WO2021167155A1 - Small broadband amplifier circuit - Google Patents

Small broadband amplifier circuit Download PDF

Info

Publication number
WO2021167155A1
WO2021167155A1 PCT/KR2020/003817 KR2020003817W WO2021167155A1 WO 2021167155 A1 WO2021167155 A1 WO 2021167155A1 KR 2020003817 W KR2020003817 W KR 2020003817W WO 2021167155 A1 WO2021167155 A1 WO 2021167155A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
terminal
amplifier circuit
amplification stage
output
Prior art date
Application number
PCT/KR2020/003817
Other languages
French (fr)
Korean (ko)
Inventor
변철우
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Publication of WO2021167155A1 publication Critical patent/WO2021167155A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/083Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers
    • H03F1/086Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers with FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • H03F1/48Modifications of amplifiers to extend the bandwidth of aperiodic amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • H03F1/48Modifications of amplifiers to extend the bandwidth of aperiodic amplifiers
    • H03F1/486Modifications of amplifiers to extend the bandwidth of aperiodic amplifiers with IC amplifier blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45638Indexing scheme relating to differential amplifiers the LC comprising one or more coils

Definitions

  • the present invention relates to an amplifier circuit, and more particularly, to a small wideband amplifier circuit using a feedforward capacitor.
  • FIG. 1 shows a schematic configuration of a conventional transmission/reception circuit.
  • the transmitting side transmits a signal amplified through the broadband amplifier 10 through the transmitting unit 20 .
  • the receiving side amplifies the signal received through the receiving unit 30 through the wideband amplifier 40 and processes the amplified signal.
  • FIG. 2 is a circuit diagram of a common source differential amplifier used in a conventional wideband amplifier.
  • a typical conventional common-source differential amplifier as illustrated in FIG. 2 has normal linearity and gain characteristics, but has a limited bandwidth.
  • FIG. 3 shows an amplifier circuit proposed in US Patent No. 8593207 using an inductive peaking technique using an inductor to improve a limited bandwidth.
  • the inductor consumes a large chip area.
  • FIG. 4 is an amplifier circuit presented in US Patent No. 6784749, and an active inductor using a transistor is proposed to reduce the chip area.
  • the active inductor consumes a small chip area, but increases the load capacitance and non-linearity and additional noise characteristics.
  • FIG. 5 shows a Cherry-Hooper amplifier, which is an amplifier circuit presented in US Patent No. 8729452, and uses an additional transistor to improve the bandwidth, but there is a problem in that the bandwidth is improved but power consumption is increased.
  • the technical problem to be solved by the present invention is to provide a miniature broadband amplifier circuit that improves conventional problems such as an increase in chip area, an increase in parasitic capacitors, nonlinear characteristics, deterioration of noise, and characteristics of increasing power consumption.
  • An amplifier circuit includes a first transistor and a second transistor forming a differential pair, a first amplifying stage for amplifying and outputting a differential input signal input through the first input terminal and the second input terminal, and forming a differential pair a second amplification stage including a third transistor and a fourth transistor, amplifying a signal output from the first amplifying stage and outputting the signal through a first output terminal and a second output terminal, and connecting the first input terminal and the first output terminal a first feedforward capacitor, and a second feedforward capacitor connecting the second input terminal and the second output terminal.
  • the first input terminal is connected to the first terminal of the first transistor
  • the second input terminal is connected to the first terminal of the second transistor
  • the second terminal of the first transistor and the first terminal of the third transistor are connected.
  • a terminal is connected
  • a second terminal of the second transistor is connected to a first terminal of the fourth transistor
  • the first output terminal is connected to a second terminal of the third transistor
  • the second output terminal is connected to the first terminal 4 may be connected to the second terminal of the transistor.
  • the first to fourth transistors may be metal oxide semiconductor field effect transistors (MOSFETs).
  • MOSFETs metal oxide semiconductor field effect transistors
  • the first feedforward capacitor connects the gate terminal of the first transistor and the drain terminal of the third transistor
  • the second feedforward capacitor connects the gate terminal of the second transistor and the drain terminal of the fourth transistor.
  • the first amplification stage and the second amplification stage may be configured as a common-source amplifier.
  • Each source terminal of the first transistor and the second transistor is connected to a first current source for generating a constant current, and each source terminal of the third transistor and the fourth transistor is connected to a second current source for generating a constant current,
  • Each drain terminal of the first transistor and the second transistor is connected to a first load resistor and a second load resistor connected to a driving voltage source, and each drain terminal of the third transistor and the fourth transistor is connected to a driving voltage source may be connected to a third load resistor and a fourth load resistor.
  • a 3-dB bandwidth may increase and a damping factor may decrease.
  • the present invention it is possible to provide a small amplifier circuit capable of realizing a wide bandwidth without deterioration of chip area, parasitic capacitor, nonlinearity, noise, and power consumption characteristics.
  • FIG. 1 shows a schematic configuration of a conventional transmission/reception circuit.
  • FIG. 6 is a miniature broadband amplifier circuit according to the present invention.
  • FIG. 8 is a graph illustrating a bandwidth change according to a change in the feed-forward capacitor capacity of the amplifier circuit according to the present invention.
  • FIG. 9 is a graph showing a bandwidth change according to the presence or absence of a feed forward capacitor of the amplifier circuit according to the present invention.
  • FIG. 10 is a diagram illustrating a manufacturing circuit and a layout according to an embodiment of a broadband amplifier circuit according to the present invention.
  • FIG. 11 is a graph illustrating an increase in the bandwidth of a receiver using a broadband amplifier circuit according to the present invention.
  • FIG. 6 is a miniature broadband amplifier circuit according to the present invention.
  • the small broadband amplifier circuit includes a first amplification stage 100 , a second amplification stage 200 , a first feedforward capacitor C F1 and a second feedforward capacitor C F2 ). may include.
  • the first amplification stage 100 amplifies the differential input signal V IN1 -V IN2 input through the first input terminal BB IN1 and the second input terminal BB IN12 and outputs the amplified signal V OUT1 -V OUT2 . 2 can be output to the amplification stage 200 .
  • the second amplifier stage 200 has a first output terminal (OUT1 BB) the amplification stage 100 a signal (V OUT1 OUT2 -V) signal (V OUT3 OUT4 -V) which amplifies the output from the second output terminal ( It can be output through BB OUT2 ).
  • the first amplification stage 100 and the second amplification stage 200 may be configured as a common-source amplifier.
  • the first amplification stage 100 includes a first transistor M 1 , a second transistor M 2 , a first current source I 1 , a first load resistor R D1 , and a second load resistor R D2 .
  • the first transistor M 1 and the second transistor M 2 may be implemented as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) forming a differential pair.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • Each gate terminal of the first transistor M 1 and the second transistor M 2 is connected to the first input terminal BB IN1 and the second input terminal BB IN12 , respectively, and a differential input signal V IN1 -V IN2 ) can be input.
  • a first current source I 1 generating a constant current may be commonly connected to each source terminal of the first transistor M 1 and the second transistor M 2 .
  • a first load resistor R D1 and a second load resistor R D2 connected to the driving voltage source V DD may be connected to respective drain terminals of the first transistor M 1 and the second transistor M 2 , respectively. have.
  • the first load resistor R D1 and the second load resistor R D2 may have the same resistance value.
  • the second amplification stage 200 includes a third transistor M 3 , a fourth transistor M 4 , a second current source I 2 , a third load resistor R D3 , and a fourth load resistor R D4 .
  • the third transistor M 3 and the fourth transistor M 4 may be implemented as MOSFETs forming a differential pair.
  • a second current source I 2 generating a constant current may be commonly connected to each source terminal of the third transistor M 3 and the fourth transistor M 4 .
  • a third load resistor R D3 and a fourth load resistor R D4 connected to the driving voltage source V DD may be respectively connected to the drain terminals of the third transistor M 3 and the fourth transistor M 4 , respectively. have.
  • the third load resistor R D3 and the fourth load resistor R D4 may have the same resistance value.
  • Each gate terminal of the third transistor M 3 and the fourth transistor M 4 is connected to respective drain terminals of the first transistor M 1 and the second transistor M 2 , the first amplification stage 100 A signal (V OUT1 -V OUT2 ) obtained by amplifying the differential input signal (V IN1 -V IN2 ) may be received.
  • Each drain terminal of the third transistor M 3 and the fourth transistor M 4 is connected to the first output terminal BB OUT1 and the second output terminal BB OUT2 , and the signal amplified in the second amplification stage 200 . (V OUT3 -V OUT4 ) can be output.
  • the first feedforward capacitor C F1 may connect the first input terminal BB IN1 and the first output terminal BB OUT1 . That is, the first feedforward capacitor C F1 may connect the gate terminal of the first transistor M 1 and the drain terminal of the third transistor M 3 .
  • the second feedforward capacitor C F2 may connect the second input terminal BB IN2 and the second output terminal BB OUT2 . That is, the second feedforward capacitor C F2 may connect the gate terminal of the second transistor M 2 and the drain terminal of the fourth transistor M 4 .
  • the first feedforward capacitor C F1 and the second feedforward capacitor C F2 may be implemented as capacitors C F having the same capacitance.
  • the voltage gain of the wideband amplifier according to the present invention is obtained using the equivalent circuit illustrated in FIG. 7 , as shown in Equation 1 below.
  • the DC voltage gain is , and a, b, and c are as follows.
  • g m1 , g m3 are transconductances of the first transistor M 1 and the third transistor M 3
  • C D1 , C D3 are the first transistor M 1 and the third transistor M 3
  • R D3 is the load resistance at the drains of the first and third transistors M 1 and M 3
  • C F , C IN , R S are the feedforward capacitors and input capacitances and source resistance.
  • Equation 3 is located outside the bandwidth, and the X and Y values are as shown in Equation 3 below.
  • the bandwidth of the amplifier circuit according to the present invention is two complex poles ( , ) is determined by the damping factor ( ) and the natural frequency ( ), the 3-dB bandwidth of the amplifier can be determined, as shown in Equation 4 below.
  • the amplifier according to the present invention can determine the 3-dB bandwidth of the amplifier by adjusting the damping factor and natural frequency by adding a feedforward capacitor (CF ).
  • CF feedforward capacitor
  • the bandwidth of the amplifier increases and with increasing capacity of the feed-forward capacitor (C F), the damping factor decreases. If the damping factor value is selected so that the amplifier can operate stably without oscillation, it is possible to realize a wide bandwidth without increasing the chip area, increasing parasitic capacitors, non-linear characteristics, deterioration of noise, and increasing power consumption.
  • FIG. 9 is a graph showing a bandwidth change according to the presence or absence of a feed forward capacitor of the amplifier circuit according to the present invention.
  • the bandwidth of the amplifier circuit according to the present invention is increased. It can be seen that when a damping factor of 0.52 is selected, the 3-dB bandwidth increases from 7.82 GHz to 11.75 GHz.
  • FIG. 10 is a diagram illustrating a manufacturing circuit and a layout according to an embodiment of a broadband amplifier circuit according to the present invention.
  • Feed-forward capacitor (C F) shows that to be realized by utilizing the free space between the transistor and the connection lines, a possible implementation without consuming additional chip area.
  • FIG. 11 is a graph illustrating an increase in the bandwidth of a receiver using a broadband amplifier circuit according to the present invention.
  • the 3-dB bandwidth of the RF receiver to which the broadband amplifier according to the present invention shown in FIG. 10 is applied increases from 5.9 GHz to 8.5 GHz.
  • the small broadband amplifier circuit according to the present invention can be utilized not only for 5G mobile communication but also for 6G mobile communication, wireless LAN, optical communication, and wired communication. It can be used in broadband amplifiers such as RF transmitters and receivers, wired communication transceivers, and baseband transceivers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

