WO2021169756A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021169756A1
WO2021169756A1 PCT/CN2021/074951 CN2021074951W WO2021169756A1 WO 2021169756 A1 WO2021169756 A1 WO 2021169756A1 CN 2021074951 W CN2021074951 W CN 2021074951W WO 2021169756 A1 WO2021169756 A1 WO 2021169756A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
light
voltage
optical
circuit
Prior art date
Application number
PCT/CN2021/074951
Other languages
English (en)
French (fr)
Inventor
杨柳
张强
杨世海
王海山
陈思涛
王华强
孙祥勋
朱华
郑龙
杨思更
何鹏
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010115310.3A external-priority patent/CN113376923B/zh
Priority claimed from CN202010153331.4A external-priority patent/CN113364522B/zh
Priority claimed from CN202021561951.3U external-priority patent/CN213213471U/zh
Priority claimed from CN202010759086.1A external-priority patent/CN114070413B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021169756A1 publication Critical patent/WO2021169756A1/zh
Priority to US17/491,456 priority Critical patent/US11848707B2/en
Priority to US18/502,853 priority patent/US20240072903A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • optical communication technology In cloud computing, mobile Internet, video and other new business and application modes, optical communication technology will be used.
  • the optical module is a tool to realize the mutual conversion of photoelectric signals, and it is one of the key components in optical communication equipment.
  • the use of silicon optical chips to realize the photoelectric conversion function has become a mainstream solution adopted by high-speed optical modules.
  • the silicon optical chip includes an MZ (Mach-Zehnder) modulator.
  • the optical carrier signal emitted by the laser enters the MZ modulator, and the high-speed data stream is loaded on the optical carrier signal by the driving voltage to complete the light modulation.
  • the optical carrier signal reaching the MZ modulator is divided into two beams of light with exactly the same amplitude and frequency for transmission through the upper and lower branches (two arms), and the modulation voltage is applied to the modulation area respectively.
  • Due to electro-optical induction changes the refractive index of the modulator material, so that there is a phase difference between the two branch signals.
  • the relative output light intensity of the MZ modulator has a linear relationship with the electrode voltage. At this time, the dynamic range and conversion efficiency of the output signal are both at the maximum. Therefore, in order to ensure the quality of the output signal, the MZ modulator needs to be stabilized at the optimal operating point where the phase difference is ⁇ /2.
  • an optical module includes: a circuit board; a light source, which is electrically connected to the circuit board, for emitting light that does not carry signals; a silicon optical chip, which is arranged on the circuit board and is electrically connected to the circuit board, through The input optical port of the silicon optical chip receives the light that does not carry the signal from the light source, modulates the light that does not carry the signal into signal light and outputs the signal light through the output optical port of the silicon optical chip; MCU, set on the circuit board, and silicon The DC bias signal interface connection of the optical chip is used to transmit the DC bias signal to the DC bias signal interface to control the electric heating intensity in the silicon optical chip; the first sampling circuit is set on the circuit board and is connected to the silicon optical chip.
  • the first monitoring optical port is connected to receive the signal light transmitted through the first monitoring optical port and output the first sampling voltage according to the signal light;
  • the second sampling circuit is arranged on the circuit board and is connected to the second monitoring light of the silicon optical chip Port connection, used to receive the signal light transmitted through the second monitoring optical port and output the second sampling voltage according to the signal light;
  • the locking circuit set on the circuit board, connected with the DC bias signal interface of the silicon optical chip, used for The first sampling voltage and the second sampling voltage send a DC bias signal to the DC bias signal interface to control the electric heating intensity in the silicon optical chip.
  • an optical module provided by the present disclosure includes: a laser box for outputting optical signals, a silicon optical chip for modulating the optical signal, and a circuit board for supplying power and providing electrical signals; a silicon optical chip, and The laser box is connected, and an MZM modulator for modulating the optical signal is arranged inside; the MZM modulator includes: a first beam splitter, two interference arms, two modulation electrodes, two heaters, a third beam splitter, and two second beams.
  • Optical splitter two second optical splitters, respectively set at one end of the two interference arms, used to divide a beam of optical signals on the two interference arms into a beam with a smaller proportion and a beam with a larger proportion
  • Optical signal two electrical signal sampling components and MCU are provided on the circuit board; two electrical signal sampling components are respectively connected to two second optical splitters, and are respectively used to obtain corresponding sampling voltages according to the optical signal with a smaller proportion;
  • the MCU is connected with two electrical signal sampling components, and is used to compare and analyze the two sampling voltages, and increase or decrease the driving electric power of the two heaters according to the comparison and analysis results.
  • an optical module provided by the present disclosure includes: a circuit board; a light source, which is electrically connected to the circuit board, for emitting light that does not carry signals; a silicon optical chip, which is arranged on the circuit board and is electrically connected to the circuit board, Including Mach-Zehnder electro-optical modulator, input optical port, output optical port, first sampling circuit and second sampling circuit.
  • the light emitted by the light source without signal enters the Mach-Zehnder electro-optical modulator through the input optical port, and passes through the Mach -The Zender electro-optical modulator modulates the light that does not carry a signal into signal light and divides the signal light into output light and monitoring light.
  • the first sampling circuit detects the light intensity of the output light
  • the second sampling circuit detects the light intensity of the monitoring light.
  • the output light is output to the silicon optical chip through the output optical port
  • the Mach-Zehnder electro-optical modulator includes a heater, which is arranged on the interference arm of the Mach-Zehnder electro-optical modulator
  • the comparison circuit is arranged on the circuit board and includes the first Input terminal, second input terminal and output terminal, the first input terminal is connected to the output terminal of the first sampling circuit, the second input terminal is connected to the output terminal of the second sampling circuit, the output terminal outputs the comparison voltage
  • MCU set on the circuit board The input terminal is connected to the output terminal of the comparison circuit, and the output terminal is connected to the heater, which is used to adjust the voltage applied to the heater according to the comparison voltage output by the comparison circuit to control the heating intensity of the heater.
  • an optical module provided by the present disclosure includes: a circuit board; a light source, which is electrically connected to the circuit board, for emitting light that does not carry signals; a silicon optical chip, which is electrically connected to the circuit board, including Mach-Zehnder
  • the electro-optical modulator, the input optical port, the output optical port and the monitoring photodiode unit, the light emitted by the light source that does not carry the signal enters the Mach-Zehnder electro-optical modulator through the input optical port, and will not carry the signal through the Mach-Zehnder electro-optical modulator
  • the light is modulated into signal light and the signal light is divided into output light and monitoring light.
  • the monitoring photodiode unit detects and compares the light intensity of the output light and the light intensity of the monitoring light, and the output light is output to the silicon optical chip through the output optical port; Mach-enhanced
  • the Del electro-optic modulator includes a heater, the heater is set on the interference arm of the Mach-Zehnder electro-optic modulator; the voltage comparison and conversion circuit is set on the circuit board, the input end is connected to the output pin of the monitoring photodiode unit, and the output is guided according to the output.
  • the current transmitted on the pin outputs the comparison voltage; MCU, set on the circuit board, the input terminal is connected to the output terminal of the voltage comparison conversion circuit, and the output terminal is connected to the heater, which is used to adjust the application to the heater according to the comparison voltage output by the voltage comparison conversion circuit The voltage to control the heating intensity of the heater.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 5 is a block diagram of the internal structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 6 is a response curve of driving the first heater according to an embodiment of the disclosure.
  • FIG. 7 is a response curve of driving a second heater provided by an embodiment of the disclosure.
  • FIG. 8 is a block diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic structural diagram of a locking circuit provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a debugging principle structure of an optical module provided by an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of the pins on the golden finger has formed a variety of industry protocols/standards.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101, and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
  • the optical module realizes the mutual conversion between the optical signal and the electrical signal, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal; in an embodiment of the present application, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input In the optical network terminal 100, the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103 Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module ,
  • the optical network terminal is used as the upper computer of the optical module to monitor the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG 2 is a schematic diagram of the optical network terminal structure.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers; A heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then spread through the radiator 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower housing 202, an unlocking component 203, a circuit board 300, a silicon optical chip 400, a light source 500 and an optical fiber socket 600.
  • the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
  • the lower shell includes a main board and a On both sides of the main board, there are two side plates arranged perpendicularly to the main board; the upper casing includes a cover plate, and the cover plate covers the two side plates of the upper casing to form a wrapping cavity; the upper casing may also include a cover The two side walls on both sides of the plate and the two side walls arranged perpendicular to the cover plate are combined with the two side plates to realize that the upper shell is covered on the lower shell.
  • the two openings can be two openings (204, 205) in the same direction, or two openings in different directions; one of the openings is the electrical port 204, and the gold finger of the circuit board protrudes from the electrical port 204 , Inserted into the upper computer such as the optical network terminal; the other opening is the optical port 205, used for external optical fiber access to connect the silicon optical chip inside the optical module; the circuit board 300, silicon optical chip 400, light source 500 and other optoelectronic devices are located in the package In the cavity.
  • the upper shell and the lower shell are combined to facilitate the installation of the circuit board 300, silicon optical chip 400 and other components into the shell.
  • the upper shell and the lower shell form the outermost package protection shell of the optical module.
  • the upper shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic shielding The components cannot be installed, and it is not conducive to production automation.
  • the unlocking component 203 is located on the outer wall of the wrapping cavity/lower casing 202, and is used to realize a fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking component 203 has an engaging component that matches the cage of the host computer; pulling the end of the unlocking component can make the unlocking component move relatively on the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is held by the engaging component of the unlocking component Fixed in the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed, so as to release the optical module and the host computer. The optical module is withdrawn from the cage of the host computer.
  • the circuit board 300 is provided with circuit wiring, electronic components (such as capacitors, resistors, transistors, MOS tubes), and chips (such as MCU, clock data recovery CDR, power management chip, data processing chip DSP), etc.
  • electronic components such as capacitors, resistors, transistors, MOS tubes
  • chips such as MCU, clock data recovery CDR, power management chip, data processing chip DSP, etc.
  • the circuit board connects the electrical components in the optical module according to the circuit design through circuit traces to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the carrying function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver is on the circuit board, the rigid circuit board can also provide Stable loading; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • a metal pin/gold finger is formed on the end surface of one side of the rigid circuit board for the electrical connection Connector connection; these are inconvenient for flexible circuit boards.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver devices.
  • the silicon optical chip 400 is arranged on the circuit board 300 and is electrically connected to the circuit board 300, which can be specifically wired connection; the periphery of the silicon optical chip and the circuit board 300 are connected by multiple conductive wires, so the silicon optical chip 400 is generally Set on the surface of the circuit board 300.
  • the silicon optical chip 400 and the laser box 500 are optically connected through the first optical fiber ribbon 401.
  • the silicon optical chip 400 receives the light from the laser box 500 through the first optical fiber ribbon 401, and then modulates the light, specifically loading the signal to On the light; the silicon optical chip 400 receives the light from the optical fiber socket 600, and then converts the optical signal into an electrical signal.
  • the silicon optical chip 400 and the optical fiber socket 600 are optically connected through the second optical fiber ribbon 402A, and the optical fiber socket 600 is optically connected to the external optical fiber of the optical module.
  • the light modulated by the silicon optical chip 400 is transmitted to the optical fiber socket 600 through the second optical fiber ribbon 402A, and transmitted to the external optical fiber through the optical fiber socket 600; the light from the external optical fiber is transmitted to the optical fiber ribbon 401 through the optical fiber socket 600, and then passes through the second optical fiber ribbon 402A It is transmitted to the silicon optical chip 400; thus, the silicon optical chip 400 outputs light carrying data to the external optical fiber of the optical module, or receives light carrying data from the external optical fiber of the optical module.
  • the silicon optical chip 400 includes an MZ modulator.
  • the MZ modulator includes a first beam splitter, a first interference arm, a second interference arm, a first modulation electrode, a second modulation electrode, a first heater, and a Two heaters and light combiners.
  • the input end of the first optical splitter is optically connected to the first optical fiber ribbon for receiving light from the laser box 500; the first output end of the first optical splitter is connected to one end of the first interference arm, and the second output end is connected to the second interference
  • the first beam splitter divides the received light into two and transmits it to the first interference arm and the second interference arm respectively;
  • the first interference arm is provided with a first modulation electrode and a first heater, and a first modulation electrode and The first heater works together on the first interference arm to modulate the light input into the first interference arm;
  • the second interference arm is provided with a second modulation electrode and a second heater, and the second modulation electrode and the second heater are shared Act on the second interference arm to modulate the light input into the second interference arm;
  • the other end of the first interference arm is connected to the first input end of the light combiner, and the other end of the second interference arm is connected to the second light combiner.
  • the light combiner combines the light input by the first interference arm and the second interference
  • the silicon optical chip 400 is provided with an input optical port, an output optical port, a monitoring optical port, a high-speed electrical signal interface, and a DC bias signal interface.
  • the input optical port is used to couple the light output from the laser box 500 into the silicon optical chip;
  • the output optical port is used to couple the modulated signal light out of the silicon optical chip 400;
  • the monitoring optical port is separated from the signal light for monitoring ;
  • the high-speed electrical signal interface is used to input high-speed electrical signals to complete optical modulation;
  • the DC bias signal interface inputs a DC bias voltage or current signal, which is applied to the heater in the silicon optical chip.
  • the first beam splitter can divide the light input into it into two light beams with the same intensity, or it can divide the light input into it into two light beams with different intensity.
  • the first modulation electrode and the second modulation electrode use electro-optic induction to change the refractive index of the modulator material, convert the modulation signal output by the circuit board into a modulated optical signal, and use the modulated optical signal to convert the non-data-carrying components on the two interference arms.
  • the DC optical signal is converted into an alternating optical signal.
  • the first heater and the second heater electrically heat the two interference arms according to the DC bias signal input from the DC bias signal interface, and then control the phase difference of the alternating light signals transmitted on the two interference arms to be constant, such as through
  • the driving current or driving voltage controls the phase difference of the alternating optical signals transmitted on the two interference arms to be constant.
  • the two heaters control the operation of the two heaters according to the driving voltage to raise or lower the temperature of the two interference arms.
  • the heater heats or cools the interference arms, changes the refractive index of the two interference arms, thereby changing the optical path difference of the two alternating light signals entering the two heaters, and then changing the two alternating lights passing through the two heaters
  • the phase difference of the signals makes the phase difference of the two alternating light signals passing through the upper two heaters at ⁇ /2.
  • the phase difference produced by the electro-optic modulation is ⁇ /2
  • the relative output light intensity of the electro-optic modulator has a linear relationship with the electrode voltage.
  • the dynamic range and conversion efficiency of the output signal are both at the maximum, so it needs to be in the electrode voltage
  • Appropriate DC components are added to ensure the establishment of a proper operating point.
  • linear modulation can be achieved, that is, an external DC bias voltage is required to stabilize the operating point at the phase difference Is the state of ⁇ /2.
  • the optical module uses a single-chip microcomputer and an analog circuit to ensure that the optimal operating point is in a stable state for a long time.
  • an MCU a first sampling circuit, a second sampling circuit, and a locking circuit are also provided on the circuit board.
  • the MCU is electrically connected to the first sampling circuit, the second sampling circuit, and the locking circuit, and the first sampling circuit and the second sampling circuit are also electrically connected to the locking circuit.
  • the MCU is connected to the DC bias signal interface of the silicon optical chip, and the MCU transmits the DC bias signal to the heater in the silicon optical chip through the DC bias signal interface to control the electric heating in the silicon optical chip Intensity;
  • the first sampling circuit is connected to the first monitoring optical port of the silicon optical chip, and is used to receive the signal light transmitted through the first monitoring optical port and output the first sampling voltage according to the signal light;
  • the second sampling circuit and the silicon optical chip The second monitoring optical port is connected to the second monitoring optical port for receiving the signal light transmitted through the second monitoring optical port and outputting the second sampling voltage according to the signal light;
  • the locking circuit is connected to the DC bias signal interface of the silicon optical chip, and is used to The sampling voltage and the second sampling voltage send a DC bias signal to the DC bias signal interface to control the electric heating intensity in the silicon optical chip.
  • MCU output sends DC bias signals to the heaters in the silicon optical chip through the DC bias signal interface to obtain the corresponding optical module output optical power, and select the heating with higher response efficiency according to the corresponding optical module output optical power
  • the lock circuit according to the obtained first sampling voltage and the second sampling voltage through the DC bias signal interface to send a DC bias signal to the silicon optical chip heater with higher response efficiency, drive the heater, so that the first sampling voltage
  • the amplitude of and the amplitude of the second sampling voltage are close to each other, so that the silicon optical chip is maintained at the optimal operating point. Therefore, in the optical module provided by the embodiment of the present disclosure, the MCU and the locking circuit work together to maintain the silicon optical chip at the optimal operating point.
  • optical module provided in the present disclosure will be described in detail below with reference to specific examples.
  • FIG. 5 is a block diagram of the internal structure of an optical module provided by an embodiment of the disclosure.
  • the MZ modulator provided on the silicon optical chip 400 further includes a second beam splitter and a third beam splitter.
  • the second beam splitter is arranged on the first interference arm and is located on the end of the first interference arm close to the light combiner.
  • the second optical splitter is used to split a part of the modulated light on the first interference arm from the output optical path of the first interference arm to the first monitoring optical port.
  • the second optical splitter can separate the signal light with the intensity of 2%, 4%, etc. on the output optical path of the first interference arm.
  • the third beam splitter is arranged on the second interference arm and is located at one end of the second interference arm close to the light combiner.
  • the third optical splitter is used to split a part of the modulated light on the second interference arm from the output optical path of the second interference arm to the second monitoring optical port.
  • the third optical splitter can separate the signal light with the intensity of 2%, 4%, etc. on the output optical path of the second interference arm.
  • the second optical splitter and the third optical splitter can separate the signal light with the same proportion of light intensity.
  • the optical module further includes an MCU 31, a locking circuit 32, a first sampling circuit 33 and a second sampling circuit 34.
