WO2021167316A1 - 냉각보조물질이 충진되어 냉각효율이 향상된 곡물냉장고 - Google Patents

냉각보조물질이 충진되어 냉각효율이 향상된 곡물냉장고 Download PDF

Info

Publication number
WO2021167316A1
WO2021167316A1 PCT/KR2021/001958 KR2021001958W WO2021167316A1 WO 2021167316 A1 WO2021167316 A1 WO 2021167316A1 KR 2021001958 W KR2021001958 W KR 2021001958W WO 2021167316 A1 WO2021167316 A1 WO 2021167316A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
grain
opening
refrigerator
grain storage
Prior art date
Application number
PCT/KR2021/001958
Other languages
English (en)
French (fr)
Inventor
박성철
박남규
Original Assignee
박성철
박남규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200019090A external-priority patent/KR102303538B1/ko
Priority claimed from KR1020200057770A external-priority patent/KR102383867B1/ko
Priority claimed from KR1020200100210A external-priority patent/KR102596672B1/ko
Application filed by 박성철, 박남규 filed Critical 박성철
Publication of WO2021167316A1 publication Critical patent/WO2021167316A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • A23B9/10Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • A23B9/10Freezing; Subsequent thawing; Cooling
    • A23B9/12Thawing subsequent to freezing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • A23B9/16Preserving with chemicals
    • A23B9/18Preserving with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23B9/20Preserving with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3418Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • A23L3/3427Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O in which an absorbent is placed or used
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J47/00Kitchen containers, stands or the like, not provided for in other groups of this subclass; Cutting-boards, e.g. for bread
    • A47J47/01Kitchen containers, stands or the like, not provided for in other groups of this subclass; Cutting-boards, e.g. for bread with dispensing devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J47/00Kitchen containers, stands or the like, not provided for in other groups of this subclass; Cutting-boards, e.g. for bread
    • A47J47/02Closed containers for foodstuffs
    • A47J47/04Closed containers for foodstuffs for granulated foodstuffs
    • A47J47/06Closed containers for foodstuffs for granulated foodstuffs with arrangements for keeping fresh
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D15/00Devices not covered by group F25D11/00 or F25D13/00, e.g. non-self-contained movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a grain refrigerator with improved cooling efficiency by being filled with a cooling auxiliary material, and more particularly, cooling that can increase the cooling efficiency of the cooling unit by filling the cooling unit with a cooling auxiliary material that increases thermal conductivity and heat capacity inside the cooling unit It relates to a grain refrigerator with improved cooling efficiency by filling auxiliary substances.
  • grains such as rice, brown rice, barley, soybeans and red beans are stored in rice barrels, jars, etc., out of exposure to sunlight, or stored in a refrigerator.
  • FIG. 1 is a perspective view of the prior art.
  • the prior art 100 includes a cooling post 110 , a housing 120 , a heater wire 130 , a heat dissipation fin 140 , and a cooling fan 150 .
  • the cooling post 110 is formed in a cylindrical shape and is made of a material having excellent thermal conductivity.
  • Peltier element 111 is attached to the lower surface of the cooling post 110 .
  • the Peltier element 111 is cooled on one surface when an electric current flows, and the other surface is heated.
  • the Peltier element 111 has a cooled surface attached to the cooling post 110 to transmit cold air to the cooling post 110 , and a heated surface attached to the heat dissipation fin 140 to radiate heat to the outside.
  • the housing 120 is installed to surround the cooling post 110 , and transfers the cold air emitted from the cooling post 110 to the grain.
  • the housing 120 has breathability and is formed of a material such as loess or charcoal that can absorb moisture to absorb moisture that may be generated during the cooling process, thereby preventing the grains from being exposed to moisture.
  • the heater wire 130 is installed in the space between the cooling post 110 and the housing 120 , and the humidity inside the housing 120 exceeds a threshold by a humidity sensor (not shown) installed inside the housing 120 . In this case, it is determined that moisture is condensed on the outer surface of the cooling post 110 due to dew condensation, and the moisture condensed on the outer surface of the cooling post 110 is removed by heat.
  • the heat dissipation fin 140 has one surface in contact with the Peltier element 111 and radiates heat transferred through the Peltier element 111 to the outside.
  • the cooling fan 150 is installed on the heat dissipation fin 140 to discharge the heat of the heat dissipation fin 140 to the outside.
  • the grain inside is cooled through the cooling post 110 and the housing 120 , and moisture inside the housing 120 is removed through the heater wire 130 .
  • the heater wire 130 By giving it, it is possible to prevent the moisture inside the housing 120 from leaking to the outside, thereby preventing the grain from rotting or being damaged.
  • the cooling efficiency increases when the cooling post 110 and the housing 120 are attached, but the housing 120 is overcooled so that the temperature inside the grain refrigerator falls below a preset temperature, and the housing By generating dew condensation on the outer peripheral surface of 120, the grain stored in the grain refrigerator is rotted or damaged.
  • the cooling post 110 and the housing 120 are installed to be spaced apart from each other, and the cold air of the cooling post 110 is delayed due to the air between the cooling post 110 and the housing 120, so that the cooling efficiency is reduced. and the cooling rate is reduced.
  • the prior art 100 since the prior art 100 has low cooling efficiency, when the external temperature is high, the temperature inside the grain refrigerator cannot be cooled to a preset temperature, so that the grain stored in the grain refrigerator cannot be cooled smoothly. .
  • a separate forced cooling means is additionally installed in the heat dissipation part of the cooling device to cool it to a preset temperature, so the overall volume of the grain refrigerator increases as well as the cost.
  • the grain refrigerator to which the prior art 100 is applied removes moisture by heating it through a heater wire 130 to remove the frost inside the housing, the temperature of the housing 120 rises in the process of removing moisture. This causes a problem in that the temperature inside the grain refrigerator rises and the quality of the grains stored therein is deteriorated.
  • the grain refrigerator to which the prior art 100 is applied does not have a separate means for controlling the amount of grain discharged from the grain refrigerator, the process of discharging grains by additionally proceeding with the process of the user measuring the grains discharged from the grain refrigerator the time taken will increase.
  • the present invention is to solve this problem, and salt is filled inside the outer wall of the grain storage bin to prevent moisture from flowing into the grain bin and at the same time to prevent external heat from flowing into the inside, thereby preventing moisture from flowing in from the outside. It relates to a grain refrigerator that can prevent the cooling efficiency from being reduced.
  • another solution of the present invention is to fill the inner space of the cooling unit with a cooling auxiliary material, and since the cooling auxiliary material has high heat capacity and thermal conductivity, the cooling efficiency of the cooling unit is increased, so that there is no need to additionally install a separate cooling device It relates to a grain refrigerator capable of cooling the temperature inside the grain storage bin to a preset temperature.
  • Another solution to the present invention is to discharge moisture formed in the internal space of the cooling unit to the outside, so that the discharged moisture is discharged along the heat sink structure in a heated state, so that the moisture is discharged in a gaseous state.
  • the solution of the present invention for solving the above problems is a grain refrigerator comprising a case-shaped case with an open top, a grain storage unit installed inside the case and storing grains, and a cooling unit for cooling the grains: a cooling rod having an upper portion protruding through the lower surface of the grain storage unit and protruding into the grain storage unit, and having a lower portion positioned outside the lower surface of the grain storage unit; a cooling means for cooling the cooling rod by having one surface in contact with the lower surface of the cooling rod; a heat sink structure that is in contact with the other surface of the cooling means and radiates heat generated from the cooling means to the outside; a cooling tube body formed in a circular tube shape with a closed upper portion, an inner diameter larger than an outer diameter of the cooling rod, and installed to surround the cooling rod during assembly; It will include a cooling auxiliary material to be filled in the inner space formed between the cooling rod and the cooling tube body.
  • the outer peripheral surface of the cooling rod is formed in a funnel shape and is inclinedly installed at a portion adjacent to the lower end of the cooling rod, the inner rim is installed to be connected to the outer peripheral surface of the cooling rod, and the water is discharged at the lowest height a heat dissipation frame provided with a water receiving plate having an outlet, the heat sink structure having a flat plate shape, and having water outlet holes penetrating upper and lower surfaces at positions corresponding to the water outlet; It is formed in a flat plate shape and includes heat sinks installed perpendicularly to the lower surface of the heat dissipation frame, and the cooling unit discharges moisture generated in a space formed between the cooling rod and the cooling tube body through the water outlet of the drip tray and the water discharge. It is preferable to discharge to the outside through the ball.
  • the water outlet in the present invention is an opening and closing door installed at the lower end; It includes electrodes installed to be spaced apart from each other on the inner circumferential surface, and the opening and closing door is normally closed to prevent the heat of the heat sink structure from flowing into the inner space. It is preferable to open the opening and closing door by being energized by
  • the grain storage unit has an upper opening, the lower surface is formed in an inclined housing shape, the grain storage bin having a grain outlet formed on the lower surface;
  • One end is formed in a closed circular tubular shape, the first opening and the second opening passing through the outer peripheral surface and the inner peripheral surface are formed in the longitudinal direction, are formed to face each other, the first opening is the grain so as to communicate with the grain outlet
  • Rotating barrel housing installed in the lower part of the reservoir; It is formed in a circular tube shape with both ends closed, and a third opening passing through the inner and outer circumferential surfaces is formed in the longitudinal direction and includes a rotary tube rotatably installed inside the rotary tube housing, wherein the rotary tube includes the third opening
  • the rotation tube is preferably connected to a locking protrusion on the outer peripheral surface, and when the locking jaw is installed inside the second opening of the rotary tube housing, the rotation angle is limited.
  • an insulating block is installed at the lower portion of the grain storage unit to surround the cooling tube body protruding from the grain storage unit.
  • the cooling auxiliary material is preferably baked salt from which moisture contained therein is removed through a heating process.
  • the cooling auxiliary material is preferably prepared by mixing 6 to 12% by weight of acetic acid, 40 to 50% by weight of salt, and 40 to 50% by weight of water.
  • the cooling auxiliary material is filled inside the outer walls of the grain refrigerator.
  • the cooling pipe body is made of loess material, it is preferable that salt is added therein during manufacturing.
  • salt is plated on the inner and outer peripheral surfaces of the cooling pipe body.
  • the cooling auxiliary material is filled in the inner space of the cooling unit, and in the case of the cooling auxiliary material, since the heat capacity and thermal conductivity are high, the cooling efficiency of the cooling unit is increased, thereby increasing the cooling efficiency as well as , it is possible to maintain cool air for a certain period of time even when the current supplied to the cooling unit is cut off, so that it is possible to cool the temperature inside the grain storage bin to a preset temperature without additionally installing a separate cooling device, so no separate cooling device is installed. Because it is not necessary, not only the volume of the whole grain refrigerator is reduced, but also the cost is reduced.
  • the discharged moisture when moisture formed in the internal space of the cooling unit is discharged to the outside, the discharged moisture is configured to be discharged along the heat sink structure in a heated state, so that the discharged water is heated by the heat sink structure and discharged in a gaseous state Since there is no need to install a separate water discharging means, the volume can be reduced.
