WO2021167222A1 - 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2021167222A1
WO2021167222A1 PCT/KR2020/018687 KR2020018687W WO2021167222A1 WO 2021167222 A1 WO2021167222 A1 WO 2021167222A1 KR 2020018687 W KR2020018687 W KR 2020018687W WO 2021167222 A1 WO2021167222 A1 WO 2021167222A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
compound
unsubstituted
formula
Prior art date
Application number
PCT/KR2020/018687
Other languages
English (en)
French (fr)
Inventor
윤정민
홍성길
허동욱
한미연
이재탁
윤희경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080086918.6A priority Critical patent/CN114846011A/zh
Priority to US17/784,423 priority patent/US20230053612A1/en
Publication of WO2021167222A1 publication Critical patent/WO2021167222A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present specification relates to a heterocyclic compound and an organic light emitting device including the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon generally has a structure including an anode and a cathode and an organic material layer therebetween.
  • the organic material layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Patent Document 1 Patent Publication No. 10-2013-0135162
  • An object of the present specification is to provide a heterocyclic compound and an organic light emitting device including the same.
  • the present specification provides a heterocyclic compound represented by the following formula (1).
  • At least 2 or more of X1 to X3 are N, the rest are CH,
  • R1 is a substituted or unsubstituted alkyl group
  • L1 to L4 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group,
  • n1 to n4 are integers from 0 to 4,
  • Ar1 to Ar3 are the same as or different from each other, and each independently a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • n1 is an integer from 0 to 3
  • n1 to n4 and m1 are each 2 or more, the substituents in parentheses are the same or different from each other,
  • A1 is represented by the following formula 1-1,
  • Y1 and Y2 are each hydrogen; or deuterium, directly bonded to each other, or -C(R31)(R32)-; -Si(R33)(R34)-; -N(R35)-; -O-; or connected through -S-,
  • any one of R11 to R26 is connected to L1 of Formula 1, the other is connected to L4 of Formula 1, the rest are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • R31 to R35 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
  • the present specification is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one organic material layer includes the heterocyclic compound represented by Formula 1 above.
  • the compound according to an exemplary embodiment of the present specification may be used in an organic light emitting device, may lower the driving voltage of the organic light emitting device, and may improve light efficiency.
  • the lifespan characteristics of the device can be improved by the thermal stability of the compound.
  • 1 and 2 show an example of an organic light emitting device according to an exemplary embodiment of the present specification.
  • the compound represented by Formula 1 may include pyridine substituted with an alkyl group (R1), thereby increasing the lifespan and efficiency of the device and lowering the voltage. Specifically, since it has an electron depletion structure of pyridine and can increase the dipole moment of the molecule, it is possible to smoothly control the electron mobility when manufacturing an organic light emitting device containing the compound, thereby improving the efficiency and lifespan of the organic light emitting device. can In addition, by introducing a pyridine having an alkyl group as compared to a pyridine not including an alkyl group, the electron balance in the device is adjusted to suit the characteristics of each device, so that it can have advantages of high efficiency and low voltage characteristics. When the compound of Formula 1 is used as the material for the electron transport layer or the electron injection layer, the long life characteristics of the organic light emitting device are improved due to the increase of the dipole moment in the molecule.
  • R1 alkyl group
  • Cn means n carbon atoms.
  • Cn-Cm means “n to m carbon atoms”.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, a position where the substituent is substitutable, is not limited, and when two or more are substituted , two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted refers to deuterium; halogen group; cyano group; an alkyl group; aryl group; And it is substituted with one or two or more substituents selected from the group consisting of a heteroaryl group containing one or more heteroatoms other than carbon, or is substituted with a substituent to which two or more substituents of the above exemplified substituents are linked, or does not have any substituents means that
  • substituents are connected means that the hydrogen of any one substituent is connected with another substituent.
  • an isopropyl group and a phenyl group are linked or can be a substituent of
  • the three substituents are connected not only to (substituent 1)-(substituent 2)-(substituent 3) being continuously connected, but also (substituent 1) to (substituent 2) and (substituent 3) It also includes connecting.
  • two phenyl groups and an isopropyl group are linked or can be a substituent of The same applies to those in which 4 or more substituents are connected.
  • examples of the halogen group include fluorine, chlorine, bromine, or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but 1 to 30; 1 to 20; 1 to 10; Or 1 to 5 are preferable.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, t-butyl, sec-butyl, 1-methylbutyl, 1-ethylbutyl, pentyl, n-pentyl, iso Pentyl, neopentyl, t-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, 1-methylhexyl, cyclopentyl Methyl, cyclohexylmethyl, octyl
  • the aryl group means a monovalent group of a monovalent aromatic hydrocarbon or an aromatic hydrocarbon derivative.
  • the aromatic hydrocarbon refers to a compound in which the pi electrons are completely conjugated and includes a planar ring
  • the group derived from the aromatic hydrocarbon refers to a structure in which an aromatic hydrocarbon or a cyclic aliphatic hydrocarbon is condensed with an aromatic hydrocarbon.
  • the aryl group is intended to include a monovalent group in which two or more aromatic hydrocarbons or derivatives of aromatic hydrocarbons are connected to each other.
  • the aryl group is not particularly limited, but has 6 to 50 carbon atoms; 6 to 30; 6 to 25; 6 to 20; 6 to 18; Or it is preferably 6 to 13, and the aryl group may be monocyclic or polycyclic.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, and the like, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a triphenyl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and adjacent substituents may combine with each other to form a ring.
  • the substituted fluorenyl group includes all compounds in which the substituents of the pentacyclic ring of fluorene are spiro-bonded with each other to form an aromatic hydrocarbon ring.
  • the substituted fluorenyl group includes 9,9'-spirobifluorene, spiro[cyclopentane-1,9'-fluorene], spiro[benzo[c]fluorene-7,9-fluorene], etc.
  • the present invention is not limited thereto.
  • the heterocyclic group includes atoms other than carbon and one or more heteroatoms, and specifically, the heterocyclic group may include one or more atoms selected from the group consisting of O, N, Si and S.
  • the number of carbon atoms is not particularly limited, 2 to 50 carbon atoms; 2 to 30; 2 to 20; 2 to 18; Or it is preferable that it is 2-13.
  • heterocyclic group examples include a thiophene group, a furanyl group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a pyridine group, a bipyridine group, a pyrimidine group, a triazine group, a triazole group, an acridine group.
  • pyridazine group pyrazine group, quinoline group, quinazoline group, quinoxaline group, phthalazine group, pyridopyrimidine group, pyridopyrazine group, pyrazino pyrazine group, isoquinoline group, indole group, carbazole group, benzoxa Zol group, benzimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuran group, phenanthroline group, thiazole group, isoxazole group, oxadiazole group, thia diazole group, benzothiazole group, phenothiazine group, dibenzofuran group, dihydrophenothiazine group, dihydrobenzoisoquinoline group, chromene group, and the like, but is not limited thereto.
  • the heterocyclic group may be monocyclic or polycyclic, and may be aromatic, aliphatic, or a condensed ring of aromatic and aliphatic, and may be selected from examples of the heterocyclic group.
  • the heteroaryl group refers to a monovalent aromatic heterocycle.
  • the aromatic heterocyclic ring is a monovalent group of an aromatic ring or a derivative of an aromatic ring, and refers to a group including at least one of O, N, Si and S as heteroatoms in the ring.
  • the derivative of the aromatic ring includes all structures in which an aromatic ring or an aliphatic ring is condensed on an aromatic ring.
  • the heteroaryl group is intended to include a monovalent group in which an aromatic ring containing two or more heteroatoms or a derivative of an aromatic ring containing heteroatoms is connected to each other. the heteroaryl group having 2 to 50 carbon atoms; 2 to 30; 2 to 20; 2 to 18; Or it is preferable that it is 2-13.
  • the arylene group means that the aryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the aryl group described above may be applied.
  • the heteroarylene group means that the heteroaryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the heteroaryl group described above may be applied.
  • At least two or more of X1 to X3 are N, and the rest are CH.
  • X1 and X2 are N, and X3 is CH.
  • X1 and X3 are N, and X2 is CH.
  • X2 and X3 are N, and X2 is CH.
  • X1 to X3 are each N.
  • R1 is a substituted or unsubstituted C1-C20 alkyl group.
  • R1 is a substituted or unsubstituted C1-C10 alkyl group.
  • R1 is a C1-C10 alkyl group.
  • R1 is a C1-C6 alkyl group.
  • R1 is a methyl group; ethyl group; Profile group; isopropyl group; butyl group; or a tert-butyl group.
  • L1 to L4 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group.
  • L1 to L4 are the same as or different from each other, and each independently a direct bond; or a substituted or unsubstituted arylene group.
  • L1 to L4 are the same as or different from each other, and each independently a direct bond; or a substituted or unsubstituted C6-C60 arylene group.
  • L1 to L4 are the same as or different from each other, and each independently a direct bond; or a substituted or unsubstituted C6-C30 arylene group.
  • L1 to L4 are the same as or different from each other, and each independently a direct bond; or a C6-C20 arylene group.
  • L1 to L4 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted phenylene group; a substituted or unsubstituted biphenylene group; a substituted or unsubstituted terphenylene group; or a substituted or unsubstituted naphthylene group.
  • L1 to L4 are the same as or different from each other, and each independently a direct bond; phenylene group; or a biphenylene group.
  • L1 is a direct bond
  • L2 and L3 are the same as or different from each other, and each independently a direct bond; or a substituted or unsubstituted C6-C30 arylene group.
  • L2 and L3 are the same as or different from each other, and each independently a direct bond; or a C6-C20 arylene group.
  • L2 and L3 are the same as or different from each other, and each independently a direct bond; a substituted or unsubstituted phenylene group; Or a substituted or unsubstituted biphenylene group.
  • L2 and L3 are the same as or different from each other, and each independently a direct bond; or a phenylene group.
  • L4 is a direct bond; or a substituted or unsubstituted C6-C30 arylene group.
  • L4 is a direct bond; or a C6-C20 arylene group.
  • L4 is a direct bond; a substituted or unsubstituted phenylene group; Or a substituted or unsubstituted biphenylene group.
  • L4 is a direct bond; phenylene group; or a biphenylene group.
