WO2021166785A1 - Light-emitting element, light-emitting element array, and display device - Google Patents

Light-emitting element, light-emitting element array, and display device Download PDF

Info

Publication number
WO2021166785A1
WO2021166785A1 PCT/JP2021/005146 JP2021005146W WO2021166785A1 WO 2021166785 A1 WO2021166785 A1 WO 2021166785A1 JP 2021005146 W JP2021005146 W JP 2021005146W WO 2021166785 A1 WO2021166785 A1 WO 2021166785A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
main surface
light
phosphor
Prior art date
Application number
PCT/JP2021/005146
Other languages
French (fr)
Japanese (ja)
Inventor
幹夫 滝口
大畑 豊治
享宏 小山
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022501848A priority Critical patent/JPWO2021166785A1/ja
Publication of WO2021166785A1 publication Critical patent/WO2021166785A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • F21V7/26Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present technology relates to a light emitting element, a light emitting element array, and a display device including an excitation light source and a phosphor.
  • a light emitting element equipped with an excitation light source such as an LED (Light Emitting Diode) and a phosphor is used in a display device or the like.
  • QD Quantum Dot
  • Patent Documents 1 and 2 disclose a configuration in which a QD layer is sandwiched between barrier films in a QD sheet used in a liquid crystal display device.
  • Patent Document 3 discloses a configuration in which the QD layer is sealed with a glass frit for each LED.
  • Patent Documents 4 and 5 have a configuration in which an LED is embedded in a reflector together with a QD layer.
  • Patent Document 6 discloses a configuration in which QD particles are individually sealed, or a plurality of QD particles are collectively sealed with a sealing film such as SiO 2.
  • Patent Documents 1 and 2 when a QD sheet in which a QD layer is sandwiched between barrier films is used in a method of driving for each pixel, the QD sheet is not separated for each pixel, so that cross talk (adjacent). Mixing of light between light emitting elements) occurs. Further, as described in Patent Document 3, if the QD layer is sealed with a glass frit for each LED, the thickness of the glass needs to be 100 ⁇ m or more, which makes miniaturization difficult. Further, since the mirror structure cannot be formed on the side wall of the QD layer, crosstalk cannot be suppressed between the light emitting elements, and the light extraction efficiency is low.
  • the size of the light emitting element becomes larger than that of the LED, and the excitation light source is independently driven for each subpixel. Not suitable for display devices.
  • the volume density of the sealing film is larger and the volume density of the QD is smaller than that in the method of sealing the entire QD layer. Therefore, it is not suitable for miniaturization of the element.
  • an object of the present technology is to provide a light emitting element, a light emitting element array, and a display device having high reliability and light extraction efficiency.
  • the light emitting device includes a base material, a phosphor layer, a first sealing film, a second sealing film, and an excitation light source.
  • the base material has a first main surface and a second main surface opposite to the first main surface, and a through hole is provided between the first main surface and the second main surface. Is provided.
  • the phosphor layer is housed in the through hole and contains a fluorescent substance.
  • the first sealing film has a gas barrier property and is provided on the first main surface side of the phosphor layer.
  • the second sealing film has a gas barrier property and is provided on the second main surface side of the phosphor layer.
  • the excitation light source is bonded to the first main surface side of the base material, and the excitation light is incident on the phosphor layer.
  • the phosphor layer is sealed by the first sealing film and the second sealing film, and it is possible to prevent deterioration of the phosphor due to oxygen and moisture. Further, the excitation light source can be arranged close to the phosphor layer, and the light extraction efficiency can be improved. Further, the phosphor layer is housed in a through hole provided in the base material, and the base material can prevent crosstalk with an adjacent light emitting element.
  • the first sealing film may be further provided on the inner peripheral surface of the through hole and may cover the entire circumference of the phosphor layer together with the second sealing film.
  • the light emitting element may further include a light reflecting film provided between the inner peripheral surface and the first sealing film.
  • the light emitting element has a gas barrier property, is provided on the inner peripheral surface, and has a light reflecting film that covers the entire circumference of the phosphor layer together with the first sealing film and the second sealing film. Further may be provided.
  • the base material has a gas barrier property, and may cover the entire circumference of the phosphor layer together with the first sealing film and the second sealing film.
  • the surface of the base material forming the inner peripheral surface may have light reflectivity.
  • the through hole may have a shape in which the distance between the inner peripheral surfaces gradually increases from the first main surface toward the second main surface.
  • the phosphor may be a quantum dot.
  • the phosphor layer may be formed by dispersing the phosphor and the scatterer in a light-transmitting resin.
  • the light emitting element may further include an etching stop layer provided between the base material and the light reflecting film.
  • the first sealing film has a thickness that transmits the excitation light and reflects the fluorescence.
  • the second sealing film may have a thickness that transmits the fluorescence and reflects the excitation light.
  • the light emitting element may further include a lens bonded to the second main surface side of the base material.
  • the light emitting element array has a first main surface and a second main surface opposite to the first main surface, and has the first main surface and the second main surface.
  • a base material having through holes provided between the main surfaces, a phosphor layer contained in the through holes and containing a phosphor, and having gas barrier properties, on the first main surface side of the phosphor layer.
  • the first sealing film provided, the second sealing film having gas barrier properties and provided on the second main surface side of the phosphor layer, and the first main of the base material.
  • a plurality of light emitting elements joined to the surface side and provided with an excitation light source for incidenting excitation light on the phosphor layer are arranged.
  • the light emitting element has a first light emitting element including a first phosphor in which the phosphor layer emits fluorescence of the first color, and a second light emitting element in which the phosphor layer has a second color different from the first color.
  • a second light emitting element containing a second phosphor that emits fluorescence may be included.
  • the light emitting element includes a first phosphor in which the phosphor layer emits fluorescence of a first color, and a second phosphor in which a second color different from the first color is emitted.
  • the light emitting element array is bonded to the second main surface side of the base material, and is attached to the first color filter that transmits light of the first color and the second main surface side of the base material.
  • a second color filter that is joined and transmits light of the second color may be further provided.
  • a display device includes a light emitting element array and a drive circuit.
  • the light emitting element array has a first main surface and a second main surface opposite to the first main surface, and penetrates between the first main surface and the second main surface.
  • a first base material provided with pores, a phosphor layer contained in the through holes and containing a phosphor, and a first main surface side of the phosphor layer having gas barrier properties.
  • the sealing film and the second sealing film having a gas barrier property and provided on the second main surface side of the phosphor layer are bonded to the first main surface side of the base material.
  • a plurality of light emitting elements including an excitation light source for incidenting excitation light on the phosphor layer are arranged.
  • the drive circuit drives the excitation light source.
  • the light emitting element according to the embodiment of the present technology will be described.
  • FIG. 1 is a cross-sectional view of the light emitting element 100 according to the present embodiment
  • FIG. 2 is a top view of the light emitting element 100
  • FIG. 3 is a bottom view of the light emitting element 100.
  • FIG. 1 is a cross-sectional view taken along the line AA in FIGS. 2 and 3.
  • the light emitting element 100 includes a light emitting unit 110 and an excitation light source 130.
  • the excitation light source 130 is bonded to the light emitting portion 110 by the adhesive layer 140.
  • FIG. 4 is a cross-sectional view showing the light emitting unit 110.
  • the light emitting unit 110 includes a base material 111, a phosphor layer 112, a first sealing film 114, a second sealing film 115, and a light reflecting film 113.
  • the base material 111 is a film-like or plate-like member that houses the phosphor layer 112.
  • the base material 111 may be made of a resin film made of a resin such as polyimide, a metal foil, a glass plate, a semiconductor substrate such as a silicon substrate, or the like.
  • FIG. 5 is a cross-sectional view showing the base material 111.
  • the thickness direction of the base material 111 is defined as the Z direction
  • the two directions perpendicular to the Z direction are defined as the X direction and the Z direction.
  • the base material 111 has a first main surface 111a and a second main surface 111b.
  • the first main surface 111a and the second main surface 111b are main surfaces on opposite sides of the base material 111, and both can be surfaces parallel to the XY plane.
  • the base material 111 is provided with a through hole 111c formed between the first main surface 111a and the second main surface 111b and communicating with the first main surface 111a and the second main surface 111b.
  • the peripheral surface of the through hole 111c is defined as the inner peripheral surface 111d.
  • the inner peripheral surface 111d is a surface inclined with respect to the thickness direction (Z direction) of the base material 111, and the through hole 111c has a shape in which the opening gradually increases from the first main surface 111a to the second main surface 111b. Can be.
  • the distance D between the inner peripheral surfaces 111d can be gradually increased from the first main surface 111a to the second main surface 111b.
  • the shape of the through hole 111c may be various shapes described later in addition to those shown here.
  • the phosphor layer 112 is a layer that is housed in the through hole 111c and emits fluorescence by the excitation light incident from the excitation light source 130.
  • the phosphor layer 112 is a layer composed of a phosphor 121, a scatterer 122, and a filler 123, and has a structure in which the particulate phosphor 121 and the scatterer 122 are dispersed in the filler 123. Can be.
  • the fluorescent substance 121 is fine particles made of a fluorescent material.
  • the phosphor 121 can be QD (Quantum Dot), and the material thereof can be InP, CdSe, CdSeS, CdS, ZnSe, ZnS, GaAs, GaN or perovskite. Further, the phosphor 121 is not limited to QD, and may be an organic phosphor or an inorganic phosphor.
  • the scatterer 122 scatters the fluorescence emitted from the phosphor 121 and makes the fluorescence orientation pattern Lambertian.
  • the scatterer 122 can be fine particles composed of SiO 2 , Al 2 O 3 , TIO 2 or Ta 2 O 3.
  • the filler 123 is filled around the phosphor 121 and the scatterer 122.
  • the filler 123 is a light-transmitting resin, and can be a UV (ultraviolet) curable resin or a thermosetting resin.
  • the filler 123 includes acrylic resin, polypropylene, polyethylene, polystyrene, AS (Styrene AcryloNitrile copolymer) resin, ABS (Acrylonitrile Butadiene Styrene) resin, methacrylic resin, polyvinyl chloride, polyacetal, polyamide, polycarbonate, and modified polyphenylene ether.
  • Polybutylene terephthalate polyethylene terephthalate, polysulfone, polyether sulfone, polyphenylene sulfide, polyamideimide, polymethylpentene, liquid crystal polymer, epoxy resin, phenol resin, urea resin, melanin resin, diallyl phthalate resin, unsaturated polyester resin, polyimide , Polyurethane, silicone resin or a mixture thereof.
  • the phosphor layer 112 is not limited to the one composed of the phosphor 121, the scatterer 122 and the filler 123, and may include at least the phosphor 121. That is, the phosphor layer 112 may be composed of only the phosphor 121 and the filler 123 without containing the scatterer 122. Further, the phosphor layer 112 may not contain the filler 123, and the fine particles of the phosphor 121 and the filler 123 may be present in a freely movable state. Further, the phosphor layer 112 may exist in a state in which only the phosphor 121 can move freely.
  • the light reflecting film 113 is formed between the inner peripheral surface 111d and the first sealing film 114 and between the second main surface 111b and the first sealing film 114, and emits light emitted from the phosphor layer 112 to the second. It reflects toward the main surface 111b.
  • the light reflecting film 113 can be, for example, a metal film such as Al, Au, or Ag, and the thickness can be, for example, 100 nm. Further, the light reflecting film 113 may be a dielectric multilayer film.
  • the first sealing film 114 and the second sealing film 115 seal the phosphor layer 112. As shown in FIG. 4, the first sealing film 114 is provided inside the through hole 111c on the inner peripheral surface 111d via the light reflecting film 113 and on the first main surface 111a side of the phosphor layer 112. Further, the first sealing film 114 is provided on the second main surface 111b via the light reflecting film 113 outside the through hole 111c.
  • the second sealing film 115 is provided inside the through hole 111c on the second main surface 111b side of the phosphor layer 112, and is provided on the opposite side of the first sealing film 114 with the phosphor layer 112 interposed therebetween. .. Further, the second sealing film 115 is provided on the second main surface 111b via the light reflecting film 113 and the first sealing film 114 outside the through hole 111c. As a result, the entire circumference of the phosphor layer 112 is covered and sealed by the first sealing film 114 and the second sealing film 115.
  • the first sealing film 114 and the second sealing film 115 are films having light transmittance and gas barrier properties, and are made of, for example, SiO 2 , SiN, AlN, ZrO 2 , Ta 2 O 3 or Zn O. Can be done.
  • the first sealing film 114 and the second sealing film 115 may be made of the same material or may be made of different materials.
  • the thickness of the first sealing film 114 and the second sealing film 115 can be, for example, 100 nm.
  • the light emitting unit 110 has the above configuration.
  • the excitation light source 130 is bonded to the first main surface 111a side of the base material 111, and emits excitation light to the phosphor layer 112.
  • the excitation light source 130 may be an LED (Light Emitting Diode), and may include an n-type layer 131, a p-type layer 132, an active layer 133, an n electrode 134, and a p electrode 135 as shown in FIG. can. In the excitation light source 130, the n-type and the p-type may be reversed.
  • the n-type layer 131, the p-type layer 132, and the active layer 133 can be made by doping a semiconductor material such as GaN, AlGaInN, AlGaInAs, AlGaInP, ZnSe, or ZnO with a dopant.
  • the n-electrode 134 and the p-electrode 135 are made of a conductive material such as AuGe / Ni / Au, Ti / Pt / Au, Pd, Ni / Au or ITO (Indium Tin Oxide).
  • the excitation light source 130 is a light source capable of emitting monochromatic excitation light, and the emission wavelength can be the wavelength of blue light or ultraviolet light. Further, the excitation light source 130 may be any one capable of emitting excitation light, and may be an OLED (Organic Light Emitting Diode), a laser diode, a VCSEL (Vertical Cavity Surface Emitting LASER), or the like, in addition to the LED.
  • OLED Organic Light Emitting Diode
  • laser diode a laser diode
  • VCSEL Very Cavity Surface Emitting LASER
  • the adhesive layer 140 adheres the excitation light source 130 to the light emitting unit 110.
  • the adhesive layer 140 is not particularly limited as long as it has light transmission with respect to the emission wavelength of the excitation light source 130. Further, the excitation light source 130 may be bonded to the light emitting unit 110 by another method instead of bonding by the adhesive layer 140.
  • [Operation of light emitting element] 6 to 8 are schematic views showing the operation of the light emitting element 100.
  • excitation light When electric power is supplied to the excitation light source 130, light emission is generated in the active layer 133 as shown by an arrow in FIG. This light (hereinafter referred to as excitation light) passes through the adhesive layer 140 and the first sealing film 114 from the excitation light source 130 and enters the phosphor layer 112.
  • the entire circumference of the phosphor layer 112 is covered with the first sealing film 114 and the second sealing film 115, and each light emitting element 100 is sealed.
  • the first sealing film 114 and the second sealing film 115 have a gas barrier property, and prevent oxygen and moisture from reaching the phosphor layer 112. As a result, deterioration of the phosphor 121 due to oxygen and moisture can be prevented, and the reliability of the light emitting element 100 can be maintained.
  • the light emitting element 100 can prevent the deterioration of the phosphor 121 due to oxygen, moisture, and heat, high reliability can be realized even for a phosphor that can cause deterioration such as QD and an organic phosphor. Can be done.
  • the thickness of the first sealing film 114 and the second sealing film 115 can be reduced, and the excitation light source 130 can be arranged close to the phosphor layer 112. It is possible to reduce the size of the light emitting element 100. Further, if the distance between the excitation light source 130 and the phosphor layer 112 is small, the light diffused and emitted from the excitation light source 130 also enters the phosphor layer 112, so that the efficiency of the light emitting element 100 can be improved. ..
  • the light reflecting film 113 is provided on the inner peripheral surface 111d of the through hole 111c.
  • the phosphor layer 112 is separated between the adjacent light emitting elements 100, and it is possible to prevent light mixing (crosstalk) as described later.
  • the support layer 151 is formed on the first main surface 111a of the base material 111.
  • the support layer 151 is made of, for example, Ni, and can be formed by a sputtering method and plating.
  • the thickness of the support layer 151 is, for example, about 500 ⁇ m.
  • the mask layer 152 is formed on the second main surface 111b of the base material 111.
  • the mask layer 152 is made of, for example, Cu and can be formed by a sputtering method.
  • the mask layer 152 is patterned as shown in FIG. 9 (b). This patterning can be performed by forming a resist pattern on the mask layer 152 by photolithography and removing the material of the mask layer 152 by wet etching using the resist pattern.
  • the base material 111 is patterned as shown in FIG. 9 (c).
  • This patterning can be performed by using the mask layer 152 as a hard mask and removing the material of the base material 111 by wet etching. As a result, the through hole 111c is formed.
  • through holes 111c having an inclined inner peripheral surface 111d may be formed by dry etching.
  • the mask layer 152 is removed.
  • an etchant that is selective for the material of the support layer 151 is used so that the support layer 151 is not removed.
  • the light reflecting film 113 is formed on the support layer 151, the inner peripheral surface 111d, and the second main surface 111b.
  • the light reflective film 113 can be formed by, for example, a sputtering method.
  • the first sealing film 114 is formed on the light reflecting film 113.
  • the first sealing film 114 can be formed, for example, by a sputtering method.
  • the phosphor layer 112 is formed in the through hole 111c.
  • the phosphor layer 112 can be formed by filling the through hole 111c with a filler 123 in which the phosphor 121 and the scatterer 122 are dispersed and curing the mixture.
  • the second sealing film 115 is formed on the phosphor layer 112 and the first sealing film 114.
  • the second sealing film 115 can be formed by, for example, a sputtering method.
  • the phosphor layer 112 is sealed by the first sealing film 114 and the second sealing film 115.
  • the support substrate 153 is bonded onto the second sealing film 115.
  • the support substrate 153 is, for example, a glass substrate, and can be adhered to the second sealing film 115 by the adhesive 154.
  • the support layer 151 is removed.
  • the support layer 151 can be removed by wet etching.
  • an etchant having selectivity for the light reflecting film 113 is used.
  • the light reflecting film 113 is removed on the first main surface 111a.
  • the light-reflecting film 113 can be removed by wet etching using the resist pattern after forming a resist pattern having an opening that exposes only the light-reflecting film 113 on the first main surface 111a by photolithography or the like.
  • the support substrate 153 is removed as shown in FIG. 12 (b).
  • the light emitting unit 110 is formed.
  • the excitation light source 130 can be bonded to the light emitting portion 110 by the adhesive layer 140 to manufacture the light emitting element 100.
