WO2021169833A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2021169833A1
WO2021169833A1 PCT/CN2021/076698 CN2021076698W WO2021169833A1 WO 2021169833 A1 WO2021169833 A1 WO 2021169833A1 CN 2021076698 W CN2021076698 W CN 2021076698W WO 2021169833 A1 WO2021169833 A1 WO 2021169833A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
unit
infrared
region
Prior art date
Application number
PCT/CN2021/076698
Other languages
English (en)
French (fr)
Inventor
徐鹏
叶建波
梅菊
王珍珍
马国强
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/599,057 priority Critical patent/US11837163B2/en
Publication of WO2021169833A1 publication Critical patent/WO2021169833A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel and a display device including the display panel.
  • the security of using the display device is usually ensured by setting a login password, fingerprint recognition, and the like. Moreover, there is also a way to unlock the display device through facial recognition.
  • a display panel has a display area and includes:
  • the display area includes a plurality of pixel sub-regions, the plurality of pixel sub-regions are arranged in multiple rows and multiple columns, and each of the pixel sub-regions includes a plurality of sub-pixel units and the infrared One of the transmitting unit and the infrared receiving unit.
  • each of the pixel sub-regions includes a first sub-pixel unit of a first color, a second sub-pixel unit of a second color, and a third sub-pixel unit of a third color.
  • the color, the second color, and the third color are different from each other, the first sub-pixel unit and the second sub-pixel unit are located in the same column, and the third sub-pixel unit is in the pixel sub-region
  • One of the included infrared transmitting unit and the infrared receiving unit is located in the same column.
  • the pixel sub-region of each column includes a plurality of pixel sub-region pairs, and each pixel sub-region pair includes a first pixel sub-region and a second pixel sub-region that are adjacent in the column direction.
  • the first pixel sub-region includes the infrared emitting unit
  • the second pixel sub-region includes the infrared receiving unit.
  • the infrared emitting unit included in the first pixel sub-region and the infrared receiving unit included in the second pixel sub-region are adjacent in a column direction, and the first The second sub-pixel unit included in the pixel sub-region is adjacent to the first sub-pixel unit included in the second pixel sub-region in a column direction.
  • the pixel sub-region of each column includes a plurality of pixel sub-region pairs, and each pixel sub-region pair includes a first pixel sub-region and a second pixel sub-region that are adjacent in the column direction; Both the first pixel sub-region and the second pixel sub-region include the infrared emitting unit, or both the first pixel sub-region and the second pixel sub-region include the infrared receiving unit.
  • the first pixel sub-region and the second pixel sub-region share one infrared emission unit, or both the first pixel sub-region and the second pixel sub-region share One said infrared receiving unit.
  • the first sub-pixel unit is a red sub-pixel unit
  • the second sub-pixel unit is a green sub-pixel unit
  • the third sub-pixel unit is a blue sub-pixel unit.
  • every two adjacent blue sub-pixel units form a pair, and the infrared receiving unit and/or the infrared emitting unit It is arranged between two adjacent pairs of blue sub-pixel units.
  • both the infrared receiving unit and the infrared emitting unit are arranged in the pixel sub-regions in the same column.
  • the number of the sub-pixel units is the same as the sum of the number of the infrared receiving units or the infrared emitting units in the pixel sub-region.
  • only the infrared receiving unit is provided in the pixel sub-regions in the same column, or only the infrared emitting unit is provided in the pixel sub-regions in the same column.
  • the plurality of pixel sub-regions includes a first pixel sub-region column and a second pixel sub-region column, and both the first pixel sub-region column and the second pixel sub-region column include edge pixels.
  • a plurality of pixel sub-regions arranged in a column direction, the first pixel sub-region column and the second pixel sub-region column are alternately arranged in the row direction, and the infrared emitting unit is arranged in the first pixel sub-region column, The infrared receiving unit is arranged in the second pixel sub-region column.
  • the infrared transmitting unit and the infrared receiving unit are located in different rows.
  • the infrared emitting unit includes an infrared light emitting diode
  • the display panel further includes a driving circuit structure configured to drive the infrared emitting unit to emit infrared light and to drive the infrared
  • the receiving unit converts the received infrared light into an electrical signal.
  • each infrared receiving unit includes a switch transistor and an infrared sensing unit
  • the driving circuit structure includes a plurality of identification gate lines and a plurality of identification data lines
  • the plurality of infrared receiving units are arranged in multiple rows. Multiple columns, multiple said identification grid lines correspond to multiple rows of said infrared receiving units one-to-one, multiple said identification data lines correspond to multiple columns of said infrared receiving units one-to-one;
  • the gate of the switch transistor is electrically connected to the corresponding identification gate line
  • the first pole of the switch transistor is used to be electrically connected to the initial signal terminal
  • the second pole of the switch transistor is connected to the input terminal of the corresponding infrared sensor unit. Electrically connected, the output end of the infrared sensing unit is electrically connected to the corresponding identification data line.
  • the driving circuit structure is disposed on the display substrate of the display panel, the display panel further includes a pixel defining layer, and the pixel defining layer is disposed on the driving circuit structure away from the display.
  • One side of the substrate defines a plurality of first openings and a plurality of second openings, the infrared emitting unit is arranged in the first opening, and the infrared receiving unit is arranged in the second opening.
  • the sub-pixel unit includes organic light emitting diodes
  • the pixel defining layer further defines a plurality of pixel openings
  • the organic light emitting diodes are disposed in the pixel openings
  • the driving circuit structure is further It is configured to drive the organic light emitting diode to emit light.
  • a display device including a display panel, and the display panel is a display panel according to the present disclosure.
  • the display device further includes a processor configured to: generate face information according to the electrical signal generated by the infrared receiving unit; The face information is compared and the judgment result is generated.
  • FIG. 1 is a schematic diagram showing the arrangement of sub-pixel units and identification units in a display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing the working principle of multiple infrared emitting units and multiple infrared receiving units in a display panel according to an embodiment of the present disclosure
  • 3 and 4 are respectively schematic diagrams of two pixel sub-regions adjacent in the column direction in the display panel shown in FIG. 1;
  • FIG. 5 is a schematic diagram showing the arrangement of sub-pixel units and identification units in a display panel according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of two pixel sub-regions adjacent in the column direction in the display panel shown in FIG. 5;
  • FIG. 7 is a schematic diagram of a first mask used to form a red sub-pixel unit
  • FIG. 8 is a schematic diagram of a second mask used to form a green sub-pixel unit
  • FIG. 9 is a partial schematic diagram of a third mask used to form blue sub-pixel units.
  • FIG. 10 is a schematic structural diagram of an infrared emitting unit in a display panel according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of an infrared receiving unit in a display panel according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram showing the arrangement of infrared receiving units in a display panel according to an embodiment of the present disclosure.
  • a front camera is usually used to recognize faces.
  • the front camera is small in size and integrated on the frame of the display device. If the face recognition function is added, more components need to be arranged on the front camera, which increases the complexity of the process. Moreover, once the front camera components increase, the size of the front camera will increase, which is not conducive to the realization of the narrow frame.
  • a display panel has a display area, and a plurality of sub-pixel units are arranged in the display area.
  • the display panel also includes a plurality of infrared emitting units and a plurality of infrared receiving units arranged in the display area, and the direction of the light emitting surface of the infrared emitting unit is the same as the display surface of the display panel (in Figure 2 with " A" indicates the same orientation of the display surface) to emit infrared light to the outside of the display panel, and the orientation of the receiving surface of the infrared receiving unit is also the same as the orientation of the display surface of the display panel to receive Objects outside the panel reflect infrared light and output electrical signals according to the received infrared light.
  • the term "display area” as used herein refers to the area of the display panel where an image is actually displayed.
  • the term “sub-pixel unit” refers to a light-emitting area of a sub-pixel, such as an area corresponding to a light-emitting layer in an organic light emitting diode display panel.
  • the organic light emitting diode display panel includes a light emitting part and a non-light emitting part.
  • the sub-pixel unit refers to an area corresponding to the light emitting part of the organic light emitting diode display panel.
  • the sub-pixel unit may be the light-emitting area of the red sub-pixel.
  • the sub-pixel unit may be the light-emitting area of the green sub-pixel.
  • the sub-pixel unit may be the light-emitting area of the blue sub-pixel.
  • the sub-pixel unit may be the light-emitting area of the sub-white pixel.
