode D2 connected in series.
  • the first bleeder resistor R1 is electrically connected between the amplifying input terminal IN2 of the transimpedance amplifier 42 and the anode of the second bleeder diode D2, and the cathode of the first bleeder diode D1 is electrically connected to the second bleeder control
  • the third conductive terminal K21 of the switch K2, the fourth conductive terminal K22 of the second discharge control switch K2 are electrically connected to the ground terminal GND, and the second control terminal K2c of the second discharge control switch K2 is used to receive the second Control signal Sc2.
  • the third-stage bleeder circuit 433 includes a second bleeder resistor R2, a third bleeder diode D3, and a fourth bleeder diode D4 connected in series.
  • the second bleeder resistor R2 is electrically connected between the amplifying input terminal IN2 of the transimpedance amplifier 42 and the anode of the third bleeder diode D3, and the cathode of the third bleeder diode D3 is electrically connected to the fourth bleeder diode
  • the anode of D4 and the cathode of the fourth bleeder diode D4 are electrically connected to the fifth conductive terminal K31 of the third bleed control switch K3, and the sixth conductive terminal K32 of the third bleed control switch K3 is electrically connected to ground
  • the terminal GND, the control terminal K3c of the third bleeder control switch K3 is used to receive the third control signal Sc3.
  • the first bleeding control switch K1, the second bleeding control switch K2, and the first bleeding control switch K3 may be N-type transistors or P-type transistors.
  • the first control signal Sc1, the second The control signal Sc2 and the third control signal Sc3 can be a high-level voltage signal or a low-level voltage signal, so as to correspondingly control the first bleed control switch K1, the second bleed control switch K2, and the first bleed control switch K3 is on or off.
  • the first bleeding control switch K1, the second bleeding control switch K2, and the first bleeding control switch K3 are N-type transistors.
  • the first control signal Sc1, the second control signal Sc2, and the third control signal Sc3 are voltage signals Vct1, Vct2, Vct3 corresponding to the current signal Iin.
  • the voltage signals Vct1, Vct2, Vct3 may be voltages obtained by converting the current signal Iin through a voltage dividing element such as a resistor.
  • the first control signal Sc1, the second control signal Sc2, and the third control signal Sc3 may also be output by the control module according to the current adjustment capability of the transimpedance amplifier 42.
  • first control signal Sc1, the second control signal Sc2, and the third control signal Sc3 can be output by the main control unit 101 according to the current adjustment capability of the transimpedance amplifier 42.
  • the working principle of the bleeder circuit 43b shown in FIG. 6 is basically the same as that of the bleeder circuit 43a, except that the first-stage bleeder circuit 431, the second-stage bleeder circuit 432, and the third-stage bleeder circuit 433 need to be in the first stage respectively.
  • the discharge control switch K1, the second discharge control switch K2, and the third discharge control switch K3 can be in working state only when they are turned on.
  • the first-stage bleeder circuit 431 When the bleeder circuit 43b is connected to the amplifying input terminal IN2 and activated, and the current signal Iin output by the laser conversion output terminal O1 of the laser receiver 41 is less than the first current threshold Ith1, the first-stage bleeder circuit 431 The first bleeder diode D1 has not reached the turn-on voltage, and the first bleeder diode D1 is not turned on, that is, the first bleeder diode D1 is in an off state, and the voltage of the transimpedance amplifier 42 has a linear relationship with the output current Iin.
  • the current signal Iin As the current signal Iin continues to increase, the current signal Iin is greater than the first current threshold Ith1 and smaller than the second current threshold Ith2, and the first bleeder control switch K1 is in the on state under the control of the first control signal Sc1.
  • the first bleeder diode D1 in the bleeder circuit 431 reaches the turn-on voltage, the first bleeder diode D1 is turned on, and a part of the current I1 of the current signal Iin is transmitted to the ground terminal GND through the first bleeder diode D1 and the ground terminal GND.
  • the current signal Iin When the current signal Iin continues to increase, the current signal Iin is greater than the second current threshold Ith2 and less than the third current threshold Ith3, and the second bleeder control switch K2 is in the on state under the control of the second control signal Sc2, the second stage The second bleeder diode D2 in the bleeder circuit 432 reaches the turn-on voltage, the second bleeder diode D2 is turned on, and another part of the current I2 in the current signal Iin passes through the first bleeder resistor R1, the first bleeder diode D1 and the ground The terminal GND is transmitted to the ground terminal GND.
  • the current signal Iin As the current signal Iin further increases, the current signal Iin is greater than the third current threshold Ith3, and the third bleeder control switch K3 is turned on under the control of the third control signal Sc3, and the third bleeder circuit 432 in the second stage
  • the discharge diode D3 and the fourth discharge diode D4 reach the turn-on voltage, the third discharge diode D3 and the fourth discharge diode D4 are turned on, and another part of the current I3 in the current signal Iin passes through the second discharge resistor R2 and the third discharge resistor R2.
  • the bleeder diode D3, the fourth bleeder diode D4, and the ground terminal GND are transmitted to the ground terminal GND.
  • FIG. 7 is a schematic diagram of the specific circuit structure of the bleeder circuit 43 shown in FIG. 3 in the third embodiment of the application.
  • the bleeder circuit 43c shown in FIG. 7 is another implementation manner of the bleeder circuit 43 shown in FIG. 3.
  • the bleeder circuit 43c includes three sub-bleed circuits, and the three sub-bleed circuits are electrically connected between any node between the laser receiver 41 and the receiving transimpedance amplifier 42 and the ground terminal GND, that is, The three sub-bleeding circuits are electrically connected between the laser conversion output terminal O1 of the laser receiver 41 and the ground terminal GND, or in other words, the three sub-bleeding circuits are electrically connected to the amplifying input terminal IN2 and the ground terminal of the transimpedance amplifier 42 Between GND.
  • the three sub-bleeding circuits include a first-stage bleeder circuit 431, a second-stage bleeder circuit 432, and a third-stage bleeder circuit 433.
  • the current signal Iin corresponding to when the first-stage bleeder circuit 431 is turned on is smaller than the corresponding current signal Iin when the second-stage bleeder circuit 432 is turned on, and the corresponding current signal Iin when the second-stage bleeder circuit 432 is turned on is smaller than that of the third stage.
  • the current signal Iin corresponding to when the bleeder circuit 433 is turned on that is, the current signal corresponding to the voltage of the first-stage bleeder circuit 431, the second-stage bleeder current 432, and the voltage of the third-stage bleeder circuit 433 is gradually increased. .
  • the first-stage bleeder circuit 431 includes a first bleeder diode D1 and a first amplifier CP1.
  • the anode of the first bleeder diode D1 is electrically connected to the amplifying input terminal IN2 of the transimpedance amplifier 42, and the cathode of the first bleeder diode D1 is electrically connected to the ground through the input terminal CP11 and the output terminal CP12 of the first amplifier CP1.
  • the terminal GND, the control terminal CP13 of the first amplifier CP1 is used to receive the first control signal Sc1.
  • the first control signal Sc1 is used to control the input voltage of the first amplifier CP1, and the input voltage of the first amplifier CP1 corresponds to the conduction voltage of the first bleeder diode D1, that is, by selecting a suitable first control
  • the signal Sc1 can control the conduction interval of the first bleeder diode D1.
  • control terminal CP13 of the first amplifier CP1 is the power input terminal of the first amplifier CP1
  • first control signal Sc1 is the power supply voltage for starting the first amplifier CP1.
  • the second stage bleeder circuit 432 includes a second bleeder diode D2 and a second amplifier CP2 connected in series.
  • the anode of the second bleeder diode D2 is electrically connected to the amplifying input terminal IN2 of the transimpedance amplifier 42, and the cathode of the second bleeder diode D2 is electrically connected to the ground through the input terminal CP21 and the output terminal CP22 of the second amplifier CP2.
  • the terminal GND, the control terminal CP23 of the second amplifier CP2 is used to receive the second control signal Sc2.
  • the second control signal Sc2 is used to control the input voltage of the second amplifier CP2, and the input voltage of the second amplifier CP2 corresponds to the conduction voltage of the second bleeder diode D2, that is, by selecting a suitable second control
  • the signal Sc2 can control the conduction interval of the second bleeder diode D2.
  • control terminal CP23 of the second amplifier CP2 is the power input terminal of the second amplifier CP2
  • second control signal Sc2 is the power supply voltage for starting the second amplifier CP2.
  • the third stage bleeder circuit 433 includes a third bleeder diode D3 and a third amplifier CP3 connected in series.
  • the anode of the third bleeder diode D3 is electrically connected to the amplifying input terminal IN2 of the transimpedance amplifier 42, and the cathode of the third bleeder diode D3 is electrically connected to the ground through the input terminal CP31 and the output terminal CP32 of the third amplifier CP3.
  • the terminal GND, the control terminal CP33 of the third amplifier CP3 is used to receive the third control signal Sc2.
  • the third control signal Sc3 is used to control the input voltage of the third amplifier CP3, and the input voltage of the third amplifier CP3 corresponds to the conduction voltage of the third bleeder diode D3, that is, by selecting a suitable third control
  • the signal Sc3 can control the conduction interval of the third bleeder diode D3.
  • control terminal CP23 of the third amplifier CP3 is the power input terminal of the third amplifier CP3, and the third control signal Sc3 is the power supply voltage for starting the third amplifier CP3.
  • the power supply voltages are the same, that is, the first control signal Sc1, the second control signal Sc2, and the third control signal Sc3 are the same.
  • the power supply voltages of the three amplifiers of the first amplifier CP1, the second amplifier CP2, and the third amplifier CP3 are different, that is, the first control signal Sc1, the second control signal Sc2, and the third control signal Sc3 are mutually different. different.
  • the first control signal Sc1, the second control signal Sc2, and the third control signal Sc3 are the voltages Vct1, Vct2, Vct3 converted by the voltage dividing element corresponding to the current signal Iin.
  • the first control signal Sc1, the second control signal Sc2, and the third control signal Sc3 may also be output by the control module according to the current adjustment capability of the transimpedance amplifier 42.
  • first control signal Sc1, the second control signal Sc2, and the third control signal Sc3 can be output by the control module according to the current adjustment capability of the transimpedance amplifier 42.
  • the bleeder circuit 43c When the bleeder circuit 43c is connected to the amplifying input terminal IN2 and activated, the current signal Iin output by the laser conversion output terminal O1 of the laser receiver 41 is less than the first current threshold Ith1, the first stage of the bleeder circuit 431 The bleeder diode D1 has not reached the turn-on voltage, and the first bleeder diode D1 is not turned on, that is, the first bleeder diode D1 is in an off state, and the voltage of the transimpedance amplifier 42 has a linear relationship with the output current Iin.
  • the current signal Iin As the current signal Iin increases, the current signal Iin is greater than the first current threshold Ith1 and less than the second current threshold Ith2, and the first amplifier CP1 is in a conducting state under the control of the first control signal Sc1.
  • the first stage bleeder circuit 431 The first bleeder diode D1 reaches the turn-on voltage, the first bleeder diode D1 is turned on, and a part of the current I1 of the current signal Iin is transmitted to the ground terminal GND via the first bleeder diode D1 and the ground terminal GND.
  • the current signal Iin When the current signal Iin continues to increase, the current signal Iin is greater than the second current threshold Ith2 and smaller than the third current threshold Ith3, and the second amplifier CP2 is in a conducting state under the control of the second control signal Sc2, and the second stage bleeder circuit 432
  • the second bleeder diode D2 reaches the turn-on voltage, the second bleeder diode D2 is turned on, and another part of the current I2 in the current signal Iin is transmitted to the ground terminal GND through the first bleeder resistor R1, the first bleeder diode D1, and the ground terminal GND. Ground terminal GND.
  • the current signal Iin As the current signal Iin further increases, the current signal Iin is greater than the third current threshold Ith3, and the third amplifier CP3 is in a conducting state under the control of the third control signal Sc3, and the third bleeder diode D3 in the third-stage bleeder circuit 433 reaches When the voltage is turned on, the third bleeder diode D3 is turned on, and another part of the current I3 in the current signal Iin is transmitted to the ground terminal GND through the second bleeder resistor R2, the third bleeder diode D3 and the ground terminal GND.
  • FIG. 8 is a schematic diagram of a three-dimensional structure of a car with a lidar application as shown in FIG. 1 in an embodiment of the application.
  • the car 100 is provided with a laser signal converter 10 (FIG. 1) as a laser radar shown in FIG.
  • the driving operation direction is provided during the process.
  • the range measurement of the lidar 10 for the detected object can also provide more accurate and fast direction for automatic driving, ensuring that the car 100 provides an accurate motion state or trajectory for the detected object to provide a reference basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Amplifiers (AREA)

