WO2021169353A1 - 一种智能网联条件下的交叉口交通流微观控制方法 - Google Patents
一种智能网联条件下的交叉口交通流微观控制方法 Download PDFInfo
- Publication number
- WO2021169353A1 WO2021169353A1 PCT/CN2020/124662 CN2020124662W WO2021169353A1 WO 2021169353 A1 WO2021169353 A1 WO 2021169353A1 CN 2020124662 W CN2020124662 W CN 2020124662W WO 2021169353 A1 WO2021169353 A1 WO 2021169353A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- speed
- time
- lane
- intersection
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/07—Controlling traffic signals
- G08G1/08—Controlling traffic signals according to detected number or speed of vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/095—Traffic lights
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096708—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
- G08G1/096725—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/167—Driving aids for lane monitoring, lane changing, e.g. blind spot detection
Definitions
- the invention relates to the research field of road intersection signal control technology, and in particular to a microscopic control method for intersection traffic flow under the condition of intelligent network connection.
- intersection signal control methods including single point, trunk, and regional control.
- SCATS used in Shanghai, Guangzhou, Shenyang, etc.
- SCOOT used in Beijing, Chengdu, Dalian, etc.
- the Internet of Vehicles (characterized by real-time vehicle-to-vehicle and vehicle-to-road interconnection) has become the most active branch of the Internet of Things.
- the wireless access in the vehicle environment is based on IEEE 802.11p and The IEEE1609 protocol family was officially promulgated in November and December 2010.
- the Internet of Vehicles technology provides a broad technical space for precise control of traffic flow.
- Ability to significantly reduce traffic delays and reduce the number of stops (Lin Peiqun, Zhuo Fuqing, Gu Yumu.
- the above method has certain limitations, that is, the method does not consider the micro-management method of the intersection under the condition of mixed traffic flow (traffic flow with autonomous vehicles and manual driving vehicles).
- CAV connected and autonomous vehicles
- the main purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and provide a microscopic control method of traffic flow at intersections under the condition of intelligent network connection. Establish a traditional signal light control mode, so that the overall operating efficiency of the transportation system has been significantly improved.
- the present invention is realized by at least one of the following technical solutions.
- a microscopic control method of traffic flow at intersections under the condition of intelligent network connection including the steps:
- each intersection is equipped with four signal lights and a central controller.
- Each SCT lane is equipped with sensing devices. The sensing devices and signal lights interact with the central controller in real-time information, and the signal lights are converted under the action of the central controller.
- the vehicle is in front of the intersection of the lane and in the parking line Drive freely according to traffic lights;
- the control method of the SCT lane is: the vehicle travels freely before reaching the parking line.
- the parking line is full and exceeds the limited number of vehicles or the waiting time of a certain vehicle exceeds the limited time, the signal light turns green and the green light duration is fixed, otherwise The signal light will be in a steady red state.
- CVT Vehicle Technology
- the variable speed control zone the length of the variable speed control zone is d, and the area within the parking line is the uniform speed control zone; each intersection
- Each port is equipped with a central controller.
- the vehicle After each vehicle enters the variable speed control area and the uniform speed control area, it will interact with the central controller in real time and perform fully automatic driving under the action of the central controller (vehicle speed, acceleration, and The steering of the intersection is completely controlled by the central controller), the vehicle can change speed freely in the speed control zone, but in the uniform speed control zone, the vehicle must drive at the same speed as it enters the intersection parking line until it leaves the uniform speed control zone;
- step (6) The vehicle controls the vehicle according to the motion parameters obtained in step (4) and step (5) to make the vehicle drive automatically.
- v 0 is the instantaneous speed of the vehicle, that is, the point speed.
- the steps of obtaining the speed-time parameter S 1 (v 1 , t 1 ) of the vehicle entering the uniform speed control zone are as follows:
- Vehicle n arrives at the parking line at time T(n) and needs to pass through N conflict points to pass the intersection.
- the speed V(n) of vehicle n passing the parking line is affected by the speed of other vehicles and the signal lights.
- the conditions for a certain signal light in the SCT lane to be green in the step (4-3) are:
- P r refers to the parking waiting time of the first car before the parking line of the entrance road r
- M r refers to the number of parking before the parking line of the entrance road r
- r represents the vehicle entrance road
- TP is the set parking waiting time Maximum time
- NP is the maximum number of stops
- the signal light sends a request to the control center, and the green light is on after the time specified by the following formula:
- T(G r ) represents the time required for the light to turn on when the signal light meets the conditions, and r represents the entrance of the vehicle;
- the green lights will be lighted in sequence according to the number of the signal lights.
- VS(n) ⁇ Z(C) ⁇ Q ⁇ Z(C 1 ) ⁇ Z(C 2 )... ⁇ Z(C N ) ⁇ Q ⁇ ;
- Z(C) represents the speed set at which vehicle n can pass the intersection before the green light at the intersection in this direction ends.
