WO2021169175A1 - 用于实现双作用油缸精确控制的油路结构 - Google Patents

用于实现双作用油缸精确控制的油路结构 Download PDF

Info

Publication number
WO2021169175A1
WO2021169175A1 PCT/CN2020/106075 CN2020106075W WO2021169175A1 WO 2021169175 A1 WO2021169175 A1 WO 2021169175A1 CN 2020106075 W CN2020106075 W CN 2020106075W WO 2021169175 A1 WO2021169175 A1 WO 2021169175A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
branch
oil
branch pipe
accumulator
Prior art date
Application number
PCT/CN2020/106075
Other languages
English (en)
French (fr)
Inventor
方策
梅胜楷
李挺
吴武通
王杰
余舟
Original Assignee
浙江迦南科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江迦南科技股份有限公司 filed Critical 浙江迦南科技股份有限公司
Publication of WO2021169175A1 publication Critical patent/WO2021169175A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/149Fluid interconnections, e.g. fluid connectors, passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/202Externally-operated valves mounted in or on the actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram

Definitions

  • the invention relates to the technical field of oil cylinder control, in particular to an oil circuit structure for realizing precise control of a double-acting oil cylinder.
  • Double-acting oil cylinder refers to a hydraulic cylinder that can input pressure oil from both sides of the piston. It is widely used in various fields. However, double-acting oil cylinders are difficult to be used in precision machining due to their own output is difficult to accurately control. For example, in the processing and production links of dry granulators, it is usually necessary to accurately control the movement of the piston rod of the hydraulic cylinder, and the piston rod is required to be accurately controlled. The movement is controlled within ⁇ 0.5mm. In order to achieve such precise control, hydraulic servo control is usually used to achieve precise control of the movement of the piston rod of the servo cylinder. However, because servo valves, electro-hydraulic proportional valves and servo cylinders are expensive, this control method is cost-effective and cannot be widely used.
  • the present invention provides an oil circuit structure for achieving precise control of a double-acting oil cylinder, which can realize precise control of the double-acting oil cylinder and meet the requirements of use.
  • the structure is simple and facilitates realization, and the overall cost is lower. , More conducive to popularization and promotion.
  • the present invention provides an oil circuit structure for realizing precise control of a double-acting oil cylinder, which includes a double-acting oil cylinder, an oil inlet pipe, an oil outlet pipe, a first accumulator, and a second accumulator.
  • One end of the oil inlet pipeline is an oil inlet, and the other end is formed with a first branch pipe and a second branch pipe.
  • the first branch pipe communicates with the rodless cavity of the double-acting oil cylinder.
  • the first accumulator communicates with the first branch pipe through a first two-way flow control valve
  • the second accumulator communicates with the first branch pipe and is arranged between the first solenoid valve and the rodless cavity
  • the second The branch pipe communicates with the double-acting oil cylinder with a rod cavity
  • the second branch pipe is provided with a second solenoid valve
  • the oil outlet pipeline is provided with a second two-way flow control valve
  • one end of the oil outlet pipeline is connected with the oil outlet
  • a third branch and a fourth branch are formed at the other end.
  • a third solenoid valve is provided on the third branch.
  • the third branch communicates with the second branch to form a first communication port.
  • the fourth branch communicates with the first branch pipe to form a second communication port, and the fourth branch is arranged between the second communication port and the second two-way flow control valve There is a fourth solenoid valve.
  • the beneficial effect of this arrangement is that after the oil is introduced into the oil inlet pipe, energy is stored in the first accumulator and the second accumulator, and after the energy storage is completed, the first solenoid valve is closed, and the When control is needed, start the device so that the pressure of the first accumulator is equal to the pressure of the second accumulator, and then the position of the piston rod of the double-acting cylinder can be set or adjusted.