  • the excitation light source 130 is manufactured by growing crystals on a sapphire substrate by the MOCVD (Metal Organic Chemical Vapor Deposition) method, and after the electrode forming process, peeling off the sapphire substrate using a laser lift-off (LLO) method. Can be done. If the sapphire substrate remains, the distance between the active layer 133 of the excitation light source 130 and the phosphor layer 112 becomes long, and in a display device that independently drives the excitation light source 130 for each subpixel, it is necessary to reduce the pitch for each subpixel. Not suitable because it exists. Therefore, it is preferable to peel off the crystal growth substrate.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the light emitting element 100 can be manufactured as described above. Although the manufacturing process of one light emitting element 100 is shown here, it is actually possible to manufacture a light emitting element array (described later) including a large number of light emitting elements 100 at a time by the above manufacturing process.
  • the thickness of the first sealing film 114 and the second sealing film 115 can be set to a thickness close to the wavelength of light in the vicinity of 100 nm, and the reflectance for each wavelength can be controlled by adjusting the refractive index and the thickness. Is possible.
  • the thickness T1 of the first sealing film 114 is preferably a thickness that transmits excitation light and reflects fluorescence. As a result, the fluorescence incident on the first sealing film 114 is reflected by the first sealing film 114, and the light extraction efficiency is improved.
  • the thickness T2 of the second sealing film 115 is preferably a thickness that reflects excitation light and transmits fluorescence. As a result, the excitation light is prevented from passing through the phosphor layer 112, and the excitation light can be used for exciting the phosphor 121, so that the light extraction efficiency is improved. Further, increasing the reflectance of the excitation light of the second sealing film 115 suppresses the excitation of the phosphor layer 112 by the external light and contributes to the improvement of the external light contrast.
  • the first sealing film 114 has, for example, the refractive index of the adhesive layer 140 of about 1.5, a material having a large difference in refractive index is preferable, and the first sealing film 114 is made of a high refractive index material such as TiO 2. Can be. Further, the first sealing film 114 and the second sealing film 115 can be formed as a multilayer film in which a plurality of layers having a low refractive index layer and a plurality of layers having a high refractive index are alternately laminated, whereby the light of the phosphor layer 112 can be obtained. The extraction efficiency can be improved.
  • the low refractive index layer may be made of, for example, SiO 2
  • the high refractive index layer may be made of, for example, TiO 2 .
  • the through hole 111c provided in the base material 111 has an inner circumference such that the distance D between the inner peripheral surfaces 111d gradually increases from the first main surface 111a side toward the second main surface 111b side. It is preferable that the surface 111d has an inclined structure. Since the light reflecting film 113 is provided on the inner peripheral surface 111d as described above, by inclining the inner peripheral surface 111d, the incident light is reflected toward the front of the element (see FIG. 8), and the light utilization efficiency. Can be improved.
  • the inner peripheral surface 111d is not limited to an inclined flat surface as shown in FIG. 5, and the inner peripheral surface 111d is gradually separated from the first main surface 111a side toward the second main surface 111b side. It may be a curved curved surface. Further, the inner peripheral surface 111d is a plane parallel to the thickness direction (Z direction) of the base material 111, and the distance D may be constant from the first main surface 111a side to the second main surface 111b side.
  • the shapes of the upper surface and the lower surface of the through hole 111c are not limited to the square shape as shown in FIGS. 2 and 3.
  • 13 and 14 are schematic views showing other shapes of the through hole 111c
  • FIGS. 13 (a) and 14 (a) are plan views
  • 14 (b) is a plan view of the light emitting element 100 as viewed from the lower surface.
  • the through hole 111c may be circular on the first main surface 111a and the second main surface 111b. Further, as shown in FIGS. 14A and 14B, the through hole 111c may be hexagonal on the first main surface 111a and the second main surface 111b. In addition to this, the through hole 111c can have various shapes such as a rectangle, an ellipse, or a polygon on the first main surface 111a and the second main surface 111b. Further, the through hole 111c may have different shapes on the first main surface 111a and the second main surface 111b, such as a square on the first main surface 111a and a circle on the second main surface 111b.
  • the configuration of the light emitting element 100 is not limited to the above, and the following configuration is also possible.
  • 15 to 20 are schematic views of a light emitting element 100 having another configuration.
  • the first sealing film 114 may not be provided on the inner peripheral surface 111d of the through hole 111c, but may be provided on the first main surface 111a side of the phosphor layer 112 and the base material 111. ..
  • the light reflecting film 113 can be used for sealing the phosphor layer 112. That is, the entire circumference of the phosphor layer 112 can be covered with the light reflecting film 113, the first sealing film 114, and the second sealing film 115, and the phosphor layer 112 can be sealed.
  • the light emitting element 100 may not have the light reflecting film 113.
  • the first sealing film 114 may not be provided on the inner peripheral surface 111d of the through hole 111c, but may be provided on the first main surface 111a side of the phosphor layer 112 and the base material 111.
  • the base material 111 can be used for sealing the phosphor layer 112. That is, the entire circumference of the phosphor layer 112 can be covered with the base material 111, the first sealing film 114, and the second sealing film 115, and the phosphor layer 112 can be sealed.
  • the surface of the base material 111 constituting the inner peripheral surface 111d have light reflectivity, the light incident on the inner peripheral surface 111d is reflected to the front of the light emitting element 100, that is, the light. It is possible to realize the same function as the reflective film 113.
  • the light emitting element 100 may have a light-shielding portion 141.
  • the light-shielding portion 141 is formed by removing the first sealing film 114 and the second sealing film 115 around the through hole 111c on the second main surface 111b and arranging a material having no light transmission. Can be done.
  • By providing the light-shielding portion 141 it is possible to suppress the reflection of external light in the region between the light-emitting elements 100 and improve the external light contrast ratio of the display device having the light-emitting element 100 as a pixel.
  • the first sealing film 114 and the second sealing film 115 can be separated from the adjacent light emitting element 100. It is possible to prevent the propagation of light through the film, that is, to suppress crosstalk.
  • the light-shielding portion 141 can be arranged on the second sealing film 115 without removing the first sealing film 114 and the second sealing film 115.
  • the light emitting element 100 may have an etching stop layer 142.
  • the etching stop layer 142 is made of a material of the support layer 151 (see FIG. 11B) and a material having etching selectivity, and is provided between the base material 111 and the light reflecting film 113.
  • the etching stop layer 142 can be, for example, a dielectric film such as SiO 2 , AlN, SiN, TIO 2 , Al 2 O 3 , ZnO or Ta 2 O 3 , or a metal film such as Ti, Cr, Au or Ag. ..
  • FIG. 19 is a schematic view showing a part of the manufacturing process of the light emitting element 100 including the etching stop layer 142, and is a schematic view showing a step of removing the support layer 151 (see FIGS. 11B and 11C). .. As shown in FIGS. 19A and 19B, the light reflecting film 113 is coated on the etching stop layer 142 in the step of removing the support layer 151 to protect it from etching.
  • the light-reflecting film 113 is attached to the support layer 151 so that the light-reflecting film 113 is not removed when the support layer 151 is removed.
  • the material of the light reflecting film 113 is limited because it needs to have a high reflectance with respect to excitation light and fluorescence.
  • the etching stop layer 142 when the etching stop layer 142 is provided as shown in FIG. 19, since the light reflecting film 113 is protected from etching, the material of the support layer 151 is selected without considering the etching selectivity with the light reflecting film 113. It becomes possible to do.
  • the etching stop layer 142 may be provided between the base material 111 and the light reflecting film 113 even when the first sealing film 114 is not provided on the inner peripheral surface 111 as shown in FIG.
  • the light emitting element 100 may include a lens 143.
  • the lens 143 is made of resin, glass, or the like, and can be adhered to the second main surface 111b side of the base material 111 with the adhesive 144.
  • the fluorescence is isotropically emitted from the phosphor 121, it is refracted into the air from the second sealing film 115 and has an orientation characteristic close to that of Lambertian when emitted.
  • the lens 143 as shown in FIG. 20, the emitted light of the light emitting element 100 is concentrated at a narrow angle in front, and the light distribution characteristics can be optimized in the required direction, so that the light utilization efficiency is improved. It is possible.
  • FIG. 21 is a cross-sectional view of a light emitting element array 150 in which a plurality of light emitting elements 100 are arrayed. As shown in the figure, the light emitting element array 150 includes a red light emitting element 100R, a green light emitting element 100G, and a blue light emitting element 100B.
  • the red light emitting element 100R has the configuration of the above light emitting element 100, and the phosphor layer 112 includes a red phosphor 121R that emits red fluorescence.
  • the green light emitting element 100G has the configuration of the above light emitting element 100, and the phosphor layer 112 includes a green phosphor 121G that emits green fluorescence.
  • the blue light emitting element 100B has a configuration in which the phosphor 121 is not included in the light emitting element 100.
  • the red light emitting element 100R, the green light emitting element 100G, and the blue light emitting element 100B can be formed by separately coating the phosphor layer 112 by the ink jot method.
  • the excitation light source 130 emits blue excitation light.
  • red light emitting element 100R when blue excitation light is incident on the light emitting unit 110, red fluorescence is emitted from the red phosphor 121R.
  • green light emitting element 100G when blue excitation light is incident on the light emitting unit 110, green fluorescence is emitted from the green phosphor 121G.
  • blue light emitting element 100B when blue light is incident on the light emitting unit 110, it is scattered by the scatterer 122 and the blue light is emitted.
  • the red light emitting element 100R, the green light emitting element 100G, and the blue light emitting element 100B can emit red, green, and blue light in this way, and each light emitting element 100 is a pixel as a subpixel. Can be configured.
  • each excitation light source 130 emits blue excitation light and is converted into red light and green light by the red phosphor 121R and the green phosphor 121G, but the present invention is not limited to this.
  • a second part of the light emitting element 100 constituting the light emitting element array 150 includes a first phosphor 121 that emits fluorescence of the first color, and another part of the light emitting element 100 emits fluorescence of the second color. It can contain the phosphor 121 of.
  • the light emitting element array 150 may further include a third phosphor that emits fluorescence of a third color.
  • the blue light emitting element 100B contains a blue phosphor that emits blue fluorescence to the phosphor layer 112.
  • each excitation light source 130 may emit ultraviolet rays as excitation light.
  • the light emitted by the light emitting element array 150 is not limited to three colors, and may be a single color, two colors, or four or more colors.
  • the light emitting element 100 constituting the light emitting element array 150 may be a light emitting element 100 having any of the configurations disclosed in the present disclosure.
  • FIG. 22 is a schematic view of a light emitting device array 500 having a conventional structure, which is shown as a comparison. As shown in the figure, in the light emitting element array 500, the front and back surfaces of the phosphor layer 511 are respectively sealed by the sealing film 512, and the first film 513 and the second film 514 are provided on the outside of the sealing film 512. Has been done.
  • a red color filter 515R, a green color filter 515G, and a blue color filter 515B are provided on the first film 513.
  • a light source 520R for red light, a light source 520G for green light, and a light source 520B for blue light are provided on the second film 514.
  • the phosphor layer 511 contains a red phosphor 516R and a green phosphor 516G.
  • the red fluorescence is emitted from the red phosphor 516R
  • the red light is emitted from the red color filter 515R.
  • the blue excitation light is emitted from the light source 520G
  • the green fluorescence is emitted from the green phosphor 516G
  • the red light is emitted from the green color filter 515G.
  • blue light is emitted from the light source 520B, it passes through the phosphor layer 511 as it is and is emitted as blue light from the blue color filter 515B.
  • the red light LR is not emitted, and crosstalk occurs.
  • the light source 520R or the light source 520B is made to emit light, fluorescence or scattered light excites a nearby phosphor, and crosstalk occurs.
  • the light emitting element array 150 as shown in FIG. 21, since the phosphor layer 112 of each color is separated by the base material 111, it is possible to suppress crosstalk.
  • the light traveling in the lateral direction (XY directions) is wasted, but in the light emitting element array 150, the light traveling in the lateral direction is also reflected by the light reflecting film 113 and is effectively used. Therefore, the light extraction efficiency is also improved.
  • FIG. 23 is a cross-sectional view of a light emitting element array 160 having another configuration.
  • the light emitting element array 160 is composed of a red light emitting element 100R, a green light emitting element 100G, and a blue light emitting element 100B.
  • the red light emitting element 100R has the configuration of the light emitting element 100, and the phosphor layer 112 includes a red phosphor 121R that emits red fluorescence and a green phosphor 121G that emits green fluorescence.
  • a red color filter 145R is bonded to the second main surface 111b side of the red light emitting element 100R.
  • the green light emitting element 100G has the configuration of the light emitting element 100, and the phosphor layer 112 includes a red phosphor 121R that emits red fluorescence and a green phosphor 121G that emits green fluorescence.
  • a green color filter 145G is bonded to the second main surface 111b side of the green light emitting element 100G.
  • the blue light emitting element 100B has the configuration of the light emitting element 100, and the phosphor layer 112 includes a red phosphor 121R that emits red fluorescence and a green phosphor 121G that emits green fluorescence.
  • a blue color filter 145B is bonded to the second main surface 111b side of the blue light emitting element 100B.
  • the excitation light source 130 emits blue excitation light.
  • red fluorescence is emitted from the red phosphor 121R
  • green fluorescence is emitted from the green phosphor 121G.
  • the red component of fluorescence passes through the red color filter 145R, and red light is emitted from the red light emitting element 100R.
  • red fluorescence is emitted from the red phosphor 121R
  • green fluorescence is emitted from the green phosphor 121G.
  • the green component of fluorescence passes through the green color filter 145G, and green light is emitted from the green light emitting element 100G.
  • the blue light emitting element 100B when blue excitation light is incident on the light emitting unit 110, red fluorescence is emitted from the red phosphor 121R, and green fluorescence is emitted from the green phosphor 121G.
  • the blue excitation light passes through the blue color filter 145B, and the blue light is emitted from the green light emitting element 100G.
  • the phosphor layers 112 of the red light emitting element 100R, the green light emitting element 100G, and the blue light emitting element 100B have the same structure, it is not necessary to separately paint the phosphor layer 112, and the manufacturing cost can be reduced. Can be done.
  • each excitation light source 130 emits blue excitation light and is converted into red light and green light by the red phosphor 121R and the green phosphor 121G, but the present invention is not limited to this.
  • Each light emitting element 100 may include a first phosphor 121 that emits fluorescence of a first color and a second phosphor 121 that emits fluorescence of a second color. Further, some light emitting elements may be provided with a color filter that transmits the fluorescence of the first color, and other light emitting elements may be provided with a color filter that transmits the fluorescence of the second color.
  • the light emitting element array 160 may further include a third phosphor 121 that emits fluorescence of the third color, and each light emitting element 100 has a blue phosphor that emits blue fluorescence to the phosphor layer 112. Including, each excitation light source 130 may emit ultraviolet rays as excitation light. Further, the light emitted by the light emitting element array 160 is not limited to three colors, and may be a single color, two colors, or four or more colors. Further, the light emitting element 100 constituting the light emitting element array 160 may be a light emitting element 100 having any of the configurations disclosed in the present disclosure.
  • FIG. 24 is a cross-sectional view showing a display device 170 using the light emitting element array 150.
  • the display device 170 includes a light emitting element array 150 and a drive circuit 180.
  • the drive circuit 180 individually drives the light emitting elements 100 included in the light emitting element array 150.
  • the drive circuit 180 is a TFT (thin-film-transistor) or CMOS (Complementary Metal Oxide Semiconductor), and may be made of a material such as Si, GaN, or SiC.
  • the drive circuit 180 includes an n-terminal 181 and a p-terminal 182, the n-terminal 181 is connected to the n-electrode 134 of the excitation light source 130 by a lead wire 183, and the p-terminal 182 is connected to the p-electrode 135 of the excitation light source 130 by a lead wire 184.
  • the conductor 183 and the conductor are, for example, Au bumps, but may be Cu-Cu bonded or the like.
  • the drive circuit 180 By driving the excitation light source 130 included in the red light emitting element 100R, the green light emitting element 100G, and the blue light emitting element 100B by the drive circuit 180, it is possible to emit red, green, and blue, respectively, and display the display device. It is possible to achieve it. Further, by integrating the light emitting element array 150 and the drive circuit 180, it is possible to reduce the size of the display device. Although the display device using the light emitting element array 150 has been described here, the light emitting element array 160 and the drive circuit 180 may be connected to form a display device.
  • the display device can be used as a display device for a video wall, a smartphone, a television, a notebook PC, an AR (Augmented Reality) device, a VR (Virtual Reality) device, a projector, a head-up display, a wearable device, and the like. .. Further, the light emitting element and the light emitting element array according to the present embodiment can also be used as a lighting device.
  • (6) The light emitting element according to (5) above.
  • the surface of the base material forming the inner peripheral surface is a light emitting element having light reflectivity.
  • (7) The light emitting device according to any one of (3), (4) and (6) above.
  • the through hole is a light emitting element having a shape in which the distance between the inner peripheral surfaces gradually increases from the first main surface toward the second main surface.
  • the phosphor is a light emitting element that is a quantum dot. (9) The light emitting device according to any one of (1) to (8) above.
  • the phosphor layer is a light emitting element in which the phosphor and the scatterer are dispersed in a light-transmitting resin.
  • the first sealing film has a thickness that transmits the excitation light and reflects the fluorescence.
  • the second sealing film is a light emitting element having a thickness that transmits the fluorescence and reflects the excitation light.
  • a light emitting element array in which a plurality of light emitting elements including an excitation light source for incident light are arranged.
  • the light emitting element has a first light emitting element including a first phosphor in which the phosphor layer emits fluorescence of the first color, and a second light emitting element in which the phosphor layer has a second color different from the first color.
  • the light emitting element includes a first phosphor in which the phosphor layer emits fluorescence of a first color, and a second phosphor in which a second color different from the first color is emitted.
  • a first color filter bonded to the second main surface side of the base material and transmitting light of the first color, and a first color filter.
  • a light emitting element array further comprising a second color filter bonded to the second main surface side of the base material and transmitting light of the second color.
  • a group having a first main surface and a second main surface opposite to the first main surface, and a through hole is provided between the first main surface and the second main surface.
  • a light emitting element array in which a plurality of light emitting elements including an excitation light source for incident light are arranged, and A display device including a drive circuit for driving the excitation light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Led Device Packages (AREA)