Abstract

一种激光信号转换范围较大的激光接收电路,以及包括该激光接收电路的激光雷达以及汽车。激光接收电路包括激光接收器(41)、跨阻放大器(42)与泄放电路(43);其中,激光接收器(41)用于接收激光信号,并且将激光信号转换为电流信号;跨阻放大器(42)的放大输入端自激光接收器(41)接收电流信号,并且将电流信号转化为电压信号并自放大输出端输出;泄放电路(43)电性连接于激光接收器(41)的放大输入端与接地端之间,泄放电路(43)包括多个子泄放电路,当电流信号达到不同的阈值范围时启动不同数量的子泄放电路,每一个子泄放电路在启动时将输入至跨阻放大器(42)的电流信号泄放至接地端。

Description

一种激光接收电路、一种激光雷达及一种车辆
本申请要求于2020年02月28日提交中国专利局、申请号为202010130957.3、申请名称为“一种激光接收电路、一种激光雷达及一种车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光电信号转换技术领域,尤其涉及一种激光接收电路、一种激光雷达及一种车辆。
背景技术
随着激光信号应用的发展,光传输系统对光接收模组的精度与灵活性提出了更高的要求。目前而言,对于应用激光信号进行测距的激光雷达装置,针对激光信号接收时,若激光信号具有较大波动而导致对应激光信号的电流信号波动较大,容易导致针对电流信号进行放大处理的跨阻放大器处于饱和状态,从而无法真实准确反映针对电流信号的波动,导致激光接收电路的动态范围较小。
发明内容
为解决前述技术问题,本申请实施例提供一种针对激光信号接收时具有较大动态调整范围的激光接收电路、激光雷达以及车辆。
第一方面,本申请一种实现方式中,提供一种激光接收电路,包括激光接收器、跨阻放大器与泄放电路。所述激光接收器用于接收激光信号,并且将激光信号转换为电流信号。所述跨阻放大器的放大输入端自所述激光接收器接收所述电流信号,并且将所述电流信号转化为电压信号并自放大输出端输出。泄放电路电性连接于所述激光接收器的所述放大输入端与接地端之间,所述泄放电路包括多个子泄放电路。当所述电流信号达到不同的阈值范围时启动不同数量的子泄放电路,每一个子泄放电路在启动时将输入至所述跨阻放大器的所述电流信号泄放至接地端。
电流信号对应于激光信号的变化,通过泄放电路依据电流信号的大小来对确定针对电流信号的泄放程度,从而能够灵活的针对超过阈值范围的电流进行动态泄放,以保证提供至跨阻放大的电流处于较为稳定的范围内,防止跨阻放大器的输入信号达到饱和,使得激光信号接收链路的动态范围较大。
在本申请一种实施例中,所述多个子泄放电路分为N级,N为大于或者等于2的整数,每一级的子泄放电路包括一个所述子泄放电路。在N级子泄放电路中,第i-1级的子泄放电路启动时对应的所述电流信号小于启动所述第i级泄放电路启动时对应的所述电流信号,i大于1小于或者等于N。通过将多个子泄放电路划分定义为N级,并各级子泄放电路导通时对应的电流信号逐级增加而在导通时具有对应的优先级别,实现自动依据电流信号动态的选择相应级别的子泄放电路针对电流信号进行泄放。
在本申请一种实施例中,每一个所述子泄放电路包括至少一个泄放二极管,控制每一 个子泄放电路中的所述泄放二极管导通的电压不同,当所述泄放二极管导通时控制所述子泄放电路启动,启动每一个所述子泄放电路的电压与所述电流信号的大小对应,且所述电流信号的大小与开启的子泄放电路的数量呈同相关系。对应电流信号来控制子泄放电路中泄放二极管的导通,进而准确控制每个子泄放电流启动的时机,保证每个子泄放电路准确开启。
本申请一种实施例中,每一个所述子泄放电路包括至少一个泄放二极管,控制每一个子泄放电路中的所述泄放二极管导通的电压不同,当所述泄放二极管导通时控制所述子泄放电路启动,且启动第i级的子泄放电路的电压大于启动所述第i-1级泄放电路的电压。即N级子泄放电路中启动各级子泄放电路的电压逐级增加。多级泄放电路依据电流信号的大小逐级启动而调整对电流信号的泄放程度,从而针对超过阈值范围的电流信号进行动态泄放,实现针对接收的激光信号以及电流信号进行动态调整。
本申请一种实施例中,第一级泄放电路包括第一泄放二极管,所述第一泄放二极管电性连接于所述跨阻放大器的放大输入端与所述接地端之间,第i级泄放电路包括一个泄放电阻和i-1个泄放二极管,其中所述泄放电阻和所述i-1个泄放二极管串联于所述跨阻放大器的放大输入端与所述接地端。例如,对于当N为3时,所述第一级泄放电路包括第一泄放二极管,第二级泄放电路包括一个泄放电阻与一个泄放二极管,第三级泄放电路包括一个泄放电阻与两个个泄放二极管。
具体地,所述第一级泄放电路中,所述第一泄放二极管的阳极电性连接于跨阻放大器的所述放大输入端,所述第一泄放二极管的阴极电性连接于所述接地端,所述电流信号流过所述跨阻时产生的电压作为控制所述第一泄放二极管导通的电压。所述第i级泄放电路中,所述泄放电阻电性连接于所述放大输入端与所述i-1个泄放二极管的阳极之间,所述i-1个泄放二极管的阴极电性连接于所述接地端,所述电流信号流过所述跨阻与所述泄放电阻时产生的电压作为控制所述i-1个泄放二极管导通的电压。N级子泄放电路中,随着级数的增加,泄放二极管的数量逐级增加,通过调整泄放二极管的数量以及泄放电阻的阻值即可对应设置不同的导通电压,准确、灵活地设置了启动各级子泄放电路的电压。
在一种实现方式中,当N为3时,所述第二级泄放电路包括串联的第一泄放电阻与第二泄放二极管,所述第一泄放电阻电性连接于所述跨阻放大器的所述放大输入端与所述第二泄放二极管的阳极之间,所述第一泄放二极管的阴极电性连接于所述接地端。所述第三级泄放电路包括串联的第二泄放电阻、第三泄放二极管以及第四泄放二极管,所述第二泄放电阻电性连接于跨阻放大器的所述放大输入端与第三泄放二极管的阳极之间,所述第三泄放二极管的阴极电性连接于所述第四泄放二极管的阳极,所述第四泄放二极管的阴极电性连接于所述接地端。
在本申请一实施例中,当所述电流信号小于第一电流阈值时,所述第一级泄放电路中所述第一泄放二极管未导通,所述跨阻放大器的中所述跨阻的电压与输出电流成线性关系。当所述电流信号增加并大于所述第一电流阈值小于第二电流阈值时,所述第一泄放二极管导通,部分所述电流信号经所述第一级泄放电路中所述第一泄放二极管传输至所述接地端。当所述电流信号增加并大于第i电流阈值时,所述第i级泄放电路中的所述i-1个泄放二极管导通,部分电流信号经所述第i级泄放电路中所述泄放电阻、所述i-1个泄放二极管传输 至所述接地端。所述第i电流阈值大于第i-1电流阈值且大于所述第一电流阈值。
多级泄放电路依据电流信号的大小来为不同级别子泄放电路中的泄放二极管提供启动电压,从而准确依据电流信号大小来启动不同级别、数量的子泄放电路,以准确调整对电流信号的泄放程度以对电流信号进行动态泄放与调整。
在一种实现方式中,当N为3时,当所述电流信号增加并大于所述第二电流阈值小于第三电流阈值时,所述第二泄放二极管导通,部分电流信号经所述第一泄放电阻、所述第一泄放二极管传输至所述接地端。当所述电流信号增加并大于所述第三电流阈值时,所述第三泄放二极管与第四泄放二极管导通,部分电流信号经所述第二泄放电阻、所述第三泄放二极管、所述第四泄放二极管传输至所述接地端。所述第一电流阈值、所述第二电流阈值以及所述第三电流阈值的数值逐渐增加。
本申请一种实施例中,每一个泄放电路中包括一个泄放控制开关,所述泄放开关依据所述电流信号的大小来控制所述泄放控制开关所在的子泄放电路是否启动并执行电流泄放。依据电流信号的大小提供不同的控制信号至对应的子泄放电路,以使得对应子泄放电路中的电子元件处于导电通路中,从而准确依据电流信号大小来启动对应级别的子泄放电路。
本申请一种实施例中,所述第一级泄放电路包括第一泄放控制开关,所述第一泄放控制开关与所述第一泄放二极管串联,当所述第一泄放控制开关导通时,所述第一级泄放电路开启并在所述电流信号大于第一电流阈值时,针对部分的所述电流信号进行泄放。所述第i级泄放电路包括第i泄放控制开关,所述第i泄放控制开关与所述i-1个泄放二极管串联,当所述第二泄放控制开关导通时,所述第i级泄放电路开启并在所述电流信号大于第i电流阈值时针对部分所述电流信号进行泄放,所述第i电流阈值大于第i-1电流阈值且大于所述第一电流阈值。
多级泄放电路依据对应于电流信号大小控制信号来控制不同级别的子泄放电路处于导电通路中,从而准确依据电流信号大小来启动不同级别的子泄放电路,进而准确调整对电流信号的泄放程度以对电流信号进行动态泄放与调整。
在一种实现方式中,当N为3时,所述第二级泄放电路包括第二泄放控制开关,所述第二泄放控制开关与所述第二泄放二极管串联,当所述第二泄放控制开关导通时,所述第二级泄放电路开启并在所述电流信号大于启动所述第二泄放二极管的电压对应的电流时,针对部分所述电流信号进行泄放。所述第三级泄放电路包括第三泄放控制开关,所述第三泄放控制开关与所述第四泄放二极管串联,当所述第三泄放控制开关导通时,所述第三级泄放电路开启并在所述电流信号大于启动第三泄放二极管与第四泄放二极管的电压对应的电流时,针对部分所述电流信号进行泄放。