- step (5) according to the obtained S 0 (v 0 , t 0 ) and S 1 (v 1 , t 1 ), the dynamic operating parameters of the vehicle in the transmission control zone are obtained, and the steps are as follows :
- t 1 -t 0 tt 1 +tt+tt 2 ;
- v a 1 tt 1 +v 0 ;
- v 1 a 1 tt 1 +v 0 +a 2 t 2 ;
- the vehicle should also meet its own dynamic constraints and the space-time constraints of the front and rear cars in the same direction:
- f(t) is the speed of the vehicle
- f(t 0 ) is the initial speed of the vehicle entering the variable speed control zone
- f(t 1 ) is the speed of the vehicle entering the constant speed control zone
- f′(t) is the acceleration of the vehicle
- Path(r,u) represents the flow direction of the vehicle, r represents the vehicle entrance, u represents the vehicle turning
- k represents the vehicle sequence
- ⁇ S represents the same direction Safety distance between front and rear cars;
- the present invention has the following advantages and beneficial effects:
- the present invention proposes the idea of setting Connected Vehicle Technology (CVT) lanes and Signal Control Technology (SCT) lanes in front of the intersection, so that the intersection can be compatible with two driving modes at the same time, and at each intersection All are equipped with a central controller.
- CVT Connected Vehicle Technology
- SCT Signal Control Technology
- the present invention proposes a conditional light-up mode, that is, when the parking line is full and exceeds a limited number of vehicles or a certain vehicle waits for a limited time, the signal light turns green and the green light duration is fixed, otherwise The signal light will be in a constant red state, and the signal light state will interact with the central controller in real time.
- CVT lanes the present invention proposes the idea of sub-regional control. The intersection variable speed control area and uniform speed control area are set.
- each vehicle After each vehicle enters the control area, it can interact with the central controller in real time and perform complete information under the action of the central controller. Auto-driving, and then according to the initial operating state of the vehicle entering the speed control zone and the operating state that the vehicle needs to achieve when entering the speed control zone from the space-time trajectory of the safe passage of the vehicle in the uniform speed control zone, in accordance with the established acceleration sequence in the speed control zone
- Mathematical models and control methods solve the dynamic parameters of the vehicle running in the speed control zone, and control the vehicle to perform reasonable acceleration and deceleration in the speed control section of the intersection according to the obtained dynamic parameters, so that the vehicle can be at a predetermined time and at a predetermined speed Enter the intersection and follow the safe passage time and space trajectory found earlier to pass through the intersection.
- the present invention can finely and systematically coordinate the movement process of individual vehicles, so that the overall operating efficiency of the transportation system is significantly improved, so as to solve the problem that the existing intersection signal control methods are not efficient and the traffic capacity cannot meet the demand. The resulting traffic jams and serious delays.
- Figure 1 is a schematic diagram of zone control in this embodiment
- Figure 2 is a schematic diagram of the space-time trajectory of the vehicle in this embodiment
- FIG. 3 is a flow chart of the control method in this embodiment
- FIG. 4 is a schematic diagram of the control target in this embodiment
- Fig. 5 is a three-stage control method in the transmission control area in this embodiment.
- Figure 6 is a schematic diagram of the intersection in this example.
- Figure 7 is a time-space trajectory diagram of vehicles in the speed control zone in this example.
- Fig. 8 is a graph showing the speed change of the vehicle in the shift control zone in this example.
- each intersection is equipped with four signal lights (the four entrances of east, south, west, and north are equipped with one signal light) and A central controller
- each SCT lane is equipped with a sensing device, the sensing device (ground-sensing vehicle detector, model: LBW-D02) and the signal light interact with the central controller in real time and carry out real-time information interaction under the action of the central controller
- the change of signal lights, the vehicles in front of the intersection of the lane and the area within the parking line are free to drive according to the traffic lights;
- the control method of the SCT lane is: the vehicle travels freely before reaching the parking line.
- the parking line is full and exceeds the limited number of vehicles or the waiting time of a certain vehicle exceeds the limited time, the signal light turns green and the green light duration is fixed, otherwise The signal light will be in a steady red state.
- CVT lanes that is, the speed control zone, the length of the speed control zone is d, and the area within the parking line is the uniform speed control zone; each intersection is equipped with a central controller, and each vehicle After entering the variable speed control zone and the uniform speed control zone, they will interact with the central controller in real-time information and perform fully automatic driving under the action of the central controller (vehicle speed, acceleration and intersection steering are completely controlled by the central controller).
- the speed control zone the speed can be changed freely, but in the uniform speed control zone, the vehicle needs to drive at a constant speed at the speed that it enters the intersection parking line until it leaves the uniform speed control zone;
- the control method of CVT lanes is as follows: set a section of road length d before the intersection stop line as the speed control zone, and the area within the stop line as the constant speed control zone; when the vehicle reaches the speed control zone, obtain its initial state S 0 ( v 0 ,t 0 ), where v 0 is the speed and t 0 is the time; according to the time and occupied time of each vehicle reaching the conflict point in the uniform speed control area, find a safe time-space trajectory for the vehicle to obtain the The speed-time parameter S 1 (v 1 ,t 1 ) at which the car enters the uniform speed control zone; according to the obtained S 0 (v 0 ,t 0 ) and S 1 (v 1 ,t 1 ), find the speed in the variable speed control zone
- the dynamic operating parameters of the vehicle the vehicle performs automatic driving according to the motion parameters calculated by the above steps.