  • the MCU 31, the locking circuit 32, the first sampling circuit 33 and the second sampling circuit 34 are arranged on the circuit board 300, the first sampling circuit 33 and the second sampling circuit 34 are electrically connected to the MCU 31 and the locking circuit 32, and the first sampling circuit 33 is connected to the first monitoring optical port of the silicon optical chip 400, and the second sampling circuit 34 is connected to the second monitoring optical port of the silicon optical chip 400.
  • the first sampling circuit 33 receives the signal light branched from the output optical path of the first interference arm through the second beam splitter, and the second sampling circuit 34 receives the output light from the second interference arm through the third beam splitter. Signal light branched off the optical path. Furthermore, the first sampling circuit 33 outputs the corresponding first sampling voltage according to the received signal light, and the second sampling circuit 34 is configured to output the corresponding second sampling voltage according to the received signal light.
  • the MCU 31 and the locking circuit 32 receive the first sampling voltage and the second sampling voltage.
  • the first sampling circuit 33 includes a first photodetector and a first sampling resistor.
  • One end of the first photodetector is connected to an external power source, and the other end is connected to the first sampling resistor.
  • One end, the MCU 31 and the locking circuit 32, and the other end of the first sampling resistor is grounded.
  • the signal light branched by the second optical splitter from the output optical path of the first interference arm is transmitted to the first photodetector through the first monitoring optical port, and the first photodetector converts the received optical signal into a photocurrent.
  • the first sampling resistor converts the photocurrent into a voltage signal and transmits the first sampling voltage to the MCU 31 and the locking circuit 32.
  • the second sampling circuit 34 includes a second photodetector and a second sampling resistor.
  • One end of the second photodetector is connected to an external power source, and the other end is connected to the second sampling resistor.
  • One end, the MCU 31 and the locking circuit 32, and the other end of the second sampling resistor is grounded.
  • the signal light branched by the third optical splitter from the output optical path of the second interference arm is transmitted to the second photodetector through the second monitoring optical port.
  • the second photodetector converts the received optical signal into a photocurrent.
  • the second sampling resistor converts the photocurrent into a voltage signal and transmits the second sampling voltage to the MCU 31 and the locking circuit 32.
  • the MCU31 may be responsible for controlling the silicon optical chip 400, the first sampling circuit 33, the second sampling circuit 34, and the locking circuit 32, and coordinate the organization of the silicon optical chip 400, the first sampling circuit 33, and the second sampling. The operation of the circuit 34 and the locking circuit 32.
  • the current signals are respectively output through the two IDAC ports of the MCU31, which are sequentially applied to the first heater and the second heater, according to the first heater and the second heater.
  • the characteristics of the two heaters perform a full-range scan, draw a response curve based on the first sampling voltage and the second sampling voltage, select one of the more efficient heaters for future use, and the other one is discarded (not used).
  • the locking circuit 32 recognizes and calculates the amplitudes of the first sampled voltage and the second sampled voltage, and then outputs the driving current or the driving voltage to the heater with higher efficiency to control the MZ modulation
  • the optimal operating point of the MZ modulator is locked to achieve the optimal operating point of the MZ modulator.
  • FIG. 6 is the response curve of the output current signal of the first IDAC port, where the numbers 1 to 1000 on the abscissa represent the current from 0mA to 100mA, and the ordinate represents the power value after the conversion of the first sampling voltage and the second sampling voltage.
  • MPD1 in the figure It is the first photodetector, and MPD2 is the second photodetector.
  • FIG. 7 is the response curve of the output current signal of the first IDAC port, where the numbers 1 to 1000 on the abscissa represent the current from 0mA to 100mA, and the ordinate represents the power value after the conversion of the first sampling voltage and the second sampling voltage.
  • MPD1 in the figure It is the first photodetector
  • MPD2 is the second photodetector.
  • the output current of the IDAC port is about 40mA (abscissa 400).
  • the output current of the IDAC port is about 1mA (10 on the abscissa). The comparison shows that the efficiency of the second heater is higher.
  • the lock circuit 32 recognizes and calculates the amplitudes of the first sampling voltage and the second sampling voltage, and then outputs the driving current or driving voltage to the second heater to control the MZ modulator At the best operating point, the lock of the best operating point of the MZ modulator can be achieved.
  • the MCU31 is provided with an analog-to-digital converter and a digital-to-analog converter.
  • the analog-to-digital converter is used to convert the sampling voltage of the analog signal into the sampling voltage of the digital signal
  • the digital-to-analog converter is used to convert the heating current signal of the digital signal into an analog signal.
  • Signal heating current signal Since the calculations inside the MCU31 are calculated based on the data of the digital signal, the data input to the MCU31 is required to be a digital signal, but the sampling voltage not input to the MCU31 is an analog signal, therefore, an analog-to-digital converter needs to be provided in the MCU31. Also, since the MCU31 needs to output the heating current signal of the analog signal, a digital-to-analog converter needs to be also provided in the MCU31.
  • the circuit board 300 is provided with an MCU 31, a first sampling circuit 33, a second sampling circuit 34, and a locking circuit 32.
  • the MCU 31 and the locking circuit 32 are electrically connected to the first heater and the second heater, respectively. Connection, and a second optical splitter and a third optical splitter are arranged at one end of the MZ modulator close to the light combiner;
  • the first sampling circuit 33 obtains the first sampling voltage by receiving the signal light split by the second optical splitter for monitoring The signal light on the first interference arm;
  • the second sampling circuit 34 obtains the second sampling voltage by receiving the signal light split by the third optical splitter, which is used to monitor the signal light on the second interference arm.
  • the MCU 31 and the locking circuit 32 cooperate to adjust the DC bias signal of the first heater or the second heater according to the first sampling voltage and the second sampling voltage to adjust the first interference
  • the heating intensity of the heater on the arm or the second interference arm is used to adjust the working temperature on the first or second interference arm, so that the electro-optic modulation in the first interference arm and the second interference arm produces a ⁇ /2
  • the constant phase difference makes the amplitude of the first sampling voltage and the second sampling voltage close to each other to control the optimal operating point of the MZ modulator.
  • FIG. 8 is a block diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • the locking circuit 32 includes a dual-channel analog switch sub-circuit 321, an operational amplifier sub-circuit 322 and a single-channel analog switch sub-circuit 323.
  • the input terminals of the dual-channel analog switch sub-circuit 321 are respectively electrically connected to the first sampling circuit 33 and the second sampling circuit 34, and the output terminals of the dual-channel analog switch sub-circuit 321 are respectively electrically connected to the input terminals of the operational amplifier sub-circuit 322;
  • the output end of the circuit 322 is electrically connected to the input end of the single-channel analog switch sub-circuit 323, and the output end of the single-channel analog switch sub-circuit 323 is electrically connected to the first heater and the second heater.
  • the dual-channel analog switch sub-circuit 321 receives the first sampling voltage obtained by the conversion of the first sampling circuit 33 and the second sampling voltage obtained by the conversion of the second sampling circuit 34, and measures the first sampling The magnitude of the voltage and the voltage amplitude of the second sampled voltage are identified, and the first sampled voltage and the second sampled voltage are delivered to the input terminal of the operational amplifier sub-circuit 322.
  • the operational amplifier sub-circuit 322 amplifies the voltage difference between the positive and negative input terminals, and inputs the amplified signal to the input terminal of the single-channel analog switch sub-circuit 323. Under the control of the MCU 31, the single-channel analog switch sub-circuit 323 applies the signal output by the operational amplifier sub-circuit 322 to the selected heater with higher efficiency.
  • FIG. 9 is a schematic structural diagram of a locking circuit 32 provided by an embodiment of the disclosure.
  • the dual-channel analog switch sub-circuit 321 includes a comparator 3211, a first analog switch 3212, and a second analog switch 3213.
  • the same direction input pin of the comparator 3211 is connected to the first sampling circuit 33
  • the reverse input pin of the comparator 3211 is connected to the second sampling circuit 34
  • the output pins of the comparator 3211 are connected to the first analog switch 3212 and the second analog switch respectively.
  • the input pin of switch 3213 The normally closed pin of the first analog switch 3212 is connected to the first sampling circuit 33
  • the normally open pin of the first analog switch 3212 is connected to the second sampling circuit 34.
  • the normally open pin of the second analog switch 3213 is connected to the first sampling circuit 33, and the normally closed pin of the second analog switch 3213 is connected to the second sampling circuit 34.
  • the output pins of the first analog switch 3212 and the second analog switch 3213 are connected to the input terminal of the operational amplifier sub-circuit 322.
  • the comparator 3211 may be a MAX999, and the first analog switch 3212 and the second analog switch 3213 may be SGM4157.
  • the comparator 3211 inputs the first sampling voltage and the second sampling voltage from the same direction input pin and the reverse input pin, and determines the voltage of the first sampling voltage and the second sampling voltage The amplitude, according to the voltage amplitude of the first sampling voltage and the second sampling voltage, the output control signal acts on the first analog switch 3212 and the second analog switch 3213, so that the first analog switch 3212 outputs the first sampling voltage and the second The second analog switch 3213 outputs the first sampling voltage and the second sampling voltage, which has a smaller voltage amplitude.
  • the operational amplifier sub-circuit 322 includes a first operational amplifier 3221 and a second operational amplifier 3222.
  • the same direction input pin of the first operational amplifier 3221 is connected to the output pin of the first analog switch 3212, and the reverse input pin of the first operational amplifier 3221 is connected to the output pin of the second analog switch 3213;
  • the output pin is connected to the same direction input pin of the second operational amplifier 3222, the inverted input pin of the second operational amplifier 3222 is connected to the output pin of the second operational amplifier 3222, and the output pin of the second operational amplifier 3222 is connected to a single channel
  • the first operational amplifier 3221 and the second operational amplifier 3222 may be OPA354.
  • the first operational amplifier 3221 receives the first sampling voltage and the second sampling voltage through the same direction input pin, the voltage signal with the larger voltage amplitude, and the second sampling voltage through the reverse input pin.
  • the first operational amplifier 3221 amplifies the amplitude difference of the voltage signal between the same direction input pin and the reverse input pin for a voltage signal with a smaller voltage amplitude in the first sampling voltage and the second sampling voltage.
  • the amplified amplitude difference is sent to the second operational amplifier 3222, the second operational amplifier 3222 integrates and drives to amplify, and the second operational amplifier 3222 outputs current to control the first heater or the second heater.
  • the second operational amplifier 3222 is used to increase the driving capability.
  • the voltage amplitudes of the first sampling voltage and the second sampling voltage received by the same direction input pin and the reverse input pin of the first operational amplifier 3221 are gradually approached, thereby realizing MZ modulation Locking of the working point of the device.
  • the operational amplifier sub-circuit 322 further includes an integrating component, and the integrating component includes a first resistor and a first capacitor.
  • the first resistor is connected in series between the output pin of the first operational amplifier 3221 and the same direction input pin of the second operational amplifier 3222; one end of the first capacitor is connected to the first resistor and the same direction input pin of the second operational amplifier 3222 , The other end of the first capacitor is grounded.
  • the integration of the integral component and the first operational amplifier 3221 more accurately completes the control of the integral amplification.
  • the operational amplifier sub-circuit 322 further includes a driving amplifying component, and the driving amplifying component includes a second resistor, a second capacitor, and a third resistor. resistance.
  • the second resistor is connected in series between the inverting input pin of the second operational amplifier 3222 and the output pin of the second operational amplifier 3222; the second capacitor is connected in parallel with the second resistor; one end of the third resistor is connected to the second operational amplifier 3222 Reverse input pin, the other end is grounded.
  • the combination of the driving amplifying component and the second operational amplifier 3222 realizes the adjustment and control of the amplification factor of the second operational amplifier 3222, which is more urgent and convenient to complete the control of the driving amplification accurately.
  • a fourth resistor is provided between the output pin of the second operational amplifier 3222 and the single-channel analog switch sub-circuit 323, and the fourth resistor has a voltage divider function. To reduce the voltage of the output current of the second operational amplifier 3222.
  • the locking circuit 32 provided in the present disclosure further includes a first filter sub-circuit 324 and a second filter sub-circuit 325.
  • the first filter sub-circuit 324 is connected in series with the output terminal of the first sampling circuit 33 and the input terminal of the dual-channel analog switch sub-circuit 321
  • the second filter sub-circuit 325 is connected in series with the output terminal of the second sampling circuit 34 and the dual-channel analog switch sub-circuit 321 input terminal.
  • the first filter sub-circuit 324 is used to filter out the clutter in the first sampled voltage to improve the flatness of the first sampled voltage; the second filter sub-circuit 325 is used to filter out the clutter in the second sampled voltage to improve the second The flatness of the sampling voltage.
  • the first filter sub-circuit 324 includes a fifth resistor, a third capacitor, and a fourth capacitor
  • the second filter sub-circuit 325 includes a sixth resistor, a fifth capacitor, and a sixth capacitor.
  • One end of the fifth resistor is connected to the input end of the dual-channel analog switch sub-circuit 321 and the output end of the first sampling circuit 33, the other end is grounded, and one end of the third capacitor is connected to the input end of the dual-channel analog switch sub-circuit 321 and the first sampling
  • the output end and the other end of the circuit 33 are connected to the other end of the fifth resistor, and the fourth capacitor is connected in parallel with the third capacitor.
  • One end of the sixth resistor is connected to the input end of the dual-channel analog switch sub-circuit 321 and the output end of the second sampling circuit 34, the other end is grounded, and one end of the fifth capacitor is connected to the input end of the dual-channel analog switch sub-circuit 321 and the second sampling
  • the output end and the other end of the circuit 34 are connected to the other end of the sixth resistor, and the sixth capacitor is connected in parallel with the fifth capacitor.
  • FIG. 10 is a structural diagram of the debugging principle of an optical module provided by an embodiment of the disclosure.
  • the optical module includes a Mach-Zehnder modulator, two electrical signal sampling components, an MCU, and two resistors.
  • the Mach-Zehnder modulator includes a second beam splitter and a third beam splitter, which are respectively arranged at one end of the two interference arms, and are used to divide the optical signal on the interference arm into a beam with a smaller proportion and a beam with a smaller proportion. Big light signal.
  • the two electrical signal sampling components are respectively connected to the silicon optical chip by wire bonding, and are respectively used to obtain the corresponding sampling voltage according to the optical signal with a smaller proportion.
  • the electrical signal sampling component is connected to the second optical splitter or the third optical splitter of the Mach-Zehnder modulator in the silicon optical chip.
  • the two electrical signal sampling components obtain the small-scale optical signal output by the two interference arms, and convert the small-scale optical signal into a voltage signal to obtain a sampled voltage.
  • the electrical signal sampling component includes a photodetector and a sampling resistor.
  • the photodetector is electrically connected to the sampling resistor and can be connected by wire.
  • the photodetector is electrically connected to an external power supply at one end, and is used to convert a relatively small optical signal into a sampling current.
  • the DC optical signal is converted into an alternating optical signal
  • the optical signal split by the second optical splitter or the third optical splitter is an alternating optical signal.
  • the photodetector converts the perceived alternating light signal into a sampling current.
  • sampling resistor one end is electrically connected to the photodetector, and the other end is grounded, and is used to convert the sampling current into a sampling voltage.
  • the sampling current is divided by the sampling resistor to obtain the sampling voltage.
  • the MCU is electrically connected to the two electrical signal sampling components, and can be connected with patches to compare and analyze the two sampling voltages, and increase or decrease the driving electric power of the two heaters according to the comparison and analysis results.
  • increasing the driving electric power can be realized by increasing the driving voltage
  • reducing the driving electric power can be realized by reducing the driving voltage.
  • two electrical signal sampling components transmit the obtained two sampled voltage values to the MCU, and the MCU determines whether the two sampled voltage values are equal according to the two sampled voltage values. Since the MZM modulator is at the optimal operating point, the driving voltages of the two heaters should be equal and equal to the standard driving voltage.
  • the standard driving voltage is the driving voltage of the two heaters when the MZM modulator is at the optimal operating point.
  • the standard driving voltage of the two heaters can be set to 1.5V.
  • the driving voltage output by the MCU to the two heaters is equal, and the driving voltage is equal to the standard driving voltage.
  • the comparative analysis result is that the two sampled voltage values are not equal, the driving voltages output by the MCU to the two heaters are not equal.
  • the driving voltage of the heater corresponding to the larger sampling voltage value is reduced, and the driving voltage is reduced to be equal to the standard driving voltage.
  • the heater driving voltage corresponding to the smaller sampling voltage value increases, and the increase of the driving voltage becomes equal to the standard driving voltage.
  • the two heating current signals output by the MCU are respectively converted into two driving voltages after being divided by resistors, and the two driving voltages are transmitted to the two heaters.
  • the MCU When the comparative analysis result is that the two sampled voltage values are equal, the MCU outputs two equal heating current signals to the two heaters.
  • the MCU when the two sampling voltages are equal, the MCU outputs two equal heating current signals, and the two heating current signals are converted into two equal driving voltages after being divided by the resistance. The driving voltage is transmitted to the two heaters.
  • heater A is located on the side of the upper interference arm
  • heater B is located on the side of the lower interference arm
  • the electrical signal sampling component A corresponds to the upper interference arm.
  • the electrical signal sampling component A obtains the sampling voltage A of the upper interference arm.
  • the signal sampling component B corresponds to the lower interference arm.
  • the electrical signal sampling component B obtains the sampling voltage B of the lower interference arm.
  • the two heating current signals output by the MCU include the first heating current signal and the second heating current signal.
  • the first heating current signal Equal to the second heating current signal.
  • the first heating current signal and the second heating current signal may be transmitted to heater A or heater B.
  • the second heating current signal is transmitted to heater B; when the first heating current signal is transmitted to heater B, the second heating The current signal is transmitted to heater A.
  • two unequal heating current signals are output to the two heaters.
  • the larger heating current signal is transmitted to the heater corresponding to the smaller sampling voltage.
  • the small heating current signal is transmitted to the heater corresponding to the larger sampling voltage.
  • the MCU when the two sampling voltages are not equal, the MCU outputs two unequal heating current signals, and the two unequal heating current signals are converted into two unequal heating current signals after being divided by resistance.
  • Drive voltage two unequal drive voltages are respectively transmitted to the two heaters.