  • the second solenoid valve and the third solenoid valve are opened at the same time, and the opening of the second two-way flow control valve is set to be larger than that of the second two-way flow control valve.
  • the amount of oil discharged from the rod cavity of the double-acting cylinder is equal to the amount of oil discharged from the second two-way flow control valve minus the amount of oil discharged from the first two-way flow control valve, because the second two-way flow
  • the opening difference between the control valve and the first two-way flow control valve is very small, so the amount of oil discharged from the rod cavity of the double-acting cylinder is extremely small, and the pressure oil of the rod cavity of the double-acting cylinder is continuously discharged, so that the pressure of the rod cavity is gradually reduced , And because the rodless cavity is connected to the second accumulator, the pressure of the rodless cavity is gradually higher than that of the rod cavity, so the piston slowly moves to the rod cavity.
  • a displacement sensor can be installed at the output end of the double-acting cylinder.
  • the solenoid valve is controlled to be de-energized and the piston stops moving.
  • the piston is required to move toward the rodless cavity .
  • the fourth solenoid valve and the second solenoid valve are opened at the same time, and the pressure of the rodless cavity of the double-acting cylinder gradually drops.
  • the piston slowly moves to the rodless cavity.
  • auxiliary accumulators are arranged on the first branch pipe between the second accumulator and the double-acting oil cylinder, and the auxiliary accumulators are communicated with the first branch pipe through an electromagnetic switch valve.
  • the beneficial effect of this arrangement is that a plurality of auxiliary accumulators are installed. Due to the conventional accumulator, the pressure that can be accumulated is limited and cannot meet the requirements of all pressure ranges. By adding multiple accumulators, the In the range, multiple auxiliary accumulators can be opened to assist in maintaining the required pressure. This structure is simple, is conducive to realization, and improves the use effect of the overall structure.
  • a first flow sensor is connected to the oil inlet pipeline, and a second flow sensor is connected to the fourth branch stream at the position of the second communication port.
  • the beneficial effect of this arrangement is that the setting of the flow sensor can monitor the flow information of the corresponding position in real time, facilitate the user to obtain data, understand the oil pressure in the oil circuit, and improve the use effect of the overall oil circuit structure.
  • Fig. 1 is a schematic diagram of an oil circuit structure according to an embodiment of the present invention.
  • Fig. 1 The embodiment of the oil circuit structure of the present invention for realizing the precise control of the double-acting oil cylinder is shown in Fig. 1: including the double-acting oil cylinder 1, the oil inlet pipe 2, the oil outlet pipe 3, the first accumulator 71, and the second accumulator. 72.
  • One end of the oil inlet pipeline 2 is an oil inlet, and the other end is formed with a first branch pipe 21 and a second branch pipe 22.
  • the first branch pipe 21 communicates with the rodless cavity of the double-acting cylinder 1, and the first branch pipe 21
  • a first solenoid valve 41 is provided on the upper side
  • the first accumulator 71 communicates with the first branch pipe 21 through a first two-way flow control valve 61
  • the second accumulator 72 communicates with the first branch pipe 21 and is arranged in
  • the second branch pipe 22 is in communication with the double-acting cylinder 1 with a rod cavity
  • the second branch pipe 22 is provided with a second solenoid valve 42.
  • a second two-way flow control valve 62 is provided.
