WO2021166343A1 - 樹脂組成物及び該樹脂組成物からなる成形品 - Google Patents

樹脂組成物及び該樹脂組成物からなる成形品 Download PDF

Info

Publication number
WO2021166343A1
WO2021166343A1 PCT/JP2020/042711 JP2020042711W WO2021166343A1 WO 2021166343 A1 WO2021166343 A1 WO 2021166343A1 JP 2020042711 W JP2020042711 W JP 2020042711W WO 2021166343 A1 WO2021166343 A1 WO 2021166343A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
mass
present
electromagnetic wave
Prior art date
Application number
PCT/JP2020/042711
Other languages
English (en)
French (fr)
Inventor
容史 藤田
洋二 西澤
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2021166343A1 publication Critical patent/WO2021166343A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a resin composition, a resin composition having an electromagnetic wave shielding property, and a molded product composed of the resin composition.
  • the present invention relates to a resin composition having an excellent electromagnetic wave shielding property in the gigahertz band.
  • a housing made of metal As a technology to block electromagnetic waves to prevent malfunction due to electromagnetic waves, a housing made of metal is used, and a resin housing is made of resin with conductive fillers such as metal fibers, carbon fibers, metal-coated carbon fibers, and carbon nanotubes. It is known to apply treatments such as conductive film, painting, and plating to be added to. (Patent Document 1)
  • the metal housing has good performance, the weight increase and the degree of freedom in design are low, and the method of applying film, painting, or plating to the resin housing may peel off, so it is suitable for use with a long life cycle. It is said that it is not.
  • Patent Documents 2 and 3 The combined use of carbon black and carbon fiber is known to have electromagnetic wave shielding properties without using metal. These documents show a shielding property of about 1 GHz, and it is described that a sufficient electromagnetic wave shielding property cannot be obtained when the amount of carbon fibers is small, and a high electromagnetic wave shielding property can be obtained by imparting conductivity.
  • An object of the present invention is to provide a resin composition having a shielding property against high frequency electromagnetic waves of 10 GHz or more and excellent electrical insulating property.
  • An object of the present invention has been achieved by: 1. 1. It contains at least 100 parts by mass of thermoplastic resin A, 2 to 6 parts by mass of carbon black B, and 0.3 to 4 parts by mass of carbon fiber C, and the total of the carbon black B and the carbon fiber C is 7 mass. A resin composition having a volume resistance of 1 ⁇ 10 10 to 1 ⁇ 10 17 ⁇ ⁇ cm, a transmission loss of -30 dB or less in the band of 75 to 110 GHz, and an electromagnetic wave absorption rate of 30. % Or more resin composition. 2. The resin composition according to 1 above, wherein the carbon black B is Ketjen black. 3. A molded product comprising the resin composition according to 1 or 2 above.
  • the resin composition of the present invention contains at least 100 parts by mass of thermoplastic resin A, 2 to 6 parts by mass of carbon black B, and 0.3 to 4 parts by mass of carbon fiber C, and the total of B and C is A resin composition having 7 parts by mass or less, having a volume resistance of 1 ⁇ 10 10 to 1 ⁇ 10 17 ⁇ ⁇ cm, a transmission loss of -30 dB or less in the band of 75 to 110 GHz, and an electromagnetic wave absorption rate. Is 30% or more.
  • thermoplastic resin A of the present invention a crystalline thermoplastic resin or an amorphous thermoplastic resin is preferably used.
  • the crystalline thermoplastic resin include polyacetal resin (POM), polybutylene terephthalate resin (PBT), polyethylene terephthalate resin (PET), polyphenylene sulfide resin (PPS), polyamide resin (PA) and the like.
  • thermoplastic resin A of the present invention can be produced by a conventional method.
  • the carbon black B of the present invention is a carbon black having a primary particle size of 5 to 40 nm and a nitrogen adsorption specific surface area of 100 m 2 / g or more. Then, the carbon black can be contained in an amount of 2 to 6 parts by mass with respect to 100 parts by mass of the thermoplastic resin A.