  • the driving voltage of the heater corresponding to the larger sampling voltage value is reduced, and the driving voltage is reduced to be equal to the standard driving voltage.
  • the heater driving voltage corresponding to the smaller sampling voltage value increases, and the increase of the driving voltage becomes equal to the standard driving voltage.
  • heater A is located on the side of the upper interference arm
  • heater B is located on the side of the lower interference arm
  • the electrical signal sampling component A corresponds to the upper interference arm
  • the electrical signal sampling component A obtains the sampling voltage A of the upper interference arm
  • the signal sampling component B corresponds to the lower interference arm
  • the electrical signal sampling component B obtains the lower interference arm
  • the two heating current signals output by the MCU include the first heating current signal and the second heating current signal.
  • the first heating current signal is greater than the second heating current signal.
  • the sampling voltage A is greater than the sampling voltage B
  • the first heating current signal is transmitted to the heater B corresponding to the sampling voltage B, and the driving voltage of the heater B is reduced to the standard driving voltage; the second heating current signal is transmitted to the sampling
  • the driving voltage of heater A and heater B corresponding to voltage A increases to the standard driving voltage (because the current signal after the increase of the second heating current signal is equal to the standard heating current signal corresponding to the standard driving voltage).
  • the MCU is equipped with an analog-to-digital converter and a digital-to-analog converter.
  • the analog-to-digital converter is used to convert the sampling voltage of the analog signal into the sampling voltage of the digital signal
  • the digital-to-analog converter is used to convert the heating current signal of the digital signal into an analog signal. Heating current signal. Since calculations inside the MCU are all calculated based on the data of digital signals, the data input to the MCU is required to be a digital signal, but the sampling voltage that is not input to the MCU is an analog signal, therefore, an analog-to-digital converter needs to be set in the MCU.
  • the present disclosure provides an optical module, including a laser box for outputting optical signals, a silicon optical chip for modulating the optical signals, and a circuit board for supplying power and providing electrical signals.
  • a Mach-Zehnder modulator is provided in the silicon optical chip, and the Mach-Zehnder modulator is used to modulate the optical signal.
  • the Mach-Zehnder modulator includes a first beam splitter, two interference arms, two modulation electrodes, two heaters, a second beam splitter, a third beam splitter, and a light combiner.
  • the second beam splitter or the third beam splitter is used to divide the optical signals on the two interference arms into a beam of optical signals with a smaller proportion and a beam of optical signals with a larger proportion.
  • Two electrical signal sampling components and MCU are provided on the circuit board.
  • the two electrical signal sampling components are respectively used to obtain the corresponding sampling voltage according to the optical signal with a smaller proportion.
  • the MCU is used to compare and analyze the two sampled voltages, and increase or decrease the driving power of the two heaters according to the comparison and analysis results.
  • the electrical signal sampling component separately collects the optical signals on the two interference arms to obtain the sampling voltage, and the MCU controls the two heaters to increase or decrease the driving voltage according to the comparison result of the two sampling voltages.
  • the heater corresponding to the interference arm with a small sampling voltage increases the driving voltage
  • the heater corresponding to the interference arm with a large sampling voltage decreases the driving voltage. This can keep the driving voltage of the two heaters constant, and the modulator's operating point can be stabilized at the optimal operating point, thereby improving the signal quality of the optical module's transmission and reducing transmission errors.
  • FIG. 11 is a schematic diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • the silicon optical chip 400 includes an MZM, a first sampling circuit 402, and a second sampling circuit 403.
  • the silicon optical chip 400 also includes an input optical port and an output optical port.
  • the input optical port is used for the light that does not carry a signal from the light source 500 to the silicon optical chip 400, and the output optical port is used for outputting the signal light after MZM modulation and splitting. .
  • the MZM includes a first beam splitter, a first interference arm, a second interference arm, a first modulation electrode, a second modulation electrode, a heater, a light combining section, a second beam splitting section, a third beam splitting section, and The fourth optical splitter.
  • the input end of the first optical splitter is connected to the light source 500 through an optical fiber ribbon to receive the light input from the light source 500 into the silicon optical chip 400; the first output end of the first optical splitter is connected to the input end of the first interference arm, and the second output end is connected At the input end of the second interference arm, the first beam splitter divides the received light into two and sends it to the first interference arm and the second interference arm respectively; the first interference arm is provided with a first modulation electrode and a heater, and the first modulation The electrode and the heater work together on the first interference arm to modulate the light input into the first interference arm; a second modulation electrode is provided on the second interference arm, and the second modulation electrode acts on the second interference arm pair to input to the second interference arm.
  • the light in the interference arm is modulated; the output end of the first interference arm and the output end of the second interference arm are respectively connected to the input end of the light combining section, and the light combining section inputs the first interference arm and the second interference arm to the light Perform light combining processing; the output end of the light combining section is connected to the input end of the second light splitting section, the first output end of the second light splitting section is connected to the input end of the third light splitting section, and the second output end of the second light splitting section is connected to the fourth The input end of the optical splitting section; the first output end of the third optical splitting section is connected to the output optical port, and the second output end of the third optical splitting section is used to transmit the split light to the first sampling circuit 402; the first output end of the fourth optical splitting section The second output terminal transmits the split light to the second sampling circuit 403.
  • the second light splitting section inputs the light combining section into its light splitting into output light and monitoring light
  • the third light splitting section and the fourth light splitting section are used to implement the first sampling circuit 402 and the second sampling circuit 403. Detect and compare the intensity of the output light and the intensity of the monitoring light.
  • the third light splitting section splits a certain proportion of light from the output light to the first sampling circuit 402, for example, the third light splitting section splits 2%, 3%,... from the output light.
  • the fourth light splitting section splits the same proportion of light from the monitoring light to the second sampling circuit 403.
  • the third light splitting unit splits 2% of the output light to the first sampling circuit 402
  • the fourth light splitting unit splits 2% of the light from the monitoring light to the second sampling circuit 403.
  • the first sampling circuit 402 receives the output light output from the second output terminal of the third spectroscopic section
  • the second sampling circuit 403 receives the monitor light output from the first output terminal of the fourth spectroscopic section.
  • the first sampling circuit 402 receives The output light generates the first photocurrent and outputs the first sampling voltage through the output terminal.
  • the second sampling circuit 403 generates the second photocurrent according to the monitoring hole and outputs the second sampling voltage through the output terminal.
  • the first sampling voltage reflects the light output of the output light.
  • the strong and second sampling voltages reflect the light intensity of the monitoring light;
  • the comparison circuit 302 receives and compares the first sampling voltage and the second sampling voltage, and then outputs the comparison voltage to the MCU 31. By comparing the first sampling voltage and the second sampling voltage by the comparison circuit 302, it can be determined whether the light intensity of the output light and the light intensity of the monitoring light are equal.
  • the first sampling circuit 402 and the second sampling circuit 403 respectively include a photodetector and a sampling resistor, and the corresponding photodetector is used for receiving output light or monitoring light.
  • the first sampling circuit 402 includes a first photodetector and a first sampling resistor, the output terminal of the first photodetector is connected to one end of the first sampling resistor, and the other end of the first sampling resistor Grounded, the output terminal of the first photodetector is the output terminal of the first sampling circuit, the first photodetector receives the signal light output by the first output terminal of the third beam splitter;
  • the second sampling circuit includes a second photodetector and a first Two sampling resistors, the output terminal of the second photodetector is connected to one end of the second sampling resistor, the other end of the second sampling resistor is grounded, the output terminal of the second photodetector is the output terminal of the second sampling circuit, the second photodetector
  • the first photodetector receives the signal light output from the first output terminal of the third light splitting part and converts the light into a photocurrent, and converts the photocurrent into a voltage signal through the first sampling resistor, and transmits the first sampling voltage to the comparison circuit 302;
  • the second photodetector receives the signal light output from the second output terminal of the fourth light splitting unit and converts the light into a photocurrent, and converts the photocurrent into a voltage signal through a second sampling resistor.
  • the second sampling voltage is transmitted to the comparison circuit 302.
  • the comparison circuit 302 helps to facilitate the MCU 31 to complete sampling and monitoring.
  • the silicon optical chip 400 further includes a third photodetector 404, and the third photodetector 404 receives the signal light output from the second output end of the fourth light splitting section. , According to the signal light to monitor the emitted light power of the optical module.
  • the photocurrent output terminal of the third photodetector 404 is connected to a sampling circuit, and the sampling circuit is connected to MCU31. The sampling circuit converts the photocurrent into a voltage signal and transmits it to MCU31. MCU31 according to the received voltage signal Determine the emitted light power of the optical module.
  • FIG. 12 is a schematic diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • the comparison circuit 302 includes a comparator 3021; the inverting input terminal of the comparator 3021 is connected to the output terminal of the first sampling circuit 402, and the non-inverting input terminal of the comparator 3021 is connected to the output terminal of the second sampling circuit 403, The output terminal of the comparator 3021 is connected to the input terminal of the MCU31.
  • the comparator 3021 receives the first sampled voltage and the second sampled voltage, compares the magnitude of the first sampled voltage and the second sampled voltage, if the first sampled voltage is greater than the second sampled voltage (output light If the first sampling voltage is less than the second sampling voltage (the output light is stronger than the monitoring light), the comparator 3021 outputs a low level to the MCU31; if the first sampling voltage is less than the second sampling voltage (the output light is stronger than the monitoring light), the comparator 3021 Output high level to MCU31.
  • the MCU31 adjusts the voltage applied to the heater according to the received high and low levels. For example: MCU31 increases the voltage applied to the heater according to the received high level; MCU31 decreases the voltage applied to the heater according to the received low level.
  • the comparator 3021 receives the first sampled voltage and the second sampled voltage, compares the magnitude of the first sampled voltage and the second sampled voltage, and outputs the comparison voltage between the first sampled voltage and the second sampled voltage (the second sampled voltage- The first sampling voltage), the input terminal of the MCU31 receives the comparison voltage, and adjusts the voltage applied to the heater according to the comparison voltage.
  • the input terminal of the MCU31 can usually select the analog-to-digital conversion interface (ADC) of the MCU31, and the MCU31 converts the analog signal input by the comparison circuit 302 to the MCU31 into a digital signal.
  • ADC analog-to-digital conversion interface
  • the MCU 31 corresponds the analog signal voltage obtained by the analog-to-digital converter interface with the value in the lookup table set inside the MCU to determine the digital signal voltage.
  • the output end of the MCU31 is connected to a heater, and a voltage is applied to the heater to make the heater work to heat the first interference arm.
  • the output terminal of the MCU31 can usually select the digital-to-analog conversion interface of the MCU31 to convert the digital signal voltage applied to the heater into an analog signal voltage.
  • the MCU 31 needs to adjust the magnitude of the application to the heater, the digital signal voltage applied to the heater is adjusted, and the analog signal voltage corresponding to the adjusted digital signal voltage is applied to the heater.
  • the comparison voltage output by the comparator 3021 is less than 0; if the light intensity of the output light is less than the light intensity of the monitoring light Strong, the first sampling voltage is less than the second sampling voltage, and the comparison voltage output by the comparator 3021 is greater than 0; if the output light is stronger than the monitoring light, the first sampling voltage is equal to the second sampling voltage, and the output of the comparator 3021 is The comparison voltage is equal to zero.
  • the MCU31 obtains the comparison voltage output by the comparator 3021 and compares the comparison voltage with 0; if the comparison voltage is greater than 0, the MCU31 increases the voltage applied to the heater; if the comparison voltage is less than 0, MCU31 reduces the voltage applied to the heater; if the comparison voltage is equal to 0, keep the voltage applied to the heater at the previous moment.
  • the first sampling circuit 402 receives the signal light output from the first output terminal of the third light splitting section
  • the second sampling circuit 403 receives the signal light output from the second output terminal of the fourth light splitting section
  • the heater is set at On the first interference wall; when the output light is stronger than the monitoring light, the first sampling voltage is greater than the second sampling voltage, the comparison voltage output by the comparator 3021 is less than 0, and the MCU31 reduces the voltage applied to the heater; when the output The light intensity of the light is less than that of the monitoring light, the first sampling voltage is less than the second sampling voltage, the comparison voltage output by the comparator 3021 is greater than 0, and the MCU 31 increases the voltage applied to the heater.
  • the MCU 31 increases the voltage applied by the heater according to the first step, and the first step is greater than zero.
  • the first step is 0.01V, 0.02V, 0.05V, and so on.
  • the MCU 31 can choose to increase the amount of voltage applied to the heater according to how much the comparison voltage is greater than 0.
  • MCU31 selects a relatively large increase to increase the voltage applied to the heater; when the comparison voltage is greater than 0 and relatively small, MCU31 selects a relatively small increase to increase the voltage applied to the heater Voltage. Assuming that the output comparison voltage at the output of the comparison amplifier 3021 is 0.5V, and the MCU31 selects an increase of 0.03V to increase the voltage applied to the heater, when the output comparison voltage at the output of the comparison amplifier 3021 is 0.1V, the MCU31 selects an increase of 0.01V Increase the voltage applied to the heater.
  • the MCU 31 reduces the voltage applied by the heater according to the second step, and the second step is greater than 0.
  • the second step is 0.01V, 0.02V, 0.05V, and so on.
  • the MCU 31 can choose to reduce the amount of heater application voltage according to how much the comparison voltage is less than 0.
  • MCU31 selects a relatively large reduction to reduce the voltage applied to the heater; when the comparison voltage is less than 0 and relatively small, MCU31 selects a relatively small reduction to reduce the heating
  • the device applies voltage. Assuming that the output comparison voltage at the output of the comparison amplifier 3021 is -0.5V, and the MCU31 selects a decrease of 0.03V to reduce the voltage applied to the heater, when the output comparison voltage at the output of the comparison amplifier 3021 is -0.1V, the MCU31 selects 0.01V The amount of decrease reduces the voltage applied to the heater.
  • the comparison voltage output by the comparator 3021 when the light intensity of the output light and the light intensity of the monitoring light are not equal, the comparison voltage output by the comparator 3021 is not 0, and the MCU31 increases or increases according to the comparison voltage that is not 0.
  • the change of the phase of the light on the first interference wall will reduce the light intensity difference between the output light output by the second beam splitter and the monitoring light. Then continue to monitor the output light and monitoring light through the first sampling circuit 402 and the second sampling circuit 403.
  • the first sampling circuit 402 and the second sampling circuit 403 cyclically monitor the output light and monitor the heating intensity of the heater until the comparison voltage output by the comparison circuit 302 is equal to or approximately equal to 0, and the light intensity of the output light and the monitoring light The light intensity is equal or close to equal, and the voltage applied by MCU31 to the heater is no longer changed. Once the comparison voltage received by MCU31 is not equal to 0, MCU31 will adjust the voltage applied by the heater to maintain the MZM in the silicon optical chip at the operating point.
  • the heater may also be provided on the second interference arm. If the heater is installed on the second interference arm, combining the settings of the first sampling circuit 402 and the second sampling circuit 403, and adjusting the MCU31 control logic, the MZM in the silicon optical chip can be maintained at the operating point.
  • FIG. 13 is a schematic diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • the silicon optical chip 400 includes MZM and DMPD402B.
  • the silicon optical chip 400 also includes an input optical port and an output optical port.
  • the input optical port is used for the light that does not carry a signal from the light source 500 to the silicon optical chip 400, and the output optical port is used for outputting the signal light after MZM modulation and splitting. .
  • MZM includes a first beam splitter, a first interference arm, a second interference arm, a first modulation electrode, a second modulation electrode, a heater, a light combining section, a second beam splitting section, a third beam splitting section, and The fourth optical splitter.
  • the input end of the first optical splitter is connected to the light source 500 through an optical fiber ribbon to receive the light input from the light source 500 into the silicon optical chip 400; the first output end of the first optical splitter is connected to the input end of the first interference arm, and the second output end is connected At the input end of the second interference arm, the first beam splitter divides the received light into two and sends it to the first interference arm and the second interference arm respectively; the first interference arm is provided with a first modulation electrode and a heater, and the first modulation The electrode and the heater work together on the first interference arm to modulate the light input into the first interference arm; a second modulation electrode is provided on the second interference arm, and the second modulation electrode acts on the second interference arm pair to input to the second interference arm.
  • the light in the interference arm is modulated; the output end of the first interference arm and the output end of the second interference arm are respectively connected to the input end of the light combining section, and the light combining section inputs the first interference arm and the second interference arm to the light Perform light combining processing; the output end of the light combining section is connected to the input end of the second light splitting section, the first output end of the second light splitting section is connected to the input end of the third light splitting section, and the second output end of the second light splitting section is connected to the fourth The input end of the optical splitting section; the first output end of the third optical splitting section is connected to the output optical port, the second output end of the third optical splitting section is used to transmit the split light to the DMPD402B; the first output end of the fourth optical splitting section will be The split light is transmitted to DMPD402B.
  • the second light splitting section inputs the light combining section into its light splitting into output light and monitoring light
  • the third light splitting section and the fourth light splitting section are used to realize the DMPD402B detection and comparison of the light intensity of the output light and the monitoring light.
  • the light intensity is used to realize the DMPD402B detection and comparison of the light intensity of the output light and the monitoring light.
  • the third light splitting unit splits a certain proportion of light from the output light to DMPD 402B, and the fourth light splitting unit splits the same proportion of light from the monitoring light to DMPD 402B.
  • the third optical splitting section splits 2% of the output light to DMPD402B, and the fourth optical splitting section splits 2% of the monitoring light to DMPD402B.
  • the DMPD402B receives the output light output from the second output end of the third beam splitter and the monitoring light output from the first output end of the fourth beam splitter, generates the first photocurrent according to the received output light, and generates the second photocurrent according to the monitoring hole.
  • the first photocurrent reflects the light intensity of the output light
  • the second photocurrent reflects the light intensity of the monitoring light
  • the first photocurrent and the second photocurrent determine whether the output pin of the DMPD is the output current or the input
  • the DMPD402B includes a first PD (Photo-Diode, photodiode, photodetector) and a second PD, and the first PD and the second PD are connected in series.