  • the display panel according to the embodiment of the present disclosure is applied to a display device, and when the display panel is used for face recognition, the infrared emitting unit is driven to emit infrared light. If there is an object with a higher temperature outside the display surface of the display panel (for example, the human face H in Figure 2), the infrared light will be reflected back to the display panel after being irradiated on the object with a higher temperature and irradiated on the The receiving surface of the infrared receiving unit.
  • All the infrared receiving units that receive the reflected infrared light can output electrical signals according to the received infrared light.
  • the facial features at different positions are different. Therefore, the time and intensity of the reflected infrared light received by each infrared receiving unit are also different.
  • the electrical signal output by each infrared receiving unit It may be different. According to the intensity of the electrical signal output by the infrared receiving unit at different positions and the time when the electrical signal is output, the facial features of the person can be determined.
  • multiple infrared emitting units and multiple infrared receiving units can be arranged in the display area, and can be distributed throughout the entire display area, which reduces the difficulty of setting and does not increase the frame. width.
  • the number of recognition units ie, infrared transmitting units and infrared receiving units
  • the recognition accuracy is also higher. Higher, will help improve user experience.
  • FIG. 1 is a schematic diagram showing the arrangement of sub-pixel units and identification units in a display panel according to an embodiment of the present disclosure.
  • FIG. 1 shows a plurality of infrared emitting units UR and a plurality of infrared receiving units SR arranged in the display area. As shown in FIG. 2, the orientation of the emitting surface of the infrared emitting unit UR and the receiving surface of the infrared receiving unit SR is the same as the orientation of the display surface A.
  • the infrared emission unit UR can emit infrared light to the outside of the display panel. If there is an object with a relatively high temperature (for example, a human face H) on the display side of the display panel, the human face can reflect at least a part of the infrared light back to the display panel.
  • the display surface is received by the infrared receiving unit SR.
  • the size of the sub-pixel unit, the infrared emitting unit UR, and the infrared receiving unit SR is not particularly limited.
  • the size of the light-emitting surface of the infrared emitting unit UR may be larger than the size of the light-emitting surface of the sub-pixel unit and the size of the receiving surface of the infrared receiving unit SR, so as to ensure that enough infrared light reaches the human face H .
  • the side length of the sub-pixel unit and the side length of the infrared receiving unit SR may both be about 10 ⁇ m, and the side length of the infrared emitting unit UR may be about 20 ⁇ m.
  • the plurality of infrared transmitting units UR are arranged in multiple rows and multiple columns, and the multiple infrared receiving units SR are arranged in multiple rows and multiple columns.
  • the display panel may also include a plurality of identification grid lines and a plurality of identification data lines, and multiple rows of infrared emission units correspond to the multiple identification grid lines one-to-one, and the same row of infrared emission units share the same identification grid line. Multiple rows of infrared receiving units correspond to multiple identification data lines one-to-one, and the same row of infrared receiving units share the same identification data line.
  • the electrical signal output by the identification data line is related to whether the corresponding infrared receiving unit receives infrared light.
  • Multiple grid lines are used to drive multiple rows of infrared emitting units to emit infrared light row by row, and the shape characteristics of the objects in front of the display can be determined by receiving and recognizing the electrical signals output by each identification data line. If the operator faces the display surface, the facial features of the operator can be determined by receiving and recognizing the electrical signals output by each identification data line.
  • the relative positional relationship between the sub-pixel unit and the infrared emitting unit UR and the infrared receiving unit SR is not particularly limited. Moreover, in the present disclosure, there is no particular limitation on the specific number of infrared receiving units SR and infrared emitting units UR provided, as long as the display panel can achieve the expected display resolution and the expected recognition accuracy. That's it.
  • the display area includes a plurality of pixel sub-areas, the plurality of pixel sub-areas are arranged in multiple rows and multiple columns, and each pixel sub-region includes a plurality of sub-pixel units, an infrared emitting unit and an infrared receiving unit One of them.
  • each pixel sub-region includes a first sub-pixel unit of a first color, a second sub-pixel unit of a second color, and a third sub-pixel unit of a third color.
  • the first color, The second color and the third color are different from each other, the first sub-pixel unit and the second sub-pixel unit are located in the same column, and the third sub-pixel unit is different from the infrared emitting unit or the infrared receiving unit included in the pixel sub-area.
  • the cells are in the same column.
  • three sub-pixel units with different colors are arranged in each of the pixel sub-regions, and two of the three sub-pixel units are located in the same column, The remaining one of the three sub-pixel units is located in the same column as the infrared receiving unit SR or the infrared emitting unit UR arranged in the pixel sub-region.
  • Each of the pixel sub-regions is provided with both a sub-pixel unit and an infrared emitting unit UR or an infrared receiving unit SR, so that both high display resolution and high recognition accuracy can be achieved.
  • the number of the sub-pixel units is the same as the sum of the number of the infrared receiving units or the infrared emitting units in the pixel sub-region.
  • the infrared transmitting unit and the infrared receiving unit may be collectively referred to as the identification unit. That is, in each pixel sub-region, the sum of the number of sub-pixel units and the number of identification units is the same. In some embodiments, the number of display units in each pixel sub-region is the same, and the number of identification units is the same. For example, each pixel sub-region includes three sub-pixel units and one identification unit. In some embodiments, for the entire display panel, the total number of sub-pixel units is 3 times the total number of identification units. In some embodiments, for the entire display panel, the number of infrared emitting units and infrared receiving units are equal and evenly distributed.
  • the sum of the number of sub-pixel units and the number of identification units in each pixel sub-region is 4.
  • the three sub-pixel units in the same pixel sub-region are the red sub-pixel unit R, the green sub-pixel unit G, and the blue sub-pixel unit B, respectively.
  • the red sub-pixel unit R and the green sub-pixel unit G are located in the same column.
  • the blue sub-pixel unit B is located in the same column as the infrared emitting unit UR and/or the infrared receiving unit SR.
  • blue light has the shortest wavelength and is relatively difficult to be captured by human eyes. Placing the blue sub-pixel units in the same column helps human eyes capture blue light and enhances user experience.
  • every two adjacent blue sub-pixel units B form a pair, and the infrared receiving unit SR and/or the infrared emitting unit UR is arranged between two adjacent pairs of blue sub-pixel units B.
  • both an infrared receiving unit SR and an infrared emitting unit UR are provided in the pixel sub-regions in the same column.
  • the upper row of the infrared receiving unit SR is the infrared emitting unit UR, and the next row is the blue sub-pixel unit B.
  • the pixel sub-region of each column includes a plurality of pixel sub-region pairs, and each pixel sub-region pair includes a first pixel sub-region and a second pixel sub-region that are adjacent in the column direction.
  • the pixel sub-region includes an infrared emitting unit
  • the second pixel sub-region includes the infrared receiving unit.
  • the infrared emitting unit included in the first pixel sub-region and the infrared receiving unit included in the second pixel sub-region are adjacent in the column direction
  • the second sub-pixel unit included in the first pixel sub-region is adjacent to The first sub-pixel units included in the second pixel sub-region are adjacent in the column direction.
  • 3 and 4 are respectively schematic diagrams of two adjacent pixel sub-regions in the column direction in the display panel shown in FIG. 1.
  • 3 is a schematic diagram of the structure of the pixel sub-region located in the previous row.
  • the pixel sub-region is provided with a red sub-pixel unit R, a green sub-pixel unit G, a blue sub-pixel unit B, and an infrared emission unit UR.
  • 4 is a schematic diagram of the structure of the pixel sub-region located in the next row.
  • the pixel sub-region is provided with a red sub-pixel unit R, a green sub-pixel unit G, a blue sub-pixel unit B, and an infrared receiving unit SR.
  • the infrared receiving unit SR and the infrared emitting unit UR are adjacent in the column direction.
  • the green sub-pixel unit G in the pixel sub-region of the previous row and the red sub-pixel unit R in the pixel sub-region of the next row are in the column direction.
  • the upper is adjacent.
  • the plurality of pixel sub-regions includes a first pixel sub-region column and a second pixel sub-region column, and both the first pixel sub-region column and the second pixel sub-region column include columns arranged in a column direction.
  • a plurality of pixel sub-regions, the first pixel sub-region column and the second pixel sub-region column are alternately arranged in the row direction, the first pixel sub-region column is provided with the infrared emitting unit UR, the first pixel sub-region column
  • the infrared receiving unit SR is arranged in the two-pixel sub-region column.
  • the infrared transmitting unit UR and the infrared receiving unit SR are uniformly dispersed in the display panel. In order to receive the infrared light reflected by various areas of the human face as uniformly as possible and improve the recognition accuracy, the infrared transmitting unit UR and the infrared receiving unit SR may be located in different rows.
