WO2021169478A9 - 神经网络模型的融合训练方法及装置 - Google Patents
神经网络模型的融合训练方法及装置 Download PDFInfo
- Publication number
- WO2021169478A9 WO2021169478A9 PCT/CN2020/134777 CN2020134777W WO2021169478A9 WO 2021169478 A9 WO2021169478 A9 WO 2021169478A9 CN 2020134777 W CN2020134777 W CN 2020134777W WO 2021169478 A9 WO2021169478 A9 WO 2021169478A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- training
- neural network
- network model
- data
- training period
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Image Analysis (AREA)
- Feedback Control In General (AREA)
Abstract
本说明书实施例提供一种神经网络模型的融合训练方法及装置。通过神经网络模型的模型训练过程包括若干训练周期,每个训练周期对应于使用训练样本集中所有样本数据进行模型训练的过程,神经网络模型用于对输入的业务数据进行业务预测。在当前的第一训练周期中,当第一训练周期不是第一个训练周期时,基于第一训练周期之前的训练周期训练结束时得到的神经网络模型对第一样本数据的预测数据的累积,而得到的第一目标预测数据,即根据第一目标预测数据对待训练神经网络模型的训练过程进行调整,更新待训练神经网络模型。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010131424.7 | 2020-02-28 | ||
CN202010131424.7A CN111291886B (zh) | 2020-02-28 | 2020-02-28 | 神经网络模型的融合训练方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2021169478A1 WO2021169478A1 (zh) | 2021-09-02 |
WO2021169478A9 true WO2021169478A9 (zh) | 2021-10-28 |
Family
ID=71024581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/134777 WO2021169478A1 (zh) | 2020-02-28 | 2020-12-09 | 神经网络模型的融合训练方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111291886B (zh) |
WO (1) | WO2021169478A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111291886B (zh) * | 2020-02-28 | 2022-02-18 | 支付宝(杭州)信息技术有限公司 | 神经网络模型的融合训练方法及装置 |
CN112669078A (zh) * | 2020-12-30 | 2021-04-16 | 上海众源网络有限公司 | 一种行为预测模型训练方法、装置、设备及存储介质 |
CN113778802B (zh) * | 2021-09-15 | 2024-09-24 | 深圳前海微众银行股份有限公司 | 异常预测方法及设备 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102415506B1 (ko) * | 2016-10-26 | 2022-07-01 | 삼성전자주식회사 | 뉴럴 네트워크 간소화 방법 및 장치 |
CN109670588A (zh) * | 2017-10-16 | 2019-04-23 | 优酷网络技术(北京)有限公司 | 神经网络预测方法及装置 |
US10373056B1 (en) * | 2018-01-25 | 2019-08-06 | SparkCognition, Inc. | Unsupervised model building for clustering and anomaly detection |
US10546408B2 (en) * | 2018-03-20 | 2020-01-28 | Adobe Inc. | Retargeting skeleton motion sequences through cycle consistency adversarial training of a motion synthesis neural network with a forward kinematics layer |
CN108805258B (zh) * | 2018-05-23 | 2021-10-12 | 北京图森智途科技有限公司 | 一种神经网络训练方法及其装置、计算机服务器 |
CN109598331A (zh) * | 2018-12-04 | 2019-04-09 | 北京芯盾时代科技有限公司 | 一种欺诈识别模型训练方法、欺诈识别方法及装置 |
CN110163368B (zh) * | 2019-04-18 | 2023-10-20 | 腾讯科技(深圳)有限公司 | 基于混合精度的深度学习模型训练方法、装置及系统 |
CN110399742B (zh) * | 2019-07-29 | 2020-12-18 | 深圳前海微众银行股份有限公司 | 一种联邦迁移学习模型的训练、预测方法及装置 |
CN110674880B (zh) * | 2019-09-27 | 2022-11-11 | 北京迈格威科技有限公司 | 用于知识蒸馏的网络训练方法、装置、介质与电子设备 |
CN111144567A (zh) * | 2019-12-31 | 2020-05-12 | 支付宝(杭州)信息技术有限公司 | 神经网络模型的训练方法及装置 |
CN111291886B (zh) * | 2020-02-28 | 2022-02-18 | 支付宝(杭州)信息技术有限公司 | 神经网络模型的融合训练方法及装置 |
-
2020
- 2020-02-28 CN CN202010131424.7A patent/CN111291886B/zh active Active
- 2020-12-09 WO PCT/CN2020/134777 patent/WO2021169478A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN111291886A (zh) | 2020-06-16 |
CN111291886B (zh) | 2022-02-18 |
WO2021169478A1 (zh) | 2021-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021169478A9 (zh) | 神经网络模型的融合训练方法及装置 | |
EP4404104A3 (en) | Machine learning for determining protein structures | |
WO2020077693A1 (zh) | 基于迁移学习的焊接工艺参数推荐方法、装置及机器人 | |
CN103295075A (zh) | 一种超短期电力负荷预测与预警方法 | |
SG11201909146WA (en) | Vehicle lamp detection methods and apparatuses, methods and apparatuses for implementing inteliggent driving, media and devices | |
CN109978287B (zh) | 多晶硅智能生产方法及系统 | |
US10763893B2 (en) | Method for data compression | |
CN108229732A (zh) | 基于误差修正的极端学习机风速超短期预测方法 | |
WO2010030524A3 (en) | Systems and methods for real time classification and performance monitoring of batch processes | |
CN110727776B (zh) | 一种基于人工智能的汽车问答交互系统及交互方法 | |
GB2590768A8 (en) | Method for optimizing motion parameter of industrial robot for energy saving in big data environment | |
CN111080087B (zh) | 一种基于客户情感分析的呼叫中心调度方法 | |
CN104144328A (zh) | 一种智能视频监控方法 | |
EP4148629A4 (en) | METHOD FOR TRAINING A NEURAL NETWORK BY AUTO-CODER AND MULTI-INSTANCE LEARNING, AND COMPUTER SYSTEM FOR IMPLEMENTING THIS METHOD | |
CN110110095A (zh) | 一种基于长短期记忆循环神经网络的电力指令文本匹配方法 | |
CN116320525B (zh) | 一种基于数字孪生的教学信息处理系统及方法 | |
EP4187435A4 (en) | TRAINING METHOD AND MODEL FOR CONVOLUTIONAL NEURAL NETWORK BASED ON SAMPLE DISTRIBUTION IMPROVEMENT | |
MX2023003687A (es) | Modelado predictivo hibrido y el control de cultivo celular. | |
CN111523646A (zh) | 基于物联网的远程教育学习中心智慧感知网络及管理方法 | |
CN117311294B (zh) | 基于云边融合的橡胶手套生产设备自决策控制方法 | |
Zhang et al. | GPT-Enabled Digital Twin Assistant for Multi-task Cooperative Management in Autonomous Optical Network | |
CN110716553A (zh) | 基于数字孪生技术的灾情最优逃生路径规划算法 | |
CN114049163B (zh) | 一种营销服务数据管理方法及系统 | |
Geng et al. | A LSTM based campus network traffic prediction system | |
Antony et al. | Teaching advanced statistical techniques to industrial engineers and business managers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20920978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20920978 Country of ref document: EP Kind code of ref document: A1 |