  • the primary particle size in the present invention is determined by pouring carbon black into a solvent and dispersing it by ultrasonic vibration, fixing the dispersed sample to a support film, and photographing this with a transmission electron microscope (TEM). , The particle size was measured from the diameter.
  • the primary particle size can be determined by the arithmetic mean of those values (1000 or more).
  • carbon black B furnace black, acetylene black, ketjen black, etc. can be used, and ketjen black is preferable from the viewpoint of the balance between transmission loss and electromagnetic wave absorption rate.
  • the carbon fiber C of the present invention is a PAN-based, pitch-based, rayon-based or other carbon fiber. Further, a metal-coated carbon fiber in which a carbon fiber is coated with a metal such as nickel or copper can also be used in the present invention. Carbon fibers have a high effect of reflecting electromagnetic waves, but since the reflected electromagnetic waves may cause electronic devices to malfunction, the amount of carbon fiber added is 0.3 to 4 parts by mass with respect to 100 parts by mass of the thermoplastic resin A. It is preferably 0.5 to 3 parts by mass, and more preferably 1 to 2 parts by mass.
  • a carbon fiber having a tensile elongation at break of at least 1.5% is preferable.
  • the tensile elongation at break is 1.5% or more, more preferably the elongation at break is 1.7% or more, and more preferably the elongation at break is 1.9% or more. It is better to use carbon fiber.
  • the diameter of the carbon fiber is preferably 4 to 20 ⁇ m, more preferably 5 to 10 ⁇ m.
  • a PAN-based carbon fiber having an excellent balance between strength and elastic modulus is preferable as the carbon fiber.
  • the tensile elastic modulus is preferably 100 to 600 GPa, more preferably 200 to 500 GPa, and particularly preferably 230 to 450 GPa.
  • the tensile strength is 2000 MPa to 10000 MPa, preferably 3000 to 8000 MPa.
  • these carbon fibers are surface-treated with a silane coupling agent, an aluminate coupling agent, a titanate coupling agent, etc., or urethane-based resin, epoxy-based resin, polyester-based resin, styrene-based resin, olefin-based resin, etc. It may be focused with an amide resin, an acrylic resin, a phenol polymer, a liquid crystal resin, an alcohol, a water-soluble resin, or the like.
  • the molded product of the present invention preferably contains an inorganic filler in order to improve heat resistance and mechanical strength.
  • the type of the inorganic filler is not particularly limited as long as it does not hinder the effect of the present application, but conductive substances such as metal fibers and carbon nanotubes should be avoided because they reduce the insulating property, for example, glass fibers, glass flakes, and the like. Glass beads, silica, talc, mica and the like are preferable, and glass fiber is particularly preferable.
  • the fiber length of the glass fiber (state before preparation into the composition by melt-kneading or the like) is preferably 1 to 10 mm, and the diameter of the glass fiber is preferably 5 to 20 ⁇ m.
  • the inorganic filler preferably contains 20 to 150 parts by mass, more preferably 30 to 100 parts by mass, with respect to 100 parts by mass of the thermoplastic resin A, from the viewpoint of improving heat resistance and mechanical strength.
  • thermoplastic resins and thermosetting resins that is, burr suppressors, mold release agents, and lubricants, as long as the effects of the present invention are not impaired.
  • Agents, plasticizers, flame retardants, colorants such as dyes and pigments, crystallization accelerators, crystal nucleating agents, various antioxidants, heat stabilizers, weather resistance stabilizers, corrosion inhibitors and the like may be blended.
  • the resin composition of the present invention has a volume resistivity of 1 ⁇ 10 10 to 1 ⁇ 10 17 ⁇ ⁇ cm, a transmission loss of ⁇ 30 dB or less in the band of 75 to 110 GHz, and an electromagnetic wave absorption rate of 30% or more. be. These properties can be achieved by adjusting the addition amounts of carbon black B and carbon fiber C.