Abstract

[Problem] To provide a light-emitting element, a light-emitting element array, and a display device, which have high reliability and high light extraction efficiency. [Solution] A light-emitting element according to the present invention is provided with: a base material; a fluorescent body layer; a first sealing film; a second sealing film; and an excitation light source. The base material has a first main surface and a second main surface opposite to the first main surface, and a through-hole is provided between the first main surface and the second main surface. The fluorescent body layer contains a fluorescent body and is housed in the through-hole. The first sealing film has a gas barrier property, and is provided to the first main surface side of the fluorescent body layer. The second sealing film has a gas barrier property, and is provided to the second main surface side of the fluorescent body layer. The excitation light source is joined to the first main surface side of the base material, and causes excitation light to enter the fluorescent body layer.

Description

発光素子、発光素子アレイ及び表示装置Light emitting element, light emitting element array and display device
 本技術は、励起光源及び蛍光体を備える発光素子、発光素子アレイ及び表示装置に関する。 The present technology relates to a light emitting element, a light emitting element array, and a display device including an excitation light source and a phosphor.
 LED(Light Emitting Diode)等の励起光源と蛍光体を備える発光素子は表示装置等に用いられている。蛍光体として近年、QD(Quantum Dot:量子ドット)が注目されているが、QDは酸素や水により劣化を生じるため、どのように封止するかが重要となる。 A light emitting element equipped with an excitation light source such as an LED (Light Emitting Diode) and a phosphor is used in a display device or the like. In recent years, QD (Quantum Dot) has been attracting attention as a phosphor, but since QD is deteriorated by oxygen and water, how to seal it is important.
 例えば、特許文献1及び2には、液晶表示装置に使用されるQDシートにおいて、QD層をバリアフィルムで挟んだ構成が開示されている。また、特許文献3にはLED毎にQD層をガラスフリットで封止する構成が開示されている。 For example, Patent Documents 1 and 2 disclose a configuration in which a QD layer is sandwiched between barrier films in a QD sheet used in a liquid crystal display device. Further, Patent Document 3 discloses a configuration in which the QD layer is sealed with a glass frit for each LED.
 さらに、特許文献4及び5には、LEDをQD層と共にリフレクタ内に埋め込んだ構成がされている。特許文献6には、QDの粒子一つずつ、又は複数のQDの粒子をまとめてSiO等の封止膜で封止した構成が開示されている。 Further, Patent Documents 4 and 5 have a configuration in which an LED is embedded in a reflector together with a QD layer. Patent Document 6 discloses a configuration in which QD particles are individually sealed, or a plurality of QD particles are collectively sealed with a sealing film such as SiO 2.
特開2018-13724号公報Japanese Unexamined Patent Publication No. 2018-13724 特開2017-121745号公報JP-A-2017-121745 特表2018-532256号公報Special Table 2018-532256 特開2018-186232号公報Japanese Unexamined Patent Publication No. 2018-186232 特開2015-220330号公報Japanese Unexamined Patent Publication No. 2015-220330 特表2013-505347号公報Japanese Patent Application Laid-Open No. 2013-505347
 しかしながら、特許文献1及び2に記載のように、画素毎に駆動する方式においてQD層をバリアフィルムで挟んだQDシートを利用すると、QDシートが画素毎に分離されていないため、クロストーク(隣接する発光素子間の光の混合)が発生する。また、特許文献3に記載のように、LED毎にQD層をガラスフリットで封止すると、ガラスの厚みが100μm以上必要となってしまい、小型化が困難となる。また、QD層の側壁にミラー構造を形成できないことから、各発光素子間でクロストークを抑制できず、光取り出し効率も低い。 However, as described in Patent Documents 1 and 2, when a QD sheet in which a QD layer is sandwiched between barrier films is used in a method of driving for each pixel, the QD sheet is not separated for each pixel, so that cross talk (adjacent). Mixing of light between light emitting elements) occurs. Further, as described in Patent Document 3, if the QD layer is sealed with a glass frit for each LED, the thickness of the glass needs to be 100 μm or more, which makes miniaturization difficult. Further, since the mirror structure cannot be formed on the side wall of the QD layer, crosstalk cannot be suppressed between the light emitting elements, and the light extraction efficiency is low.
 さらに、特許文献4及び5に記載のように、LEDをQD層と共にリフレクタ内に埋め込んだ構成では、発光素子のサイズがLEDに比べて大きくなってしまい、サブピクセル毎に励起光源を独立で駆動する表示装置には適さない。また、特許文献6に記載のように、QDを粒子毎に封止した構成では、QD層の全体を封止する方式に比べて封止膜の体積密度が大きくなり、QDの体積密度が小さくなるため、素子の小型化に適さない。 Further, as described in Patent Documents 4 and 5, in the configuration in which the LED is embedded in the reflector together with the QD layer, the size of the light emitting element becomes larger than that of the LED, and the excitation light source is independently driven for each subpixel. Not suitable for display devices. Further, as described in Patent Document 6, in the configuration in which the QD is sealed for each particle, the volume density of the sealing film is larger and the volume density of the QD is smaller than that in the method of sealing the entire QD layer. Therefore, it is not suitable for miniaturization of the element.
 このように、サブピクセル事に励起光源を独立に駆動する表示装置に適するような、発光素子の小型化と高い光取り出し効率を両立するQDの封止方法は提案されていない。また、QD以外の蛍光体においても封止により劣化を防止する必要が高いものも多く、適切な蛍光体の封止方法が求められている。 As described above, a QD sealing method that achieves both miniaturization of a light emitting element and high light extraction efficiency, which is suitable for a display device that independently drives an excitation light source for subpixels, has not been proposed. In addition, there are many fluorescent materials other than QD that need to be sealed to prevent deterioration, and an appropriate fluorescent material sealing method is required.
 以上のような事情に鑑み、本技術の目的は、信頼性及び光取り出し効率が高い発光素子、発光素子アレイ及び表示装置を提供することにある。 In view of the above circumstances, an object of the present technology is to provide a light emitting element, a light emitting element array, and a display device having high reliability and light extraction efficiency.
 上記目的を達成するため、本技術の一形態に係る発光素子は、基材と、蛍光体層と、第1の封止膜と、第2の封止膜と、励起光源とを具備する。
 上記基材は、第1の主面と、上記第1の主面とは反対側の第2の主面を有し、上記第1の主面と上記第2の主面の間に貫通孔が設けられている。
 上記蛍光体層は、上記貫通孔に収容され、蛍光体を含む。
 上記第1の封止膜は、ガスバリア性を有し、上記蛍光体層の上記第1の主面側に設けられている。
 上記第2の封止膜は、ガスバリア性を有し、上記蛍光体層の上記第2の主面側に設けられている。
 上記励起光源は、上記基材の上記第1の主面側に接合され、上記蛍光体層に励起光を入射させる。
In order to achieve the above object, the light emitting device according to one embodiment of the present technology includes a base material, a phosphor layer, a first sealing film, a second sealing film, and an excitation light source.
The base material has a first main surface and a second main surface opposite to the first main surface, and a through hole is provided between the first main surface and the second main surface. Is provided.
The phosphor layer is housed in the through hole and contains a fluorescent substance.
The first sealing film has a gas barrier property and is provided on the first main surface side of the phosphor layer.
The second sealing film has a gas barrier property and is provided on the second main surface side of the phosphor layer.
The excitation light source is bonded to the first main surface side of the base material, and the excitation light is incident on the phosphor layer.
 この構成によれば、蛍光体層は第1の封止膜及び第2の封止膜によって封止され、酸素や水分による蛍光体の劣化を防止することが可能である。また、励起光源を蛍光体層に近接して配置することができ、光取り出し効率を向上させることが可能である。さらに蛍光体層は基材に設けられた貫通孔内に収容されており、基材によって隣接する発光素子とのクロストークを防止することが可能である。 According to this configuration, the phosphor layer is sealed by the first sealing film and the second sealing film, and it is possible to prevent deterioration of the phosphor due to oxygen and moisture. Further, the excitation light source can be arranged close to the phosphor layer, and the light extraction efficiency can be improved. Further, the phosphor layer is housed in a through hole provided in the base material, and the base material can prevent crosstalk with an adjacent light emitting element.
 上記第1の封止膜はさらに、上記貫通孔の内周面上に設けられ、上記第2の封止膜と共に上記蛍光体層の全周を被覆してもよい。 The first sealing film may be further provided on the inner peripheral surface of the through hole and may cover the entire circumference of the phosphor layer together with the second sealing film.
 上記発光素子は、上記内周面と上記第1の封止膜の間に設けられた光反射膜をさらに具備してもよい。 The light emitting element may further include a light reflecting film provided between the inner peripheral surface and the first sealing film.
 上記発光素子は、ガスバリア性を有し、上記内周面上に設けられ、上記第1の封止膜及び上記第2の封止膜と共に上記蛍光体層の全周を被覆する光反射膜をさらに具備してもよい。 The light emitting element has a gas barrier property, is provided on the inner peripheral surface, and has a light reflecting film that covers the entire circumference of the phosphor layer together with the first sealing film and the second sealing film. Further may be provided.
 上記基材はガスバリア性を有し、上記第1の封止膜及び上記第2の封止膜と共に上記蛍光体層の全周を被覆してもよい。 The base material has a gas barrier property, and may cover the entire circumference of the phosphor layer together with the first sealing film and the second sealing film.
 上記内周面を形成する上記基材の表面は、光反射性を有してもよい。 The surface of the base material forming the inner peripheral surface may have light reflectivity.
 上記貫通孔は、上記第1の主面から上記第2の主面に向かって上記内周面間の距離が次第に離間する形状を有してもよい。 The through hole may have a shape in which the distance between the inner peripheral surfaces gradually increases from the first main surface toward the second main surface.
 上記蛍光体は量子ドットであってもよい。 The phosphor may be a quantum dot.
 上記蛍光体層は、光透過性樹脂に、上記蛍光体と散乱体が分散されて構成されていてもよい。 The phosphor layer may be formed by dispersing the phosphor and the scatterer in a light-transmitting resin.
 上記発光素子は、上記基材と上記光反射膜間に設けられたエッチングストップ層をさらに具備してもよい。 The light emitting element may further include an etching stop layer provided between the base material and the light reflecting film.
 上記第1の封止膜は上記励起光を透過し、上記蛍光を反射する厚みを有し、
 上記第2の封止膜は上記蛍光を透過し、上記励起光を反射する厚みを有してもよい。
The first sealing film has a thickness that transmits the excitation light and reflects the fluorescence.
The second sealing film may have a thickness that transmits the fluorescence and reflects the excitation light.
 上記発光素子は、上記基材の上記第2の主面側に接合されたレンズをさらに具備してもよい。 The light emitting element may further include a lens bonded to the second main surface side of the base material.
 本技術の一形態に係る発光素子アレイは、第1の主面と、上記第1の主面とは反対側の第2の主面を有し、上記第1の主面と上記第2の主面の間に貫通孔が設けられた基材と、上記貫通孔に収容され、蛍光体を含む蛍光体層と、ガスバリア性を有し、上記蛍光体層の上記第1の主面側に設けられた第1の封止膜と、ガスバリア性を有し、上記蛍光体層の上記第2の主面側に設けられた第2の封止膜と、上記基材の上記第1の主面側に接合され、上記蛍光体層に励起光を入射させる励起光源とを具備する発光素子が複数配列されている。 The light emitting element array according to one embodiment of the present technology has a first main surface and a second main surface opposite to the first main surface, and has the first main surface and the second main surface. A base material having through holes provided between the main surfaces, a phosphor layer contained in the through holes and containing a phosphor, and having gas barrier properties, on the first main surface side of the phosphor layer. The first sealing film provided, the second sealing film having gas barrier properties and provided on the second main surface side of the phosphor layer, and the first main of the base material. A plurality of light emitting elements joined to the surface side and provided with an excitation light source for incidenting excitation light on the phosphor layer are arranged.
 上記発光素子は、上記蛍光体層が第1の色の蛍光を発する第1の蛍光体を含む第1の発光素子と、上記蛍光体層が上記第1の色とは異なる第2の色の蛍光を発する第2の蛍光体を含む第2の発光素子を含んでもよい。 The light emitting element has a first light emitting element including a first phosphor in which the phosphor layer emits fluorescence of the first color, and a second light emitting element in which the phosphor layer has a second color different from the first color. A second light emitting element containing a second phosphor that emits fluorescence may be included.
 上記発光素子は、上記蛍光体層が第1の色の蛍光を発する第1の蛍光体と、上記第1の色とは異なる第2の色の蛍光を発する第2の蛍光体とを含み、
 上記発光素子アレイは、上記基材の上記第2の主面側に接合され、上記第1の色の光を透過する第1のカラーフィルタと、上記基材の上記第2の主面側に接合され、上記第2の色の光を透過する第2のカラーフィルタとをさらに具備してもよい。
The light emitting element includes a first phosphor in which the phosphor layer emits fluorescence of a first color, and a second phosphor in which a second color different from the first color is emitted.
The light emitting element array is bonded to the second main surface side of the base material, and is attached to the first color filter that transmits light of the first color and the second main surface side of the base material. A second color filter that is joined and transmits light of the second color may be further provided.
 本技術の一形態に係る表示装置は、発光素子アレイと、駆動回路とを具備する。
 上記発光素子アレイは、第1の主面と、上記第1の主面とは反対側の第2の主面を有し、上記第1の主面と上記第2の主面の間に貫通孔が設けられた基材と、上記貫通孔に収容され、蛍光体を含む蛍光体層と、ガスバリア性を有し、上記蛍光体層の上記第1の主面側に設けられた第1の封止膜と、ガスバリア性を有し、上記蛍光体層の上記第2の主面側に設けられた第2の封止膜と、上記基材の上記第1の主面側に接合され、上記蛍光体層に励起光を入射させる励起光源とを具備する発光素子が複数配列されている。
 上記駆動回路は、上記励起光源を駆動する。
A display device according to an embodiment of the present technology includes a light emitting element array and a drive circuit.
The light emitting element array has a first main surface and a second main surface opposite to the first main surface, and penetrates between the first main surface and the second main surface. A first base material provided with pores, a phosphor layer contained in the through holes and containing a phosphor, and a first main surface side of the phosphor layer having gas barrier properties. The sealing film and the second sealing film having a gas barrier property and provided on the second main surface side of the phosphor layer are bonded to the first main surface side of the base material. A plurality of light emitting elements including an excitation light source for incidenting excitation light on the phosphor layer are arranged.
The drive circuit drives the excitation light source.
本技術の実施形態に係る発光素子の断面図である。It is sectional drawing of the light emitting element which concerns on embodiment of this technique. 上記発光素子の上面図である。It is a top view of the light emitting element. 上記発光素子の下面図である。It is a bottom view of the light emitting element. 上記発光素子が備える発光部の断面図である。It is sectional drawing of the light emitting part included in the said light emitting element. 上記発光部が備える基材の断面図である。It is sectional drawing of the base material provided in the said light emitting part. 上記発光素子の動作を示す模式図である。It is a schematic diagram which shows the operation of the said light emitting element. 上記発光素子の動作を示す模式図である。It is a schematic diagram which shows the operation of the said light emitting element. 上記発光素子の動作を示す模式図である。It is a schematic diagram which shows the operation of the said light emitting element. 上記発光素子の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the said light emitting element. 上記発光素子の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the said light emitting element. 上記発光素子の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the said light emitting element. 上記発光素子の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the said light emitting element. 上記発光素子が備える貫通孔の形状を示す平面図である。It is a top view which shows the shape of the through hole provided in the light emitting element. 上記発光素子が備える貫通孔の形状を示す平面図である。It is a top view which shows the shape of the through hole provided in the light emitting element. 本技術の実施形態に係る、他の構成を有する発光素子の断面図である。It is sectional drawing of the light emitting element having another structure which concerns on embodiment of this technique. 本技術の実施形態に係る、他の構成を有する発光素子の断面図である。It is sectional drawing of the light emitting element having another structure which concerns on embodiment of this technique. 本技術の実施形態に係る、他の構成を有する発光素子の断面図である。It is sectional drawing of the light emitting element having another structure which concerns on embodiment of this technique. 本技術の実施形態に係る、他の構成を有する発光素子の断面図である。It is sectional drawing of the light emitting element having another structure which concerns on embodiment of this technique. 上記発光素子の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the said light emitting element. 本技術の実施形態に係る、他の構成を有する発光素子の断面図である。It is sectional drawing of the light emitting element having another structure which concerns on embodiment of this technique. 本技術の実施形態に係る発光素子アレイの断面図である。It is sectional drawing of the light emitting element array which concerns on embodiment of this technique. 本技術の比較例に係る発光素子アレイの断面図である。It is sectional drawing of the light emitting element array which concerns on the comparative example of this technique. 本技術の実施形態に係る、他の構成を有する発光素子アレイの断面図である。It is sectional drawing of the light emitting element array which has other configurations which concerns on embodiment of this technique. 本技術の実施形態に係る表示装置の断面図である。It is sectional drawing of the display device which concerns on embodiment of this technique.
 本技術の実施形態に係る発光素子について説明する。 The light emitting element according to the embodiment of the present technology will be described.
 [発光素子の構造]
 図1は本実施形態に係る発光素子100の断面図であり、図2は発光素子100の上面図、図3は発光素子100の下面図である。なお、図1は、図2及び図3におけるA-A線での断面図である。
[Structure of light emitting element]
FIG. 1 is a cross-sectional view of the light emitting element 100 according to the present embodiment, FIG. 2 is a top view of the light emitting element 100, and FIG. 3 is a bottom view of the light emitting element 100. Note that FIG. 1 is a cross-sectional view taken along the line AA in FIGS. 2 and 3.
 これらの図に示すように、発光素子100は、発光部110及び励起光源130を備える。励起光源130は、接着層140によって発光部110に接合されている。図4は、発光部110を示す断面図である。同図に示すように発光部110は、基材111、蛍光体層112、第1封止膜114、第2封止膜115及び光反射膜113を備える。 As shown in these figures, the light emitting element 100 includes a light emitting unit 110 and an excitation light source 130. The excitation light source 130 is bonded to the light emitting portion 110 by the adhesive layer 140. FIG. 4 is a cross-sectional view showing the light emitting unit 110. As shown in the figure, the light emitting unit 110 includes a base material 111, a phosphor layer 112, a first sealing film 114, a second sealing film 115, and a light reflecting film 113.
 基材111は、蛍光体層112を収容するフィルム状あるいは板状の部材である。基材111はポリイミド等の樹脂からなる樹脂フィルム、金属箔、ガラス板又はシリコン基板等の半導体基板等からなるものとすることができる。図5は、基材111を示す断面図である。なお、以下の説明において基材111の厚み方向をZ方向とし、Z方向に垂直な2方向をX方向及びZ方向とする。 The base material 111 is a film-like or plate-like member that houses the phosphor layer 112. The base material 111 may be made of a resin film made of a resin such as polyimide, a metal foil, a glass plate, a semiconductor substrate such as a silicon substrate, or the like. FIG. 5 is a cross-sectional view showing the base material 111. In the following description, the thickness direction of the base material 111 is defined as the Z direction, and the two directions perpendicular to the Z direction are defined as the X direction and the Z direction.
 同図に示すように、基材111は、第1主面111a及び第2主面111bを有する。第1主面111aと第2主面111bは互いに基材111の反対側の主面であり、ともにX-Y平面に平行な面とすることができる。基材111には第1主面111aと第2主面111bの間に形成され、第1主面111a及び第2主面111bに連通する貫通孔111cが設けられている。 As shown in the figure, the base material 111 has a first main surface 111a and a second main surface 111b. The first main surface 111a and the second main surface 111b are main surfaces on opposite sides of the base material 111, and both can be surfaces parallel to the XY plane. The base material 111 is provided with a through hole 111c formed between the first main surface 111a and the second main surface 111b and communicating with the first main surface 111a and the second main surface 111b.
 図5に示すように、貫通孔111cの周面を内周面111dとする。内周面111dは基材111の厚み方向(Z方向)に対して、傾斜した面であり、貫通孔111cは、第1主面111aから第2主面111bに向かって次第に開口が大きくなる形状とすることができる。図5に示すように内周面111d間の距離Dは第1主面111aから第2主面111bに向かって次第に大きくなるものとすることができる。なお、貫通孔111cの形状はここに示すものの他にも、後述する各種形状とすることができる。 As shown in FIG. 5, the peripheral surface of the through hole 111c is defined as the inner peripheral surface 111d. The inner peripheral surface 111d is a surface inclined with respect to the thickness direction (Z direction) of the base material 111, and the through hole 111c has a shape in which the opening gradually increases from the first main surface 111a to the second main surface 111b. Can be. As shown in FIG. 5, the distance D between the inner peripheral surfaces 111d can be gradually increased from the first main surface 111a to the second main surface 111b. The shape of the through hole 111c may be various shapes described later in addition to those shown here.