本申请一种实施例中,所述第一泄放二极管的阳极电性连接于所述跨阻放大器的放大输入端,所述第一泄放二极管的阴极电性连接于所述第一泄放控制开关的第一导电端,所述第一泄放控制开关的第二导电端电性连接于所述接地端,所述第一开泄放控制开关的第一控制端用于接收第一控制信号,所述第一控制信号用于控制所述第一泄放开关导通或者截止。所述第i泄放控制开关的第2i-1导电端电性连接于所述i-1个泄放二极管的阴极,所述第i泄放控制开关的第2i导电端电性连接于所述接地端,所述第i泄放控制开关的第i 控制端用于接收第i控制信号,所述第i控制信号用于控制所述第i泄放开关导通或者截止。第一控制信号、第i控制信号分别为对应所述电流信号的电压信号。
通过电流信号的大小能够自动选择不同级与不同数量的子泄放电路的开启,泄放电路中各级子泄放电路的开启能够自动依据电流信号的大小进行选择,以针对电流信号的泄放实现自动闭环动态调整控制。
在一种实现方式中,当N为3时,所述第二级泄放电路包括串联的第一泄放电阻与第二泄放二极管,所述第一泄放电阻电性连接于所述跨阻放大器的放大输入端与所述第二泄放二极管的阳极之间,所述第一泄放二极管的阴极电性连接于所述第二泄放控制开关的第三导电端,所述第二泄放控制开关的第四导电端电性连接于所述接地端,所述第二泄放控制开关的第二控制端用于接收第二控制信号,所述第二控制信号用于控制所述第二泄放开关导通或者截止。所述第三级泄放电路包括串联的第二泄放电阻、第三泄放二极管以及第四泄放二极管,所述第二泄放电阻电性连接于所述跨阻放大器的放大输入端与所述第三泄放二极管的阳极之间,所述第三泄放二极管的阴极电性连接于所述第四泄放二极管的阳极,所述第四泄放二极管的阴极电性连接于所述第三泄放控制开关的第五导电端,所述第三泄放控制开关的第六导电端电性连接于接地端,所述第三泄放控制开关的第三控制端用于接收第三控制信号,所述第三控制信号用于控制所述第三泄放开关导通或者截止。第一控制信号、第二控制信号以及第三控制信号分别为对应所述电流信号的电压信号。
本申请一种实施例中,所述第一级泄放电路包括串联的第一泄放二极管与第一放大器,所述第一放大器的控制端用于接收第一控制信号,所述第一控制信号用于控制所述第一放大器的输入电压,所述第一放大器的输入电压与控制所述第一泄放二极管导通的电压相对应,当所述第一泄放二极管导通时,所述电流信号经所述第一级泄放电路泄放至所述接地端。所述第i级泄放电路包括串联的第i泄放二极管与第i放大器,所述第i放大器的控制端用于接收第i控制信号,所述第i控制信号用于控制所述第i放大器的输入电压,所述第i放大器的输入电压与控制所述第i泄放二极管导通的电压相对应,当所述第i泄放二极管导通时,所述电流信号经所述第i级泄放电路泄放至所述接地端。
多级泄放电路依据对应于电流信号大小控制信号来控制不同级别的子泄放电路中的放大器启动,从而准确依据电流信号大小来启动不同级别的子泄放电路,进而准确调整对电流信号的泄放程度以对电流信号进行动态泄放与调整。
在一种实现方式中,当N为3时,所述第二级泄放电路包括串联的第二泄放二极管与第二放大器,所述第二放大器的控制端用于接收第二控制信号,所述第二控制信号用于控制所述第二放大器的输入电压,所述第二放大器的输入电压与控制所述第二泄放二极管导通的电压相对应,当所述第二泄放二极管导通时,所述电流信号经所述第二级泄放电路泄放至所述接地端。所述第三级泄放电路包括串联的第三泄放二极管与第三放大器,所述第三放大器的控制端用于接收第三控制信号,所述第三控制信号用于控制所述第三放大器的输入电压,所述第三放大器的输入电压与控制所述第三泄放二极管导通的电压相对应,当所述第三泄放二极管导通时,所述电流信号经所述第三级泄放电路泄放至所述接地端。
本申请一种实施例中,所述第一级泄放电路中所述第一泄放二极管的阳极电性连接于所述跨阻放大器的输入端,所述第一泄放二极管的阴极通过所述第一放大器电性连接于所 述接地端,所述第一放大器的控制端为所述第一放大器的电源输入端,所述第一控制信号为启动所述第一放大器的电源电压。所述第i级泄放电路中所述第i泄放二极管的阳极电性连接于所述跨阻放大器的输入端,所述第i泄放二极管的阴极通过所述第二放大器电性连接于所述接地端,所述第i放大器的控制端为所述第i放大器的电源输入端,所述第i控制信号为启动所述第i放大器的电源电压。所述第一控制信号与所述第i控制信号为所述电流信号通过分压元件转换后的电压,且所述第一放大器与所述第i放大器的电源电压不同。
对应于电流信号大小的电压作为放大器的电源电压,从而控制不同级别的子泄放电路中的放大器启动,使得依据电流信号大小能够准确启动不同级别的子泄放电路,进而准确调整对电流信号的泄放程度以对电流信号进行动态泄放与调整。
在一种实现方式中,当N为3时,所述第二泄放二极管的阳极电性连接于所述跨阻放大器的输入端,所述第二泄放二极管的阴极通过所述第二放大器电性连接于所述接地端,所述第二放大器的控制端为所述第二放大器的电源输入端,所述第二控制信号为启动所述第二放大器的电源电压。所述第三泄放二极管的阳极电性连接于所述跨阻放大器的输入端,所述第三泄放二极管的阴极通过所述第三放大器电性连接于所述接地端,所述第三放大器的控制端为所述第三放大器的电源输入端,所述第二控制信号为启动第三放大器的电源电压。所述第一控制信号、所述第二控制信号以及所述三控制信号为对应电流信号的电压信号,且所述第一放大器、所述第二放大器、所述第三放大器的电源电压不同。
第二方面,本申请一种实现方式中,提供一种激光雷达,包括激光发射模组、激光接收模组与主控单元。所述激光发射模组用于将电信号转换为激光信号进行发射,所述激光接收模组接收自探测物体反射的所述激光信号,并将所述激光信号转换为电信号传输至所述主控单元,所述主控单元依据反射的所述激光信号判断探测物体的距离。所述激光接收模组包括前述激光接收电路。激光接收电路中,通过泄放电路依据电流信号的大小来对确定针对电流信号的泄放程度,从而能够灵活的针对超过阈值范围的电流进行动态泄放,以保证提供至跨阻放大的电流处于较为稳定的范围内,防止跨阻放大器的输入信号达到饱和,进一步使得激光信号接收链路的动态范围较大,保证激光雷达能够使能更大变化范围的激光信号。
第三方面,本申请一种实现方式中,提供一种汽车,所述汽车包括前述的激光雷达,在驾驶过程中通过激光雷达针对探测目标进行距离测试时,能够准确适应更大变化范围的激光信号。
附图说明
图1为本申请一实施例中激光信号转换器的功能方框图;
图2为如图1所示激光信号转换器的电路框图;
图3为图2所示激光信号转换器的具体电路结构示意图;
图4为本申请第一实施例中如图3所示泄放电路的具体电路结构示意图;
图5为图4所示泄放电路工作时跨阻放大器接收的电流信号与跨阻电压的关系曲线图;
图6为本申请第二实施例中如图3所示泄放电路的具体电路结构示意图;
图7为本申请第三实施例中如图3所示泄放电路的具体电路结构示意图;
图8为本申请一实施例中汽车运行场景示意图。
具体实施方式
下面以具体的实施例对本申请进行说明。
请参阅图1,其为本申请一实施例中激光信号转换器10的功能方框图,包括电路板组件2、激光发射模组(Transmitter Optical Sub-Assembly,TOSA)3,激光接收模组(Receiver Optical Sub-Assembly,ROSA)4。当然,激光信号转换器10还包括图中未示出的用于辅助支持电路板模组2、激光发射模组3,激光接收模组4的其他功能模组,例如设置于电路板模组2上的金手指、信号连接用的插座以及驱动电源等。
本实施例中,激光信号转换器10作为激光雷达来进行测距,通过激光信号执行距离测试,也即是依据激光接收模组4接收的激光信号来判断周围的物体的距离,例如针对探测物体的具体距离。
激光发射模组3、激光接收模组4与电路板模组2电性连接,其连接方式可以通过焊接进行连接,或者通过柔性电路板进行连接。激光发射模组3与激光接收模组4通过电路板2上的导电线路(图未示)与主控单元101与光驱动处理模组102电性连接,主控单元101与光驱动处理模组102配合控制激光发射模组3、激光接收模组4之间进行数据传输的速率,并且主控单元101针对待发射以及接收的数据进行处理。
激光发射模组3在主控单元101与光驱动处理模组102控制下,依据数据发射激光信号的信号链路可以定义为激光信号发射链路。激光接收模组4在主控单元101与光驱动处理模组102控制下接收激光信号,并且将接收的激光信号转换为电信号并提供至主控单元101信号链路可以定义为激光信号接收链路。
本实施例中,激光发射模组3用于将电信号转换为激光信号进行发射,也即是激光发射模组3作为激光发射电路。激光接收模组4接收自探测物体反射的激光信号,并将激光信号转换为电信号传输至光驱动处理模组102。本实施例中,激光接收模组4中针对激光信号进行光电信号转换处理的电路作为激光接收电路。
主控单元101能够依据相应的指令信号输出对应的控制信号至光驱动处理模组102、激光发射模组3、激光接收模组4,进而控制驱动处理模组102配合激光发射模组3按照指令进行激光信号的发射,或者控制光驱动处理模组102配合激光接收模组4按照指令接收自探测物体反射的激光信号。以及,主控单元101依据反射的激光信号计算探测物体(图未示)的距离。
更为具体地,请参阅图2-图3,图2为如图1所示激光电信号转换器10的电路框图,图3为图2所示激光电信号转换器10的具体电路结构。