  • the cathode of the first PD is connected to the anode of the second PD
  • the output pin of the DMPD402B is connected between the cathode of the first PD and the anode of the second PD.
  • both the first PD and the second PD When both the first PD and the second PD receive light, it generates Photocurrent in the same direction; if the photocurrent generated by the first PD is large, the current transmitted on the output pin of DMPD402B flows into DMPD402B, that is, the current transmitted on the output pin of DMPD402B flows from the voltage comparison and conversion circuit 302A to DMPD402B ; If the photocurrent generated by the second PD is large, the current transmitted on the output pin of DMPD402B flows from DMPD402B, that is, the current transmitted on the output pin of DMPD402B flows from DMPD402B to the voltage comparison and conversion circuit 302A.
  • the first PD receives the signal light output from the second output end of the third light splitting unit
  • the second PD receives the signal light output from the first output end of the fourth light splitting unit.
  • Signal light it is also possible to select the first PD to receive the signal light output from the first output end of the fourth light splitting unit, and the second PD to receive the signal light output from the second output end of the third light splitting unit.
  • the silicon optical chip 400 further includes a third PD403A.
  • the third PD403A receives the signal light output from the second output end of the fourth light splitting unit, and monitors the signal light according to the signal light. The emitted light power of the optical module.
  • the photocurrent output terminal of the third PD403A is connected to a sampling circuit, the sampling circuit is connected to MCU31, the sampling circuit converts the photocurrent into a voltage signal and transmits it to MCU31, and MCU31 determines the optical module according to the received voltage signal The emitted light power.
  • a voltage comparison and conversion circuit 302A is provided in an embodiment of the present disclosure.
  • the voltage comparison conversion circuit 302A is used to convert and compare the current signal transmitted on the output pin of the DMPD402B into a positive voltage signal, thereby facilitating the MCU 31 to obtain and process data.
  • FIG. 14 is a schematic diagram of the internal structure of another optical module provided by an embodiment of the disclosure.
  • the voltage comparison and conversion circuit 302A includes an operational amplifier 3021 and a first resistor 3022.
  • the inverting input terminal of the operational amplifier 3021 is connected to the output pin of the DMPD402B, the non-inverting input terminal of the operational amplifier 3021 is used to provide a reference voltage, and the output terminal of the operational amplifier 302 is connected to the input terminal of the MCU31.
  • One end of the first resistor 3022 is connected between the inverting input terminal of the operational amplifier 3021 and the output pin of the DMPD402B, and the other end of the first resistor 3022 is connected between the output terminal of the operational amplifier 3021 and the input terminal of the MCU31.
  • the inverting input terminal of the operational amplifier 3021 receives the current output by the DMPD402B or inputs the current to the DMPD402B.
  • the non-inverting input terminal of the operational amplifier 3021 can be connected to the power supply pin on the circuit board 300 through a DC-DC chip, and the DC-DC chip provides a reference voltage to the non-inverting input terminal of the operational amplifier 3021.
  • the reference voltage can be selected according to the actual situation of the optical module, such as 1V, 0.9V, or 0.8V.
  • the operational amplifier 3021 and the first resistor 3022 combine to convert the current transmitted on the output pin of DMPD402B into voltage, and the resistance value of the first resistor 3022 can control the voltage comparison and conversion circuit 302A to convert the current transmitted on the output pin of DMPD402B into voltage The magnification.
  • the resistance value of the first resistor 3022 can be selected in combination with the size of the reference voltage and the size of the current transmitted on the output pin of the DMPD402B. In an embodiment of the present disclosure, if the selected reference voltage is relatively large and the current transmitted on the output pin of the DMPD402B is relatively small, the resistance of the first resistor 3022 is relatively large.
  • the input terminal of the MCU31 can usually select the analog-to-digital conversion interface (ADC) of the MCU31, and the MCU31 converts the analog signal input by the voltage comparison conversion circuit 302A to the MCU31 into a digital signal.
  • the MCU 31 corresponds the analog signal voltage obtained by the analog-to-digital converter interface with the value in the lookup table set inside the MCU to determine the digital signal voltage.
  • the output end of the MCU31 is connected to a heater, and a voltage is applied to the heater to make the heater work to heat the first interference arm.
  • the output terminal of the MCU31 can usually select the digital-to-analog conversion interface of the MCU31 to convert the digital signal voltage applied to the heater into an analog signal voltage.
  • MCU31 needs to adjust the size of the heater, it adjusts the digital signal voltage applied to the heater, and applies the analog signal voltage corresponding to the adjusted digital signal voltage to the heater.
  • the first PD receives the signal light output from the second output end of the third light splitting unit
  • the second PD receives the signal light output from the first end output end of the fourth light splitting unit
  • the heater is set in the first On the interference wall
  • the voltage comparison and conversion circuit 302A outputs a voltage according to the current, the first resistor 3022 and the reference voltage; if the light intensity of the output light is less than the light intensity of the monitoring light, the output photocurrent of the first PD is smaller than that of the second PD
  • the size of the output photocurrent, the current transmitted on the output pin of DMPD402B is the current that DMPD402B flows to the voltage comparison and conversion circuit 302A, and the voltage comparison and conversion
  • the operational amplifier 3021 inputs the analog signal of the voltage to the MCU31, and the MCU31 receives the analog signal of the output voltage of the operational amplifier 3021, converts the analog signal of the output voltage into a digital signal, and adjusts the voltage applied to the heater according to the digital signal, such as increasing Increase or decrease the voltage applied to the heater.
  • a reference voltage is set in the MCU31, and the output voltage of the output terminal of the operational amplifier 3021 is compared with the reference voltage.
  • the voltage applied to the heater is increased ; If the voltage output by the voltage comparison and conversion circuit is less than the reference voltage, reduce the voltage applied to the heater; when the voltage output by the voltage comparison and conversion circuit is equal to the reference voltage, keep the voltage applied to the heater at the previous moment.
  • the voltage applied by the heater is increased according to the first step, and the first step is greater than zero.
  • the first step is 0.01V, 0.02V, 0.05V, and so on.
  • the heater can be selected to increase the heater according to how much the voltage output by the voltage comparison and conversion circuit is greater than the reference voltage. The amount of applied voltage.
  • the voltage applied by the heater is reduced according to the second step, and the second step is greater than zero.
  • the second step is 0.01V, 0.02V, 0.05V, and so on.
  • the heater can be reduced according to how much the voltage output by the voltage comparison and conversion circuit is less than the reference voltage.
  • the amount of applied voltage for example: when the output voltage of the voltage comparison and conversion circuit is less than the reference voltage is relatively large, select a relatively large reduction to reduce the voltage applied to the heater; when the output voltage of the voltage comparison and conversion circuit is less than the reference voltage relatively When it is smaller, select a relatively small decrease amount to reduce the voltage applied to the heater.
  • a decrease of 0.03V is selected to reduce the voltage applied to the heater.
  • the output voltage V0 at the output terminal of the operational amplifier 3021 is 0.9V
  • the output pin of the DMPD402B transmits current; The direction and magnitude of the current transmitted on the output pin input voltage to MCU31.
  • MCU31 compares the input voltage with the reference voltage, and increases or decreases the voltage applied to the heater according to the comparison result; the heater heats up under the adjusted voltage
  • the intensity changes, and then the refractive index of the first interference arm changes.
  • the refractive index change of the first interference arm changes the phase of the light on the first interference wall, and the change of the light phase on the first interference wall will cause the second beam splitter.
  • the light intensity difference between the output light and the monitor light is reduced.