  • the pixel sub-region of each column includes a plurality of pixel sub-region pairs, and each pixel sub-region pair includes a first pixel sub-region and a second pixel sub-region that are adjacent in the column direction; Both the pixel sub-region and the second pixel sub-region include an infrared emitting unit, or both the first pixel sub-region and the second pixel sub-region include the infrared receiving unit. In some embodiments, the first pixel sub-region and the second pixel sub-region share an infrared emitting unit, or both the first pixel sub-region and the second pixel sub-region share an infrared receiving unit.
  • FIG. 6 is a schematic diagram of two pixel sub-regions adjacent in the column direction in the display panel shown in FIG. 5.
  • the pixel sub-region located in the previous row is provided with a red sub-pixel unit R, a green sub-pixel unit G, a blue sub-pixel unit B, and an infrared emission unit UR;
  • the pixel sub-region located in the previous row and the pixel sub-region located in the next row share the same infrared emitting unit UR.
  • an infrared emitting unit UR is provided in two adjacent pixel sub-regions in the column direction. As shown in FIG. 5, in a column of pixel sub-regions adjacent to the column shown in FIG. 6, only the infrared receiving unit SR is provided.
  • the infrared emitting unit UR includes infrared light emitting diodes
  • the display panel also includes a drive circuit structure for driving the infrared emitting unit UR to emit infrared light and driving the infrared receiving unit SR to The received infrared light is converted into electrical signals.
  • the specific structure of the infrared receiving unit SR is not particularly limited.
  • the infrared receiving unit SR includes a switching transistor T SR and an infrared sensing unit D SR
  • the driving circuit structure includes a plurality of identification gate lines 300 (see FIG. 12) and a plurality of identification data lines 600, as shown in FIG.
  • multiple infrared receiving units SR are arranged in multiple rows and multiple columns
  • multiple identification grid lines 300 correspond to multiple rows of infrared receiving units SR one-to-one
  • multiple identification data lines 600 correspond to multiple columns of infrared receiving units SR one-to-one.
  • the gate of the switching transistor T g T SR is connected to the corresponding gate line is electrically identification, a first switching transistor T 1 of T SR initial signal terminal electrically connected to the switching transistor T SR T 2 and the second electrode corresponding infrared sensor
  • the input terminal D 1 of the unit D SR is electrically connected, and the output terminal D 3 of the infrared sensor unit D SR is electrically connected with the corresponding identification data line 600.
  • the infrared sensing unit D SR may be an infrared photodiode.
  • the input terminal D 1 of the infrared sensor unit D SR is formed as the anode of the infrared sensor unit
  • the output terminal D 3 of the infrared sensor unit D SR may be formed as the cathode of the infrared sensor unit
  • the input terminal D 1 of the infrared sensor unit D SR An infrared sensing material layer D 2 is provided between the output terminal D 3 of the infrared sensing unit D SR and the infrared sensing unit D SR.
  • the turn-on voltage can be provided to each identification gate line row by row, so that the initial signal provided by the initial signal terminal can be transmitted to the infrared sensing unit D SR .
  • the infrared sensor unit When the non-reflected infrared light irradiates the infrared sensor unit D SR , the infrared sensor unit outputs the first signal.
  • the infrared sensing unit D SR When there is reflected infrared light irradiating the infrared sensing unit D SR , the infrared sensing unit D SR outputs a second signal. Based on the difference between the first signal and the second signal, the characteristics of the object reflecting the infrared light can be determined.
  • the method of driving the infrared sensing unit D SR line by line can improve the integration level of the display panel, which is beneficial to realize the lightness of the display panel.
  • the identification gate line and the driving gate line for driving the display panel to emit light may be arranged in the same layer, and the identification data line and the display data line for driving the display panel to emit light may be arranged in the same layer.
  • the term “same layer” refers to the relationship between layers formed at the same time in the same step.
  • the infrared sensing unit D SR is electrically connected to the identification data line 600.
  • the output terminal D 3 of the infrared sensor unit D SR can be electrically connected to the identification data line 600 in the manner of via holes.
  • the via hole is filled with the same material as the first electrode of the switching transistor 11, the same material as the infrared sensing unit D SR input terminal D 1, and the output of the infrared sensing unit D SR D 3 same material.
  • the infrared emitting unit UR at different positions and the infrared receiving unit SR at different positions should be separated from each other, and the infrared emitting unit UR and the infrared receiving unit SR should be located on the side of the display panel close to the display surface, Therefore, the infrared light can be sent to the user unobstructedly, and the infrared light reflected back by the user's face can be received.
  • the driving circuit structure is arranged on the display substrate of the display panel. As shown in FIG. One side of the display substrate defines a plurality of first openings and a plurality of second openings, the infrared emitting unit UR is arranged in the first opening, and the infrared receiving unit SR is arranged in the second opening.
  • the infrared emitting unit UR is an infrared light emitting diode.
  • the infrared emitting unit UR may include an anode UR1, a functional layer UR2, and a cathode UR3.
  • the functional layer UR2 may include a hole transport layer, a light emitting layer located on the hole transport layer, a hole blocking layer located on the side of the light emitting layer away from the hole transport layer, and a hole blocking layer located away from the light emitting layer.
  • the light-emitting layer of the functional layer UR2 is made of infrared organic light-emitting material, and the other layers are made of materials that match the infrared organic light-emitting material.
  • the infrared organic light-emitting material may be any one or more of materials such as trivalent rare earth ion complexes, narrow band gap organic polymers, organic ion dyes, porphyrins or phthalocyanines.
  • the specific type of the display panel is not particularly limited.
  • the display panel may be a liquid crystal display panel or an organic light emitting diode display panel.
  • the infrared emitting unit and the infrared receiving unit may be formed on a color filter substrate.
  • the identification panel including only the infrared emitting unit and the infrared receiving unit can be formed in an on-cell manner, and the identification panel can be attached to the light emitting surface of the liquid crystal cell.
  • the display panel may be an organic light emitting diode display panel.
  • the sub-pixel unit includes an organic light emitting diode.
  • the pixel defining layer 100 further defines a plurality of pixel openings, and the organic light emitting diodes are disposed in the pixel openings.
  • the anode of the infrared emitting unit UR and/or the infrared sensing unit D SR and the anode of the organic light emitting diode can be arranged in the same layer, and the cathode of the infrared emitting unit UR and/or the infrared sensing unit D SR and the cathode of the organic light emitting diode Can be set at the same level.
  • the cathode of the infrared emitting unit UR and/or the infrared sensing unit D SR and the cathode of the organic light emitting diode may be formed as transparent electrodes on the entire surface.
  • the driving circuit structure of the display panel is also used to drive the organic light emitting diode to emit light, so as to realize normal display.
  • the driving circuit structure may include a transistor 400 that drives the infrared emission unit UR, and a transistor 500 that drives the organic light emitting diode to emit light.
  • the transistor 500 may have a double gate structure.
  • the display panel further includes a planarization layer 200 located above the driving circuit structure, and the pixel defining layer 100 is disposed above the planarization layer 200.
  • the display panel is an organic light emitting diode display panel
  • the light emitting layer of each organic light emitting diode can be formed by evaporation.
  • the first mask shown in FIG. 7 can be used to form the light-emitting layer of the organic light-emitting diode in the red sub-pixel unit.
  • the first mask includes a first mask body and a plurality of first openings r penetrating the first mask body in the thickness direction.
  • the first mask may be arranged between the evaporation source and the display substrate.
  • the first openings are arranged in multiple rows and multiple columns, and the distance between the first openings r in two adjacent columns is not less than the width of the blue sub-pixel unit in the row direction. The distance between the first openings r in two adjacent rows is not less than the length of the green sub-pixel unit in the column direction.
  • the second mask shown in FIG. 8 can be used to form the light-emitting layer of the organic light-emitting diode in the green sub-pixel unit.
  • the second mask includes a second mask body and a plurality of second openings g penetrating the second mask body in the thickness direction.
  • the second mask may be arranged between the evaporation source and the display substrate.
  • the second openings are arranged in multiple rows and multiple columns, and the distance between the second openings g in two adjacent columns is not less than the width of the blue sub-pixel unit in the row direction. The distance between the second openings g in two adjacent rows is not less than the length of the red sub-pixel unit in the column direction.
  • a third mask may be used to form the light-emitting layer of the organic light emitting diode in the blue sub-pixel unit.
  • the third mask includes a third mask body and a plurality of third mask bodies penetrating through the third mask body in the thickness direction.