- Each intersection is equipped with a central controller (CC) as the back-end overall control unit;
- CC central controller
- SCT lanes can detect lane information in real time to determine whether the conditions for the green light are met
- the semaphore can communicate with CC in real time, and the semaphore can submit the status and duration of the semaphore to the CC;
- VC can submit destination (driving route), accurate spatial location and speed information to CC;
- (6) CC can control the motion process of VC
- variable speed control zone When a vehicle reaches the variable speed control zone, obtain its initial state S 0 (v 0 , t 0 ) (where v 0 is the instantaneous speed of the vehicle, that is, the point speed, and t 0 is the time). Then find a safe time-space trajectory for the vehicle from the traversable time gap of the traffic flow in the uniform speed control area, and obtain the state S 1 (v 1 , t 1 ) of the vehicle entering the uniform speed control area at the intersection. On this basis, according to S 0 (v 0 , t 0 ) and S 1 (v 1 , t 1 ), the dynamic parameters such as speed and acceleration of the vehicle in the transmission control zone are calculated.
- Vehicle-Occupation (vehicle-occupation) is used to describe the time occupation of the signal light or each vehicle passing through the uniform speed control area to the conflict point, and it represents the time when the vehicle reaches the conflict point and the time occupied.
- a in Figure 2 represents the space-time trajectory of the vehicle in the speed control zone
- B represents the space-time trajectory that the vehicle can safely pass in the constant speed control zone
- L 1 to L 4 represent the distances from conflict points 1 to 4 to the intersection stop line, respectively.
- the Vehicle-Occupation model and the space-time trajectory calculation method shown enable intersections with any number of conflict points to be modeled and solved using a unified framework, so they have good universality.
- the Vehicle-Occupation of a certain vehicle A passing through the conflict point C is recorded as vo(C,A), and the Vehicle-Occupation set of all vehicles passing through C can be recorded as VO(C).
- the length of the variable speed control zone is d. From entering the variable speed control zone to leaving the intersection, the maximum acceleration is a max , the maximum deceleration is a min , the maximum speed is v max , and the minimum speed for driving in the constant speed control zone is v min , the vehicle must meet the following constraints:
- f(t) represents the vehicle speed
- f(t 0 ) is the initial speed at which the vehicle enters the variable speed control zone
- f(t 1 ) is the speed at which the vehicle enters the uniform speed control zone
- f′(t) is the acceleration of the vehicle
- T represents the time.
- C N represents the N conflict points that the vehicle A must pass through the intersection;
- VO(C N ) represents the Vehicle-Occupation set of all vehicles passing through the conflict point C N;
- vo(C N ,A) represents the Vehicle-Occupation of a certain vehicle A passing through the conflict point CN.
- the microscopic control method includes the following steps:
- Step S1 when the vehicle enters the shift control zone, obtain the initial state of the vehicle S 0 (v 0 , t 0 );
- Step S2 according to the time and the occupied time of each vehicle reaching the conflict point (the point where the traffic flows of different flow directions intersect) in the uniform speed control area, find a time-space trajectory that can pass safely for the vehicle from the traversable time gap of the traffic flow , Acquire the speed-time parameter S 1 (v 1 , t 1 ) at which the vehicle enters the uniform speed control zone; the specific steps are shown in step S21 to step S24;
- Step S21) Set the length of the variable speed control zone as d, and when the vehicle enters the variable speed control zone to leave the intersection, the maximum acceleration is a max , the maximum deceleration is a min , and the maximum speed is v max .
- the minimum driving speed is v min ; calculate the earliest time t min for the vehicle to enter the uniform speed control zone:
- Step S22 Calculate the speed of the vehicle entering the uniform speed control zone:
- vehicle n arrives at the parking line at time point T(n) and needs to pass through N conflict points to pass the intersection.
- the speed V(n) of vehicle n passing through the parking line is affected by the speed of other vehicles. Constraints
- the conditions for a signal light in the SCT lane to be green are:
- P r refers to the parking waiting time of the first car before the parking line of the entrance road r
- M r refers to the number of parking before the parking line of the entrance road r
- r represents the vehicle entrance road
- TP is the set parking waiting time Maximum time
- NP is the maximum number of stops
- the signal light sends a request to the control center, and the green light is on after the time specified by the following formula:
- T(G r ) represents the time required for the light to turn on when the signal light meets the conditions, and r represents the entrance of the vehicle;
- the green lights will be lighted in sequence according to the number of the signal lights.
- Z(C) represents the speed set at which vehicle n can pass the intersection before the green light at the intersection in this direction ends.
- Step S3 Solve the dynamic parameters of the variable speed control zone:
- the control target of the variable speed control zone is an integral process, as shown in Figure 4.
- the first stage A use acceleration/deceleration a 1 as a uniformly variable motion with time tt 1;
- the second stage B a uniform motion with a speed v and a time tt;
- the third stage C use acceleration/deceleration a 2 as a uniformly variable motion with time tt 2.
- Each entrance lane has a CVT straight lane, a CVT left-turn dedicated lane, and a SCT left-turn and straight mixed lane, so it is universally representative.
- the time dimension of the vehicle is described in terms of relative time, the unit is s, the space distance unit is m, and the speed unit is m/s.
- the length of the intersection is 23m
- the distance from the stop line of each entrance through lane to the first conflict point is 2m
- the distance to the second conflict point is 7m
- the distance to the third conflict point is 16m
- the distance to the third conflict point is 16m.
- the distance between the four conflict points is 21m
- the safe time interval between vehicles in the conflicting direction is 1s.
- Table 1 The specific parameter settings in the control process are shown in Table 1.
- the following is to formulate a control plan for vehicles A, B, C, D, E, F, and G according to the aforementioned control method.