The present invention relates to a small broadband amplifier circuit. The amplifier circuit according to the present invention comprises: a first amplification stage which includes a first transistor and a second transistor that form a differential pair, and which amplifies and outputs a differential input signal inputted through a first input terminal and a second input terminal; a second amplification stage which includes a third transistor and a fourth transistor that form a differential pair, and which amplifies a signal output from the first amplification stage so as to output same through the first and second output terminals; a first feedforward capacitor for connecting the first input terminal and the first output terminal; and a second feedforward capacitor for connecting the second input terminal and the second output terminal. According to the present invention, provided is the small amplifier circuit, which can implement a wide bandwidth without degradation in chip area, parasitic capacitor, nonlinearity, noise, and power consumption characteristics.

Description

소형 광대역 증폭기 회로Miniature Broadband Amplifier Circuit
본 발명은 증폭기 회로에 관한 것으로, 보다 자세하게는 피드포워드(Feedforward) 커패시터를 사용한 소형 광대역 증폭기 회로에 관한 것이다.The present invention relates to an amplifier circuit, and more particularly, to a small wideband amplifier circuit using a feedforward capacitor.
최근 휴대폰과 스마트폰의 사용 증가로 인하여 데이터 트래픽이 증가하고 있으며, 사물인터넷 등 커넥티드 디바이스의 수가 증가하고 있다. 현재 4세대 LTE가 광범위하게 보급 중이며 5G 초입 단계에 있다. 향후 신사업 및 생산 데이터가 기하급수적으로 늘어남에 따라 5세대 이동통신 발전의 가속화와 6G 이동통신에 대한 요구가 증대될 것으로 기대되고 있다.Recently, data traffic is increasing due to the increase in the use of mobile phones and smart phones, and the number of connected devices such as the Internet of Things is increasing. Currently, 4G LTE is widely distributed and is in the initial stage of 5G. As new business and production data increase exponentially in the future, it is expected that the demand for 5G mobile communication will accelerate and the demand for 6G mobile communication will increase.
도 1은 종래의 송수신 회로의 개략적 구성을 나타낸 것이다.1 shows a schematic configuration of a conventional transmission/reception circuit.
도 1을 참고하면, RF, 광, 유선 통신에 있어서 송신측에서는 광대역 증폭기(10)를 통해 증폭된 신호를 송신부(20)를 통해 송신한다. 그리고 수신측에서는 수신부(30)를 통해 수신된 신호를 광대역 증폭기(40)를 통해 증폭하여 처리한다.Referring to FIG. 1 , in RF, optical, and wired communication, the transmitting side transmits a signal amplified through the broadband amplifier 10 through the transmitting unit 20 . In addition, the receiving side amplifies the signal received through the receiving unit 30 through the wideband amplifier 40 and processes the amplified signal.
도 2는 종래 광대역 증폭기에 이용된 공통 소스 차동 증폭기의 회로도이다.2 is a circuit diagram of a common source differential amplifier used in a conventional wideband amplifier.
도 2에 예시한 것과 같은 종래 일반적인 공통 소스 차동 증폭기는 선형성, 이득 특성은 보통 수준이나 제한된 대역폭을 가진다.A typical conventional common-source differential amplifier as illustrated in FIG. 2 has normal linearity and gain characteristics, but has a limited bandwidth.
도 3은 미국 특허 제8593207호에서 제시된 증폭기 회로로 제한된 대역폭을 향상 시키기 위해서 인덕터를 이용한 인덕티브 피킹(Inductive peaking) 기술을 사용하였다. 그러나 인덕터가 큰 칩 면적을 소모하는 문제점이 있었다.3 shows an amplifier circuit proposed in US Patent No. 8593207 using an inductive peaking technique using an inductor to improve a limited bandwidth. However, there is a problem that the inductor consumes a large chip area.
도 4는 미국 특허 제6784749호에서 제시된 증폭기 회로로 칩 면적을 줄이기 위해 트랜지스터를 이용한 액티브 인덕터(Active Inductor)를 제안하였으나, 액티브 인덕터는 작은 칩 면적을 소모하지만 부하 커패시턴스(Load Capacitance) 증가, 비선형성 및 추가 노이즈 특성을 가지는 문제가 있었다.FIG. 4 is an amplifier circuit presented in US Patent No. 6784749, and an active inductor using a transistor is proposed to reduce the chip area. However, the active inductor consumes a small chip area, but increases the load capacitance and non-linearity and additional noise characteristics.
도 5는 미국 특허 제8729452호에서 제시된 증폭기 회로인 Cherry-Hooper 증폭기로 추가 트랜지스터를 사용하여 대역폭을 향상시키지만, 대역폭이 향상되는 대신 전력소모가 증가하는 문제가 있었다.5 shows a Cherry-Hooper amplifier, which is an amplifier circuit presented in US Patent No. 8729452, and uses an additional transistor to improve the bandwidth, but there is a problem in that the bandwidth is improved but power consumption is increased.
이와 같이 종래에는 구현되는 광대역 증폭기 기술에 따라 칩 면적 증가, 기생 커패시터 증가, 비선형 특성, 노이즈 악화, 전력소모 증가 특성 등의 문제가 있었다.As such, conventionally, there have been problems such as an increase in chip area, an increase in parasitic capacitors, a nonlinear characteristic, a deterioration in noise, and an increase in power consumption according to the implemented broadband amplifier technology.
따라서 본 발명이 해결하고자 하는 기술적 과제는 종래의 칩 면적 증가, 기생 커패시터 증가, 비선형 특성, 노이즈 악화, 전력소모 증가 특성 등의 문제를 개선하는 소형 광대역 증폭기 회로를 제공하는 것이다.Accordingly, the technical problem to be solved by the present invention is to provide a miniature broadband amplifier circuit that improves conventional problems such as an increase in chip area, an increase in parasitic capacitors, nonlinear characteristics, deterioration of noise, and characteristics of increasing power consumption.