  • FIG. 9 shows a schematic diagram of a part of a row of openings of the third mask. As shown in Figure 9, every two third openings b are formed as a pair, and the interval between two adjacent pairs of third openings is greater than the interval between two third openings in the same pair, so that the formed blue sub
  • the arrangement law of the pixel units is similar to the arrangement law of the third opening. That is, every two adjacent blue sub-pixel units form a pair, and there is a relatively large interval between two adjacent pairs of blue sub-pixel units to form an infrared emitting unit and/or an infrared receiving unit.
  • the interval between two third openings in the same pair is not less than 9 ⁇ m, and the interval between two adjacent pairs of third openings is not less than 40 ⁇ m.
  • a display device including a display panel, the display panel being the above-mentioned display panel according to the present disclosure.
  • the infrared emitting unit and the infrared receiving unit are arranged in the display area of the display panel to realize face recognition, which can ensure that the display device has a higher display resolution and can improve the recognition accuracy of face recognition. Moreover, arranging the infrared emitting unit and the infrared receiving unit in the display area also helps to achieve a narrow frame.
  • the display device may further include a facial recognition module 700, which is configured to generate facial information according to the electrical signal generated by the infrared receiving unit.
  • the facial recognition module 700 may be implemented by a processor.
  • the facial recognition module 700 may be integrated on the frame of the display device in the form of a chip, or integrated on the back panel of the display device. In some embodiments, the facial recognition module 700 is located outside the display area of the display panel.
  • the facial recognition module 700 is further configured to compare the facial information generated according to the electrical signal generated by the infrared receiving unit SR with the pre-stored facial information, and generate a judgment result.
  • the use of face recognition is not particularly limited.
  • it can be used as verification information for logging in to an APP. That is, when the judgment result shows that the face information matches the pre-stored face information, the APP can be opened, and when the judgment result shows that the face information matches the pre-stored face information When it does not match, the APP cannot be opened.
  • the face recognition information may be used to determine whether to unlock the screen of the display device.
  • the screen of the display device may be unlocked.
  • the judgment result indicates that the face information does not match the pre-stored face information, the screen of the display device is kept locked.
  • the infrared emitting unit and the infrared receiving unit can be driven. After the screen is unlocked, the infrared transmitting unit and the infrared receiving unit are turned off to avoid repeated verification.
  • a lift-up and wake-up module can be provided in the display device, and the lift-up and wake-up module can sense the position state of the display device. When it is sensed that the operator lifts the display device and the screen of the display device is in a locked state, the infrared emitting unit and the infrared receiving unit can be driven.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Vascular Medicine (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供一种显示面板,所述显示面板具有显示区并且包括:位于所述显示区内的多个红外发射单元和多个红外接收单元。所述红外发射单元构造为向所述显示面板外部发射红外光,所述红外接收单元构造为接收被所述显示面板外部的对象反射的红外光,并根据接收到的红外光输出电信号。

Description

显示面板和显示装置
相关申请的交叉引用
本申请要求于2020年2月28日在中国知识产权局提交的申请号为202010130136.X的中国专利申请的优先权,该中国专利申请的全部公开内容通过引用合并于此。
技术领域
本公开涉及显示技术领域,具体地,涉及一种显示面板和一种包括该显示面板的显示装置。
背景技术
随着显示技术的发展,显示装置已经集成了越来越多的功能。在这种竞争激烈的市场环境下,如何提高用户体验显得尤为重要。
在相关技术中,通常通过设置登录密码、指纹识别等方式来确保使用显示装置的安全性。而且,目前还出现了通过面部识别来解锁显示装置的方式。
发明内容
作为本公开的一个方面,提供一种显示面板,所述显示面板具有显示区并且包括:
位于所述显示区内的多个红外发射单元和多个红外接收单元,其中,所述红外发射单元构造为向所述显示面板外部发射红外光,所述红外接收单元构造为接收被所述显示面板外部的对象反射的红外光,并根据接收到的红外光输出电信号。
在本公开的实施例中,所述显示区包括多个像素子区域,所述多个像素子区域排列为多行多列,每个所述像素子区域内包括多个子像素单元以及所述红外发射单元和所述红外接收单元中的一者。
在本公开的实施例中,每个所述像素子区域包括第一颜色的第一子像素单元、第 二颜色的第二子像素单元和第三颜色的第三子像素单元,所述第一颜色、所述第二颜色和所述第三颜色互不相同,所述第一子像素单元和所述第二子像素单元位于同一列,所述第三子像素单元与所述像素子区域中包括的所述红外发射单元和所述红外接收单元中的一者位于同一列。