  • L1 to L4 are the same as or different from each other, and are each independently selected from a direct bond or the following structure.
  • n1 to n4 are integers from 0 to 4.
  • n1 is 2 or more
  • a plurality of L1s are the same as or different from each other.
  • n2 is 2 or more
  • a plurality of L2s are the same as or different from each other.
  • n3 is 2 or more
  • a plurality of L3s are the same as or different from each other.
  • n4 is 2 or more
  • a plurality of L4s are the same as or different from each other.
  • n1 to n4 are integers of 0 to 2.
  • n1 is 0.
  • n4 is 0 or 1.
  • n1 + n4 is 1 or more.
  • L1 and L4 are not directly bonded at the same time.
  • n1 + n4 is 2 or more.
  • n2 and n3 are 0 or 1.
  • n2 and n3 are 0.
  • Ar1 to Ar3 are the same as or different from each other, and each independently a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
  • Ar1 to Ar3 are the same as or different from each other, and each independently a substituted or unsubstituted C1-C20 alkyl group; or a substituted or unsubstituted C6-C60 aryl group.
  • Ar1 to Ar3 are the same as or different from each other, and each independently a substituted or unsubstituted C1-C10 alkyl group; or a substituted or unsubstituted C6-C30 aryl group.
  • Ar1 to Ar3 are the same as or different from each other, and each independently a C1-C6 alkyl group; or a C6-C20 aryl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represent a substituted or unsubstituted C6-C30 aryl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represent a C6-C20 aryl group unsubstituted or substituted with a C1-C6 alkyl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represent a C6-C20 aryl group.
  • Ar3 is a substituted or unsubstituted C1-C10 alkyl group; or a substituted or unsubstituted C6-C30 aryl group.
  • Ar3 is a C1-C6 alkyl group; or a C6-C20 aryl group.
  • Ar1 to Ar3 are the same as or different from each other, and each independently a substituted or unsubstituted methyl group; a substituted or unsubstituted ethyl group; a substituted or unsubstituted propyl group; a substituted or unsubstituted isopropyl group; a substituted or unsubstituted butyl group; a substituted or unsubstituted tert-butyl group; a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; or a substituted or unsubstituted naphthyl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; or a substituted or unsubstituted naphthyl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently a phenyl group unsubstituted or substituted with a methyl group; biphenyl group; or a naphthyl group.
  • Ar3 is a substituted or unsubstituted methyl group; a substituted or unsubstituted ethyl group; a substituted or unsubstituted propyl group; a substituted or unsubstituted isopropyl group; a substituted or unsubstituted butyl group; a substituted or unsubstituted tert-butyl group; a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; or a substituted or unsubstituted naphthyl group.
  • Ar3 is a substituted or unsubstituted methyl group; a substituted or unsubstituted isopropyl group; a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; or a substituted or unsubstituted naphthyl group.
  • Ar3 is a methyl group; or a phenyl group.
  • Ar3 is a methyl group.
  • m1 is an integer of 0 to 3, and when 2 or more, a plurality of Ar3 are the same or different from each other.
  • m1 is an integer of 0 to 2.
  • m1 is 0 or 1.
  • A1 is represented by the following Chemical Formula 1-1.
  • Y1 and Y2 are each hydrogen; or deuterium, directly bonded to each other, or -C(R31)(R32)-; -Si(R33)(R34)-; -N(R35)-; -O-; or connected through -S-,
  • any one of R11 to R26 is connected to L1 of Formula 1, the other is connected to L4 of Formula 1, the rest are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • R31 to R35 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
  • Y1 and Y2 are each hydrogen; or deuterium, or directly bonded to each other, -O-; or via -S-.
  • Y1 and Y2 are each hydrogen or deuterium.
  • Y1 and Y2 are directly bonded to each other, or -O-; or via -S-.
  • the remainder not connected to the formulas L1 and L4 among R11 to R26 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; a substituted or unsubstituted C1-C10 alkyl group; a substituted or unsubstituted C6-C30 aryl group; or a substituted or unsubstituted C2-C30 heteroaryl group.
  • the remainder not connected to the formulas L1 and L4 among R11 to R26 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a C6-C20 aryl group.
  • the remainder not connected to the formulas L1 and L4 among R11 to R26 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a phenyl group.
  • the remainder not connected to the formulas L1 and L4 among R11 to R26 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • R31 to R35 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; a substituted or unsubstituted C1-C10 alkyl group; a substituted or unsubstituted C6-C30 aryl group; or a substituted or unsubstituted C2-C30 heteroaryl group.
  • R31 to R35 are the same as or different from each other, and each independently a methyl group; or a phenyl group.
  • R11 is connected to L1 of Formula 1 above.
  • R12 is connected to L1 in Formula 1 above.
  • R13 is connected to L1 in Formula 1 above.
  • R14 is connected to L1 of Formula 1 above.
  • R15 is connected to L1 of Formula 1 above.
  • R16 is connected to L1 of Formula 1 above.
  • R17 is connected to L1 of Formula 1 above.
  • R18 is connected to L1 of Formula 1 above.
  • R19 is connected to L1 of Formula 1 above.
  • R20 is connected to L1 in Formula 1 above.
  • R21 is connected to L1 of Formula 1 above.
  • R22 is connected to L1 in Formula 1 above.
  • R23 is connected to L1 of Formula 1 above.
  • R24 is connected to L1 in Formula 1 above.
  • R25 is connected to L1 of Formula 1 above.
  • R26 is connected to L1 of Formula 1 above.
  • R11 is connected to L4 of Formula 1 above.
  • R12 is connected to L4 in Formula 1 above.
  • R13 is connected to L4 in Formula 1 above.
  • R14 is connected to L4 in Formula 1 above.
  • R15 is connected to L4 in Formula 1 above.
  • R16 is connected to L4 in Formula 1 above.
  • R17 is connected to L4 in Formula 1 above.
  • R18 is connected to L4 of Formula 1 above.
  • R19 is connected to L4 in Formula 1 above.
  • R20 is connected to L4 in Formula 1 above.
  • R21 is connected to L4 in Formula 1 above.
  • R22 is connected to L4 in Formula 1 above.
  • R23 is connected to L4 in Formula 1 above.
  • R24 is connected to L4 in Formula 1 above.
  • R25 is connected to L4 in Formula 1 above.
  • R26 is connected to L4 in Formula 1 above.
  • Chemical Formula 1-1 is represented by any one of Chemical Formulas A11 to A13 below.
  • Y1 and Y2 are each hydrogen; or deuterium
  • G1 is C(R31)(R32); Si(R33)(R34); N(R35); O; or S;
  • R31 to R35 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
  • A1 is a divalent group selected from the following structures.
  • G1 is C(R31)(R32); Si(R33)(R34); N(R35); O; or S;
  • the structure is deuterium; cyano group; an alkyl group; aryl group; Or substituted or unsubstituted with a heteroaryl group,
  • the structure of A1 is deuterium; cyano group; C1-C10 alkyl group; C6-C30 aryl group; Or it is unsubstituted or substituted with a C2-C30 heteroaryl group.
  • the structure of A1 is unsubstituted or substituted with a C6-C20 aryl group.
  • the structure of A1 does not have any substituents.
  • R1 is a C1-C6 alkyl group
  • L1 to L4 are the same as or different from each other, and each independently a direct bond
  • Ar1 to Ar3 are the same as or different from each other, and each independently a C1-C6 alkyl group
  • Y1 and Y2 are each hydrogen; or deuterium, or directly bonded to each other, -O-; or -S-, and the remainder not connected to L1 and L4 in Formula 1 among R11 to R26 are the same or different from each other, and each independently hydrogen; or deuterium.
  • the heterocyclic compound represented by Formula 1 is any one selected from the following compounds.
  • the compound according to an exemplary embodiment of the present specification may be prepared by a manufacturing method described below. If necessary, a substituent may be added or excluded, and the position of the substituent may be changed. In addition, based on techniques known in the art, starting materials, reactants, reaction conditions, and the like can be changed.
  • the compound represented by Formula 1 may have a core structure as shown in Formula 1 below.
  • Substituents may be combined by methods known in the art, and the type, position or number of substituents may be changed according to techniques known in the art.
  • a substituent may be bonded as in the following general formula 1, but is not limited thereto.
  • X1 to X3, R1, L1 to L4, n1 to n4, Ar1 to Ar3, m1, Y1 and Y2 are as defined in Formula 1 above.
  • the reaction is a Suzuki coupling reaction, and is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • the present specification provides an organic light emitting device including the above-described compound.
  • the present specification includes a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Formula 1 above. do.
  • the 'layer' means compatible with the 'film' mainly used in the present technical field, and refers to a coating covering a desired area.
  • the size of the 'layers' is not limited, and each of the 'layers' may have the same size or different sizes. In one embodiment, the size of the 'layer' may be the same as the entire device, may correspond to the size of a specific functional area, and may be as small as a single sub-pixel.
  • the meaning that a specific material A is included in layer B means that i) one or more types of material A are included in one layer B, and ii) layer B is composed of one or more layers, and material A is multi-layered B. It includes everything included in one or more floors among the floors.
  • the meaning that a specific material A is included in the C layer or the D layer means i) is included in one or more of the one or more layers C, ii) is included in one or more of the one or more layers of the D layer, or iii ) means all of which are included in one or more C-layers and one or more D-layers, respectively.
  • the organic material layer of the organic light emitting device of the present specification may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • it may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron blocking layer, a hole blocking layer, and the like.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a heterocyclic compound represented by Formula 1 above.
  • the organic material layer includes an electron injection layer, an electron transport layer, an electron injection and transport layer or a hole blocking layer, and the electron injection layer, the electron transport layer, the electron injection and transport layer or the hole blocking layer is the formula Includes a heterocyclic compound represented by 1.
  • the electron injection layer, the electron transport layer, the electron injection and transport layer or the hole blocking layer includes one or more n-type dopants selected from alkali metals and alkaline earth metals.
  • the electron injection layer, the electron transport layer, the electron injection and transport layer, or the hole blocking layer including the compound represented by Formula 1 includes one or more n-type dopants selected from alkali metals and alkaline earth metals.
