WO2021169478A9 - 神经网络模型的融合训练方法及装置 - Google Patents

神经网络模型的融合训练方法及装置 Download PDF

Info

Publication number
WO2021169478A9
WO2021169478A9 PCT/CN2020/134777 CN2020134777W WO2021169478A9 WO 2021169478 A9 WO2021169478 A9 WO 2021169478A9 CN 2020134777 W CN2020134777 W CN 2020134777W WO 2021169478 A9 WO2021169478 A9 WO 2021169478A9
Authority
WO
WIPO (PCT)
Prior art keywords
training
neural network
network model
data
training period
Prior art date
Application number
PCT/CN2020/134777
Other languages
English (en)
French (fr)
Other versions
WO2021169478A1 (zh
Inventor
蒋亮
温祖杰
梁忠平
张家兴
Original Assignee
支付宝(杭州)信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 支付宝(杭州)信息技术有限公司 filed Critical 支付宝(杭州)信息技术有限公司
Publication of WO2021169478A1 publication Critical patent/WO2021169478A1/zh
Publication of WO2021169478A9 publication Critical patent/WO2021169478A9/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Analysis (AREA)
  • Feedback Control In General (AREA)

Abstract

本说明书实施例提供一种神经网络模型的融合训练方法及装置。通过神经网络模型的模型训练过程包括若干训练周期,每个训练周期对应于使用训练样本集中所有样本数据进行模型训练的过程,神经网络模型用于对输入的业务数据进行业务预测。在当前的第一训练周期中,当第一训练周期不是第一个训练周期时,基于第一训练周期之前的训练周期训练结束时得到的神经网络模型对第一样本数据的预测数据的累积,而得到的第一目标预测数据,即根据第一目标预测数据对待训练神经网络模型的训练过程进行调整,更新待训练神经网络模型。
PCT/CN2020/134777 2020-02-28 2020-12-09 神经网络模型的融合训练方法及装置 WO2021169478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010131424.7 2020-02-28
CN202010131424.7A CN111291886B (zh) 2020-02-28 2020-02-28 神经网络模型的融合训练方法及装置

Publications (2)

Publication Number Publication Date
WO2021169478A1 WO2021169478A1 (zh) 2021-09-02
WO2021169478A9 true WO2021169478A9 (zh) 2021-10-28

Family

ID=71024581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134777 WO2021169478A1 (zh) 2020-02-28 2020-12-09 神经网络模型的融合训练方法及装置

Country Status (2)

Country Link
CN (1) CN111291886B (zh)
WO (1) WO2021169478A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111291886B (zh) * 2020-02-28 2022-02-18 支付宝(杭州)信息技术有限公司 神经网络模型的融合训练方法及装置
CN112669078A (zh) * 2020-12-30 2021-04-16 上海众源网络有限公司 一种行为预测模型训练方法、装置、设备及存储介质
CN113778802B (zh) * 2021-09-15 2024-09-24 深圳前海微众银行股份有限公司 异常预测方法及设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415506B1 (ko) * 2016-10-26 2022-07-01 삼성전자주식회사 뉴럴 네트워크 간소화 방법 및 장치
CN109670588A (zh) * 2017-10-16 2019-04-23 优酷网络技术(北京)有限公司 神经网络预测方法及装置
US10373056B1 (en) * 2018-01-25 2019-08-06 SparkCognition, Inc. Unsupervised model building for clustering and anomaly detection
US10546408B2 (en) * 2018-03-20 2020-01-28 Adobe Inc. Retargeting skeleton motion sequences through cycle consistency adversarial training of a motion synthesis neural network with a forward kinematics layer
CN108805258B (zh) * 2018-05-23 2021-10-12 北京图森智途科技有限公司 一种神经网络训练方法及其装置、计算机服务器
CN109598331A (zh) * 2018-12-04 2019-04-09 北京芯盾时代科技有限公司 一种欺诈识别模型训练方法、欺诈识别方法及装置
CN110163368B (zh) * 2019-04-18 2023-10-20 腾讯科技(深圳)有限公司 基于混合精度的深度学习模型训练方法、装置及系统
CN110399742B (zh) * 2019-07-29 2020-12-18 深圳前海微众银行股份有限公司 一种联邦迁移学习模型的训练、预测方法及装置
CN110674880B (zh) * 2019-09-27 2022-11-11 北京迈格威科技有限公司 用于知识蒸馏的网络训练方法、装置、介质与电子设备
CN111144567A (zh) * 2019-12-31 2020-05-12 支付宝(杭州)信息技术有限公司 神经网络模型的训练方法及装置
CN111291886B (zh) * 2020-02-28 2022-02-18 支付宝(杭州)信息技术有限公司 神经网络模型的融合训练方法及装置

Also Published As

Publication number Publication date
CN111291886A (zh) 2020-06-16
CN111291886B (zh) 2022-02-18
WO2021169478A1 (zh) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2021169478A9 (zh) 神经网络模型的融合训练方法及装置
EP4404104A3 (en) Machine learning for determining protein structures
WO2020077693A1 (zh) 基于迁移学习的焊接工艺参数推荐方法、装置及机器人
CN103295075A (zh) 一种超短期电力负荷预测与预警方法
SG11201909146WA (en) Vehicle lamp detection methods and apparatuses, methods and apparatuses for implementing inteliggent driving, media and devices
CN109978287B (zh) 多晶硅智能生产方法及系统
US10763893B2 (en) Method for data compression
CN108229732A (zh) 基于误差修正的极端学习机风速超短期预测方法
WO2010030524A3 (en) Systems and methods for real time classification and performance monitoring of batch processes
CN110727776B (zh) 一种基于人工智能的汽车问答交互系统及交互方法
GB2590768A8 (en) Method for optimizing motion parameter of industrial robot for energy saving in big data environment
CN111080087B (zh) 一种基于客户情感分析的呼叫中心调度方法
CN104144328A (zh) 一种智能视频监控方法
EP4148629A4 (en) METHOD FOR TRAINING A NEURAL NETWORK BY AUTO-CODER AND MULTI-INSTANCE LEARNING, AND COMPUTER SYSTEM FOR IMPLEMENTING THIS METHOD
CN110110095A (zh) 一种基于长短期记忆循环神经网络的电力指令文本匹配方法
CN116320525B (zh) 一种基于数字孪生的教学信息处理系统及方法
EP4187435A4 (en) TRAINING METHOD AND MODEL FOR CONVOLUTIONAL NEURAL NETWORK BASED ON SAMPLE DISTRIBUTION IMPROVEMENT
MX2023003687A (es) Modelado predictivo hibrido y el control de cultivo celular.
CN111523646A (zh) 基于物联网的远程教育学习中心智慧感知网络及管理方法
CN117311294B (zh) 基于云边融合的橡胶手套生产设备自决策控制方法
Zhang et al. GPT-Enabled Digital Twin Assistant for Multi-task Cooperative Management in Autonomous Optical Network
CN110716553A (zh) 基于数字孪生技术的灾情最优逃生路径规划算法
CN114049163B (zh) 一种营销服务数据管理方法及系统
Geng et al. A LSTM based campus network traffic prediction system
Antony et al. Teaching advanced statistical techniques to industrial engineers and business managers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920978

Country of ref document: EP

Kind code of ref document: A1