본 발명에 따른 증폭기 회로는 차동쌍을 이루는 제1 트랜지스터 및 제2 트랜지스터를 포함하고, 제1 입력단과 제2 입력단을 통해 입력되는 차동 입력 신호를 증폭하여 출력하는 제1 증폭 스테이지, 차동쌍을 이루는 제3 트랜지스터 및 제4 트랜지스터를 포함하고, 상기 제1 증폭 스테이지로부터 출력되는 신호를 증폭하여 제1 출력단과 제2 출력단을 통해 출력하는 제2 증폭 스테이지, 상기 제1 입력단과 상기 제1 출력단을 연결하는 제1 피드포워드 커패시터, 그리고 상기 제2 입력단과 상기 제2 출력단을 연결하는 제2 피드포워드 커패시터를 포함한다.An amplifier circuit according to the present invention includes a first transistor and a second transistor forming a differential pair, a first amplifying stage for amplifying and outputting a differential input signal input through the first input terminal and the second input terminal, and forming a differential pair a second amplification stage including a third transistor and a fourth transistor, amplifying a signal output from the first amplifying stage and outputting the signal through a first output terminal and a second output terminal, and connecting the first input terminal and the first output terminal a first feedforward capacitor, and a second feedforward capacitor connecting the second input terminal and the second output terminal.
상기 제1 입력단은 상기 제1 트랜지스터의 제1 단자와 연결되고, 상기 제2 입력단은 상기 제2 트랜지스터의 제1 단자와 연결되며, 상기 제1 트랜지스터의 제2 단자와 상기 제3 트랜지스터의 제1 단자가 연결되고, 상기 제2 트랜지스터의 제2 단자와 상기 제4 트랜지스터의 제1 단자가 연결되며, 상기 제1 출력단은 상기 제3 트랜지스터의 제2 단자와 연결되고, 상기 제2 출력단은 상기 제4 트랜지스터의 제2 단자와 연결될 수 있다.The first input terminal is connected to the first terminal of the first transistor, the second input terminal is connected to the first terminal of the second transistor, and the second terminal of the first transistor and the first terminal of the third transistor are connected. a terminal is connected, a second terminal of the second transistor is connected to a first terminal of the fourth transistor, the first output terminal is connected to a second terminal of the third transistor, and the second output terminal is connected to the first terminal 4 may be connected to the second terminal of the transistor.
상기 제1 내지 제4 트랜지스터는 MOSFET(Metal Oxide Semiconductor Field Effect transistor)일 수 있다.The first to fourth transistors may be metal oxide semiconductor field effect transistors (MOSFETs).
상기 제1 피드포워드 커패시터는 상기 제1 트랜지스터의 게이트 단자와 상기 제3 트랜지스터의 드레인 단자를 연결하고, 상기 제2 피드포워드 커패시터는 상기 제2 트랜지스터의 게이트 단자와 상기 제4 트랜지스터의 드레인 단자를 연결할 수 있다.The first feedforward capacitor connects the gate terminal of the first transistor and the drain terminal of the third transistor, and the second feedforward capacitor connects the gate terminal of the second transistor and the drain terminal of the fourth transistor. can
상기 제1 증폭 스테이지와 상기 제2 증폭 스테이지는 공통-소스 증폭기로서 구성될 수 있다.The first amplification stage and the second amplification stage may be configured as a common-source amplifier.
상기 제1 트랜지스터와 상기 제2 트랜지스터의 각 소스 단자는 정전류를 생성하는 제1 전류원에 연결되고, 상기 제3 트랜지스터와 상기 제4 트랜지스터의 각 소스 단자는 정전류를 생성하는 제2 전류원에 연결되며, 상기 제1 트랜지스터와 상기 제2 트랜지스터의 각 드레인 단자는 구동 전압원에 연결되는 제1 부하 저항 및 제2 부하 저항에 연결되고, 상기 제3 트랜지스터와 상기 제4 트랜지스터의 각 드레인 단자는 구동 전압원에 연결되는 제3 부하 저항 및 제4 부하 저항에 연결될 수 있다.Each source terminal of the first transistor and the second transistor is connected to a first current source for generating a constant current, and each source terminal of the third transistor and the fourth transistor is connected to a second current source for generating a constant current, Each drain terminal of the first transistor and the second transistor is connected to a first load resistor and a second load resistor connected to a driving voltage source, and each drain terminal of the third transistor and the fourth transistor is connected to a driving voltage source may be connected to a third load resistor and a fourth load resistor.
상기 제1 피드포워드 커패시터 및 상기 제2 피드포워드 커패시터의 용량이 증가함에 따라 3-dB 대역폭이 증가하고, 댐핑 팩터(Damping Factor)는 감소할 수 있다.As capacitances of the first feedforward capacitor and the second feedforward capacitor increase, a 3-dB bandwidth may increase and a damping factor may decrease.
본 발명에 의하면 칩 면적, 기생 캐패시터, 비선형, 노이즈, 전력소모 특성 열화 없이 광대역 구현이 가능한 소형 증폭기 회로를 제공할 수 있다.According to the present invention, it is possible to provide a small amplifier circuit capable of realizing a wide bandwidth without deterioration of chip area, parasitic capacitor, nonlinearity, noise, and power consumption characteristics.
도 1은 종래의 송수신 회로의 개략적 구성을 나타낸 것이다.1 shows a schematic configuration of a conventional transmission/reception circuit.
도 2는 종래 광대역 증폭기에 이용된 공통 소스 차동 증폭기 회로이다.2 is a common-source differential amplifier circuit used in a conventional wideband amplifier.
도 3은 미국 특허 제8593207호에서 제시된 증폭기 회로이다.3 is an amplifier circuit presented in US Patent No. 8593207.
도 4는 미국 특허 제6784749호에서 제시된 증폭기 회로이다.4 is an amplifier circuit presented in US Patent No. 6784749.
도 5는 미국 특허 제8729452호에서 제시된 증폭기 회로이다.5 is an amplifier circuit presented in US Pat. No. 8729452.
도 6은 본 발명에 따른 소형 광대역 증폭기 회로이다.6 is a miniature broadband amplifier circuit according to the present invention.
도 7은 도 6의 광대역 증폭기 회로의 반회로 차동모드 등가 회로이다.7 is a half-circuit differential mode equivalent circuit of the broadband amplifier circuit of FIG.
도 8은 본 발명에 따른 증폭기 회로의 피드 포워드 커패시터 용량 변화에 따른 대역폭 변화를 나타낸 그래프이다.8 is a graph illustrating a bandwidth change according to a change in the feed-forward capacitor capacity of the amplifier circuit according to the present invention.
도 9는 본 발명에 따른 증폭기 회로의 피드 포워드 커패시터 유무에 따른 대역폭 변화를 나타낸 그래프이다.9 is a graph showing a bandwidth change according to the presence or absence of a feed forward capacitor of the amplifier circuit according to the present invention.
도 10은 본 발명에 따른 광대역 증폭기 회로 실시예에 따른 제작 회로와 레이아웃을 나타낸 도면이다. 10 is a diagram illustrating a manufacturing circuit and a layout according to an embodiment of a broadband amplifier circuit according to the present invention.