  • FIG. 1 is a perspective view of the prior art.
  • Figure 2 is an exploded perspective view of the grain refrigerator of the present invention.
  • FIG. 3 is a cross-sectional view of FIG. 2 .
  • FIG. 4 is an exploded perspective view of the grain storage unit of FIG.
  • 5 is an exemplary view for explaining the grain withdrawal process of the grain refrigerator.
  • FIG. 6 is an exploded perspective view of the cooling unit of FIG. 2 .
  • FIG. 7 is a cross-sectional view of the cooling unit of FIG. 2 .
  • FIG. 8 is an exemplary view of a second grain storage bin that is a second embodiment of the grain storage bin of FIG. 3 .
  • FIG. 9 is an exemplary view of a second cooling unit that is a second embodiment of the cooling unit of FIG. 7 .
  • FIG. 2 is an exploded perspective view of the grain refrigerator of the present invention
  • FIG. 3 is a cross-sectional view of FIG.
  • the grain refrigerator 1 includes a case 2 , a grain storage unit 3 , a cooling unit 4 , an insulating block 5 , and a grain discharge tube 6 .
  • the case (2) is formed in a box shape with an open top, and a grain storage unit (3), a cooling unit (4), an insulating block (5), and a grain discharge tube (6) are installed therein.
  • the shape of the case 2 has been described as an example of a rectangular pole shape, but the shape of the case 2 is not limited thereto and may be formed in various shapes such as a cylinder and a polygonal pole. have.
  • one surface of the case (2) is formed with a discharge tube insertion hole 21 into which the grain discharge tube 6 is inserted.
  • FIG. 4 is an exploded perspective view of the grain storage unit of FIG.
  • the grain storage unit 3 includes a grain storage container 31 , a rotary casing 32 , a rotary barrel 33 , a rotary shaft 34 , and a handle 35 .
  • the grain storage bin 31 is formed in a housing shape with an open top, and the lower surface is inclined downward from one side wall to the other side wall facing each other.
  • cooling part through-hole 311 through which the cooling part 4 penetrates in the center is formed in the lower surface adjacent to the other side wall of the grain storage container 31 .
  • a grain outlet 312 through which grains are discharged is formed at the lowest point in height, and a circular tubular rotary housing 32 is installed at the lower portion of the grain outlet 312. .
  • the rotary tube housing 32 is formed in a circular tube shape with one end closed, and a first opening 321 and a second opening 322 penetrating an outer peripheral surface and an inner peripheral surface are formed in the longitudinal direction, and are formed to face each other.
  • the rotary tub housing 32 is installed so that the first opening 321 communicates with the grain outlet 312 of the grain storage bin 3 .
  • the rotating cylinder 33 is rotatably installed in the rotating cylinder housing 32 by the rotating shaft 34 .
  • the rotary tube 33 is formed in a circular tube shape with both ends closed, and a third opening 331 penetrating the inner and outer peripheral surfaces is formed in the longitudinal direction.
  • a locking jaw 332 is connected to the outer circumferential surface of the rotary tube 33 .
  • the rotary shaft 34 is installed to pass through the rotary tube housing 32 , the rotary tube 33 , and the case 2 , and a handle 35 is coupled to an end protruding outward of the casing 2 .
  • the rotary shaft 34 is rotatably installed in the rotary tube housing 32 , and is coupled to the rotary tube 33 so that the rotary tube 33 is rotatably installed inside the rotary tube housing 32 .
  • the rotary shaft 34 allows the user to rotate the rotary tube 33 from the outside through the handle 35 installed at the end.
  • 5 is an exemplary view for explaining the grain withdrawal process of the grain refrigerator.
  • the grain storage unit 3 is disposed so that the third opening 331 of the rotary barrel 33 faces the second opening 322 in normal time so that the grains G stored therein are rotated. Since the second opening 322 of the rotary tube housing 32 is blocked by the tradition 33 , the grain G is blocked from flowing into the rotary tube 33 . Due to this, the grain (G) is stored in a cooled state by the cooling unit (4) in the interior of the grain storage (31).
  • the grain storage unit 3 is disposed so that the third opening 331 faces the first opening 321 of the rotating barrel housing 32 when the rotary barrel 33 is rotated clockwise by the user, so that the grain Grain (G) of the storage bin 31 is introduced into the rotary barrel 33, the rotary barrel 33 closes the second opening 322 of the rotary barrel housing 32, so that the grain (G) is a grain discharge container (6) is blocked from being discharged.
  • the grain storage unit 3 configured as described above is normally cooled by the cooling unit 4 while the grain G is located in the grain storage trough 31 , and the user operates the rotary trough 33 through the handle 35 .
  • the grain (G) inside the grain storage unit (3) is introduced into the rotating barrel (33).
  • the rotary tube 33 is kept in a state filled with the grain (G) as much as a predetermined capacity inside because the grain (G) introduced into the inside is blocked from being discharged to the grain discharge tube (6), once again the user When the handle 35 is turned, the grain (G) inside is discharged to the grain discharge container (6).
  • the user is able to withdraw the grain (G) as much as the volume of the rotary tube (33) at once, so that the grain (G) of the predetermined amount can be withdrawn without a separate measurement.
  • FIG. 6 is an exploded perspective view of the cooling unit of FIG. 2
  • FIG. 7 is a cross-sectional view of the cooling unit of FIG. 2 .
  • the cooling unit 4 includes a cooling rod 41 , a heat sink structure 42 , a cooling fan 43 , and a cooling tube body 44 . It consists of a mesh network (45).
  • the cooling rod 41 is formed in a circular rod shape and is made of a material having excellent thermal conductivity.
  • cooling rod 41 is a Peltier element 411 is attached to the lower surface.
  • the Peltier element 411 is an element that operates on the principle that when current flows, one surface is cooled, and the other surface is heated.
  • the Peltier element 411 has one surface attached to the lower surface of the cooling rod 41 to cool the cooling rod 41, and the other surface is attached to the upper surface of the heat sink structure 42 to transfer heat to the heat sink structure 42. .
  • a drip plate 412 is installed in a portion adjacent to the lower end.
  • the drip tray 412 is formed in a funnel shape, and is inclinedly installed at a position adjacent to the lower portion of the cooling rod 41 .
  • the inner edge of the drip tray 412 is installed to be connected to the outer peripheral surface of the cooling rod (41).
  • the outer edge of the drip plate 412 is installed to be in contact with the inner peripheral surface of the cooling tube body 44 during installation.
  • the water receiving plate 412 is formed to have the lowest height and a funnel-shaped water outlet 4121 through which water is discharged at a location where water is collected by gravity is formed to protrude downward.
  • the lower end is in contact with the heat sink structure 42 and is installed to communicate with the water outlet 4211 formed in the heat dissipation frame 421 .
  • an opening and closing door 41211 is installed at the lower end of the water outlet 4121 .
  • a pair of electrodes 41212 are installed to be spaced apart from each other on the inner surface of the water outlet 4121 .
  • the electrodes 41212 open the opening and closing doors 41211 only when electricity is applied.
  • Electrodes 41212 are installed to be spaced apart from each other in normal times so that current does not flow, but when moisture collects at the top of the opening and closing door 41211 and reaches the electrodes 41212, they are energized by moisture to open the opening and closing door 41211. By opening it, the moisture is released.
  • the opening and closing door 41211 is normally closed to prevent heat from rising from the heat sink structure 42 , and to be opened only when moisture is discharged, so that the heat of the heat sink structure 42 flows into the internal space 441 . This can prevent a decrease in cooling efficiency.
  • the heat dissipation plate structure 42 includes a plate-shaped heat dissipation frame 421 to which a Peltier element 411 is attached to an upper surface, and a plurality of plate-shaped heat dissipation plates 422 vertically coupled to the lower surface of the heat dissipation frame 421 . .
  • the heat sink structure 42 receives heat generated from the Peltier element 411 through the heat radiation frame 421 , and radiates the heat to the atmosphere through the heat sinks 422 .
  • the heat dissipation frame 421 is formed with a water discharge hole 4211 that is formed through from the upper surface to the lower surface.
  • the upper end is formed at a position corresponding to the water outlet 4121 , and the lower end is formed to face one of the heat sinks 422 .
  • These water discharge holes 4211 allow moisture introduced through the water discharge holes 4211 to move downward along the heat sink 422 .
  • the grain refrigerator (1) is discharged to the outside in the form of water vapor in the water generated in the cooling unit (4), since there is no need to install a separate water discharging means, volume and cost is reduced.
  • the cooling fan 43 is installed under the heat sink structure 42, and by cooling the heat sink structure 42, the heat of the Peltier element 411 is more rapidly discharged to the outside, so that the cooling process of the cooling rod 41 is smooth. to make it happen
  • the cooling tube body 44 is formed in a circular tube shape with a closed top, and is made of loess, and it is possible to suppress the occurrence of mold by adding salt therein during the manufacturing process.
  • the cooling tube body 44 has been described as being made of loess for convenience of explanation, but the material for the cooling tube body 44 is not limited thereto, and various types of materials such as charcoal and ceramics may be used. .
  • the cooling tube body 44 is formed to have an inner diameter larger than the outer diameter of the cooling rod 41, and is formed so that the inner circumferential surface is in contact with the end of the drip tray 412, so that when installed, it is spaced apart from the outer circumferential surface of the cooling rod 41 and the inner space (441) is formed.
  • the inner space 441 is filled with a cooling auxiliary material on the upper portion of the drip tray 412 , and baked salt S1 is used as the cooling auxiliary material filled in the inner space 441 .
  • this baked salt (S1) is a hygroscopic material, it primarily absorbs moisture formed in the internal space 441 due to water vapor and condensation, and the moisture formed in the internal space 441 is discharged to the grain storage bin 31 and grain It prevents the grain in the storage bin 31 from rotting by moisture.
  • the baked salt (S1) serves to increase the cooling efficiency by more rapidly transferring the cold air of the cooling rod 41 to the cooling tube body 44 and the grain storage bin 31 because it is cooled faster than air and moisture.
  • the internal space 441 formed by the cooling tube body 44 and the cooling rod 41 is filled with the baked salt S1, but the material filled in the internal space 441 is not limited thereto. In addition, various materials with high hygroscopicity and cooling efficiency can be filled.
  • the mesh network 45 is formed in a cylindrical tube shape with a closed upper portion, and the cooling tube body 44 is installed therein.
  • the mesh network 45 is formed with a plurality of through-holes 451 penetrating the inner and outer peripheral surfaces.
  • the through-holes 451 are formed smaller than the grains introduced into the grain storage bin 3 to prevent the grains from being in direct contact with the cooling tube body 44 and being supercooled.
  • the cooling unit 4 configured as described above is inserted into the cooling unit through-hole 312 in which the cooling rod 41 , the cooling tube body 44 , and the mesh network 45 are formed in the grain storage bin 31 , the grain storage bin 31 . It cools the grain stored inside.
  • the cooling unit 4 is filled with salt (S1) baked in the internal space 441 formed between the cooling rod 41 and the cooling tube body 44 to increase cooling efficiency and absorb moisture, so that a separate moisture absorption device
  • salt (S1) baked in the internal space 441 formed between the cooling rod 41 and the cooling tube body 44 to increase cooling efficiency and absorb moisture, so that a separate moisture absorption device
  • the cooling unit 4 moisture not absorbed by the baked salt S1 is discharged to the outside by the drip plate 412 formed on the cooling rod 41, and the discharged moisture is absorbed by the heat of the heat sink structure 42.
  • the cooling unit 4 moisture not absorbed by the baked salt S1 is discharged to the outside by the drip plate 412 formed on the cooling rod 41, and the discharged moisture is absorbed by the heat of the heat sink structure 42.
  • the volume of the internal space 441 of the cooling unit 4 is 600 am.
  • Example 1 is a grain refrigerator filled with 1000 g of baked salt in the inner space 441.