  • One end of the oil outlet pipe 3 is connected to the oil outlet, and the other end is formed with a third branch 31 and a fourth branch 32.
  • the third branch 31 is provided with a third electromagnetic Valve 43, the third branch 31 communicates with the second branch pipe 22 to form a first communication port, the first communication port is arranged between the second solenoid valve 42 and the rod cavity of the double-acting cylinder 1, the fourth branch 32 communicates with the first branch pipe 21 to form a second communication port, and the fourth branch 32 is provided with a fourth solenoid valve 44 between the second communication port and the second two-way flow control valve 62.
  • the beneficial effect of this arrangement is that after the oil is introduced into the oil inlet pipe 2, energy is stored in the first accumulator 71 and the second accumulator 72, and after the energy storage is completed, the first electromagnetic is turned off.
  • the device When the valve 41 needs to be controlled, the device is activated so that the pressure of the first accumulator 71 is equal to the pressure of the second accumulator 72, and then the piston rod position of the double-acting cylinder 1 can be set or adjusted.
  • the second solenoid valve 42 and the third solenoid valve 43 are opened at the same time, and the opening of the second two-way flow control valve 62 is set higher than the second two-way flow control Valve 62 is opened slightly, so the amount of oil discharged from the rod cavity of double-acting cylinder 1 is equal to the amount of oil discharged from the second two-way flow control valve minus the amount of oil discharged from the first two-way flow control valve.
  • the opening difference between the second two-way flow control valve and the first two-way flow control valve is very small, so the amount of oil discharged from the rod cavity of the double-acting cylinder 1 is extremely small, and the pressure oil from the rod cavity of the double-acting cylinder 1 is continuously discharged, so that The pressure of the rod cavity is gradually reduced, and because the rodless cavity is connected to the second accumulator 72, the pressure of the rodless cavity is gradually higher than that of the rod cavity, so the piston slowly moves to the rod cavity.
  • a displacement sensor can be installed at the output end of the double-acting cylinder. When the displacement sensor detects that the piston rod reaches the set value, the solenoid valve is controlled to be de-energized and the piston stops moving.
  • the first branch pipe 21 is provided with a number of auxiliary accumulators 73 between the second accumulator 72 and the double-acting cylinder 1, and the auxiliary accumulators 73 are connected to the first branch pipe 21 through the electromagnetic switch valve 45. Connected.
  • the beneficial effect of this arrangement is that a plurality of auxiliary accumulators 73 are further provided. Due to the conventional accumulators, the pressure that can be accumulated is limited and cannot meet the requirements of all pressure ranges. By adding a plurality of accumulators, In the pressure range, multiple auxiliary accumulators 73 can be opened to assist in maintaining the required pressure. This structure is simple, facilitates implementation, and improves the use effect of the overall structure.
  • a first flow sensor 51 is also connected to the oil inlet pipeline 2, and a second flow sensor 52 is connected to the fourth branch 32 at the position of the second communication port.
  • the beneficial effect of this arrangement is that the setting of the flow sensor can monitor the flow information of the corresponding position in real time, facilitate the user to obtain data, understand the oil pressure in the oil circuit, and improve the use effect of the overall oil circuit structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种用于实现双作用油缸精确控制的油路结构,包括双作用油缸(1)、进油管路(2)、出油管路(3)、第一蓄能器(71)、第二蓄能器(72),进油管路一端为进油口,另一端形成有第一支管(21)和第二支管(22),第一支管与无杆腔连通,第一支管上设置有第一电磁阀(41)、第一蓄能器和第一两通流量控制阀(61),第二蓄能器与第一支管连通设置,第二支管与双作用油缸有杆腔连通,第二支管上设置有第二电磁阀(42),出油管路上设置有第二两通流量控制阀(62),出油管路一端与出油口连接,另一端形成有第三支流(31)和第四支流(32),第三支流上设置有第三电磁阀(43)并与第二支管连通,第四支流与第一支管连通并设置有第四电磁阀(44),可以实现对双作用油缸的精准控制,整体成本更低,更加利于普及推广。