도 11은 본 발명에 따른 광대역 증폭기 회로를 활용한 수신부의 대역폭 증가를 나타낸 그래프이다.11 is a graph illustrating an increase in the bandwidth of a receiver using a broadband amplifier circuit according to the present invention.
이하 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있는 바람직한 실시 예를 상세히 설명한다. 그러나 이들 실시 예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment in which a person of ordinary skill in the art to which the present invention pertains can easily practice the present invention will be described in detail. However, these examples are for explaining the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited thereby.
본 발명이 해결하고자 하는 과제의 해결 방안을 명확하게 하기 위한 발명의 구성을 본 발명의 바람직한 실시 예에 근거하여 첨부 도면을 참조하여 상세히 설명하되, 도면의 구성요소들에 참조번호를 부여함에 있어서 동일 구성요소에 대해서는 비록 다른 도면상에 있더라도 동일 참조번호를 부여하였으며 당해 도면에 대한 설명시 필요한 경우 다른 도면의 구성요소를 인용할 수 있음을 미리 밝혀둔다. 아울러 본 발명의 바람직한 실시 예에 대한 동작 원리를 상세하게 설명함에 있어 본 발명과 관련된 공지 기능 혹은 구성에 대한 구체적인 설명 그리고 그이외의 제반 사항이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.The configuration of the invention for clarifying the solution of the problem to be solved by the present invention will be described in detail with reference to the accompanying drawings based on a preferred embodiment of the present invention, but the same in assigning reference numbers to the components of the drawings For the components, even if they are on different drawings, the same reference numbers are given, and it is noted in advance that the components of other drawings can be cited when necessary in the description of the drawings. In addition, when it is determined that detailed descriptions of well-known functions or configurations related to the present invention and other matters may unnecessarily obscure the gist of the present invention in explaining the principle of operation of the preferred embodiment of the present invention in detail, A detailed description thereof will be omitted.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작, 또는 소자 외에 하나 이상의 다른 구성요소, 단계, 동작, 또는 소자의 존재 또는 추가를 배제하지 않는다.In addition, throughout the specification, when a part is 'connected' with another part, it is not only 'directly connected' but also 'indirectly connected' with another element interposed therebetween. include As used herein, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” or “comprising” excludes the presence or addition of one or more other components, steps, acts, or elements in addition to the stated elements, steps, acts, or elements. I never do that.
도 6은 본 발명에 따른 소형 광대역 증폭기 회로이다.6 is a miniature broadband amplifier circuit according to the present invention.
도 6을 참고하면, 본 발명에 따른 소형 광대역 증폭기 회로는 제1 증폭 스테이지(100), 제2 증폭 스테이지(200), 제1 피드포워드 커패시터(C F1) 및 제2 피드포워드 커패시터(C F2)를 포함할 수 있다.Referring to FIG. 6 , the small broadband amplifier circuit according to the present invention includes a first amplification stage 100 , a second amplification stage 200 , a first feedforward capacitor C F1 and a second feedforward capacitor C F2 ). may include.
제1 증폭 스테이지(100)는 제1 입력단(BB IN1)과 제2 입력단(BB IN12)을 통해 입력되는 차동 입력 신호(V IN1-V IN2)를 증폭한 신호(V OUT1-V OUT2)를 제2 증폭 스테이지(200)로 출력할 수 있다. 제2 증폭 스테이지(200)는 제1 증폭 스테이지(100)에서 출력된 신호(V OUT1-V OUT2)를 증폭한 신호(V OUT3-V OUT4)를 제1 출력단(BB OUT1)과 제2 출력단(BB OUT2)을 통해 출력할 수 있다.The first amplification stage 100 amplifies the differential input signal V IN1 -V IN2 input through the first input terminal BB IN1 and the second input terminal BB IN12 and outputs the amplified signal V OUT1 -V OUT2 . 2 can be output to the amplification stage 200 . The second amplifier stage 200 has a first output terminal (OUT1 BB) the amplification stage 100 a signal (V OUT1 OUT2 -V) signal (V OUT3 OUT4 -V) which amplifies the output from the second output terminal ( It can be output through BB OUT2 ).
제1 증폭 스테이지(100)와 제2 증폭 스테이지(200)는 공통-소스 증폭기로서 구성될 수 있다.The first amplification stage 100 and the second amplification stage 200 may be configured as a common-source amplifier.
제1 증폭 스테이지(100)는 제1 트랜지스터(M 1), 제2 트랜지스터(M 2), 제1 전류원(I 1), 제1 부하 저항(R D1) 및 제2 부하 저항(R D2)을 포함할 수 있다.The first amplification stage 100 includes a first transistor M 1 , a second transistor M 2 , a first current source I 1 , a first load resistor R D1 , and a second load resistor R D2 . may include
제1 트랜지스터(M 1) 및 제2 트랜지스터(M 2)는 차동쌍을 이루는 MOSFET(Metal Oxide Semiconductor Field Effect transistor)으로 구현할 수 있다.The first transistor M 1 and the second transistor M 2 may be implemented as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) forming a differential pair.
제1 트랜지스터(M 1) 및 제2 트랜지스터(M 2)의 각 게이트 단자는 제1 입력단(BB IN1)과 제2 입력단(BB IN12)에 각각 연결되어, 차동 입력 신호(V IN1-V IN2)를 입력받을 수 있다.Each gate terminal of the first transistor M 1 and the second transistor M 2 is connected to the first input terminal BB IN1 and the second input terminal BB IN12 , respectively, and a differential input signal V IN1 -V IN2 ) can be input.
제1 트랜지스터(M 1) 및 제2 트랜지스터(M 2)의 각 소스 단자에는 정전류를 생성하는 제1 전류원(I 1)이 공통으로 접속될 수 있다. A first current source I 1 generating a constant current may be commonly connected to each source terminal of the first transistor M 1 and the second transistor M 2 .