  • baked salt is salt that has been arbitrarily heated to remove moisture from the inside.
  • Comparative Example 1 is a grain refrigerator filled with air inside the inner space 441 .
  • Example 1 the temperature inside the grain storage bin 31 is continuously decreased, and when it reaches the set temperature of 13° C. The temperature will not decrease and will remain at that temperature.
  • Comparative Example 1 the temperature inside the grain storage bin 31 is continuously decreased, and when 24 to 28 hours have elapsed, it reaches 19° C., and the temperature is no longer reduced.
  • Comparative Example 1 when the external temperature increases, since it is impossible to cool the temperature of the grain storage bin 31 to a set temperature, the grain stored in the grain storage bin 31 is deteriorated or damaged.
  • Comparative Example 2 reaches the set temperature of 13° C. unlike Comparative Example 1, but it can be seen that the time to reach the set temperature is slower than in Example 1 because the thermal conductivity is reduced by the moisture contained in the salt.
  • the grain refrigerator 1 increases the cooling rate and cooling efficiency without a separate cooling device even in summer when the outside temperature is high. It is possible to cool the grain storage bin 31 to a set temperature, and the cooling rate is also increased.
  • the heat insulating block 5 is formed in a housing shape, and the inside of the heat insulating block 5 is filled with a heat insulating material such as polyurethane or polyethylene.
  • the upper surface of the insulating block (5) is formed in a shape corresponding to the lower surface of the grain storage container (31).
  • the heat insulating block 5 is formed with a cooling unit insertion hole 51 penetrating the upper and lower surfaces.
  • This insulating block 5 is installed to surround the cooling rod 41 that is not inserted into the grain storage unit 3, the cooling tube body 44, and the lower end of the mesh network 45, so that the cold air is It increases cooling efficiency by preventing leakage to the outside.
  • the heat insulation block 5 prevents the heat generated from the heat sink structure 42 from being transferred to the lower surface of the grain storage container 31 so that the grain located on the lower surface of the grain storage container 31 is the heat of the heat sink structure 42 . to prevent damage by
  • the grain discharge tube 6 is formed in a cylindrical shape with an open top, and is inserted into the discharge tube insertion hole 21 formed in the case 2 .
  • the grain discharge tube 6 is located at the lower part of the rotary tube 33, when the rotary tube 33 is rotated, the grain inside the rotary tube 33 is introduced, and the user can remove it from the case 2 as needed. can be separated.
  • FIG. 8 is an exemplary view of a second grain storage bin that is a second embodiment of the grain storage bin of FIG. 3 .
  • the second grain storage bin 231 is made of the same shape and structure as the grain storage bin 31 of FIG. 3 , and the cooling auxiliary material S2 is filled inside the sidewalls.
  • the salt to be filled at this time is preferably baked salt from which moisture contained therein has been removed through a heating process.
  • This cooling auxiliary material (S2) absorbs moisture flowing in from the outside when the outside of the second grain storage bin 231 is hot and humid, thereby preventing the grain inside from being deteriorated by moisture and cooling efficiency by moisture. This is reduced to prevent the temperature inside the second grain storage bin 231 from rising.
  • the cooling efficiency of the second grain storage container 231 is increased by the cooling auxiliary material (S2) filled inside the walls, the power consumption is reduced, thereby reducing the cost.
  • the second grain storage container 231 configured in this way absorbs moisture by the cooling auxiliary material (S2) even if it is installed in a high temperature and humid place, so that the grain (G) stored therein is prevented from being exposed to moisture, so that the internal temperature It is prevented from being higher than the preset temperature, it is possible to prevent deterioration of the grain (G) stored therein.
  • FIG. 9 is an exemplary view of a second cooling unit that is a second embodiment of the cooling unit of FIG. 7 .
  • the second cooling unit 240 includes a cooling rod 241 having the same structure and shape as the cooling unit 4 of the first embodiment, a heat sink structure 242, a cooling fan 243, Cooling tube body (244).
  • the mesh network 245 is included, but the filling part 246 is installed instead of the cooling auxiliary material S1 in the inner space 2441 formed between the inner circumferential surface of the cooling tube body 244 and the outer circumferential surface of the cooling rod 241 .
  • the filling part 246 is formed in a hollow cylindrical shape with a closed upper end and is installed in the inner space 2441 to surround the cooling rod 241, and a cooling auxiliary material is filled therein.
  • the filling part 246 is configured to be separated by a plurality of partition walls (not shown), it is possible to prevent the cooling tube body 244 from being non-uniformly cooled due to the non-uniform distribution of the cooling auxiliary material.
  • the cooling auxiliary material consists of 6 to 12% by weight of acetic acid, 40 to 50% by weight of salt, and 40 to 50% by weight of water.
  • the solubility of salt in water at a temperature of 20°C is 36g/100ml. That is, since salt is added in an amount greater than the solubility of water, salt is precipitated inside the cooling auxiliary material.
  • these cooling auxiliary substances increase heat capacity and specific heat because acetic acid and water undergo hydrogen bonding.
  • the thermal conductivity of the cooling auxiliary material is increased by salt dissolved in water and salt precipitated.
  • the heat capacity of the cooling auxiliary material is increased by acetic acid, the amount of energy required for temperature change is increased, so that even if external heat is introduced, the temperature of the filling part 246 can be maintained at a preset temperature.
  • the cooling auxiliary material increases the thermal conductivity by the salt contained therein, the cold air generated from the Peltier element 2411 attached to the lower surface of the cooling rod 241 is rapidly transferred to the cooling tube body 244 , so the grain storage bin (31) It can cool the inside quickly.
  • the filling unit 246 not only decreases the amount of increase in temperature due to heat introduced from the outside, but also increases the cooling efficiency because the cold air transferred from the Peltier element 2411 is quickly dispersed throughout the cooling tube body 244 . .
  • the cooling auxiliary material since the cooling auxiliary material has a large heat capacity, when the power is cut off or turned off, the rate of increase in temperature is reduced, thereby preventing food from being damaged for a long time.
  • the filling part 246 has an inner peripheral surface in contact with the cooling rod 241 and an outer peripheral surface in contact with the cooling tube body 244 .
  • the filling part 246 is cooled by the cooling rod 241 in contact with the inner circumferential surface, and the cold air transferred from the cooling rod 241 is transferred to the cooling tube body 244 in contact with the outer circumferential surface to cool the cooling tube body 244 . make it
  • the inner space of the filling part 246 is 600mL.
  • Embodiment 2 is a grain refrigerator in which the cooling auxiliary material is filled in the filling part 246 .
  • Embodiment 3 is a grain refrigerator filled with salt in the inside of the filling unit (246).
  • Comparative Example 3 is a grain refrigerator in which air is filled in the filling part 246 .
  • Example 2 the temperature inside the grain storage bin 31 is continuously decreased, and when 24 to 28 hours have elapsed, the set temperature of 5° C. is reached, and the temperature is maintain.
  • Example 3 the temperature inside the grain storage bin 31 is continuously reduced, and when 20 to 24 hours elapse, 10° C. is reached and the temperature is maintained.
  • Comparative Example 3 the temperature inside the refrigerating compartment 3 is continuously decreased, reaching 16° C. when 28 to 32 hours have elapsed, and the temperature is no longer reduced.
  • Example 2 the final cooling temperature was higher than that of Example 3 and Comparative Example 3 in which the cooling auxiliary material was not filled in the filling part 246 by filling the filling part 246 with the cooling auxiliary material. It can be seen that low
  • Example 3 it can be confirmed that the internal temperature of the grain storage bin 31 is no longer reduced at 10.0°C.
  • salt is filled in the filling part 246 and thermal conductivity is increased, so that the cooling rate is increased than in embodiment 2, but since the heat capacity of salt is lower than the cooling auxiliary material, the cooling temperature is not reduced to a preset temperature. problems will arise.
  • the second cooling unit 240 is cooled to a set temperature when the cooling auxiliary material is filled in the filling unit 246, but is cooled to a preset temperature when only salt is filled or air is filled. You can check what doesn't work.
  • the second cooling part 240 is filled with salt (Example 3) or air (Comparative Example 3).
  • the cooling efficiency is increased compared to when it is filled.
  • the following [Table 3] shows the temperature inside the grain storage bin 31 when the content of acetic acid injected into the cooling auxiliary material is changed in a state where the external temperature is 25 ° C and the cooling temperature is set to 5 ° C. am.
  • the cooling auxiliary material is made so that the ratio of water and salt is the same even if the content of acetic acid is changed.
  • the inner space of the filling part 246 is 600mL.
  • Example 4 is a grain refrigerator in which a cooling auxiliary material having an acetic acid content of 10% by weight is filled in the filling part 246 .
  • Comparative Example 4 is a grain refrigerator in which a cooling auxiliary material having an acetic acid content of 4% by weight is filled in the filling part 246 .
  • Comparative Example 5 is a grain refrigerator in which a cooling auxiliary material having an acetic acid content of 15% by weight is filled in the filling part 246 .
  • Example 4 the temperature inside the grain storage bin 31 is continuously reduced, and when 24 to 28 hours elapse, the set temperature of 5° C. is reached, and the temperature is maintain.
  • Comparative Example 4 the temperature inside the grain storage bin 31 is continuously decreased, and when 20 to 24 hours elapse, it reaches 10° C. and the temperature is maintained.
  • Example 4 when a cooling auxiliary material having an acetic acid content of 10 wt% is filled in the filling part 246, Comparative Example 4 having an acetic acid content of 4 wt% and an acetic acid content of 15 wt% Compared with Example 5, it can be confirmed that the final cooling temperature of the grain storage bin 31 is lower.
  • the cooling efficiency of the second cooling unit 240 is decreased when the content of acetic acid in the cooling auxiliary material filled in the filling unit 246 is reduced or increased to a predetermined value or more.
  • the following [Table 4] shows the temperature inside the grain storage bin 31 when the content of salt put into the cooling auxiliary material is changed in a state where the external temperature is 25 °C and the cooling temperature is set to 5 °C am.
  • the cooling auxiliary material keeps the ratio of water and acetic acid constant even if the salt content changes.
  • the inner space of the filling part 246 is 600mL.
  • Example 5 is a grain refrigerator in which a cooling auxiliary material having a salt content of 45% by weight is filled in the filling part 246 .
  • Comparative Example 6 is a grain refrigerator in which a cooling auxiliary material having a salt content of 30% by weight is filled in the filling part 246 .
  • Comparative Example 7 is a grain refrigerator in which a cooling auxiliary material having a salt content of 60% by weight is filled in the filling part 246 .
  • Example 5 the temperature inside the grain storage bin 31 is continuously reduced, and when 24 to 28 hours elapse, the set temperature of 5° C. is reached, and the temperature is maintain.
  • Comparative Example 6 the temperature inside the grain storage bin 31 is continuously reduced, and when 28 to 32 hours have elapsed, it reaches 9° C. and the temperature is maintained.
  • Example 5 when the cooling auxiliary material having a salt content of 45 wt% is filled in the filling part 246, Comparative Example 6 in which the salt content is 30 wt% and Comparative Example in which the salt content is 60 wt% Compared with 7, it can be seen that the final cooling temperature of the grain storage bin 31 is lower.
  • the cooling efficiency of the second cooling unit 240 is decreased when the salt content of the cooling auxiliary material filled in the filling unit 246 is reduced or increased to a certain value or more.
  • the cooling efficiency was the greatest when the cooling auxiliary material was composed of 6 to 12% by weight, 40 to 50% by weight of salt, and 40 to 50% by weight of water.
  • the cooling efficiency of the cooling unit 4 is increased by filling the inside of the filling unit 246 with a cooling auxiliary material. can reduce the temperature of

