WO2021169671A1 - 空调器的远程检修系统及方法 - Google Patents

空调器的远程检修系统及方法 Download PDF

Info

Publication number
WO2021169671A1
WO2021169671A1 PCT/CN2021/072634 CN2021072634W WO2021169671A1 WO 2021169671 A1 WO2021169671 A1 WO 2021169671A1 CN 2021072634 W CN2021072634 W CN 2021072634W WO 2021169671 A1 WO2021169671 A1 WO 2021169671A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
type
operating parameters
current air
maintenance
Prior art date
Application number
PCT/CN2021/072634
Other languages
English (en)
French (fr)
Inventor
葛顶伟
顾超
高远昊
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021169671A1 publication Critical patent/WO2021169671A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control

Definitions

  • the present invention relates to the technical field of overhaul of air conditioners, in particular to a remote overhaul system and method for air conditioners.
  • the air conditioner includes a compressor, an outdoor fan, an outdoor heat exchanger (usually called a condenser), and an indoor heat exchanger (usually called an evaporator).
  • the compressor-condenser-evaporator-compressor forms a refrigerant circulation loop.
  • the air conditioner is in the refrigeration cycle.
  • the air conditioner is in the heating cycle. If the air conditioner fails during use, the expected cooling/heating level cannot be reached or even cooling/heating cannot be performed. As air conditioners are currently widely used, an efficient troubleshooting mechanism becomes necessary.
  • the after-sales service of air conditioners mainly includes the following forms: directly report to the maintenance personnel for repair; or describe to the remote customer service personnel by phone or text, and the customer service personnel will record and relay to the maintenance personnel to arrange the maintenance; as an improvement, There has also been a situation in which the operating parameters of the air conditioner are transmitted to the server for reference by maintenance personnel.
  • the technical problem to be solved by the present invention is how to further improve the troubleshooting mechanism of the air conditioner.
  • One aspect of the present invention provides a remote maintenance method for an air conditioner.
  • the method includes: based on a user's request, communicating the maintenance side with the current air conditioner corresponding to the user; the maintenance side enables the current air conditioner to be set Operating in a predetermined manner and obtaining the first type of operating parameters; at least according to the first type of operating parameters, the fault type of the current air conditioner is determined.
  • the maintenance side can accurately and comprehensively discover the existing problems of the current air conditioner, thereby seeking to quickly and accurately determine the fault type of the current air conditioner, and improve the efficiency of the troubleshooting mechanism.
  • the method further includes: before this request, collecting the second type of operating parameters of the current air conditioner, so as to correspond to the current user on the maintenance side.
  • the second type of operating parameters are transmitted to the overhaul side, so that the overhaul side can determine the said parameters based on only the first type of operating parameters or in combination with the first type of The fault type of the current air conditioner.
  • the method further includes: The user takes the initiative to communicate the third type of operating parameters to the maintenance side. Through such a setting, the maintenance side can seek to determine the type of failure of the air conditioner more quickly and better.
  • the third type of operating parameters include fault descriptions and/or parameters when the current air conditioner is operating in the mode selected by the user.
  • the system includes: a communication module: based on a user's request, the maintenance side communicates with the current air conditioner corresponding to the user; a first parameter module: the maintenance The side causes the current air conditioner to operate in a set manner and obtains the first type of operating parameters; and the determining module: determines the fault type of the current air conditioner at least according to the first type of operating parameters.
  • the maintenance side can more accurately and comprehensively discover the problems of the air conditioner, so as to seek to quickly and accurately determine the fault type of the current air conditioner, and improve the efficiency of the troubleshooting mechanism.
  • the first parameter module is specifically: the maintenance side causes the current air conditioner to operate in one or more modes and obtains the first type of operating parameters.
  • the system further includes a second parameter module, and the second parameter module is used to collect the second type of the current air conditioner before this request.
  • Operating parameters so that when the maintenance side communicates with the current air conditioner corresponding to the user, the second type of operating parameters are transmitted to the maintenance side, so that the maintenance side can only be based on the first type of operating parameters or combined with the first type of operating parameters.
  • the first type of operating parameters and the second type of operating parameters determine the fault type of the current air conditioner.
  • the system includes a third parameter module, and the third parameter module is used to enable the user to actively communicate the third type of operating parameters to the maintenance side.
  • the maintenance side can seek to determine the type of failure of the air conditioner more quickly and better.
  • the third type of operating parameters include fault descriptions and/or parameters when the current air conditioner is operating in the mode selected by the user.
  • the remote maintenance system and method of the air conditioner of the present invention obtains more accurate first-type operating parameters based on the active operation of the maintenance side.