如图2-图3所示,激光接收模组4中激光接收电路包括相互电性连接的激光接收器41、跨阻放大器(Trans-Impedance Amplifier,TIA)42以及泄放电路43,其中,激光接收器41与跨阻放大器42电性连接。
激光接收器41用于接收激光信号,并且将激光信号转换为电流信号Iin。具体地,激光接收器41接收激光信号后产生脉冲电流,所述脉冲电流即为电流信号Iin,所述电流信 号自激光接收器41的激光转换输出端O1输出,对于不同距离探测物体或者相同距离的不同反射率的探测物体,反射的激光信号的强度不同,产生对应的电流信号Iin的大小也不同。
跨阻放大器42包括放大输入端IN2与放大输出端O2,跨阻放大器32的放大输入端IN2电性连接于激光接收器41的激光转换输出端O1,且通过放大输入端IN2自光接收器41接收电流信号Iin,并且将所述电流信号Iin转化为电压信号以及自放大输出端O2输出,并且可以依据需要调整将电流信号Iin转换为电压信号的增益比例。
泄放电路43用于针对激光接收器41产生脉冲电流中超过阈值范围的电流进行动态泄放,以保证提供至跨阻放大器42的电流处于较为稳定的范围内,防止跨阻放大器42的输入信号达到饱和,以使得激光信号接收链路中针对激光信号以及电流信号Iin的动态范围较大。
光发射模组3则将对应数据信号的电流信号Iin转换为光信号并发射至探测物体。本实施例中,光发射模组3包括由光电转换二极管构成的光发射器31,其中,作为光发射器31的光电转换二极管可以是激光二极管。
激光接收器41与激光发射器31的光电转换二极管可以为雪崩式光电二极管(Avalanche Photodiode,APD)。
光驱动处理模组102包括对应光接收模组4的限幅放大器(Limiting Amplifier,LA)1021与第一时钟和数据恢复电路(Lock And Data Recovery,CDR)102a,以及对应光发送模组3的第二时钟和数据恢复电路102b与驱动电路1023。
具体地,限幅放大器1021用于针对经过跨阻放大器42转换放大后的电压信号进行限幅放大,消除电压信号中的振幅干扰。
第一时钟和数据恢复电路102a用于针对经过限幅放大器1021经过限幅放大后的信号中提取时钟信号并确定数据和时钟正确的相位关系,并且将依据时钟信号将数据信号准确地传输至主控单元101。
第二时钟和数据恢复电路102b电性连接于驱动电路1023,以针对功能模组提供的数据信号按照时钟进行识别编码,然后经过驱动电路1023转换为电流信号输出至光发射模组3,光发射模组3依据电流信号输出对应激光信号。
本实施例中,对于不同距离的探测物体或者相同距离的不同反射率的探测物体,激光反射回来的强度不一样,随之产生的电流范围动态变化非常大,通过泄放电路43针对激光接收器41产生脉冲电流中超过阈值范围的电流进行动态泄放,以保证提供至跨阻放大器42的电流处于较为稳定的范围内,防止跨阻放大器42的输入信号达到饱和,保证激光信号接收链路中针对激光信号以及电流信号Iin的动态范围较大。
泄放电路43包括多个用于执行电流泄放的子泄放电路,多个子泄放电路依据激光接收器41输出的脉冲电流的大小选择开启相应数量的子泄放电路以执行电流泄放,本实施例中,多个子泄放电路划分定义为N级,N为大于或者等于2的整数,其中,每一级的子泄放电路包括一个所述子泄放电路,各级子泄放电路导通时具有对应的优先级别,以实现自动依据电流信号动态的选择相应级别的子泄放电路针对电流信号进行泄放。其中,每一级子泄放电路的开启时对应的电流信号Iin按照级别顺序依次增加,并且开启每一级子泄放电 路的电压按照级别顺序也依次增加。例如,在N级子泄放电路中,第一级的子泄放电路启动时对应的所述电流信号小于第二级的泄放电路启动时对应的所述电流信号,第i-1级子泄放电路启动时对应的所述电流信号小于第i级泄放电路启动时对应的所述电流信号;第i级子泄放电路启动时对应的所述电流信号小于第i+1级泄放电路启动时对应的所述电流信号。对应地,启动第一级子泄放电路的电压小于启动第二级泄放电路的电压,启动第i-1级子泄放电路启动时对应的电压小于启动第i级的泄放电路的电压;启动第i级子泄放电路的电压小于启动第i+1级泄放电路的电压。其中,i为小于或者等于N的整数,本实施例中,第i级子泄放电路表征N中任意一级的子泄放电路。
一种实现方式中,电流信号Iin的大小与子泄放电路开启数量呈同相关系,也即是脉冲电流越大,开启的子泄放电路的数量越多,电流泄放能力越强;脉冲电流越小,开启的子泄放电路的数量越少,电流泄放能力越弱。子泄放电路的数量N可以依据实际需求的电流调节范围进行设定。例如,对于不同应用场景,可以两个子泄放电路、三个子泄放电路、四个泄放电路等。
请参阅图4,其为本申请第一实施例中如图3所示泄放电路43的具体电路结构示意图。其中,图4所示的泄放电路43a为图3所示泄放电路43其中一种实现方式中的电路结构示意图。
如图4所示,跨阻放大器42在放大输入端IN2与放大输出端O2之间设置反馈回路FB,反馈回路FB包括跨阻Rf与反馈二极管Df。反馈二极管Df的阳极电性连接放大输入端IN2,反馈二极管Df的阴极通过跨阻Rf电性连接于放大输出端O2。本实施例中,跨阻Rf为跨接于放大输入端IN2与放大输出端O2之间的电阻。
本实施例中,以泄放电路43a包括级子泄放电路为例进行说明,即本实施例中N为3时,三个子泄放电路电性连接于激光接收器41与接收跨阻放大器42之间任意一个节点与接地端GND之间,也即是三个子泄放电路电性连接于激光接收器41的激光转换输出端O1与接地端GND之间,或者说,三个子泄放电路电性连接于跨阻放大器42的放大输入端IN2与接地端GND之间。
本实施例中,三个子泄放电路分别定义为第一级泄放电路431、第二级泄放电路432以及第三级泄放电路433。其中,第一级泄放电路431开启时对应的电流信号Iin小于第二级泄放电路432开启时对应的电流信号Iin,第二级泄放电路432开启时对应的电流信号Iin小于第三级泄放电路433开启时对应的电流信号Iin,也即是启动第一级泄放电路431、第二级泄放电流432以及第三级泄放电路433的电压对应的电流信号逐级增大的。换言之,当电流信号Iin处于不同的阈值范围时,启动不同数量的子泄放电路,从而能够依据电流信号Iin的大小自动调整针对电流信号Iin的泄放程度,并且电流信号Iin的大小与开启的子泄放电路的数量呈同相关系。所述同相关系即为:电流信号Iin越大,启动的子泄放电路的数量越多,针对电流信号Iin的泄放程度更大;电流信号Iin越小,启动的子泄放电路的数量越少,针对电流信号Iin的泄放程度更小。
本实施例中,第一级泄放电路431、第二级泄放电路432以及第三级泄放电路433采用不同的电压启动,且三者的启动电压逐渐增大。启动第一级泄放电路431、第二级泄放 电路432以及第三级泄放电路433的电压与电压信号Iin呈比例关系。其中,第一级泄放电路431包括第一泄放二极管D1,所述第一泄放二极管D1电性连接于所述跨阻放大器的放大输入端IN2与所述接地端GND之间。而对于第2~N级子泄放电路,第i级泄放电路包括一个泄放电阻和i-1个泄放二极管,其中所述泄放电阻和所述i-1个泄放二极管串联于所述跨阻放大器的放大输入端与所述接地端。
具体地,第一级泄放电路431包括第一泄放二极管D1。其中,第一泄放二极管D1的阳极电性连接于跨阻放大器42的放大输入端IN2,第一泄放二极管D1的阴极电性连接于接地端GND。本实施例中,电流信号Iin流过跨阻Rf产生的电压作为控制第一泄放二极管D1启动的电压,即电流信号Iin流过跨阻Rf产生的电压(Iin*Rf)作为启动第一级泄放电路431的电压。
第二级泄放电路432包括串联的第一泄放电阻R1与第二泄放二极管D2。其中,第一泄放电阻R1电性连接于跨阻放大器42的放大输入端IN2与第二泄放二极管D2的阳极之间,第一泄放二极管D1的阴极电性连接于接地端GND。
本实施例中,电流信号Iin流过跨阻Rf以及第二泄放电阻R2产生的电压作为控制第二泄放二极管D2启动的电压,例如将电流信号Iin流过跨阻Rf产生的电压Iin*(Rf-R2)作为启动第二级泄放电路432的电压。
第三级泄放电路433包括串联的第二泄放电阻R2、第三泄放二极管D3以及第四泄放二极管D4。其中,第二泄放电阻R2电性连接于跨阻放大器42的放大输入端IN2与第三泄放二极管D3的阳极之间,第三泄放二极管D3的阴极电性连接于第四泄放二极管D4的阳极,第四泄放二极管D4的阴极电性连接于接地端GND。
本实施例中,电流信号Iin流过跨阻Rf以及第三泄放电阻R3产生的电压作为控制第三泄放二极管D3的电压,经过第三泄放二极管D3导通后分取的电压作为第四泄放二极管D4启动的电压,即电流信号Iin流过跨阻Rf产生的电压Iin*(Rf-R3)以及第三泄放二极管D3导通后分取的分压作为启动第二级泄放电路433的电压。
本申请实施例中,结合实际需求,泄放电路43的泄放电阻的电阻值以及泄放二极管的开启电压可以进行设置与调整,从而能够更加灵活、动态地调整泄放电路43的泄放电流的能力。
请参阅图5,其为图4所示泄放电路43a工作时跨阻放大器42接收的电流信号Iin与跨阻电压的关系曲线图,其中,图5中,Iin表征跨阻放大器42自放大输入端IN2输入的电流,当然,Iin同时也表征激光接收电路41输出的电流信号Iin,U表征反馈回路中跨阻Rf的电压,Vsat表征跨阻放大器42的饱和电压。