  • the volume resistivity By setting the volume resistivity to 1 ⁇ 10 10 to 1 ⁇ 10 17 ⁇ ⁇ cm, it is possible to obtain insulation when used in an electronic device.
  • the transmission loss is ⁇ 30 dB or less in the band of 75 to 110 GHz and the electromagnetic wave absorption rate is 30% or more, excellent electromagnetic wave shielding property can be obtained.
  • a molded product can be produced from the resin composition of the present invention, and the method is not particularly limited, and a known method can be adopted.
  • the resin composition can be put into an extruder, melt-kneaded and pelletized, and the pellets can be put into an injection molding machine equipped with a predetermined mold and injection-molded.
  • the molded product of the present invention is useful for electronic devices and the like.
  • the present invention has an excellent electromagnetic wave shielding property at high frequencies and a high volume resistivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本発明の目的は、10GHz以上の高周波電磁波に対してシールド性を有し、かつ電気絶縁性に優れた樹脂組成物を提供することにある。 本発明の目的は、少なくとも、熱可塑性樹脂Aを100質量部、カーボンブラックBを2~6質量部および炭素繊維Cを0.3~4質量部含有し、かつ該Bと該Cの合計が7質量部以下である樹脂組成物であって、体積抵抗率が1×1010~1×1017Ω・cmであり、透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上である樹脂組成物、によって達成された。

Description

樹脂組成物及び該樹脂組成物からなる成形品
 本発明は、樹脂組成物であって、電磁波シールド性を有する樹脂組成物及び該樹脂組成物からなる成形品に関する。特にギガヘルツ帯域において優れた電磁波シールド性を有する樹脂組成物に関する。
 近年電子機器はあらゆる分野で使用されている。特に通信機器はラジオなどの比較的長波長の電波を利用しているものから、携帯電話や衛星放送、無線LANといった短波長の電波を利用している機器が増えており、電磁波シールドは重要な技術となっている。
 電磁波による誤動作を防ぐために電磁波を遮蔽する技術としては、金属などの筐体を使用する、樹脂製の筐体に金属繊維や炭素繊維、金属コーティングした炭素繊維、カーボンナノチューブといった導電性のフィラーを樹脂に添加する、導電フィルムや塗装、メッキといった処理を施すことが知られている。(特許文献1)
 金属の筐体は性能が良いものの重量増や設計の自由度が低く、樹脂の筐体にフィルムや塗装、メッキを施すといった手法は剥がれる恐れがあるためライフサイクルの長いものに使用することは適していないとされている。
 金属を使用せずに電磁波シールド性を有するものとしてカーボンブラックと炭素繊維の併用が知られている(特許文献2、3)。これらの文献では1GHz程度のシールド性が示されており炭素繊維量が少ないと十分な電磁波シールド性が得られず、導電性を付与することで高い電磁波シールド性が得られると記載されている。
特開2012-229345号公報 特開2010-31257号公報 特開2006-45385号公報
 電子機器の発達により10GHz以上の高周波電磁波に対する電磁波シールド性が求められており従来の導電性の電磁波シールド材は、電気絶縁性も必要となる電気機器部品に使用する際、電気絶縁材などを複合して使用する必要があった。