  • the second-type operating parameters record the parameters related to the failure in the historical data.
  • the third type of operating parameters intuitively gives a description of the fault from the user's point of view. Therefore, the maintenance side can directly determine the first type of operating parameters, or the first type of operating parameters can be determined on the basis of referring to the third type of operating parameters.
  • the current fault type of the air conditioner can be determined more accurately and quickly.
  • Fig. 1 shows a schematic diagram of a framework of a remote maintenance system for an air conditioner according to an embodiment of the present invention
  • Fig. 2 shows a schematic flowchart of a remote maintenance method for an air conditioner according to an embodiment of the present invention
  • Fig. 3 shows a specific flow diagram of a remote maintenance method for an air conditioner according to an embodiment of the present invention.
  • module and “processor” may include hardware, software, or a combination of both.
  • a module can include hardware circuits, various suitable sensors, communication ports, and memory, and can also include software parts, such as program codes, or a combination of software and hardware.
  • the processor may be a central processing unit, a microprocessor, an image processor, a digital signal processor, or any other suitable processor.
  • the processor has data and/or signal processing functions.
  • the processor can be implemented in software, hardware, or a combination of the two.
  • the non-transitory computer-readable storage medium includes any suitable medium that can store program code, such as magnetic disks, hard disks, optical disks, flash memory, read-only memory, random access memory, and so on.
  • a and/or B means all possible combinations of A and B, such as only A, only B, or A and B.
  • the term "at least one of A or B” or “at least one of A and B” has a meaning similar to “A and/or B” and may include only A, only B, or A and B.
  • the terms “a” and “this” in the singular form may also include the plural form.
  • Fig. 1 shows a schematic diagram of a framework of a remote maintenance system for an air conditioner according to an embodiment of the present invention.
  • the remote maintenance system of the air conditioner includes a communication module, a parameter module and a determination module, among which:
  • the communication module is mainly used to connect the maintenance side to the current air conditioner corresponding to the user based on the user's request, so as to realize the possibility of data interaction.
  • it can be such a way: a barcode corresponding to the maintenance is provided on the air conditioner, and based on the user's request, the maintenance side can realize the communication connection with the current air conditioner by remotely identifying the barcode.
  • the determining module mainly determines the fault type of the air conditioner based on the parameters obtained through the parameter module after the communication is established.
  • the parameter module includes a first parameter module, a second parameter module, and a third parameter module, where:
  • the first parameter module is used to obtain the first type of operating parameters. Specifically, after the communication is established, the maintenance side causes the current air conditioner to operate in the set mode. For example, after analysis, select certain modes related to refrigeration failures. In each mode, select a number of operating points to run separately, so as to obtain the first type of operating parameters.
  • the second parameter module is used to obtain the second type of operating parameters. Specifically, after the communication is established, during the normal operation of the air conditioner, the second parameter module is mainly used to collect the abnormal parameters and abnormal parameters that occur during the operation of the current air conditioner. Phenomenon and roughly classify these parameters and phenomena, such as the second type of operating parameters related to refrigeration and heating. It should be noted that the second parameter module is used to record fault-related parameters, but it does not initiate a fault request.
  • the second parameter module retrieves the parameters related to the refrigeration fault in the recorded fault-related parameters and sends them to the maintenance side so that the maintenance side can only follow the first type
  • the operating parameters or the combination of the first type of operating parameters and the second type of operating parameters determine the fault type of the current air conditioner.
  • the third parameter module is used to obtain the third type of operating parameters.
  • the user can first actively communicate the fault description to the maintenance side by phone.
  • the maintenance side can make the air conditioner at the same time or after learning the fault description.
  • the device runs in the set mode and obtains the aforementioned first operating parameters.
  • the maintenance side can also omit the requirement for fault description, and directly control the operation mode of the air conditioner according to the request and thus obtain the first operating parameter.
  • the user can also communicate the operating parameters in the current state of the fault to the maintenance side.
  • the way for the determining module to determine the fault is: the fault database analyzes and matches the received (first, second, and third) operating parameters to obtain possible fault types; One, two, and three) types of operating parameters are synchronized to the technicians on the maintenance side for analysis to confirm parameter abnormalities and fault directions; the above two conclusions are communicated to the data analysis system to determine the current type of failure of the air conditioner.
  • the (first, second, and third) parameters can also be communicated to the technicians on the maintenance side for analysis. While confirming the abnormality of the parameters and the direction of the fault, the (first, second, and third) parameters (2, 3) The interference data in the parameters are eliminated, and the eliminated parameters are transmitted to the fault database for analysis by the fault database.