Description

用于实现双作用油缸精确控制的油路结构 技术领域
本发明涉及油缸控制技术领域,尤其是一种用于实现双作用油缸精确控制的油路结构。
背景技术
双作用油缸是指能由活塞的两侧输入压力油的液压缸。它被广泛应用于各种领域。但是双作用油缸由于自身输出难以精确控制,故难以被使用在精密加工领域中,例如在干法制粒机的加工生产环节中,通常需要对液压油缸活塞杆的移动精确控制,要求把活塞杆的移动控制在±0.5mm以内。为了实现这种精准控制,目前通常采用液压伺服控制可以实现伺服油缸活塞杆的移动得到精确控制。但是,由于伺服阀、电液比例阀和伺服油缸价格昂贵,所以这种控制方式性价比低,不能得到广泛的使用。
技术问题
针对现有技术的不足,本发明提供了一种用于实现双作用油缸精确控制的油路结构,可以实现对双作用油缸的精准控制,满足使用要求,同时结构简单利于实现,整体成本更低,更加利于普及推广。
技术解决方案
为实现上述目的,本发明提供了一种用于实现双作用油缸精确控制的油路结构,包括双作用油缸、进油管路、出油管路、第一蓄能器、第二蓄能器,所述进油管路一端为进油口,另一端形成有第一支管和第二支管,所述第一支管与双作用油缸无杆腔连通,所述第一支管上设置有第一电磁阀,所述第一蓄能器通过第一两通流量控制阀与第一支管连通,所述第二蓄能器与第一支管连通并设置在第一电磁阀与无杆腔之间,所述第二支管与双作用油缸有杆腔连通,所述第二支管上设置有第二电磁阀,所述出油管路上设置有第二两通流量控制阀,所述出油管路一端与出油口连接,另一端形成有第三支流和第四支流,所述第三支流上设置有第三电磁阀,所述第三支流与第二支管连通形成第一连通口,所述第一连通口设置在第二电磁阀与双作用油缸有杆腔之间,所述第四支流与第一支管连通形成第二连通口,所述第四支流于第二连通口和第二两通流量控制阀之间设置有第四电磁阀。
有益效果
这样设置的有益效果是:设置成这种形式,在进油管路通入油液后,在第一蓄能器以及第二蓄能器积蓄能量,完成蓄能后,关闭第一电磁阀,在需要控制时,启动设备,使得第一蓄能器的压力与第二蓄能器的压力相等,就可以开设定或者调节双作用油缸的活塞杆位置。当需要控制双作用活塞精确向有杆腔方向移动时,第二电磁阀和第三电磁阀同时开启,并且将第二两通流量控制阀的开口设置的比第二两通流量控制阀开的的略大,所以,双作用油缸有杆腔排出的油量等于第二双通流量控制阀出排出的油量减去第一双通流量控制阀处排出的油量,由于第二双通流量控制阀与第一双通流量控制阀的开口相差极小,所以双作用油缸有杆腔排出的油量极小,双作用油缸有杆腔的压力油持续排出,使得有杆腔的压力逐渐降低,而无杆腔由于和第二蓄能器相连通,所以无杆腔的压力逐渐高于有杆腔,故活塞缓慢向有杆腔移动。进一步的可以在双作用气缸输出端设置一个位移传感器,位移传感器检测到活塞杆到达设定值时,控制电磁阀断电,活塞停止移动,同理的,当需要活塞向无杆腔方向移动时,第四电磁阀和第二电磁阀同时开启,双作用油缸的无杆腔压力逐渐下降,当有杆腔的压力超过无杆腔时,活塞缓慢向无杆腔移动。从而实现对双作用气缸输出轴的精准控制,并且该油路中位移传感器、电磁阀、流量控制阀、和蓄能器的组合,是需要控制的设备中常设的装置,例如位移传感器、电磁开关阀、流量控制阀、和蓄能器都是属于干法制粒机的必备部件,这样使用不会增加额外的设备成本,只需要设定PLC控制即可,这种结构也十分简单,利于实现,同时生产成本低,便于普及使用。
进一步地,所述第一支管上于第二蓄能器与双作用油缸之间设置有若干辅助蓄能器,所述辅助蓄能器通过电磁开关阀与第一支管连通。
这样设置的有益效果是:再设置多个辅助蓄能器,由于常规的蓄能器,能够积蓄的压力有限,不能满足所有压力区间的要求,通过增加多个蓄能器,使得在不同的压力范围,可以开启多个辅助蓄能器,辅助维持需要的压力,这种结构简单,利于实现,提高整体结构的使用效果。