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

본 발명은 냉각부의 내부공간에 냉각보조물질이 충진되며, 냉각보조물질의 경우 열용량 및 열전도도가 높기 때문에 냉각부의 냉각효율이 증가하게 됨으로써 냉각효율이 증가될 뿐만 아니라, 냉각부로 공급되는 전류가 차단되어도 일정 시간동안 냉기를 유지할 수 있게 되어 별도의 냉각장치를 추가로 설치하지 않아도 기 설정된 온도까지 곡물저장통 내부의 온도를 냉각시킬 수 있게 됨으로써 별도의 냉각장치를 설치하지 않아도 되기 때문에 곡물냉장고 전체의 부피가 감소할 뿐만 아니라 비용이 감소하게 되며, 냉각부의 내부공간에서 형성되는 수분이 외부로 배출될 때, 배출되는 수분이 가열된 상태의 방열판 구조체를 따라서 배출되도록 구성됨으로써 배출되는 수분이 방열판 구조체에 의해 가열되어 기체 상태로 배출되어 별도의 수분 배출수단을 설치하지 않아도 되기 때문에 부피를 감소시킬 수 있는 곡물냉장고에 관한 것이다.

Description

냉각보조물질이 충진되어 냉각효율이 향상된 곡물냉장고
본 발명은 냉각보조물질이 충진되어 냉각효율이 향상된 곡물냉장고에 관한 것으로서, 상세하게로는 냉각부의 내부에 열전도도 및 열용량을 증가시키는 냉각보조물질이 충진되어 냉각부의 냉각효율을 증가시킬 수 있는 냉각보조물질이 충진되어 냉각효율이 향상된 곡물냉장고에 관한 것이다.
일반적으로 쌀, 현미, 보리, 콩 및 팥 등과 같은 곡물은 쌀통, 항아리 등에 담아 햇빛에 노출되지 않는 곳에 보관되거나, 냉장고 내에 보관되었다.
그러나 곡물은 외부에 보관될 때에는 외부 습도의 영향을 받게 되어 습도가 높을 경우에는 해충이나 곰팡이가 발생하게 되며, 습도가 낮을 경우에는 곡물 내부의 수분이 외부로 배출되어 곡물의 식감 및 맛이 저하되는 문제가 발생하게 된다.
또한 곡물은 냉장고에 보관될 때에는 냉장고 내의 음식 냄새가 배는 문제가 발생하게 된다.
이러한 문제를 해결하기 위해 국내등록실용신안 제20-0390039(발명의 명칭 : 곡물냉장고의 냉각장치)(이하 ‘종래기술‘이라 함)가 개발되었다.
도 1은 종래기술의 사시도이다.
종래기술(100)은 도 1에 도시된 바와 같이, 냉각포스트(110)와, 하우징(120), 히터선(130), 방열핀(140), 냉각팬(150)으로 이루어진다.
냉각포스트(110)는 원통형상으로 형성되며, 열전도성이 우수한 재질로 이루어진다.
또한 냉각포스트(110)의 하면에는 펠티어소자(111)가 부착된다.
펠티어소자(111)는 전류를 흘려주었을 때 일면이 냉각되며, 타면이 가열된다.
이러한 펠티어소자(111)는 냉각되는 면이 냉각포스트(110)와 부착되어 냉기를 냉각포스트(110)로 전달하며, 가열되는 면이 방열핀(140)과 부착되어 열기를 외부로 방출한다.
하우징(120)은 냉각포스트(110)를 감싸도록 설치되며, 냉각포스트(110)로부터 발산되는 냉기를 곡물로 전달한다.
또한 하우징(120)은 통기성을 갖으며, 수분을 흡수할 수 있는 황토, 숯 등의 재질로 형성되어 냉각과정에서 발생될 수 있는 수분을 흡수하여 곡물이 수분에 노출되는 것을 방지할 수 있다.
히터선(130)은 냉각포스트(110)와 하우징(120)의 사이 공간에 설치되며, 하우징(120) 내부에 설치되는 습도센서(미도시)에 의해 하우징(120) 내부의 습도가 임계치를 초과할 경우, 결로 현상에 의해 냉각포스트(110)의 외표면에 수분이 맺힌 것으로 판단하여 열로 냉각포스트(110)의 외표면에 맺힌 수분을 제거한다.
방열핀(140)은 펠티어소자(111)와 일면이 접촉되며, 펠티어소자(111)를 통해 전달된 열을 외부로 방출한다.
냉각팬(150)은 방열핀(140)에 설치되어 방열핀(140)의 열을 외부로 배출한다.
이와 같이 구성되는 종래기술(100)이 적용되는 곡물냉장고는 냉각포스트(110) 및 하우징(120)을 통해 내부의 곡물이 냉각되며, 히터선(130)을 통해 하우징(120) 내부의 수분을 제거해줌으로써 하우징(120) 내부의 수분이 외부로 유출되어 곡물이 썩거나 손상되는 것을 방지할 수 있다.
그러나 이러한 종래기술(100)은 냉각포스트(110)와 하우징(120)이 붙어있을 경우 냉각효율이 증가하지만, 하우징(120)이 과냉각되어 곡물냉장고 내부의 온도가 기 설정된 온도 이하로 내려가며, 하우징(120)의 외주면에 결로를 발생시켜 곡물냉장고에 저장된 곡물이 썩거나 손상되는 문제가 발생하게 된다.
이로 인해 냉각포스트(110)와 하우징(120)은 서로 이격되게 설치되며, 냉각포스트(110)의 냉기가 냉각포스트(110)와 하우징(120) 사이의 공기로 인하여 냉기의 전달이 늦어져 냉각효율 및 냉각속도가 감소하게 된다.
또한 종래기술(100)은 냉각효율이 낮기 때문에 외부의 온도가 높을 경우, 곡물냉장고 내부의 온도가 기 설정된 온도까지 냉각되지 못하여 곡물냉장고 내부에 저장된 곡물이 원활하게 냉각되지 못하게 되는 문제가 발생하게 된다.
이로 인해 종래기술(100)은 냉각장치의 방열부에 별도의 강제 냉각수단을 추가로 설치하여 기 설정된 온도까지 냉각시키켜야 하기 때문에 곡물냉장고 전체의 부피가 증가하게 될 뿐만 아니라 비용이 증가하게 된다.
또한 종래기술(100)이 적용된 곡물냉장고는 하우징의 내부의 성에 등을 제거하기 위하여 히터선(130)을 통해 가열하여 수분을 제거하기 때문에 수분을 제거하는 과정에서 하우징(120)의 온도가 상승하게 되며, 이로 인해 곡물냉장고 내부의 온도가 상승하여 내부에 저장된 곡물의 품질이 저하되는 문제가 발생하게 된다.
또한 종래기술(100)이 적용된 곡물냉장고는 곡물냉장고로부터 배출되는 곡물의 양을 조절할 수 있는 별도의 수단이 없기 때문에 사용자가 곡물냉장고로부터 배출된 곡물을 계량하는 과정이 추가적으로 진행됨으로써 곡물을 배출하는 과정에서 걸리는 시간이 증가하게 된다.
본 발명은 이러한 문제를 해결하기 위한 것으로 곡물저장통의 외벽 내부에 소금이 충진되어 곡물저장통 내부로 수분이 유입되는 것을 방지함과 동시에 외부의 열이 내부로 유입되는 것이 방지됨으로써 외부로부터 유입되는 수분에 의해 냉각효율이 감소되는 것을 방지할 수 있는 곡물냉장고에 관한 것이다.
또한 본 발명의 다른 해결과제는 냉각부의 내부공간에 냉각보조물질이 충진되며, 냉각보조물질의 경우 열용량 및 열전도도가 높기 때문에 냉각부의 냉각효율이 증가하게 됨으로써 별도의 냉각장치를 추가로 설치하지 않아도 기 설정된 온도까지 곡물저장통 내부의 온도를 냉각시킬 수 있는 곡물 냉장고에 관한 것이다.
또한 본 발명의 다른 해결과제는 냉각부의 내부공간에서 형성되는 수분을 외부로 배출시킬 때, 배출되는 수분이 가열된 상태의 방열판 구조체를 따라 배출되도록 구성됨으로써 수분이 기체 상태로 배출되도록 하는 곡물냉장고에 관한 것이다.
상기 과제를 해결하기 위한 본 발명의 해결수단은 상부가 개구된 함체 형상의 케이스, 상기 케이스의 내부에 설치되며 곡물이 저장되는 곡물저장부 및 상기 곡물을 냉각시켜주는 냉각부로 이루어진 곡물냉장고 있어서: 상기 냉각부는 상부가 상기 곡물저장부의 하면을 관통하여 상기 곡물저장부 내로 돌출 설치되고, 하부가 상기 곡물 저장부의 하면 외측에 위치하는 냉각봉; 상기 냉각봉의 하면에 일면이 접촉되어 상기 냉각봉을 냉각시키는 냉각수단; 상기 냉각수단의 타면에 접촉되어 상기 냉각수단으로부터 발생한 열을 외부로 방출하는 방열판 구조체; 상부가 폐쇄된 원형 관 형상으로 형성되며, 내경이 상기 냉각봉의 외경보다 크게 형성되어 조립 시, 상기 냉각봉을 감싸도록 설치되는 냉각관체; 상기 냉각봉과 상기 냉각관체 사이에 형성된 내부공간에 충진되는 냉각보조물질을 포함하는 것이다.
또한 본 발명에서 상기 냉각봉의 외주면에는 깔대기 형상으로 형성되어 상기 냉각봉의 하단부와 인접한 부분에 경사지게 설치되되, 내측테두리가 상기 냉각봉의 외주면과 연결되도록 설치되며, 높이가 가장 낮은 위치에 수분이 배출되는 물배출구가 형성되는 물받이판이 설치되고, 상기 방열판 구조체는 평판 형상으로 형성되되, 상기 물배출구와 대응되는 위치에 상하면을 관통하는 물배출공이 형성되는 방열프레임; 평판 형상으로 형성되며, 상기 방열프레임의 하면에 수직하게 설치되는 방열판들을 포함하고, 상기 냉각부는 상기 냉각봉과 상기 냉각관체 사이에 형성된 공간 내에서 생성된 수분이 상기 물받이판의 물배출구와 상기 물배출공을 통해 외부로 배출되는 것이 바람직하다.
또한 본 발명에서 상기 물배출구는 하단부에 설치되는 개폐문; 내주면에 서로 이격되게 설치되는 전극들을 포함하고, 상기 개폐문은 평시에는 폐쇄되어 상기 방열판 구조체의 열기가 상기 내부공간 내로 유입되는 것을 방지하되, 상기 물배출구 내에 수분이 일정량 이상 모이게 될 경우에는 전극들이 수분에 의해 통전되어 상기 개폐문을 개방시키는 것이 바람직하다.
또한 본 발명에서 상기 곡물저장부는 상부가 개구되되, 하부면이 경사지게 형성되는 함체 형상으로 형성되며, 하부면에 곡물배출구가 형성되는 곡물저장통; 일단이 폐쇄된 원형 관 형상으로 형성되며, 외주면과 내주면을 관통하는 제1 개구부와 제2 개구부가 길이방향으로 형성되되, 서로 대향되게 형성되며, 상기 제1 개구부가 상기 곡물배출구와 연통되도록 상기 곡물저장통의 하부에 설치되는 회전통 하우징; 양단이 폐쇄된 원형 관 형상으로 형성되되, 내외주면을 관통하는 제3 개구부가 길이방향으로 형성되어 상기 회전통 하우징 내부에 회전 가능하게 설치되는 회전통을 포함하고, 상기 회전통은 상기 제3 개구부가 상기 회전통 하우징의 제1 개구부를 향하도록 설치되었을 때, 상기 곡물저장통의 곡물이 내부로 유입되며, 상기 제3 개구부가 상기 회전통 하우징의 제2 개구부를 향하도록 회전되었을 때, 상기 제1 개구부가 폐쇄되어 곡물의 유입이 중단되되, 상기 제2 개구부를 통해 내부의 곡물이 상기 곡물배출통으로 배출되는 것이 바람직하다.
또한 본 발명에서 상기 회전통은 외주면에 걸림턱이 연결되며, 설치 시 상기 걸림턱이 상기 회전통 하우징의 제2 개구부 내부에 위치하여 회전각도가 제한되는 것이 바람직하다.
또한 본 발명에서 상기 곡물저장부의 하부에는 상기 곡물저장부로부터 돌출된 상기 냉각관체를 감싸도록 단열블록이 설치되는 것이 바람직하다.
또한 본 발명에서 상기 냉각보조물질은 가열공정을 통해 내부에 함유된 수분이 제거된 구운 소금인 것이 바람직하다.
또한 본 발명에서 상기 냉각보조물질은 아세트산 6 내지 12 중량%와, 소금 40 내지 50 중량%와, 물 40 내지 50 중량%로 혼합되어 제조되는 것이 바람직하다.
또한 본 발명에서 상기 곡물냉장고의 외벽들 내부에는 냉각보조물질이 충진되는 것이 바람직하다.