제1 트랜지스터(M 1) 및 제2 트랜지스터(M 2)의 각 드레인 단자에는 구동 전압원(V DD)에 연결되는 제1 부하 저항(R D1) 및 제2 부하 저항(R D2)이 각각 연결될 수 있다. A first load resistor R D1 and a second load resistor R D2 connected to the driving voltage source V DD may be connected to respective drain terminals of the first transistor M 1 and the second transistor M 2 , respectively. have.
제1 부하 저항(R D1) 및 제2 부하 저항(R D2)은 서로 저항값이 동일할 수 있다.The first load resistor R D1 and the second load resistor R D2 may have the same resistance value.
제2 증폭 스테이지(200)는 제3 트랜지스터(M 3), 제4 트랜지스터(M 4), 제2 전류원(I 2), 제3 부하 저항(R D3) 및 제4 부하 저항(R D4)을 포함할 수 있다.The second amplification stage 200 includes a third transistor M 3 , a fourth transistor M 4 , a second current source I 2 , a third load resistor R D3 , and a fourth load resistor R D4 . may include
제3 트랜지스터(M 3) 및 제4 트랜지스터(M 4)는 차동쌍을 이루는 MOSFET으로 구현할 수 있다.The third transistor M 3 and the fourth transistor M 4 may be implemented as MOSFETs forming a differential pair.
제3 트랜지스터(M 3) 및 제4 트랜지스터(M 4)의 각 소스 단자에는 정전류를 생성하는 제2 전류원(I 2)이 공통으로 접속될 수 있다.A second current source I 2 generating a constant current may be commonly connected to each source terminal of the third transistor M 3 and the fourth transistor M 4 .
제3 트랜지스터(M 3) 및 제4 트랜지스터(M 4)의 각 드레인 단자에는 구동 전압원(V DD)에 연결되는 제3 부하 저항(R D3) 및 제4 부하 저항(R D4)이 각각 연결될 수 있다. A third load resistor R D3 and a fourth load resistor R D4 connected to the driving voltage source V DD may be respectively connected to the drain terminals of the third transistor M 3 and the fourth transistor M 4 , respectively. have.
제3 부하 저항(R D3) 및 제4 부하 저항(R D4)은 서로 저항값이 동일할 수 있다.The third load resistor R D3 and the fourth load resistor R D4 may have the same resistance value.
제3 트랜지스터(M 3) 및 제4 트랜지스터(M 4)의 각 게이트 단자는 제1 트랜지스터(M 1) 및 제2 트랜지스터(M 2)의 각 드레인 단자에 연결되어, 제1 증폭 스테이지(100)에서 차동 입력 신호(V IN1-V IN2)를 증폭한 신호(V OUT1-V OUT2)를 입력받을 수 있다.Each gate terminal of the third transistor M 3 and the fourth transistor M 4 is connected to respective drain terminals of the first transistor M 1 and the second transistor M 2 , the first amplification stage 100 A signal (V OUT1 -V OUT2 ) obtained by amplifying the differential input signal (V IN1 -V IN2 ) may be received.
제3 트랜지스터(M 3) 및 제4 트랜지스터(M 4)의 각 드레인 단자는 제1 출력단(BB OUT1)과 제2 출력단(BB OUT2)과 연결되어, 제2 증폭 스테이지(200)에서 증폭된 신호(V OUT3-V OUT4)를 출력할 수 있다.Each drain terminal of the third transistor M 3 and the fourth transistor M 4 is connected to the first output terminal BB OUT1 and the second output terminal BB OUT2 , and the signal amplified in the second amplification stage 200 . (V OUT3 -V OUT4 ) can be output.
제1 피드포워드 커패시터(C F1)는 제1 입력단(BB IN1)과 제1 출력단(BB OUT1)을 연결할 수 있다. 즉 제1 피드포워드 커패시터(C F1)는 제1 트랜지스터(M 1)의 게이트 단자와 제3 트랜지스터(M 3)의 드레인 단자를 연결할 수 있다.The first feedforward capacitor C F1 may connect the first input terminal BB IN1 and the first output terminal BB OUT1 . That is, the first feedforward capacitor C F1 may connect the gate terminal of the first transistor M 1 and the drain terminal of the third transistor M 3 .
제2 피드포워드 커패시터(C F2)는 제2 입력단(BB IN2)과 제2 출력단(BB OUT2)을 연결할 수 있다. 즉 제2 피드포워드 커패시터(C F2)는 제2 트랜지스터(M 2)의 게이트 단자와 제4 트랜지스터(M 4)의 드레인 단자를 연결할 수 있다.The second feedforward capacitor C F2 may connect the second input terminal BB IN2 and the second output terminal BB OUT2 . That is, the second feedforward capacitor C F2 may connect the gate terminal of the second transistor M 2 and the drain terminal of the fourth transistor M 4 .
제1 피드포워드 커패시터(C F1)와 제2 피드포워드 커패시터(C F2)는 커패시턴스가 동일한 커패시터(C F)로 구현할 수 있다.The first feedforward capacitor C F1 and the second feedforward capacitor C F2 may be implemented as capacitors C F having the same capacitance.
도 7은 도 6의 광대역 증폭기 회로의 반회로 차동모드 등가 회로이다.7 is a half-circuit differential mode equivalent circuit of the broadband amplifier circuit of FIG.
도 7에 예시한 등가 회로를 이용하여 본 발명에 따른 광대역 증폭기의 전압이득을 구하면 아래 수학식 1과 같다.The voltage gain of the wideband amplifier according to the present invention is obtained using the equivalent circuit illustrated in FIG. 7 , as shown in Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2020003817-appb-img-000001
Figure PCTKR2020003817-appb-img-000001
여기서, DC 전압이득은
Figure PCTKR2020003817-appb-img-000002
이며, a, b, c는 아래와 같다.
Here, the DC voltage gain is
Figure PCTKR2020003817-appb-img-000002
, and a, b, and c are as follows.
Figure PCTKR2020003817-appb-img-000003
Figure PCTKR2020003817-appb-img-000003
g m1, g m3는 제1 트랜지스터(M 1)와 제3 트랜지스터(M 3)의 트랜스컨덕턴스(transconductance)이고, C D1, C D3는 제1 트랜지스터(M 1)와 제3 트랜지스터(M 3)의 드레인에서 부하 커패시터이며, R D1, R D3는 제1 트랜지스터(M 1)와 제3 트랜지스터(M 3)의 드레인에서 부하 저항이고, C F, C IN, R S는 피드포워드 커패시터, 입력 커패시턴스 및 소스 저항이다.g m1 , g m3 are transconductances of the first transistor M 1 and the third transistor M 3 , and C D1 , C D3 are the first transistor M 1 and the third transistor M 3 . is a load capacitor at the drain of R D1 , R D3 is the load resistance at the drains of the first and third transistors M 1 and M 3 , and C F , C IN , R S are the feedforward capacitors and input capacitances and source resistance.
위에서 계산된 이득값으로부터 피드포워드 커패시터(C F)에 의해 아래 수학식 2에 예시된 것과 같이, 2개의 복소수 극점(complex pole)(
Figure PCTKR2020003817-appb-img-000004
,
Figure PCTKR2020003817-appb-img-000005
), 1개의 실수 극점(real pole)(
Figure PCTKR2020003817-appb-img-000006
) 및 2개의 복소수 영점(complex zero)(
Figure PCTKR2020003817-appb-img-000007
,
Figure PCTKR2020003817-appb-img-000008
)이 좌반평면(left-half-plane)에 형성되는 것을 알 수 있다.