进一步地,所述进油管路上还连接有第一流量传感器,所述第四支流上于第二连通口位置连接有第二流量传感器。
这样设置的有益效果是:设置流量传感器可以实时监控对应位置的流量信息,便于使用者获取数据,了解油路中的油压情况,提高整体油路结构的使用效果。
附图说明
图1为本发明实施例的油路结构示意图。
本发明的最佳实施方式
本发明用于实现双作用油缸精确控制的油路结构的实施例如图1所示:包括双作用油缸1、进油管路2、出油管路3、第一蓄能器71、第二蓄能器72,所述进油管路2一端为进油口,另一端形成有第一支管21和第二支管22,所述第一支管21与双作用油缸1无杆腔连通,所述第一支管21上设置有第一电磁阀41,所述第一蓄能器71通过第一两通流量控制阀61与第一支管21连通,所述第二蓄能器72与第一支管21连通并设置在第一电磁阀41与无杆腔之间,所述第二支管22与双作用油缸1有杆腔连通,所述第二支管22上设置有第二电磁阀42,所述出油管路3上设置有第二两通流量控制阀62,所述出油管路3一端与出油口连接,另一端形成有第三支流31和第四支流32,所述第三支流31上设置有第三电磁阀43,所述第三支流31与第二支管22连通形成第一连通口,所述第一连通口设置在第二电磁阀42与双作用油缸1有杆腔之间,所述第四支流32与第一支管21连通形成第二连通口,所述第四支流32于第二连通口和第二两通流量控制阀62之间设置有第四电磁阀44。这样设置的有益效果是:设置成这种形式,在进油管路2通入油液后,在第一蓄能器71以及第二蓄能器72积蓄能量,完成蓄能后,关闭第一电磁阀41,在需要控制时,启动设备,使得第一蓄能器71的压力与第二蓄能器72的压力相等,就可以开设定或者调节双作用油缸1的活塞杆位置。当需要控制双作用活塞精确向有杆腔方向移动时,第二电磁阀42和第三电磁阀43同时开启,并且将第二两通流量控制阀62的开口设置的比第二两通流量控制阀62开的的略大,所以,双作用油缸1有杆腔排出的油量等于第二双通流量控制阀出排出的油量减去第一双通流量控制阀处排出的油量,由于第二双通流量控制阀与第一双通流量控制阀的开口相差极小,所以双作用油缸1有杆腔排出的油量极小,双作用油缸1有杆腔的压力油持续排出,使得有杆腔的压力逐渐降低,而无杆腔由于和第二蓄能器72相连通,所以无杆腔的压力逐渐高于有杆腔,故活塞缓慢向有杆腔移动。进一步的可以在双作用气缸输出端设置一个位移传感器,位移传感器检测到活塞杆到达设定值时,控制电磁阀断电,活塞停止移动,同理的,当需要活塞向无杆腔方向移动时,第四电磁阀44和第二电磁阀42同时开启,双作用油缸1的无杆腔压力逐渐下降,当有杆腔的压力超过无杆腔时,活塞缓慢向无杆腔移动。从而实现对双作用气缸输出轴的精准控制,并且该油路中位移传感器、电磁阀、流量控制阀、和蓄能器的组合,是需要控制的设备中常设的装置,例如位移传感器、电磁开关阀45、流量控制阀、和蓄能器都是属于干法制粒机的必备部件,这样使用不会增加额外的设备成本,只需要设定PLC控制即可,这种结构也十分简单,利于实现,同时生产成本低,便于普及使用。
进一步地,所述第一支管21上于第二蓄能器72与双作用油缸1之间设置有若干辅助蓄能器73,所述辅助蓄能器73通过电磁开关阀45与第一支管21连通。这样设置的有益效果是:再设置多个辅助蓄能器73,由于常规的蓄能器,能够积蓄的压力有限,不能满足所有压力区间的要求,通过增加多个蓄能器,使得在不同的压力范围,可以开启多个辅助蓄能器73,辅助维持需要的压力,这种结构简单,利于实现,提高整体结构的使用效果。
进一步地,所述进油管路2上还连接有第一流量传感器51,所述第四支流32上于第二连通口位置连接有第二流量传感器52。这样设置的有益效果是:设置流量传感器可以实时监控对应位置的流量信息,便于使用者获取数据,了解油路中的油压情况,提高整体油路结构的使用效果。
以上实例,只是本发明优选地具体实例的一种,本领域技术人员在本发明技术方案范围内进行的通常变化和替换都包含在本发明的保护范围内。