또한 본 발명에서 상기 냉각관체는 황토재질로 헝성되되, 제작 시 내부에 소금이 첨가되는 것이 바람직하다.
또한 본 발명에서 상기 냉각관체는 내외주면에 소금이 도금되는 것이 바람직하다.
상기 과제와 해결수단을 갖는 본 발명에 따르면 냉각부의 내부공간에 냉각보조물질이 충진되며, 냉각보조물질의 경우 열용량 및 열전도도가 높기 때문에 냉각부의 냉각효율이 증가하게 됨으로써 냉각효율이 증가될 뿐만 아니라, 냉각부로 공급되는 전류가 차단되어도 일정 시간동안 냉기를 유지할 수 있게 되어 별도의 냉각장치를 추가로 설치하지 않아도 기 설정된 온도까지 곡물저장통 내부의 온도를 냉각시킬 수 있게 됨으로써 별도의 냉각장치를 설치하지 않아도 되기 때문에 곡물냉장고 전체의 부피가 감소할 뿐만 아니라 비용이 감소하게 된다.
또한 본 발명에 의하면 냉각부의 내부공간에서 형성되는 수분이 외부로 배출될 때, 배출되는 수분이 가열된 상태의 방열판 구조체를 따라서 배출되도록 구성됨으로써 배출되는 수분이 방열판 구조체에 의해 가열되어 기체 상태로 배출되어 별도의 수분 배출수단을 설치하지 않아도 되기 때문에 부피를 감소시킬 수 있다.
도 1은 종래기술의 사시도이다.
도 2는 본 발명의 곡물냉장고의 분해 사시도이다.
도 3은 도 2의 단면도이다.
도 4는 도 2의 곡물저장부의 분해사시도이다.
도 5는 곡물냉장고의 곡물 인출과정을 설명하기 위한 예시도이다.
도 6은 도 2의 냉각부의 분해사시도이다.
도 7은 도 2의 냉각부의 단면도이다.
도 8은 도 3의 곡물저장통의 제2 실시예인 제2 곡물저장통의 예시도이다.
도 9는 도 7의 냉각부의 제2 실시예인 제2 냉각부의 예시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 일실시예를 설명한다.
도 2는 본 발명의 곡물냉장고의 분해 사시도이며, 도 3은 도 2의 단면도이다.
곡물냉장고(1)는 도 2와 3에 도시된 바와 같이, 케이스(2)와, 곡물저장부(3), 냉각부(4), 단열블록(5), 곡물배출통(6)으로 이루어진다.
케이스(2)는 상부가 개구된 함체 형상으로 형성되며, 내부에 곡물저장부(3)와 냉각부(4), 단열블록(5), 곡물배출통(6)이 설치된다.
이때 도 2에서는 설명의 편의를 위해 케이스(2)의 형상이 사각 기둥 형상으로 이루어지는 것으로 예를 들어 설명하였으나, 케이스(2)의 형상은 이에 한정되지 않고 원기둥, 다각기둥 등 다양한 형상으로 형성될 수 있다.
또한 케이스(2)의 일면에는 곡물배출통(6)이 삽입되는 배출통 삽입공(21)이 형성된다.
도 4는 도 2의 곡물저장부의 분해사시도이다.
곡물저장부(3)는 곡물저장통(31)과, 회전통 하우징(32), 회전통(33), 회전축(34), 손잡이(35)로 이루어진다.
곡물저장통(31)은 상부가 개구된 함체 형상으로 형성되며, 하부면이 일측벽으로부터 서로 마주보는 벽인 타측벽을 향하여 하향 경사지게 형성된다.
또한 곡물저장통(31)의 타측벽에 인접된 하부면에는 중앙에 냉각부(4)가 관통되는 냉각부 관통공(311)이 형성된다.
또한 곡물저장통(31)의 하부면에는 높이가 가장 낮은 지점에 곡물이 배출되는 곡물배출구(312)가 형성되며, 곡물배출구(312)의 하부에 원형 관 형상의 회전통 하우징(32)이 설치된다.
회전통 하우징(32)은 일단이 폐쇄된 원형 관 형상으로 형성되며, 외주면과 내주면을 관통하는 제1 개구부(321)와 제2 개구부(322)가 길이방향으로 형성되되, 서로 대향되게 형성된다.
이때 회전통 하우징(32)은 제1 개구부(321)가 곡물저장통(3)의 곡물배출구(312)와 연통되도록 설치된다.
또한 회전통 하우징(32)의 내부에는 회전통(33)이 회전축(34)에 의해 회전 가능하게 설치된다.
회전통(33)은 양단이 폐쇄된 원형 관 형상으로 형성되며, 내외주면을 관통하는 제3 개구부(331)가 길이방향으로 형성된다.
또한 회전통(33)의 외주면에는 걸림턱(332)이 연결된다.
회전축(34)은 회전통 하우징(32)과 회전통(33), 케이스(2)를 관통하도록 설치되며, 케이스(2)의 외측으로 돌출된 단부에 손잡이(35)가 결합된다.
이때 회전축(34)은 회전통 하우징(32)에 회전 가능하게 설치되며, 회전통(33)과 결합되어 회전통(33)이 회전통 하우징(32) 내부에서 회전 가능하도록 설치된다.
또한 회전축(34)은 단부에 설치된 손잡이(35)를 통해 사용자가 외부에서 회전통(33)을 회전시킬 수 있도록 한다.
도 5는 곡물냉장고의 곡물 인출과정을 설명하기 위한 예시도이다.
곡물저장부(3)는 도 5에 도시된 바와 같이, 평시에는 회전통(33)의 제3 개구부(331)가 제2 개구부(322)를 향하도록 배치되어 내부에 저장된 곡물(G)이 회전통(33)에 의해 회전통 하우징(32)의 제2 개구부(322)가 막혀있기 때문에 곡물(G)이 회전통(33) 내부로 유입되는 것이 차단된다. 이로 인해 곡물(G)은 곡물저장통(31)의 내부에서 냉각부(4)에 의해 냉각된 상태로 저장된다.
이때 곡물저장부(3)는 회전통(33)이 사용자에 의해 시계방향으로 회전될 경우, 제3 개구부(331)가 회전통 하우징(32)의 제1 개구부(321)를 향하도록 배치되어 곡물저장통(31)의 곡물(G)이 회전통(33) 내부로 유입되되, 회전통(33)이 회전통 하우징(32)의 제2 개구부(322)를 폐쇄시켜 곡물(G)이 곡물배출통(6)으로 배출되는 것이 차단된다.
이러한 상태에서 곡물저장부(3)는 사용자가 손잡이(35)를 반시계방향으로 회전시키게 되면, 회전통(33)의 제3 개구부(331)가 회전통 하우징(32)의 제2 개구부(322)를 향하도록 배치됨으로써 곡물저장통(31) 내부의 곡물(G)이 회전통(33) 내부로 유입되는 것이 방지됨과 동시에 회전통(33) 내부의 곡물(G)이 곡물배출통(6)으로 배출된다.
이때 회전통(33)은 회전 시, 외주면에 연결된 걸림턱(332)이 회전통 하우징(32)과 접촉됨으로써 회전각도가 제한된다.
이와 같이 구성되는 곡물저장부(3)는 평시에는 곡물(G)이 곡물저장통(31) 내에 위치되어 냉각부(4)에 의해 냉각되며, 사용자가 손잡이(35)를 통해 회전통(33)을 회전시키게 되면 곡물저장부(3) 내부의 곡물(G)이 회전통(33) 내부로 유입된다.
이때 회전통(33)은 내부로 유입된 곡물(G)이 곡물배출통(6)으로 배출되는 것이 차단되기 때문에 정해진 용량만큼의 곡물(G)이 내부에 채워진 상태로 유지되며, 다시 한번 사용자가 손잡이(35)를 돌리게 되면 내부의 곡물(G)이 곡물배출통(6)으로 배출된다.
이로 인해 사용자는 한번에 회전통(33)의 부피만큼의 곡물(G)을 인출할 수 있게 됨으로써 별도의 계량이 없어도 정해진 양만큼의 곡물(G)을 인출할 수 있게 된다.
도 6은 도 2의 냉각부의 분해사시도이며, 도 7은 도 2의 냉각부의 단면도이다.
냉각부(4)는 도 6에 도시된 바와 같이, 냉각봉(41)과, 방열판 구조체(42), 냉각팬(43), 냉각관체(44). 메쉬망(45)으로 이루어진다.
냉각봉(41)은 원형 봉 형상으로 형성되며, 열전도성이 우수한 재질로 이루어진다.
또한 냉각봉(41)은 하면에 펠티어소자(411)가 부착된다.
펠티어소자(411)는 전류가 흐를 때, 일면이 냉각되되, 타면이 가열되는 원리로 작동되는 소자이다.
이러한 펠티어소자(411)는 일면이 냉각봉(41)의 하면에 부착되어 냉각봉(41)을 냉각시키며, 타면이 방열판 구조체(42)의 상면에 부착됨으로써 방열판 구조체(42)로 열이 전달된다.
또한 냉각봉(41)의 외주면에는 하단부와 인접한 부분에 물받이판(412)이 설치된다.
물받이판(412)은 깔대기 형상으로 형성되되, 냉각봉(41)의 하부와 인접한 위치에 경사지게 설치된다.
이때 물받이판(412)의 내측테두리는 냉각봉(41)의 외주면과 연결되도록 설치된다.
또한 물받이판(412)의 외측 테두리는 설치 시, 냉각관체(44)의 내주면과 접촉되도록 설치된다.
또한 물받이판(412)는 높이가 가장 낮게 형성되어 중력에 의해 수분이 모이는 위치에 수분이 배출되는 깔대기 형상의 물배출구(4121)가 하향 돌출 형성된다.
이때 물배출구(4121)는 설치 시, 하단부가 방열판 구조체(42)와 접촉됨과 동시에 방열프레임(421)에 형성된 물배출공(4211)과 연통되도록 설치된다.
또한 물배출구(4121)의 하단부에는 개폐문(41211)이 설치된다.
또한 물배출구(4121)의 내측면에는 한 쌍의 전극(41212)들이 서로 이격되게 설치된다.
이때 전극(41212)들은 통전되었을 때에만 개폐문(41211)을 개방시킨다.
이러한 전극(41212)들은 평시에는 서로 이격되게 설치되어 전류가 통하지 않지만, 개폐문(41211)의 상부에 수분이 모여 전극(41212)들까지 도달하게 될 경우에는 수분에 의해 서로 통전되어 개폐문(41211)을 개방함으로써 수분을 배출한다.
이로 인해, 개폐문(41211)은 평시에는 폐쇄되어 방열판 구조체(42)로부터 열기가 올라오는 것을 방지하며, 수분을 배출할 때에만 개방되도록 함으로써 방열판 구조체(42)의 열기가 내부공간(441) 내로 유입되어 냉각효율이 감소하는 것을 방지할 수 있다.
이러한 물받이판(412)은 냉각봉(41)이 냉각되어 수증기가 응축되는 결로 현상이 발생하게 될 경우, 수분이 물배출구(4121) 및 물배출공(4211)을 통해 외부로 배출된다.
방열판 구조체(42)는 상면에 펠티어소자(411)가 부착되는 평판 형상의 방열프레임(421)과, 방열프레임(421)의 하면에 수직하게 결합되는 복수개의 평판 형상의 방열판(422)들로 이루어진다.
이러한 방열판 구조체(42)는 방열프레임(421)을 통해 펠티어소자(411)로부터 발생한 열기를 전달받으며, 방열판(422)들을 통해 대기 중으로 열기를 방출한다.
또한 방열프레임(421)에는 상면부터 하면까지 관통 형성되는 물배출공(4211)이 형성된다.
물배출공(4211)은 설치 시, 상단부가 물배출구(4121)와 대응되는 위치에 형성되며, 하단부가 방열판(422)들 중 하나를 향하도록 형성된다.
이러한 물배출공(4211)은 물배출공(4211)을 통해 유입되는 수분이 방열판(422)을 따라서 하향 이동하도록 한다.
이때 방열판(422)은 펠티어소자(411)의 열에 의해 가열된 상태이기 때문에 수분이 방열판(422)을 따라서 하향 이동할 때 기화되어 수증기 형태로 변화된다.
이로 인해 곡물냉장고(1)는 냉각부(4)에서 발생하는 수분이 수증기 형태로 외부로 배출되어 별도의 수분 배출수단을 설치하지 않아도 되기 때문에 부피 및 비용이 감소된다.
냉각팬(43)은 방열판 구조체(42)의 하부에 설치되며, 방열판 구조체(42)를 냉각시켜줌으로써 펠티어소자(411)의 열기를 더욱 빠르게 외부로 배출되어 냉각봉(41)의 냉각과정이 원활하게 이루어질 수 있도록 한다.