  • the organic alkali metal compound or the organic alkaline earth metal compound is used as the n-type dopant, it is possible to secure stability to holes from the light emitting layer, thereby improving the lifespan of the organic light emitting device.
  • the ratio of the organic alkali metal compound or the organic alkaline earth metal compound to the electron mobility of the electron transport layer it is possible to maximize the balance of holes and electrons in the light emitting layer, thereby increasing luminous efficiency.
  • LiQ is more preferable as the n-type dopant used in the electron injection layer, the electron transport layer, the electron injection and transport layer, or the hole blocking layer in the present specification.
  • the electron injection layer, the electron transport layer, the electron injection and transport layer, or the hole blocking layer may include the heterocyclic compound represented by Formula 1 and the n-type dopant in a weight ratio of 1:9 to 9:1.
  • the heterocyclic compound of Formula 1 and the n-type dopant may be included in an amount of 2:8 to 8:2, more preferably 3:7 to 7:3.
  • the organic light emitting device includes a hole injection layer and a hole transport layer. It further includes one or more layers selected from the group consisting of a light emitting layer, an electron transport layer, an electron injection layer, a hole blocking layer, and an electron blocking layer.
  • the organic light emitting device includes a first electrode; a second electrode provided to face the first electrode; a light emitting layer provided between the first electrode and the second electrode; and one or more organic material layers provided between the light emitting layer and the first electrode or between the light emitting layer and the second electrode.
  • the at least one organic material layer is a hole injection layer, a hole transport layer. It further includes at least one layer selected from the group consisting of a light emitting layer, an electron transport layer, an electron injection layer, a hole blocking layer, and an electron blocking layer.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the second electrode is a cathode, and the second electrode is an anode.
  • the organic light emitting device may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device may be an inverted type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • FIGS. 1 to 2 illustrate an organic light emitting device, but is not limited thereto.
  • FIG. 1 illustrates a structure of an organic light emitting device in which an anode 102, a light emitting layer 106, and a cathode 108 are sequentially stacked on a substrate 101. As shown in FIG. The compound represented by Formula 1 is included in the light emitting layer.
  • FIG. 2 shows an anode 102, a hole injection layer 103, a first hole transport layer 104, a second hole transport layer 105, a light emitting layer 106, an electron injection and transport layer 107 and a cathode on the substrate 101.
  • the structure of the organic light emitting device in which 108 is sequentially stacked is illustrated.
  • the compound represented by Formula 1 is included in the electron injection and transport layer 107 .
  • the organic light emitting device of the present specification may be manufactured using materials and methods known in the art, except that the light emitting layer includes the compound.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present specification may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode.
  • It can be prepared by forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate.
  • the manufacturing method is not limited thereto.
  • anode material a material having a large work function is generally preferable to facilitate hole injection into the organic material layer.
  • metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO:Al or SnO 2 : a combination of a metal such as Sb and an oxide;
  • Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • metals or alloys thereof such as, for example, magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead;
  • a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • the host material includes a condensed aromatic ring derivative or a compound containing a hetero ring.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like
  • heterocyclic-containing compounds include dibenzofuran derivatives, ladder-type furan compounds, and pyrimidine derivatives, but is not limited thereto.
  • an anthracene derivative substituted with deuterium may be used as a host material of the light emitting layer.
  • the dopant material examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamine group, and includes pyrene, anthracene, chrysene, periplanthene, and the like, having an arylamine group.
  • the styrylamine compound is a compound in which at least one arylvinyl group is substituted with a substituted or unsubstituted arylamine, and one or two or more selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamine group A substituent is substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the hole injection layer is a layer that receives holes from the electrode. It is preferable that the hole injecting material has the ability to transport holes and thus has a hole receiving effect from the anode and an excellent hole injecting effect for the light emitting layer or the light emitting material. In addition, a material having an excellent ability to prevent migration of excitons generated in the light emitting layer to the electron injection layer or the electron injection material is preferred. In addition, a material excellent in the ability to form a thin film is preferable. In addition, it is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material; hexanitrile hexaazatriphenylene-based organic substances; quinacridone-based organic substances; perylene-based organic materials;
  • polythiophene-based conductive polymers such as anthraquinone and polyaniline, but is not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports the holes to the light emitting layer.
  • the hole transport material is a material capable of receiving holes from the anode or the hole injection layer and transferring them to the light emitting layer, and a material having high hole mobility is preferable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
  • the hole transport layer may have a multilayer structure. For example, it may include a first hole transport layer and a second hole transport layer.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transport material is a material capable of well injecting electrons from the cathode and transferring them to the light emitting layer, and a material having high electron mobility is preferable. Specific examples include an Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material, as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function, followed by a layer of aluminum or silver. Specifically, there are cesium, barium, calcium, ytterbium, samarium, and the like, followed by an aluminum layer or a silver layer in each case.
  • the electron injection layer is a layer that receives electrons from the electrode. It is preferable that the electron injection material is excellent in the ability to transport electrons and has an electron receiving effect from the second electrode and an excellent electron injection effect to the light emitting layer or the light emitting material. In addition, a material that prevents excitons generated in the light emitting layer from moving to the hole injection layer and has excellent thin film formation ability is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, preorenylidene methane, anthrone, etc. derivatives thereof; metal complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, and bis(8-hydroxyquinolinato)manganese. , tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h ]quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato) (o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. , but is not limited thereto.
  • the electron injection and transport layer means a layer that simultaneously injects and transports electrons.
  • the electron blocking layer is a layer capable of improving the lifetime and efficiency of the device by preventing electrons injected from the electron injection layer from entering the hole injection layer through the emission layer.
  • a known material can be used without limitation, and may be formed between the light emitting layer and the hole injection layer or between the light emitting layer and the hole injection and transport layer.
  • the hole blocking layer is a layer that blocks the holes from reaching the cathode, and may be generally formed under the same conditions as the electron injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, aluminum complexes, and the like, but is not limited thereto.
  • the organic light emitting device may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1000 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • a hole injection layer was formed by thermal vacuum deposition of the following HI-A compound to a thickness of 600 ⁇ on the prepared ITO transparent electrode.
  • a first hole transport layer and a second hole transport layer were formed by sequentially vacuum-depositing 50 ⁇ of the HAT compound and 60 ⁇ of the HT-A compound on the hole injection layer.
  • the following BH compound and BD compound were vacuum-deposited at a weight ratio of 25:1 to a thickness of 200 ⁇ on the second hole transport layer to form a light emitting layer.
  • compound 1 prepared in Synthesis Example 1 and the following LiQ compound were vacuum-deposited at a weight ratio of 1:1 to form an electron injection and transport layer to a thickness of 350 ⁇ .
  • a cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 10 ⁇ and aluminum to a thickness of 1000 ⁇ on the electron injection and transport layer.
  • LiF lithium fluoride
  • the deposition rate of the organic material was maintained at 0.4 to 0.9 ⁇ /sec
  • the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 1 ⁇ 10.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compound of Table 1 was used instead of Compound 1.
  • the devices of Experimental Examples 1 to 20 including the compound of Formula 1 of the present invention have significantly superior low voltage and high efficiency characteristics.
  • the devices of Experimental Examples 1 to 20 including the compound of Formula 1 of the present invention have significantly superior low voltage, high efficiency, and long lifespan characteristics.
  • the devices of Experimental Examples 1 to 20 including the compound of Formula 1 of the present invention have significantly superior low voltage, high efficiency, and long lifespan characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.

Description

헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
본 명세서는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 출원은 2020년 2월 21일 한국특허청에 제출된 한국 특허 출원 제10-2020-0021366호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.
[선행기술문헌] (특허문헌 1) 공개특허공보 10-2013-0135162
본 명세서는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자를 제공하고자 한다.
본 명세서는 하기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020018687-appb-img-000001
상기 화학식 1에 있어서,
X1 내지 X3 중 적어도 2 이상은 N이고, 나머지는 CH이고,
R1은 치환 또는 비치환된 알킬기이고,
L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이고,
n1 내지 n4는 0 내지 4의 정수이고,
Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
m1은 0 내지 3의 정수이고,
n1 내지 n4 및 m1이 각각 2 이상인 경우 괄호 내의 치환기는 서로 동일하거나 상이하고,
A1은 하기 화학식 1-1로 표시되며,
[화학식 1-1]
Figure PCTKR2020018687-appb-img-000002
상기 화학식 1-1에 있어서,
Y1 및 Y2는 각각 수소; 또는 중수소이거나, 서로 직접결합하거나, -C(R31)(R32)-; -Si(R33)(R34)-; -N(R35)-; -O-; 또는 -S-을 통하여 연결되고,
R11 내지 R26 중 어느 하나는 상기 화학식 1의 L1에 연결되고, 다른 하나는 상기 화학식 1의 L4에 연결되고, 나머지는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
R31 내지 R35는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
또한, 본 명세서는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 따른 화합물은 유기 발광 소자에 사용되어, 유기 발광 소자의 구동전압을 낮출 수 있으며, 광효율을 향상시킬 수 있다. 또한, 화합물의 열적 안정성에 의하여 소자의 수명 특성을 향상시킬 수 있다.
도 1 및 도 2은 본 명세서의 일 실시상태에 따른 유기 발광 소자의 예를 도시한 것이다.
[부호의 설명]
101: 기판
102: 양극
103: 정공 주입층
104: 제1 정공 수송층
105: 제2 정공 수송층
106: 발광층
107: 전자 주입 및 수송층
108: 음극
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
상기 화학식 1로 표시되는 화합물은 알킬기(R1)로 치환된 피리딘을 포함함으로써, 소자의 수명 및 효율을 상승시키고 전압을 낮출수 있다. 구체적으로, 전자 공핍 구조인 피리딘을 가져 분자의 극성(dipole moment)을 높일 수 있기 때문에 화합물을 포함하는 유기 발광 소자의 제작 시 전자 이동도를 원할히 조절하여, 유기 발광 소자의 효율 및 수명을 향상 시킬 수 있다. 또한 알킬기를 포함하지 않은 피리딘에 비해 또한 알킬기를 가지는 피리딘을 도입함으로써 소자에서의 전자 균형을 각 소자 특성에 맞게 하게 조절하여 높은 효율과 저전압 특성의 장점을 가질 수 있게 한다. 상기 화학식 1의 화합물을 전자 수송층 또는 전자 주입층 물질로 사용할 때, 분자 내 쌍극자 모멘트의 증가로 인하여, 유기 발광 소자의 장수명 특성이 향상된다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서,
Figure PCTKR2020018687-appb-img-000003
은 연결되는 부위를 의미한다.