在本公开的实施例中,每一列的像素子区域包括多个像素子区域对,每个像素子区域对包括在列方向上相邻的第一像素子区域和第二像素子区域,所述第一像素子区域包括所述红外发射单元,所述第二像素子区域包括所述红外接收单元。
在本公开的实施例中,所述第一像素子区域中包括的所述红外发射单元和所述第二像素子区域中包括的所述红外接收单元在列方向上相邻,所述第一像素子区域中包括的所述第二子像素单元与所述第二像素子区域中包括的所述第一子像素单元在列方向上相邻。
在本公开的实施例中,每一列的像素子区域包括多个像素子区域对,每个像素子区域对包括在列方向上相邻的第一像素子区域和第二像素子区域;所述第一像素子区域和所述第二像素子区域均包括所述红外发射单元,或者,所述第一像素子区域和所述第二像素子区域均包括所述红外接收单元。
在本公开的实施例中,所述第一像素子区域和所述第二像素子区域共享一个所述红外发射单元,或者,所述第一像素子区域和所述第二像素子区域均共享一个所述红外接收单元。
在本公开的实施例中,所述第一子像素单元为红色子像素单元,所述第二子像素单元为绿色子像素单元,所述第三子像素单元为蓝色子像素单元。
在本公开的实施例中,所述蓝色子像素单元所在的每一列中,每两个相邻的蓝色子像素单元形成为一对,所述红外接收单元和/或所述红外发射单元设置在相邻两对蓝色子像素单元之间。
在本公开的实施例中,在同一列所述像素子区域中,既设置有所述红外接收单元,又设置有所述红外发射单元。
在本公开的实施例中,在各个像素子区域中,所述子像素单元的数量与该像素子区域中的所述红外接收单元或所述红外发射单元的数量之和相同。
在本公开的实施例中,在同一列所述像素子区域中,只设置有所述红外接收单元,或者,在同一列所述像素子区域中,只设置有所述红外发射单元。
在本公开的实施例中,所述多个像素子区域包括第一像素子区域列和第二像素子区域列,所述第一像素子区域列和所述第二像素子区域列均包括沿列方向排列的多个像素子区域,所述第一像素子区域列和所述第二像素子区域列在行方向上交替排列,所述第一像素子区域列中设置有所述红外发射单元,所述第二像素子区域列中设置有所述红外接收单元。
在本公开的实施例中,所述红外发射单元与所述红外接收单元位于不同行中。
在本公开的实施例中,所述红外发射单元包括红外发光二极管,所述显示面板还包括驱动电路结构,所述驱动电路结构构造为驱动所述红外发射单元发出红外光、以及驱动所述红外接收单元将接收到的红外光转换为电信号。
在本公开的实施例中,每个红外接收单元包括开关晶体管和红外感应单元,所述驱动电路结构包括多条识别栅线和多条识别数据线,多个所述红外接收单元排列为多行多列,多条所述识别栅线与多行所述红外接收单元一一对应,多条所述识别数据线与多列所述红外接收单元一一对应;
所述开关晶体管的栅极与相应的识别栅线电连接,所述开关晶体管的第一极用于与初始信号端电连接,所述开关晶体管的第二极与相应的红外感应单元的输入端电连接,所述红外感应单元的输出端与相应的所述识别数据线电连接。
在本公开的实施例中,所述驱动电路结构设置在所述显示面板的显示基板上,所述显示面板还包括像素界定层,所述像素界定层设置在所述驱动电路结构背离所述显示基板的一侧,以限定多个第一开口和多个第二开口,所述红外发射单元设置在所述第一开口中,所述红外接收单元设置在所述第二开口中。
在本公开的实施例中,所述子像素单元包括有机发光二极管,所述像素界定层还限定有多个像素开口,所述有机发光二极管设置在所述像素开口中,所述驱动电路结构还构造为驱动所述有机发光二极管发光。
作为本公开的另一个方面,提供一种显示装置,所述显示装置包括显示面板,所述显示面板为根据本公开的显示面板。
在本公开的实施例中,所述显示装置还包括处理器,所述处理器构造为:根据所述红外接收单元生成的电信号生成人脸信息;将生成的人脸信息与预存储的人脸信息进行对比,并生成判断结果。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是示出根据本公开实施例的显示面板中的子像素单元和识别单元的排列的示意图;
图2是示出根据本公开实施例的显示面板中的多个红外发射单元和多个红外接收单元的工作原理的示意图;
图3和图4分别是图1中所示的显示面板中的在列方向上相邻的两个像素子区域的示意图;
图5是示出根据本公开实施例的显示面板中的子像素单元和识别单元的排列的示意图;
图6是图5中所示的显示面板中的在列方向上相邻的两个像素子区域的示意图;
图7是用于形成红色子像素单元的第一掩膜板的示意图;
图8是用于形成绿色子像素单元的第二掩膜板的示意图;
图9是用于形成蓝色子像素单元的第三掩膜板的局部示意图;
图10是根据本公开实施例的显示面板中的红外发射单元的结构示意图;
图11是根据本公开实施例的显示面板中的红外接收单元的结构示意图;
图12是示出根据本公开实施例的显示面板中的红外接收单元的排列的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在相关技术中,通常利用前置摄像头来识别人脸。前置摄像头尺寸较小,集成在显示装置的框架上,如增加人脸识别功能,则需要在前置摄像头布置更多的元件,增加了工艺的复杂程度。并且,一旦前置摄像头元件增加,就会导致其尺寸增大,不利于窄边框的实现。
有鉴于此,作为本公开的一个方面,提供一种显示面板,所述显示面板具有显示区,所述显示区内设置有多个子像素单元。所述显示面板还包括设置在所述显示区内的多个红外发射单元和多个红外接收单元,所述红外发射单元的发光面的朝向与所述 显示面板的显示面(图2中用“A”标识显示面)的朝向相同,以向所述显示面板外部发射红外光,所述红外接收单元的接收面的朝向也与所述显示面板的显示面的朝向相同,以接收被所述显示面板外部的对象反射的红外光,并根据接收到的红外光输出电信号。
本文使用的术语“显示区”指的是显示面板的实际显示图像的区域。如本文中所用,术语“子像素单元”是指子像素的发光区域,诸如与有机发光二极管显示面板中的发光层对应的区域。在一些实施例中,有机发光二极管显示面板包括发光部分和非发光部分,在本公开的上下文中,子像素单元是指与有机发光二极管显示面板的发光部分对应的区域。例如,子像素单元可以是红色子像素的发光区域。例如,子像素单元可以是绿色子像素的发光区域。例如,子像素单元可以是蓝色子像素的发光区域。例如,子像素单元可以是子白色像素的发光区域。
根据本公开实施例的显示面板应用于显示装置中,当利用所述显示面板进行人脸识别时,驱动红外发射单元发出红外光。如果显示面板的显示面外侧存在温度较高的物体(如,图2中的人脸H),红外光照射在温度较高的物体上后,被反射回所述显示面板,并照射在所述红外接收单元的接收面上。
所有接收到反射回的红外光的所述红外接收单元可以根据接收到的红外光输出电信号。
对于人脸而言,不同位置处的面部特征是不同的,因此,各个红外接收单元接收到反射回的红外光的时间、以及强度也并不相同,相应地,各个红外接收单元输出的电信号也可能是不同的。根据不同位置处的红外接收单元输出的电信号的强度、以及输出电信号的时间,可以确定人的面部特征。
在根据本公开实施例的显示面板中,可以将多个红外发射单元和多个红外接收单元设置在所述显示区,并且,可以遍布整个显示区,这降低了设置难度,而且不会增加边框宽度。此外,与在前置摄像头中集成面部识别功能的相关技术相比,本公开所提供的技术方案中,识别单元(即,红外发射单元和红外接收单元)的数量更多,因此,识别精度也更高,有利于提高用户体验。
图1是示出根据本公开实施例的显示面板中的子像素单元和识别单元的排列的示意图。在图1中示出了设置在显示区内的多个红外发射单元UR和多个红外接收单元SR。如图2所示,红外发射单元UR的发射面和红外接收单元SR的接收面的朝向与 显示面A的朝向相同。
红外发射单元UR可以向显示面板的外部发射红外光,如果显示面板的显示侧存在温度相对较高的物体(例如,人脸H),那么人脸可以将这些红外光的至少一部分反射回所述显示面,并由红外接收单元SR所接收。
在本公开中,对子像素单元、红外发射单元UR和红外接收单元SR的尺寸不做特殊的限定。在一些实施例中,红外发射单元UR的发光面的尺寸可以大于子像素单元的发光面的尺寸、以及红外接收单元SR的接收面的尺寸,从而可以确保有足够多的红外光到达人脸H。
作为一种可选实施方式,子像素单元的边长、以及红外接收单元SR的边长均可以为10μm左右,红外发射单元UR的边长可以为20μm左右。
为了便于驱动和检测,在一些实施例中,多个红外发射单元UR排列为多行多列,多个红外接收单元SR排列为多行多列。所述显示面板还可以包括多条识别栅线和多条识别数据线,多行红外发射单元与多条识别栅线一一对应,同一行红外发射单元共用同一条识别栅线。多列红外接收单元与多条识别数据线一一对应,且同一列红外接收单元共用同一条识别数据线。识别数据线输出的电信号与相应的红外接收单元是否接收到红外光有关。
利用多条栅线逐行驱动多行红外发射单元发出红外光,通过接收并识别各条识别数据线输出的电信号可以确定显示面前方的物体的形状特征。如果操作者面朝显示面,通过接收并识别各条识别数据线输出的电信号可以确定所述操作者的面部特征。
在本公开中,对子像素单元与红外发射单元UR、红外接收单元SR的相对位置关系并没有特殊的限定。并且,在本公开中,对设置的红外接收单元SR、红外发射单元UR的具体数量也没有特殊的限定,只要使得所述显示面板既能够达到预期的显示分辨率、又能够实现预期的识别精度即可。
在本公开的实施例中,显示区包括多个像素子区域,所述多个像素子区域排列为多行多列,每个像素子区域内包括多个子像素单元以及红外发射单元和红外接收单元中的一者。
在本公开的实施例中,每个像素子区域包括第一颜色的第一子像素单元、第二颜色的第二子像素单元和第三颜色的第三子像素单元,所述第一颜色、所述第二颜色和所述第三颜色互不相同,第一子像素单元和第二子像素单元位于同一列,所第三子像 素单元与该像素子区域中包括的红外发射单元或红外接收单元位于同一列。
作为一种可选实施方式,如图1中所示,每个所述像素子区域内设置有三个颜色互不相同的子像素单元,三个所述子像素单元中的两个位于同一列,三个所述子像素单元中的其余一个与该像素子区域内设置的红外接收单元SR或红外发射单元UR位于同一列。