냉각관체(44)는 상부가 폐쇄된 원형 관 형상으로 형성되며, 황토로 제작되되, 제작 과정에서 내부에 소금을 첨가함으로써 곰팡이가 발생하는 것을 억제할 수 있다.
이때 냉각관체(44)는 설명의 편의를 위해 황토로 제작되는 것으로 예를 들어 설명하였으나, 냉각관체(44)의 제작 재료는 이에 한정되지 않고 숯과 세라믹 등 다양한 종류의 재료들로 제작될 수 있다.
또한 냉각관체(44)의 내외주면에는 소금이 도금됨으로써 내외부면에 도금된 소금에 의해 곰팡이가 발생되는 것이 방지됨과 동시에 냉각관체(44) 내부에서 발생하는 습기가 외부로 방출되는 것이 차단된다.
또한 냉각관체(44)는 내경이 냉각봉(41)의 외경보다 크게 형성되되, 내주면이 물받이판(412)의 단부와 접촉되도록 형성됨으로써 설치 시, 냉각봉(41)의 외주면과 이격되어 내부공간(441)이 형성된다.
이때 내부공간(441)에는 물받이판(412)의 상부에 냉각보조물질이 충진되고, 내부공간(441)에 충진되는 냉각보조물질로는 구운 소금(S1)이 사용된다.
이러한 구운 소금(S1)은 흡습성 물질이기 때문에 수증기 및 결로 현상으로 인해 내부공간(441) 내에 형성되는 수분을 1차적으로 흡수하여 내부공간(441) 내에 형성된 수분이 곡물저장통(31)으로 배출되어 곡물저장통(31) 내의 곡물이 수분에 의해 썩는 것을 방지한다.
또한 구운 소금(S1)은 공기 및 수분보다 빠르게 냉각되기 때문에 냉각봉(41)의 냉기를 냉각관체(44) 및 곡물저장통(31)으로 더욱 빠르게 전달하여 냉각효율을 증가시키는 역할을 한다.
이때 냉각관체(44)와 냉각봉(41)에 의해 형성되는 내부공간(441)에는 구운 소금(S1)이 충진되는 것으로 예를 들어 설명하였으나, 내부공간(441)에 충진되는 재료는 이에 한정되지 않고, 흡습성 및 냉각효율이 높은 다양한 재료들이 충진될 수 있다.
메쉬망(45)은 상부가 폐쇄된 원통 관 형상으로 형성되며, 냉각관체(44)가 내부로 내장되도록 설치된다.
또한 메쉬망(45)은 내주면과 외주면을 관통하는 복수개의 관통공(451)들이 형성된다.
이때 관통공(451)들은 곡물저장통(3) 내부로 유입된 곡물보다 작게 형성됨으로써 곡물이 냉각관체(44)와 직접적으로 접촉되어 과냉각되는 것을 방지한다.
이와 같이 구성되는 냉각부(4)는 냉각봉(41)과 냉각관체(44), 메쉬망(45)이 곡물저장통(31)에 형성된 냉각부 관통공(312)으로 삽입되어 곡물저장통(31) 내부에 저장된 곡물을 냉각시켜 준다.
또한 냉각부(4)는 냉각봉(41)과 냉각관체(44) 사이에 형성된 내부공간(441)에 구운 소금(S1)이 충진되어 냉각효율이 증가될 뿐만 아니라 수분흡수가 이루어져 별도의 흡습 장치나 냉각수단을 설치하지 않아도 되기 때문에 비용이 절감되며, 부피가 감소하게 된다.
또한 냉각부(4)는 구운 소금(S1)에 의해 흡수되지 못한 수분이 냉각봉(41)에 형성된 물받이판(412)에 의해 외부로 배출되되, 배출되는 수분이 방열판 구조체(42)의 열기에 의해 기화되도록 구성됨으로써 별도의 수분 배출 과정 및 도구를 준비하지 않아도 되기 때문에 부피 및 비용이 감소하게 된다.
다음의 [표 1]은 곡물저장통(31) 내부의 현재 온도가 28℃이고 냉각 온도가 13℃로 설정하였을 때, 냉각부(4)를 가동시킴에 따라 변화하는 곡물저장통(31) 내부의 온도를 측정한 값이다.
0h 4h 8h 12h 16h 20h 24h 28h 32h 36h
실시예1 28.0 23.9 20.0 16.6 14.3 13.0 13.0 12.9 12.9 13.0
비교예1 28.0 25.9 24.2 23.2 22.0 20.9 19.7 19.0 18.9 19.0
비교예2 28.0 24.0 20.3 17.0 15.1 13.5 13.0 12.9 13.0 13.0
* 단위는 ℃임.
이때 냉각부(4)의 내부공간(441)의 부피는 600
Figure PCTKR2021001958-appb-I000001
이다.
실시예1은 내부공간(441) 내부에 1000g의 구운 소금이 충진된 곡물냉장고이다.
이때 구운 소금은 소금을 임의로 가열해 내부의 수분을 제거한 소금이다.
비교예1은 내부공간(441) 내부에 공기가 충진된 곡물냉장고이다.
비교예2는 내부공간(441) 내부에 수분함유량(=수분의 중량/전체 중량*100)이 10%인 소금이 1000g 충진된 곡물냉장고이다.
표 1을 참조하여 실시예1을 살펴보면, 실시예1은 곡물저장통(31) 내부의 온도가 지속적으로 감소하게 되되, 16시간 내지 20시간이 경과할 때 설정온도인 13℃에 도달하게 되면 더 이상 온도가 감소하지 않고 해당 온도를 유지하게 된다.
반면에 비교예1은 곡물저장통(31) 내부의 온도가 지속적으로 감소하게 되되, 24시간 내지 28시간이 경과할 때 19℃에 도달하게 되며, 더 이상 온도가 감소되지 못하게 된다.
또한 비교예2는 곡물저장통(31) 내부의 온도가 지속적으로 감소하게 되되, 20시간 내지 24시간이 경과할 때 설정온도인 13℃에 도달하게 되며 온도가 유지된다.
이러한 실시예1은 냉각부(4)의 내부공간(441)에 구운 소금(S1)이 충진됨으로써 냉각부(4)의 내부에 구운 소금(S1)이 충진되지 않은 비교예1과 비교하였을 때, 냉각속도 및 냉각효율이 더 높다는 것을 확인할 수 있다.
또한 비교예1은 냉각효율의 감소에 의해 19℃에서 더 이상 온도가 감소되지 못하는 것을 확인할 수 있다.
이러한 비교예1은 외부의 기온이 높아지게 되었을 때, 곡물저장통(31)의 온도를 설정온도까지 냉각시키는 것이 불가능하기 때문에 곡물저장통(31) 내부에 저장된 곡물이 변질되거나 손상되는 문제가 발생하게 된다.
또한 비교예2는 비교예1과 달리 설정온도인 13℃에 도달하게 되지만, 소금 내부에 함유된 수분에 의해 열전도율이 감소하게 되어 설정온도에 도달하는 시간이 실시예1보다 느린 것을 확인할 수 있다.
즉, 곡물냉장고(1)는 실시예1과 같이 냉각부(4) 내부에 구운 소금(S1)이 충진될 경우, 공기가 충진되었을 때(비교예1) 또는 수분이 함유된 소금(비교예2)가 충진되었을 때보다 냉각속도 및 냉각효율이 증가하게 된다.
이로 인해 곡물냉장고(1)는 냉각부(4)의 내부공간(441)에 구운 소금(S1)이 충진될 경우, 냉각속도 및 냉각효율이 증가하여 외부의 기온이 높아지는 여름에도 별도의 냉각장치 없이 설정온도까지 곡물저장통(31)을 냉각시킬 수 있으며, 냉각속도 또한 빨라지게 된다.
단열블록(5)은 함체 형상으로 형성되고, 단열블록(5)의 내부에는 폴리우레탄, 폴리에틸렌 등의 단열재가 충진된다.
또한 단열블록(5)의 상부면은 곡물저장통(31)의 하부면과 대응되는 형상으로 형성된다.
또한 단열블록(5)은 상하부면을 관통하는 냉각부 삽입공(51)이 형성된다.
이러한 단열블록(5)은 곡물저장부(3)로 삽입되지 않은 냉각봉(41)과, 냉각관체(44), 메쉬망(45)의 하단부를 감싸도록 설치되어 냉기가 곡물저장통(31)의 외부로 유출되는 것을 방지함으로써 냉각효율을 증가시켜준다.
또한 단열블록(5)은 방열판 구조체(42)로부터 발생한 열기가 곡물저장통(31)의 하부면으로 전달되는 것을 방지함으로써 곡물저장통(31)의 하부면에 위치하는 곡물이 방열판 구조체(42)의 열기에 의해 손상되는 것을 방지한다.
곡물배출통(6)은 상부가 개구된 통 형상으로 형성되며, 케이스(2)에 형성된 배출통 삽입공(21)에 삽입된다.
이러한 곡물배출통(6)은 회전통(33)의 하부에 위치하기 때문에 회전통(33)을 회전시켰을 때 회전통(33) 내부의 곡물이 유입되며, 사용자가 필요에 따라서 케이스(2)로부터 분리시킬 수 있다.
도 8은 도 3의 곡물저장통의 제2 실시예인 제2 곡물저장통의 예시도이다.
제2 곡물저장통(231)은 도 3의 곡물저장통(31)과 동일한 형상 및 구조로 이루어지되, 측벽들 내부에 냉각보조물질(S2)이 충진된다. 이때 충진되는 소금은 가열공정을 통해 내부에 함유된 수분이 제거된 구운 소금인 것이 바람직하다.
이러한 냉각보조물질(S2)은 제2 곡물저장통(231)의 외부가 고온 다습할 때, 외부로부터 유입되는 습기를 흡수함으로써 습기에 의해 내부의 곡물이 변질되는 것을 방지함과 동시에 습기에 의해 냉각효율이 감소되어 제2 곡물저장통(231) 내부의 온도가 상승하게 되는 것을 방지한다.
또한 제2 곡물저장통(231)은 벽들 내부에 충진된 냉각보조물질(S2)에 의해 냉각효율이 증가하기 때문에 전력소모량이 감소하여 비용이 감소하게 된다.
이와 같이 구성되는 제2 곡물저장통(231)은 고온 다습한 장소에 설치되어도 냉각보조물질(S2)에 의해 습기를 흡수하여 내부에 저장된 곡물(G)이 수분에 의해 노출되는 것이 방지되어 내부의 온도가 기 설정된 온도보다 높아지는 것이 방지되어 내부에 저장된 곡물(G)이 변질되는 것을 방지할 수 있다.
도 9는 도 7의 냉각부의 제2 실시예인 제2 냉각부의 예시도이다.
제2 냉각부(240)는 도 9에 도시된 바와 같이, 제1 실시예인 냉각부(4)와 동일한 구조 및 형상의 냉각봉(241)과, 방열판 구조체(242), 냉각팬(243), 냉각관체(244). 메쉬망(245)를 포함하되, 냉각관체(244)의 내주면과 냉각봉(241)의 외주면 사이에 형성된 내부공간(2441)에 냉각보조물질(S1) 대신 충진부(246)가 설치된다.
충진부(246)는 상단부가 폐쇄된 중공 원통 형상으로 형성되어 내부공간(2441)에 설치되어 냉각봉(241)을 감싸도록 설치되며, 내부에 냉각보조물질이 충진된다.
이때 충진부(246)는 내부가 복수개의 격벽(미도시)들에 의해 분리되도록 구성됨으로써 냉각보조물질이 불균일하게 분포되어 냉각관체(244)가 불균일하게 냉각되는 것을 방지할 수 있다.
냉각보조물질은 아세트산 6 ~ 12 중량%와, 소금 40 ~ 50 중량%와, 물 40 ~ 50 중량%로 이루어진다.
이때 소금은 온도가 20℃인 물에 대한 용해도가 36g/100ml이다. 즉, 소금은 물의 용해도보다 많은 양이 투입되기 때문에 냉각보조물질 내부에 소금이 석출된다.
이러한 냉각보조물질은 아세트산이 물에 수용될 때, 아세트산과 물이 수소결합을 하기 때문에 열용량 및 비열이 증가하게 된다.
또한 냉각보조물질은 물에 용해된 소금 및 석출된 소금에 의해 열전도도가 증가하게 된다.
즉, 냉각보조물질은 아세트산에 의해 열용량이 증가하기 때문에 온도 변화에 필요한 에너지량이 증가하게 됨으로써 외부의 열이 유입되어도, 충진부(246)의 온도가 기 설정된 온도로 유지될 수 있도록 한다. 또한 냉각보조물질은 내부에 포함된 소금에 의해 열전도도가 증가하기 때문에 냉각봉(241)의 하면에 부착된 펠티어소자(2411)로부터 발생된 냉기가 냉각관체(244)로 빠르게 전달되기 때문에 곡물저장통(31) 내부를 빠르게 냉각시킬 수 있다.