  • the output light and the monitoring light are cycled through the DMPD402B to monitor the heating intensity of the heater until the current transmitted on the output pin of the DMPD402B is close to 0 (the voltage received by the MCU31 is approximately equal to the reference voltage), and the light intensity of the output light and the monitoring light The light intensity is equal or close to equal, and the voltage applied by MCU31 to the heater is no longer changed. Once the voltage received by the MCU31 is not equal to the reference voltage, the MCU31 will adjust the voltage applied by the heater to maintain the MZM in the silicon optical chip at the operating point.
  • the heater may also be provided on the second interference arm. If the heater is set on the second interference arm, combined with the setting of the DMPD402B, and the MCU31 control logic is adjusted, the MZM in the silicon optical chip can be maintained at the operating point.
  • the voltage comparison and conversion circuit 302A further includes a first capacitor and a second capacitor.
  • One end of the first capacitor is connected to the non-inverting input end of the operational amplifier 3021, and the other end is grounded, one end of the second capacitor is connected to the non-inverting input end of the operational amplifier 3021, and the other end is grounded.
  • the first capacitor is used for filtering the non-inverting input end of the operational amplifier 3021, and the second capacitor is used for filtering the non-inverting input end of the operational amplifier 3021 to ensure the purity of the signal input to the operational amplifier 3021.
  • the voltage comparison and conversion circuit 302A further includes a third capacitor.
  • One end of the third capacitor is connected between the inverting input terminal of the operational amplifier 3021 and the output pin of the DMPD402B, and the other end of the third capacitor is connected between the output terminal of the operational amplifier 3021 and the input terminal of the MCU31.
  • the third capacitor is used to filter the operation of the operational amplifier 3021 to ensure the purity of the operation of the operational amplifier 3021.
  • the voltage comparison and conversion circuit 302A further includes a second resistor.
  • the second resistor is connected in series between the output terminal of the operational amplifier 3021 and the input terminal of the MCU31.
  • the second resistor facilitates the improvement of the accuracy of the voltage input from the voltage comparison and conversion circuit 302A to the MCU31.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本公开提供的光模块,电路板、光源以及设置在电路板上的硅光芯片、MCU、第一采样电路、第二采样电路和锁定电路;硅光芯片通过其输入光口接收光源发出的不携带信号的光,将不携带信号的光调制为信号光并通过硅光芯片的输出光口输出信号光;MCU与硅光芯片的直流偏置信号接口连接;第一采样电路与硅光芯片的第一监控光口连接,接收经第一监控光口传输的信号光并输出第一采样电压;第二采样电路与硅光芯片的第二监控光口连接,接收经所述第二监控光口传输的信号光并输出第二采样电压;锁定电路与硅光芯片的直流偏置信号接口连接。本公开的光模块中,使第一采样电压的幅度和第二采样电压的幅度相互逼近,进而使硅光芯片的维持在最佳工作点。

Description

一种光模块
本公开要求在2020年02月25日提交中国专利局、申请号为202010115310.3、发明名称为“一种光模块”、在2020年03月06日提交中国专利局、申请号为202010153331.4、发明名称为“一种光模块”、在2020年07月31日提交中国专利局、申请号为202010759086.1、发明名称为“一种光模块”、在2020年07月31日提交中国专利局、申请号为202021561951.3、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在云计算、移动互联网、视频等新型业务和应用模式,均会用到光通信技术。而在光通信中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。其中,采用硅光芯片实现光电转换功能已经成为高速光模块采用的一种主流方案。
在硅光光模块中,硅光芯片内包括MZ(Mach-Zehnder,马赫-曾德尔)调制器。激光器发射的光载波信号进入MZ调制器,高速数据流以驱动电压的方式加载到光载波信号上完成对光的调制。在本公开的某一实施例中,到达MZ调制器的光载波信号被分成两束振幅和频率完全相同的光通过上下两个支路(两臂)进行传输,分别在调制区域加有调制电压,由于电光感应改变了调制器材料的折射率,从而使得两个支路信号出现了相位差。所产生的相位差为π/2时,MZ调制器的相对输出光强度与电极电压成线性关系,此时输出信号的动态范围和转化效率都为最大值。因此,为保证输出信号质量,需要将MZ调制器稳定在相位差为π/2状态的最佳工作点。
但是随着时间、环境温度、激光器状态、光纤的插入及耦合损耗等一系列外部条件的影响,调制器的最佳工作点会发生漂移,从而造成输出信号质量变差、误码率增加等不良效果。
发明内容
一方面,本公开提供的一种光模块,包括:电路板;光源,与电路板电连接,用于发出不携带信号的光;硅光芯片,设置在电路板上与电路板电连接,通过硅光芯片的输入光口接收光源发出的不携带信号的光,将不携带信号的光调制为信号光并通过硅光芯片的输出光口输出信号光;MCU,设置在电路板上,与硅光芯片的直流偏置信号接口连接,用于向直流偏置信号接口输送直流偏置信号以控制硅光芯片内的电加热强度;第一采样电路,设置在电路板上,与硅光芯片的第一监控光口连接,用于接收经第一监控光口传输的信号光并根据信号光输出第一采样电压;第二采样电路,设置在电路板上,与硅光芯片的第二监控光口连接,用于接收经第二监控光口传输的信号光并根据信号光输出第二采样电压;锁定电路,设置在电路板上,与硅光芯片的直流偏置信号接口连接,用于根据第一采样电压和第二采样电压向直流偏置信号接口输送直流偏置信号以控制硅光芯片内的电加热强 度。
另一方面,本公开提供的一种光模块,包括:用于输出光信号的激光盒、用于调制光信号的硅光芯片和用于供电和提供电信号的电路板;硅光芯片,与激光盒连接,内部设置有用于调制光信号的MZM调制器;MZM调制器包括:第一分光器、两个干涉臂、两个调制电极、两个加热器、第三分光器及两个第二分光器;两个第二分光器,分别设置于两个干涉臂的一端,用于将两个干涉臂上的一束光信号分为一束比例较小的光信号和一束比例较大的光信号;电路板上设置有两个电信号采样组件和MCU;两个电信号采样组件,分别与两个第二分光器连接,分别用于根据比例较小的光信号得到对应的采样电压;MCU,与两个电信号采样组件连接,用于对比分析两个采样电压,并根据对比分析结果对两个加热器增加或者减小驱动电功率。
另一方面,本公开提供的一种光模块,包括:电路板;光源,与电路板电连接,用于发出不携带信号的光;硅光芯片,设置在电路板上与电路板电连接,包括马赫-增德尔电光调制器、输入光口、输出光口、第一采样电路和第二采样电路,光源发出的不携带信号的光通过输入光口进入马赫-增德尔电光调制器,经马赫-增德尔电光调制器将不携带信号的光调制为信号光并将信号光分为输出光和监控光,第一采样电路检测输出光的光强,第二采样电路检测监控光的光强,输出光通过输出光口输出硅光芯片;马赫-增德尔电光调制器包括加热器,加热器设置在马赫-增德尔电光调制器的干涉臂上;比较电路,设置在电路板上,包括第一输入端、第二输入端和输出端,第一输入端连接第一采样电路的输出端,第二输入端连接第二采样电路的输出端,输出端输出比较电压;MCU,设置在电路板上,输入端连接比较电路的输出端,输出端连接加热器,用于根据比较电路输出的比较电压调整向加热器施加的电压以控制加热器的加热强度。
另一方面,本公开提供的一种光模块,包括:电路板;光源,与电路板电连接,用于发出不携带信号的光;硅光芯片,与电路板电连接,包括马赫-增德尔电光调制器、输入光口、输出光口和监控光电二极管单元,光源发出的不携带信号的光通过输入光口进入马赫-增德尔电光调制器,经马赫-增德尔电光调制器将不携带信号的光调制为信号光并将信号光分为输出光和监控光,监控光电二极管单元检测比较输出光的光强和监控光的光强,输出光通过输出光口输出硅光芯片;马赫-增德尔电光调制器包括加热器,加热器设置在马赫-增德尔电光调制器的干涉臂上;电压比较转换电路,设置在电路板上,输入端连接监控光电二极管单元的输出引脚,根据输出引脚上传输的电流输出比较电压;MCU,设置在电路板上,输入端连接电压比较转换电路的输出端,输出端连接加热器,用于根据电压比较转换电路输出的比较电压调整向加热器施加的电压以控制加热器的加热强度。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例提供的一种光模块结构示意图;
图4为本公开实施例提供光模块分解结构示意图;
图5为本公开实施例提供的一种光模块的内部结构框图;
图6为本公开实施例提供的驱动第一加热器的响应曲线;
图7为本公开实施例提供的驱动第二加热器的响应曲线;
图8为本公开实施例提供的另一种光模块的内部结构框图;
图9为本公开实施例提供的一种锁定电路的结构示意图;
图10为本公开实施例提供的光模块的调试原理结构图;
图11为本公开实施例提供的另一种光模块的内部结构示意图;
图12为本公开实施例提供的另一种光模块的内部结构示意图;
图13为本公开实施例提供的另一种光模块的内部结构示意图;
图14为本公开实施例提供的另一种光模块的内部结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接; 在本申请某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,在本申请某一实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、硅光芯片400、光源500及光纤插座600。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,在本申请某一实施例中,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的硅光芯片;电路板300、硅光芯片400、光源500等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、硅光芯片400等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动 化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本申请某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
硅光芯片400设置在电路板300上,与电路板300实现电连接,具体可以是打线连接;硅光芯片的周边与电路板300之间通过多条导电线连接,所以硅光芯片400一般设置在电路板300的表面。
硅光芯片400与激光盒500之间通过第一光纤带401实现光连接,硅光芯片400通过第一光纤带401接收来自激光盒500的光,进而对光进行调制,具体为将信号加载到光上;硅光芯片400接收来自光纤插座600的光,进而将光信号转换为电信号。
硅光芯片400与光纤插座600之间通过第二光纤带402A实现光连接,光纤插座600实现与光模块外部光纤的光连接。硅光芯片400调制的光通过第二光纤带402A传输至光纤插座600,通过光纤插座600传输至外部光纤;外部光纤传来的光通过光纤插座600传输至光纤带401,通过第二光纤带402A传输至硅光芯片400中;从而实现硅光芯片400向光模块外部光纤输出携带数据的光,或从光模块外部光纤接收携带数据的光。
为完成光的调制,硅光芯片400包括MZ调制器,MZ调制器包括第一分光器、第一干涉臂、第二干涉臂、第一调制电极、第二调制电极、第一加热器、第二加热器和合光器。第一分光器的输入端与第一光纤带光连接,用于接收来自激光盒500的光;第一分光器的第一输出端连接第一干涉臂的一端、第二输出端连接第二干涉臂的一端,第一分光器将接收到的光一分为二分别输送至第一干涉臂和第二干涉臂;第一干涉臂上设置第一调制电极和第一加热器,第一调制电极和第一加热器共同作用于第一干涉臂对输入至第一干涉臂内的光进行调制;第二干涉臂上设置第二调制电极和第二加热器,第二调制电极和第二加热 器共同作用于第二干涉臂对输入至第二干涉臂内的光进行调制;第一干涉臂的另一端连接合光器的第一输入端、第二干涉臂的另一端连接合光器的第二输入端,合光器将第一干涉臂和第二干涉臂输入至其的光进行合光处理,进而完成信号加载到光上。
在本公开实施例中,硅光芯片400上设置输入光口、输出光口、监控光口、高速电信号接口和直流偏置信号接口。输入光口用于将激光盒500输出的光耦合进入硅光芯片内部;输出光口用于将调制后的信号光耦合出硅光芯片400;监控光口从信号光中分出部分用于监控;高速电信号接口用于输入高速电信号,完成光调制;直流偏置信号接口输入直流偏置电压或电流信号,施加到硅光芯片中的加热器上。
第一分光器可将输入至其的光分为两束光强相同的光束,也可将输入至其的光分为两束光强不相同的光束。第一调制电极和第二调制电极利用电光感应改变了调制器材料的折射率,将电路板输出的调制信号转化为调制光信号,并利用调制光信号将两个干涉臂上的不携带数据的直流光信号转化为交变光信号。第一加热器和第二加热器根据直流偏置信号接口输入的直流偏置信号对两个干涉臂进行电加热,进而控制两个干涉臂上传输的交变光信号的相位差恒定,如通过驱动电流或驱动电压控制两个干涉臂上传输的交变光信号的相位差恒定。在本公开的某一实施例中,两个加热器根据驱动电压,控制两个加热器工作,给两个干涉臂升温或者降温。加热器给干涉臂加热或者降温,改变两个干涉臂的折射率,从而改变进入两个加热器的两束交变光信号的光程差,进而改变通过两个加热器的两束交变光信号的相位差,使得通过上两个加热器的两束交变光信号的相位差在π/2。
电光调制作用所产生的相位差为π/2时,电光调制器的相对输出光强度与电极电压成线性关系,此时输出信号的动态范围和转化效率都是最大值,因此需要在电极电压中加入适当的直流成分,以保证建立适当的工作点,该直流成分对两路光波形成π/2的相位差时,可以实现线性调制,即需要外加直流偏置电压,使工作点稳定在相位差为π/2的状态。但是随着时间、环境温度、激光器状态、光纤的插入及耦合损耗等一系列外部条件的影响,调制器的最佳工作点会发生漂移,从而造成信号质量变差,误码率增加等不良效果。因此,本公开实施例提供的光模块通过单片机和模拟电路,用于保证最佳工作点长期处于稳定的状态。
在本公开实施例中,电路板上还设置MCU、第一采样电路、第二采样电路和锁定电路。其中,MCU电连接第一采样电路、第二采样电路和锁定电路,第一采样电路和第二采样电路还电连接锁定电路。在本实施例中,MCU与硅光芯片的直流偏置信号接口连接,MCU通过直流偏置信号接口向硅光芯片内的加热器输送直流偏置信号以控制所述硅光芯片内的电加热强度;第一采样电路与硅光芯片的第一监控光口连接,用于接收经第一监控光口传输的信号光并根据该信号光输出第一采样电压;第二采样电路与硅光芯片的第二监控光口连接,用于接收经第二监控光口传输的信号光并根据信号光输出第二采样电压;锁定电路与硅光芯片的直流偏置信号接口连接,用于根据第一采样电压和第二采样电压向直流偏置信号接口输送直流偏置信号以控制硅光芯片内的电加热强度。
例如:MCU输出通过直流偏置信号接口向硅光芯片内的加热器依次输送直流偏置信号,获得依次对应的光模块输出光功率,根据对应的光模块输出光功率选择反应效率较高 的加热器;锁定电路根据获得的第一采样电压和第二采样电压通过直流偏置信号接口向硅光芯片的反应效率较高的加热器输送直流偏置信号,驱动该加热器,使第一采样电压的幅度和第二采样电压的幅度相互逼近,进而使硅光芯片的维持在最佳工作点。因此,本公开实施例提供的光模块中,通过MCU和锁定电路协同作用,是硅光芯片的维持在最佳工作点。
下面结合具体实例对本公开提供的光模块进行详细描述。
图5为本公开实施例提供的一种光模块的内部结构框图。如图5所示,本公开实施例中,硅光芯片400上设置的MZ调制器中还包括第二分光器和第三分光器。第二分光器设置在第一干涉臂上、且位于第一干涉臂上靠近合光器的一端。第二分光器用于将第一干涉臂上的调制后的光从第一干涉臂的输出光路上分出一部分至第一监控光口。第二分光器可分出第一干涉臂的输出光路上2%、4%等强度的信号光。第三分光器设置在第二干涉臂上、且位于第二干涉臂上靠近合光器的一端。第三分光器用于将第二干涉臂上的调制后的光从第二干涉臂的输出光路上分出一部分至第二监控光口。第三分光器可分出第二干涉臂的输出光路上2%、4%等强度的信号光。第二分光器和第三分光器可分出相同比例光强额信号光。
如图5所示,本公开实施例中,光模块中还包括MCU31、锁定电路32、第一采样电路33和第二采样电路34。其中,MCU31、锁定电路32、第一采样电路33和第二采样电路34设置在电路板300上,第一采样电路33和第二采样电路34电连接MCU31和锁定电路32,并且第一采样电路33与硅光芯片400的第一监控光口连接,第二采样电路34与硅光芯片400的第二监控光口连接。
如图5所示,第一采样电路33接收通过第二分光器从第一干涉臂的输出光路上分出的信号光,第二采样电路34接收通过第三分光器从第二干涉臂的输出光路上分出的信号光。进而第一采样电路33根据接收到的信号光输出相对应的第一采样电压,第二采样电路34用于根据接收到的信号光输出相对应的第二采样电压。MCU31和锁定电路32接收第一采样电压和第二采样电压。
在本公开的某一实施例中,第一采样电路33包括第一光电探测器和第一采样电阻,第一光电探测器的一端与外接电源连接、另一端分别连接所述第一采样电阻的一端、MCU31和锁定电路32,第一采样电阻的另一端接地。第二分光器从第一干涉臂的输出光路上分出的信号光通过第一监控光口传输至第一光电探测器上,第一光电探测器将接收到光信号装换为光电流,经过第一采样电阻将光电流转化为电压信号第一采样电压传输至MCU31和锁定电路32。
在本公开的某一实施例中,第二采样电路34包括第二光电探测器和第二采样电阻,第二光电探测器的一端与外接电源连接、另一端分别连接所述第二采样电阻的一端、MCU31和锁定电路32,第二采样电阻的另一端接地。第三分光器从第二干涉臂的输出光路上分出的信号光通过第二监控光口传输至第二光电探测器上,第二光电探测器将接收到光信号装换为光电流,经过第二采样电阻将光电流转化为电压信号第二采样电压传输至MCU31和锁定电路32。
在本公开实施例中,MCU31可负责对硅光芯片400、第一采样电路33、第二采样电路34和锁定电路32进行控制,协调组织硅光芯片400、第一采样电路33、第二采样电路34和锁定电路32的工作。