- Step S1 obtain the initial state of the vehicle S 0 (17, 0);
- Step S2 calculate the speed-time parameter S 1 (v 1 , t 1 ) of the vehicle entering the uniform speed control zone;
- Step S3 Solving the dynamic parameters of the variable speed control zone: From S 0 (17,0) and S 1 (25,5.1) according to the three-stage control method, the corresponding dynamic control parameters are obtained as shown in Table 3.
- Step S1 obtain the initial state of the vehicle S 0 (10, 1);
- Step S Calculate the speed-time parameter S 1 (v 1 , t 1 ) of the vehicle entering the uniform speed control zone;
- Step S3 Solving the dynamic parameters of the variable speed control zone: S 0 (10, 1) and S 1 (25, 6.7) are used to obtain the corresponding dynamic control parameters as shown in Table 4 according to the three-stage control method.
- Step S1 obtain the initial state of the vehicle S 0 (17, 1.5);
- Step S2 calculate the speed-time parameter S 1 (v 1 , t 1 ) of the vehicle entering the uniform speed control zone;
- Step S3 Solving the dynamic parameters of the variable speed control zone: From S 0 (17, 1.5) and S 1 (25, 7.6) according to the three-stage control method, the corresponding dynamic control parameters are obtained as shown in Table 5.
- Step S1 obtain the initial state of the vehicle S 0 (18, 4);
- Step S2 calculate the speed-time parameter S 1 (v 1 , t 1 ) of the vehicle entering the uniform speed control zone;
- Step S3 Solving the dynamic parameters of the variable speed control zone: From S 0 (18 , 4) and S 1 (25, 24.5) according to the segment control method, the corresponding dynamic control parameters are obtained as shown in Table 5.
- Step S1 obtain the initial state of the vehicle S 0 (12, 4.5);
- Step S2 calculate the speed-time parameter S 1 (v 1 , t 1 ) of the vehicle entering the uniform speed control zone;
- Step S3 Solving the dynamic parameters of the variable speed control zone: S 0 (12, 4.5) and S 1 (25, 24.5) are used to obtain the corresponding dynamic control parameters as shown in Table 5 according to the three-stage control method.
- Step S1 obtain the initial state of the vehicle S 0 (17, 5);
- Step S2 calculate the speed-time parameter S 1 (v 1 , t 1 ) of the vehicle entering the uniform speed control zone;
- Step S3 Solving the dynamic parameters of the variable speed control zone: S 0 (17 , 5) and S 1 (25, 24.5) are used to obtain the corresponding dynamic control parameters as shown in Table 5 according to the three-stage control method.
- Step S1 Obtain the initial state of the vehicle S 0 (16, 5.5);
- Step S2 calculate the speed-time parameter S 1 (v 1 , t 1 ) of the vehicle entering the uniform speed control zone;
- Step S3 Solving the dynamic parameters of the variable speed control zone According to the three-stage control method by S 0 (16, 5.5) and S 1 (25, 10.6), the corresponding dynamic control parameters are obtained as shown in Table 5.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