본 명세서에 있어서, Cn은 탄소수 n개를 의미한다.
본 명세서에 있어서, “Cn-Cm”은 “탄소수 n 내지 m개”를 의미한다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 알킬기; 아릴기; 및 탄소가 아닌 이종 원자 중 1개 이상을 포함하는 헤테로아릴기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
본 명세서에 있어서, 2 이상의 치환기가 연결된다는 것은 어느 하나의 치환기의 수소가 다른 치환기와 연결된 것을 말한다. 예를 들어, 이소프로필기와 페닐기가 연결되어
Figure PCTKR2020018687-appb-img-000004
또는
Figure PCTKR2020018687-appb-img-000005
의 치환기가 될 수 있다.
본 명세서에 있어서, 3개의 치환기가 연결되는 것은 (치환기 1)-(치환기 2)-(치환기 3)이 연속하여 연결되는 것뿐만 아니라, (치환기 1)에 (치환기 2) 및 (치환기 3)이 연결되는 것도 포함한다. 예를 들어, 2개의 페닐기 및 이소프로필기가 연결되어
Figure PCTKR2020018687-appb-img-000006
또는
Figure PCTKR2020018687-appb-img-000007
의 치환기가 될 수 있다. 4 이상의 치환기가 연결되는 것에도 전술한 것과 동일하게 적용된다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬, 또는 요오드가 있다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 30; 1 내지 20; 1 내지 10; 또는 1 내지 5인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, t-부틸, sec-부틸, 1-메틸부틸, 1-에틸부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, t-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, t-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸프로필, 1,1-디메틸프로필, 이소헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 1가의 방향족 탄화수소 또는 방향족 탄화수소 유도체의 1가의 기를 의미한다. 본 명세서에 있어서, 방향족 탄화수소는 pi 전자가 완전히 콘쥬게이션되고 평면인 고리를 포함하는 화합물을 의미하며, 방향족 탄화수소에서 유도되는 기란, 방향족 탄화수소에 방향족 탄화수소 또는 고리형 지방족 탄화수소가 축합된 구조를 의미한다. 또한 본 명세서에 있어서, 아릴기는 2 이상의 방향족 탄화수소 또는 방향족 탄화수소의 유도체가 서로 연결된 1가의 기를 포함하고자 한다. 아릴기는 특별히 한정되지 않으나, 탄소수 6 내지 50; 6 내지 30; 6 내지 25; 6 내지 20; 6 내지 18; 또는 6 내지 13인 것이 바람직하며, 상기 아릴기는 단환식 또는 다환식일 수 있다. 구체적으로 단환식 아릴기로는 페닐기, 비페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 트리페닐기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
본 명세서에 있어서, 플루오레닐기가 치환될 수 있다고 할 때, 치환된 플루오레닐기는 플루오렌의 5각 고리의 치환기가 서로 스피로 결합하여 방향족 탄화수소고리를 형성하는 화합물까지 모두 포함하는 것이다. 상기 치환된 플루오레닐기는 9,9'-스피로바이플루오렌, 스피로[사이클로펜탄-1,9'-플루오렌], 스피로[벤조[c]플루오렌-7,9-플루오렌] 등을 포함하나, 이에 한정되지 않는다.
본 명세서에 있어서, 헤테로고리기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Si 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 50; 2 내지 30; 2 내지 20; 2 내지 18; 또는 2 내지 13인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨라닐기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 피리딘기, 바이피리딘기, 피리미딘기, 트리아진기, 트리아졸기, 아크리딘기, 피리다진기, 피라진기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 프탈라진기, 피리도피리미딘기, 피리도피라진기, 피라지노 피라진기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨란기, 페난쓰롤리닐기(phenanthroline), 티아졸기, 이소옥사졸기, 옥사디아졸기, 티아디아졸기, 벤조티아졸기, 페노티아진기, 디벤조퓨란기, 디하이드로페노티아진기, 디하이드로벤조이소퀴놀린기 및 크로멘기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 단환 또는 다환일 수 있으며, 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 헤테로고리기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 헤테로아릴기는 1가의 방향족 헤테로고리를 의미한다. 여기서 방향족 헤테로고리란 방향족 고리 또는 방향족 고리의 유도체의 1가의 기로서, 이종원자로 O, N, Si 및 S 중 1개 이상을 고리에 포함하는 기를 의미한다. 상기 방향족 고리의 유도체란, 방향족 고리에 방향족 고리 또는 지방족 고리가 축합된 구조를 모두 포함한다. 또한 본 명세서에 있어서, 헤테로아릴기는 2 이상의 이종원자를 포함한 방향족 고리 또는 이종원자를 포함한 방향족 고리의 유도체가 서로 연결된 1가의 기를 포함하고자 한다. 상기 헤테로아릴기의 탄소수 2 내지 50; 2 내지 30; 2 내지 20; 2 내지 18; 또는 2 내지 13인 것이 바람직하다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로아릴렌기는 헤테로아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 헤테로아릴기의 설명이 적용될 수 있다.
이하, 하기 화학식 1로 표시되는 헤테로고리 화합물에 관하여 상세히 설명한다.
[화학식 1]
Figure PCTKR2020018687-appb-img-000008
본 명세서의 일 실시상태에 있어서, X1 내지 X3 중 적어도 2 이상은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 있어서, X1 및 X2는 N이고, X3는 CH이다.
본 명세서의 일 실시상태에 있어서, X1 및 X3은 N이고, X2는 CH이다.
본 명세서의 일 실시상태에 있어서, X2 및 X3은 N이고, X2는 CH이다.
본 명세서의 일 실시상태에 있어서, X1 내지 X3은 각각 N 이다.
본 명세서의 일 실시상태에 있어서, R1은 치환 또는 비치환된 C1-C20의 알킬기이다.
본 명세서의 일 실시상태에 있어서, R1은 치환 또는 비치환된 C1-C10의 알킬기이다.
본 명세서의 일 실시상태에 있어서, R1은 C1-C10의 알킬기이다.
본 명세서의 일 실시상태에 있어서, R1은 C1-C6의 알킬기이다.
본 명세서의 일 실시상태에 있어서, R1은 메틸기; 에틸기; 프로필기; 이소프로필기; 부틸기; 또는 tert-부틸기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 C6-C60의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 C6-C30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 C6-C20의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 바이페닐렌기; 치환 또는 비치환된 터페닐렌기; 또는 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 페닐렌기; 또는 바이페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L1은 직접결합이다.
본 명세서의 일 실시상태에 있어서, L2 및 L3는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 C6-C30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L2 및 L3는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 C6-C20의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L2 및 L3는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 바이페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L2 및 L3는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L4는 직접결합; 또는 치환 또는 비치환된 C6-C30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L4는 직접결합; 또는 C6-C20의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, L4는 직접결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 바이페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L4는 직접결합; 페닐렌기; 또는 바이페닐렌기이다.
본 명세서의 일 실시상태에 있어서, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합 또는 하기 구조에서 선택된다.
Figure PCTKR2020018687-appb-img-000009
Figure PCTKR2020018687-appb-img-000010
본 명세서의 일 실시상태에 있어서, n1 내지 n4는 0 내지 4의 정수이다.
n1이 2 이상인 경우, 복수 개의 L1은 서로 동일하거나 상이하다. n2이 2 이상인 경우, 복수 개의 L2은 서로 동일하거나 상이하다. n3이 2 이상인 경우, 복수 개의 L3은 서로 동일하거나 상이하다. n4이 2 이상인 경우, 복수 개의 L4은 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 있어서, n1 내지 n4는 0 내지 2의 정수이다.
본 명세서의 일 실시상태에 있어서, n1은 0 이다.
본 명세서의 일 실시상태에 있어서, n4는 0 또는 1이다.
본 명세서의 일 실시상태에 있어서, n1 + n4는 1 이상이다.
본 명세서의 일 실시상태에 있어서, L1 및 L4가 동시에 직접결합은 아니다.
본 명세서의 일 실시상태에 있어서, n1 + n4는 2 이상이다.
본 명세서의 일 실시상태에 있어서, n2 및 n3은 0 또는 1 이다.
본 명세서의 일 실시상태에 있어서, n2 및 n3은 0 이다.
본 명세서의 일 실시상태에 있어서, Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1-C20의 알킬기; 또는 치환 또는 비치환된 C6-C60의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1-C10의 알킬기; 또는 치환 또는 비치환된 C6-C30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 C1-C6의 알킬기; 또는 C6-C20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6-C30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 C1-C6의 알킬기로 치환 또는 비치환된 C6-C20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 C6-C20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar3은 치환 또는 비치환된 C1-C10의 알킬기; 또는 치환 또는 비치환된 C6-C30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar3은 C1-C6의 알킬기; 또는 C6-C20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 메틸기; 치환 또는 비치환된 에틸기; 치환 또는 비치환된 프로필기; 치환 또는 비치환된 이소프로필기; 치환 또는 비치환된 부틸기; 치환 또는 비치환된 tert-부틸기; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 또는 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 또는 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 메틸기로 치환 또는 비치환된 페닐기; 바이페닐기; 또는 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar3은 치환 또는 비치환된 메틸기; 치환 또는 비치환된 에틸기; 치환 또는 비치환된 프로필기; 치환 또는 비치환된 이소프로필기; 치환 또는 비치환된 부틸기; 치환 또는 비치환된 tert-부틸기; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 또는 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar3은 치환 또는 비치환된 메틸기; 치환 또는 비치환된 이소프로필기; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 또는 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 있어서, Ar3은 메틸기; 또는 페닐기이다.
본 명세서의 일 실시상태에 있어서, Ar3은 메틸기이다.
본 명세서의 일 실시상태에 있어서, m1은 0 내지 3의 정수이고, 2 이상인 경우 복수 개의 Ar3는 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 있어서, m1은 0 내지 2의 정수이다.
본 명세서의 일 실시상태에 있어서, m1은 0 또는 1이다.