为控制MZ调制器最佳工作点,在本公开实施例中,通过MCU31的两个IDAC口分别输出电流信号,依次施加到第一加热器和第二加热器上,按照第一加热器和第二加热器的特性进行全量程扫描,根据第一采样电压和第二采样电压,绘制响应曲线,选取其中一路效率较高的加热器作为以后使用,而另外一路加热器废弃(不使用)。当确定出效率较高的加热器后,锁定电路32对第一采样电压和第二采样电压幅值大小进行识别、运算然后输出驱动电流或驱动电压至效率较高的加热器,以控制MZ调制器处于最佳工作点,实现MZ调制器最佳工作点的锁定。
如,当MCU31的第一个IDAC口输出电流信号施加到第一加热器上,电流范围从0mA逐步增加到约100mA。图6为第一个IDAC口输出电流信号的响应曲线,其中,横坐标数字1到1000表示电流0mA到100mA,纵坐标表示第一采样电压和第二采样电压转换后的功率值,图中MPD1为第一光电探测器,MPD2为第二光电探测器。
如,当MCU31的第二个IDAC口输出电流信号施加到第二加热器上,电流范围从0mA逐步增加到约100mA。图7为第一个IDAC口输出电流信号的响应曲线,其中,横坐标数字1到1000表示电流0mA到100mA,纵坐标表示第一采样电压和第二采样电压转换后的功率值,图中MPD1为第一光电探测器,MPD2为第二光电探测器。
根据图6中可知,驱动第一加热器,到达功率平衡点-4dBm时,IDAC口输出电流约40mA(横坐标400)。根据图7中可知,驱动第二加热器,到达功率平衡点-3dBm时,IDAC口输出电流约1mA(横坐标10)。比较可知第二加热器的效率较高,通过锁定电路32对第一采样电压和第二采样电压幅值大小进行识别、运算然后输出驱动电流或驱动电压至第二加热器,以控制MZ调制器处于最佳工作点,实现MZ调制器最佳工作点的锁定。
其中,MCU31内设置有模数转换器和数模转换器,模数转换器用于将模拟信号的采样电压转化为数字信号的采样电压,数模转换器用于将数字信号的加热电流信号转化为模拟信号的加热电流信号。由于MCU31内部的计算都是以数字信号的数据进行计算,输入MCU31的数据要求为数字信号,但未输入至MCU31的采样电压为模拟信号,因此,需要在MCU31内设置模数转换器。又由于MCU31需要输出模拟信号的加热电流信号,则需要在MCU31内也设置数模转换器。
因此,本实施例提供的光模块,电路板300上设置MCU31、第一采样电路33、第二采样电路34和锁定电路32,MCU31和锁定电路32分别与第一加热器和第二加热器电连接,以及在MZ调制器中靠近合光器的一端设置第二分光器和第三分光器;第一采样电路33通过接收第二分光器分出的信号光获得第一采样电压,用于监控第一干涉臂上的信号光;第二采样电路34通过接收第三分光器分出的信号光获得第二采样电压,用于监控第二干涉臂上的信号光。本公开实施例提供的光模块中,MCU31和锁定电路32协同根据第一采样电压和第二采样电压,对第一加热器或第二加热器的直流偏置信号进行调整,以调整第一干涉臂或第二干涉臂上加热器的加热强度,进而以调整第一干涉臂或第二干涉臂上的工 作温度,进而使第一干涉臂和第二干涉臂中电光调制作用产生π/2的恒定相位差,使第一采样电压的幅度和第二采样电压的幅度相互逼近,以控制MZ调制器最佳工作点。
图8为本公开实施例提供的另一种光模块的内部结构框图。如图8所示,本公开实施例中,锁定电路32包括双通道模拟开关子电路321、运放子电路322和单通道模拟开关子电路323。双通道模拟开关子电路321的输入端分别电连接第一采样电路33和第二采样电路34,双通道模拟开关子电路321的输出端分别电连接运放子电路322的输入端;运放子电路322的输出端电连接单通道模拟开关子电路323的输入端,单通道模拟开关子电路323的输出端电连接第一加热器和第二加热器。
在本公开的某一实施例中,双通道模拟开关子电路321接收通过第一采样电路33转化获得的第一采样电压和通过第二采样电路34转化获得的第二采样电压,对第一采样电压和第二采样电压的电压幅值大小进行识别并将第一采样电压和第二采样电压输送至运放子电路322的输入端。运放子电路322的对正负输入端的电压差进行放大,并将放大后的信号输入给单通道模拟开关子电路323的输入端。在MCU31的控制下,单通道模拟开关子电路323将运放子电路322输出的信号施加到被选中的效率较高的加热器上。
图9为本公开实施例提供的锁定电路32的结构示意图。如图9所示,双通道模拟开关子电路321包括比较器3211、第一模拟开关3212和第二模拟开关3213。比较器3211的同向输入引脚连接第一采样电路33,比较器3211的反向输入引脚连接第二采样电路34,比较器3211的输出引脚分别连接第一模拟开关3212和第二模拟开关3213的输入引脚。第一模拟开关3212的常闭引脚连接第一采样电路33,第一模拟开关3212的常开引脚连接第二采样电路34。第二模拟开关3213的常开引脚连接第一采样电路33,第二模拟开关3213的常闭引脚连接第二采样电路34。第一模拟开关3212和第二模拟开关3213的输出引脚连接运放子电路322的输入端。在本公开的某一实施例中,比较器3211可为MAX999,第一模拟开关3212和第二模拟开关3213可为SGM4157。
在本公开的某一实施例中:比较器3211从其同向输入引脚和反向输入引脚输入的第一采样电压和第二采样电压并判定第一采样电压和第二采样电压的电压幅值大小,根据第一采样电压和第二采样电压的电压幅值大小输出控制信号作用于第一模拟开关3212和第二模拟开关3213,以使第一模拟开关3212输出第一采样电压和第二采样电压中电压幅值较大的一个电压、第二模拟开关3213输出第一采样电压和第二采样电压中电压幅值较小的一个电压。
在本公开的某一实施例中,如图9所示,运放子电路322包括第一运算放大器3221和第二运算放大器3222。第一运算放大器3221的同向输入引脚连接第一模拟开关3212的输出引脚,第一运算放大器3221的反向输入引脚连接第二模拟开关3213的输出引脚;第一运算放大器3221的输出引脚连接第二运算放大器3222的同向输入引脚,第二运算放大器3222的反向输入引脚连接第二运算放大器3222的输出引脚,第二运算放大器3222的输出引脚连接单通道模拟开关子电路323的输入端。在本公开的某一实施例中,第一运算放大器3221和第二运算放大器3222可为OPA354。
在本公开的某一实施例中:第一运算放大器3221通过同向输入引脚接收第一采样电 压和第二采样电压中电压幅值较大的一个电压信号、通过反向输入引脚接收第一采样电压和第二采样电压中电压幅值较小的一个电压信号,第一运算放大器3221将同向输入引脚和反向输入引脚之间电压信号的幅度差进行放大。放大后的幅度差输送至第二运算放大器3222,第二运算放大器3222积分加驱动放大,第二运算放大器3222输出电流对第一加热器或第二加热器进行控制。第二运算放大器3222用于增加驱动能力。由于第二运算放大器3222的反馈作用,使得第一运算放大器3221的同向输入引脚和反向输入引脚接收第一采样电压和第二采样电压的电压幅值逐渐逼近,从而实现了MZ调制器工作点的锁定。
在本公开的某一实施例中,如图9所示,在本公开实施例中,运放子电路322还包括积分组件,所述积分组件包括第一电阻和第一电容。第一电阻串联于第一运算放大器3221的输出引脚和第二运算放大器3222的同向输入引脚之间;第一电容的一端连接第一电阻和第二运算放大器3222的同向输入引脚,第一电容的另一端接地。积分组件与第一运算放大器3221结合更加准确的完成积分放大的控制。
在本公开的某一实施例中,如图9所示,在本公开实施例中,运放子电路322还包括驱动放大组件,所述驱动放大组件包括第二电阻、第二电容和第三电阻。第二电阻串联于第二运算放大器3222的反向输入引脚和第二运算放大器3222的输出引脚之间;第二电容与第二电阻并联;第三电阻的一端连接第二运算放大器3222的反向输入引脚、另一端接地。驱动放大组件与第二运算放大器3222结合实现第二运算放大器3222放大倍数的调整和控制,更急便于准确的完成驱动放大的控制。
更在本公开的某一实施例中,如图9所示,第二运算放大器3222的输出引脚与单通道模拟开关子电路323之间设置第四电阻,第四电阻具有分压作用,用于降低第二运算放大器3222输出电流的电压。
在本公开的某一实施例中,如图9所示,在本公开提供的锁定电路32还包括第一滤波子电路324和第二滤波子电路325。第一滤波子电路324串联于第一采样电路33的输出端和双通道模拟开关子电路321的输入端,第二滤波子电路325串联于第二采样电路34输出端和双通道模拟开关子电路321的输入端。第一滤波子电路324用于滤除第一采样电压中的杂波,提高第一采样电压的平整性;第二滤波子电路325用于滤除第二采样电压中的杂波,提高第二采样电压的平整性。
在本公开的某一实施例中:第一滤波子电路324包括第五电阻、第三电容和第四电容,第二滤波子电路325包括第六电阻、第五电容和第六电容。第五电阻的一端连接双通道模拟开关子电路321的输入端和第一采样电路33的输出端、另一端接地,第三电容的一端连接双通道模拟开关子电路321的输入端和第一采样电路33的输出端、另一端连接第五电阻的另一端,第四电容与第三电容并联。第六电阻的一端连接双通道模拟开关子电路321的输入端和第二采样电路34的输出端、另一端接地,第五电容的一端连接双通道模拟开关子电路321的输入端和第二采样电路34的输出端、另一端连接第六电阻的另一端,第六电容与第五电容并联。
图10为本公开实施例提供的光模块的调试原理结构图。如图10所示,本公开实施例中,光模块包括马赫曾德调制器、两个电信号采样组件、MCU和两个电阻。
马赫曾德调制器包括第二分光器及第三分光器,分别设置于两个干涉臂的一端,用于将干涉臂上的光信号分为一束比例较小的光信号和一束比例较大的光信号。
两个电信号采样组件,分别与硅光芯片打线连接,分别用于根据比例较小的光信号得到对应的采样电压。在本公开的某一实施例中,电信号采样组件与硅光芯片内的马赫曾德调制器的第二分光器或第三分光器打线连接。两个电信号采样组件分别获得两个干涉臂输出的比例小的光信号,并将比例小的光信号转化为电压信号,得到采样电压。
电信号采样组件包括光电探测器和采样电阻,光电探测器与采样电阻电连接,可以打线连接。
光电探测器,一端与外接电源电连接,用于将比例较小的光信号转化为采样电流。在本公开的某一实施例中,由于两个干涉臂在调制电极的作用下,直流光信号转化为交变光信号,经过第二分光器或第三分光器分出的光信号为交变光信号,则光电探测器将感知到的比例较小的交变光信号转化为采样电流。
采样电阻,一端与光电探测器电连接,另一端接地,用于将采样电流转化为采样电压。在本公开的某一实施例中,采样电流经过采样电阻分压,得到采样电压。
MCU,与两个电信号采样组件电连接,可以贴片连接,用于对比分析两个采样电压,并根据对比分析结果对两个加热器增加或者减少驱动电功率。本公开中,增加驱动电功率可以通过增加驱动电压来实现,减少驱动电功率可以通过减少驱动电压来实现。在本公开的某一实施例中,两个电信号采样组件将得到的两个采样电压值传输至MCU中,MCU根据两个采样电压值,判断两个采样电压值是否相等。由于MZM调制器处于最佳工作点时,两个加热器的驱动电压应该相等,且等于标准驱动电压。标准驱动电压为MZM调制器处于最佳工作点时,两个加热器的驱动电压。例如,可以将两个加热器的标准驱动电压设置为1.5V。当对比分析结果是两个采样电压值相等时,MCU输出至两个加热器的驱动电压相等,且该驱动电压等于标准驱动电压。当对比分析结果是两个采样电压值不相等时,MCU输出至两个加热器的驱动电压不相等。采样电压值大的对应的加热器的驱动电压减小,该驱动电压减小后等于标准驱动电压。采样电压值小的对应的加热器驱动电压增大,该驱动电压增大后等于标准驱动电压。
两个电阻,一端与MCU的另一端贴片连接,另一端与对应的加热器打线连接,用于分压。在本公开的某一实施例中,MCU输出的两个加热电流信号分别经过电阻分压后转化为两个驱动电压,两个驱动电压传输至两个加热器。
当对比分析结果是两个采样电压值相等时,MCU输出两个相等的加热电流信号至两个加热器。在本公开的某一实施例中,当两个采样电压相等时,MCU输出两个相等的加热电流信号,两个加热电流信号经过电阻分压后转化为两个相等的驱动电压,两个相等的驱动电压被传输至两个加热器。
例如,加热器A位于上干涉臂的一侧,加热器B位于下干涉臂的一侧,电信号采样组件A对应上干涉臂,电信号采样组件A得到的上干涉臂的采样电压A,电信号采样组件B对应下干涉臂,电信号采样组件B得到的下干涉臂的采样电压B,MCU输出的两个加热电流信号包括第一加热电流信号和第二加热电流信号,第一加热电流信号等于第二加热电 流信号。第一加热电流信号和第二加热电流信号可以传输至加热器A或者加热器B。在本公开的某一实施例中,当第一加热电流信号传输至加热器A时,第二加热电流信号传输至加热器B;当第一加热电流信号传输至加热器B时,第二加热电流信号传输至加热器A。
当对比分析结果是两个采样电压值不相等时,输出两个不相等的加热电流信号至两个加热器,其中,较大的加热电流信号被传输至较小采样电压对应的加热器,较小的加热电流信号被传输至较大采样电压对应的加热器。在本公开的某一实施例中,当两个采样电压不相等时,MCU输出两个不相等的加热电流信号,两个不相等的加热电流信号经过电阻分压后转化为两个不相等的驱动电压,两个不相等的驱动电压分别传输至两个加热器。采样电压值大的对应的加热器的驱动电压减小,该驱动电压减小后等于标准驱动电压。采样电压值小的对应的加热器驱动电压增大,该驱动电压增大后等于标准驱动电压。
例如,加热器A位于上干涉臂的一侧,加热器B位于下干涉臂的一侧,电信号采样组件A对应上干涉臂,电信号采样组件A得到的上干涉臂的采样电压A,电信号采样组件B对应下干涉臂,电信号采样组件B得到的下干涉臂
的采样电压B,MCU输出的两个加热电流信号包括第一加热电流信号和第二加热电流信号,第一加热电流信号大于第二加热电流信号。当采样电压A大于采样电压B时,第一加热电流信号被传输至采样电压B对应的加热器B,加热器B的驱动电压减小,至标准驱动电压;第二加热电流信号被传输至采样电压A对应的加热器A,加热器B的驱动电压增大,至标准驱动电压(由于第二加热电流信号增大后的电流信号等于标准驱动电压对应的标准加热电流信号)。
MCU内设置有模数转换器和数模转换器,模数转换器用于将模拟信号的采样电压转化为数字信号的采样电压,数模转换器用于将数字信号的加热电流信号转化为模拟信号的加热电流信号。由于MCU内部的计算都是以数字信号的数据进行计算,输入MCU的数据要求为数字信号,但未输入至MCU的采样电压为模拟信号,因此,需要在MCU内设置模数转换器。
又由于MCU需要输出模拟信号的加热电流信号,则需要在MCU内也设置数模转换器。
本公开提供了一种光模块,包括用于输出光信号的激光盒、用于调制光信号的硅光芯片和用于供电和提供电信号的电路板。硅光芯片内设置有马赫曾德调制器,马赫曾德调制器用于调制光信号。马赫曾德调制器包括第一分光器、两个干涉臂、两个调制电极、两个加热器、第二分光器、第三分光器及合光器。第二分光器或第三分光器用于将两个干涉臂上的光信号分为一束比例较小的光信号和一束比例较大的光信号。电路板上设置有两个电信号采样组件和MCU。两个电信号采样组件分别用于根据比例较小的光信号得到对应的采样电压。MCU用于对比分析两个采样电压,并根据对比分析结果对两个加热器增加或者减小驱动电功率。本公开,电信号采样组件分别采集两个干涉臂上的光信号得到采样电压,MCU根据两个采样电压的对比结果,控制两个加热器增加或者减小驱动电压。其中,采样电压小的干涉臂对应的加热器增加驱动电压,采样电压大的干涉臂对应的加热器减小驱动电压。这可以使得两个加热器的驱动电压保持恒定,调制器的工作点稳定在最佳工作 点,进而提高光模块的传输的信号质量,减少传输误码。
图11为本公开实施例提供的另一种光模块的内部结构示意图。如图11所示,硅光芯片400包括MZM、第一采样电路402和第二采样电路403。硅光芯片400上还包括设置输入光口和输出光口,输入光口用于光源500向硅光芯片400内不携带信号的光,输出光口用于输出经MZM调制分束后的信号光。
如图11所示,MZM包括第一分光器、第一干涉臂、第二干涉臂、第一调制电极、第二调制电极、加热器、合光部、第二分光部、第三分光部和第四分光部。第一分光器的输入端通过光纤带连接光源500,接收光源500输入至硅光芯片400内的光;第一分光器的第一输出端连接第一干涉臂的输入端、第二输出端连接第二干涉臂的输入端,第一分光器将接收到的光一分为二分别输送至第一干涉臂和第二干涉臂;第一干涉臂上设置第一调制电极和加热器,第一调制电极和加热器共同作用于第一干涉臂对输入至第一干涉臂内的光进行调制;第二干涉臂上设置第二调制电极,第二调制电极作用于第二干涉臂对输入至第二干涉臂内的光进行调制;第一干涉臂的输出端和第二干涉臂的输出端分别连接合光部的输入端,合光部将第一干涉臂和第二干涉臂输入至其的光进行合光处理;合光部的输出端连接第二分光部的输入端,第二分光部的第一输出端连接第三分光部的输入端,第二分光部的第二输出端连接第四分光部的输入端;第三分光部的第一输出端连接输出光口,第三分光部的第二输出端用于件分束的光传输至第一采样电路402;第四分光部的第二输出端将分束的光传输至第二采样电路403。在本实施例中,第二分光部将合光部输入至其光分束为输出光和监控光,第三分光部和第四分光部用于实现第一采样电路402和第二采样电路403检测比较输出光的光强和监控光的光强。
在本公开的某一实施例中,第三分光部从输出光中分出一定比例的光至第一采样电路402,如第三分光部从输出光中分出2%、3%……比例的光至第一采样电路402;第四分光部从监控光分出相同比例的光至第二采样电路403。在本公开的某一实施例中,第三分光部从输出光中分出2%光至第一采样电路402,第四分光部从监控光分出2%光至第二采样电路403。第一采样电路402接收从第三分光部的第二输出端输出的输出光和第二采样电路403接收从第四分光部的第一输出端输出的监控光,第一采样电路402根据接收到的输出光产生第一光电流并通过输出端输出第一采样电压以及第二采样电路403根据监控孔产生第二光电流并通过输出端输出第二采样电压,第一采样电压反应输出光的光强、第二采样电压反应监控光的光强;比较电路302接收并比较第一采样电压和第二采样电压,然后输出比较电压至MCU31。通过比较电路302比较第一采样电压和第二采样电压可以确定输出光的光强和监控光的光强是否相等。
在本公开实施例中,第一采样电路402和第二采样电路403分别包括光电探测器和采样电阻,相应的光电探测器用于接收输出光或监控光。在本公开的某一实施例中:第一采样电路402包括第一光电探测器和第一采样电阻,第一光电探测器的输出端连接第一采样电阻的一端,第一采样电阻的另一端接地,第一光电探测器的输出端第一采样电路的输出端,第一光电探测器接收第三分光部的第一输出端输出的信号光;第二采样电路包括第二光电探测器和第二采样电阻,第二光电探测器的输出端连接第二采样电阻的一端,第二采 样电阻的另一端接地,第二光电探测器的输出端第二采样电路的输出端,第二光电探测器接收第四分光部的第二输出端输出的信号光。第一光电探测器接收第三分光部的第一输出端输出的信号光并将该光转换为光电流,经过第一采样电阻将光电流转化为电压信号第一采样电压传输至比较电路302;第二光电探测器接收第四分光部的第二输出端输出的信号光将该光转换为光电流,经过第二采样电阻将光电流转化为电压信号第二采样电压传输至比较电路302。比较电路302有助于方便MCU31完成采样监测。
在本公开的某一实施例中,在本公开实施例中,硅光芯片400还包括第三光电探测器404,第三光电探测器404接收第四分光部的第二输出端输出的信号光,根据该信号光监测光模块的发射光功率。在本公开的某一实施例中,第三光电探测器404的光电流输出端连接采样电路,采样电路连接MCU31,采样电路将光电流转换为电压信号传输至MCU31,MCU31根据接收到的电压信号确定光模块的发射光功率。
图12为本公开实施例提供的另一种光模块的内部结构示意图。如图12所示,比较电路302包括比较器3021;比较器3021的反相输入端连接所第一采样电路402的输出端,比较器3021的同相输入端连接第二采样电路403的输出端,比较器3021的输出端连接MCU31的输入端。
在本公开的某一实施例中,比较器3021接收第一采样电压和第二采样电压,比较第一采样电压和第二采样电压的大小,若第一采样电压大于第二采样电压(输出光的光强大于监控光的光强),则比较器3021输出低电平至MCU31;若第一采样电压小于第二采样电压(输出光的光强大于监控光的光强),则比较器3021输出高电平至MCU31。MCU31根据接收到的高、低电平调整向加热器施加的电压。如:MCU31根据接收到的高电平,增大向加热器施加的电压;MCU31根据接收到的低电平,减小向加热器施加的电压。
或者,比较器3021接收第一采样电压和第二采样电压,比较第一采样电压和第二采样电压的大小,输出第一采样电压和第二采样电压之间的比较电压(第二采样电压-第一采样电压),MCU31的输入端接收该比较电压,根据该比较电压调整向加热器施加的电压。MCU31的输入端通常可以选择MCU31的模数转换接口(ADC),MCU31将比较电路302输入至MCU31的模拟信号转换为数字信号。在本公开的某一实施例中,MCU31将模数转换器接口获得的模拟信号电压与MCU内部设定的查找表中的值对应来确定数字信号电压。MCU31的输出端连接加热器,向加热器施加电压使加热器工作加热第一干涉臂。MCU31的输出端通常可以选择MCU31的数模转换接口,将向加热器施加的数字信号电压转换为模拟信号电压。当MCU31需要调整向加热器施加的大小时,调整向加热器施加的数字信号电压,向加热器施加调整后数字信号电压对应的模拟信号电压。
在本实施例中,若输出光的光强大于监控光的光强,第一采样电压大于第二采样电压,比较器3021输出的比较电压小于0;若输出光的光强小于监控光的光强,第一采样电压小于第二采样电压,比较器3021输出的比较电压大于0;若输出光的光强大于监控光的光强,第一采样电压等于第二采样电压,比较器3021输出的比较电压等于0。
当比较器3021向MCU31输入比较电压时,MCU31获取比较器3021输出的比较电压,比较该比较电压与0的大小;若比较电压大于0,MCU31增大向加热器施加的电压;若比 较电压小于0,MCU31减小向加热器施加的电压;若比较电压等于0,保持上一刻向加热器施加的电压。
在本实施例中,第一采样电路402接收第三分光部的第一输出端输出的信号光、第二采样电路403接收第四分光部的第二输出端输出的信号光以及加热器设置在第一干涉壁上;当输出光的光强大于监控光的光强,第一采样电压大于第二采样电压,比较器3021输出的比较电压小于0,MCU31减少向加热器施加的电压;当输出光的光强小于监控光的光强,第一采样电压小于第二采样电压,比较器3021输出的比较电压大于0,MCU31增大向加热器施加的电压。