As illustrated in the equation (2) from the gain value calculated on the bottom by the feed-forward capacitor (C F), 2 single pole complex (complex pole) (
Figure PCTKR2020003817-appb-img-000004
,
Figure PCTKR2020003817-appb-img-000005
), one real pole (
Figure PCTKR2020003817-appb-img-000006
) and two complex zeros (
Figure PCTKR2020003817-appb-img-000007
,
Figure PCTKR2020003817-appb-img-000008
) is formed on the left-half-plane.
[수학식 2][Equation 2]
Figure PCTKR2020003817-appb-img-000009
Figure PCTKR2020003817-appb-img-000009
여기서
Figure PCTKR2020003817-appb-img-000010
,
Figure PCTKR2020003817-appb-img-000011
,
Figure PCTKR2020003817-appb-img-000012
는 대역폭 밖에 위치하며, X, Y 값은 아래 수학식 3과 같다.
here
Figure PCTKR2020003817-appb-img-000010
,
Figure PCTKR2020003817-appb-img-000011
,
Figure PCTKR2020003817-appb-img-000012
is located outside the bandwidth, and the X and Y values are as shown in Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2020003817-appb-img-000013
Figure PCTKR2020003817-appb-img-000013
따라서 본 발명에 따른 증폭기 회로의 대역폭은 2개의 복소수 극점(
Figure PCTKR2020003817-appb-img-000014
,
Figure PCTKR2020003817-appb-img-000015
)에 의해 결정되며, 댐핑 팩터(Damping Factor)(
Figure PCTKR2020003817-appb-img-000016
)와 자연 주파수(
Figure PCTKR2020003817-appb-img-000017
)의 값에 따라 증폭기의 3-dB 대역폭을 결정할 수 있으며, 아래 수학식 4와 같다.
Therefore, the bandwidth of the amplifier circuit according to the present invention is two complex poles (
Figure PCTKR2020003817-appb-img-000014
,
Figure PCTKR2020003817-appb-img-000015
) is determined by the damping factor (
Figure PCTKR2020003817-appb-img-000016
) and the natural frequency (
Figure PCTKR2020003817-appb-img-000017
), the 3-dB bandwidth of the amplifier can be determined, as shown in Equation 4 below.
[수학식 4][Equation 4]
Figure PCTKR2020003817-appb-img-000018
Figure PCTKR2020003817-appb-img-000018
즉 본 발명에 따른 증폭기는 피드포워드 커패시터(C F)를 추가하여 댐핑 팩터와 자연 주파수를 조정하여 증폭기의 3-dB 대역폭을 결정할 수 있다. 증폭기의 대역폭은 도 8에 나타낸 것과 같이, 피드포워드 커패시터(C F)의 용량이 증가함에 따라 대역폭이 증가하며, 댐핑 팩터는 감소한다. 증폭기가 발진하지 않고 안정된 동작이 가능하도록 댐핑 팩터 값을 선택하면, 칩 면적증가, 기생 커패시터 증가, 비선형 특성, 노이즈 악화, 전력소모 증가 특성 없이 광대역 구현이 가능하다.That is, the amplifier according to the present invention can determine the 3-dB bandwidth of the amplifier by adjusting the damping factor and natural frequency by adding a feedforward capacitor (CF ). As shown in Figure 8 is the bandwidth of the amplifier, the bandwidth increases and with increasing capacity of the feed-forward capacitor (C F), the damping factor decreases. If the damping factor value is selected so that the amplifier can operate stably without oscillation, it is possible to realize a wide bandwidth without increasing the chip area, increasing parasitic capacitors, non-linear characteristics, deterioration of noise, and increasing power consumption.
도 9는 본 발명에 따른 증폭기 회로의 피드 포워드 커패시터 유무에 따른 대역폭 변화를 나타낸 그래프이다.9 is a graph showing a bandwidth change according to the presence or absence of a feed forward capacitor of the amplifier circuit according to the present invention.
도 9를 참고하면, 본 발명에 따른 증폭기 회로의 대역폭 증가를 확인할 수 있다. 댐핑 팩터를 0.52로 선택하였을 때 3-dB 대역폭은 7.82 GHz에서 11.75 GHz로 증가하는 것을 확인할 수 있다.Referring to FIG. 9 , it can be seen that the bandwidth of the amplifier circuit according to the present invention is increased. It can be seen that when a damping factor of 0.52 is selected, the 3-dB bandwidth increases from 7.82 GHz to 11.75 GHz.
도 10은 본 발명에 따른 광대역 증폭기 회로 실시예에 따른 제작 회로와 레이아웃을 나타낸 도면이다.10 is a diagram illustrating a manufacturing circuit and a layout according to an embodiment of a broadband amplifier circuit according to the present invention.
도 10은 본 발명에 따른 광대역 증폭기가 RF 수신부에 활용된 예이다. 피드포워드 커패시터(C F)는 트랜지스터와 연결선 사이의 빈 공간을 활용하여 구현 가능하여, 추가적인 칩 면적 소모없이 구현 가능한 것을 보여준다. 10 is an example in which the broadband amplifier according to the present invention is utilized in an RF receiver. Feed-forward capacitor (C F) shows that to be realized by utilizing the free space between the transistor and the connection lines, a possible implementation without consuming additional chip area.
도 11은 본 발명에 따른 광대역 증폭기 회로를 활용한 수신부의 대역폭 증가를 나타낸 그래프이다.11 is a graph illustrating an increase in the bandwidth of a receiver using a broadband amplifier circuit according to the present invention.
도 11을 참고하면, 도 10에 나타낸 본 발명에 따른 광대역 증폭기를 적용한 RF 수신부의 3-dB 대역폭이 5.9 GHz에서 8.5 GHz로 증가하는 것을 확인할 수 있다.Referring to FIG. 11 , it can be seen that the 3-dB bandwidth of the RF receiver to which the broadband amplifier according to the present invention shown in FIG. 10 is applied increases from 5.9 GHz to 8.5 GHz.
본 발명에 따른 소형 광대역 증폭기 회로는 5G 이동통신뿐 아니라 6G 이동통신, 무선랜, 광통신, 유선통신 등에 활용 가능하다. RF 송신기와 수신기, 유선 통신 송수신기, 베이스밴드(Baseband) 송수신기 등의 광대역 증폭기에 활용 가능하다.The small broadband amplifier circuit according to the present invention can be utilized not only for 5G mobile communication but also for 6G mobile communication, wireless LAN, optical communication, and wired communication. It can be used in broadband amplifiers such as RF transmitters and receivers, wired communication transceivers, and baseband transceivers.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiment of the present invention has been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements by those skilled in the art using the basic concept of the present invention as defined in the following claims are also provided. is within the scope of the