  • FIG. 2 shows a schematic flowchart of a remote maintenance method for an air conditioner according to an embodiment of the present invention.
  • the remote maintenance method of air conditioner mainly includes the following steps:
  • the user initiates this troubleshooting request and actively communicates the third type of operating parameters to the maintenance side.
  • the third type of operating parameters includes the description of the fault transmitted by telephone. If it can be obtained, the user can also indicate the current state of the fault.
  • the operating parameters are communicated to the maintenance side;
  • the maintenance side is connected to the current air conditioner corresponding to the user. Based on the communication connection, the first type of operating parameters and the second type of operating parameters are communicated to the maintenance side, specifically:
  • the maintenance side enables the current air conditioner to operate in the set mode and obtains the first type of operating parameters.
  • the maintenance side can make the air conditioner operate in the set mode based on the third type of operating parameters to obtain the aforementioned first type of operating parameters.
  • the requirement for fault description can be omitted, and the operation mode of the air conditioner can be directly controlled according to the request, and thus the first type of operating parameters can be obtained.
  • the maintenance side is based on the above three types of operating parameters obtained, and can be based on only the first type of operating parameters (obtained directly or based on the third type of operating parameters), combining the first type of operating parameters and the second type of operating parameters, or combining the three types of operating parameters And so on to finally determine the current type of failure of the air conditioner.
  • FIG. 3 shows a specific flow diagram of a remote maintenance method for an air conditioner according to an embodiment of the present invention.
  • the user first initiates a request to the maintenance side, and verbally conveys the fault description as the first type of operating parameter.
  • the maintenance side remotely controls the air conditioner to operate in the set mode, such as switching between several modes and selecting a reasonable number of typical operating points, and obtaining the first type of operation in the process parameter.
  • the second type of operating parameters related to this failure by the air conditioner are also sent to the maintenance side.
  • the maintenance side analyzes and matches the received (first, second, and third) operating parameters through the fault database, and obtains the possible fault types; on the other hand, the (first, second, third) The similar operating parameters are synchronized to the technicians on the maintenance side (such as expert-level technicians) for analysis to confirm the parameter abnormalities and the fault direction; the data analysis system finally determines the current air conditioner fault type according to the two conclusions of the two aspects, and will finally The conclusions are communicated to the maintenance personnel responsible for this troubleshooting service.
  • the efficiency of troubleshooting is greatly improved. Based on this, due to the uneven technical level of the maintenance personnel who solved the fault, especially in the situation where the concealment of the fault point is difficult to troubleshoot, based on the fault type obtained by the present invention, it can basically be treated at the door once. In place, the reputation of after-sales service has been greatly improved.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may include: any entity or device, medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory, random access memory, and electrical carrier signal that can carry the computer program code. , Telecommunications signals and software distribution media, etc.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of the legislation and patent practice in the jurisdiction.
  • the computer-readable medium Does not include electrical carrier signals and telecommunication signals.
  • each module is only to illustrate the functional units of the system of the present invention
  • the physical devices corresponding to these modules may be the processor itself, or part of the software in the processor, part of the hardware, or Part of the combination of software and hardware. Therefore, the number of modules in the figure is only schematic.
  • each module in the system can be adaptively split or merged. Such splitting or merging of specific modules will not cause the technical solution to deviate from the principle of the present invention. Therefore, the technical solutions after splitting or merging will fall within the protection scope of the present invention.
  • the air conditioner configured in the above-mentioned specific manner is taken as an example, a person skilled in the art can understand that the present invention should not be limited to this.
  • users can flexibly choose the types of (first and third) operating parameters according to actual application scenarios. If the fault is assumed to be related to the defrosting of the air conditioner, then the first type of operating parameters can include making the air conditioner The cooling/heating switch is performed under certain typical working conditions and the first type of operating parameters are obtained. Of course, more operating modes can be selected.
  • the fault description in the third type of operating parameters can also be communicated to the maintenance side through text, audio recording, video and other methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器的远程检修系统及方法,其中的远程检修方法包括:基于用户的请求,使检修侧与该用户对应的当前空调器通讯连接;所述检修侧使所述当前空调器以设定的方式运行并获取第一类运行参数;至少根据所述第一类运行参数,确定所述当前空调器的故障类型。通过这样的设置,可以明显地改善目前空调器的故障排查机制。