 蛍光体層112は、図4に示すように貫通孔111c内に収容され、励起光源130から入射する励起光により蛍光を生じる層である。具体的には蛍光体層112は、蛍光体121、散乱体122及び充填剤123からなる層であり、粒子状の蛍光体121及び散乱体122が充填剤123中に分散された構造を有するものとすることができる。 As shown in FIG. 4, the phosphor layer 112 is a layer that is housed in the through hole 111c and emits fluorescence by the excitation light incident from the excitation light source 130. Specifically, the phosphor layer 112 is a layer composed of a phosphor 121, a scatterer 122, and a filler 123, and has a structure in which the particulate phosphor 121 and the scatterer 122 are dispersed in the filler 123. Can be.
 蛍光体121は、蛍光材料からなる微粒子である。蛍光体121はQD(Quantum Dot:量子ドット)とすることができ、その材料は、InP、CdSe、CdSeS、CdS、ZnSe、ZnS、GaAs、GaN又はペロブスカイトとすることができる。また、蛍光体121はQDに限られず、有機蛍光体又は無機蛍光体であってもよい。 The fluorescent substance 121 is fine particles made of a fluorescent material. The phosphor 121 can be QD (Quantum Dot), and the material thereof can be InP, CdSe, CdSeS, CdS, ZnSe, ZnS, GaAs, GaN or perovskite. Further, the phosphor 121 is not limited to QD, and may be an organic phosphor or an inorganic phosphor.
 散乱体122は、蛍光体121から放出された蛍光を散乱させ、蛍光の配向パターンをランバーシアン化する。散乱体122はSiO、Al、TiO又はTaからなる微粒子とすることができる。充填剤123は、蛍光体121及び散乱体122の周囲に充填される。充填剤123は光透過性樹脂であり、UV(ultraviolet)硬化樹脂又は熱硬化樹脂とすることができる。 The scatterer 122 scatters the fluorescence emitted from the phosphor 121 and makes the fluorescence orientation pattern Lambertian. The scatterer 122 can be fine particles composed of SiO 2 , Al 2 O 3 , TIO 2 or Ta 2 O 3. The filler 123 is filled around the phosphor 121 and the scatterer 122. The filler 123 is a light-transmitting resin, and can be a UV (ultraviolet) curable resin or a thermosetting resin.
 この他にも充填剤123は、アクリル樹脂、ポリプロピレン、ポリエチレン、ポリスチレン、AS(Styrene AcryloNitrile copolymer)樹脂、ABS(Acrylonitrile Butadiene Styrene)樹脂、メタクリル樹脂、ポリ塩化ビニル、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアミドイミド、ポリメチルペンテン、液晶ポリマー、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラニン樹脂、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリイミド、ポリウレタン、シリコーン樹脂又はこれらいくつかの混合物とすることも可能である。 In addition, the filler 123 includes acrylic resin, polypropylene, polyethylene, polystyrene, AS (Styrene AcryloNitrile copolymer) resin, ABS (Acrylonitrile Butadiene Styrene) resin, methacrylic resin, polyvinyl chloride, polyacetal, polyamide, polycarbonate, and modified polyphenylene ether. , Polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether sulfone, polyphenylene sulfide, polyamideimide, polymethylpentene, liquid crystal polymer, epoxy resin, phenol resin, urea resin, melanin resin, diallyl phthalate resin, unsaturated polyester resin, polyimide , Polyurethane, silicone resin or a mixture thereof.
 なお、蛍光体層112は、蛍光体121、散乱体122及び充填剤123からなるものに限られず、少なくとも蛍光体121を含むものであればよい。即ち蛍光体層112は、散乱体122を含まず、蛍光体121及び充填剤123のみからなるものであってもよい。また、蛍光体層112は充填剤123を含まず、蛍光体121及び充填剤123の微粒子が自由に移動可能な状態で存在するものであってもよい。また、蛍光体層112は、蛍光体121のみが自由に移動可能な状態で存在するものであってもよい。 The phosphor layer 112 is not limited to the one composed of the phosphor 121, the scatterer 122 and the filler 123, and may include at least the phosphor 121. That is, the phosphor layer 112 may be composed of only the phosphor 121 and the filler 123 without containing the scatterer 122. Further, the phosphor layer 112 may not contain the filler 123, and the fine particles of the phosphor 121 and the filler 123 may be present in a freely movable state. Further, the phosphor layer 112 may exist in a state in which only the phosphor 121 can move freely.
 光反射膜113は、内周面111dと第1封止膜114の間及び第2主面111bと第1封止膜114の間に形成され、蛍光体層112から出射された光を第2主面111bに向けて反射する。光反射膜113は例えばAl、Au又はAg等の金属膜とすることができ、厚みは例えば100nmとすることができる。また、光反射膜113は誘電体多層膜であってもよい。 The light reflecting film 113 is formed between the inner peripheral surface 111d and the first sealing film 114 and between the second main surface 111b and the first sealing film 114, and emits light emitted from the phosphor layer 112 to the second. It reflects toward the main surface 111b. The light reflecting film 113 can be, for example, a metal film such as Al, Au, or Ag, and the thickness can be, for example, 100 nm. Further, the light reflecting film 113 may be a dielectric multilayer film.
 第1封止膜114及び第2封止膜115は、蛍光体層112を封止する。図4に示すように第1封止膜114は、貫通孔111cの内側では光反射膜113を介した内周面111d上及び蛍光体層112の第1主面111a側に設けられている。また、第1封止膜114は貫通孔111cの外側では光反射膜113を介して第2主面111b上に設けられている。 The first sealing film 114 and the second sealing film 115 seal the phosphor layer 112. As shown in FIG. 4, the first sealing film 114 is provided inside the through hole 111c on the inner peripheral surface 111d via the light reflecting film 113 and on the first main surface 111a side of the phosphor layer 112. Further, the first sealing film 114 is provided on the second main surface 111b via the light reflecting film 113 outside the through hole 111c.
 第2封止膜115は、貫通孔111cの内側では蛍光体層112の第2主面111b側に設けられ、蛍光体層112を挟んで第1封止膜114の反対側に設けられている。また、第2封止膜115は貫通孔111cの外側では光反射膜113及び第1封止膜114を介して第2主面111b上に設けられている。これにより、蛍光体層112は第1封止膜114及び第2封止膜115によって全周が被覆され、封止されている。 The second sealing film 115 is provided inside the through hole 111c on the second main surface 111b side of the phosphor layer 112, and is provided on the opposite side of the first sealing film 114 with the phosphor layer 112 interposed therebetween. .. Further, the second sealing film 115 is provided on the second main surface 111b via the light reflecting film 113 and the first sealing film 114 outside the through hole 111c. As a result, the entire circumference of the phosphor layer 112 is covered and sealed by the first sealing film 114 and the second sealing film 115.
 第1封止膜114及び第2封止膜115は、光透過性及びガスバリア性を有する膜であり、例えばSiO、SiN、AlN、ZrO、Ta又はZnOからなるものとすることができる。なお、第1封止膜114及び第2封止膜115は同一材料からなるものであってもよく、異なる材料からなるものであってもよい。第1封止膜114及び第2封止膜115の厚みは、例えば100nmとすることができる。発光部110は以上のような構成を有する。 The first sealing film 114 and the second sealing film 115 are films having light transmittance and gas barrier properties, and are made of, for example, SiO 2 , SiN, AlN, ZrO 2 , Ta 2 O 3 or Zn O. Can be done. The first sealing film 114 and the second sealing film 115 may be made of the same material or may be made of different materials. The thickness of the first sealing film 114 and the second sealing film 115 can be, for example, 100 nm. The light emitting unit 110 has the above configuration.
 励起光源130は、基材111の第1主面111a側に接合され、蛍光体層112に励起光を出射する。励起光源130はLED(Light Emitting Diode)とすることができ、図1に示すようにn型層131、p型層132、活性層133、n電極134及びp電極135を備えるものとすることができる。なお、励起光源130においてn型とp型は逆であってもよい。 The excitation light source 130 is bonded to the first main surface 111a side of the base material 111, and emits excitation light to the phosphor layer 112. The excitation light source 130 may be an LED (Light Emitting Diode), and may include an n-type layer 131, a p-type layer 132, an active layer 133, an n electrode 134, and a p electrode 135 as shown in FIG. can. In the excitation light source 130, the n-type and the p-type may be reversed.
 n型層131、p型層132及び活性層133は例えばGaN、AlGaInN、AlGaInAs、AlGaInP、ZnSe又はZnO等の半導体材料にドーパントをドープしたものとすることができる。n電極134及びp電極135は、例えばAuGe/Ni/Au、Ti/Pt/Au、Pd、Ni/Au又はITO(Indium Tin Oxide)等の導電性材料からなる。 The n-type layer 131, the p-type layer 132, and the active layer 133 can be made by doping a semiconductor material such as GaN, AlGaInN, AlGaInAs, AlGaInP, ZnSe, or ZnO with a dopant. The n-electrode 134 and the p-electrode 135 are made of a conductive material such as AuGe / Ni / Au, Ti / Pt / Au, Pd, Ni / Au or ITO (Indium Tin Oxide).
 励起光源130は、単色の励起光を放出することが可能な光源であり、発光波長は青色光や紫外線の波長とすることができる。また、励起光源130は励起光を放出可能なものであればよく、LEDの他にもOLED(Organic Light Emitting Diode)、レーザーダイオード又はVCSEL(Vertical Cavity Surface Emitting LASER)等であってもよい。 The excitation light source 130 is a light source capable of emitting monochromatic excitation light, and the emission wavelength can be the wavelength of blue light or ultraviolet light. Further, the excitation light source 130 may be any one capable of emitting excitation light, and may be an OLED (Organic Light Emitting Diode), a laser diode, a VCSEL (Vertical Cavity Surface Emitting LASER), or the like, in addition to the LED.
 接着層140は、励起光源130を発光部110に接着する。接着層140は励起光源130の発光波長に対して光透過性を有するものであれば特に限定されない。また、励起光源130は接着層140による接着に代えて、他の方法で発光部110に接合してもよい。 The adhesive layer 140 adheres the excitation light source 130 to the light emitting unit 110. The adhesive layer 140 is not particularly limited as long as it has light transmission with respect to the emission wavelength of the excitation light source 130. Further, the excitation light source 130 may be bonded to the light emitting unit 110 by another method instead of bonding by the adhesive layer 140.
 [発光素子の動作]
 図6乃至図8は発光素子100の動作を示す模式図である。励起光源130に電力を供給すると、図6中に矢印で示すように、活性層133において発光が生じる。この光(以下、励起光)は、励起光源130から接着層140及び第1封止膜114を透過して蛍光体層112に入射する。
[Operation of light emitting element]
6 to 8 are schematic views showing the operation of the light emitting element 100. When electric power is supplied to the excitation light source 130, light emission is generated in the active layer 133 as shown by an arrow in FIG. This light (hereinafter referred to as excitation light) passes through the adhesive layer 140 and the first sealing film 114 from the excitation light source 130 and enters the phosphor layer 112.
 励起光が蛍光体121に入射すると、図7に矢印で示すように、蛍光体121において蛍光が生じる。蛍光は散乱体122によって散乱され、第2封止膜115を透過して発光素子100の前方(励起光源130とは反対側)に出射される。また、図8に示すように、蛍光のうち、貫通孔111cの内周面111dに向かって進行した光は光反射膜113によって反射され、第2封止膜115を透過して発光素子100の前方に出射される。 When the excitation light is incident on the phosphor 121, fluorescence is generated in the phosphor 121 as shown by an arrow in FIG. 7. The fluorescence is scattered by the scatterer 122, passes through the second sealing film 115, and is emitted to the front of the light emitting element 100 (the side opposite to the excitation light source 130). Further, as shown in FIG. 8, of the fluorescence, the light traveling toward the inner peripheral surface 111d of the through hole 111c is reflected by the light reflecting film 113 and transmitted through the second sealing film 115 to the light emitting element 100. It is emitted forward.
 [発光素子による効果]
 発光素子100では図4に示すように、蛍光体層112は第1封止膜114及び第2封止膜115によって全周が被覆され、個々の発光素子100毎に封止されている。第1封止膜114及び第2封止膜115はガスバリア性を有しており、酸素や水分が蛍光体層112に到達することが防止されている。これにより、酸素や水分による蛍光体121の劣化を防止することができ、発光素子100の信頼性を維持することが可能である。
[Effect of light emitting element]
In the light emitting element 100, as shown in FIG. 4, the entire circumference of the phosphor layer 112 is covered with the first sealing film 114 and the second sealing film 115, and each light emitting element 100 is sealed. The first sealing film 114 and the second sealing film 115 have a gas barrier property, and prevent oxygen and moisture from reaching the phosphor layer 112. As a result, deterioration of the phosphor 121 due to oxygen and moisture can be prevented, and the reliability of the light emitting element 100 can be maintained.
 また、従来では励起光源を蛍光体層に埋め込んだ構造も知られているが、発光素子100では蛍光体層112は熱源となる励起光源130から離間して配置されている。これにより、熱による蛍光体121の劣化を防止することができるため、この点でも発光素子100の信頼性を維持することが可能である。 Further, conventionally, a structure in which an excitation light source is embedded in a phosphor layer is known, but in the light emitting element 100, the phosphor layer 112 is arranged away from the excitation light source 130 which is a heat source. As a result, deterioration of the phosphor 121 due to heat can be prevented, and the reliability of the light emitting element 100 can be maintained in this respect as well.
 このように発光素子100では、酸素や水分、熱による蛍光体121の劣化を防止可能であるため、QDや有機蛍光体等、劣化を生じ得る蛍光体であっても高い信頼性を実現することができる。 As described above, since the light emitting element 100 can prevent the deterioration of the phosphor 121 due to oxygen, moisture, and heat, high reliability can be realized even for a phosphor that can cause deterioration such as QD and an organic phosphor. Can be done.
 さらに、発光素子100では、第1封止膜114及び第2封止膜115の厚みを薄くすることができ、励起光源130を蛍光体層112に近接して配置することが可能であるため、発光素子100の小型化が実現可能である。また、励起光源130と蛍光体層112の距離が小さいと、励起光源130から拡散して出射された光も蛍光体層112に入射するため、発光素子100の効率を向上させることが可能である。 Further, in the light emitting element 100, the thickness of the first sealing film 114 and the second sealing film 115 can be reduced, and the excitation light source 130 can be arranged close to the phosphor layer 112. It is possible to reduce the size of the light emitting element 100. Further, if the distance between the excitation light source 130 and the phosphor layer 112 is small, the light diffused and emitted from the excitation light source 130 also enters the phosphor layer 112, so that the efficiency of the light emitting element 100 can be improved. ..
 また、発光素子100では、貫通孔111cの内周面111dに光反射膜113が設けられている。これにより、蛍光のうち、内周面111dの方向に進行した光も発光素子100の前方に出射されるため、効率を向上させることが可能である。さらに、発光素子100では、隣接する発光素子100の間で蛍光体層112が分離されており、後述するように光の混合(クロストーク)を防止することが可能である。 Further, in the light emitting element 100, the light reflecting film 113 is provided on the inner peripheral surface 111d of the through hole 111c. As a result, among the fluorescence, the light traveling in the direction of the inner peripheral surface 111d is also emitted in front of the light emitting element 100, so that the efficiency can be improved. Further, in the light emitting element 100, the phosphor layer 112 is separated between the adjacent light emitting elements 100, and it is possible to prevent light mixing (crosstalk) as described later.
 [発光素子の製造方法]
 発光素子100の製造方法について説明する。図9乃至図12は、発光素子100の製造方法を示す模式図である。
[Manufacturing method of light emitting element]
A method of manufacturing the light emitting element 100 will be described. 9 to 12 are schematic views showing a method of manufacturing the light emitting element 100.
 図9(a)に示すように、基材111の第1主面111a上に支持層151を形成する。支持層151は例えばNiからなり、スパッタ法及びメッキにより形成することができる。支持層151の厚みは例えば500μm程度である。さらに、基材111の第2主面111b上にマスク層152を形成する。マスク層152は例えばCuからなり、スパッタ法により形成することができる。 As shown in FIG. 9A, the support layer 151 is formed on the first main surface 111a of the base material 111. The support layer 151 is made of, for example, Ni, and can be formed by a sputtering method and plating. The thickness of the support layer 151 is, for example, about 500 μm. Further, the mask layer 152 is formed on the second main surface 111b of the base material 111. The mask layer 152 is made of, for example, Cu and can be formed by a sputtering method.
 続いて、図9(b)に示すようにマスク層152をパターニングする。このパターニングは、マスク層152上にフォトリソグラフィーによりレジストパターンを形成し、当該レジストパターンを用いてウェットエッチングによりマスク層152の材料を除去することで行うことができる。 Subsequently, the mask layer 152 is patterned as shown in FIG. 9 (b). This patterning can be performed by forming a resist pattern on the mask layer 152 by photolithography and removing the material of the mask layer 152 by wet etching using the resist pattern.
 続いて、図9(c)に示すように基材111をパターニングする。このパターニングは、マスク層152をハードマスクとして、ウェットエッチングにより基材111の材料を除去することで行うことができる。これにより、貫通孔111cが形成される。 Subsequently, the base material 111 is patterned as shown in FIG. 9 (c). This patterning can be performed by using the mask layer 152 as a hard mask and removing the material of the base material 111 by wet etching. As a result, the through hole 111c is formed.
 この際、等方性のエッチャントを用いることで、図9(c)に示すような傾斜した内周面111dを有する貫通孔111cを形成することができる。また、ドライエッチングにより、X-Y平面に垂直な内周面111dを有する貫通孔111cを形成してもよい。 At this time, by using an isotropic etchant, it is possible to form a through hole 111c having an inclined inner peripheral surface 111d as shown in FIG. 9C. Further, through holes 111c having an inner peripheral surface 111d perpendicular to the XY plane may be formed by dry etching.
 続いて、図10(a)に示すように、マスク層152を除去する。この際、支持層151が除去されないように、支持層151の材料に対して選択性のあるエッチャントを用いる。 Subsequently, as shown in FIG. 10A, the mask layer 152 is removed. At this time, an etchant that is selective for the material of the support layer 151 is used so that the support layer 151 is not removed.
 続いて、図10(b)に示すように、支持層151、内周面111d及び第2主面111b上に光反射膜113を形成する。光反射膜113例えばスパッタ法により形成することができる。さらに、光反射膜113上に第1封止膜114を形成する。第1封止膜114は例えばスパッタ法により形成することができる。 Subsequently, as shown in FIG. 10B, the light reflecting film 113 is formed on the support layer 151, the inner peripheral surface 111d, and the second main surface 111b. The light reflective film 113 can be formed by, for example, a sputtering method. Further, the first sealing film 114 is formed on the light reflecting film 113. The first sealing film 114 can be formed, for example, by a sputtering method.
 続いて、図10(c)に示すように、貫通孔111c内に蛍光体層112を形成する。蛍光体層112は、蛍光体121と散乱体122を分散した充填剤123を貫通孔111c内に充填し、硬化させることにより形成することができる。 Subsequently, as shown in FIG. 10 (c), the phosphor layer 112 is formed in the through hole 111c. The phosphor layer 112 can be formed by filling the through hole 111c with a filler 123 in which the phosphor 121 and the scatterer 122 are dispersed and curing the mixture.
 続いて、図11(a)に示すように、蛍光体層112及び第1封止膜114上に第2封止膜115を形成する。第2封止膜115は例えばスパッタ法により形成することができる。これにより、蛍光体層112は第1封止膜114及び第2封止膜115によって封止される。 Subsequently, as shown in FIG. 11A, the second sealing film 115 is formed on the phosphor layer 112 and the first sealing film 114. The second sealing film 115 can be formed by, for example, a sputtering method. As a result, the phosphor layer 112 is sealed by the first sealing film 114 and the second sealing film 115.
 続いて、図11(b)に示すように、第2封止膜115上に支持基板153を接合する。支持基板153は例えばガラス基板であり、接着剤154により第2封止膜115と接着されるものとすることができる。 Subsequently, as shown in FIG. 11B, the support substrate 153 is bonded onto the second sealing film 115. The support substrate 153 is, for example, a glass substrate, and can be adhered to the second sealing film 115 by the adhesive 154.
 続いて、図11(c)に示すように、支持層151を除去する。支持層151はウェットエッチングにより除去することができる。この際、光反射膜113に対して選択性を有するエッチャントを使用する。 Subsequently, as shown in FIG. 11 (c), the support layer 151 is removed. The support layer 151 can be removed by wet etching. At this time, an etchant having selectivity for the light reflecting film 113 is used.
 続いて、図12(a)に示すように、第1主面111aにおいて光反射膜113を除去する。光反射膜113は、フォトリソグラフィー等によって第1主面111a上に光反射膜113のみを露出させる開口を有するレジストパターンを形成し、当該レジストパターンを用いたウェットエッチングにより除去することができる。 Subsequently, as shown in FIG. 12A, the light reflecting film 113 is removed on the first main surface 111a. The light-reflecting film 113 can be removed by wet etching using the resist pattern after forming a resist pattern having an opening that exposes only the light-reflecting film 113 on the first main surface 111a by photolithography or the like.
 続いて、図12(b)に示すように支持基板153を除去する。これにより、発光部110が形成される。さらに、図12(c)に示すように、励起光源130を接着層140により発光部110に接合し、発光素子100を作製することができる。 Subsequently, the support substrate 153 is removed as shown in FIG. 12 (b). As a result, the light emitting unit 110 is formed. Further, as shown in FIG. 12 (c), the excitation light source 130 can be bonded to the light emitting portion 110 by the adhesive layer 140 to manufacture the light emitting element 100.
 なお、励起光源130は、サファイア基板上にMOCVD(Metal Organic Chemical Vapor Deposition)法にて結晶成長させ、電極形成プロセス後に、レーザリフトオフ(LLO)の手法を用いてサファイア基板を剥離して作製することができる。サファイア基板が残ると励起光源130の活性層133と蛍光体層112の距離が遠くなり、サブピクセルごとに励起光源130を独立に駆動する表示装置においては、サブピクセルごとのピッチを小さくする必要があるため適さない。そのため、結晶成長基板を剥離することが好ましい。 The excitation light source 130 is manufactured by growing crystals on a sapphire substrate by the MOCVD (Metal Organic Chemical Vapor Deposition) method, and after the electrode forming process, peeling off the sapphire substrate using a laser lift-off (LLO) method. Can be done. If the sapphire substrate remains, the distance between the active layer 133 of the excitation light source 130 and the phosphor layer 112 becomes long, and in a display device that independently drives the excitation light source 130 for each subpixel, it is necessary to reduce the pitch for each subpixel. Not suitable because it exists. Therefore, it is preferable to peel off the crystal growth substrate.
 発光素子100は以上のようにして製造することができる。なお、ここでは一つの発光素子100の製造プロセスについて示したが、実際には多数の発光素子100を備える発光素子アレイ(後述)を上記製造プロセスによって一度に製造することが可能である。 The light emitting element 100 can be manufactured as described above. Although the manufacturing process of one light emitting element 100 is shown here, it is actually possible to manufacture a light emitting element array (described later) including a large number of light emitting elements 100 at a time by the above manufacturing process.