每个所述像素子区域内都既设置有子像素单元,又设置有红外发射单元UR或者红外接收单元SR,从而既可以实现较高显示分辨率,又可以实现较高的识别精度。
为了提高发光的均匀性、以及提高识别精度,在各个像素子区域中,所述子像素单元的数量与该像素子区域中的所述红外接收单元或所述红外发射单元的数量之和相同。
为了便于描述,可以将红外发射单元和红外接收单元统称为识别单元。也就是说,在各个像素子区域中,子像素单元的数量与识别单元的数量之和都是相同的。在一些实施例中,每个像素子区域内显示单元的数量相同,且识别单元数量相同。例如每个像素子区域都包括三个子像素单元和一个识别单元。在一些实施例中,对于整个显示面板而言,子像素单元的总数量是识别单元总数量的3倍。在一些实施例中,对于整个显示面板而言,红外发射单元和红外接收单元数量相等,且均匀分布。
在图1中、图3和图4中所示的实施方式中,各个像素子区域中的子像素单元的数量与识别单元的数量之和均为4。
在本公开的实施例中,如图1和图5所示,同一个所述像素子区域内的三个子像素单元分别为红色子像素单元R、绿色子像素单元G和蓝色子像素单元B,红色子像素单元R和绿色子像素单元G位于同一列。蓝色子像素单元B与红外发射单元UR和/或红外接收单元SR位于同一列。
对于红光、绿光和蓝光三种光而言,蓝光波长最短,且相对不容易被人眼捕捉,将蓝色子像素单元设置在同一列中,有利于人眼捕捉蓝光,提升用户体验。
为了确保用户视觉体验,在一些实施例中,在蓝色子像素单元所在的列中,每两个相邻的蓝色子像素单元B形成为一对,红外接收单元SR和/或红外发射单元UR设置在相邻两对蓝色子像素单元B之间。
作为一种可选实施方式,如图1所示,在同一列所述像素子区域中,既设置有红外接收单元SR,又设置有红外发射单元UR。并且,在同一列中,红外接收单元SR 的上一行为红外发射单元UR,下一行为蓝色子像素单元B。
在本公开的实施例中,每一列的像素子区域包括多个像素子区域对,每个像素子区域对包括在列方向上相邻的第一像素子区域和第二像素子区域,第一像素子区域包括红外发射单元,第二像素子区域包括所述红外接收单元。在一些实施例中,第一像素子区域中包括的红外发射单元和第二像素子区域中包括的红外接收单元在列方向上相邻,第一像素子区域中包括的第二子像素单元与第二像素子区域中包括的第一子像素单元在列方向上相邻。
图3和图4分别是图1中所示的显示面板中的在列方向上相邻两个像素子区域的示意图。图3中所示的是位于前一行的像素子区域的结构示意图,该像素子区域内设置有红色子像素单元R、绿色子像素单元G、蓝色子像素单元B以及红外发射单元UR。图4中所示的是位于后一行的像素子区域的结构示意图,该像素子区域内设置有红色子像素单元R、绿色子像素单元G、蓝色子像素单元B以及红外接收单元SR。红外接收单元SR与红外发射单元UR在列方向上是相邻的,位于前一行的像素子区域中的绿色子像素单元G与位于后一行的像素子区域中的红色子像素单元R在列方向上是相邻的。
作为另一种可选实施方式,如图5所示,在同一列所述像素子区域中,只设置有红外接收单元SR,或者在同一列所述像素子区域中,只设置有红外发射单元UR。
在本公开的实施例中,所述多个像素子区域包括第一像素子区域列和第二像素子区域列,第一像素子区域列和第二像素子区域列均包括沿列方向排列的多个像素子区域,所述第一像素子区域列和所述第二像素子区域列在行方向上交替排列,所述第一像素子区域列中设置有所述红外发射单元UR,所述第二像素子区域列中设置有所述红外接收单元SR。
在本公开的实施例中,红外发射单元UR和红外接收单元SR均匀地分散在显示面板中。为了尽量均匀地接收人脸的各个区域所反射回的红外光、提高识别精度,红外发射单元UR与红外接收单元SR可以位于不同行中。
在本公开的实施例中,每一列的像素子区域包括多个像素子区域对,每个像素子区域对包括在列方向上相邻的第一像素子区域和第二像素子区域;第一像素子区域和第二像素子区域均包括红外发射单元,或者,第一像素子区域和第二像素子区域均包括所述红外接收单元。在一些实施例中,第一像素子区域和第二像素子区域共享一个 红外发射单元,或者,第一像素子区域和第二像素子区域均共享一个红外接收单元。
图6是图5中所示的显示面板中的在列方向上相邻的两个像素子区域的示意图。如图6所示,位于前一行的像素子区域内设置有红色子像素单元R、绿色子像素单元G、蓝色子像素单元B以及红外发射单元UR;位于后一行的像素子区域内设置有红色子像素单元R、绿色子像素单元G、蓝色子像素单元B以及红外发射单元UR。位于前一行的像素子区域和位于后一行的像素子区域共享同一个红外发射单元UR。
在图6中所示的实施方式中,在列方向上相邻两个像素子区域内设置有一个红外发射单元UR。如图5中所示,与图6所示的列相邻的一列像素子区域中,只设置了红外接收单元SR。
在本公开中,对如何驱动红外发射单元UR发出红外光并不做特殊的限定。作为一种可选实施方式,红外发射单元UR包括红外发光二极管,所述显示面板还包括驱动电路结构,所述驱动电路结构用于驱动红外发射单元UR发出红外光、以及驱动红外接收单元SR将接收到的红外光转换为电信号。
在本公开中,对红外接收单元SR的具体结构也不做特殊的限定。如图11所示,红外接收单元SR包括开关晶体管T SR和红外感应单元D SR,所述驱动电路结构包括多条识别栅线300(参见图12)和多条识别数据线600,如图12所示,多个红外接收单元SR排列为多行多列,多条识别栅线300与多行红外接收单元SR一一对应,多条识别数据线600与多列红外接收单元SR一一对应。
开关晶体管T SR的栅极T g与相应的识别栅线电连接,开关晶体管T SR的第一极T 1与初始信号端电连接,开关晶体管T SR的第二极T 2与相应的红外感应单元D SR的输入端D 1电连接,红外感应单元D SR的输出端D 3与相应的识别数据线600电连接。
作为一种可选实施方式,红外感应单元D SR可以为红外光敏二极管。具体地,红外感应单元D SR的输入端D 1形成为红外感应单元的阳极,红外感应单元D SR的输出端D 3可以形成为红外感应单元的阴极,红外感应单元D SR的输入端D 1和红外感应单元D SR的输出端D 3之间设置有红外感应材料层D 2
需要指出的是,可以逐行地向各条识别栅线提供开启电压,以使得初始信号端提供的初始信号能够被传输至红外感应单元D SR。当无反射的红外光照射至红外感应单元D SR时,红外感应单元输出第一信号。当存在反射的红外光照射至红外感应单元D SR时,红外感应单元D SR输出第二信号。根据第一信号和第二信号之间的差别,可以确 定反射所述红外光的物体的特征。
在本公开中,采用逐行驱动红外感应单元D SR的方式,可以提高显示面板的集成度,有利于实现显示面板的轻型化。
在本公开中,可以将所述识别栅线与驱动所述显示面板发光的驱动栅线同层设置,将所述识别数据线与驱动所述显示面板发光的显示数据线同层设置。
如本文所用,术语“同层”是指在相同步骤中同时形成的各层之间的关系。
在本公开中,对红外感应单元D SR如何与识别数据线600电连接并不做特殊的限定。例如,可以采用过孔的方式,将红外感应单元D SR的输出端D 3与识别数据线600电连接。如图11中所示,所述过孔中填充有与开关晶体管的第一极相同的材料、与红外感应单元D SR的输入端D 1相同的材料,以及与红外感应单元D SR的输出端D 3相同的材料。
不同位置处的红外发射单元UR、不同位置处的红外接收单元SR之间应当是隔开的,并且,红外发射单元UR和红外接收单元SR应当位于所述显示面板的靠近显示面的一侧,从而可以畅通无阻地朝向使用者发送红外光、并接收使用者的面部反射回的红外光。相应地,所述驱动电路结构设置在所述显示面板的显示基板上,如图10所示,所述显示面板还可以包括像素界定层100,该像素界定层100设置在所述驱动电路结构背离所述显示基板的一侧,以限定多个第一开口和多个第二开口,红外发射单元UR设置在所述第一开口中,红外接收单元SR设置在所述第二开口中。
如上文中所述,所述红外发射单元UR为红外发光二极管,相应地,所述红外发射单元UR可以包括阳极UR1、功能层UR2以及阴极UR3。其中,功能层UR2可以包括空穴传输层、位于空穴传输层上的发光层、位于发光层的远离空穴传输层的一侧的空穴阻挡层、位于空穴阻挡层的远离发光层的一侧的电子传输层,功能层UR2的发光层由红外有机发光材料制成,其余各层均由与所述红外有机发光材料匹配的材料制成。例如,红外有机发光材料可以为三价稀土离子配合物、窄带隙有机聚合物、有机离子染料、卟啉或酞菁等材料中的任意一者或几者。
在本公开中,对所述显示面板的具体类型也不做特殊的限定。例如,所述显示面板可以是液晶显示面板,也可以是有机发光二极管显示面板。
当所述显示面板为液晶显示面板时,可以在彩膜基板上形成所述红外发射单元和所述红外接收单元。或者,可以以外挂(On-cell)的方式形成只包括红外发射单元和 红外接收单元的识别面板,并将识别面板贴附在液晶盒的出光面上。
为了降低显示面板的厚度,所述显示面板可以为有机发光二极管显示面板。具体地,所述子像素单元包括有机发光二极管。相应地,像素界定层100还限定有多个像素开口,所述有机发光二极管设置在所述像素开口中。
为了简化制造工艺,红外发射单元UR和/或红外感应单元D SR的阳极与有机发光二极管的阳极可以同层设置,红外发射单元UR和/或红外感应单元D SR的阴极与有机发光二极管的阴极可以同层设置。在一些实施例中,红外发射单元UR和/或红外感应单元D SR的阴极与有机发光二极管的阴极可以形成为整面透明电极。
此外,所述显示面板的驱动电路结构还用于驱动所述有机发光二极管发光,以实现正常显示。
在本公开中,驱动电路结构可以包括驱动红外发射单元UR的晶体管400,和驱动有机发光二极管发光的晶体管500。
如图10中所示,为了提高驱动能力,晶体管500可以具有双栅结构。所述显示面板还包括位于驱动电路结构上方的平坦化层200,像素界定层100设置在平坦化层200上方。
在本公开中,对如何形成所述显示面板不做特殊的限定。当所述显示面板为有机发光二极管显示面板时,可以利用蒸镀的方式形成各个有机发光二极管的发光层。