Description

空调器的远程检修系统及方法 技术领域
本发明涉及空调器的检修技术领域,尤其涉及一种空调器的远程检修系统及方法。
背景技术
空调器包括压缩机、室外风机、室外换热器(通常称作冷凝器)和室内换热器(通常称作蒸发器),压缩机-冷凝器-蒸发器-压缩机形成冷媒的循环回路。当冷媒沿压缩机→冷凝器→蒸发器→压缩机循环流动时,空调器处于制冷循环。当冷媒沿压缩机→蒸发器→冷凝器→压缩机循环流动时,空调器处于制热循环。空调器在使用期间如果出现故障,则无法达到预期的制冷/制热水平甚至无法进行制冷/制热。由于空调器目前被广泛应用,因此,高效的故障排查机制成为必要。
目前空调器的售后服务主要包括这样的形式:直接向检修人员报修;或者通过电话或者文字的方式向远程的客服人员描述,由客服人员记录并向检修人员转达之后安排检修;作为一种改进,还出现了将空调器的运行参数传送至服务端以供检修人员参考的情形。
可以看出,目前的故障排查机制中,无论是电话、文字或者运行参数的选择,空调器的故障描述的内容是以用户为主导的,因此故障描述可能存在不准确、不全面的问题,如用户只是直观地察觉到了当前使用过程中显现出来的问题,而无法察觉其他的隐蔽性的问题。因此仅基于用户发起的故障描述的故障排查机制有待进一步改善。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
技术问题
有鉴于此,本发明要解决的技术问题是如何进一步改善空调器的故障排查机制。
解决方案
本发明一方面提供了一种空调器的远程检修方法,该方法包括:基于用户的请求,使检修侧与该用户对应的当前空调器通讯连接;所述检修侧使所述当前空调器以设定的方式运行并获取第一类运行参数;至少根据所述第一类运行参数,确定所述当前空调器的故障类型。
通过这样的设置,检修侧能够准确、全面地发现当前空调器所存在的问题,从而谋求快速、准确地确定当前空调器的故障类型,提高故障排查机制的效率。
对于上述远程检修方法,在一种可能的实施方式中,“基于用户的请求,使检修侧与该用户对应的当前空调器通讯连接”具体为:使所述当前空调器运行于一种或者多种模式。
通过这样的设置,能够更全面地发现当前空调器的显性和隐性问题。
对于上述远程检修方法,在一种可能的实施方式中,所述方法还包括:在本次请求之前,收集所述当前空调器的第二类运行参数,以便在检修侧与该用户对应的当前空调器通讯连接时,将所述第二类运行参数传送至所述检修侧,以便所述检修侧能够仅根据第一类运行参数或者结合第一类运行参数和第二类运行参数确定所述当前空调器的故障类型。
通过这样的设置,从而谋求能够通过结合历史数据中的一部分相关数据,更准确地确定当前空调器的故障类型。
对于上述远程检修方法,在一种可能的实施方式中,在“所述检修侧使所述当前空调器以设定的方式运行并获取运行参数”之前、同时或者之后,所述方法还包括:用户主动向检修侧传达第三类运行参数。通过这样的设置,检修侧能够谋求更快、更好地确定出空调器的故障类型。
对于上述远程检修方法,在一种可能的实施方式中,所述第三类运行参数包括故障描述和/或所述当前空调器在用户选择的方式运行时的参数。
本发明另一方面提供了一种空调器的远程检修系统,该系统包括:通讯模块:基于用户的请求,使检修侧与该用户对应的当前空调器通讯连接;第一参数模块:所述检修侧使所述当前空调器以设定的方 式运行并获取第一类运行参数;以及确定模块:至少根据所述第一类运行参数,确定所述当前空调器的故障类型。
通过这样的设置,检修侧能够更准确、更全面地发现空调器所存在的问题,从而谋求快速、准确地确定当前空调器的故障类型,提高故障排查机制的效率。
对于上述远程检修系统,在一种可能的实施方式中,所述第一参数模块具体为:所述检修侧使所述当前空调器运行于一种或者多种模式并获取第一类运行参数。
对于上述远程检修系统,在一种可能的实施方式中,所述系统还包括第二参数模块,所述第二参数模块用于:在本次请求之前,收集所述当前空调器的第二类运行参数,以便在检修侧与该用户对应的当前空调器通讯连接时,将所述第二类运行参数传送至所述检修侧,以便所述检修侧能够仅根据第一类运行参数或者结合第一类运行参数和第二类运行参数确定所述当前空调器的故障类型。