 [第1封止膜及び第2封止膜について]
 第1封止膜114及び第2封止膜115の厚みは100nm付近の光の波長に近い厚みとすることができ、屈折率と厚みを調整することにより、波長毎の反射率を制御することが可能である。図4に示すように、第1封止膜114の厚みT1は、励起光を透過し、蛍光を反射する厚みが好適である。これにより、第1封止膜114に入射した蛍光を第1封止膜114が反射し、光の取り出し効率が向上する。
[About the 1st sealing film and the 2nd sealing film]
The thickness of the first sealing film 114 and the second sealing film 115 can be set to a thickness close to the wavelength of light in the vicinity of 100 nm, and the reflectance for each wavelength can be controlled by adjusting the refractive index and the thickness. Is possible. As shown in FIG. 4, the thickness T1 of the first sealing film 114 is preferably a thickness that transmits excitation light and reflects fluorescence. As a result, the fluorescence incident on the first sealing film 114 is reflected by the first sealing film 114, and the light extraction efficiency is improved.
 また、第2封止膜115の厚みT2は、励起光を反射し、蛍光を透過する厚みが好適である。これにより、励起光が蛍光体層112を透過することを防止し、励起光を蛍光体121の励起に利用することができるため、光の取り出し効率が向上する。また、第2封止膜115の励起光の反射率を大きくすることは、外光による蛍光体層112の励起を抑制し、外光コントラストの向上にも寄与する。 Further, the thickness T2 of the second sealing film 115 is preferably a thickness that reflects excitation light and transmits fluorescence. As a result, the excitation light is prevented from passing through the phosphor layer 112, and the excitation light can be used for exciting the phosphor 121, so that the light extraction efficiency is improved. Further, increasing the reflectance of the excitation light of the second sealing film 115 suppresses the excitation of the phosphor layer 112 by the external light and contributes to the improvement of the external light contrast.
 第1封止膜114は、例えば接着層140の屈折率が1.5程度であるため、これに対して屈折率差が大きい材料が好適であり、TiO等の高屈折率材料からなるものとすることができる。さらに、第1封止膜114及び第2封止膜115は低屈折率層と高屈折率層を交互に複数層積層した多層膜とすることも可能であり、これにより蛍光体層112の光取り出し効率を向上させることができる。低屈折率層は例えばSiOからなり、高屈折率層は例えばTiOからなるものとすることができる。 Since the first sealing film 114 has, for example, the refractive index of the adhesive layer 140 of about 1.5, a material having a large difference in refractive index is preferable, and the first sealing film 114 is made of a high refractive index material such as TiO 2. Can be. Further, the first sealing film 114 and the second sealing film 115 can be formed as a multilayer film in which a plurality of layers having a low refractive index layer and a plurality of layers having a high refractive index are alternately laminated, whereby the light of the phosphor layer 112 can be obtained. The extraction efficiency can be improved. The low refractive index layer may be made of, for example, SiO 2 , and the high refractive index layer may be made of, for example, TiO 2 .
 [貫通孔の形状について]
 基材111に設けられる貫通孔111cは、図5に示すように、第1主面111a側から第2主面111b側に向かって内周面111d間の距離Dが次第に離間するように内周面111dが傾斜した構成を有するものが好適である。上記のように内周面111d上には光反射膜113が設けられるため、内周面111dを傾斜させることにより、入射光が素子前方に向かって反射され(図8参照)、光の利用効率を向上させることが可能である。
[About the shape of the through hole]
As shown in FIG. 5, the through hole 111c provided in the base material 111 has an inner circumference such that the distance D between the inner peripheral surfaces 111d gradually increases from the first main surface 111a side toward the second main surface 111b side. It is preferable that the surface 111d has an inclined structure. Since the light reflecting film 113 is provided on the inner peripheral surface 111d as described above, by inclining the inner peripheral surface 111d, the incident light is reflected toward the front of the element (see FIG. 8), and the light utilization efficiency. Can be improved.
 なお、内周面111dは図5に示すように傾斜した平面状に限られず、第1主面111a側から第2主面111b側に向かって距離Dが次第に離間するように内周面111dが湾曲した曲面状ものとしてもよい。また、内周面111dは基材111の厚み方向(Z方向)に平行な平面であり、第1主面111a側から第2主面111b側に向かって距離Dが一定であってもよい。 The inner peripheral surface 111d is not limited to an inclined flat surface as shown in FIG. 5, and the inner peripheral surface 111d is gradually separated from the first main surface 111a side toward the second main surface 111b side. It may be a curved curved surface. Further, the inner peripheral surface 111d is a plane parallel to the thickness direction (Z direction) of the base material 111, and the distance D may be constant from the first main surface 111a side to the second main surface 111b side.
 さらに、貫通孔111cの上面及び下面の形状も図2及び図3に示すように正方形に限られない。図13及び図14は貫通孔111cの他の形状を示す模式図であり、図13(a)及び図14(a)は発光素子100を上面から見た平面図、図13(b)及び図14(b)は発光素子100を下面から見た平面図である。 Further, the shapes of the upper surface and the lower surface of the through hole 111c are not limited to the square shape as shown in FIGS. 2 and 3. 13 and 14 are schematic views showing other shapes of the through hole 111c, and FIGS. 13 (a) and 14 (a) are plan views, FIGS. 13 (b) and 14 (a) of the light emitting element 100 as viewed from above. 14 (b) is a plan view of the light emitting element 100 as viewed from the lower surface.
 図13(a)及び図13(b)に示すように貫通孔111cは第1主面111a及び第2主面111b上で円形であってもよい。また、図14(a)及び図14(b)に示すように貫通孔111cは第1主面111a及び第2主面111b上で六角形形であってもよい。この他にも貫通孔111cは、第1主面111a及び第2主面111b上で長方形、楕円形又は多角形等の各種形状とすることが可能である。また、貫通孔111cは、第1主面111a上で正方形、第2主面111b上で円形のように、第1主面111a上と第2主面111b上で形状が異なってもよい。 As shown in FIGS. 13 (a) and 13 (b), the through hole 111c may be circular on the first main surface 111a and the second main surface 111b. Further, as shown in FIGS. 14A and 14B, the through hole 111c may be hexagonal on the first main surface 111a and the second main surface 111b. In addition to this, the through hole 111c can have various shapes such as a rectangle, an ellipse, or a polygon on the first main surface 111a and the second main surface 111b. Further, the through hole 111c may have different shapes on the first main surface 111a and the second main surface 111b, such as a square on the first main surface 111a and a circle on the second main surface 111b.
 [発光素子の他の構成について]
 発光素子100の構成は上述のものに限られず、以下のような構成とすることも可能である。図15乃至図20は、他の構成を有する発光素子100の模式図である。
[About other configurations of light emitting elements]
The configuration of the light emitting element 100 is not limited to the above, and the following configuration is also possible. 15 to 20 are schematic views of a light emitting element 100 having another configuration.
 図15に示すように、第1封止膜114は、貫通孔111cの内周面111d上に設けられず、蛍光体層112及び基材111の第1主面111a側に設けられてもよい。この場合、光反射膜113をガスバリア性を有する膜とすることにより、光反射膜113を蛍光体層112の封止に用いることが可能となる。即ち、光反射膜113、第1封止膜114及び第2封止膜115によって蛍光体層112の全周が被覆され、蛍光体層112が封止されるものとすることができる。 As shown in FIG. 15, the first sealing film 114 may not be provided on the inner peripheral surface 111d of the through hole 111c, but may be provided on the first main surface 111a side of the phosphor layer 112 and the base material 111. .. In this case, by using the light reflecting film 113 as a film having a gas barrier property, the light reflecting film 113 can be used for sealing the phosphor layer 112. That is, the entire circumference of the phosphor layer 112 can be covered with the light reflecting film 113, the first sealing film 114, and the second sealing film 115, and the phosphor layer 112 can be sealed.
 また、図16に示すように、発光素子100は光反射膜113を有しないものであってもよい。第1封止膜114は、貫通孔111cの内周面111d上に設けられず、蛍光体層112及び基材111の第1主面111a側に設けられるものとすることができる。この場合、基材111をガスバリア性を有するものとすることにより、基材111を蛍光体層112の封止に用いることが可能となる。即ち、基材111、第1封止膜114及び第2封止膜115によって蛍光体層112の全周が被覆され、蛍光体層112が封止されるものとすることができる。 Further, as shown in FIG. 16, the light emitting element 100 may not have the light reflecting film 113. The first sealing film 114 may not be provided on the inner peripheral surface 111d of the through hole 111c, but may be provided on the first main surface 111a side of the phosphor layer 112 and the base material 111. In this case, by making the base material 111 have a gas barrier property, the base material 111 can be used for sealing the phosphor layer 112. That is, the entire circumference of the phosphor layer 112 can be covered with the base material 111, the first sealing film 114, and the second sealing film 115, and the phosphor layer 112 can be sealed.
 さらに、この構成において、内周面111dを構成する基材111の表面を光反射性を有するものとすることにより、内周面111dに入射した光を発光素子100の前方へ反射させ、即ち光反射膜113と同等の機能を実現することが可能である。 Further, in this configuration, by making the surface of the base material 111 constituting the inner peripheral surface 111d have light reflectivity, the light incident on the inner peripheral surface 111d is reflected to the front of the light emitting element 100, that is, the light. It is possible to realize the same function as the reflective film 113.
 また、図17に示すように、発光素子100は遮光部141を有するものであってもよい。遮光部141は、第2主面111b上において貫通孔111cの周囲の第1封止膜114及び第2封止膜115を除去し、光透過性を有しない材料を配置することにより形成することができる。遮光部141を設けることにより、発光素子100の間の領域の外光反射を抑制し、発光素子100を画素とする表示装置の外光コントラスト比を向上させることができる。 Further, as shown in FIG. 17, the light emitting element 100 may have a light-shielding portion 141. The light-shielding portion 141 is formed by removing the first sealing film 114 and the second sealing film 115 around the through hole 111c on the second main surface 111b and arranging a material having no light transmission. Can be done. By providing the light-shielding portion 141, it is possible to suppress the reflection of external light in the region between the light-emitting elements 100 and improve the external light contrast ratio of the display device having the light-emitting element 100 as a pixel.
 また、第1封止膜114及び第2封止膜115を除去して遮光部141を設けることより、隣接する発光素子100との間で第1封止膜114及び第2封止膜115を介した光の伝搬を防止することが可能であり、即ちクロストークを抑制することが可能となる。なお、遮光部141は、第1封止膜114及び第2封止膜115を除去せずに、第2封止膜115上に配置することも可能である。 Further, by removing the first sealing film 114 and the second sealing film 115 and providing the light-shielding portion 141, the first sealing film 114 and the second sealing film 115 can be separated from the adjacent light emitting element 100. It is possible to prevent the propagation of light through the film, that is, to suppress crosstalk. The light-shielding portion 141 can be arranged on the second sealing film 115 without removing the first sealing film 114 and the second sealing film 115.
 また、図18に示すように、発光素子100はエッチングストップ層142を有するものであってもよい。エッチングストップ層142は、支持層151(図11(b)参照)の材料とエッチング選択性を有する材料からなり、基材111と光反射膜113の間に設けられている。エッチングストップ層142は例えば、SiO、AlN、SiN、TiO、Al、ZnO又はTa等の誘電体膜やTi、Cr、Au又はAg等の金属膜とすることができる。 Further, as shown in FIG. 18, the light emitting element 100 may have an etching stop layer 142. The etching stop layer 142 is made of a material of the support layer 151 (see FIG. 11B) and a material having etching selectivity, and is provided between the base material 111 and the light reflecting film 113. The etching stop layer 142 can be, for example, a dielectric film such as SiO 2 , AlN, SiN, TIO 2 , Al 2 O 3 , ZnO or Ta 2 O 3 , or a metal film such as Ti, Cr, Au or Ag. ..
 図19は、エッチングストップ層142を備える発光素子100の製造プロセスの一部示す模式図であり、支持層151を除去する工程(図11(b)及び(c)参照)を示す模式図である。図19(a)及び(b)に示すように、支持層151を除去する工程において光反射膜113がエッチングストップ層142に被覆され、エッチングから保護される。 FIG. 19 is a schematic view showing a part of the manufacturing process of the light emitting element 100 including the etching stop layer 142, and is a schematic view showing a step of removing the support layer 151 (see FIGS. 11B and 11C). .. As shown in FIGS. 19A and 19B, the light reflecting film 113 is coated on the etching stop layer 142 in the step of removing the support layer 151 to protect it from etching.
 図11(b)及び(c)に示すようにエッチングストップ層142を設けない場合には、支持層151を除去する際に光反射膜113が除去されないよう、光反射膜113は支持層151に対してエッチング選択性の異なる材料を用いる必要がある。しかし、光反射膜113は、励起光や蛍光に対して高い反射率を有する必要があるため、材料が限られる。 When the etching stop layer 142 is not provided as shown in FIGS. 11B and 11C, the light-reflecting film 113 is attached to the support layer 151 so that the light-reflecting film 113 is not removed when the support layer 151 is removed. On the other hand, it is necessary to use materials having different etching selectivity. However, the material of the light reflecting film 113 is limited because it needs to have a high reflectance with respect to excitation light and fluorescence.
 一方、図19に示すようにエッチングストップ層142を設ける場合、光反射膜113はエッチングから保護されるため、支持層151は、光反射膜113とのエッチング選択性を考慮せずに材料を選択することが可能となる。なお、エッチングストップ層142は、図15に示すように第1封止膜114が内周面111上に設けられない場合にも基材111と光反射膜113の間に設けられてもよい。 On the other hand, when the etching stop layer 142 is provided as shown in FIG. 19, since the light reflecting film 113 is protected from etching, the material of the support layer 151 is selected without considering the etching selectivity with the light reflecting film 113. It becomes possible to do. The etching stop layer 142 may be provided between the base material 111 and the light reflecting film 113 even when the first sealing film 114 is not provided on the inner peripheral surface 111 as shown in FIG.
 また、図20に示すように、発光素子100はレンズ143を備えるものとしてもよい。レンズ143は、樹脂又はガラス等からなり、基材111の第2主面111b側に接着剤144によって接着されるものとすることができる。図1の構造では蛍光は蛍光体121から等方的に放射されるため、第2封止膜115から空気中に屈折し、放出される際にランバーシアンに近い配向特性を有する。一方、図20に示すようにレンズ143を設けることにより、発光素子100の出射光は前方の狭い角度に集中し、必要な方向に配光特性を最適化できるため、光の利用効率を向上させることが可能である。 Further, as shown in FIG. 20, the light emitting element 100 may include a lens 143. The lens 143 is made of resin, glass, or the like, and can be adhered to the second main surface 111b side of the base material 111 with the adhesive 144. In the structure of FIG. 1, since the fluorescence is isotropically emitted from the phosphor 121, it is refracted into the air from the second sealing film 115 and has an orientation characteristic close to that of Lambertian when emitted. On the other hand, by providing the lens 143 as shown in FIG. 20, the emitted light of the light emitting element 100 is concentrated at a narrow angle in front, and the light distribution characteristics can be optimized in the required direction, so that the light utilization efficiency is improved. It is possible.
 [発光素子アレイについて]
 発光素子100は、アレイ化することが可能である。図21は複数の発光素子100をアレイ化した発光素子アレイ150の断面図である。同図に示すように発光素子アレイ150は、赤色発光素子100R、緑色発光素子100G及び青色発光素子100Bを備える。
[About light emitting element array]
The light emitting element 100 can be arrayed. FIG. 21 is a cross-sectional view of a light emitting element array 150 in which a plurality of light emitting elements 100 are arrayed. As shown in the figure, the light emitting element array 150 includes a red light emitting element 100R, a green light emitting element 100G, and a blue light emitting element 100B.
 赤色発光素子100Rは、上記発光素子100の構成を有し、蛍光体層112は赤色の蛍光を放出する赤色蛍光体121Rを含む。緑色発光素子100Gは、上記発光素子100の構成を有し、蛍光体層112は緑色の蛍光を放出する緑色蛍光体121Gを含む。青色発光素子100Bは、上記発光素子100のうち、蛍光体121を有しない構成を有する。赤色発光素子100R、緑色発光素子100G、青色発光素子100Bは、インクジョット方式により蛍光体層112を塗り分けることにより、形成することが可能である。 The red light emitting element 100R has the configuration of the above light emitting element 100, and the phosphor layer 112 includes a red phosphor 121R that emits red fluorescence. The green light emitting element 100G has the configuration of the above light emitting element 100, and the phosphor layer 112 includes a green phosphor 121G that emits green fluorescence. The blue light emitting element 100B has a configuration in which the phosphor 121 is not included in the light emitting element 100. The red light emitting element 100R, the green light emitting element 100G, and the blue light emitting element 100B can be formed by separately coating the phosphor layer 112 by the ink jot method.
 各発光素子100において、励起光源130は青色の励起光を放出する。赤色発光素子100Rでは、発光部110に青色の励起光が入射すると、赤色蛍光体121Rから赤色の蛍光が出射される。緑色発光素子100Gでは、発光部110に青色の励起光が入射すると、緑色蛍光体121Gから緑色の蛍光が出射される。青色発光素子100Bでは、発光部110に青色の光が入射すると、散乱体122で散乱され、青色の光が出射される。 In each light emitting element 100, the excitation light source 130 emits blue excitation light. In the red light emitting element 100R, when blue excitation light is incident on the light emitting unit 110, red fluorescence is emitted from the red phosphor 121R. In the green light emitting element 100G, when blue excitation light is incident on the light emitting unit 110, green fluorescence is emitted from the green phosphor 121G. In the blue light emitting element 100B, when blue light is incident on the light emitting unit 110, it is scattered by the scatterer 122 and the blue light is emitted.
 発光素子アレイ150では、このように赤色発光素子100R、緑色発光素子100G及び青色発光素子100Bで赤色、緑色及び青色の光を放出することが可能であり、各発光素子100をサブピクセルとする画素を構成することができる。 In the light emitting element array 150, the red light emitting element 100R, the green light emitting element 100G, and the blue light emitting element 100B can emit red, green, and blue light in this way, and each light emitting element 100 is a pixel as a subpixel. Can be configured.
 なお、発光素子アレイ150では各励起光源130は青色の励起光を放出し、赤色蛍光体121R及び緑色蛍光体121Gによって赤色光及び緑色光に変換するものとしたが、これに限られない。発光素子アレイ150を構成する発光素子100の一部が第1の色の蛍光を発する第1の蛍光体121を含み、発光素子100の他の一部が第2の色の蛍光を発する第2の蛍光体121を含むものとすることができる。 In the light emitting element array 150, each excitation light source 130 emits blue excitation light and is converted into red light and green light by the red phosphor 121R and the green phosphor 121G, but the present invention is not limited to this. A second part of the light emitting element 100 constituting the light emitting element array 150 includes a first phosphor 121 that emits fluorescence of the first color, and another part of the light emitting element 100 emits fluorescence of the second color. It can contain the phosphor 121 of.
 また、発光素子アレイ150は、さらに第3の色の蛍光を発する第3の蛍光体を含むものとしてもよく、例えば青色発光素子100Bは蛍光体層112に青色の蛍光を放出する青色蛍光体を含み、各励起光源130は紫外線を励起光として放出するものとしてもよい。また、発光素子アレイ150が放出する光は3色に限られず、単色、2色又は4色以上であってもよい。また、発光素子アレイ150を構成する発光素子100は、本開示中のいずれの構成を有する発光素子100であってもよい。 Further, the light emitting element array 150 may further include a third phosphor that emits fluorescence of a third color. For example, the blue light emitting element 100B contains a blue phosphor that emits blue fluorescence to the phosphor layer 112. Including, each excitation light source 130 may emit ultraviolet rays as excitation light. Further, the light emitted by the light emitting element array 150 is not limited to three colors, and may be a single color, two colors, or four or more colors. Further, the light emitting element 100 constituting the light emitting element array 150 may be a light emitting element 100 having any of the configurations disclosed in the present disclosure.
 発光素子アレイ150では光のクロストーク(混合)を防止することが可能である。図22は比較として示す、従来構造を有する発光素子アレイ500の模式図である。同図に示すように、発光素子アレイ500では、蛍光体層511の表裏面がそれぞれ封止膜512によって封止され、封止膜512の外側には第1フィルム513及び第2フィルム514が設けられている。 The light emitting element array 150 can prevent crosstalk (mixing) of light. FIG. 22 is a schematic view of a light emitting device array 500 having a conventional structure, which is shown as a comparison. As shown in the figure, in the light emitting element array 500, the front and back surfaces of the phosphor layer 511 are respectively sealed by the sealing film 512, and the first film 513 and the second film 514 are provided on the outside of the sealing film 512. Has been done.
 第1フィルム513上には赤色カラーフィルタ515R、緑色カラーフィルタ515G及び青色カラーフィルタ515Bが設けられている。第2フィルム514上には赤色光用の光源520R、緑色光用の光源520G及び青色光用の光源520Bが設けられている。 A red color filter 515R, a green color filter 515G, and a blue color filter 515B are provided on the first film 513. A light source 520R for red light, a light source 520G for green light, and a light source 520B for blue light are provided on the second film 514.
 蛍光体層511には、赤色蛍光体516Rと緑色蛍光体516Gが含有されている。光源520Rから青色の励起光が放出されると、赤色蛍光体516Rから赤色の蛍光が放出され、赤色カラーフィルタ515Rから赤色光が放出される。また、光源520Gから青色の励起光が放出されると、緑色蛍光体516Gから緑色の蛍光が放出され、緑色カラーフィルタ515Gから赤色光が放出される。さらに、光源520Bから青色の光が放出されるとそのまま蛍光体層511を透過し、青色カラーフィルタ515Bから青色光として放出される。 The phosphor layer 511 contains a red phosphor 516R and a green phosphor 516G. When the blue excitation light is emitted from the light source 520R, the red fluorescence is emitted from the red phosphor 516R, and the red light is emitted from the red color filter 515R. Further, when the blue excitation light is emitted from the light source 520G, the green fluorescence is emitted from the green phosphor 516G, and the red light is emitted from the green color filter 515G. Further, when blue light is emitted from the light source 520B, it passes through the phosphor layer 511 as it is and is emitted as blue light from the blue color filter 515B.