본 명세서의 일 실시상태에 있어서, A1은 하기 화학식 1-1로 표시된다.
[화학식 1-1]
Figure PCTKR2020018687-appb-img-000011
상기 화학식 1-1에 있어서,
Y1 및 Y2는 각각 수소; 또는 중수소이거나, 서로 직접결합하거나, -C(R31)(R32)-; -Si(R33)(R34)-; -N(R35)-; -O-; 또는 -S-을 통하여 연결되고,
R11 내지 R26 중 어느 하나는 상기 화학식 1의 L1에 연결되고, 다른 하나는 상기 화학식 1의 L4에 연결되고, 나머지는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
R31 내지 R35는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, Y1 및 Y2는 각각 수소; 또는 중수소이거나, 서로 직접결합하거나, -O-; 또는 -S-을 통하여 연결된다.
본 명세서의 일 실시상태에 있어서, Y1 및 Y2는 각각 수소 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, Y1 및 Y2는 서로 서로 직접결합하거나, -O-; 또는 -S-을 통하여 연결된다.
본 명세서의 일 실시상태에 있어서, R11 내지 R26 중 상기 화학식 L1 및 L4에 연결되지 않은 나머지는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 C1-C10의 알킬기; 치환 또는 비치환된 C6-C30의 아릴기; 또는 치환 또는 비치환된 C2-C30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, R11 내지 R26 중 상기 화학식 L1 및 L4에 연결되지 않은 나머지는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 C6-C20의 아릴기이다.
본 명세서의 일 실시상태에 있어서, R11 내지 R26 중 상기 화학식 L1 및 L4에 연결되지 않은 나머지는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 페닐기이다.
본 명세서의 일 실시상태에 있어서, R11 내지 R26 중 상기 화학식 L1 및 L4에 연결되지 않은 나머지는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, R31 내지 R35는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 C1-C10의 알킬기; 치환 또는 비치환된 C6-C30의 아릴기; 또는 치환 또는 비치환된 C2-C30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, R31 내지 R35는 서로 동일하거나 상이하고, 각각 독립적으로 메틸기; 또는 페닐기이다.
본 명세서의 일 실시상태에 있어서, R11은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R12은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R13은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R14은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R15은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R16은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R17은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R18은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R19은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R20은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R21은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R22은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R23은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R24은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R25은 상기 화학식 1의 L1에 연결된다. 또 하나의 일 실시상태에 있어서, R26은 상기 화학식 1의 L1에 연결된다.
본 명세서의 일 실시상태에 있어서, R11은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R12은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R13은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R14은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R15은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R16은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R17은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R18은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R19은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R20은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R21은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R22은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R23은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R24은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R25은 상기 화학식 1의 L4에 연결된다. 또 하나의 일 실시상태에 있어서, R26은 상기 화학식 1의 L4에 연결된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1-1은 하기 화학식 A11 내지 A13 중 어느 하나로 표시된다.
Figure PCTKR2020018687-appb-img-000012
상기 화학식 A11 내지 A13에 있어서, R11 내지 R26의 정의는 화학식 1-1에서 정의한 바와 같고,
Y1 및 Y2는 각각 수소; 또는 중수소이고,
G1은 C(R31)(R32); Si(R33)(R34); N(R35); O; 또는 S 이고,
R31 내지 R35는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, A1은 하기 구조에서 선택되는 2가의 기이다.
Figure PCTKR2020018687-appb-img-000013
상기 구조에 있어서,
G1은 C(R31)(R32); Si(R33)(R34); N(R35); O; 또는 S이고,
상기 구조는 중수소; 시아노기; 알킬기; 아릴기; 또는 헤테로아릴기로 치환 또는 비치환되고,
Figure PCTKR2020018687-appb-img-000014
는 화학식 1의 L1 또는 L4에 연결되는 위치이다.
본 명세서의 일 실시상태에 있어서, 상기 A1의 구조는 중수소; 시아노기; C1-C10의 알킬기; C6-C30의 아릴기; 또는 C2-C30의 헤테로아릴기로 치환 또는 비치환된다.
본 명세서의 일 실시상태에 있어서, 상기 A1의 구조는 C6-C20의 아릴기로 치환 또는 비치환된다.
본 명세서의 일 실시상태에 있어서, 상기 A1의 구조는 어떠한 치환기를 갖지 않는다.
본 명세서의 일 실시상태에 있어서, R1은 C1-C6의 알킬기이고, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 C6-C20의 아릴렌기이고, Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 C1-C6의 알킬기; 또는 C6-C20의 아릴기이고, Y1 및 Y2는 각각 수소; 또는 중수소이거나, 서로 직접결합하거나, -O-; 또는 -S-을 통하여 연결되고, R11 내지 R26 중 상기 화학식 1의 L1 및 L4에 연결되지 않은 나머지는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물은 하기 화합물 중에서 선택된 어느 하나이다.
Figure PCTKR2020018687-appb-img-000015
Figure PCTKR2020018687-appb-img-000016
Figure PCTKR2020018687-appb-img-000017
Figure PCTKR2020018687-appb-img-000018
Figure PCTKR2020018687-appb-img-000019
Figure PCTKR2020018687-appb-img-000020
Figure PCTKR2020018687-appb-img-000021
Figure PCTKR2020018687-appb-img-000022
Figure PCTKR2020018687-appb-img-000023
Figure PCTKR2020018687-appb-img-000024
Figure PCTKR2020018687-appb-img-000025
Figure PCTKR2020018687-appb-img-000026
Figure PCTKR2020018687-appb-img-000027
Figure PCTKR2020018687-appb-img-000028
Figure PCTKR2020018687-appb-img-000029
Figure PCTKR2020018687-appb-img-000030
Figure PCTKR2020018687-appb-img-000031
Figure PCTKR2020018687-appb-img-000032
Figure PCTKR2020018687-appb-img-000033
Figure PCTKR2020018687-appb-img-000034
Figure PCTKR2020018687-appb-img-000035
Figure PCTKR2020018687-appb-img-000036
Figure PCTKR2020018687-appb-img-000037
Figure PCTKR2020018687-appb-img-000038
Figure PCTKR2020018687-appb-img-000039
Figure PCTKR2020018687-appb-img-000040
Figure PCTKR2020018687-appb-img-000041
Figure PCTKR2020018687-appb-img-000042
Figure PCTKR2020018687-appb-img-000043
Figure PCTKR2020018687-appb-img-000044
Figure PCTKR2020018687-appb-img-000045
Figure PCTKR2020018687-appb-img-000046
Figure PCTKR2020018687-appb-img-000047
본 명세서의 일 실시상태에 따른 화합물은 후술하는 제조 방법으로 제조될 수 있다. 필요에 따라, 치환기를 추가하거나 제외할 수 있으며, 치환기의 위치를 변경할 수 있다. 또한, 당 기술분야에 알려져 있는 기술을 기초로, 출발물질, 반응물질, 반응 조건 등을 변경할 수 있다.
예컨대, 상기 화학식 1로 표시되는 화합물은 하기 일반식 1과 같이 코어 구조가 제조될 수 있다. 치환기는 당기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기의 종류, 위치 또는 개수는 당기술분야에 알려져 있는 기술에 따라 변경될 수 있다. 하기 일반식 1과 같이 치환기를 결합시킬 수 있으나, 이에 한정되는 것은 아니다.
[일반식 1]
Figure PCTKR2020018687-appb-img-000048
상기 일반식 1에서, X1 내지 X3, R1, L1 내지 L4, n1 내지 n4, Ar1 내지 Ar3, m1, Y1 및 Y2의 정의는 상기 화학식 1에서 정의한 바와 같다. 상기 반응은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
본 명세서는 상기 전술한 화합물을 포함하는 유기 발광 소자를 제공한다.
본 명세서는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 상기 '층'은 본 기술분야에 주로 사용되는 '필름'과 호환되는 의미이며, 목적하는 영역을 덮는 코팅을 의미한다. 상기 '층'의 크기는 한정되지 않으며, 각각의 '층'은 그 크기가 동일하거나 상이할 수 있다. 일 실시상태에 있어서, '층'의 크기는 전체 소자와 같을 수 있고, 특정 기능성 영역의 크기에 해당할 수 있으며, 단일 서브픽셀(sub-pixel)만큼 작을 수도 있다.
본 명세서에 있어서, 특정한 A 물질이 B층에 포함된다는 의미는 i) 1종 이상의 A 물질이 하나의 B층에 포함되는 것과 ii) B층이 1층 이상으로 구성되고, A 물질이 다층의 B층 중 1층 이상에 포함되는 것을 모두 포함한다.
본 명세서에 있어서, 특정한 A 물질이 C층 또는 D층에 포함된다는 의미는 i) 1층 이상의 C층 중 1층 이상에 포함되거나, ii) 1층 이상의 D층 중 1층 이상에 포함되거나, iii) 1층 이상의 C층 및 1층 이상의 D층에 각각 포함되는 것을 모두 의미하는 것이다.
본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층, 전자 차단층, 정공 차단층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 전자 주입층, 전자 수송층, 전자 주입 및 수송층 또는 정공 차단층을 포함하고, 상기 전자 주입층, 전자 수송층, 전자 주입 및 수송층 또는 정공 차단층은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 전자 주입층, 전자 수송층, 전자 주입 및 수송층 또는 정공 차단층은 알칼리 금속 및 알칼리토금속 중에서 선택되는 1종 또는 2종 이상의 n형 도펀트를 포함한다. 구체적으로 상기 화학식 1로 표시되는 화합물을 포함한 전자 주입층, 전자 수송층, 전자 주입 및 수송층 또는 정공 차단층은 알칼리 금속 및 알칼리토금속 중에서 선택되는 1종 또는 2종 이상의 n형 도펀트를 포함한다.
유기 알칼리 금속 화합물 또는 유기 알칼리 토금속 화합물이 n 형 도펀트로 사용되는 경우에는 발광층으로부터 정공에 대한 안정성을 확보할 수 있어, 유기 발광 소자의 수명을 향상시킬 수 있다. 또한, 전자수송층의 전자이동도를 유기 알칼리 금속 화합물 또는 유기 알칼리 토금속 화합물의 비율을 조절하여 발광층에서 정공과 전자의 균형을 극대화시켜 발광 효율을 증가시킬 수 있다.