在本公开一些实施例中,若比较器3021输出的比较电压大于0,MCU31按照第一步进增大加热器施加的电压,第一步进大于0。在本公开的某一实施例中,第一步进为0.01V、0.02V、0.05V等。更在本公开的某一实施例中,在本公开的一些实施例中,若比较电压大于0,MCU31可根据比较电压大于0多少选择增大加热器施加电压的量。如:当比较电压大于0相对较多时,MCU31选择相对较大的增大量增大向加热器施加电压;当比较电压大于0相对较小时,MCU31选择相对较小的增大量增大向加热器施加电压。假设比较放大器3021输出端输出比较电压为0.5V,MCU31选择0.03V的增大量增大向加热器施加电压,则当比较放大器3021输出端输出比较电压为0.1V时,MCU31选择0.01V的增大量增大向加热器施加电压。
在本公开一些实施例中,若比较器3021输出的比较电压小于0,MCU31按照第二步进减小加热器施加的电压,第二步进大于0。在本公开的某一实施例中,第二步进为0.01V、0.02V、0.05V等。更在本公开的某一实施例中,在本公开的一些实施例中,若比较电压小于0,MCU31可根据比较电压小于0多少选择减小加热器施加电压的量。如:当比较电压小于0相对较多时,MCU31选择相对较大的减小量减小向加热器施加电压;当比较电压小于0相对较小时,MCU31选择相对较小的减小量减小向加热器施加电压。假设比较放大器3021输出端输出比较电压为-0.5V,MCU31选择0.03V的减小量减小向加热器施加电压,则当比较放大器3021输出端输出比较电压为-0.1V时,MCU31选择0.01V的减小量减小向加热器施加电压。
因此,本公开实施例提供的光模块中,当输出光的光强和监控光的光强不相等时,比较器3021输出的比较电压不为0,MCU31根据不为0的比较电压增大或减少向加热器上施加的电压;加热器在调整后的电压下加热强度改变,进而第一干涉臂的折射率改变,第一干涉臂的折射率改变使第一干涉壁上光的相位发生改变,第一干涉壁上光的相位发生改变将使第二分光部分束输出的输出光和监控光的光强差缩小。然后继续通过第一采样电路402和第二采样电路403监测输出光和监控光,若输出光的光强和监控光的光强还不相等,根据第一采样电路402和第二采样电路403的监测结果继续调整向加热器施加的电压。如此通过第一采样电路402和第二采样电路403循环监测输出光和监控光调整加热器的加热强度,直到比较电路302输出的比较电压等于0或近似等于0,输出光的光强和监控光的光强相等或接近于相等,MCU31向加热器施加的电压不再作出改变。一旦MCU31接收到的比较电压不等于0,MCU31就会调整加热器施加的电压,使硅光芯片中MZM维持在工 作点。
在本公开实施例中,加热器还可设置在第二干涉臂上。若加热器设置在第二干涉臂上,结合第一采样电路402和第二采样电路403的设置,调整MCU31控制逻辑,即可使硅光芯片中MZM维持在工作点。
图13为本公开实施例提供的另一种光模块的内部结构示意图。如图13所示,硅光芯片400包括MZM和DMPD402B。硅光芯片400上还包括设置输入光口和输出光口,输入光口用于光源500向硅光芯片400内不携带信号的光,输出光口用于输出经MZM调制分束后的信号光。
如图13所示,MZM包括第一分光器、第一干涉臂、第二干涉臂、第一调制电极、第二调制电极、加热器、合光部、第二分光部、第三分光部和第四分光部。第一分光器的输入端通过光纤带连接光源500,接收光源500输入至硅光芯片400内的光;第一分光器的第一输出端连接第一干涉臂的输入端、第二输出端连接第二干涉臂的输入端,第一分光器将接收到的光一分为二分别输送至第一干涉臂和第二干涉臂;第一干涉臂上设置第一调制电极和加热器,第一调制电极和加热器共同作用于第一干涉臂对输入至第一干涉臂内的光进行调制;第二干涉臂上设置第二调制电极,第二调制电极作用于第二干涉臂对输入至第二干涉臂内的光进行调制;第一干涉臂的输出端和第二干涉臂的输出端分别连接合光部的输入端,合光部将第一干涉臂和第二干涉臂输入至其的光进行合光处理;合光部的输出端连接第二分光部的输入端,第二分光部的第一输出端连接第三分光部的输入端,第二分光部的第二输出端连接第四分光部的输入端;第三分光部的第一输出端连接输出光口,第三分光部的第二输出端用于件分束的光传输至DMPD402B;第四分光部的第一输出端将分束的光传输至DMPD402B。在本实施例中,第二分光部将合光部输入至其光分束为输出光和监控光,第三分光部和第四分光部用于实现DMPD402B检测比较输出光的光强和监控光的光强。
在本公开的某一实施例中,第三分光部从输出光中分出一定比例的光至DMPD402B,第四分光部从监控光分出相同比例的光至DMPD402B。在本公开的某一实施例中,第三分光部从输出光中分出2%光至DMPD402B,第四分光部从监控光分出2%光至DMPD402B。DMPD402B接收从第三分光部的第二输出端输出的输出光和从第四分光部的第一输出端输出的监控光,根据接收到的输出光产生第一光电流以及根据监控孔产生第二光电流,第一光电流反应输出光的光强、第二光电流反应监控光的光强,然后通过比较第一光电流和第二光电流的大小确定DMPD的输出引脚是输出电流还是输入电流,进而通过监测DMPD的输出引脚上传输的电流可以确定输出光的光强和监控光的光强是否相等。
在本公开实施例中,DMPD402B包括第一PD(Photo-Diode,光电二极管、光电探测器)和第二PD,第一PD和第二PD串联。如,第一PD的阴极连接第二PD的阳极,DMPD402B的输出引脚连接在第一PD的阴极和第二PD的阳极之间,当第一PD和第二PD均接收到光时,产生相同方向的光电流;若第一PD产生的光电流较大时,DMPD402B的输出引脚上传输的电流向DMPD402B内流,即DMPD402B的输出引脚上传输的电流从电压比较转换电路302A流向DMPD402B;若第二PD产生的光电流较大时,DMPD402B 的输出引脚上传输的电流从DMPD402B流出,即DMPD402B的输出引脚上传输的电流从DMPD402B流向电压比较转换电路302A。
在本公开的某一实施例中,在本公开实施例中,第一PD接收第三分光部的第二输出端输出的信号光,第二PD接收第四分光部的第一输出端输出的信号光。但也可以选择使第一PD接收第四分光部的第一端输出端输出的信号光、使第二PD接收第三分光部的第二输出端输出的信号光。
在本公开的某一实施例中,在本公开实施例中,硅光芯片400还包括第三PD403A,第三PD403A接收第四分光部的第二输出端输出的信号光,根据该信号光监测光模块的发射光功率。在本公开的某一实施例中,第三PD403A的光电流输出端连接采样电路,采样电路连接MCU31,采样电路将光电流转换为电压信号传输至MCU31,MCU31根据接收到的电压信号确定光模块的发射光功率。
由于DMPD402B的输出引脚上传输的电流方向随着输出光和监控光的光强差变化,为方便完成该电流的采样监测,本公开实施例中提供了一种电压比较转换电路302A。电压比较转换电路302A用于将DMPD402B的输出引脚上传输的电流信号转换以及比较转换为正值的电压信号,进而方便MCU31获取以及处理数据。
图14为本公开实施例提供的另一种光模块的内部结构示意图。如图14所示,电压比较转换电路302A包括运算放大器3021和第一电阻3022。运算放大器3021的反相输入端连接DMPD402B的输出引脚,运算放大器3021的同相输入端用于提供参考电压,运算放大器302的输出端连接MCU31的输入端。第一电阻3022的一端连接在运算放大器3021的反相输入端和DMPD402B的输出引脚之间,第一电阻3022的另一端连接在运算放大器3021的输出端和MCU31的输入端之间。
根据DMPD402B中第一PD和第二PD上所产生光电流的大小,运算放大器3021的反相输入端接收DMPD402B输出的电流或向DMPD402B输入电流。运算放大器3021的同相输入端可通过DC-DC芯片连接电路板300上电源引脚,DC-DC芯片向运算放大器3021的同相输入端提供参考电压。参考电压可根据光模块的实际情况进行选择,如1V、0.9V或0.8V等。运算放大器3021和第一电阻3022结合将DMPD402B输出引脚上传输的电流转换为电压,且第一电阻3022的阻值大小可以控制电压比较转换电路302A对DMPD402B输出引脚上传输的电流转换为电压的放大倍数。第一电阻3022的阻值大小可以结合参考电压的大小以及DMPD402B的输出引脚上传输的电流大小进行选择。在本公开的某一实施例中,若选择的参考电压相对较大且DMPD402B的输出引脚上传输的电流相对较小,则选择第一电阻3022的阻值相对较大。
MCU31的输入端通常可以选择MCU31的模数转换接口(ADC),MCU31将电压比较转换电路302A输入至MCU31的模拟信号转换为数字信号。在本公开的某一实施例中,MCU31将模数转换器接口获得的模拟信号电压与MCU内部设定的查找表中的值对应来确定数字信号电压。MCU31的输出端连接加热器,向加热器施加电压使加热器工作加热第一干涉臂。MCU31的输出端通常可以选择MCU31的数模转换接口,将向加热器施加的数字信号电压转换为模拟信号电压。当MCU31需要调整向加热器施加的大小时,调整向加 热器施加的数字信号电压,向加热器施加调整后数字信号电压对应的模拟信号电压。
在本公开实施例中,第一PD接收第三分光部的第二输出端输出的信号光、第二PD接收第四分光部的第一端输出端输出的信号光以及加热器设置在第一干涉壁上,若输出光的光强大于监控光的光强,第一PD输出光电流的大小大于第二PD输出光电流的大小,DMPD402B的输出引脚上传输的电流为电压比较转换电路302A流向DMPD402B的电流,电压比较转换电路302A根据该电流、第一电阻3022以及参考电压输出电压;若输出光的光强小于监控光的光光强,第一PD输出光电流的大小小于第二PD输出光电流的大小,DMPD402B的输出引脚上传输的电流为DMPD402B流向电压比较转换电路302A的电流,电压比较转换电路302A根据该电流、第一电阻3022以及参考电压输出电压;若输出光的光强等于监控光的光光强,MPD402的输出引脚上将无传输电流。假设第一电阻的阻值为R、参考电压为1V,若DMPD402B的输出引脚上传输的电流为电压比较转换电路302A流向DMPD402B的电流IDMPD,则运算放大器3021输出端输出电压V0=1V+IDMPDR;若DMPD402B的输出引脚上传输的电流为DMPD402B流向电压比较转换电路302A的电流IDMPD,则运算放大器3021输出端输出电压V0=1V-IDMPDR;若DMPD402B的输出引脚上传输的电流为0,则运算放大器3021输出端输出电压V0。
运算放大器3021向MCU31输入电压的模拟信号,MCU31接收运算放大器3021输出端输出电压的模拟信号,将该输出电压的模拟信号转换为数字信号,根据该数字信号调整向加热器施加的电压,如增大或减少向加热器施加的电压。在本公开的某一实施例中,MCU31内设置参考电压,比较运算放大器3021输出端输出电压和参考电压的大小,若电压比较转换电路输出的电压大于参考电压,增大向加热器施加的电压;若电压比较转换电路输出的电压小于参考电压,减少向加热器施加的电压;当电压比较转换电路输出的电压等于参考电压,保持上一刻向加热器施加的电压。
在本公开的一些实施例中,若电压比较转换电路输出的电压大于参考电压,按照第一步进增大加热器施加的电压,第一步进大于0。在本公开的某一实施例中,第一步进为0.01V、0.02V、0.05V等。更在本公开的某一实施例中,在本公开的一些实施例中,若电压比较转换电路输出的电压大于参考电压,可根据电压比较转换电路输出的电压大于参考电压多少选择增大加热器施加电压的量。如:当电压比较转换电路输出的电压大于参考电压相对较多时,选择相对较大的增大量增大向加热器施加电压;当电压比较转换电路输出的电压大于参考电压相对较小时,选择相对较小的增大量增大向加热器施加电压。假设运算放大器3021输出端输出电压V0为1.5V以及MCU31内参考电压为1V,选择0.03V的增大量增大向加热器施加电压,则当运算放大器3021输出端输出电压V0为1.1V时,选0.01V的增大量增大向加热器施加电压。
在本公开的一些实施例中,若电压比较转换电路输出的电压小于参考电压,按照第二步进减小加热器施加的电压,第二步进大于0。在本公开的某一实施例中,第二步进为0.01V、0.02V、0.05V等。更在本公开的某一实施例中,在本公开的一些实施例中,若电压比较转换电路输出的电压小于参考电压,可根据电压比较转换电路输出的电压小于参考电压多少选择减小加热器施加电压的量;如:当电压比较转换电路输出的电压小于参考电压相对较 多时,选择相对较大的减小量减小向加热器施加电压;当电压比较转换电路输出的电压小于参考电压相对较小时,选择相对较小的减小量减小向加热器施加电压。假设运算放大器3021输出端输出电压V0为0.7V以及MCU31内参考电压为1V,选择0.03V的减小量减小向加热器施加电压,则当运算放大器3021输出端输出电压V0为0.9V时,选0.01V的减小量减小向加热器施加电压。
本公开实施例提供的光模块中,当输出光的光强和监控光的光强不相等时,DMPD402B的输出引脚上传输电流;电压比较转换电路302A根据其上输入的参考电压以及DMPD402B的输出引脚上传输的电流的方向和大小向MCU31输入电压,MCU31比较输入电压与参考电压的大小,根据比较结果增大或减少向加热器上施加的电压;加热器在调整后的电压下加热强度改变,进而第一干涉臂的折射率改变,第一干涉臂的折射率改变使第一干涉壁上光的相位发生改变,第一干涉壁上光的相位发生改变将使第二分光部分束输出的输出光和监控光的光强差缩小。然后继续通过DMPD402B监测输出光和监控光,若输出光的光强和监控光的光强还不相等,根据DMPD402B的监测继续调整向加热器施加的电压。如此通过DMPD402B循环监测输出光和监控光调整加热器的加热强度,直到DMPD402B的输出引脚上传输的电流接近于0(MCU31接收到的电压约等于参考电压),输出光的光强和监控光的光强相等或接近于相等,MCU31向加热器施加的电压不再作出改变。一旦MCU31接收到的电压不等于参考电压,MCU31就会调整加热器施加的电压,使硅光芯片中MZM维持在工作点。
在本公开实施例中,加热器还可设置在第二干涉臂上。若加热器设置在第二干涉臂上,结合DMPD402B的设置,调整MCU31控制逻辑,即可使硅光芯片中MZM维持在工作点。
在本公开实施例中,电压比较转换电路302A还包括第一电容和第二电容。第一电容的一端连接运算放大器3021的同相输入端、另一端接地,第二电容的一端连接运算放大器3021的同相输入端、另一端接地。第一电容用于运算放大器3021的同相输入端的滤波,第二电容用于运算放大器3021的同相输入端的滤波,保证输入至运算放大器3021信号的纯净度。
在本公开实施例中,电压比较转换电路302A还包括第三电容。第三电容的一端连接在运算放大器3021的反相输入端和DMPD402B的输出引脚之间,第三电容的另一端连接在运算放大器3021的输出端和MCU31的输入端之间。第三电容用于运算放大器3021运算的滤波,保证运算放大器3021运算的纯净度。
在本公开实施例中,电压比较转换电路302A还包括第二电阻。第二电阻串联于运算放大器3021的输出端和MCU31的输入端之间。第二电阻便于提高电压比较转换电路302A向MCU31输入电压的精度。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (40)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光源,与所述电路板电连接,用于发出不携带信号的光;
    硅光芯片,设置在所述电路板上与所述电路板电连接,通过所述硅光芯片的输入光口接收所述光源发出的不携带信号的光,将不携带信号的光调制为信号光并通过所述硅光芯片的输出光口输出所述信号光;
    MCU,设置在所述电路板上,与所述硅光芯片的直流偏置信号接口连接,用于向所述直流偏置信号接口输送直流偏置信号以控制所述硅光芯片内的电加热强度;
    第一采样电路,设置在所述电路板上,与所述硅光芯片的第一监控光口连接,用于接收经所述第一监控光口传输的信号光并根据所述信号光输出第一采样电压;
    第二采样电路,设置在所述电路板上,与所述硅光芯片的第二监控光口连接,用于接收经所述第二监控光口传输的信号光并根据所述信号光输出第二采样电压;
    锁定电路,设置在所述电路板上,与所述硅光芯片的直流偏置信号接口连接,用于根据所述第一采样电压和所述第二采样电压向所述直流偏置信号接口输送直流偏置信号以控制所述硅光芯片内的电加热强度。
  2. 根据权利要求1所述光模块,其特征在于,所述硅光芯片包括MZ调制器,将不携带信号的光调制为信号光;
    所述包括MZ调制器包括第一分光器、第一干涉臂、第二干涉臂、第一加热器、第二加热器、第二分光器、第三分光器和合光器;
    所述第一分光器的输入端与所述输入光口连接;所述第一干涉臂和所述第二干涉臂的输入端分别与所述第一分光器的第一输出端和第二输出端连接;
    所述第一干涉臂上设置所述第一加热器,所述第二干涉臂上设置所述第二加热器,所述第一加热器和所述第二加热器均通过所述直流偏置信号接口与所述MCU和所述锁定电路电连接,所述MCU分别向所述第一加热器和所述第二加热器输出直流偏置信号用于确定所述第一加热器和所述第二加热器中反应效率较快的加热器,所述锁定电路通过输出直流偏置信号至反应效率较快的加热器使第一采样电压的幅度逼近第二采样电压的幅度;
    所述第一干涉臂的输出端依次连接所述第二分光器和所述合光器,所述第二分光器用于将所述第一干涉臂的信号光分出一束比例较小的信号光通过所述第一监控光口至所述第一采样电路;所述第二干涉臂的输出端依次连接所述第三分光器和所述合光器,所述第三分光器将所述第二干涉臂的信号光分出一束比例较小的信号光通过所述第二监控光口至所述第二采样电路。
  3. 根据权利要求2所述光模块,其特征在于,所述锁定电路包括双通道模拟开关子电路、运放子电路和单通道模拟开关子电路;所述双通道模拟开关子电路的输入端分别电连接所述第一采样电路和第二采样电路,所述双通道模拟开关子电路的输出端分别电连接所述运放子电路的输入端;所述运放子电路的输出端电连接所述单通道模拟开关子电路的 输入端,所述单通道模拟开关子电路的输出端电连接所述第一加热器和第二加热器。
  4. 根据权利要求3所述的光模块,其特征在于,所述双通道模拟开关子电路包括比较器、第一模拟开关和第二模拟开关,所述第一模拟开关和所述第二模拟开关并联;
    所述比较器的同向输入引脚连接所述第一采样电路,所述比较器的反向输入引脚连接所述第二采样电路,所述比较器的输出引脚分别连接所述第一模拟开关和第二模拟开关的输入引脚;
    所述第一模拟开关的常闭引脚连接所述第一采样电路,所述第一模拟开关的常开引脚连接所述第二采样电路;
    所述第二模拟开关的常开引脚连接所述第一采样电路,所述第二模拟开关的常闭引脚连接所述第二采样电路;
    所述第一模拟开关和所述第二模拟开关的输出引脚连接所述运放子电路的输入端。
  5. 根据权利要求4所述的光模块,其特征在于,所述运放子电路包括第一运算放大器和第二运算放大器;
    所述第一运算放大器的同向输入引脚连接所述第一模拟开关的输出引脚,所述第一运算放大器的反向输入引脚连接所述第二模拟开关的输出引脚;
    所述第一运算放大器的输出引脚连接所述第二运算放大器的同向输入引脚,所述第二运算放大器的反向输入引脚连接所述第二运算放大器的输出引脚,所述第二运算放大器的输出引脚连接所述单通道模拟开关子电路的输入端。
  6. 根据权利要求5所述的光模块,其特征在于,所述运放子电路还包括积分组件,所述积分组件包括第一电阻和第一电容;所述第一电阻串联于所述第一运算放大器的输出引脚和所述第二运算放大器的同向输入引脚之间;所述第一电容的一端连接所述第一电阻和所述第二运算放大器的同向输入引脚,所述第一电容的另一端接地。
  7. 根据权利要求5所述的光模块,其特征在于,所述运放子电路还包括驱动放大组件,所述驱动放大组件包括第二电阻、第二电容和第三电阻;所述第二电阻串联于所述第二运算放大器的反向输入引脚和所述第二运算放大器的输出引脚之间;所述第二电容与所述第二电阻并联;所述第三电阻的一端连接所述第二运算放大器的反向输入引脚、另一端接地。
  8. 根据权利要求3所述的光模块,其特征在于,所述锁定电路还包括第一滤波子电路和第二滤波子电路,所述第一滤波子电路串联于所述第一采样电路输出端和所述双通道模拟开关子电路的输入端,所述第二滤波子电路串联于所述第二采样电路输出端和所述双通道模拟开关子电路的输入端。
  9. 根据权利要求1所述的光模块,其特征在于,所述第一采样电路包括第一光电探测器和第一采样电阻,所述第一光电探测器的一端与外接电源连接、另一端分别连接所述第一采样电阻的一端、所述锁定电路和所述MCU,所述第一采样电阻的另一端接地。
  10. 根据权利要求3所述的光模块,其特征在于,所述运放子电路的输出端电与所述单通道模拟开关子电路的输入端之间设置第四电阻。
  11. 一种光模块,其特征在于,包括:
    用于输出光信号的激光盒、用于调制所述光信号的硅光芯片和用于供电和提供电信号的电路板;
    所述硅光芯片,与所述激光盒连接,内部设置有用于调制光信号的MZM调制器;
    所述MZM调制器包括:第一分光器、两个干涉臂、两个调制电极、两个加热器、第三分光器及两个第二分光器;
    两个所述第二分光器,分别设置于两个所述干涉臂的一端,用于将两个所述干涉臂上的一束光信号分为一束比例较小的光信号和一束比例较大的光信号;
    所述电路板上设置有两个电信号采样组件和MCU;
    两个所述电信号采样组件,分别与两个所述第二分光器连接,分别用于根据比例较小的光信号得到对应的采样电压;
    MCU,与两个所述电信号采样组件连接,用于对比分析两个所述采样电压,并根据对比分析结果对两个加热器增加或者减小驱动电功率。
  12. 根据权利要求11所述的光模块,其特征在于,所述电信号采样组件包括:
    光电探测器,一端与外接电源电连接,用于将比例较小的光信号转化为采样电流;
    采样电阻,一端与所述光电探测器电连接,用于将所述采样电流转化为采样电压。