 ここで、例えば緑色光を生じさせたい場合、光源520Gを発光(図中、L)させると、緑色蛍光体516Gから緑色の蛍光(図中、Lf1)が放出され、緑色カラーフィルタ515Gから緑色光Lが出射される。これに加え、蛍光Lf1の一部は赤色カラーフィルタ515R近傍の赤色蛍光体516を励起させる。これにより、赤色蛍光体516Rから赤色の蛍光(図中、Lf2)が放出され、赤色カラーフィルタ515Rから若干の赤色光Lが放出される。 Here, when for example wants causing green light, (in the figure, L E) emitting light source 520G when is, (in the figure, L f1) green fluorescence from the green phosphor 516G is released from the green color filter 515G green light L G is emitted. In addition to this, a part of the fluorescence L f1 excites the red phosphor 516 near the red color filter 515R. As a result, red fluorescence (L f2 in the figure) is emitted from the red phosphor 516R, and a small amount of red light LR is emitted from the red color filter 515R.
 このため、光源520Gのみを発光させても赤色光Lも放出されていまい、クロストークが発生する。光源520Rや光源520Bを発光させた場合も同様に、蛍光や散乱光が近傍の蛍光体を励起し、クロストークが発生する。これに対し、発光素子アレイ150では、図21に示すように、各色の蛍光体層112は基材111によって分離されているため、クロストークを抑制することが可能である。 Therefore, even if only the light source 520G is emitted, the red light LR is not emitted, and crosstalk occurs. Similarly, when the light source 520R or the light source 520B is made to emit light, fluorescence or scattered light excites a nearby phosphor, and crosstalk occurs. On the other hand, in the light emitting element array 150, as shown in FIG. 21, since the phosphor layer 112 of each color is separated by the base material 111, it is possible to suppress crosstalk.
 さらに発光素子アレイ500では、横方向(X-Y方向)に進行する光は無駄となってしまうが、発光素子アレイ150では横方向に進行する光も光反射膜113によって反射され、有効に利用されるため、光取り出し効率も向上している。 Further, in the light emitting element array 500, the light traveling in the lateral direction (XY directions) is wasted, but in the light emitting element array 150, the light traveling in the lateral direction is also reflected by the light reflecting film 113 and is effectively used. Therefore, the light extraction efficiency is also improved.
 図23は他の構成を有する発光素子アレイ160の断面図である。同図に示すように発光素子アレイ160は、赤色発光素子100R、緑色発光素子100G及び青色発光素子100Bから構成されている。 FIG. 23 is a cross-sectional view of a light emitting element array 160 having another configuration. As shown in the figure, the light emitting element array 160 is composed of a red light emitting element 100R, a green light emitting element 100G, and a blue light emitting element 100B.
 赤色発光素子100Rは発光素子100の構成を有し、蛍光体層112は赤色の蛍光を放出する赤色蛍光体121R及び緑色の蛍光を放出する緑色蛍光体121Gを含む。赤色発光素子100Rの第2主面111b側には赤色カラーフィルタ145Rが接合されている。 The red light emitting element 100R has the configuration of the light emitting element 100, and the phosphor layer 112 includes a red phosphor 121R that emits red fluorescence and a green phosphor 121G that emits green fluorescence. A red color filter 145R is bonded to the second main surface 111b side of the red light emitting element 100R.
 緑色発光素子100Gは発光素子100の構成を有し、蛍光体層112は赤色の蛍光を放出する赤色蛍光体121R及び緑色の蛍光を放出する緑色蛍光体121Gを含む。緑色発光素子100Gの第2主面111b側には緑色カラーフィルタ145Gが接合されている。 The green light emitting element 100G has the configuration of the light emitting element 100, and the phosphor layer 112 includes a red phosphor 121R that emits red fluorescence and a green phosphor 121G that emits green fluorescence. A green color filter 145G is bonded to the second main surface 111b side of the green light emitting element 100G.
 青色発光素子100Bは発光素子100の構成を有し、蛍光体層112は赤色の蛍光を放出する赤色蛍光体121R及び緑色の蛍光を放出する緑色蛍光体121Gを含む。青色発光素子100Bの第2主面111b側には青色カラーフィルタ145Bが接合されている。 The blue light emitting element 100B has the configuration of the light emitting element 100, and the phosphor layer 112 includes a red phosphor 121R that emits red fluorescence and a green phosphor 121G that emits green fluorescence. A blue color filter 145B is bonded to the second main surface 111b side of the blue light emitting element 100B.
 各発光素子100において、励起光源130は青色の励起光を放出する。赤色発光素子100Rでは、発光部110に青色の励起光が入射すると、赤色蛍光体121Rから赤色の蛍光が出射され、緑色蛍光体121Gから緑色の蛍光が出射される。蛍光の赤色成分は赤色カラーフィルタ145Rを透過し、赤色発光素子100Rからは赤色の光が出射される。 In each light emitting element 100, the excitation light source 130 emits blue excitation light. In the red light emitting element 100R, when blue excitation light is incident on the light emitting unit 110, red fluorescence is emitted from the red phosphor 121R, and green fluorescence is emitted from the green phosphor 121G. The red component of fluorescence passes through the red color filter 145R, and red light is emitted from the red light emitting element 100R.
 緑色発光素子100Gでは、発光部110に青色の励起光が入射すると、赤色蛍光体121Rから赤色の蛍光が出射され、緑色蛍光体121Gから緑色の蛍光が出射される。蛍光の緑色成分は緑色カラーフィルタ145Gを透過し、緑色発光素子100Gからは緑色の光が出射される。 In the green light emitting element 100G, when blue excitation light is incident on the light emitting unit 110, red fluorescence is emitted from the red phosphor 121R, and green fluorescence is emitted from the green phosphor 121G. The green component of fluorescence passes through the green color filter 145G, and green light is emitted from the green light emitting element 100G.
 青色発光素子100Bでは、発光部110に青色の励起光が入射すると、赤色蛍光体121Rから赤色の蛍光が出射され、緑色蛍光体121Gから緑色の蛍光が出射される。青色の励起光は青色カラーフィルタ145Bを透過し、緑色発光素子100Gからは青色の光が出射される。 In the blue light emitting element 100B, when blue excitation light is incident on the light emitting unit 110, red fluorescence is emitted from the red phosphor 121R, and green fluorescence is emitted from the green phosphor 121G. The blue excitation light passes through the blue color filter 145B, and the blue light is emitted from the green light emitting element 100G.
 この構成においては、赤色発光素子100R、緑色発光素子100G及び青色発光素子100Bの蛍光体層112は互いに同一の構造であるため、蛍光体層112を塗り分ける必要がなく、製造コストを低減することができる。 In this configuration, since the phosphor layers 112 of the red light emitting element 100R, the green light emitting element 100G, and the blue light emitting element 100B have the same structure, it is not necessary to separately paint the phosphor layer 112, and the manufacturing cost can be reduced. Can be done.
 なお、発光素子アレイ160では各励起光源130は青色の励起光を放出し、赤色蛍光体121R及び緑色蛍光体121Gによって赤色光及び緑色光に変換するものとしたが、これに限られない。各発光素子100は、第1の色の蛍光を発する第1の蛍光体121及び第2の色の蛍光を発する第2の蛍光体121を含むものとすることができる。また、一部の発光素子は第1の色の蛍光を透過するカラーフィルタを備え、他の発光素子は第2の色の蛍光を透過するカラーフィルタを備えるものとすることができる。 In the light emitting element array 160, each excitation light source 130 emits blue excitation light and is converted into red light and green light by the red phosphor 121R and the green phosphor 121G, but the present invention is not limited to this. Each light emitting element 100 may include a first phosphor 121 that emits fluorescence of a first color and a second phosphor 121 that emits fluorescence of a second color. Further, some light emitting elements may be provided with a color filter that transmits the fluorescence of the first color, and other light emitting elements may be provided with a color filter that transmits the fluorescence of the second color.
 また、発光素子アレイ160は、さらに第3の色の蛍光を発する第3の蛍光体121を含むものとしてもよく、各発光素子100は蛍光体層112に青色の蛍光を放出する青色蛍光体を含み、各励起光源130は紫外線を励起光として放出するものとしてもよい。また、発光素子アレイ160が放出する光は3色に限られず、単色、2色又は4色以上であってもよい。また、発光素子アレイ160を構成する発光素子100は、本開示中のいずれの構成を有する発光素子100であってもよい。 Further, the light emitting element array 160 may further include a third phosphor 121 that emits fluorescence of the third color, and each light emitting element 100 has a blue phosphor that emits blue fluorescence to the phosphor layer 112. Including, each excitation light source 130 may emit ultraviolet rays as excitation light. Further, the light emitted by the light emitting element array 160 is not limited to three colors, and may be a single color, two colors, or four or more colors. Further, the light emitting element 100 constituting the light emitting element array 160 may be a light emitting element 100 having any of the configurations disclosed in the present disclosure.
 [表示装置について]
 上記発光素子アレイ150を用いた表示装置について説明する。図24は、発光素子アレイ150を用いた表示装置170を示す断面図である。同図に示すように表示装置170は、発光素子アレイ150と駆動回路180を備える。
[Display device]
A display device using the light emitting element array 150 will be described. FIG. 24 is a cross-sectional view showing a display device 170 using the light emitting element array 150. As shown in the figure, the display device 170 includes a light emitting element array 150 and a drive circuit 180.
 駆動回路180は、発光素子アレイ150が備える発光素子100を個別に駆動する。駆動回路180は、TFT(thin-film-transistor)やCMOS(Complementary Metal Oxide Semiconductor)であり、Si、GaN又はSiC等の材料からなるものとすることができる。駆動回路180はn端子181及びp端子182を備え、n端子181は導線183によって励起光源130のn電極134に接続され、p端子182は導線184によって励起光源130のp電極135に接続されている。導線183及び導線は例えばAuバンプであるが、Cu-Cu接合等であってもよい。 The drive circuit 180 individually drives the light emitting elements 100 included in the light emitting element array 150. The drive circuit 180 is a TFT (thin-film-transistor) or CMOS (Complementary Metal Oxide Semiconductor), and may be made of a material such as Si, GaN, or SiC. The drive circuit 180 includes an n-terminal 181 and a p-terminal 182, the n-terminal 181 is connected to the n-electrode 134 of the excitation light source 130 by a lead wire 183, and the p-terminal 182 is connected to the p-electrode 135 of the excitation light source 130 by a lead wire 184. There is. The conductor 183 and the conductor are, for example, Au bumps, but may be Cu-Cu bonded or the like.
 駆動回路180によって、赤色発光素子100R、緑色発光素子100G及び青色発光素子100Bが備える励起光源130をそれぞれ駆動することにより、赤色、緑色及びは青色をそれぞれ発光させることが可能であり、表示装置を実現することが可能である。また、発光素子アレイ150と駆動回路180を一体化することにより、表示装置の小型化が実現可能である。なお、ここで、発光素子アレイ150を利用した表示装置について説明したが、発光素子アレイ160と駆動回路180を接続して表示装置としてもよい。 By driving the excitation light source 130 included in the red light emitting element 100R, the green light emitting element 100G, and the blue light emitting element 100B by the drive circuit 180, it is possible to emit red, green, and blue, respectively, and display the display device. It is possible to achieve it. Further, by integrating the light emitting element array 150 and the drive circuit 180, it is possible to reduce the size of the display device. Although the display device using the light emitting element array 150 has been described here, the light emitting element array 160 and the drive circuit 180 may be connected to form a display device.
 本実施形態に係る表示装置は、ビデオウォール、スマートフォン、テレビ、ノートPC、AR(Augmented Reality)デバイス、VR(Virtual Reality)デバイス、プロジェクタ、ヘッドアップディスプレイ、ウェアラブルデバイス等の表示装置として利用可能である。また、本実施形態に係る発光素子及び発光素子アレイは照明装置として利用することも可能である。 The display device according to this embodiment can be used as a display device for a video wall, a smartphone, a television, a notebook PC, an AR (Augmented Reality) device, a VR (Virtual Reality) device, a projector, a head-up display, a wearable device, and the like. .. Further, the light emitting element and the light emitting element array according to the present embodiment can also be used as a lighting device.
 なお、本技術は以下のような構成もとることができる。 Note that this technology can have the following configurations.
 (1)
 第1の主面と、上記第1の主面とは反対側の第2の主面を有し、上記第1の主面と上記第2の主面の間に貫通孔が設けられた基材と、
 上記貫通孔に収容され、蛍光体を含む蛍光体層と、
 ガスバリア性を有し、上記蛍光体層の上記第1の主面側に設けられた第1の封止膜と、
 ガスバリア性を有し、上記蛍光体層の上記第1の主面側に設けられた第2の封止膜と、
 上記基材の上記第1の主面側に接合され、上記蛍光体層に励起光を入射させる励起光源と
 を具備する発光素子。
 (2)
 上記(1)に記載の発光素子であって、
 上記第1の封止膜はさらに、上記貫通孔の内周面上に設けられ、上記第2の封止膜と共に上記蛍光体層の全周を被覆する
 発光素子。
 (3)
 上記(2)に記載の発光素子であって、
 上記内周面と上記第1の封止膜の間に設けられた光反射膜
 をさらに具備する発光素子。
 (4)
 上記(1)に記載の発光素子であって、
 ガスバリア性を有し、上記内周面上に設けられ、上記第1の封止膜及び上記第2の封止膜と共に上記蛍光体層の全周を被覆する光反射膜
 をさらに具備する発光素子。
 (5)
 上記(1)に記載の発光素子であって、
 請求項1に記載の発光素子であって、
 上記基材はガスバリア性を有し、上記第1の封止膜及び上記第2の封止膜と共に上記蛍光体層の全周を被覆する
 発光素子。
 (6)
 上記(5)に記載の発光素子であって、
 上記内周面を形成する上記基材の表面は、光反射性を有する
 発光素子。
 (7)
 上記(3)、(4)及び(6)のうちいずれか1つに記載の発光素子であって、
 上記貫通孔は、上記第1の主面から上記第2の主面に向かって上記内周面間の距離が次第に離間する形状を有する
 発光素子。
 (8)
 上記(1)乃至(7)のうちいずれか1つに記載の発光素子であって、
 上記蛍光体は量子ドットである
 発光素子。
 (9)
 上記(1)乃至(8)のうちいずれか1つに記載の発光素子であって、
 上記蛍光体層は、光透過性樹脂に、上記蛍光体と散乱体が分散されて構成されている
 発光素子。
 (10)
 上記(3)又は(4)に記載の発光素子であって、
 上記基材と上記光反射膜間に設けられたエッチングストップ層をさらに具備する
 発光素子。
 (11)
 上記(1)乃至(10)のうちいずれか1つに記載の発光素子であって、
 上記第1の封止膜は上記励起光を透過し、上記蛍光を反射する厚みを有し、
 上記第2の封止膜は上記蛍光を透過し、上記励起光を反射する厚みを有する
 発光素子。
 (12)
 上記(1)乃至(11)のうちいずれか1つに記載の発光素子であって、
 上記基材の上記第2の主面側に接合されたレンズ
 をさらに具備する発光素子。
 (13)
 第1の主面と、上記第1の主面とは反対側の第2の主面を有し、上記第1の主面と上記第2の主面の間に貫通孔が設けられた基材と、上記貫通孔に収容され、蛍光体を含む蛍光体層と、ガスバリア性を有し、上記蛍光体層の上記第1の主面側に設けられた第1の封止膜と、ガスバリア性を有し、上記蛍光体層の上記第2の主面側に設けられた第2の封止膜と、上記基材の上記第1の主面側に接合され、上記蛍光体層に励起光を入射させる励起光源とを具備する発光素子が複数配列された
 発光素子アレイ。
 (14)
 上記(13)に記載の発光素子アレイであって、
 上記発光素子は、上記蛍光体層が第1の色の蛍光を発する第1の蛍光体を含む第1の発光素子と、上記蛍光体層が上記第1の色とは異なる第2の色の蛍光を発する第2の蛍光体を含む第2の発光素子を含む
 発光素子アレイ。
 (15)
 上記(13)に記載の発光素子アレイであって、
 上記発光素子は、上記蛍光体層が第1の色の蛍光を発する第1の蛍光体と、上記第1の色とは異なる第2の色の蛍光を発する第2の蛍光体とを含み、
 上記基材の上記第2の主面側に接合され、上記第1の色の光を透過する第1のカラーフィルタと、
 上記基材の上記第2の主面側に接合され、上記第2の色の光を透過する第2のカラーフィルタと
 をさらに具備する発光素子アレイ。
 (16)
 第1の主面と、上記第1の主面とは反対側の第2の主面を有し、上記第1の主面と上記第2の主面の間に貫通孔が設けられた基材と、上記貫通孔に収容され、蛍光体を含む蛍光体層と、ガスバリア性を有し、上記蛍光体層の上記第1の主面側に設けられた第1の封止膜と、ガスバリア性を有し、上記蛍光体層の上記第2の主面側に設けられた第2の封止膜と、上記基材の上記第1の主面側に接合され、上記蛍光体層に励起光を入射させる励起光源とを具備する発光素子が複数配列された発光素子アレイと、
 上記励起光源を駆動する駆動回路と
 を具備する表示装置。
(1)
A group having a first main surface and a second main surface opposite to the first main surface, and a through hole is provided between the first main surface and the second main surface. Wood and
A phosphor layer contained in the through hole and containing a phosphor,
A first sealing film having a gas barrier property and provided on the first main surface side of the phosphor layer,
A second sealing film having a gas barrier property and provided on the first main surface side of the phosphor layer, and
A light emitting device provided with an excitation light source bonded to the first main surface side of the base material and causing excitation light to be incident on the phosphor layer.
(2)
The light emitting element according to (1) above.
A light emitting element that is further provided on the inner peripheral surface of the through hole and covers the entire circumference of the phosphor layer together with the second sealing film.
(3)
The light emitting element according to (2) above.
A light emitting element further comprising a light reflecting film provided between the inner peripheral surface and the first sealing film.
(4)
The light emitting element according to (1) above.
A light emitting device having a gas barrier property, which is provided on the inner peripheral surface and further includes a light reflecting film which covers the entire circumference of the phosphor layer together with the first sealing film and the second sealing film. ..
(5)
The light emitting element according to (1) above.
The light emitting element according to claim 1.
A light emitting element having a gas barrier property and covering the entire circumference of the phosphor layer together with the first sealing film and the second sealing film.
(6)
The light emitting element according to (5) above.
The surface of the base material forming the inner peripheral surface is a light emitting element having light reflectivity.
(7)
The light emitting device according to any one of (3), (4) and (6) above.
The through hole is a light emitting element having a shape in which the distance between the inner peripheral surfaces gradually increases from the first main surface toward the second main surface.
(8)
The light emitting device according to any one of (1) to (7) above.
The phosphor is a light emitting element that is a quantum dot.
(9)
The light emitting device according to any one of (1) to (8) above.
The phosphor layer is a light emitting element in which the phosphor and the scatterer are dispersed in a light-transmitting resin.
(10)
The light emitting device according to (3) or (4) above.
A light emitting element further comprising an etching stop layer provided between the base material and the light reflecting film.
(11)
The light emitting device according to any one of (1) to (10) above.
The first sealing film has a thickness that transmits the excitation light and reflects the fluorescence.
The second sealing film is a light emitting element having a thickness that transmits the fluorescence and reflects the excitation light.
(12)
The light emitting device according to any one of (1) to (11) above.
A light emitting element further comprising a lens bonded to the second main surface side of the base material.
(13)
A group having a first main surface and a second main surface opposite to the first main surface, and a through hole is provided between the first main surface and the second main surface. A material, a phosphor layer contained in the through hole and containing a phosphor, a first sealing film having a gas barrier property and provided on the first main surface side of the phosphor layer, and a gas barrier. It is bonded to the second sealing film provided on the second main surface side of the phosphor layer and the first main surface side of the base material, and is excited by the phosphor layer. A light emitting element array in which a plurality of light emitting elements including an excitation light source for incident light are arranged.
(14)
The light emitting element array according to (13) above.
The light emitting element has a first light emitting element including a first phosphor in which the phosphor layer emits fluorescence of the first color, and a second light emitting element in which the phosphor layer has a second color different from the first color. A light emitting element array containing a second light emitting element containing a second phosphor that emits fluorescence.
(15)
The light emitting element array according to (13) above.
The light emitting element includes a first phosphor in which the phosphor layer emits fluorescence of a first color, and a second phosphor in which a second color different from the first color is emitted.
A first color filter bonded to the second main surface side of the base material and transmitting light of the first color, and a first color filter.
A light emitting element array further comprising a second color filter bonded to the second main surface side of the base material and transmitting light of the second color.
(16)
A group having a first main surface and a second main surface opposite to the first main surface, and a through hole is provided between the first main surface and the second main surface. A material, a phosphor layer contained in the through hole and containing a phosphor, a first sealing film having a gas barrier property and provided on the first main surface side of the phosphor layer, and a gas barrier. It is bonded to the second sealing film provided on the second main surface side of the phosphor layer and the first main surface side of the base material, and is excited by the phosphor layer. A light emitting element array in which a plurality of light emitting elements including an excitation light source for incident light are arranged, and
A display device including a drive circuit for driving the excitation light source.
 100…発光素子
 110…発光部
 111…基材
 111a…第1主面
 111b…第2主面
 111c…貫通孔
 111d…内周面
 112…蛍光体層
 113…光反射膜
 114…第1封止膜
 115…第2封止膜
 121…蛍光体
 122…散乱体
 123…充填剤
 130…励起光源
 141…遮光部
 142…エッチングストップ層
 143…レンズ
 145R…赤色カラーフィルタ
 145G…緑色カラーフィルタ
 145B…青色カラーフィルタ
 150、160…発光素子アレイ
 160…発光素子アレイ
 170…表示装置
 180…駆動回路
100 ... Light emitting element 110 ... Light emitting part 111 ... Base material 111a ... First main surface 111b ... Second main surface 111c ... Through hole 111d ... Inner peripheral surface 112 ... Fluorescent layer 113 ... Light reflecting film 114 ... First sealing film 115 ... Second encapsulant film 121 ... Fluorescent material 122 ... Scatterer 123 ... Filler 130 ... Excitation light source 141 ... Light-shielding part 142 ... Etching stop layer 143 ... Lens 145R ... Red color filter 145G ... Green color filter 145B ... Blue color filter 150, 160 ... Light emitting element array 160 ... Light emitting element array 170 ... Display device 180 ... Drive circuit