现结合图4和图5,具体说明泄放电路43的工作过程如下:
当泄放电路43a未启动也未针对电流信号Iin执行电流泄放,或者说未设置泄放电路43a时,如图5所示曲线1,跨阻放大器42在未达到饱和电压Vsat之前,跨阻放大器42的电压与输出电流Iin成线性关系。当跨阻放大器42达到饱和电压Vsat后,跨阻放大器42的跨阻电压并不随着电流信号的增加而变化,即跨阻放大器42输出的电压会持续维持在饱和电压Vsat,无法体现电流信号的变化。
当泄放电路43a连接至所述放大输入端IN2并启动后,激光接收器41的激光转换输出端O1输出的电流信号Iin小于第一电流阈值Ith1时,第一级泄放电路431中第一泄放二极管D1未达到导通电压,第一泄放二极管D1没有导通,即第一泄放二极管D1处于截止状态,在跨阻放大器42未达到饱和电压Vsat之前,跨阻放大器42的电压与输出电流Iin成线性关系。
随着激光信号强度的增加对应使得激光接收器41脉冲电流的增大,电流信号Iin大于第一电流阈值Ith1小于第二电流阈值Ith2时,也即是如图5所示曲线2,第一级泄放电路431中第一泄放二极管D1达到导通电压,第一泄放二极管D1导通,电流信号Iin一部分电流I1经第一泄放二极管D1与接地端GND传输至接地端GND以进行泄放,从而针对传输至跨阻放大器42的电流信号Iin处于预设范围内。如图5所示,对比曲线1与曲线2,当未设置泄放电路43a或者泄放电路43a未处于工作状态时,随着电流信号Iin的增加较为容易达到饱和电压Vsat,而当泄放电路43a针对电流信号Iin进行泄放后,跨阻放大器42达到饱和电压Vsat对应的电流具有更大的空间,或者说针对电流信号Iin进行泄放后跨阻放大器42达到饱和电压Vsat之前的电流信号范围更大。
而对于第2~N级子泄放电路,当所述电流信号增加并大于第i电流阈值时,所述第i级泄放电路中的所述i-1个泄放二极管导通,部分电流信号经所述第i级泄放电路中所述泄放电阻、所述i-1个泄放二极管传输至所述接地端,其中,所述第i电流阈值大于第i-1电流阈值且大于所述第一电流阈值。
具体地,当电流信号Iin再持续增加时,电流信号Iin大于第二电流阈值Ith2小于第三电流阈值压Ith3时,也即是如图5所示曲线3,第二级泄放电路432中第二泄放二极管D2达到导通电压,第二泄放二极管D2导通,电流信号Iin中的又一部分电流I2经第一泄放电阻R1、第一泄放二极管D1与接地端GND传输至接地端GND。
随着电流信号Iin进一步持续增加,电流信号Iin大于第三电流阈值Ith3时,第三级泄放电路中第三泄放二极管D3、第四泄放二极管D4达到导通电压,第三泄放二极管D3与第四泄放二极管D4导通,电流信号Iin中的又一部分电流I3经第二泄放电阻R2、第三泄放二极管D3、第四泄放二极管D4与接地端GND传输至接地端GND。
本实施例中,第一电流阈值Ith1、第二电流阈值Ith2以及第三电流阈值Ith的数值逐渐增加。本实施例中,控制第一泄放二极管D1、第二泄放二极管D2、第三泄放二极管D3的导通的电压可以为电流信号Iin通过阻性元件转换后的电压,例如通过跨阻Rf将电流信号Iin转换后的电压。当然,在本申请其他实施例中,当N为4时,即若泄放电路43包括四个子泄放电路时,还可以进一步针对应多一级泄放电路,其在电流信号Iin大于第四电流阈值Ith4时对应导通以进一步针对电流信号Iin进行泄放,其中,第四电流阈值Ith4大于第三电流阈值Ith。以此类推,泄放电路43中多个对应不同输入电流Iin导通的子泄放电路,可以设置对应逐渐增大的电流阈值,在此不再赘述。
自图5中曲线2与曲线3所示可知,泄放电路43中启动更多的子泄放电路后,跨阻放大器42中跨阻Rc两端的电压U随跨阻放大器42输出的电流I增加斜率放缓,而多级子泄放电路的启动更大地提高了输入信号动态范围,提高了电路的抗饱和性。
另外,通过调节泄放电路43的泄放电阻的电阻值以及泄放二极管的开启电压可以调节 跨阻放大器42中输出电流与跨阻电压曲线的斜率,进一步提高了输入信号动态范围性。
请参阅图6,其为本申请第二实施例中如图3所示泄放电路43的具体电路结构示意图。其中,图6所示的泄放电路43b为如图3所示泄放电路43另外一种实现方式。
本实施例中,泄放电路43b与图4所示泄放电路43a基本相同,区别在于每一个泄放电路中增设一个与泄放控制开关K。具体地,泄放电路43包括的三个子泄放电路中均分别设置一个泄放控制开关,从而能够依据外部指令灵活控制对应级的子泄放电路启动并执行电流泄放。
具体地,三个子泄放电路中,第一级泄放电路431包括第一泄放控制开关K1,所述第一泄放控制开关K1与第一泄放二极管D1串联。其中,第一泄放控制开关K1用于控制第一级泄放电路431是否开启。当第一泄放控制开关K1处于导通状态时,第一级泄放电路431开启,并在电流信号Iin大于第一泄放二极管D1的开启电压对应的电流时,针对电流信号Iin超过第一电流阈值Ith1的电流进行泄放。
而对于第2~N级子泄放电路,所述i级泄放电路包括第i泄放控制开关,所述第i泄放控制开关与所述i-1个泄放二极管串联,当所述第二泄放控制开关导通时,所述第i级泄放电路开启并在所述电流信号大于所述第i电流阈值时针对部分所述电流信号进行泄放。
具体地,第二级泄放电路432包括第二泄放控制开关K2,所述第二泄放控制开关K2与第二泄放二极管D2串联。其中,第二泄放控制开关K1用于控制第二级泄放电路432是否开启。当第二泄放控制开关K2处于导通状态时,第二级泄放电路432开启,并在电流信号Iin大于第二泄放二极管D2的开启电压对应的电流时,针对电流信号Iin超过第二电流阈值Ith2的电流进行泄放。
第三级泄放电路433包括第三泄放控制开关K3,所述第三泄放控制开关K3与第四泄放二极管D4串联。其中,第三泄放控制开关K2用于控制第三级泄放电路433是否开启。当第三泄放控制开关K3处于导通状态时,第三级泄放电路433开启,并在电流信号Iin大于第三泄放二极管D3与第四泄放二极管D4的开启电压对应的电流时,针对电流信号Iin超过第三电流阈值Ith3的电流进行泄放。
更为具体地,其中,第一泄放二极管D1的阳极电性连接于跨阻放大器42的放大输入端IN2,第一泄放二极管D1的阴极电性连接于第一泄放控制开关K1的第一导电端K11,第一泄放控制开关K1的第二导电端K12导电端电性连接于接地端GND,第一开泄放控制关K1的第一控制端K1c用于接收第一控制信号Sc1。
而对于第2~N级子泄放电路,所述第i泄放控制开关的第2i-1导电端电性连接于所述i-1个泄放二极管的阴极,所述第i泄放控制开关的第2i导电端电性连接于所述接地端,所述第i泄放控制开关的第i控制端用于接收第i控制信号,所述第i控制信号用于控制所述第i泄放开关导通或者截止。
第二级泄放电路432包括串联的第一泄放电阻R1与第二泄放二极管D2。其中,第一泄放电阻R1电性连接于跨阻放大器42的放大输入端IN2与第二泄放二极管D2的阳极之间,第一泄放二极管D1的阴极电性连接于第二泄放控制开关K2的第三导电端K21,第二泄放控制开关K2的第四导电端K22导电端电性连接于接地端GND,第二泄放控制开关 K2的第二控制端K2c用于接收第二控制信号Sc2。
第三级泄放电路433包括串联的第二泄放电阻R2、第三泄放二极管D3以及第四泄放二极管D4。其中,第二泄放电阻R2电性连接于跨阻放大器42的放大输入端IN2与第三泄放二极管D3的阳极之间,第三泄放二极管D3的阴极电性连接于第四泄放二极管D4的阳极,第四泄放二极管D4的阴极电性连接于第三泄放控制开关K3的第五导电端K31,第三泄放控制开关K3的第六导电端K32导电端电性连接于接地端GND,第三泄放控制开关K3的控制端K3c用于接收第三控制信号Sc3。
本实施例中,第一泄放控制开关K1、第二泄放控制开关K2以及第一泄放控制开关K3可以为N型晶体管或者P型的晶体管,对应地,第一控制信号Sc1、第二控制信号Sc2、第三控制信号Sc3可以为高电平的电压信号或者低电平的电压信号,从而对应控制第一泄放控制开关K1、第二泄放控制开关K2以及第一泄放控制开关K3导通或者截止。
本实施例中,第一泄放控制开关K1、第二泄放控制开关K2以及第一泄放控制开关K3为N型晶体管。第一控制信号Sc1、第二控制信号Sc2以及第三控制信号Sc3为对应电流信号Iin的电压信号Vct1、Vct2、Vct3。本实施例中,电压信号Vct1、Vct2、Vct3可以为电流信号Iin通过电阻等分压元件将电流信号Iin转换后的电压。由此,泄放电路43中各级子泄放电路的开启能够自动依据电流信号Iin进行选择,从而针对电流信号Iin的泄放实现自动闭环动态调整控制。
在本申请其他实施例中,第一控制信号Sc1、第二控制信号Sc2以及第三控制信号Sc3还可以由控制模组依据针对跨阻放大器42的电流调节能力进行输出。
另外,第一控制信号Sc1、第二控制信号Sc2、第三控制信号Sc3可以由主控单元101依据针对跨阻放大器42的电流调节能力进行输出。