이로 인해 충진부(246)는 외부로부터 유입되는 열에 의한 온도 증가량이 감소하게 될 뿐만 아니라, 펠티어소자(2411)로부터 전달된 냉기가 냉각관체(244) 전체에 빠르게 분산되기 때문에 냉각 효율이 증가하게 된다.
또한 냉각보조물질은 열용량이 크기 때문에 전원이 차단되거나 꺼졌을 때, 온도의 증가속도가 감소되어 장기간동안 음식이 손상되는 것을 방지할 수 있다.
이때 충진부(246)는 내주면이 냉각봉(241)과 접촉되며, 외주면이 냉각관체(244)와 접촉된다
이러한 충진부(246)는 내주면과 접촉되는 냉각봉(241)에 의해 냉각되며, 냉각봉(241)으로부터 전달된 냉기를 외주면과 접촉된 냉각관체(244)로 전달하여 냉각관체(244)를 냉각시킨다.
다음의 [표 2]은 외부의 온도가 25℃이고, 냉각온도가 5℃로 설정한 상태에서 충진부(246)의 내부에 서로 다른 물질이 충진될 때, 제2 냉각부(240)를 가동시킴에 따라 변화하는 곡물저장통(31) 내부의 온도를 측정한 값이다.
0h 4h 8h 12h 16h 20h 24h 28h 32h 36h
실시예2 25.0 21.9 19.0 16.2 13.6 11.0 8.2 5.0 5.0 5.0
실시예3 25.0 21.7 18.6 15.9 13.4 11.2 10.0 10.0 10.0 9.9
비교예3 25.0 23.3 21.8 20.5 19.4 18.4 17.5 16.8 16.0 16.0
* 단위는 ℃임.
이때 충진부(246)의 내부공간은 600mL이다.
실시예2는 충진부(246)의 내부에 냉각보조물질이 충진된 곡물냉장고이다.
실시예3은 충진부(246)의 내부에 소금이 충진된 곡물냉장고이다.
비교예3은 충진부(246)의 내부에 공기가 충진된 곡물냉장고이다.
표 2를 참조하여 실시예2를 살펴보면, 실시예2는 곡물저장통(31) 내부의 온도가 지속적으로 감소하게 되며, 24시간 내지 28시간이 경과할 때 설정온도인 5℃에 도달하게 되며 온도가 유지된다.
또한 실시예3은 곡물저장통(31) 내부의 온도가 지속적으로 감소하게 되되, 20시간 내지 24시간이 경과할 때 10℃에 도달하게 되며 온도가 유지된다.
이에 반해 비교예3은 냉장실(3) 내부의 온도가 지속적으로 감소하게 되되, 28시간 내지 32시간이 경과할 때 16℃에 도달하게 되며, 더 이상 온도가 감소되지 못하게 된다.
이러한 실시예2는 충진부(246)의 내부에 냉각보조물질이 충진됨으로써 충진부(246) 내부에 냉각보조물질이 충진되지 않은 실시예3 및 비교예3과 비교하였을 때, 최종 냉각온도가 더 낮다는 것을 확인할 수 있다.
또한 실시예3은 곡물저장통(31)의 내부 온도가 10.0℃에서 더 이상 감소되지 못하는 것을 확인할 수 있다.
이러한 실시예3은 충진부(246) 내부에 소금이 충진되어 열전도도가 증가됨으로써 냉각속도가 실시예2보다 증가되되, 소금의 열용량이 냉각보조물질보다 낮기 때문에 냉각온도가 기 설정된 온도까지 감소되지 못하는 문제가 발생하게 된다.
또한 비교예3은 곡물저장통(31) 내부의 온도가 16℃에서 더 이상 감소되지 못하게 되어 실시예3보다 곡물저장통(31) 내부의 온도가 더 높은 상태가 된다.
이러한 비교예3은 충진부(246) 내부에 충진된 공기가 단열재 역할을 함으로써 냉각관체(44)의 냉각속도 및 냉각효율이 감소하여 곡물저장통(31) 내부의 온도가 기 설정된 온도까지 감소되지 못하는 문제가 발생하게 된다.
이로 인해 제2 냉각부(240)는 충진부(246) 내부에 냉각보조물질이 충진될 경우, 설정온도까지 냉각이 되지만, 소금만 충진되어 있거나, 공기가 충진되어 있을 경우에는 기 설정된 온도까지 냉각되지 못하는 것을 확인할 수 있다.
즉, 제2 냉각부(240)는 실시예2와 같이 충진부(246)의 내부에 냉각보조물질이 충진될 경우, 내부에 소금이 충진되었을 때(실시예3) 또는 공기(비교예3)가 충진되었을 때보다 냉각효율이 증가하게 된다.
다음의 [표 3]는 외부의 온도가 25℃이고, 냉각온도가 5℃로 설정한 상태에서 냉각보조물질 내에 투입된 아세트산의 함유량이 변화되었을 때, 곡물저장통(31) 내부의 온도를 측정한 값이다.
이때 냉각보조물질은 아세트산의 함유량이 변화하여도 물과 소금의 비율은 동일하도록 이루어진다.
0h 4h 8h 12h 16h 20h 24h 28h 32h 36h
실시예4 25.0 21.9 19.0 16.2 13.6 11.0 8.2 5.0 5.0 5.0
비교예4 25.0 22.2 19.5 17.0 14.6 12.3 10.0 10.0 9.9 10.0
비교예5 25.0 22.7 20.7 18.9 17.1 15.3 13.9 12.7 12.0 12.0
* 단위는 ℃임.
이때 충진부(246)의 내부공간은 600mL이다.
실시예4는 아세트산의 함유량이 10 중량%인 냉각보조물질이 충진부(246)의 내부에 충진된 곡물냉장고이다.
비교예4는 아세트산의 함유량 4 중량%인 냉각보조물질이 충진부(246)의 내부에 충진된 곡물냉장고이다.
비교예5는 아세트산의 함유량이 15 중량%인 냉각보조물질이 충진부(246)의 내부에 충진된 곡물냉장고이다.
표 3을 참조하여 실시예4을 살펴보면, 실시예4는 곡물저장통(31) 내부의 온도가 지속적으로 감소하게 되며, 24시간 내지 28시간이 경과할 때 설정온도인 5℃에 도달하게 되며 온도가 유지된다.
반면에 비교예4는 곡물저장통(31) 내부의 온도가 지속적으로 감소하게 되되, 20시간 내지 24시간이 경과할 때 10℃에 도달하게 되며 온도가 유지된다.
또한 비교예5는 곡물저장통(31) 내부의 온도가 지속적으로 감소하게 되되, 28시간 내지 32시간이 경과할 때, 12℃에 도달하게 되며 온도가 유지된다.
이러한 실시예4는 충진부(246)의 내부에 아세트산의 함유량이 10 중량%인 냉각보조물질이 충진되었을 때, 아세트산의 함유량이 4 중량%인 비교예4와 아세트산의 함유량이 15 중량%인 비교예5와 비교하였을 때, 곡물저장통(31)의 최종 냉각온도가 더 낮다는 것을 확일할 수 있다.
또한 비교예4는 곡물저장통(31)의 냉각속도가 실시예4보다 느리며, 내부의 온도가 10℃에서 더 이상 감소되지 못하는 것을 확인할 수 있다.
이러한 비교예4는 충진부(246) 내부에 충진되는 냉각보조물질 내부에 포함되는 아세트산의 양이 실시예4의 냉각보조물질보다 감소하였기 때문에 냉각보조물질의 열용량이 감소하게 되어 외부 온도의 영향을 더 많이 받기 때문에 외부 온도가 높을 경우 곡물저장통(31) 내부의 온도를 기 설정된 온도까지 냉각하지 못하는 문제가 발생하게 된다.
또한 비교예5는 충진부(246) 내부에 충진되는 냉각보조물질 내부에 포함되는 아세트산의 양이 실시예4의 냉각보조물질보다 증가하였기 때문에 냉각보조물질의 열용량이 증가하여 동일한 효율의 펠티어소자(2411)를 사용하게 될 경우, 기 설정된 온도까지 감소시키지 못하게 되는 문제가 발생하게 된다.
이로 인해 제2 냉각부(240)는 충진부(246)의 내부에 충진되는 냉각보조물질의 아세트산의 함유량이 일정 수치 이상으로 감소되거나 증가하였을 때, 냉각효율이 감소되는 것을 확인할 수 있다.
다음의 [표 4]는 외부의 온도가 25℃이고, 냉각온도가 5℃로 설정한 상태에서 냉각보조물질 내에 투입된 소금의 함유량을 변화하였을 때, 곡물저장통(31) 내부의 온도를 측정한 값이다.
이때 냉각보조물질은 소금의 함유량이 변화하여도 물과 아세트산의 비율은 일정하게 유지되도록 한다.
0h 4h 8h 12h 16h 20h 24h 28h 32h 36h
실시예5 25.0 21.9 19.0 16.2 13.6 11.0 8.2 5.0 5.0 5.0
비교예6 25.0 22.4 19.7 17.3 14.8 12.6 10.6 9.4 9.0 9.0
비교예7 25.0 22.8 20.6 18.3 16.3 14.4 12.7 11.2 11.0 11.0
* 단위는 ℃임.
이때 충진부(246)의 내부공간은 600mL이다.
실시예5는 소금의 함유량이 45 중량%인 냉각보조물질이 충진부(246)의 내부에 충진된 곡물냉장고이다.
비교예6은 소금의 함유량이 30 중량%인 냉각보조물질이 충진부(246)의 내부에 충진된 곡물냉장고이다.
비교예7은 소금의 함유량이 60 중량%인 냉각보조물질이 충진부(246)의 내부에 충진된 곡물냉장고이다.
표 4를 참조하여 실시예4를 살펴보면, 실시예5는 곡물저장통(31) 내부의 온도가 지속적으로 감소하게 되며, 24시간 내지 28시간이 경과할 때 설정온도인 5℃에 도달하게 되며 온도가 유지된다.
반면에 비교예6은 곡물저장통(31) 내부의 온도가 지속적으로 감소되되, 28시간 내지 32시간이 경과할 때, 9℃에 도달하게 되며 온도가 유지된다.
또한 비교예7은 곡물저장통(31) 내부의 온도가 지속적으로 감소되되, 20시간 내지 24시간이 경과할 때, 11℃에 도달하게 되며 온도가 유지된다.
이러한 실시예5는 충진부(246) 내부에 소금의 함유량이 45중량%인 냉각보조물질이 충진되었을 때, 소금의 함유량이 30 중량%인 비교예6 및 소금의 함유량이 60중량%인 비교예7과 비교하였을 때, 곡물저장통(31)의 최종 냉각온도가 더 낮다는 것을 확인할 수 있다.
또한 비교예6은 곡물저장통(31)의 냉각속도가 실시예5보다 느리며, 내부의 온도가 9℃에서 더 이상 감소되지 못하는 것을 확인할 수 있다.
이러한 비교예6은 냉각보조물질의 소금의 함유량이 감소되어 석출되는 소금의 양이 감소하게 됨으로써 열용량이 감소하여 실시예6보다 냉각속도 및 최대 냉각온도가 감소하게 되는 문제가 발생하게 된다.
또한 비교예7은 곡물저장통(31) 내부의 온도가 9℃에서 더 이상 감소되지 못하는 것을 확인할 수 있다.
이러한 비교예7은 냉각보조물질의 소금의 함유량이 증가함에 따라 석출되는 소금의 양이 증가하게 되며, 석출된 소금에 의해 열용량이 증가하기 때문에 냉각속도가 증가되되, 최대 냉각온도가 감소하게 되는 문제가 발생하게 된다.
이로 인해 제2 냉각부(240)는 충진부(246)의 내부에 충진되는 냉각보조물질의 소금 함유량이 일정 수치 이상으로 감소되거나 증가하였을 때, 냉각효율이 감소되는 것을 확인할 수 있다.
이와 같은 실험의 결과로서, 냉각보조물질은 6 ~ 12 중량%와, 소금 40 ~ 50 중량%와, 물 40 ~ 50 중량%로 이루어질 때 냉각효율이 가장 크게 증가되는 것을 확인하였다.
이와 같이 구성되는 곡물냉장고(1)는 충진부(246) 내부에 냉각보조물질이 충진됨으로써 냉각부(4)의 냉각효율이 증가되어 외부의 온도가 높은 환경에서도 설정온도까지 곡물저장통(31) 내부의 온도를 감소시킬 수 있다.