Claims (16)

  1.  第1の主面と、前記第1の主面とは反対側の第2の主面を有し、前記第1の主面と前記第2の主面の間に貫通孔が設けられた基材と、
     前記貫通孔に収容され、蛍光体を含む蛍光体層と、
     ガスバリア性を有し、前記蛍光体層の前記第1の主面側に設けられた第1の封止膜と、
     ガスバリア性を有し、前記蛍光体層の前記第2の主面側に設けられた第2の封止膜と、
     前記基材の前記第1の主面側に接合され、前記蛍光体層に励起光を入射させる励起光源と
     を具備する発光素子。
    A group having a first main surface and a second main surface opposite to the first main surface, and a through hole is provided between the first main surface and the second main surface. Wood and
    A phosphor layer contained in the through hole and containing a phosphor,
    A first sealing film having a gas barrier property and provided on the first main surface side of the phosphor layer,
    A second sealing film having a gas barrier property and provided on the second main surface side of the phosphor layer,
    A light emitting device including an excitation light source bonded to the first main surface side of the base material and causing excitation light to be incident on the phosphor layer.
  2.  請求項1に記載の発光素子であって、
     前記第1の封止膜はさらに、前記貫通孔の内周面上に設けられ、前記第2の封止膜と共に前記蛍光体層の全周を被覆する
     発光素子。
    The light emitting element according to claim 1.
    A light emitting device that is further provided on the inner peripheral surface of the through hole and covers the entire circumference of the phosphor layer together with the second sealing film.
  3.  請求項2に記載の発光素子であって、
     前記内周面と前記第1の封止膜の間に設けられた光反射膜
     をさらに具備する発光素子。
    The light emitting element according to claim 2.
    A light emitting element further comprising a light reflecting film provided between the inner peripheral surface and the first sealing film.
  4.  請求項1に記載の発光素子であって、
     ガスバリア性を有し、前記内周面上に設けられ、前記第1の封止膜及び前記第2の封止膜と共に前記蛍光体層の全周を被覆する光反射膜
     をさらに具備する発光素子。
    The light emitting element according to claim 1.
    A light emitting device having a gas barrier property and further provided with a light reflecting film provided on the inner peripheral surface and covering the entire circumference of the phosphor layer together with the first sealing film and the second sealing film. ..
  5.  請求項1に記載の発光素子であって、
     前記基材はガスバリア性を有し、前記第1の封止膜及び前記第2の封止膜と共に前記蛍光体層の全周を被覆する
     発光素子。
    The light emitting element according to claim 1.
    A light emitting device having a gas barrier property and covering the entire circumference of the phosphor layer together with the first sealing film and the second sealing film.
  6.  請求項5に記載の発光素子であって、
     前記内周面を形成する前記基材の表面は、光反射性を有する
     発光素子。
    The light emitting element according to claim 5.
    The surface of the base material forming the inner peripheral surface is a light emitting element having light reflectivity.
  7.  請求項3、4及び6のうちいずれか1項に記載の発光素子であって、
     前記貫通孔は、前記第1の主面から前記第2の主面に向かって前記内周面間の距離が次第に離間する形状を有する
     発光素子。
    The light emitting device according to any one of claims 3, 4 and 6.
    The through hole is a light emitting element having a shape in which the distance between the inner peripheral surfaces gradually increases from the first main surface toward the second main surface.
  8.  請求項1に記載の発光素子であって、
     前記蛍光体は量子ドットである
     発光素子。
    The light emitting element according to claim 1.
    The phosphor is a light emitting element which is a quantum dot.
  9.  請求項1に記載の発光素子であって、
     前記蛍光体層は、光透過性樹脂に、前記蛍光体と散乱体が分散されて構成されている
     発光素子。
    The light emitting element according to claim 1.
    The phosphor layer is a light emitting element in which the phosphor and the scatterer are dispersed in a light-transmitting resin.
  10.  請求項3又は4に記載の発光素子であって、
     前記基材と前記光反射膜間に設けられたエッチングストップ層をさらに具備する
     発光素子。
    The light emitting element according to claim 3 or 4.
    A light emitting element further comprising an etching stop layer provided between the base material and the light reflecting film.
  11.  請求項1に記載の発光素子であって、
     前記第1の封止膜は前記励起光を透過し、前記蛍光を反射する厚みを有し、
     前記第2の封止膜は前記蛍光を透過し、前記励起光を反射する厚みを有する
     発光素子。
    The light emitting element according to claim 1.
    The first sealing film has a thickness that transmits the excitation light and reflects the fluorescence.
    The second sealing film is a light emitting element having a thickness that transmits the fluorescence and reflects the excitation light.
  12.  請求項1に記載の発光素子であって、
     前記基材の前記第2の主面側に接合されたレンズ
     をさらに具備する発光素子。
    The light emitting element according to claim 1.
    A light emitting element further comprising a lens bonded to the second main surface side of the base material.
  13.  第1の主面と、前記第1の主面とは反対側の第2の主面を有し、前記第1の主面と前記第2の主面の間に貫通孔が設けられた基材と、前記貫通孔に収容され、蛍光体を含む蛍光体層と、ガスバリア性を有し、前記蛍光体層の前記第1の主面側に設けられた第1の封止膜と、ガスバリア性を有し、前記蛍光体層の前記第2の主面側に設けられた第2の封止膜と、前記基材の前記第1の主面側に接合され、前記蛍光体層に励起光を入射させる励起光源とを具備する発光素子が複数配列された
     発光素子アレイ。
    A group having a first main surface and a second main surface opposite to the first main surface, and a through hole is provided between the first main surface and the second main surface. A material, a phosphor layer contained in the through hole and containing a phosphor, a first sealing film having a gas barrier property and provided on the first main surface side of the phosphor layer, and a gas barrier. It has a property and is bonded to the first main surface side of the base material with a second sealing film provided on the second main surface side of the phosphor layer and excited to the phosphor layer. A light emitting element array in which a plurality of light emitting elements including an excitation light source for incident light are arranged.
  14.  請求項13に記載の発光素子アレイであって、
     前記発光素子は、前記蛍光体層が第1の色の蛍光を発する第1の蛍光体を含む第1の発光素子と、前記蛍光体層が前記第1の色とは異なる第2の色の蛍光を発する第2の蛍光体を含む第2の発光素子を含む
     発光素子アレイ。
    The light emitting element array according to claim 13.
    The light emitting element has a first light emitting element including a first phosphor in which the phosphor layer emits fluorescence of the first color, and a second light emitting element in which the phosphor layer has a second color different from the first color. A light emitting element array containing a second light emitting element containing a second phosphor that emits fluorescence.
  15.  請求項13に記載の発光素子アレイであって、
     前記発光素子は、前記蛍光体層が第1の色の蛍光を発する第1の蛍光体と、前記第1の色とは異なる第2の色の蛍光を発する第2の蛍光体とを含み、
     前記基材の前記第2の主面側に接合され、前記第1の色の光を透過する第1のカラーフィルタと、
     前記基材の前記第2の主面側に接合され、前記第2の色の光を透過する第1のカラーフィルタと
     をさらに具備する発光素子アレイ。
    The light emitting element array according to claim 13.
    The light emitting element includes a first phosphor in which the phosphor layer emits fluorescence of a first color, and a second phosphor in which a second color different from the first color is emitted.
    A first color filter bonded to the second main surface side of the base material and transmitting light of the first color, and a first color filter.
    A light emitting element array further comprising a first color filter bonded to the second main surface side of the base material and transmitting light of the second color.
  16.  第1の主面と、前記第1の主面とは反対側の第2の主面を有し、前記第1の主面と前記第2の主面の間に貫通孔が設けられた基材と、前記貫通孔に収容され、蛍光体を含む蛍光体層と、ガスバリア性を有し、前記蛍光体層の前記第1の主面側に設けられた第1の封止膜と、ガスバリア性を有し、前記蛍光体層の前記第2の主面側に設けられた第2の封止膜と、前記基材の前記第1の主面側に接合され、前記蛍光体層に励起光を入射させる励起光源とを具備する発光素子が複数配列された発光素子アレイと、
     前記励起光源を駆動する駆動回路と
     を具備する表示装置。
    A group having a first main surface and a second main surface opposite to the first main surface, and a through hole is provided between the first main surface and the second main surface. A material, a phosphor layer contained in the through hole and containing a phosphor, a first sealing film having a gas barrier property and provided on the first main surface side of the phosphor layer, and a gas barrier. It has a property and is bonded to the first main surface side of the base material with a second sealing film provided on the second main surface side of the phosphor layer and excited to the phosphor layer. A light emitting element array in which a plurality of light emitting elements including an excitation light source for incident light are arranged, and
    A display device including a drive circuit for driving the excitation light source.
PCT/JP2021/005146 2020-02-19 2021-02-12 Light-emitting element, light-emitting element array, and display device WO2021166785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022501848A JPWO2021166785A1 (en) 2020-02-19 2021-02-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020026044 2020-02-19
JP2020-026044 2020-02-19