Claims (6)

  1. 차동쌍을 이루는 제1 트랜지스터 및 제2 트랜지스터를 포함하고, 제1 입력단과 제2 입력단을 통해 입력되는 차동 입력 신호를 증폭하여 출력하는 제1 증폭 스테이지,A first amplification stage comprising a first transistor and a second transistor forming a differential pair, and amplifying and outputting a differential input signal input through the first input terminal and the second input terminal;
    차동쌍을 이루는 제3 트랜지스터 및 제4 트랜지스터를 포함하고, 상기 제1 증폭 스테이지로부터 출력되는 신호를 증폭하여 제1 출력단과 제2 출력단을 통해 출력하는 제2 증폭 스테이지, a second amplification stage comprising a third transistor and a fourth transistor forming a differential pair, amplifying a signal output from the first amplification stage and outputting it through a first output terminal and a second output terminal;
    상기 제1 입력단과 상기 제1 출력단을 연결하는 제1 피드포워드 커패시터, 그리고a first feedforward capacitor connecting the first input terminal and the first output terminal; and
    상기 제2 입력단과 상기 제2 출력단을 연결하는 제2 피드포워드 커패시터a second feedforward capacitor connecting the second input terminal and the second output terminal
    를 포함하며,includes,
    상기 제1 입력단은 상기 제1 트랜지스터의 제1 단자와 연결되고, 상기 제2 입력단은 상기 제2 트랜지스터의 제1 단자와 연결되며, 상기 제1 트랜지스터의 제2 단자와 상기 제3 트랜지스터의 제1 단자가 연결되고, 상기 제2 트랜지스터의 제2 단자와 상기 제4 트랜지스터의 제1 단자가 연결되며, 상기 제1 출력단은 상기 제3 트랜지스터의 제2 단자와 연결되고, 상기 제2 출력단은 상기 제4 트랜지스터의 제2 단자와 연결되는 증폭기 회로.The first input terminal is connected to the first terminal of the first transistor, the second input terminal is connected to the first terminal of the second transistor, and the second terminal of the first transistor and the first terminal of the third transistor are connected. a terminal is connected, a second terminal of the second transistor is connected to a first terminal of the fourth transistor, the first output terminal is connected to a second terminal of the third transistor, and the second output terminal is connected to the first terminal 4 Amplifier circuit connected with the second terminal of the transistor.
  2. 제 1 항에서,In claim 1,
    상기 제1 내지 제4 트랜지스터는 MOSFET(Metal Oxide Semiconductor Field Effect transistor)인 증폭기 회로.and the first to fourth transistors are metal oxide semiconductor field effect transistors (MOSFETs).
  3. 제 2 항에서,In claim 2,
    상기 제1 피드포워드 커패시터는 상기 제1 트랜지스터의 게이트 단자와 상기 제3 트랜지스터의 드레인 단자를 연결하고,The first feedforward capacitor connects the gate terminal of the first transistor and the drain terminal of the third transistor,
    상기 제2 피드포워드 커패시터는 상기 제2 트랜지스터의 게이트 단자와 상기 제4 트랜지스터의 드레인 단자를 연결하는 증폭기 회로.The second feedforward capacitor is an amplifier circuit connecting the gate terminal of the second transistor and the drain terminal of the fourth transistor.
  4. 제 3 항에서,In claim 3,
    상기 제1 증폭 스테이지와 상기 제2 증폭 스테이지는 공통-소스 증폭기로서 구성되는 증폭기 회로.and the first amplification stage and the second amplification stage are configured as common-source amplifiers.
  5. 제 4 항에서,In claim 4,
    상기 제1 트랜지스터와 상기 제2 트랜지스터의 각 소스 단자는 정전류를 생성하는 제1 전류원에 연결되고,Each source terminal of the first transistor and the second transistor is connected to a first current source for generating a constant current,
    상기 제3 트랜지스터와 상기 제4 트랜지스터의 각 소스 단자는 정전류를 생성하는 제2 전류원에 연결되며,Each source terminal of the third transistor and the fourth transistor is connected to a second current source for generating a constant current,
    상기 제1 트랜지스터와 상기 제2 트랜지스터의 각 드레인 단자는 구동 전압원에 연결되는 제1 부하 저항 및 제2 부하 저항에 연결되고,Each drain terminal of the first transistor and the second transistor is connected to a first load resistor and a second load resistor connected to a driving voltage source,
    상기 제3 트랜지스터와 상기 제4 트랜지스터의 각 드레인 단자는 구동 전압원에 연결되는 제3 부하 저항 및 제4 부하 저항에 연결되는 증폭기 회로.and a drain terminal of each of the third transistor and the fourth transistor is connected to a third load resistor and a fourth load resistor connected to a driving voltage source.
  6. 제 5 항에서,In claim 5,
    상기 제1 피드포워드 커패시터 및 상기 제2 피드포워드 커패시터의 용량이 증가함에 따라 3-dB 대역폭이 증가하고, 댐핑 팩터(Damping Factor)는 감소하는 증폭기 회로.An amplifier circuit in which 3-dB bandwidth increases and a damping factor decreases as capacitances of the first feedforward capacitor and the second feedforward capacitor increase.
PCT/KR2020/003817 2020-02-20 2020-03-20 Small broadband amplifier circuit WO2021167155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200021189A KR102487060B1 (en) 2020-02-20 2020-02-20 Compact wide bandwidth amplifier circuit
KR10-2020-0021189 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021167155A1 true WO2021167155A1 (en) 2021-08-26