Claims (6)
- 一种智能网联条件下的交叉口交通流微观控制方法,其特征在于,包括步骤:(1)设交叉口前最左侧车道为SCT车道,停车线内的区域为自由控制区;每个交叉口均配有四个信号灯和一个中心控制器,每个SCT车道均配有感应装置,感应装置和信号灯均与中心控制器进行实时信息交互并在中心控制器的作用下进行信号灯的转换,车辆在该车道的交叉口前和停车线内的区域均按照交通信号灯自由行驶;(2)设交叉口停车线前右侧两车道为CVT车道即变速控制区,变速控制区长为d,停车线内的区域为匀速控制区;每个交叉口均配有一个中心控制器,每个车辆在进入变速控制区和匀速控制区后均与中心控制器进行实时信息交互并在中心控制器的作用下进行完全自动驾驶,车辆在变速控制区内能自由变速,但在匀速控制区内车辆需按其进入交叉口停车线的速度匀速行驶,直至驶离匀速控制区;(3)当车辆驶达变速控制区时,获取其初始状态S 0(v 0,t 0),其中v 0为初始速度,t 0为初始时刻;(4)根据每辆车到达匀速控制区内冲突点的时间和占用的时间,从车流的可穿越时间间隙中为该车寻找一个能够安全通过的时空轨迹,获取车辆进入匀速控制区的速度—时间参数S 1(v 1,t 1);(5)根据得到的S 0(v 0,t 0)和S 1(v 1,t 1),以车辆加速度为控制对象,求取在变速控制区内车辆的动力学运行参数,且在变速控制区内同一方向前后车辆应满足一定的关系;(6)车辆按照步骤(4)、步骤(5)得到的运动参数对车辆进行控制,使车辆进行自动驾驶。
- 根据权利要求1所述的一种智能网联条件下的交叉口交通流微观控制方法,其特征在于,所述步骤(3)中,获取的车辆初始状态S 0(v 0,t 0)中,v 0为车辆的瞬时速度,即点速度。
- 根据权利要求1所述的一种智能网联条件下的交叉口交通流微观控制方法,其特征在于,所述步骤(4)中获取车辆进入匀速控制区的速度—时间参数S 1(v 1,t 1)的步骤如下:(4-1)设变速控制区长度为d,车辆从进入变速控制区到驶离交叉口的过程中,最大加速度为a max,最大减速度为a min,最大速度为v max,在匀速控制区行驶的最小速度为v min;(4-2)计算车辆进入匀速控制区的最早时间t min:(4-3)计算车辆进入匀速控制区的速度:车辆n于时间点T(n)到达停车线,需经过N个冲突点以通过交叉口,为避免在冲突点发生时空重叠,车辆n经过停车线的速度V(n)受到其他车辆速度和信号灯的约束,具体的约束包括以下情况:情况一、当SCT车道信号灯全红时,车辆n经过停车线的速度V(n)只受到其他车辆速度的约束:或情况二、当SCT车道某信号灯为绿灯时,车辆n经过停车线的速度V(n)受到信号灯和其他车辆的约束:车辆n位于红灯方向的车道时:或车辆n位于绿灯方向的直行车道时:或或上式中 表示第i个冲突点C i到车辆n的进口道停车线的距离,L表示交叉口长度; 表示通过第i个冲突点C i的第j辆车,i=1,2,…,N; 表示冲 突点C i到车辆 进口道停车线的距离; 和 分别表示车辆 进入交叉口停车线的时间和速度; 表示车辆n与车辆 的安全时距; 表示车辆n通过冲突点C i时SCT车道所有红灯亮起的时间,TG车辆n驶离交叉口时SCT车道所有红灯亮起的时间;求取在上述约束条件下车辆n可无冲突地通过N个冲突点的速度集合,如果集合不为空,则取集合中的最大值,记为v m,否则令T(n)=T(n)+T d,T d是一个时间调整量,重新根据约束条件计算新的使车辆n可无冲突地通过N个冲突点的速度集合;(4-4)令速度v 1=v m,时间t 1=T(n),得到运行参数S 1(v 1,t 1)。
- 根据权利要求3所述的一种智能网联条件下的交叉口交通流微观控制方法,其特征在于,所述步骤(4-3)中,约束条件下车辆n可无冲突地通过N个冲突点的速度集合的条件如下:情况二、当某一入口方向的SCT车道信号灯为绿灯时:车辆n位于红灯方向的车道时:车辆n位于绿灯方向的直行车道时:(4-3-2)计算经过冲突点C i的所有车辆对车辆n的速度约束区间,组成一个集合,记为Z(C i),其中i=1,2,…,N,N表示冲突点的个数,那么:情况一、情况二、车辆n位于红灯方向的车道时:车辆n位于绿灯方向的直行车道时:(4-3-3)令集合Q={v min≤V(n)≤v max},则车辆n可无冲突地通过N个冲突点的速度集合VS(n)为:情景一、VS(n)=Z(C 1)∩Z(C 2)…∩Z(C N)∩Q;情景二、车辆n位于红灯方向的车道时:VS(n)=Z(C 1)∩Z(C 2)…∩Z(C N)∩Q;车辆n位于绿灯方向的直行车道时:VS(n)={Z(C)∩Q}∪{Z(C 1)∩Z(C 2)…∩Z(C N)∩Q};其中Z(C)表示车辆n能在该方向交叉口的绿灯结束前通过交叉口的速度集合;(4-3-4)如果VS(n)不为空,则进入匀速控制区的速度取集合VS(n)中的最大值,记为v m,执行步骤(4-4);如果VS(n)为空,则令T(n)=T(n)+T d,重新执行步骤(4-3-1)-(4-3-3),其中,T d是一个时间调整量。
- 根据权利要求1所述的一种智能网联条件下的交叉口交通流微观控制方法,其特征在于,所述步骤(5)中,根据得到的S 0(v 0,t 0)和S 1(v 1,t 1),求取在变速控制区内车辆的动力学运行参数,步骤如下:(5-1)以车辆加速度为控制对象,对车辆在变速控制区的行驶过程实行三段控制,包括:以加/减速度a 1作时间为tt 1的匀变速运动、以速度v作时间为tt的匀速运动、以加/减速度a 2作时间为tt 2的匀变速运动;(5-2)上述三段控制过程中的6个动力学参数应满足如下约束条件:t 1-t 0=tt 1+tt+tt 2;v=a 1tt 1+v 0;v 1=a 1tt 1+v 0+a 2t 2;同时,车辆还应满足自身的动力学约束条件和同方向前后车的时空约束条件:f(t 0)=v 0;f(t 1)=v 1;f′(t)∈[-a min,a max];式中:f(t)为车辆的速度,f(t 0)为车辆进入变速控制区的初始速度,f(t 1)为车辆进入匀速控制区的速度,f′(t)为车辆的加速度; 表示进口道为r转向为u的第k辆车在路段上的位置;Path(r,u)表示车辆的流向,r表示车辆进口道,u表示车辆转向;k表示车辆顺序;ΔS表示同一方向前后车安全间距;上述所有约束条件组成一个多约束非线性数学规划模型,对其求解,如果有可行解,则得到相应6个动力学参数;如果无解,回到步骤(4)寻找新的S 1(v 1,t 1)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010132865.9 | 2020-02-29 | ||
CN202010132865.9A CN111325981B (zh) | 2020-02-29 | 2020-02-29 | 一种智能网联条件下的交叉口交通流微观控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021169353A1 true WO2021169353A1 (zh) | 2021-09-02 |