通过这样的设置,能够发现与故障相关的隐性问题,从而谋求更准确地确定故障类型。
对于上述远程检修系统,在一种可能的实施方式中,所述系统包括第三参数模块,所述第三参数模块用于:使用户主动向检修侧传达第三类运行参数。
通过这样的设置,检修侧能够谋求更快、更好地确定出空调器的故障类型。
对于上述远程检修系统,在一种可能的实施方式中,所述第三类运行参数包括故障描述和/或所述当前空调器在用户选择的方式运行时的参数。
总之,本发明的空调器的远程检修系统及方法根据检修侧的主动运行,获取到了更为准确的第一类运行参数,同时,第二类运行参数记录了历史数据中与故障相关的参数,第三类运行参数从用户的角度直观地给出了故障的描述,因此检修侧可以直接确定第一类运行参数,也可以在参考第三类运行参数的基础上确定第一类运行参数。在第一类运行参数的基础上,通过选择性地参考第二类运行参数和/或第三类运行参数,能够更准确、快速地确定当前空调器的故障类型。
附图说明
下面参照附图来描述本发明。附图中:
图1示出本发明一种实施例的空调器的远程检修系统的框架示意图;
图2示出本发明一种实施例的空调器的远程检修方法的流程示意图;以及
图3示出本发明一种实施例的空调器的远程检修方法的具体流程示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。在本实施方式中结合以这样的具体情形作为示例来描述本发明:假设当前的故障与空调器的制冷有关,用户可以通过打电话的方式将故障描述传达至检修侧,检修侧确定故障类型的方式为基于故障数据库和专家建议相结合的方式。
在本发明的描述中,“模块”、“处理器”可以包括硬件、软件或者两者的组合。一个模块可以包括硬件电路,各种合适的感应器,通信端口,存储器,也可以包括软件部分,比如程序代码,也可以是软件和硬件的组合。处理器可以是中央处理器、微处理器、图像处理器、数字信号处理器或者其他任何合适的处理器。处理器具有数据和/或信号处理功能。处理器可以以软件方式实现、硬件方式实现或者二者结合方式实现。非暂时性的计算机可读存储介质包括任何合适的可存储程序代码的介质,比如磁碟、硬盘、光碟、闪存、只读存储器、随机存取存储器等等。术语“A和/或B”表示所有可能的A与B的组合,比如只是A、只是B或者A和B。术语“至少一个A或B”或者“A和B中的至少一个”含义与“A和/或B”类似,可以包括只是A、只是B或者A和B。单数形式的术语“一个”、“这个”也可以包含复数形式。
参照图1,图1示出本发明一种实施例的空调器的远程检修系统的框架示意图。如图1所示,空调器的远程检修系统包括通讯模块、参数模块和确定模块,其中:
通讯模块主要用于:基于用户的请求,使检修侧与该用户对应的当前空调器通讯连接,从而实现数据交互的可能性。如可以是这样的方式:在空调器上设置有对应于检修的条码,基于用户的请求,检修侧可以通过远程识别该条码的方式实现与当前空调器的通讯连接。
确定模块主要根据通讯建立之后通过参数模块获取的参数,来确定空调器的故障类型。
参数模块包括第一参数模块、第二参数模块和第三参数模块,其中:
第一参数模块用于获取第一类运行参数,具体地,在通讯建立之后,检修侧使当前空调器以设定的方式运行,如经分析,选择与制冷故障有关的某几个模式,在每个模式中选择若干工况点分别运行,从而获取第一类运行参数。
第二参数模块用于获取第二类运行参数,具体地,在通讯建立之后,在空调器正常运行过程中,第二参数模块主要用于收集当前空调器在运行过程中出现的非正常参数和现象并将这些参数和现象大致归类,如与制冷有关、与制热有关等的第二类运行参数。需要说明的是,第二参数模块用于记录故障相关参数,但是并不会发起故障请求。当本次请求被用户发起后,第二参数模块调取记录的故障相关参数中与本次的制冷故障相关的参数,并将其送至所述检修侧,以便检修侧能够仅根据第一类运行参数或者结合第一类运行参数和第二类运行参数确定当前空调器的故障类型。
第三参数模块用于获取第三类运行参数,具体地,用户可以在发起本次请求的同时,首先主动向检修侧通过电话传达故障描述,检修侧在获知故障描述的同时或者之后,使空调器运行在设定的模式并获取前述的第一运行参数。当然,检修侧也可以省略对于故障描述的需求,直接根据请求控制空调器的运行模式并因此获得第一运行参数。除了语言性的故障描述,如果能够获取的话,用户还可以将出现故障的当前状态下的运行参数传达至检修侧。