Claims (3)

  1. 一种用于实现双作用油缸精确控制的油路结构,包括双作用油缸、进油管路以及出油管路,其特征在于:还包括第一蓄能器、第二蓄能器,所述进油管路一端为进油口,另一端形成有第一支管和第二支管,所述第一支管与双作用油缸无杆腔连通,所述第一支管上设置有第一电磁阀,所述第一蓄能器通过第一两通流量控制阀与第一支管连通,所述第二蓄能器与第一支管连通并设置在第一电磁阀与无杆腔之间,所述第二支管与双作用油缸有杆腔连通,所述第二支管上设置有第二电磁阀,所述出油管路上设置有第二两通流量控制阀,所述出油管路一端与出油口连接,另一端形成有第三支流和第四支流,所述第三支流上设置有第三电磁阀,所述第三支流与第二支管连通形成第一连通口,所述第一连通口设置在第二电磁阀与双作用油缸有杆腔之间,所述第四支流与第一支管连通形成第二连通口,所述第四支流于第二连通口和第二两通流量控制阀之间设置有第四电磁阀。
  2. 根据权利要求1所述的用于实现双作用油缸精确控制的油路结构,其特征在于:所述第一支管上于第二蓄能器与双作用油缸之间设置有若干辅助蓄能器,所述辅助蓄能器通过电磁开关阀与第一支管连通。
  3. 根据权利要求1或2所述的用于实现双作用油缸精确控制的油路结构,其特征在于:所述进油管路上还连接有第一流量传感器,所述第四支流上于第二连通口位置连接有第二流量传感器。
PCT/CN2020/106075 2020-02-26 2020-07-31 用于实现双作用油缸精确控制的油路结构 WO2021169175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010118992.3A CN111237264A (zh) 2020-02-26 2020-02-26 用于实现双作用油缸精确控制的油路结构
CN202010118992.3 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021169175A1 true WO2021169175A1 (zh) 2021-09-02

Family

ID=70863227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106075 WO2021169175A1 (zh) 2020-02-26 2020-07-31 用于实现双作用油缸精确控制的油路结构

Country Status (2)

Country Link
CN (1) CN111237264A (zh)
WO (1) WO2021169175A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109963A (zh) * 2021-11-19 2022-03-01 济南悉通液压设备配套有限公司 组角机油缸运行控制方法及液压系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111237264A (zh) * 2020-02-26 2020-06-05 浙江迦南科技股份有限公司 用于实现双作用油缸精确控制的油路结构