Family
ID=71165473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/124662 WO2021169353A1 (zh) | 2020-02-29 | 2020-10-29 | 一种智能网联条件下的交叉口交通流微观控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111325981B (zh) |
WO (1) | WO2021169353A1 (zh) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113850998A (zh) * | 2021-10-13 | 2021-12-28 | 合肥工业大学 | 一种路口相序通行效益评价方法及交通评价方法 |
CN114067569A (zh) * | 2022-01-14 | 2022-02-18 | 华砺智行(武汉)科技有限公司 | V2x车联网环境下车辆左转辅助预警方法 |
CN114267189A (zh) * | 2021-12-20 | 2022-04-01 | 黑龙江工程学院 | 一种快速路出口匝道与衔接交叉口联合控制方法 |
CN114550546A (zh) * | 2022-02-26 | 2022-05-27 | 河北水利电力学院 | 一种教学用交叉口信号配时方法 |
CN114582166A (zh) * | 2022-03-07 | 2022-06-03 | 清华大学 | 交叉路口环境下的多车运动规划方法及装置 |
CN114783175A (zh) * | 2022-03-23 | 2022-07-22 | 东南大学 | 基于伪谱法的多信号灯路况下网联车辆节能驾驶控制方法 |
CN115100904A (zh) * | 2022-06-20 | 2022-09-23 | 公安部交通管理科学研究所 | 一种基于正和博弈的慢行交通与汽车冲突预警方法及系统 |
CN115331435A (zh) * | 2022-08-04 | 2022-11-11 | 北京交通大学 | 一种基于局部时空交通状态的智能网联车辆速度控制方法 |
CN115407770A (zh) * | 2022-08-08 | 2022-11-29 | 华中科技大学 | 基于类型划分的交叉口进口道智能网联车辆轨迹规划方法 |
CN115424445A (zh) * | 2022-09-27 | 2022-12-02 | 吉林大学 | 一种面向智能网联汽车的环岛入口车辆通行顺序决策系统 |
CN115620536A (zh) * | 2022-10-18 | 2023-01-17 | 北京航空航天大学 | 自动驾驶环境下基于危险度的交叉口通行效率提升方法 |
CN115691169A (zh) * | 2022-10-31 | 2023-02-03 | 北京工业大学 | 一种动态移位左转的交叉口协同控制系统及车速引导方法 |
CN115953903A (zh) * | 2023-03-14 | 2023-04-11 | 武汉理工大学 | 一种基于物联网的交叉口直行车辆连续通行方法 |
CN116092310A (zh) * | 2023-01-28 | 2023-05-09 | 西南交通大学 | 面向混合交通环境的路口协同生态驾驶控制方法及系统 |
CN116189462A (zh) * | 2022-09-07 | 2023-05-30 | 北京航空航天大学 | 一种面向混合交通流的车辆轨迹与交通信号协同控制方法 |
CN116189438A (zh) * | 2023-04-28 | 2023-05-30 | 华砺智行(武汉)科技有限公司 | 智能网联公交车通行效率综合评价方法与系统 |
CN116824883A (zh) * | 2023-07-11 | 2023-09-29 | 武汉理工大学 | 基于车路协同的交叉口直右混行车辆连续流形成方法 |
CN116824863A (zh) * | 2023-08-28 | 2023-09-29 | 速度时空大数据研究(深圳)有限公司 | 一种智能路网监测系统 |
CN118247948A (zh) * | 2024-02-28 | 2024-06-25 | 扬州大学 | 基于交叉口综合通行效率的自动驾驶与人工驾驶通行方法 |
CN118736845A (zh) * | 2024-09-04 | 2024-10-01 | 江西省科学院应用物理研究所 | 一种合作式无信号交叉口的交通管控方法及系统 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111325981B (zh) * | 2020-02-29 | 2021-09-21 | 华南理工大学 | 一种智能网联条件下的交叉口交通流微观控制方法 |
CN112233413B (zh) * | 2020-07-20 | 2022-03-29 | 北方工业大学 | 一种面向智能网联车辆的多车道时空轨迹优化方法 |
CN112373472B (zh) * | 2021-01-14 | 2021-04-20 | 长沙理工大学 | 一种自动驾驶交叉口车辆进入时刻与行驶轨迹控制方法 |
CN113793517B (zh) * | 2021-09-16 | 2022-06-28 | 辽宁工程技术大学 | 一种智能车路协同无控交叉口左转车通行引导方法 |
CN113744539B (zh) * | 2021-09-17 | 2022-05-10 | 合肥工业大学 | 一种基于渗透率的网联车专用车道动态调控方法 |
CN115188210A (zh) * | 2022-07-06 | 2022-10-14 | 同济大学 | 一种智能网联车与人类驾驶车混行交叉口控制方法及系统 |
CN115440062B (zh) * | 2022-08-25 | 2023-12-29 | 苏州摩卡智行信息科技有限公司 | 基于智能网联环境的场站节点交通协调方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103714704A (zh) * | 2013-12-16 | 2014-04-09 | 华南理工大学 | 一种车联网环境下的交叉口交通流微观控制方法 |
CN108281026A (zh) * | 2018-03-19 | 2018-07-13 | 武汉大学 | 一种自动驾驶环境下交叉路口无信号灯车辆调度方法 |
CN109887287A (zh) * | 2019-03-25 | 2019-06-14 | 浙江大学 | 车联网环境下的绿灯间隔时间设置方法 |