  13. 根据权利要求11所述的光模块,其特征在于,所述电路板上还设置有:
    两个电阻,一端与所述MCU电连接,另一端分别与对应的所述加热器连接。
  14. 根据权利要求11所述的光模块,其特征在于,所述MCU内设置有:
    模数转换器,用于将模拟信号的采样电压转化为数字信号的采样电压;
    数模转换器,用于将数字信号的加热电流信号转化为模拟信号的加热电流信号。
  15. 根据权利要求13所述的光模块,其特征在于,所述MCU被配置为:
    当两个所述采样电压相等时,输出两个相等的加热电流信号至两个所述加热器;
    当两个所述采样电压不相等时,输出两个不相等的加热电流信号至两个所述加热器,其中,较大的加热电流信号被传输至较小采样电压对应的加热器,较小的加热电流信号被传输至较大采样电压对应的加热器。
  16. 根据权利要求11所述的光模块,其特征在于,所述第一分光器,一端与激光盒连接,用于将所述光信号分为两束相同的光信号。
  17. 根据权利要求11所述的光模块,其特征在于,两个所述干涉臂,一端分别与第一分光器连接,分别用于传输光信号。
  18. 根据权利要求11所述的光模块,其特征在于,两个所述调制电极,分别设置于两个所述干涉臂的一侧,分别用于将调制信号转化为调制光信号,并利用调制光信号将进入上、下干涉臂的直流光信号转化为交变光信号。
  19. 根据权利要求11所述的光模块,其特征在于,两个所述加热器,分别设置于两个所述干涉臂的一侧,分别用于根据驱动电压控制两个所述干涉臂上传输的交变光信号的相位差恒定。
  20. 根据权利要求11所述的光模块,其特征在于,第三分光器,用于将两束比例较大 的交变光信号合成一束交变光信号。
  21. 一种光模块,其特征在于,包括:
    电路板;
    光源,与所述电路板电连接,用于发出不携带信号的光;
    硅光芯片,设置在所述电路板上与所述电路板电连接,包括马赫-增德尔电光调制器、输入光口、输出光口、第一采样电路和第二采样电路,所述光源发出的不携带信号的光通过所述输入光口进入所述马赫-增德尔电光调制器,经所述马赫-增德尔电光调制器将不携带信号的光调制为信号光并将所述信号光分为输出光和监控光,所述第一采样电路检测所述输出光的光强,所述第二采样电路检测所述监控光的光强,所述输出光通过所述输出光口输出所述硅光芯片;所述马赫-增德尔电光调制器包括加热器,所述加热器设置在所述马赫-增德尔电光调制器的干涉臂上;
    比较电路,设置在所述电路板上,包括第一输入端、第二输入端和输出端,所述第一输入端连接所述第一采样电路的输出端,所述第二输入端连接所述第二采样电路的输出端,所述输出端输出比较电压;
    MCU,设置在所述电路板上,输入端连接所述比较电路的输出端,输出端连接所述加热器,用于根据所述比较电路输出的比较电压调整向所述加热器施加的电压以控制所述加热器的加热强度。
  22. 根据权利要求21所述光模块,其特征在于,所述马赫-增德尔电光调制器包括第一分光器、第一干涉臂、第二干涉臂、加热器、合光部、第二分光部、第三分光部和第四分光部;
    所述第一分光器的输入端与所述输入光口连接;所述第一干涉臂的输入端和所述第二干涉臂的输入端分别与所述第一分光器的第一输出端和第二输出端连接;所述加热器设置在所述第一干涉臂或所述第二干涉臂上;所述第一干涉臂的输出端和所述第二干涉臂的输出端分别与所述合光部连接;所述合光部的输出端与所述第二分光部的输入端连接;
    所述第二分光部的第一输出端连接所述第三分光部的输入端,所述第二分光部的第二输出端连接所述第四分光部的输入端;
    所述第三分光部的第一输出端连接所述输出光口,所述第三分光部的第二输出端用于将所述第二分光部的第一输出端输出的信号光分出N%的一束信号光至所述第一采样电路,所述第四分光部的第二端用于将所述第二分光部的第二输出端输出的信号光分出N%的一束信号光至所述第二采样电路,N为小于100的正数。
  23. 根据权利要求22所述光模块,其特征在于,所述第一采样电路包括第一光电探测器和第一采样电阻,所述第一光电探测器的输出端连接所述第一采样电阻的一端,所述第一采样电阻的另一端接地,所述第一光电探测器的输出端所述第一采样电路的输出端,所述第一光电探测器接收所述第三分光部的第一输出端输出的信号光;
    所述第二采样电路包括第二光电探测器和第二采样电阻,所述第二光电探测器的输出端连接所述第二采样电阻的一端,所述第二采样电阻的另一端接地,所述第二光电探测器的输出端所述第二采样电路的输出端,所述第二光电探测器接收所述第四分光部的第二输 出端输出的信号光。
  24. 根据权利要求22所述光模块,其特征在于,所述硅光芯片还包括第三光电探测器,所述第三光电探测器接收所述第四分光部的第一输出端输出的信号光,根据所述信号光监测光模块的发射光功率。
  25. 根据权利要求21所述的光模块,其特征在于,所述比较电路包括比较器,所述比较器的反相输入端连接所述所第一采样电路的输出端,所述比较器的同相输入端连接所述第二采样电路的输出端,所述比较器的输出端输出比较电压。
  26. 根据权利要求23所述的光模块,其特征在于,所述加热器设置在所述第一干涉臂上;根据所述比较电路输出的比较电压调整向所述加热器施加的电压,包括:
    获取所述比较电路输出的比较电压,比较所述比较电压与0的大小;
    若所述比较电压大于0,增大向所述加热器施加的电压;
    若所述比较电压小于0,减小向所述加热器施加的电压。
  27. 根据权利要求26所述的光模块,其特征在于,若所述比较电压的电压值大于0,增大向所述加热器施加的电压,包括:
    若所述比较电压大于0,按照第一步进增大所述加热器施加的电压,所述第一步进大于0。
  28. 根据权利要求26所述的光模块,其特征在于,若所述比较电压的电压值小于0,减小向所述加热器施加的电压,包括:
    若所述比较电压小于0,按照第二步进减小所述加热器施加的电压,所述第二步进大于0。
  29. 根据权利要求22所述的光模块,其特征在于,N为2。
  30. 根据权利要求26所述的光模块,其特征在于,所述第一步进为0.01V。
  31. 一种光模块,其特征在于,包括:
    电路板;
    光源,与所述电路板电连接,用于发出不携带信号的光;
    硅光芯片,与所述电路板电连接,包括马赫-增德尔电光调制器、输入光口、输出光口和监控光电二极管单元,所述光源发出的不携带信号的光通过所述输入光口进入所述马赫-增德尔电光调制器,经所述马赫-增德尔电光调制器将不携带信号的光调制为信号光并将所述信号光分为输出光和监控光,所述监控光电二极管单元检测比较所述输出光的光强和所述监控光的光强,所述输出光通过所述输出光口输出所述硅光芯片;所述马赫-增德尔电光调制器包括加热器,所述加热器设置在所述马赫-增德尔电光调制器的干涉臂上;
    电压比较转换电路,设置在所述电路板上,输入端连接所述监控光电二极管单元的输出引脚,根据所述输出引脚上传输的电流输出比较电压;
    MCU,设置在所述电路板上,输入端连接所述电压比较转换电路的输出端,输出端连接所述加热器,用于根据所述电压比较转换电路输出的比较电压调整向所述加热器施加的电压以控制所述加热器的加热强度。
  32. 根据权利要求31所述光模块,其特征在于,所述马赫-增德尔电光调制器包括第 一分光器、第一干涉臂、第二干涉臂、加热器、合光部、第二分光部、第三分光部和第四分光部;
    所述第一分光器的输入端与所述输入光口连接;所述第一干涉臂的输入端和所述第二干涉臂的输入端分别与所述第一分光器的第一输出端和第二输出端连接;所述加热器设置在所述第一干涉臂或所述第二干涉臂上;所述第一干涉臂的输出端和所述第二干涉臂的输出端分别与所述合光部连接;所述合光部的输出端与所述第二分光部的输入端连接;
    所述第二分光部的第一输出端连接所述第三分光部的输入端,所述第二分光部的第二输出端连接所述第四分光部的输入端;
    所述第三分光部的第一输出端连接所述输出光口,所述第三分光部的第二输出端用于将所述第二分光部的第一输出端输出的信号光分出N%的一束信号光至所述监控光电二极管单元,所述第四分光部的第一端用于将所述第二分光部的第二输出端输出的信号光分出N%的一束信号光至所述监控光电二极管单元,N为小于100的正数。
  33. 根据权利要求32所述光模块,其特征在于,所述监控光电二极管单元包括第一光电探测器和第二光电探测器,所述第一光电探测器的阴极连接所述第二光电探测器的阳极,所述第一光电探测器接收所述第三分光部的第二输出端输出的信号光,所述第二光电探测部接收所述第四分光部的第一端输出端输出的信号光,所述监控光电二极管单元的输引脚连接在所述第一光电探测器的阴极和所述第二光电探测器的阳极之间。
  34. 根据权利要求32所述光模块,其特征在于,所述硅光芯片还包括第三光电探测器,所述第三光电探测器接收所述第四分光部的第二输出端输出的信号光,根据所述信号光监测光模块的发射光功率。
  35. 根据权利要求31所述的光模块,其特征在于,所述电压比较转换电路包括运算放大器和第一电阻;
    所述运算放大器的反相输入端连接所述输出引脚,所述运算放大器的同相输入端用于提供参考电压,所述运算放大器的输出端连接所述MCU的输入端;
    所述第一电阻的一端连接在所述运算放大器的反相输入端和所述输出引脚之间,所述第一电阻的另一端连接在所述运算放大器的输出端和所述MCU的输入端之间。
  36. 根据权利要求33所述的光模块,其特征在于,所述加热器设置在所述第一干涉臂上;
    根据所述电压比较转换电路输出的电压调整向所述加热器施加的电压,包括:
    获取所述电压比较转换电路输出的电压,比较参考电压和所述电压比较转换电路输出的电压的大小;
    若所述电压比较转换电路输出的电压大于所述参考电压,增大向所述加热器施加的电压;
    若所述电压比较转换电路输出的电压小于所述参考电压,减小向所述加热器施加的电压。
  37. 根据权利要求36所述的光模块,其特征在于,若所述电压比较转换电路输出的电压大于所述参考电压,增大向所述加热器施加的电压,包括:
    若所述电压比较转换电路输出的电压大于所述参考电压,增大向所述加热器施加的电压,包括:
    若所述电压比较转换电路输出的电压大于所述参考电压,按照第一步进增大所述加热器施加的电压,所述第一步进大于0。
  38. 根据权利要求36所述的光模块,其特征在于,若所述电压比较转换电路输出的电压小于所述参考电压,减小向所述加热器施加的电压,包括:
    若所述电压比较转换电路输出的电压小于所述参考电压,按照第二步进减小所述加热器施加的电压,所述第二步进大于0。
  39. 根据权利要求35所述的光模块,其特征在于,所述电压比较转换电路还包括第一电容和第二电容,所述第一电容的一端连接所述运算放大器的同相输入端、另一端接地,所述第二电容的一端连接所述运算放大器的同相输入端、另一端接地。
  40. 根据权利要求35所述的光模块,其特征在于,所述电压比较转换电路还包括第三电容和第二电阻;
    所述第三电容的一端连接在所述运算放大器的反相输入端和所述输出引脚之间,所述第三电容的另一端连接在所述运算放大器的输出端和所述MCU的输入端之间;
    所述第二电阻串联于所述运算放大器的输出端和所述MCU的输入端之间。
PCT/CN2021/074951 2020-02-25 2021-02-02 一种光模块 WO2021169756A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/491,456 US11848707B2 (en) 2020-02-25 2021-09-30 Optical module
US18/502,853 US20240072903A1 (en) 2020-02-25 2023-11-06 Optical module

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010115310.3A CN113376923B (zh) 2020-02-25 2020-02-25 一种光模块
CN202010115310.3 2020-02-25
CN202010153331.4 2020-03-06
CN202010153331.4A CN113364522B (zh) 2020-03-06 2020-03-06 一种光模块
CN202021561951.3U CN213213471U (zh) 2020-07-31 2020-07-31 一种光模块
CN202010759086.1 2020-07-31
CN202021561951.3 2020-07-31
CN202010759086.1A CN114070413B (zh) 2020-07-31 2020-07-31 一种光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/491,456 Continuation-In-Part US11848707B2 (en) 2020-02-25 2021-09-30 Optical module

Publications (1)

Publication Number Publication Date
WO2021169756A1 true WO2021169756A1 (zh) 2021-09-02

Family

ID=77489854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074951 WO2021169756A1 (zh) 2020-02-25 2021-02-02 一种光模块

Country Status (2)

Country Link
US (2) US11848707B2 (zh)
WO (1) WO2021169756A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302390A (zh) * 1999-04-01 2001-07-04 Jds尤尼费斯公司 用于电光装置的稳定控制的装置与方法
CN102224444A (zh) * 2008-12-02 2011-10-19 日本电信电话株式会社 光调制器
JP2017083607A (ja) * 2015-10-27 2017-05-18 住友大阪セメント株式会社 光変調器
CN107430296A (zh) * 2016-03-18 2017-12-01 住友大阪水泥股份有限公司 光调制器及使用光调制器的光发送装置
CN107994950A (zh) * 2017-11-29 2018-05-04 中国电子科技集团公司第四十四研究所 一种m-z调制器用正交偏置点控制装置及其控制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538721B2 (ja) 2004-06-17 2010-09-08 アイシン精機株式会社 マッハツェンダ型光変調器
KR100701101B1 (ko) 2004-12-20 2007-03-28 한국전자통신연구원 광 간섭계 제어 장치 및 그 방법
CN101026417A (zh) 2006-02-20 2007-08-29 华为技术有限公司 激光调制器数字自动偏置电压控制设备
CN101364841A (zh) 2007-08-10 2009-02-11 华为技术有限公司 多个mz调制器的偏置控制方法及系统
WO2011114753A1 (ja) 2010-03-19 2011-09-22 日本電信電話株式会社 光変調器
JP5732002B2 (ja) 2012-03-29 2015-06-10 日本電信電話株式会社 半導体マッハツェンダ変調器用の動作点制御装置
CN103346842B (zh) 2013-06-09 2016-06-29 桂林电子科技大学 控制双平行mzm调制器输出光强的反馈控制系统和方法
US9874800B2 (en) 2014-08-28 2018-01-23 Inphi Corporation MZM linear driver for silicon photonics device characterized as two-channel wavelength combiner and locker
TWI641881B (zh) 2016-02-19 2018-11-21 光聯通訊有限公司 一種具有馬赫-詹德調變器的光傳送器及其操作方法
US10571639B2 (en) 2016-09-09 2020-02-25 Hisense Broadband Multimedia Technologies Co., Ltd. Optical module
US9835928B1 (en) 2017-02-13 2017-12-05 Futurewei Technologies, Inc. Optical N-level quadrature amplitude modulation (NQAM) tuned by dithering associated heaters
CN107171736B (zh) 2017-05-18 2019-08-02 杭州电子科技大学 全光抽样器
US10481463B2 (en) * 2017-09-07 2019-11-19 The George Washington University All optical fast fourier transform on chip with heating tunability design, simulation, fabrication, and performance analysis
US11509275B2 (en) 2018-04-20 2022-11-22 Neophotonics Corporation Method and apparatus for bias control with a large dynamic range for Mach-Zehnder modulators
JP7095415B2 (ja) * 2018-06-06 2022-07-05 富士通オプティカルコンポーネンツ株式会社 光モジュール、及び制御方法
CN110632718A (zh) 2019-10-28 2019-12-31 青岛海信宽带多媒体技术有限公司 一种光模块
US10901153B2 (en) * 2018-12-24 2021-01-26 Elenion Technologies, Llc Null bias mach-zehnder interferometer with ring resonators
US10742324B1 (en) * 2019-05-21 2020-08-11 Elenion Technologies, Llc Bias control of optical modulators
CN110971304A (zh) 2019-11-19 2020-04-07 武汉电信器件有限公司 一种基于硅光的光收发组件
US20230019946A1 (en) * 2019-12-11 2023-01-19 Rockley Photonics Limited Optical device for heterodyne interferometry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302390A (zh) * 1999-04-01 2001-07-04 Jds尤尼费斯公司 用于电光装置的稳定控制的装置与方法
CN102224444A (zh) * 2008-12-02 2011-10-19 日本电信电话株式会社 光调制器
JP2017083607A (ja) * 2015-10-27 2017-05-18 住友大阪セメント株式会社 光変調器
CN107430296A (zh) * 2016-03-18 2017-12-01 住友大阪水泥股份有限公司 光调制器及使用光调制器的光发送装置
CN107994950A (zh) * 2017-11-29 2018-05-04 中国电子科技集团公司第四十四研究所 一种m-z调制器用正交偏置点控制装置及其控制方法

Also Published As

Publication number Publication date
US20220021461A1 (en) 2022-01-20
US11848707B2 (en) 2023-12-19
US20240072903A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
WO2022110965A1 (zh) 一种光模块
WO2021248957A1 (zh) 一种光模块
CN112782812B (zh) 一种光模块
CN212649474U (zh) 一种光模块
CN217879744U (zh) 一种光模块
WO2022037227A1 (zh) 一种光模块
WO2023134737A1 (zh) 一种光模块
CN112782811B (zh) 一种光模块
CN213279662U (zh) 一种光模块
CN114465662B (zh) 光模块
CN113917622B (zh) 一种光模块
WO2021169756A1 (zh) 一种光模块
CN113364522B (zh) 一种光模块
CN114070413B (zh) 一种光模块
CN112782813B (zh) 一种光模块
CN216144989U (zh) 一种光模块
WO2022174646A1 (zh) 一种光模块及接收光功率监控方法
CN213302585U (zh) 一种光模块
CN111431611A (zh) 一种光模块
CN114114558A (zh) 一种光模块
WO2022007428A1 (zh) 一种光模块
CN111431612B (zh) 一种光模块
CN114531203B (zh) 一种光模块
CN213213471U (zh) 一种光模块
WO2024120334A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760489

Country of ref document: EP

Kind code of ref document: A1