본 명세서에서 전자 주입층, 전자 수송층, 전자 주입 및 수송층 또는 정공 차단층에 사용되는 n형 도펀트로서 LiQ가 더욱 바람직하다.
상기 전자 주입층, 전자 수송층, 전자 주입 및 수송층 또는 정공 차단층은 화학식 1로 표시되는 헤테로고리 화합물과 상기 n형 도펀트를 1:9 내지 9:1의 중량비로 포함할 수 있다. 바람직하게는 상기 화학식 1의 헤테로고리 화합물과 상기 n형 도펀트를 2:8 내지 8:2로 포함할 수 있으며, 더욱 바람직하게는 3:7 내지 7:3으로 포함할 수 있다. 본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 정공 주입층, 정공 수송층. 발광층, 전자 수송층, 전자 주입층, 정공 차단층 및 전자 차단층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층; 및 상기 발광층과 상기 제1 전극 사이, 또는 상기 발광층과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층. 발광층, 전자 수송층, 전자 주입층, 정공 차단층 및 전자 차단층으로 이루어진 군에서 선택되는 1층 이상을 더 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 제2 전극은 음극이다.
본 명세서의 일 실시상태에 있어서, 상기 제2 전극은 음극이고, 제2 전극은 양극이다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
예컨대, 본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조가 도 1 내지 및 2에 예시되어 있다. 상기 도 1 및 도 2는 유기 발광 소자를 예시한 것이며 이에 한정되는 것은 아니다.
도 1에는 기판(101) 위에 양극(102), 발광층(106) 및 음극(108)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 상기 화학식 1로 표시되는 화합물은 발광층에 포함된다.
도 2에는 기판(101) 위에 양극(102), 정공주입층(103), 제1 정공수송층(104), 제2 정공수송층(105), 발광층(106), 전자 주입 및 수송층(107) 및 음극(108)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 전자 주입 및 수송층(107)에 포함된다.
본 명세서의 유기 발광 소자는 발광층이 상기 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질, 유기물층 및 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하나, 이에 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다. 다만, 제조 방법이 이에 한정되는 것은 아니다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 예를 들어, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 예를 들어, 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로, 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 발광층의 호스트 재료로 중수소로 치환된 안트라센 유도체를 사용할 수 있다.
상기 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로, 방향족 아민 유도체로는 치환 또는 비치환된 아릴아민기를 갖는 축합 방향족환 유도체로서, 아릴아민기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있다. 또한, 스티릴아민 화합물은 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아민기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.
상기 정공 주입층은 전극으로부터 정공을 수취하는 층이다. 정공 주입 물질은 정공을 수송하는 능력을 가져 양극으로부터 정공 수취 효과 및 발광층 또는 발광 재료에 대하여 우수한 정공 주입 효과를 갖는 것이 바람직하다. 또한, 발광층에서 생성된 엑시톤의 전자 주입층 또는 전자 주입 재료에의 이동을 방지할 수 있는 능력이 우수한 물질이 바람직하다. 또한, 박막 형성 능력이 우수한 물질이 바람직하다. 또한, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는, 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물; 헥사니트릴헥사아자트리페닐렌 계열의 유기물; 퀴나크리돈(quinacridone)계열의 유기물; 페릴렌(perylene) 계열의 유기물; 안트라퀴논, 폴리아닐린과 같은 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이에 한정 되는 것은 아니다.
상기 정공 수송층은 정공 주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층이다. 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수취하여 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 바람직하다. 구체적인 예로는, 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이에 한정되는 것은 아니다. 또한, 정공 수송층은 다층 구조를 가질 수 있다. 예를 들어, 제1 정공수송층 및 제2 정공수송층을 포함할 수 있다.
상기 전자 수송층은 전자 주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층이다. 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 바람직하다. 구체적인 예로는, 8-히드록시퀴놀린의 Al착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이에 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이, 임의의 원하는 음극 물질과 함께 사용할 수 있다. 특히, 적절한 음극 물질은 낮은 일함수를 가지며, 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로, 세슘, 바륨, 칼슘, 이테르븀 및 사마륨 등이 있고, 각 경우 알루미늄층 또는 실버층이 뒤따른다.
상기 전자 주입층은 전극으로부터 전자를 수취하는 층이다. 전자 주입물로는 전자를 수송하는 능력이 우수하고, 제2 전극으로부터의 전자 수취 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 갖는 것이 바람직하다. 또한, 발광층에서 생성된 엑시톤이 정공 주입층으로 이동하는 것을 방지하고, 박막 형성 능력이 우수한 물질이 바람직하다. 구체적으로는, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되는 것은 아니다.
상기 금속 착체 화합물로는 8-히드록시퀴놀리나토 리튬, 비스(8-히드록시퀴놀리나토)아연, 비스(8-히드록시퀴놀리나토)구리, 비스(8-히드록시퀴놀리나토)망간, 트리스(8-히드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-히드록시퀴놀리나토)알루미늄, 트리스(8-히드록시퀴놀리나토)갈륨, 비스(10-히드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-히드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.
전자 주입 및 수송층은 전자 주입 및 수송을 동시에 하는 층을 의미한다.
상기 전자 차단층은 전자 주입층으로부터 주입된 전자가 발광층을 지나 정공 주입층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이다. 공지된 재료는 제한 없이 사용 가능하며, 발광층과 정공 주입층 사이에, 또는 발광층과 정공 주입 및 수송층 사이에 형성될 수 있다.
상기 정공 차단층은 정공의 음극으로 도달을 저지하는 층으로, 일반적으로 전자 주입층과 동일한 조건으로 형성될 수 있다. 구체적으로, 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예 및 비교예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예 및 비교예는 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예 및 비교예에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예 및 비교예는 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
합성예 1
Figure PCTKR2020018687-appb-img-000049
상기 화합물 1-1 (11.8 g, 30 mmol) 및 상기 화합물 1-2(11.3 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 1-3를 제조하였다. (14.2 g, 수율 72%, MS:[M+H]+= 659).
Figure PCTKR2020018687-appb-img-000050
상기 화합물 1-3 (19.7 g, 30 mmol) 및 상기 화합물 1-4(5.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 1 를 제조하였다. (9.4 g, 수율 43 %, MS:[M+H]+= 729).
합성예 2
Figure PCTKR2020018687-appb-img-000051
상기 화합물 2-1 (11.8 g, 30 mmol) 및 상기 화합물 2-2(11.3 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 2-3를 제조하였다. (14.8 g, 수율 75%, MS:[M+H]+= 658).
Figure PCTKR2020018687-appb-img-000052
상기 화합물 2-3 (19.7 g, 30 mmol) 및 상기 화합물 2-4(7.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 2 를 제조하였다. (12.3 g, 수율 52%, MS:[M+H]+= 790).
합성예 3
Figure PCTKR2020018687-appb-img-000053
상기 화합물 3-1 (11.8 g, 30 mmol) 및 상기 화합물 3-2(8.8 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 3-3를 제조하였다. (14.2 g, 수율 80%, MS:[M+H]+= 591).
Figure PCTKR2020018687-appb-img-000054
상기 화합물 3-3 (17.7 g, 30 mmol) 및 상기 화합물 3-4(6.6 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 3 를 제조하였다. (11.4 g, 수율 53%, MS:[M+H]+= 714).
합성예 4
Figure PCTKR2020018687-appb-img-000055
상기 화합물 4-1 (11.8 g, 30 mmol) 및 상기 화합물 4-2(11.3 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 4-3를 제조하였다. (16.0 g, 수율 81%, MS:[M+H]+= 658).
Figure PCTKR2020018687-appb-img-000056
상기 화합물 4-3 (19.7 g, 30 mmol) 및 상기 화합물 4-4(7.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 4 를 제조하였다. (12.1 g, 수율 51%, MS:[M+H]+= 790).
합성예 5
Figure PCTKR2020018687-appb-img-000057
상기 화합물 5-1 (11.9 g, 30 mmol) 및 상기 화합물 5-2(9.3 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K2CO3(100 mL), Pd(dba)2(0.6 g), 및 PCy3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 5-3를 제조하였다. (11.7 g, 수율 65%, MS:[M+H]+= 599).
Figure PCTKR2020018687-appb-img-000058
상기 화합물 5-3 (17.9 g, 30 mmol) 및 상기 화합물 5-4(10.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 5 를 제조하였다. (11.8 g, 수율 48%, MS:[M+H]+= 822).
합성예 6
Figure PCTKR2020018687-appb-img-000059
상기 화합물 6-1 (11.9 g, 30 mmol) 및 상기 화합물 6-2(8.8 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 6-3를 제조하였다. (13.5 g, 수율 77%, MS:[M+H]+= 584).
Figure PCTKR2020018687-appb-img-000060
상기 화합물 6-3 (17.5 g, 30 mmol) 및 상기 화합물 6-4(7.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 6 를 제조하였다. (9.4 g, 수율 44%, MS:[M+H]+= 716).
합성예 7
Figure PCTKR2020018687-appb-img-000061
상기 화합물 7-1 (11.9 g, 30 mmol) 및 상기 화합물 7-2(9.3 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 7-3를 제조하였다. (14.5 g, 수율 81%, MS:[M+H]+= 598).
Figure PCTKR2020018687-appb-img-000062
상기 화합물 7-3 (17.8 g, 30 mmol) 및 상기 화합물 7-4(7.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 7 를 제조하였다. (9.6 g, 수율 44%, MS:[M+H]+= 730).
합성예 8
Figure PCTKR2020018687-appb-img-000063
상기 화합물 8-1 (11.9 g, 30 mmol) 및 상기 화합물 8-2(8.8 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 8-3를 제조하였다. (12.4 g, 수율 71%, MS:[M+H]+= 584).
Figure PCTKR2020018687-appb-img-000064
상기 화합물 8-3 (17.5 g, 30 mmol) 및 상기 화합물 8-4(7.5 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 8 를 제조하였다. (9.9 g, 수율 45%, MS:[M+H]+= 730).
합성예 9
Figure PCTKR2020018687-appb-img-000065
상기 화합물 9-1 (11.9 g, 30 mmol) 및 상기 화합물 9-2(9.3 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 9-3를 제조하였다. (11.6 g, 수율 65%, MS:[M+H]+= 598).