KR102029656B1 (ko) * | 2019-07-08 | 2019-11-08 | 주식회사 이엘 | 사물인터넷기반 임베디드 방식의 교통신호 자율운영시스템 |
JP2020027416A (ja) * | 2018-08-10 | 2020-02-20 | 先進モビリティ株式会社 | 交差点通過制御システム |
CN111325981A (zh) * | 2020-02-29 | 2020-06-23 | 华南理工大学 | 一种智能网联条件下的交叉口交通流微观控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106846867A (zh) * | 2017-03-29 | 2017-06-13 | 北京航空航天大学 | 一种车联网环境下信号交叉口绿色驾驶车速诱导方法及仿真系统 |
CN107730883B (zh) * | 2017-09-11 | 2020-02-04 | 北方工业大学 | 一种车联网环境下交叉口区域车辆调度方法 |
FR3079956B1 (fr) * | 2018-04-10 | 2021-12-24 | Transdev Group | Dispositif electronique et procede de surveillance d'une zone d'intersection routiere a destination de vehicule(s) automobile(s) autonome(s), programme d'ordinateur associe |
US11990033B2 (en) * | 2018-06-08 | 2024-05-21 | Cpac Systems Ab | Method for controlling vehicles |
CN108961800B (zh) * | 2018-07-25 | 2021-01-08 | 长沙理工大学 | 一种自动驾驶下基于交叉口空间离散化的车辆通行时间建模方法 |
CN110853384A (zh) * | 2018-08-21 | 2020-02-28 | 上海擎感智能科技有限公司 | 车辆及其基于5g技术的红绿灯车速匹配优化系统、方法 |
-
2020
- 2020-02-29 CN CN202010132865.9A patent/CN111325981B/zh active Active
- 2020-10-29 WO PCT/CN2020/124662 patent/WO2021169353A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103714704A (zh) * | 2013-12-16 | 2014-04-09 | 华南理工大学 | 一种车联网环境下的交叉口交通流微观控制方法 |
CN108281026A (zh) * | 2018-03-19 | 2018-07-13 | 武汉大学 | 一种自动驾驶环境下交叉路口无信号灯车辆调度方法 |
JP2020027416A (ja) * | 2018-08-10 | 2020-02-20 | 先進モビリティ株式会社 | 交差点通過制御システム |
CN109887287A (zh) * | 2019-03-25 | 2019-06-14 | 浙江大学 | 车联网环境下的绿灯间隔时间设置方法 |
KR102029656B1 (ko) * | 2019-07-08 | 2019-11-08 | 주식회사 이엘 | 사물인터넷기반 임베디드 방식의 교통신호 자율운영시스템 |
CN111325981A (zh) * | 2020-02-29 | 2020-06-23 | 华南理工大学 | 一种智能网联条件下的交叉口交通流微观控制方法 |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113850998A (zh) * | 2021-10-13 | 2021-12-28 | 合肥工业大学 | 一种路口相序通行效益评价方法及交通评价方法 |
CN113850998B (zh) * | 2021-10-13 | 2022-07-01 | 合肥工业大学 | 一种路口相序通行效益评价方法及交通评价方法 |
CN114267189A (zh) * | 2021-12-20 | 2022-04-01 | 黑龙江工程学院 | 一种快速路出口匝道与衔接交叉口联合控制方法 |
CN114067569B (zh) * | 2022-01-14 | 2022-06-10 | 华砺智行(武汉)科技有限公司 | V2x车联网环境下车辆左转辅助预警方法 |
CN114067569A (zh) * | 2022-01-14 | 2022-02-18 | 华砺智行(武汉)科技有限公司 | V2x车联网环境下车辆左转辅助预警方法 |
CN114550546A (zh) * | 2022-02-26 | 2022-05-27 | 河北水利电力学院 | 一种教学用交叉口信号配时方法 |
CN114582166A (zh) * | 2022-03-07 | 2022-06-03 | 清华大学 | 交叉路口环境下的多车运动规划方法及装置 |
CN114783175A (zh) * | 2022-03-23 | 2022-07-22 | 东南大学 | 基于伪谱法的多信号灯路况下网联车辆节能驾驶控制方法 |
CN114783175B (zh) * | 2022-03-23 | 2023-06-23 | 东南大学 | 基于伪谱法的多信号灯路况下网联车辆节能驾驶控制方法 |
CN115100904A (zh) * | 2022-06-20 | 2022-09-23 | 公安部交通管理科学研究所 | 一种基于正和博弈的慢行交通与汽车冲突预警方法及系统 |
CN115100904B (zh) * | 2022-06-20 | 2023-07-07 | 公安部交通管理科学研究所 | 一种基于正和博弈的慢行交通与汽车冲突预警方法及系统 |
CN115331435A (zh) * | 2022-08-04 | 2022-11-11 | 北京交通大学 | 一种基于局部时空交通状态的智能网联车辆速度控制方法 |
CN115331435B (zh) * | 2022-08-04 | 2024-05-31 | 北京交通大学 | 一种基于局部时空交通状态的智能网联车辆速度控制方法 |
CN115407770A (zh) * | 2022-08-08 | 2022-11-29 | 华中科技大学 | 基于类型划分的交叉口进口道智能网联车辆轨迹规划方法 |
CN115407770B (zh) * | 2022-08-08 | 2024-09-06 | 华中科技大学 | 基于类型划分的交叉口进口道智能网联车辆轨迹规划方法 |