Claims (11)

  1. 상부가 개구된 함체 형상의 케이스, 상기 케이스의 내부에 설치되며 곡물이 저장되는 곡물저장부 및 상기 곡물을 냉각시켜주는 냉각부로 이루어진 곡물냉장고 있어서:
    상기 냉각부는
    상부가 상기 곡물저장부의 하면을 관통하여 상기 곡물저장부 내로 돌출 설치되고, 하부가 상기 곡물 저장부의 하면 외측에 위치하는 냉각봉;
    상기 냉각봉의 하면에 일면이 접촉되어 상기 냉각봉을 냉각시키는 냉각수단;
    상기 냉각수단의 타면에 접촉되어 상기 냉각수단으로부터 발생한 열을 외부로 방출하는 방열판 구조체;
    상부가 폐쇄된 원형 관 형상으로 형성되며, 내경이 상기 냉각봉의 외경보다 크게 형성되어 조립 시, 상기 냉각봉을 감싸도록 설치되는 냉각관체;
    상기 냉각봉과 상기 냉각관체 사이에 형성된 내부공간에 충진되는 냉각보조물질을 포함하는 것을 특징으로 하는 곡물냉장고.
  2. 제1항에 있어서, 상기 냉각봉의 외주면에는
    깔대기 형상으로 형성되어 상기 냉각봉의 하단부와 인접한 부분에 경사지게 설치되되, 내측테두리가 상기 냉각봉의 외주면과 연결되도록 설치되며, 높이가 가장 낮은 위치에 수분이 배출되는 물배출구가 형성되는 물받이판이 설치되고,
    상기 방열판 구조체는
    평판 형상으로 형성되되, 상기 물배출구와 대응되는 위치에 상하면을 관통하는 물배출공이 형성되는 방열프레임;
    평판 형상으로 형성되며, 상기 방열프레임의 하면에 수직하게 설치되는 방열판들을 포함하고,
    상기 냉각부는
    상기 냉각봉과 상기 냉각관체 사이에 형성된 공간 내에서 생성된 수분이 상기 물받이판의 물배출구와 상기 물배출공을 통해 외부로 배출되는 것을 특징으로 하는 곡물냉장고.
  3. 제2항에 있어서, 상기 물배출구는
    하단부에 설치되는 개폐문;
    내주면에 서로 이격되게 설치되는 전극들을 포함하고,
    상기 개폐문은
    평시에는 폐쇄되어 상기 방열판 구조체의 열기가 상기 내부공간 내로 유입되는 것을 방지하되, 상기 물배출구 내에 수분이 일정량 이상 모이게 될 경우에는 전극들이 수분에 의해 통전되어 상기 개폐문을 개방시키는 것을 특징으로 하는 곡물냉장고.
  4. 제3항에 있어서, 상기 곡물저장부는
    상부가 개구되되, 하부면이 경사지게 형성되는 함체 형상으로 형성되며, 하부면에 곡물배출구가 형성되는 곡물저장통;
    일단이 폐쇄된 원형 관 형상으로 형성되며, 외주면과 내주면을 관통하는 제1 개구부와 제2 개구부가 길이방향으로 형성되되, 서로 대향되게 형성되며, 상기 제1 개구부가 상기 곡물배출구와 연통되도록 상기 곡물저장통의 하부에 설치되는 회전통 하우징;
    양단이 폐쇄된 원형 관 형상으로 형성되되, 내외주면을 관통하는 제3 개구부가 길이방향으로 형성되어 상기 회전통 하우징 내부에 회전 가능하게 설치되는 회전통을 포함하고,
    상기 회전통은
    상기 제3 개구부가 상기 회전통 하우징의 제1 개구부를 향하도록 설치되었을 때, 상기 곡물저장통의 곡물이 내부로 유입되며, 상기 제3 개구부가 상기 회전통 하우징의 제2 개구부를 향하도록 회전되었을 때, 상기 제1 개구부가 폐쇄되어 곡물의 유입이 중단되되, 상기 제2 개구부를 통해 내부의 곡물이 상기 곡물배출통으로 배출되는 것을 특징으로 하는 곡물냉장고.
  5. 제4항에 있어서, 상기 회전통은
    외주면에 걸림턱이 연결되며, 설치 시 상기 걸림턱이 상기 회전통 하우징의 제2 개구부 내부에 위치하여 회전각도가 제한되는 것을 특징으로 하는 곡물냉장고.
  6. 제5항에 있어서, 상기 곡물저장부의 하부에는
    상기 곡물저장부로부터 돌출된 상기 냉각관체를 감싸도록 단열블록이 설치되는 것을 특징으로 하는 곡물냉장고.
  7. 제1항에 있어서, 상기 냉각보조물질은
    가열공정을 통해 내부에 함유된 수분이 제거된 구운 소금인 것을 특징으로 하는 곡물냉장고.
  8. 제1항에 있어서, 상기 냉각보조물질은
    아세트산 6 내지 12 중량%와, 소금 40 내지 50 중량%와, 물 40 내지 50 중량%로 혼합되어 제조되는 것을 특징으로 하는 곡물냉장고.
  9. 제1항, 제8항 및 제9항 중 어느 한 항에 있어서, 상기 곡물냉장고의 외벽들 내부에는 냉각보조물질이 충진되는 것을 특징으로 하는 곡물냉장고.
  10. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 냉각관체는 황토재질로 헝성되되, 제작 시 내부에 소금이 첨가되는 것읕 특징으로 하는 곡물 냉장고.
  11. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 냉각관체는 내외주면에 소금이 도금되는 것을 특징으로 하는 곡물 냉장고.
PCT/KR2021/001958 2020-02-17 2021-02-16 냉각보조물질이 충진되어 냉각효율이 향상된 곡물냉장고 WO2021167316A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020200019090A KR102303538B1 (ko) 2020-02-17 2020-02-17 곡물냉장고
KR10-2020-0019090 2020-02-17
KR10-2020-0057770 2020-05-14
KR1020200057770A KR102383867B1 (ko) 2020-05-14 2020-05-14 곡물냉장고
KR10-2020-0100210 2020-08-11
KR1020200100210A KR102596672B1 (ko) 2020-08-11 2020-08-11 냉각보조물질이 충진되어 냉각효율이 향상된 곡물냉장고

Publications (1)

Publication Number Publication Date
WO2021167316A1 true WO2021167316A1 (ko) 2021-08-26

Family

ID=77391024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001958 WO2021167316A1 (ko) 2020-02-17 2021-02-16 냉각보조물질이 충진되어 냉각효율이 향상된 곡물냉장고

Country Status (1)

Country Link
WO (1) WO2021167316A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792307B2 (ja) * 1989-09-11 1995-10-09 三菱電機株式会社 氷蓄熱装置
JP2003052542A (ja) * 2001-08-08 2003-02-25 Matsushita Electric Ind Co Ltd 電気湯沸かし器
KR200354647Y1 (ko) * 2004-04-14 2004-07-05 이두희 곡물 및 김치 보관용기
KR20080064052A (ko) * 2007-01-03 2008-07-08 엘지전자 주식회사 냉장고
KR20140008740A (ko) * 2012-07-11 2014-01-22 박성철 곡물냉장고
KR20160135539A (ko) * 2015-05-18 2016-11-28 주식회사 경동냉열산업 냉동고용 쿨러장치와 그것에 설치되는 냉동고용 댐퍼

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792307B2 (ja) * 1989-09-11 1995-10-09 三菱電機株式会社 氷蓄熱装置
JP2003052542A (ja) * 2001-08-08 2003-02-25 Matsushita Electric Ind Co Ltd 電気湯沸かし器
KR200354647Y1 (ko) * 2004-04-14 2004-07-05 이두희 곡물 및 김치 보관용기
KR20080064052A (ko) * 2007-01-03 2008-07-08 엘지전자 주식회사 냉장고
KR20140008740A (ko) * 2012-07-11 2014-01-22 박성철 곡물냉장고
KR20160135539A (ko) * 2015-05-18 2016-11-28 주식회사 경동냉열산업 냉동고용 쿨러장치와 그것에 설치되는 냉동고용 댐퍼

Similar Documents

Publication Publication Date Title
WO2017082591A1 (en) Defrosting device and refrigerator having the same
WO2017039234A1 (en) Refrigerator
WO2018143699A1 (ko) 냉온장고
WO2019203566A1 (en) Laundry treating apparatus and a control method of the same
WO2011081499A2 (en) Refrigerator and control method thereof
WO2019190113A1 (ko) 냉장고 및 그 제어방법
WO2010008211A2 (ko) 배치식 열처리 장치 및 이에 적용되는 히터
WO2021167316A1 (ko) 냉각보조물질이 충진되어 냉각효율이 향상된 곡물냉장고
WO2016099107A1 (ko) 제상장치를 구비한 냉장고
WO2020130620A1 (en) Drain hose assembly and refrigerator including the same
WO2017164711A1 (ko) 냉장고의 제어방법
EP2494287A2 (en) Ice maker for refrigerator and refrigerator having the same
WO2021145663A1 (ko) 전장소자의 방열장치
WO2021045376A1 (ko) 배터리 팩, 이를 포함하는 배터리 랙 및 전력 저장 장치
WO2016129880A1 (en) Air conditioner
WO2018216858A1 (ko) 제상 장치 및 이를 구비하는 냉장고
WO2019164115A1 (en) Refrigerator and controlling method for the same
AU2016316427B2 (en) Refrigerator
WO2021154044A1 (ko) 진공펌프가 필요 없는 진공건조기
WO2023080353A1 (ko) 온습도 제어를 통한 열풍 건조 방식의 농산물 건조 시스템
WO2022114717A1 (ko) 냉각효율이 증가된 냉각장치
WO2019151650A1 (en) Cold-water supply system, drinking-water supply apparatus including the system, and method for controlling the system
FR2740540A1 (fr) Procede pour deshumidifier l'air dans une enceinte confinee, et dispositifs de deshumidification correspondants
RU2091676C1 (ru) Термоэлектрический холодильник
WO2020197210A1 (ko) 냉장고

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756345

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21756345

Country of ref document: EP

Kind code of ref document: A1