在一种可能的实施方中,确定模块确定故障的方式为:故障数据库对接收的(第一、第二、第三)运行参数进行分析并匹配处理,得出可能的故障类型;将(第一、第二、第三)类运行参数同步至检修侧的技术人员进行分析,确认参数异常点以及故障方向;上述两种结论均传达至数据分析系统,确定当前空调器的故障类型。
为了更加准确、快速地确定故障类型,也可以先将(第一、第二、第三)参数传达至检修侧的技术人员进行分析,在确认参数异常点以及故障方向的同时,对(第一、第二、第三)参数中的干扰数据进行剔除,将剔除之后的参数传达至故障数据库以供故障数据库进行分析。
参照图2,图2示出本发明一种实施例的空调器的远程检修方法的流程示意图。如图2所示,空调器的远程检修方法主要包括如下步骤:
用户发起本次故障排查的请求,并主动向检修侧传达第三类运行参数,如第三类运行参数包括通过电话传达的故障描述,如果能够获取的话,用户还可以将出现故障的当前状态下的运行参数传达至检修侧;
基于用户的请求,使检修侧与该用户对应的当前空调器通讯连接,基于通讯连接,向检修侧传达第一类运行参数和第二类运行参数,具体地:
检修侧使当前空调器以设定的方式运行,并获取第一类运行参数,如检修侧可以基于第三类运行参数使空调器运行在设定的模式获取前述的第一类运行参数,也可以省略对于故障描述的需求,直接根据请求控制空调器的运行模式并因此获得第一类运行参数。
在本次请求之前,与故障相关的各类非正常参数和现象被收集并大致归类,从而构成了第二类运行参数。基于本次请求,将与本次故障相关的第二类运行参数传送至检修侧。
检修侧基于获取的上述三类运行参数,可以仅根据第一类运行参数(直接获得或者基于第三类运行参数获得)、结合第一类运行参数和第二类运行参数或者结合三类运行参数等方式来最终确定当前空调器的故障类型。
参照图3,图3示出本发明一种实施例的空调器的远程检修方法的具体流程示意图。如图3所示,在空调器出现故障时,用户先向检修 侧发起请求,并以口述的方式传达作为第一类运行参数的故障描述。基于故障描述,检修侧远程控制空调器,使其在设定的模式下运行,如在几个模式之间切换且选择合理个数的典型工况点,并在该过程中获取第一类运行参数。同时,空调器调取与本次故障相关的第二类运行参数也一并发送至检修侧。检修侧一方面通过故障数据库对接收的(第一、第二、第三)类运行参数进行分析并匹配处理,得出可能的故障类型;另一方面将(第一、第二、第三)类运行参数同步至检修侧的技术人员(如专家级技术人员)进行分析,确认参数异常点以及故障方向;数据分析系统根据两方面的两种结论最终确定当前空调器的故障类型,并将最终的结论传达至负责本次排障服务的检修人员。
通过多类运行参数尤其是第一类运行参数的获得,大大提高了排障的效率。基于此,由于解决本次故障的维修人员的技术水平参差不齐,尤其是在故障点隐蔽性大难排查的情形下,基于通过本发明得出的故障类型,基本上可以做到上门一次处理到位,大大提升了售后服务口碑。
需要指出的是,尽管上述实施例中将各个步骤按照特定的先后顺序进行了描述,但是本领域技术人员可以理解,为了实现本发明的效果,不同的步骤之间并非必须按照这样的顺序执行,其可以同时(并行)执行或以其他顺序执行,这些变化都在本发明的保护范围之内。
本领域技术人员能够理解的是,本发明实现上述实施例的方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器、随机存取存储器、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进 行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
进一步,应该理解的是,由于各个模块的设定仅仅是为了说明本发明的系统的功能单元,这些模块对应的物理器件可以是处理器本身,或者处理器中软件的一部分,硬件的一部分,或者软件和硬件结合的一部分。因此,图中的各个模块的数量仅仅是示意性的。