例如,可以利用图7中所示的第一掩膜板来形成红色子像素单元中有机发光二极管的发光层。如图7所示,所述第一掩膜板包括第一掩膜板本体和沿厚度方向贯穿所述第一掩膜板本体的多个第一开口r,在蒸镀形成红色子像素单元中的有机发光二极管的发光层时,可以将所述第一掩膜板设置在蒸镀源和显示基板之间。如图7中所示,所述第一开口排列为多行多列,且相邻两列第一开口r之间的距离不小于所述蓝色子像素单元的在行方向上的宽度。相邻两行第一开口r之间的距离不小于绿色子像素单元的在列方向上的长度。
可以利用图8中所示的第二掩膜板来形成绿色子像素单元中有机发光二极管的发光层。如图8所示,所述第二掩膜板包括第二掩膜板本体和沿厚度方向贯穿所述第二掩膜板本体的多个第二开口g,在蒸镀形成绿色子像素单元中的有机发光二极管的发光层时,可以将所述第二掩膜板设置在蒸镀源和显示基板之间。如图8中所示,所述第二开口排列为多行多列,且相邻两列第二开口g之间的距离不小于所述蓝色子像素 单元的在行方向上的宽度。相邻两行第二开口g之间的距离不小于所述红色子像素单元的在列方向上的长度。
可以利用第三掩膜板来形成蓝色子像素单元中有机发光二极管的发光层,第三掩膜板包括第三掩膜板本体和沿厚度方向贯穿所述第三掩膜板本体的多个第三开口b。图9示出了第三掩膜板的一列开口的一部分的示意图。如图9所示,每两个第三开口b形成为一对,相邻两对第三开口之间的间隔大于同一对中两个第三开口之间的间隔,以使得形成的蓝色子像素单元的排列规律与第三开口的排列规律类似。即,每两个相邻蓝色子像素单元形成一对,相邻两对蓝色子像素单元之间具有相对较大的间隔,以形成红外发射单元和/或红外接收单元。
为了便于制造,同一对中的两个第三开口之间的间隔不小于9μm,相邻两对第三开口之间的间隔不小于40μm。
作为本公开的第二个方面,提供一种显示装置,所述显示装置包括显示面板,所述显示面板为根据本公开的上述显示面板。
如上文中所述,在显示面板的显示区设置红外发射单元和红外接收单元,以实现人脸识别,既可以确保显示装置具有较高的显示分辨率,又可以提高面部识别的识别精度。并且,将所述红外发射单元和所述红外接收单元设置在显示区,还有助于实现窄边框。
如图12所示,所述显示装置还可以包括面部识别模块700,该面部识别模块700用于根据所述红外接收单元生成的电信号生成人脸信息。在本公开的实施例中,面部识别模块700可以由处理器实现。
面部识别模块700可以以芯片的形式集成在显示装置的边框上,或者集成在显示装置的背板上。在一些实施例中,面部识别模块700位于显示面板的显示区域之外。
进一步地,面部识别模块700还用于将根据红外接收单元SR生成的电信号生成的人脸信息与预存储的人脸信息进行对比,并生成判断结果。
在本公开中,对人脸识别的用途不做特殊的限定,例如,可以作为登录APP的验证信息。也就是说,当判断结果表明所述人脸信息与所述预存储的人脸信息匹配时,则可打开所述APP,当判断结果表明所述人脸信息与所述预存储的人脸信息不匹配时,则无法打开所述APP。
再例如,可以利用所述人脸识别信息判断是否对所述显示装置的屏幕进行解锁。 当所述判断结果表明所述人脸信息与所述预存储的人脸信息匹配时,可以解锁所述显示装置的屏幕。当所述判断结果表明所述人脸信息与所述预存储的人脸信息不匹配时,保持锁定所述显示装置的屏幕。
当利用所述人脸信息对所述显示装置进行解锁时,即便显示面板的子像素单元处于熄灭状态,也可以驱动所述红外发射单元和所述红外接收单元。当所述屏幕解锁后,则关闭所述红外发射单元和所述红外接收单元,避免重复验证。
为了节约电量,可以在显示装置中设置抬起唤醒模块,所述抬起唤醒模块可以感应所述显示装置的位置状态。当感应到操作者将所述显示装置抬起、且所述显示装置的屏幕处于锁屏状态时,可以驱动所述红外发射单元和所述红外接收单元。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种显示面板,所述显示面板具有显示区并且包括:
    位于所述显示区内的多个红外发射单元和多个红外接收单元,其中,所述红外发射单元构造为向所述显示面板外部发射红外光,所述红外接收单元构造为接收被所述显示面板外部的对象反射的红外光,并根据接收到的红外光输出电信号。
  2. 根据权利要求1所述的显示面板,其中,所述显示区包括多个像素子区域,所述多个像素子区域排列为多行多列,每个所述像素子区域内包括多个子像素单元以及所述红外发射单元和所述红外接收单元中的一者。
  3. 根据权利要求2所述的显示面板,其中,每个所述像素子区域包括第一颜色的第一子像素单元、第二颜色的第二子像素单元和第三颜色的第三子像素单元,所述第一颜色、所述第二颜色和所述第三颜色互不相同,所述第一子像素单元和所述第二子像素单元位于同一列,所述第三子像素单元与所述像素子区域中包括的所述红外发射单元和所述红外接收单元中的一者位于同一列。
  4. 根据权利要求3所述的显示面板,其中,每一列的像素子区域包括多个像素子区域对,每个像素子区域对包括在列方向上相邻的第一像素子区域和第二像素子区域,所述第一像素子区域包括所述红外发射单元,所述第二像素子区域包括所述红外接收单元。
  5. 根据权利要求4所述的显示面板,其中,所述第一像素子区域中包括的所述红外发射单元和所述第二像素子区域中包括的所述红外接收单元在列方向上相邻,
    所述第一像素子区域中包括的所述第二子像素单元与所述第二像素子区域中包括的所述第一子像素单元在列方向上相邻。
  6. 根据权利要求3所述的显示面板,其中,每一列的像素子区域包括多个像素子 区域对,每个像素子区域对包括在列方向上相邻的第一像素子区域和第二像素子区域,
    所述第一像素子区域和所述第二像素子区域均包括所述红外发射单元,或者,所述第一像素子区域和所述第二像素子区域均包括所述红外接收单元。
  7. 根据权利要求6所述的显示面板,其中,所述第一像素子区域和所述第二像素子区域共享一个所述红外发射单元,或者,所述第一像素子区域和所述第二像素子区域均共享一个所述红外接收单元。
  8. 根据权利要求3所述的显示面板,其中,所述第一子像素单元为红色子像素单元,所述第二子像素单元为绿色子像素单元,所述第三子像素单元为蓝色子像素单元。
  9. 根据权利要求8所述的显示面板,其中,所述蓝色子像素单元所在的每一列中,每两个相邻的蓝色子像素单元形成为一对,所述红外接收单元和/或所述红外发射单元设置在相邻两对蓝色子像素单元之间。
  10. 根据权利要求6所述的显示面板,其中,在同一列所述像素子区域中,既设置有所述红外接收单元,又设置有所述红外发射单元。
  11. 根据权利要求2所述的显示面板,其中,在各个像素子区域中,所述子像素单元的数量与该像素子区域中的所述红外接收单元或所述红外发射单元的数量之和相同。
  12. 根据权利要求6所述的显示面板,其中,在同一列所述像素子区域中,只设置有所述红外接收单元,或者
    在同一列所述像素子区域中,只设置有所述红外发射单元。
  13. 根据权利要求12所述的显示面板,其中,所述多个像素子区域包括第一像素子区域列和第二像素子区域列,所述第一像素子区域列和所述第二像素子区域列均包括沿列方向排列的多个像素子区域,所述第一像素子区域列和所述第二像素子区域列 在行方向上交替排列,所述第一像素子区域列中设置有所述红外发射单元,所述第二像素子区域列中设置有所述红外接收单元。
  14. 根据权利要求13所述的显示面板,其中,所述红外发射单元与所述红外接收单元位于不同行中。
  15. 根据权利要求1至14中任意一项所述的显示面板,其中,所述红外发射单元包括红外发光二极管,所述显示面板还包括驱动电路结构,所述驱动电路结构构造为驱动所述红外发射单元发出红外光、以及驱动所述红外接收单元将接收到的红外光转换为电信号。
  16. 根据权利要求15所述的显示面板,其中,每个红外接收单元包括开关晶体管和红外感应单元,所述驱动电路结构包括多条识别栅线和多条识别数据线,多个所述红外接收单元排列为多行多列,多条所述识别栅线与多行所述红外接收单元一一对应,多条所述识别数据线与多列所述红外接收单元一一对应;
    所述开关晶体管的栅极与相应的识别栅线电连接,所述开关晶体管的第一极用于与初始信号端电连接,所述开关晶体管的第二极与相应的红外感应单元的输入端电连接,所述红外感应单元的输出端与相应的所述识别数据线电连接。
  17. 根据权利要求15所述的显示面板,其中,所述驱动电路结构设置在所述显示面板的显示基板上,所述显示面板还包括像素界定层,所述像素界定层设置在所述驱动电路结构背离所述显示基板的一侧,以限定多个第一开口和多个第二开口,所述红外发射单元设置在所述第一开口中,所述红外接收单元设置在所述第二开口中。
  18. 根据权利要求17所述的显示面板,其中,所述子像素单元包括有机发光二极管,所述像素界定层还限定有多个像素开口,所述有机发光二极管设置在所述像素开口中,所述驱动电路结构还构造为驱动所述有机发光二极管发光。
  19. 一种显示装置,所述显示装置包括显示面板,其中,所述显示面板为权利要 求1至18中任意一项所述的显示面板。
  20. 根据权利要求19所述的显示装置,其中,所述显示装置还包括处理器,所述处理器构造为:根据所述红外接收单元生成的电信号生成人脸信息;将生成的人脸信息与预存储的人脸信息进行对比,并生成判断结果。
PCT/CN2021/076698 2020-02-28 2021-02-18 显示面板和显示装置 WO2021169833A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/599,057 US11837163B2 (en) 2020-02-28 2021-02-18 Display panel and display device including infrared emitting units and infrared receiving units

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010130136.XA CN111312788B (zh) 2020-02-28 2020-02-28 显示面板和显示装置
CN202010130136.X 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021169833A1 true WO2021169833A1 (zh) 2021-09-02

Family