Family

ID=77391677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003817 WO2021167155A1 (en) 2020-02-20 2020-03-20 Small broadband amplifier circuit

Country Status (2)

Country Link
KR (1) KR102487060B1 (en)
WO (1) WO2021167155A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096825A1 (en) * 2005-10-31 2007-05-03 Nec Electronics Corporation Operational amplifier, integrating circuit, feedback amplifier, and controlling method of the feedback amplifier
KR20090047619A (en) * 2007-11-08 2009-05-13 엘지전자 주식회사 Wide band amplifier
KR20150139553A (en) * 2013-04-04 2015-12-11 퀄컴 인코포레이티드 Amplifiers with boosted or deboosted source degeneration inductance
KR20160068684A (en) * 2014-12-04 2016-06-15 삼성디스플레이 주식회사 AMPLIFIER, ELECTRONIC DEVICE INCLUDING THE SAME AND METHOD OF INCREASING 3dB LOSS FREQUENCY OF COMMON SOURCE AMPLIFIER
KR20190141439A (en) * 2018-06-14 2019-12-24 강원대학교산학협력단 Low-power, low-noise amplifier comprising negative feedback loop

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784749B1 (en) * 2003-02-24 2004-08-31 Intel Corporation Limiting amplifier with active inductor
KR101123232B1 (en) * 2010-07-20 2012-03-20 부산대학교 산학협력단 Amplifier circuit using feedforward
CN107800654B (en) * 2016-08-31 2021-09-21 美国莱迪思半导体公司 Line driver apparatus with combined feed-through capacitance and feed-forward equalization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096825A1 (en) * 2005-10-31 2007-05-03 Nec Electronics Corporation Operational amplifier, integrating circuit, feedback amplifier, and controlling method of the feedback amplifier
KR20090047619A (en) * 2007-11-08 2009-05-13 엘지전자 주식회사 Wide band amplifier
KR20150139553A (en) * 2013-04-04 2015-12-11 퀄컴 인코포레이티드 Amplifiers with boosted or deboosted source degeneration inductance
KR20160068684A (en) * 2014-12-04 2016-06-15 삼성디스플레이 주식회사 AMPLIFIER, ELECTRONIC DEVICE INCLUDING THE SAME AND METHOD OF INCREASING 3dB LOSS FREQUENCY OF COMMON SOURCE AMPLIFIER
KR20190141439A (en) * 2018-06-14 2019-12-24 강원대학교산학협력단 Low-power, low-noise amplifier comprising negative feedback loop

Also Published As

Publication number Publication date
KR102487060B1 (en) 2023-01-09
KR20210106247A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
US6066993A (en) Duplexer circuit apparatus provided with amplifier and impedance matching inductor
US5990737A (en) Balanced amplifier using single-ended output operational amplifiers
US20100045381A1 (en) Limiting amplifiers
EP0694229B1 (en) Multistage amplifier with hybrid nested miller compensation
WO2018151437A1 (en) Low-noise amplifier equipped with notch filtering
CN112910417B (en) Broadband high-efficiency microwave power amplifier
CN112511116B (en) Reconfigurable inter-stage matching broadband CMOS power amplifier
CN101507110A (en) Switch-less bidirectional amplifier
WO2017082575A1 (en) Differential transmission impedance amplifier
US20040164807A1 (en) Limiting amplifier with active inductor
WO2012021009A2 (en) Receiving device and method for removing mismatch in wireless communication system, and low-power amplifier therefor
CN103595361B (en) Amplifier
WO2021167155A1 (en) Small broadband amplifier circuit
CN210745089U (en) Radio frequency ultra-wideband driving amplifier chip
CN110798162B (en) Radio frequency ultra-wideband driving amplifier chip
US20030218502A1 (en) Variable gain amplifier
WO2023051298A1 (en) Power amplification circuit, power amplifier, and transmitter
CN100505524C (en) Limiting amplifiers
JP2004159195A (en) Amplifier circuit
US20060125556A1 (en) Signal amplifier and integrated circuit
KR100513970B1 (en) Source follower type preamplifier for improving bandwith
WO2013022241A2 (en) Radio frequency amplifier in communication system and method of controlling the same
CN114400983A (en) Bidirectional amplifier based on parasitic parameter fusion matching technology
CN110768636A (en) Stability compensation method and circuit structure for multistage operational amplifier
CN118249780B (en) Broadband impedance converter with input DC coupling and adjustable input bias

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919942

Country of ref document: EP

Kind code of ref document: A1