本领域技术人员能够理解的是,可以对系统中的各个模块进行适应性地拆分或合并。对具体模块的这种拆分或合并并不会导致技术方案偏离本发明的原理,因此,拆分或合并之后的技术方案都将落入本发明的保护范围内。
需要说明的是,尽管以如上具体方式所构成的设定的空调器作为示例介绍,但本领域技术人员能够理解,本发明应不限于此。事实上,用户完全可根据以及实际应用场景等情形灵活地选择(第一、第三)类运行参数的种类,如假设故障与空调器的除霜有关,则第一类运行参数可以包括使空调器在某几个典型工况下进行制冷/制热的切并获得第一类运行参数,当然还可以选择更多的运行方式。第三类运行参数中的故障描述还可以通过文字、录制音频、视频等其他方式来传达至检修侧等。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器的远程检修方法,其特征在于,该方法包括:
    基于用户的请求,使检修侧与该用户对应的当前空调器通讯连接;
    所述检修侧使所述当前空调器以设定的方式运行并获取第一类运行参数;
    至少根据所述第一类运行参数,确定所述当前空调器的故障类型。
  2. 根据权利要求1所述的空调器的远程检修方法,其特征在于,“基于用户的请求,使检修侧与该用户对应的当前空调器通讯连接”具体为:
    使所述当前空调器运行于一种或者多种模式。
  3. 根据权利要求2所述的空调器的远程检修方法,其特征在于,所述方法还包括:
    在本次请求之前收集所述当前空调器的第二类运行参数,以便在检修侧与该用户对应的当前空调器通讯连接时,将所述第二类运行参数传送至所述检修侧,以便
    所述检修侧能够仅根据第一类运行参数或者结结合第一类运行参数和第二类运行参数确定所述当前空调器的故障类型。
  4. 根据权利要求1至3中任一项所述的空调器的远程检修方法,其特征在于,在“所述检修侧使所述当前空调器以设定的方式运行并获取运行参数”之前、同时或者之后,所述方法还包括:
    用户主动向检修侧传达第三类运行参数。
  5. 根据权利要求4所述的空调器的远程检修方法,其特征在于,所述第三类运行参数包括故障描述和/或所述当前空调器在用户选择的方式运行时的运行参数。
  6. 一种空调器的远程检修系统,其特征在于,该系统包括:
    通讯模块:基于用户的请求,使检修侧与该用户对应的当前空调器通讯连接;
    第一参数模块:所述检修侧使所述当前空调器以设定的方式运行并获取第一类运行参数;以及
    确定模块:至少根据所述第一类运行参数,确定所述当前空调器的故障类型。
  7. 根据权利要求6所述的空调器的远程检修系统,其特征在于,所述第一参数模块具体为:
    所述检修侧使所述当前空调器运行于一种或者多种模式并获取第一类运行参数。
  8. 根据权利要求6所述的空调器的远程检修系统,其特征在于,所述系统还包括第二参数模块,所述第二参数模块用于:
    在本次请求之前,收集所述当前空调器的第二类运行参数,以便在检修侧与该用户对应的当前空调器通讯连接时,将所述第二类运行参数传送至所述检修侧,以便
    所述检修侧能够仅根据第一类运行参数或者结合第一类运行参数和第二类运行参数确定所述当前空调器的故障类型。
  9. 根据权利要求6至8中任一项所述的空调器的远程检修系统,其特征在于,所述系统包括第三参数模块,所述第三参数模块用于:
    使用户主动向检修侧传达第三类运行参数。
  10. 根据权利要求9所述的空调器的远程检修系统,其特征在于,所述第三类运行参数包括故障描述和/或所述当前空调器在用户选择的方式运行时的参数。
PCT/CN2021/072634 2020-02-26 2021-01-19 空调器的远程检修系统及方法 WO2021169671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010120470.7A CN113310170A (zh) 2020-02-26 2020-02-26 空调器的远程检修系统及方法
CN202010120470.7 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021169671A1 true WO2021169671A1 (zh) 2021-09-02