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641229A (zh) * 2003-09-03 2005-07-20 索尔-丹福斯股份有限公司 阀装置和液压驱动装置
US20050199120A1 (en) * 2004-03-13 2005-09-15 Marcus Bitter Hydraulic arrangement
CN101532515A (zh) * 2009-04-23 2009-09-16 福建万新发电设备有限公司 高压蓄能液压工作装置
US20100223923A1 (en) * 2006-04-24 2010-09-09 Inova Srl System and device for uncoupling hydraulic plants
CN103727290A (zh) * 2013-07-16 2014-04-16 郭俊杰 大扭矩高温高压阀门节能电液控制装置
CN104769193A (zh) * 2012-11-09 2015-07-08 住友重机械工业株式会社 挖土机
CN105402175A (zh) * 2014-08-27 2016-03-16 西门子公司 液压系统
CN105715597A (zh) * 2016-03-18 2016-06-29 中冶赛迪工程技术股份有限公司 恒定背压直驱式电液伺服系统及其控制方法
CN206144865U (zh) * 2016-10-27 2017-05-03 郑州广通铁路设备有限公司 一种液压防溜器用双保压液压系统
CN111237264A (zh) * 2020-02-26 2020-06-05 浙江迦南科技股份有限公司 用于实现双作用油缸精确控制的油路结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1177726A (en) * 1981-09-21 1984-11-13 William W. Dollison Hydraulic cylinder control
EP1092097B1 (en) * 1998-06-27 2004-09-22 Bruun EcoMate AB Mobile working machine
US6755113B2 (en) * 2002-07-30 2004-06-29 Ha Wse Company Limited Accumulated semi-active hydraulic damper
CN204961454U (zh) * 2015-09-21 2016-01-13 常州阿尔菲特机电科技有限公司 一种气缸多点精确定位气控系统
CN105508319B (zh) * 2016-01-19 2016-09-28 中国地质大学(武汉) 一种低压伺服源控超高压液压增压系统
JPWO2019188129A1 (ja) * 2018-03-27 2021-03-18 Smc株式会社 エアシリンダ
CN213176218U (zh) * 2020-02-26 2021-05-11 浙江迦南科技股份有限公司 用于实现双作用油缸精确控制的油路结构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641229A (zh) * 2003-09-03 2005-07-20 索尔-丹福斯股份有限公司 阀装置和液压驱动装置
US20050199120A1 (en) * 2004-03-13 2005-09-15 Marcus Bitter Hydraulic arrangement
US20100223923A1 (en) * 2006-04-24 2010-09-09 Inova Srl System and device for uncoupling hydraulic plants
CN101532515A (zh) * 2009-04-23 2009-09-16 福建万新发电设备有限公司 高压蓄能液压工作装置
CN104769193A (zh) * 2012-11-09 2015-07-08 住友重机械工业株式会社 挖土机
CN103727290A (zh) * 2013-07-16 2014-04-16 郭俊杰 大扭矩高温高压阀门节能电液控制装置
CN105402175A (zh) * 2014-08-27 2016-03-16 西门子公司 液压系统
CN105715597A (zh) * 2016-03-18 2016-06-29 中冶赛迪工程技术股份有限公司 恒定背压直驱式电液伺服系统及其控制方法
CN206144865U (zh) * 2016-10-27 2017-05-03 郑州广通铁路设备有限公司 一种液压防溜器用双保压液压系统
CN111237264A (zh) * 2020-02-26 2020-06-05 浙江迦南科技股份有限公司 用于实现双作用油缸精确控制的油路结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109963A (zh) * 2021-11-19 2022-03-01 济南悉通液压设备配套有限公司 组角机油缸运行控制方法及液压系统
CN114109963B (zh) * 2021-11-19 2023-12-15 济南悉通液压设备配套有限公司 组角机油缸运行控制方法及液压系统

Also Published As

Publication number Publication date
CN111237264A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN103047208B (zh) 一种负载敏感电液比例多路阀
CN102226453B (zh) 一种双余度电液伺服执行器
CN101539218B (zh) 一种高旁减温减压阀执行机构的控制模块
CN103148041B (zh) 一种节能式主被动负载的双电液伺服阀控系统的控制方法
WO2021169175A1 (zh) 用于实现双作用油缸精确控制的油路结构
CN108843630B (zh) 一种位置及压力连续可调的驱动辊压下液压控制系统
CN105422523A (zh) 一种数字液压流量调节系统
CN201396344Y (zh) 数字式电液同步控制系统
CN203114764U (zh) 负载敏感电液比例多路阀
CN103321984A (zh) 电液比例插装阀差动补油液压控制系统
CN213176218U (zh) 用于实现双作用油缸精确控制的油路结构
CN104564854A (zh) 基于高压共轨舱的多执行器重载数字液压回路
CN214838782U (zh) 一种可在线检测与更换电磁阀的电液执行器
CN204312432U (zh) 二通插装式比例节流阀
CN109915427B (zh) 一种带背压控制的三泵直驱电静液作动器
CN210531724U (zh) 一种电机与电磁阀联动控制系统
CN113217693A (zh) 一种可在线检测与更换电磁阀的电液执行器及方法
CN112032122B (zh) 一种液压控制系统和具有该液压控制系统的挖掘机
CN210411921U (zh) 一种钢管轧机轧辊校准液压控制系统和装置
CN203362682U (zh) 电液比例插装阀差动补油液压控制装置
CN201259004Y (zh) 高旁减温减压阀执行机构的控制模块
CN206513643U (zh) 高旁减温减压阀执行系统
CN205918675U (zh) A4vso轴向柱塞泵用控制装置
CN109026913B (zh) 带有rhcv型电液控制终端em的多功能一体化液压缸
CN215861092U (zh) 一种油缸缸底

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920799

Country of ref document: EP

Kind code of ref document: A1