ID=71159481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076698 WO2021169833A1 (zh) 2020-02-28 2021-02-18 显示面板和显示装置

Country Status (3)

Country Link
US (1) US11837163B2 (zh)
CN (1) CN111312788B (zh)
WO (1) WO2021169833A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312788B (zh) * 2020-02-28 2023-04-18 京东方科技集团股份有限公司 显示面板和显示装置
KR20220014351A (ko) * 2020-07-23 2022-02-07 삼성디스플레이 주식회사 표시 장치
CN112230804B (zh) * 2020-12-15 2021-03-26 京东方科技集团股份有限公司 一种显示装置
CN114296484B (zh) * 2021-09-28 2022-11-29 杭州格式科技有限公司 基于物联网的建筑低能耗管理系统、方法及其装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150331508A1 (en) * 2014-05-16 2015-11-19 Apple Inc. Integrated silicon-oled display and touch sensor panel
CN107045628A (zh) * 2017-04-17 2017-08-15 京东方科技集团股份有限公司 一种触控面板、显示面板、显示装置及指纹识别方法
CN108628398A (zh) * 2017-03-24 2018-10-09 敦捷光电股份有限公司 具生物特征识别功能的显示器
CN109509767A (zh) * 2017-09-15 2019-03-22 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110061041A (zh) * 2019-04-28 2019-07-26 广州新视界光电科技有限公司 一种显示面板和显示装置
CN111312788A (zh) * 2020-02-28 2020-06-19 京东方科技集团股份有限公司 显示面板和显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009067A (zh) * 2014-06-16 2014-08-27 信利(惠州)智能显示有限公司 集成触控功能的有机发光二极管显示装置及其制作方法
US9570002B2 (en) * 2014-06-17 2017-02-14 Apple Inc. Interactive display panel with IR diodes
US10958841B2 (en) * 2017-01-06 2021-03-23 Intel Corporation Integrated image sensor and display pixel
GB201700530D0 (en) * 2017-01-12 2017-03-01 Purelifi Ltd Display apparatus
KR102463734B1 (ko) * 2017-03-08 2022-11-04 삼성디스플레이 주식회사 발광 표시 장치
EP3425670A1 (en) * 2017-07-04 2019-01-09 Samsung Electronics Co., Ltd. Near-infrared light organic sensors, embedded organic light emitting diode panels, and display devices including the same
KR102410175B1 (ko) * 2017-08-22 2022-06-17 삼성전자주식회사 생체 정보에 대응하는 광원을 이용하여 생체 정보를 획득하기 위한 방법 및 그 전자 장치
CN108646949B (zh) * 2018-06-04 2024-03-19 京东方科技集团股份有限公司 光电检测电路及方法、阵列基板、显示面板、指纹识别法
KR102642305B1 (ko) * 2018-09-12 2024-02-28 삼성전자주식회사 Oled 패널 및 이를 포함하는 표시 장치
CN113348387A (zh) * 2019-01-18 2021-09-03 株式会社半导体能源研究所 显示装置及电子设备
KR20210126649A (ko) * 2019-02-15 2021-10-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치, 표시 모듈, 및 전자 기기
US11394014B2 (en) * 2019-08-29 2022-07-19 Semiconductor Energy Laboratory Co., Ltd. Display unit, display module, and electronic device
US11627262B2 (en) * 2019-11-04 2023-04-11 Fotonation Limited Handheld computing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150331508A1 (en) * 2014-05-16 2015-11-19 Apple Inc. Integrated silicon-oled display and touch sensor panel
CN108628398A (zh) * 2017-03-24 2018-10-09 敦捷光电股份有限公司 具生物特征识别功能的显示器
CN107045628A (zh) * 2017-04-17 2017-08-15 京东方科技集团股份有限公司 一种触控面板、显示面板、显示装置及指纹识别方法
CN109509767A (zh) * 2017-09-15 2019-03-22 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110061041A (zh) * 2019-04-28 2019-07-26 广州新视界光电科技有限公司 一种显示面板和显示装置
CN111312788A (zh) * 2020-02-28 2020-06-19 京东方科技集团股份有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
US11837163B2 (en) 2023-12-05
CN111312788B (zh) 2023-04-18
CN111312788A (zh) 2020-06-19
US20220180807A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2021169833A1 (zh) 显示面板和显示装置
CN108415188B (zh) 一种液晶显示面板、显示装置及其指纹解锁方法
CN108604296B (zh) 发光指纹识别面板及包括其的指纹识别显示装置
CN107480639A (zh) 一种触控显示面板和显示装置
CN110245627B (zh) 一种显示面板及显示装置
WO2021174842A1 (zh) 指纹识别装置、显示面板、设备及指纹识别方法
US20210319197A1 (en) Apparatus and method for optically capturing fingerprint or other images on display screen
US10381381B1 (en) Display with light transmitting windows
US20180307088A1 (en) Display component and display device
CN110456547B (zh) 一种显示装置
US20190034686A1 (en) Optical Fingerprint Module
CN108964762B (zh) 可见光通信装置及其驱动方法、门锁和可见光通信方法
WO2020133755A1 (zh) 一种显示面板
US11301707B2 (en) Texture recognition device and driving method of texture recognition device
TW202011097A (zh) 顯示面板
WO2021057973A1 (zh) 显示基板及其制备方法、显示装置、掩模板
WO2021013216A1 (zh) 一种显示面板及其制作方法和电子设备及其成像方法
US11289549B2 (en) Display panel and terminal device
JP7088596B2 (ja) 画像スキャン機能を有するamoledディスプレイパネル
WO2016029556A1 (zh) 光触摸面板、光触摸显示屏和光触摸显示装置
WO2020042248A1 (zh) 液晶显示面板
KR20210029891A (ko) 표시 장치
TWI706555B (zh) 發光裝置
CN108922917B (zh) 彩膜基板及oled显示面板、显示装置
WO2021204093A1 (zh) 一种显示屏和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760088

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21760088

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21760088

Country of ref document: EP

Kind code of ref document: A1