图6所示泄放电路43b的工作原理与泄放电路43a基本相同,区别仅在于第一级泄放电路431、第二级泄放电路432以及第三级泄放电路433需分别在第一泄放控制开关K1、第二泄放控制开关K2以及第三泄放控制开关K3处于导通时方可处于工作状态。
具体地,当泄放电路43b连接至所述放大输入端IN2并启动后,激光接收器41的激光转换输出端O1输出的电流信号Iin小于第一电流阈值Ith1时,第一级泄放电路431中第一泄放二极管D1未达到导通电压,第一泄放二极管D1没有导通,即第一泄放二极管D1处于截止状态,跨阻放大器42的电压与输出电流Iin成线性关系。
随着电流信号Iin的持续增大,电流信号Iin大于第一电流阈值Ith1小于第二电流阈值Ith2,且第一泄放控制开关K1在第一控制信号Sc1控制下处于导通状态,第一级泄放电路431中第一泄放二极管D1达到导通电压,第一泄放二极管D1导通,电流信号Iin一部分电流I1经第一泄放二极管D1与接地端GND传输至接地端GND。
当电流信号Iin再持续增加时,电流信号Iin大于第二电流阈值Ith2且小于第三电流阈值Ith3,且第二泄放控制开关K2在第二控制信号Sc2控制下处于导通状态,第二级泄放电路432中第二泄放二极管D2达到导通电压,第二泄放二极管D2导通,电流信号Iin中的又一部分电流I2经第一泄放电阻R1、第一泄放二极管D1与接地端GND传输至接地端GND。
随着电流信号Iin进一步增加,电流信号Iin大于第三电流阈值Ith3,且第三泄放控制开关K3在第三控制信号Sc3控制下处于导通状态,第二级泄放电路432中第三泄放二极管D3、第四泄放二极管D4达到导通电压,第三泄放二极管D3与第四泄放二极管D4导通,电流信号Iin中的又一部分电流I3经第二泄放电阻R2、第三泄放二极管D3、第四泄放二极管D4与接地端GND传输至接地端GND。
可见,本实施例中,通过在每一级子泄放电路中设置开关K,仅通过提供不同的控制信号即可实现根据实际应用选择不同的子泄放电路来针对电流信号Iin进行泄放,从而能够更加灵活地针对跨阻放大器42电流输入范围进行动态调整,有效提高了激光信号转换器10的宽范围电流输入特性以及抗饱和性。
请参阅图7,其为本申请第三实施例中如图3所示泄放电路43的具体电路结构示意图。其中,图7所示的泄放电路43c为如图3所示泄放电路43另外一种实现方式。
本实施例中,泄放电路43c包括三个子泄放电路,三个子泄放电路电性连接于激光接收器41与接收跨阻放大器42之间任意一个节点与接地端GND之间,也即是三个子泄放电路电性连接于激光接收器41的激光转换输出端O1与接地端GND之间,或者说,三个子泄放电路电性连接于跨阻放大器42的放大输入端IN2与接地端GND之间。
本实施例中,三个子泄放电路包括第一级泄放电路431、第二级泄放电路432以及第三级泄放电路433。其中,第一级泄放电路431开启时对应的电流信号Iin小于第二级泄放电路432开启时对应的电流信号Iin,第二级泄放电路432开启时对应的电流信号Iin小于第三级泄放电路433开启时对应的电流信号Iin,也即是启动第一级泄放电路431、第二级泄放电流432以及第三级泄放电路433的电压对应的电流信号逐级增大的。
本实施例中,第一级泄放电路431包括第一泄放二极管D1与第一放大器CP1。
其中,第一泄放二极管D1的阳极电性连接于跨阻放大器42的放大输入端IN2,第一泄放二极管D1的阴极通过第一放大器CP1的输入端CP11、输出端CP12电性连接于接地端GND,第一放大器CP1的控制端CP13用于接收第一控制信号Sc1。
第一控制信号Sc1用于控制第一放大器CP1的输入电压,第一放大器CP1的输入电压与控制第一泄放二极管D1的导通电压相对应,也即是说,通过选择合适的第一控制信号Sc1,即可控制第一泄放二极管D1的导通区间。第一泄放二极管D1导通时,超过阈值的电流信号Iin中过量的电流可以通过第一级泄放电路431泄放至接地端GND。
本实施例中,第一放大器CP1的控制端CP13为第一放大器CP1的电源输入端,第一控制信号Sc1则为启动第一放大器CP1的电源电压。
第二级泄放电路432包括串联的第二泄放二极管D2与第二放大器CP2。其中,第二泄放二极管D2的阳极电性连接于跨阻放大器42的放大输入端IN2,第二泄放二极管D2的阴极通过第二放大器CP2的输入端CP21、输出端CP22电性连接于接地端GND,第二放大器CP2的控制端CP23用于接收第二控制信号Sc2。
第二控制信号Sc2用于控制第二放大器CP2的输入电压,第二放大器CP2的输入电压与控制第二泄放二极管D2的导通电压相对应,也即是说,通过选择合适的第二控制信号Sc2,即可控制第二泄放二极管D2的导通区间。第二泄放二极管D2导通时,超过阈值的 电流信号Iin中过量的电流可以通过第二级泄放电路432泄放至接地端GND。
本实施例中,第二放大器CP2的控制端CP23为第二放大器CP2的电源输入端,第二控制信号Sc2则为启动第二放大器CP2的电源电压。
第三级泄放电路433包括串联的第三泄放二极管D3与第三放大器CP3。其中,第三泄放二极管D3的阳极电性连接于跨阻放大器42的放大输入端IN2,第三泄放二极管D3的阴极通过第三放大器CP3的输入端CP31、输出端CP32电性连接于接地端GND,第三放大器CP3的控制端CP33用于接收第三控制信号Sc2。
第三控制信号Sc3用于控制第三放大器CP3的输入电压,第三放大器CP3的输入电压与控制第三泄放二极管D3的导通电压相对应,也即是说,通过选择合适的第三控制信号Sc3,即可控制第三泄放二极管D3的导通区间。第三泄放二极管D3导通时,超过阈值的电流信号Iin中过量的电流可以通过第三级泄放电路433泄放至接地端GND。
本实施例中,第三放大器CP3的控制端CP23为第三放大器CP3的电源输入端,第三控制信号Sc3则为启动第三放大器CP3的电源电压。
本实施例中,第一放大器CP1、第二放大器CP2与第三放大器CP3三个放大器中,其电源电压相同,即第一控制信号Sc1、第二控制信号Sc2以及第三控制信号Sc3相同。
在本申请其他实施例方式中,第一放大器CP1、第二放大器CP2与第三放大器CP3三个放大器的电源电压不同,即第一控制信号Sc1、第二控制信号Sc2以及第三控制信号Sc3相互不同。
第一控制信号Sc1、第二控制信号Sc2以及第三控制信号Sc3为对应电流信号Iin经过分压元件转换后的电压Vct1、Vct2、Vct3。由此,泄放电路的开启能够自动依据电流信号Iin进行,从而针对电流信号Iin的泄放实现自动闭环动态调整控制。
在本申请其他实施例中,第一控制信号Sc1、第二控制信号Sc2以及第三控制信号Sc3还可以由控制模组依据针对跨阻放大器42的电流调节能力进行输出。
另外,第一控制信号Sc1、第二控制信号Sc2、第三控制信号Sc3可以由控制模组依据针对跨阻放大器42的电流调节能力进行输出。
图7所示泄放电路43c的工作过程为:
当泄放电路43c连接至所述放大输入端IN2并启动后,激光接收器41的激光转换输出端O1输出的电流信号Iin小于第一电流阈值Ith1时,第一级泄放电路431中第一泄放二极管D1未达到导通电压,第一泄放二极管D1没有导通,即第一泄放二极管D1处于截止状态,跨阻放大器42的电压与输出电流Iin成线性关系。
随着电流信号Iin增大,电流信号Iin大于第一电流阈值Ith1小于第二电流阈值Ith2,且第一放大器CP1在第一控制信号Sc1控制下处于导通状态,第一级泄放电路431中第一泄放二极管D1达到导通电压,第一泄放二极管D1导通,电流信号Iin一部分电流I1经第一泄放二极管D1与接地端GND传输至接地端GND。
当电流信号Iin再持续增加时,电流信号Iin大于第二电流阈值Ith2小于第三电流阈值Ith3,且第二放大器CP2在第二控制信号Sc2控制下处于导通状态,第二级泄放电路432中第二泄放二极管D2达到导通电压,第二泄放二极管D2导通,电流信号Iin中的又一部 分电流I2经第一泄放电阻R1、第一泄放二极管D1与接地端GND传输至接地端GND。
随着电流信号Iin进一步增加,电流信号Iin大于第三电流阈值Ith3,且第三放大器CP3第三控制信号Sc3控制下处于导通状态,第三级泄放电路433中第三泄放二极管D3达到导通电压,第三泄放二极管D3导通,电流信号Iin中的又一部分电流I3经第二泄放电阻R2、第三泄放二极管D3与接地端GND传输至接地端GND。
可见,本实施例中,通过在每一级泄放电路中设置开关,仅通过提供不同的控制信号接口实现根据实际应用选择不同的泄放电路来针对电流信号Iin进行泄放,从而能够更加灵活地针对跨阻放大器42电流输入范围进行动态调整,有效提高了激光信号转换器10的宽范围电流输入特性以及抗饱和性。
请参阅图8,其为本申请一实施例中如图1所示激光雷达应用的汽车的立体结构示意图。如图8所示,汽车100设置有图1所示作为激光雷达的激光信号转换器10(图1),汽车100通过激光雷达检测探测物体距离汽车100的距离,从而为汽车100驾驶员在驾驶过程中提供驾驶操作指向,另外,激光雷达10针对探测物体的测距还能够为自动驾驶提供更加准确、快速的指向,保证汽车100针对探测物体提供准确的运动状态或者轨迹提供参考依据。
以上所述是本申请的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (15)