CN116189462A (zh) * | 2022-09-07 | 2023-05-30 | 北京航空航天大学 | 一种面向混合交通流的车辆轨迹与交通信号协同控制方法 |
CN115424445A (zh) * | 2022-09-27 | 2022-12-02 | 吉林大学 | 一种面向智能网联汽车的环岛入口车辆通行顺序决策系统 |
CN115424445B (zh) * | 2022-09-27 | 2023-10-20 | 吉林大学 | 一种面向智能网联汽车的环岛入口车辆通行顺序决策系统 |
CN115620536A (zh) * | 2022-10-18 | 2023-01-17 | 北京航空航天大学 | 自动驾驶环境下基于危险度的交叉口通行效率提升方法 |
CN115691169A (zh) * | 2022-10-31 | 2023-02-03 | 北京工业大学 | 一种动态移位左转的交叉口协同控制系统及车速引导方法 |
CN116092310A (zh) * | 2023-01-28 | 2023-05-09 | 西南交通大学 | 面向混合交通环境的路口协同生态驾驶控制方法及系统 |
CN116092310B (zh) * | 2023-01-28 | 2023-07-18 | 西南交通大学 | 面向混合交通环境的路口协同生态驾驶控制方法及系统 |
CN115953903A (zh) * | 2023-03-14 | 2023-04-11 | 武汉理工大学 | 一种基于物联网的交叉口直行车辆连续通行方法 |
CN116189438B (zh) * | 2023-04-28 | 2023-07-28 | 华砺智行(武汉)科技有限公司 | 智能网联公交车通行效率综合评价方法与系统 |
CN116189438A (zh) * | 2023-04-28 | 2023-05-30 | 华砺智行(武汉)科技有限公司 | 智能网联公交车通行效率综合评价方法与系统 |
CN116824883A (zh) * | 2023-07-11 | 2023-09-29 | 武汉理工大学 | 基于车路协同的交叉口直右混行车辆连续流形成方法 |
CN116824883B (zh) * | 2023-07-11 | 2024-02-13 | 武汉理工大学 | 基于车路协同的交叉口直右混行车辆连续流形成方法 |
CN116824863A (zh) * | 2023-08-28 | 2023-09-29 | 速度时空大数据研究(深圳)有限公司 | 一种智能路网监测系统 |
CN116824863B (zh) * | 2023-08-28 | 2023-12-26 | 深圳市天速智能有限公司 | 一种智能路网监测系统 |
CN118247948A (zh) * | 2024-02-28 | 2024-06-25 | 扬州大学 | 基于交叉口综合通行效率的自动驾驶与人工驾驶通行方法 |
CN118736845A (zh) * | 2024-09-04 | 2024-10-01 | 江西省科学院应用物理研究所 | 一种合作式无信号交叉口的交通管控方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111325981A (zh) | 2020-06-23 |
CN111325981B (zh) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021169353A1 (zh) | 一种智能网联条件下的交叉口交通流微观控制方法 | |
CN107798861B (zh) | 一种车辆协作式编队行驶方法及系统 | |
CN107730886B (zh) | 一种车联网环境下城市交叉口交通信号动态优化方法 | |
CN112907986B (zh) | 一种基于数字孪生场景和边缘云的动态时间窗路口调度方法 | |
CN108011947B (zh) | 一种车辆协作式编队行驶系统 | |
CN108877268A (zh) | 一种面向无人驾驶的无红绿灯十字路口智能调度方法 | |
CN204791562U (zh) | 停车场车辆导航及反向寻车系统 | |
WO2019080874A1 (zh) | 一种车辆借道通行的方法和控制中心 | |
CN114495547B (zh) | 一种面向自动驾驶汽车的信号交叉口协同通行方法 | |
CN110276945A (zh) | 一种自动驾驶车辆编组方法 | |
CN107248297B (zh) | 一种车路协同环境下交叉口栅格化信号相位时长计算方法 | |
CN111091722B (zh) | 人机混合驾驶环境下交叉口信号控制参数的优化方法 | |
CN106297329A (zh) | 一种联网信号机的信号配时自适应优化方法 | |
CN103714704A (zh) | 一种车联网环境下的交叉口交通流微观控制方法 | |
CN111785043B (zh) | 一种面向智能网联车的交叉口控制方法 | |
WO2020093702A1 (zh) | 一种基于深度q网络学习的交通灯动态配时算法 | |
CN107248299B (zh) | 一种基于驻站时间的专用道公交优先干线协调控制方法 | |
CN112017439B (zh) | 一种自动驾驶交叉口行人过街摆渡车控制方法 | |
CN112489457B (zh) | 一种自动驾驶环境下交叉口车辆通过引导方法 | |
CN105844925A (zh) | 基于手机无线网的城市交通控制装置、系统及方法 | |
CN114852076A (zh) | 一种混行交通流环境下自动驾驶车辆轨迹规划方法 | |
CN112687115A (zh) | 一种自动驾驶行人接驳车行驶路径与路段过街控制方法 | |
CN110364003B (zh) | 基于车联网的交叉路口双线路有轨电车信号优先控制方法 | |
CN114519933B (zh) | 基于无过饱和状态的约定出行管控方法、装置及存储介质 | |
CN103050017B (zh) | 一种干线公交高密度交叉口的站间绿波控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20921321 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20921321 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/02/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20921321 Country of ref document: EP Kind code of ref document: A1 |