Figure PCTKR2020018687-appb-img-000066
상기 화합물 9-3 (17.9 g, 30 mmol) 및 상기 화합물 9-4(9.5 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 9 를 제조하였다. (12.1 g, 수율 50 %, MS:[M+H]+= 807).
합성예 10
Figure PCTKR2020018687-appb-img-000067
상기 화합물 10-1 (12.3 g, 30 mmol) 및 상기 화합물 10-2(8.8 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 10-3를 제조하였다. (15.3 g, 수율 85%, MS:[M+H]+= 599).
Figure PCTKR2020018687-appb-img-000068
상기 화합물 10-3 (17.9 g, 30 mmol) 및 상기 화합물 10-4(4.5 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 10 를 제조하였다. (10.2 g, 수율 52%, MS:[M+H]+= 655).
합성예 11
Figure PCTKR2020018687-appb-img-000069
상기 화합물 11-1 (12.3 g, 30 mmol) 및 상기 화합물 11-2(10.5 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 11-3를 제조하였다. (14.4 g, 수율 74%, MS:[M+H]+= 648).
Figure PCTKR2020018687-appb-img-000070
상기 화합물 11-3 (19.4 g, 30 mmol) 및 상기 화합물 11-4(4.5 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 11 를 제조하였다. (8.9 g, 수율 42%, MS:[M+H]+= 704).
합성예 12
Figure PCTKR2020018687-appb-img-000071
상기 화합물 12-1 (12.3 g, 30 mmol) 및 상기 화합물 12-2(9.3 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 12-3를 제조하였다. (14.1 g, 수율 77%, MS:[M+H]+= 612).
Figure PCTKR2020018687-appb-img-000072
상기 화합물 12-3 (18.3 g, 30 mmol) 및 상기 화합물 12-4(5.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 12 를 제조하였다. (9.0 g, 수율 44%, MS:[M+H]+= 682).1
합성예 13
Figure PCTKR2020018687-appb-img-000073
상기 화합물 13-1 (12.3g, 30 mmol) 및 상기 화합물 13-2(11.3 mol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 13-3를 제조하였다. (15.3g, 수율 76%, MS:[M+H]+= 674).
Figure PCTKR2020018687-appb-img-000074
상기 화합물 13-3 (20.2 g, 30 mmol) 및 상기 화합물 13-4(5.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 13 를 제조하였다. (11.0 g, 수율 50%, MS:[M+H]+= 735).
합성예 14
Figure PCTKR2020018687-appb-img-000075
상기 화합물 14-1 (12.3 g, 30 mmol) 및 상기 화합물 14-2(10.9 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 14-3를 제조하였다. (15.3 g, 수율 77%, MS:[M+H]+= 662).
Figure PCTKR2020018687-appb-img-000076
상기 화합물 14-3 (19.8 g, 30 mmol) 및 상기 화합물 14-4(4.5 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 14 를 제조하였다. (11.0 g, 수율 51%, MS:[M+H]+= 718).
합성예 15
Figure PCTKR2020018687-appb-img-000077
상기 화합물 15-1 (12.8 g, 30 mmol) 및 상기 화합물 15-2(6.8 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 15-3를 제조하였다. (13.3 g, 수율 80%, MS:[M+H]+= 553).
Figure PCTKR2020018687-appb-img-000078
상기 화합물 15-3 (16.6 g, 30 mmol) 및 상기 화합물 15-4(10.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 15 를 제조하였다. (13.9 g, 수율 60%, MS:[M+H]+= 775).
합성예 16
Figure PCTKR2020018687-appb-img-000079
상기 화합물 16-1 (12.8 g, 30 mmol) 및 상기 화합물 16-2(9.8 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 16-3를 제조하였다. (11.7 g, 수율 62%, MS:[M+H]+= 629).
Figure PCTKR2020018687-appb-img-000080
상기 화합물 16-3 (18.8 g, 30 mmol) 및 상기 화합물 16-4(7.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 16 를 제조하였다. (13.5 g, 수율 58%, MS:[M+H]+= 775).
합성예 17
Figure PCTKR2020018687-appb-img-000081
상기 화합물 17-1 (12.8 g, 30 mmol) 및 상기 화합물 17-2(9.3 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 17-3를 제조하였다. (12.8 g, 수율 68%, MS:[M+H]+= 628).
Figure PCTKR2020018687-appb-img-000082
상기 화합물 17-3 (18.8 g, 30 mmol) 및 상기 화합물 17-4(7.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 17 를 제조하였다. (9.8 g, 수율 42%, MS:[M+H]+= 775).
합성예 18
Figure PCTKR2020018687-appb-img-000083
상기 화합물 18-1 (12.8 g, 30 mmol) 및 상기 화합물 18-2(8.8 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 18-3를 제조하였다. (12.9 g, 수율 70 %, MS:[M+H]+= 614).
Figure PCTKR2020018687-appb-img-000084
상기 화합물 18-3 (18.4 g, 30 mmol) 및 상기 화합물 18-4(7.5 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 18 를 제조하였다. (9.8 g, 수율 43%, MS:[M+H]+= 760).
합성예 19
Figure PCTKR2020018687-appb-img-000085
상기 화합물 19-1 (12.8 g, 30 mmol) 및 상기 화합물 19-2(6.8 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 19-3를 제조하였다. (11.7 g, 수율 71%, MS:[M+H]+= 552).
Figure PCTKR2020018687-appb-img-000086
상기 화합물 19-3 (16.5 g, 30 mmol) 및 상기 화합물 19-4(7.0 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 19 를 제조하였다. (8.8 g, 수율 43%, MS:[M+H]+= 684).
합성예 20
Figure PCTKR2020018687-appb-img-000087
상기 화합물 20-1 (11.9 g, 30 mmol) 및 상기 화합물 20-2(6.8 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(dba) 2(0.6 g), 및 PCy 3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 20-3를 제조하였다. (11.4 g, 수율 73%, MS:[M+H]+= 522).
Figure PCTKR2020018687-appb-img-000088
상기 화합물 20-3 (15.6 g, 30 mmol) 및 상기 화합물 20-4(9.5 g, 33 mmol)을 테트라하이드로퓨란(300 mL)에 투입하였다. 2M K 2CO 3(100 mL), Pd(PtBu 3) 2(0.9 g) 을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 에틸아세테이트로 2회 재결정하여 상기 화합물 20 를 제조하였다. (11.4 g, 수율 52 %, MS:[M+H]+= 730).
실험예 1.
ITO(indium tin oxide)가 1000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 HI-A 화합물을 600 Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 상에 하기 HAT 화합물 50 Å 및 하기 HT-A 화합물 60 Å를 순차적으로 진공 증착하여 제1 정공수송층 및 제2 정공수송층을 형성하였다.
이어서, 상기 제2 정공수송층 상에 막 두께 200 Å로 하기 BH 화합물 및 BD 화합물을 25:1의 중량비로 진공 증착하여 발광층을 형성하였다.
상기 발광층 상에 상기 합성예 1에서 제조된 화합물 1과 하기 LiQ 화합물을 1:1의 중량비로 진공 증착하여 350 Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 상에 순차적으로 10 Å의 두께로 리튬 플루오라이드(LiF)와 1000 Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
상기의 과정에서 유기물의 증착 속도는 0.4 내지 0.9 Å/sec를 유지하였고, 음극의 리튬 플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1×10 -7 내지 5×10 -5 torr를 유지하여, 유기 발광 소자를 제조하였다.
Figure PCTKR2020018687-appb-img-000089
실험예 2 내지 20 및 비교예 1 내지 4
화합물 1 대신 하기 표 1의 화합물을 사용한 것을 제외하고, 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
Figure PCTKR2020018687-appb-img-000090
Figure PCTKR2020018687-appb-img-000091
상기 실험예 1 내지 20 및 비교예 1 내지 4에서 제조한 유기 발광 소자에 대하여 10mA/cm 2의 전류 밀도에서 구동 전압과 발광 효율을 측정하였고, 20mA/cm 2의 전류 밀도에서 초기 휘도 대비 96%가 되는 시간(T96)을 측정하였다. 상기 결과를 하기 표 1에 나타내었다.
구분 화합물 전압
(V)
전류효율
(cd/A)
Life Time 96 at 20mA/cm 2
실험예 1 화합물 1 3.52 5.38 75
실험예 2 화합물 2 3.63 5.71 50
실험예 3 화합물 3 3.62 5.65 55
실험예 4 화합물 4 3.70 5.60 80
실험예 5 화합물 5 3.62 5.40 75
실험예 6 화합물 6 3.83 5.63 75
실험예 7 화합물 7 3.80 5.66 60
실험예 8 화합물 8 3.80 5.61 60
실험예 9 화합물 9 3.78 5.61 75
실험예 10 화합물 10 3.90 5.45 75
실험예 11 화합물 11 3.80 5.60 70
실험예 12 화합물 12 4.00 5.61 65
실험예 13 화합물 13 3.90 5.55 65
실험예 14 화합물 14 3.75 5.54 75
실험예 15 화합물 15 3.63 5.40 60
실험예 16 화합물 16 3.62 5.42 65
실험예 17 화합물 17 3.75 5.60 80
실험예 18 화합물 18 3.62 5.61 75
실험예 19 화합물 19 3.83 5.50 80
실험예 20 화합물 20 3.80 5.62 80
비교예 1 화합물 A 4.30 5.52 30
비교예 2 화합물 B 5.00 3.50 80
비교예 3 화합물 C 4.80 4.00 50
비교예 4 화합물 D 4.82 3.26 40
상기 표 1 의 실험 데이터에서 확인할 수 있듯이, 본 발명에 따른 화학식 1의 화합물을 사용한 유기 발광 소자의 경우, 효율, 구동전압 및/또는 안정성 면에서 우수한 특성을 나타내는 것을 확인하였다. 화학식 1의 A1가 디메틸플루오렌인 화합물 A을 포함한 비교예 1의 소자에 비하여 본 발명의 화학식 1의 화합물을 포함한 실험예 1 내지 20의 소자는 저전압 및 장수명의 특성이 현저히 우수하다.