  1. 一种激光接收电路,其特征在于,包括激光接收器、跨阻放大器与泄放电路,
    所述激光接收器用于接收激光信号,并且将激光信号转换为电流信号,
    所述跨阻放大器的放大输入端自所述激光接收器接收所述电流信号,并且将所述电流信号转化为电压信号并自放大输出端输出;
    泄放电路电性连接于所述激光接收器的所述放大输入端与接地端之间,所述泄放电路包括多个子泄放电路,当所述电流信号达到不同的阈值范围时启动不同数量的子泄放电路,每一个子泄放电路在启动时将输入至所述跨阻放大器的所述电流信号泄放至接地端。
  2. 根据权利要求1所述的激光接收电路,其特征在于,所述多个子泄放电路分为N级,N为大于或者等于2的整数,每一级的子泄放电路包括一个所述子泄放电路;其中,
    第i-1级的子泄放电路启动时对应的所述电流信号小于启动所述第i级泄放电路启动时对应的所述电流信号,i大于1小于或者等于N。
  3. 根据权利要求2所述的激光接收电路,其特征在于,
    每一个所述子泄放电路包括至少一个泄放二极管,控制每一个子泄放电路中的所述泄放二极管导通的电压不同,当所述泄放二极管导通时控制所述子泄放电路启动,且启动第i级的子泄放电路的电压大于启动所述第i-1级泄放电路的电压。
  4. 根据权利要求2或3所述的激光接收电路,其特征在于,所述N级的子泄放电路中,第一级泄放电路包括第一泄放二极管,所述第一泄放二极管电性连接于所述跨阻放大器的放大输入端与所述接地端之间;
    第i级泄放电路包括一个泄放电阻和i-1个泄放二极管,其中所述泄放电阻和所述i-1个泄放二极管串联于所述跨阻放大器的放大输入端与所述接地端。
  5. 根据权利要求4所述的激光接收电路,其特征在于,
    所述跨阻放大器包括连接于所述放大输入端与所述放大输出端之间的跨阻;
    所述第一级泄放电路中,所述第一泄放二极管的阳极电性连接于跨阻放大器的所述放大输入端,所述第一泄放二极管的阴极电性连接于所述接地端,所述电流信号流过所述跨阻时产生的电压作为控制所述第一泄放二极管导通的电压;
    所述第i级泄放电路中,所述泄放电阻电性连接于所述放大输入端与所述i-1个泄放二极管的阳极之间,所述i-1个泄放二极管的阴极电性连接于所述接地端,所述电流信号流过所述跨阻与所述泄放电阻时产生的电压作为控制所述i-1个泄放二极管导通的电压。
  6. 根据权利要求5所述的激光接收电路,其特征在于,
    当所述电流信号小于第一电流阈值时,所述第一级泄放电路中所述第一泄放二极管未导通,所述跨阻放大器的中所述跨阻的电压与输出电流成线性关系;
    当所述电流信号增加并大于所述第一电流阈值小于第二电流阈值时,所述第一泄放二极管导通,部分所述电流信号经所述第一级泄放电路中所述第一泄放二极管传输至所述接地端;
    当所述电流信号增加并大于第i电流阈值时,所述第i级泄放电路中的所述i-1个泄放二极管导通,部分电流信号经所述第i级泄放电路中所述泄放电阻、所述i-1个泄放二极管传输至所述接地端,
    所述第i电流阈值大于第i-1电流阈值且大于所述第一电流阈值。
  7. 根据权利要求5所述的激光接收电路,其特征在于,
    每一个泄放电路中包括一个泄放控制开关,所述泄放开关依据所述电流信号的大小控制所述泄放控制开关所在的子泄放电路是否启动并执行电流泄放。
  8. 根据权利要求7所述的激光接收电路,其特征在于,
    所述第一级泄放电路包括第一泄放控制开关,所述第一泄放控制开关与所述第一泄放二极管串联,当所述第一泄放控制开关导通时,所述第一级泄放电路开启并在所述电流信号大于第一电流阈值时,针对部分的所述电流信号进行泄放;
    所述第i级泄放电路包括第i泄放控制开关,所述第i泄放控制开关与所述i-1个泄放二极管串联,当所述第二泄放控制开关导通时,所述第i级泄放电路开启并在所述电流信号大于第i电流阈值时,针对部分所述电流信号进行泄放,所述第i电流阈值大于第i-1电流阈值且大于所述第一电流阈值。
  9. 根据权利要求8所述的激光接收电路,其特征在于,
    所述第一泄放二极管的阳极电性连接于所述跨阻放大器的放大输入端,所述第一泄放二极管的阴极电性连接于所述第一泄放控制开关的第一导电端,所述第一泄放控制开关的第二导电端电性连接于所述接地端,所述第一开泄放控制开关的第一控制端用于接收第一控制信号,所述第一控制信号用于控制所述第一泄放开关导通或者截止;
    所述第i泄放控制开关的第2i-1导电端电性连接于所述i-1个泄放二极管的阴极,所述第i泄放控制开关的第2i导电端电性连接于所述接地端,所述第i泄放控制开关的第i控制端用于接收第i控制信号,所述第i控制信号用于控制所述第i泄放开关导通或者截止。
  10. 根据权利要求9所述的激光接收电路,其特征在于,
    第一控制信号、第i控制信号分别为所述电流信号通过分压元件转换后的电压信号。
  11. 根据权利要求3所述的激光接收电路,其特征在于,
    所述第一级泄放电路包括串联的第一泄放二极管与第一放大器,所述第一放大器的控制端用于接收第一控制信号,所述第一控制信号用于控制所述第一放大器的输入电压,所述第一放大器的输入电压与控制所述第一泄放二极管导通的电压相对应,当所述第一泄放二极管导通时,所述电流信号经所述第一级泄放电路泄放至所述接地端;
    所述第i级泄放电路包括串联的第i泄放二极管与第i放大器,所述第i放大器的控制端用于接收第i控制信号,所述第i控制信号用于控制所述第i放大器的输入电压,所述第i放大器的输入电压与控制所述第i泄放二极管导通的电压相对应,当所述第i泄放二极管导通时,所述电流信号经所述第i级泄放电路泄放至所述接地端。
  12. 根据权利要求11所述的激光接收电路,其特征在于,
    所述第一级泄放电路中所述第一泄放二极管的阳极电性连接于所述跨阻放大器的输入端,所述第一泄放二极管的阴极通过所述第一放大器电性连接于所述接地端,所述第一放大器的控制端为所述第一放大器的电源输入端,所述第一控制信号为启动所述第一放大器的电源电压;
    所述第i级泄放电路中所述第i泄放二极管的阳极电性连接于所述跨阻放大器的输入端,所述第i泄放二极管的阴极通过所述第二放大器电性连接于所述接地端,所述第i放大器的控制端为所述第i放大器的电源输入端,所述第i控制信号为启动所述第i放大器的电源电压。
  13. 根据权利要求11或者12所述的激光接收电路,其特征在于,
    所述第一控制信号与所述第i控制信号为所述电流信号通过分压元件转换后的电压,且所述第一放大器与所述第i放大器的电源电压不同。
  14. 一种激光雷达,其特征在于,包括激光发射模组、激光接收模组与主控单元,
    所述激光发射模组用于将电信号转换为激光信号进行发射,所述激光接收模组接收自探测物体反射的所述激光信号,并将所述激光信号转换为电信号传输至所述主控单元,所述主控单元依据反射的所述激光信号判断所述探测物体的距离;
    所述激光接收模组包括权利要求1-13任意一项所述的激光接收电路。
  15. 一种车辆,其特征在于,包括权利要求14所述的激光雷达。
PCT/CN2021/078315 2020-02-28 2021-02-27 一种激光接收电路、一种激光雷达及一种车辆 WO2021170125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010130957.3 2020-02-28
CN202010130957.3A CN113325395A (zh) 2020-02-28 2020-02-28 一种激光接收电路、一种激光雷达及一种车辆