Family

ID=77369874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072634 WO2021169671A1 (zh) 2020-02-26 2021-01-19 空调器的远程检修系统及方法

Country Status (2)

Country Link
CN (1) CN113310170A (zh)
WO (1) WO2021169671A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342185A (ja) * 2001-03-09 2002-11-29 Matsushita Electric Ind Co Ltd リモートメンテナンスシステム
CN104819551A (zh) * 2015-05-12 2015-08-05 广东美的暖通设备有限公司 用于空调器的故障告警系统及空调器
CN105806640A (zh) * 2014-12-30 2016-07-27 广东美的制冷设备有限公司 空调器的故障诊断装置和诊断方法
CN106225141A (zh) * 2016-07-01 2016-12-14 杭州鲁鼎新材料科技有限公司 空调的云控制系统及其控制方法
JP2017083033A (ja) * 2015-10-23 2017-05-18 ダイキン工業株式会社 空気調和機
US20170314797A1 (en) * 2016-04-28 2017-11-02 Trane International Inc. Method of associating a diagnostic module to hvac system components
CN107883533A (zh) * 2017-12-16 2018-04-06 王干 基于民用空调器的多用户集散式管控平台系统及应用方法
CN108844181A (zh) * 2018-03-30 2018-11-20 奥克斯空调股份有限公司 家电设备报修方法及空调维修系统
JP2019114897A (ja) * 2017-12-22 2019-07-11 パナソニックIpマネジメント株式会社 データ絞り込み方法、データ絞り込み装置及びデータ絞り込みプログラム
CN110081557A (zh) * 2019-04-30 2019-08-02 四川长虹空调有限公司 空调远程维修系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109357359A (zh) * 2018-11-06 2019-02-19 青岛海尔空调器有限总公司 空调器故障预诊断的方法、装置和空调器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342185A (ja) * 2001-03-09 2002-11-29 Matsushita Electric Ind Co Ltd リモートメンテナンスシステム
CN105806640A (zh) * 2014-12-30 2016-07-27 广东美的制冷设备有限公司 空调器的故障诊断装置和诊断方法
CN104819551A (zh) * 2015-05-12 2015-08-05 广东美的暖通设备有限公司 用于空调器的故障告警系统及空调器
JP2017083033A (ja) * 2015-10-23 2017-05-18 ダイキン工業株式会社 空気調和機
US20170314797A1 (en) * 2016-04-28 2017-11-02 Trane International Inc. Method of associating a diagnostic module to hvac system components
CN106225141A (zh) * 2016-07-01 2016-12-14 杭州鲁鼎新材料科技有限公司 空调的云控制系统及其控制方法
CN107883533A (zh) * 2017-12-16 2018-04-06 王干 基于民用空调器的多用户集散式管控平台系统及应用方法
JP2019114897A (ja) * 2017-12-22 2019-07-11 パナソニックIpマネジメント株式会社 データ絞り込み方法、データ絞り込み装置及びデータ絞り込みプログラム
CN108844181A (zh) * 2018-03-30 2018-11-20 奥克斯空调股份有限公司 家电设备报修方法及空调维修系统
CN110081557A (zh) * 2019-04-30 2019-08-02 四川长虹空调有限公司 空调远程维修系统及方法

Also Published As

Publication number Publication date
CN113310170A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
JP4403335B2 (ja) ビデオ処理機器の保守支援システム
CN111294652A (zh) 智能电视故障在线诊断方法、装置及控制器
CN106403188A (zh) 一种空调维护方法及其维护装置
CN108449196A (zh) 汽车远程会诊方法、装置及系统
WO2021169671A1 (zh) 空调器的远程检修系统及方法
CN108959016A (zh) 监控参数的采集管理方法、装置、服务器及数据采集设备
CN113251581A (zh) 空调故障数据的显示方法、装置、存储介质及空调机
CN105335266B (zh) 用于确定被检测设备的故障的方法
WO2009155485A2 (en) Self diagnostics of tv
CN115134218B (zh) 设备替换方法、装置、存储介质以及服务器
CN108870641B (zh) 一种驱动故障检测方法、装置及空调器
CN116755920A (zh) 故障定位方法、设备、装置、存储介质及电子设备
US6941347B2 (en) Network administration system and method of re-arranging network resources
CN102256103B (zh) 实现摄影机控制的应用服务器及方法
US7391821B2 (en) Operational state transition and event logging system for an RF transmitter
CN108509311A (zh) 一种设备监控方法、装置、存储介质及计算机设备
CN110413353B (zh) 一种数据处理方法、装置和存储介质
CN110082138B (zh) 空调实验系统
CN110087066B (zh) 一种应用于网上巡查的一键自动巡检方法
CN111757094A (zh) 一种自适应运维诊断的综合安防监控管理平台及管理方法
RU2241911C1 (ru) Способ дистанционного контроля работы кондиционеров и/или холодильных машин
CN112737833B (zh) 一种监控处理方法、装置及系统
CN112672075B (zh) 信号源管理系统、方法和装置
KR200444596Y1 (ko) 디지털 비디오 레코더의 자동 테스트 제어시스템
CN114979035B (zh) 监控视频存储方法及装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761364

Country of ref document: EP

Kind code of ref document: A1