피리딘에 메틸기가 연결되지 않고 헤테로아릴기가 연결된 화합물 B를 포함한 비교예 2의 소자에 비하여 본 발명의 화학식 1의 화합물을 포함한 실험예 1 내지 20의 소자는 저전압 및 고효율의 특성이 현저히 우수하다.
피리딘에 치환기가 연결되지 않은 화합물 C를 포함한 비교예 3의 소자에 비하여 본 발명의 화학식 1의 화합물을 포함한 실험예 1 내지 20의 소자는 저전압, 고효율 및 장수명의 특성이 현저히 우수하다.
트리아진 또는 피리미딘을 포함하지 않는 화합물 D를 포함한 비교예 4의 소자에 비하여 본 발명의 화학식 1의 화합물을 포함한 실험예 1 내지 20의 소자는 저전압, 고효율 및 장수명의 특성이 현저히 우수하다.

Claims (10)

  1. 하기 화학식 1로 표시되는 헤테로고리 화합물:
    [화학식 1]
    Figure PCTKR2020018687-appb-img-000092
    상기 화학식 1에 있어서,
    X1 내지 X3 중 적어도 2 이상은 N이고, 나머지는 CH이고,
    R1은 치환 또는 비치환된 알킬기이고,
    L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이고,
    n1 내지 n4는 0 내지 4의 정수이고,
    Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
    m1은 0 내지 3의 정수이고,
    n1 내지 n4 및 m1이 각각 2 이상인 경우 괄호 내의 치환기는 서로 동일하거나 상이하고,
    A1은 하기 화학식 1-1로 표시되며,
    [화학식 1-1]
    Figure PCTKR2020018687-appb-img-000093
    상기 화학식 1-1에 있어서,
    Y1 및 Y2는 각각 수소; 또는 중수소이거나, 서로 직접결합하거나, -C(R31)(R32)-; -Si(R33)(R34)-; -N(R35)-; -O-; 또는 -S-을 통하여 연결되고,
    R11 내지 R26 중 어느 하나는 상기 화학식 1의 L1에 연결되고, 다른 하나는 상기 화학식 1의 L4에 연결되고, 나머지는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
    R31 내지 R35는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
  2. 청구항 1에 있어서, 상기 화학식 1-1은 하기 화학식 A11 내지 A13 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    Figure PCTKR2020018687-appb-img-000094
    상기 화학식 A11 내지 A13에 있어서, R11 내지 R26의 정의는 화학식 1-1에서 정의한 바와 같고,
    Y1 및 Y2는 각각 수소; 또는 중수소이고,
    G1은 C(R31)(R32); Si(R33)(R34); N(R35); O; 또는 S 이고,
    R31 내지 R35는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
  3. 청구항 1에 있어서, A1은 하기 구조에서 선택되는 2가의 기인 헤테로고리 화합물:
    Figure PCTKR2020018687-appb-img-000095
    상기 구조에 있어서,
    G1은 C(R31)(R32); Si(R33)(R34); N(R35); O; 또는 S이고, R31 내지 R35는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
    상기 구조는 중수소; 시아노기; 알킬기; 아릴기; 또는 헤테로아릴기로 치환 또는 비치환되고,
    Figure PCTKR2020018687-appb-img-000096
    는 화학식 1의 L1 또는 L4에 연결되는 위치이다.
  4. 청구항 1에 있어서, L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합 또는 하기 구조에서 선택되는 것인 헤테로고리 화합물:
    Figure PCTKR2020018687-appb-img-000097
    Figure PCTKR2020018687-appb-img-000098
    .
  5. 청구항 1에 있어서,
    R1은 C1-C6의 알킬기이고,
    L1 내지 L4는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 C6-C20의 아릴렌기이고,
    Ar1 내지 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 C1-C6의 알킬기; 또는 C6-C20의 아릴기이고,
    Y1 및 Y2는 각각 수소; 또는 중수소이거나, 서로 직접결합하거나, -O-; 또는 -S-을 통하여 연결되고,
    R11 내지 R26 중 상기 화학식 1의 L1 및 L4에 연결되지 않은 나머지는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소인 것인 헤테로고리 화합물.
  6. 청구항 1에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물은 하기 화합물 중에서 선택되는 어느 하나인 것인 헤테로고리 화합물:
    Figure PCTKR2020018687-appb-img-000099
    Figure PCTKR2020018687-appb-img-000100
    Figure PCTKR2020018687-appb-img-000101
    Figure PCTKR2020018687-appb-img-000102
    Figure PCTKR2020018687-appb-img-000103
    Figure PCTKR2020018687-appb-img-000104
    Figure PCTKR2020018687-appb-img-000105
    Figure PCTKR2020018687-appb-img-000106
    Figure PCTKR2020018687-appb-img-000107
    Figure PCTKR2020018687-appb-img-000108
    Figure PCTKR2020018687-appb-img-000109
    Figure PCTKR2020018687-appb-img-000110
    Figure PCTKR2020018687-appb-img-000111
    Figure PCTKR2020018687-appb-img-000112
    Figure PCTKR2020018687-appb-img-000113
    Figure PCTKR2020018687-appb-img-000114
    Figure PCTKR2020018687-appb-img-000115
    Figure PCTKR2020018687-appb-img-000116
    Figure PCTKR2020018687-appb-img-000117
    Figure PCTKR2020018687-appb-img-000118
    Figure PCTKR2020018687-appb-img-000119
    Figure PCTKR2020018687-appb-img-000120
    Figure PCTKR2020018687-appb-img-000121
    Figure PCTKR2020018687-appb-img-000122
    Figure PCTKR2020018687-appb-img-000123
    Figure PCTKR2020018687-appb-img-000124
    Figure PCTKR2020018687-appb-img-000125
    Figure PCTKR2020018687-appb-img-000126
    Figure PCTKR2020018687-appb-img-000127
    Figure PCTKR2020018687-appb-img-000128
    Figure PCTKR2020018687-appb-img-000129
    Figure PCTKR2020018687-appb-img-000130
    Figure PCTKR2020018687-appb-img-000131
    .
  7. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 청구항 1 내지 6 중 어느 한 항에 따른 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  8. 청구항 7에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  9. 청구항 7에 있어서, 상기 유기물층은 전자 주입층, 전자 수송층, 전자 주입 및 수송층 또는 정공 차단층을 포함하고, 상기 전자 주입층, 전자 수송층, 전자 주입 및 수송을층 또는 정공 차단층은 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  10. 청구항 9에 있어서, 상기 전자 주입층, 전자 수송층, 전자 주입 및 수송층 또는 정공 차단층은 알칼리 금속 및 알칼리 토금속 중에서 선택되는 1종 또는 2종 이상의 n형 도펀트를 포함하는 것인 유기 발광 소자.
PCT/KR2020/018687 2020-02-21 2020-12-18 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 WO2021167222A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080086918.6A CN114846011A (zh) 2020-02-21 2020-12-18 杂环化合物和包含其的有机发光器件
US17/784,423 US20230053612A1 (en) 2020-02-21 2020-12-18 Heterocyclic compound and organic light-emitting device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0021366 2020-02-21
KR1020200021366A KR102667147B1 (ko) 2020-02-21 2020-02-21 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2021167222A1 true WO2021167222A1 (ko) 2021-08-26

Family

ID=77390939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018687 WO2021167222A1 (ko) 2020-02-21 2020-12-18 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Country Status (4)

Country Link
US (1) US20230053612A1 (ko)
KR (1) KR102667147B1 (ko)
CN (1) CN114846011A (ko)
WO (1) WO2021167222A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124433A (zh) * 2022-07-12 2022-09-30 北京八亿时空液晶科技股份有限公司 一种螺二芴衍生物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120031684A (ko) * 2010-09-27 2012-04-04 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
US20130105767A1 (en) * 2011-11-01 2013-05-02 Jin-Sheng Lin Carbazole derivatives and organic light emitting diodes comprising the same
KR20140009019A (ko) * 2012-07-05 2014-01-22 (주)씨에스엘쏠라 신규한 유기발광화합물 및 이를 포함하는 유기전기발광소자
KR20170113342A (ko) * 2016-03-28 2017-10-12 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
KR20190013565A (ko) * 2017-07-28 2019-02-11 주식회사 엘지화학 플루오렌 유도체 및 이를 포함하는 유기 발광 소자

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628438B1 (ko) 2012-05-31 2016-06-08 주식회사 엘지화학 함질소 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
KR20180055206A (ko) * 2016-11-16 2018-05-25 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102080286B1 (ko) * 2017-05-22 2020-04-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102145663B1 (ko) * 2017-06-30 2020-08-19 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102109257B1 (ko) * 2017-07-11 2020-05-11 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120031684A (ko) * 2010-09-27 2012-04-04 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
US20130105767A1 (en) * 2011-11-01 2013-05-02 Jin-Sheng Lin Carbazole derivatives and organic light emitting diodes comprising the same
KR20140009019A (ko) * 2012-07-05 2014-01-22 (주)씨에스엘쏠라 신규한 유기발광화합물 및 이를 포함하는 유기전기발광소자
KR20170113342A (ko) * 2016-03-28 2017-10-12 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
KR20190013565A (ko) * 2017-07-28 2019-02-11 주식회사 엘지화학 플루오렌 유도체 및 이를 포함하는 유기 발광 소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124433A (zh) * 2022-07-12 2022-09-30 北京八亿时空液晶科技股份有限公司 一种螺二芴衍生物及其应用

Also Published As

Publication number Publication date
KR102667147B1 (ko) 2024-05-17
US20230053612A1 (en) 2023-02-23
CN114846011A (zh) 2022-08-02
KR20210106645A (ko) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2021025328A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2019235873A1 (ko) 유기 발광 소자
WO2019168367A1 (ko) 유기 발광 소자
WO2020091521A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019164218A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2019203613A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021125813A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020122671A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022103049A1 (ko) 안트라센계 화합물 및 이를 포함하는 유기 발광 소자
WO2022102992A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2020149610A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2016140551A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021167222A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022250386A1 (ko) 유기 발광 소자
WO2022108258A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021125814A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021182834A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246837A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2020153652A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020091506A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920373

Country of ref document: EP

Kind code of ref document: A1