Publications (1)

Publication Number Publication Date
WO2021170125A1 true WO2021170125A1 (zh) 2021-09-02

Family

ID=77412878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078315 WO2021170125A1 (zh) 2020-02-28 2021-02-27 一种激光接收电路、一种激光雷达及一种车辆

Country Status (2)

Country Link
CN (1) CN113325395A (zh)
WO (1) WO2021170125A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591618A (zh) * 2003-09-03 2005-03-09 三星电机株式会社 采用限幅电路的电流-电压变换电路
GB2434048A (en) * 2006-01-16 2007-07-11 Bookham Technology Plc A protection circuit for a transimpedance amplifier with an APD input
CN108173524A (zh) * 2018-02-08 2018-06-15 厦门亿芯源半导体科技有限公司 适用于高带宽tia的双环路自动增益控制电路
CN108663672A (zh) * 2017-03-27 2018-10-16 亚德诺半导体集团 用于长距离激光雷达的高动态范围模拟前端接收器
US10116263B1 (en) * 2017-05-16 2018-10-30 Inphi Corporation Method and device for TIA overload control in low power applications
CN108896979A (zh) * 2018-07-13 2018-11-27 中山大学 一种超宽单射测量范围的脉冲激光雷达接收电路及系统
CN209117866U (zh) * 2018-09-11 2019-07-16 余姚舜宇智能光学技术有限公司 一种基于雪崩二极管的大动态范围光接收电路
CN110492856A (zh) * 2019-08-12 2019-11-22 上海禾赛光电科技有限公司 跨阻放大单元电路反馈电路、光电探测电路及激光雷达系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334918C2 (de) * 1992-10-15 2000-02-03 Mitsubishi Electric Corp Absenkkonverter zum Absenken einer externen Versorgungsspannung mit Kompensation herstellungsbedingter Abweichungen, seine Verwendung sowie zugehöriges Betriebsverfahren
JPH11340745A (ja) * 1998-05-28 1999-12-10 Nec Corp トランスインピーダンス型増幅回路
EP2890220B1 (en) * 2013-12-24 2023-10-25 Silergy Semiconductor (Hong Kong) Limited Bleeder circuit controller

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591618A (zh) * 2003-09-03 2005-03-09 三星电机株式会社 采用限幅电路的电流-电压变换电路
GB2434048A (en) * 2006-01-16 2007-07-11 Bookham Technology Plc A protection circuit for a transimpedance amplifier with an APD input
CN108663672A (zh) * 2017-03-27 2018-10-16 亚德诺半导体集团 用于长距离激光雷达的高动态范围模拟前端接收器
US10116263B1 (en) * 2017-05-16 2018-10-30 Inphi Corporation Method and device for TIA overload control in low power applications
CN108173524A (zh) * 2018-02-08 2018-06-15 厦门亿芯源半导体科技有限公司 适用于高带宽tia的双环路自动增益控制电路
CN108896979A (zh) * 2018-07-13 2018-11-27 中山大学 一种超宽单射测量范围的脉冲激光雷达接收电路及系统
CN209117866U (zh) * 2018-09-11 2019-07-16 余姚舜宇智能光学技术有限公司 一种基于雪崩二极管的大动态范围光接收电路
CN110492856A (zh) * 2019-08-12 2019-11-22 上海禾赛光电科技有限公司 跨阻放大单元电路反馈电路、光电探测电路及激光雷达系统

Also Published As

Publication number Publication date
CN113325395A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2018176288A1 (zh) 一种激光雷达以及基于激光雷达的时间测量方法
US20060027736A1 (en) Light-receiving circuit
CN111316130B (zh) 一种测距装置以及基于测距装置的时间测量方法
US11703590B2 (en) Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same
US20040028099A1 (en) Drive circuit and drive method of semiconductor laser module provided with electro-absorption type optical modulator
US20020009109A1 (en) Laser diode driving method and circuit which provides an automatic power control capable of shortening the start-up period
JPH0273682A (ja) レーザダイオード駆動方法及び装置
US8150272B2 (en) Systems and methods for transferring single-ended burst signal onto differential lines, especially for use in burst-mode receiver
CN110166006B (zh) 高动态范围跨阻抗放大器
US7020169B2 (en) Laser diode driver with extinction ratio control
US6654215B2 (en) Photodetector circuit with avalanche photodiode
WO2021170125A1 (zh) 一种激光接收电路、一种激光雷达及一种车辆
JP3175132B2 (ja) 光送信器
US20040190569A1 (en) Apparatus for compensating for characteristics of laser diode and optical transmitter including the apparatus
US6956195B2 (en) Photoelectric current and voltage converting circuit
JP2020106350A (ja) 投受光装置、投受光方法、プログラム及び記録媒体
US20200233065A1 (en) Optical detector with dc compensation
EP1042875B1 (en) An optical transmitter
CN112986962B (zh) 一种应用于激光发射模块的发射功率调节电路及方法
KR102483978B1 (ko) 광 신호 처리 장치 및 이의 전력 제어 방법
JP2000299498A (ja) 光送信器及び光通信システム
US20080080855A1 (en) Optical pulse generator and optical pulse tester
KR20240037091A (ko) 포토 다이오드의 방전 상태를 모니터링하는 전자 장치 및 이의 제어 방법
CN117518182A (zh) 激光雷达设备
CN118051085A (zh) 电压调节电路及调节方法、激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760202

Country of ref document: EP

Kind code of ref document: A1