Publications (1)

Publication Number Publication Date
WO2021166785A1 true WO2021166785A1 (en) 2021-08-26

Family

ID=77392056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005146 WO2021166785A1 (en) 2020-02-19 2021-02-12 Light-emitting element, light-emitting element array, and display device

Country Status (2)

Country Link
JP (1) JPWO2021166785A1 (en)
WO (1) WO2021166785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085010A1 (en) * 2021-11-12 2023-05-19 ソニーグループ株式会社 Light-emitting device and image display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515961A (en) * 2003-01-27 2006-06-08 スリーエム イノベイティブ プロパティズ カンパニー Phosphorescent light source using total internal reflection
JP2006351808A (en) * 2005-06-15 2006-12-28 Matsushita Electric Works Ltd Light emitting device
JP2007227868A (en) * 2006-01-30 2007-09-06 Kyocera Corp Light-emitting device, and lighting device
JP2007273498A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wavelength converter and light emitting device
JP2017108129A (en) * 2015-11-30 2017-06-15 隆達電子股▲ふん▼有限公司 Wavelength conversion material and its use
JP2017523602A (en) * 2014-06-12 2017-08-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor device, method of manufacturing optoelectronic semiconductor device, and light source including optoelectronic semiconductor device
JP2018055885A (en) * 2016-09-27 2018-04-05 エルジー ディスプレイ カンパニー リミテッド Light source device and display device
KR20180136037A (en) * 2017-06-13 2018-12-24 희성전자 주식회사 Light emitting device package
WO2018235231A1 (en) * 2017-06-22 2018-12-27 サンケン電気株式会社 Light-emitting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515961A (en) * 2003-01-27 2006-06-08 スリーエム イノベイティブ プロパティズ カンパニー Phosphorescent light source using total internal reflection
JP2006351808A (en) * 2005-06-15 2006-12-28 Matsushita Electric Works Ltd Light emitting device
JP2007227868A (en) * 2006-01-30 2007-09-06 Kyocera Corp Light-emitting device, and lighting device
JP2007273498A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wavelength converter and light emitting device
JP2017523602A (en) * 2014-06-12 2017-08-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor device, method of manufacturing optoelectronic semiconductor device, and light source including optoelectronic semiconductor device
JP2017108129A (en) * 2015-11-30 2017-06-15 隆達電子股▲ふん▼有限公司 Wavelength conversion material and its use
JP2018055885A (en) * 2016-09-27 2018-04-05 エルジー ディスプレイ カンパニー リミテッド Light source device and display device
KR20180136037A (en) * 2017-06-13 2018-12-24 희성전자 주식회사 Light emitting device package
WO2018235231A1 (en) * 2017-06-22 2018-12-27 サンケン電気株式会社 Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085010A1 (en) * 2021-11-12 2023-05-19 ソニーグループ株式会社 Light-emitting device and image display device

Also Published As

Publication number Publication date
JPWO2021166785A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP7282138B2 (en) Display device
CN112242468A (en) Micro light emitting device and image display device
JP7484727B2 (en) Light emitting device and image display device
CN214848634U (en) Light emitting module and display device
CN217280834U (en) Display device
CN112991967A (en) Display device
WO2021166785A1 (en) Light-emitting element, light-emitting element array, and display device
CN217426779U (en) Display device
CN213635982U (en) Light emitting element and display device having the same
EP4141972A1 (en) Unit pixel having light-emitting devices, and display device
KR20230018371A (en) unit pixel and display device
JP2021158252A (en) Light-emitting device and image display device
CN215869440U (en) Light emitting element, unit pixel and display device
CN215933632U (en) Unit pixel and display device
CN215896431U (en) Unit pixel and display device
CN216719979U (en) Unit pixel, sub-pixel and display device
CN216250774U (en) Unit pixel and display device
WO2023176539A1 (en) Light emitting device, method for producing light emitting device, and image display device
CN217641390U (en) Pixel module and display device
WO2023007823A1 (en) Light emitting device and image display apparatus
US20230352619A1 (en) Light emitting device and light emitting module having the same
WO2023189384A1 (en) Light-emitting device and image display device
EP4304304A1 (en) Circuit board having multiple solder resist and display device having same
JP2022129961A (en) Light emitting device and planar light source
KR20230167349A (en) Light-emitting module, method of manufacturing the same, and display device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757987

Country of ref document: EP

Kind code of ref document: A1