 本発明の目的は、10GHz以上の高周波電磁波に対してシールド性を有し、かつ電気絶縁性に優れた樹脂組成物を提供することにある。
 本発明の目的は、下記によって達成された。
1. 少なくとも、熱可塑性樹脂Aを100質量部、カーボンブラックBを2~6質量部および炭素繊維Cを0.3~4質量部含有し、かつ該カーボンブラックBと該炭素繊維Cの合計が7質量部以下である樹脂組成物であって、体積抵抗率が1×1010~1×1017Ω・cmであり、透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上である樹脂組成物。
2. 前記カーボンブラックBがケッチェンブラックである前記1記載の樹脂組成物。
3. 前記1又は2記載の樹脂組成物からなる成形品。
 本発明によれば、高周波電磁波に対してシールド性を有し、かつ電気絶縁性に優れた樹脂組成物を提供することができる。
 本発明の樹脂組成物は、少なくとも、熱可塑性樹脂Aを100質量部、カーボンブラックBを2~6質量部および炭素繊維Cを0.3~4質量部含有し、かつBとCの合計が7質量部以下である樹脂組成物であって、体積抵抗率が1×1010~1×1017Ω・cmであり、透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上であることを特徴とする。
<熱可塑性樹脂A>
 本発明の熱可塑性樹脂Aとして、結晶性熱可塑性樹脂や非晶性熱可塑性樹脂が好適に用いられる。結晶性熱可塑性樹脂としては、ポリアセタール樹脂(POM)、ポリブチレンテレフタレート樹脂(PBT)、ポリエチレンテレフタレート樹脂(PET)、ポリフェニレンサルファイド樹脂(PPS)、ポリアミド樹脂(PA)等が挙げられる。
 非晶性熱可塑性樹脂としては、ポリカーボネート樹脂(PC)、アクリル系樹脂、スチレン系樹脂、環状オレフィン(共)重合体(COP、COC)等が挙げられるが、耐熱性面で特にポリカーボネート樹脂、環状オレフィン(共)重合体が好適に用いられる。本発明の熱可塑性樹脂Aは、慣用の方法により製造できる。
<カーボンブラックB>
 本発明のカーボンブラックBは、1次粒子径が5~40nmであり、かつ窒素吸着比表面積が100m/g以上のカーボンブラックである。そして、当該カーボンブラックを、熱可塑性樹脂A100質量部に対して2~6質量部含有することができる。
 なお、本発明における1次粒子径は、カーボンブラックを溶媒中投入し超音波振動にて分散させた後、分散試料を支持膜に固定し、これを透過型電子顕微鏡(TEM)で写真撮影し、直径より粒子径を計測した。(1000個以上)それらの値の算術平均により1次粒子径を求めることができる。
 カーボンブラックBは、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどを使用することができ、透過損失と電磁波吸収率のバランスからケッチェンブラックが好ましい。
<炭素繊維C>
 本発明の炭素繊維Cは、PAN系、ピッチ系、レーヨン系などの炭素繊維である。また、炭素繊維にニッケルや銅などの金属を被覆した金属被覆炭素繊維なども本発明で使用できる。炭素繊維は電磁波を反射する効果が高いが、反射した電磁波が電子機器を誤作動させることがあるため、添加量は熱可塑性樹脂A100質量部に対して炭素繊維Cは0.3~4質量部、好ましくは0.5~3質量部、更に好ましくは1~2質量部である。
 本発明の炭素繊維としては、引張破断伸度は少なくとも1.5%以上の炭素繊維が好ましい。高い力学的特性を付与するためには、引張破断伸度が1.5%以上、より望ましくは引張破断伸度が1.7%以上、更に望ましくは引張破断伸度が1.9%以上の炭素繊維を用いるのがよい。本発明で使用する炭素繊維の引張破断伸度に上限はないが、一般的には5%未満である。炭素繊維の直径は4~20μmが好ましく、5~10μmがより好ましい。
 炭素繊維として更に望ましくは、強度と弾性率とのバランスに優れるPAN系炭素繊維がよい。引張弾性率は、100~600GPaであることが好ましく、より好ましくは200~500GPaであり、230~450GPaであることが特に好ましい。また、引張強度は2000MPa~10000MPa、好ましくは3000~8000MPaである。
 また、これらの炭素繊維は、シランカップリング剤、アルミネートカップリング剤、チタネートカップリング剤などで表面処理されたり、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、スチレン系樹脂、オレフィン系樹脂、アミド系樹脂、アクリル系樹脂、フェノール系重合体、液晶性樹脂、アルコールまたは水可溶性樹脂などで集束処理されたりしていてもよい。
<無機充填材>
 本発明の成形品において、耐熱性及び機械強度を向上させるために無機充填材を含有することが好ましい。無機充填材の種類は、本願の効果を阻害しない限り特に限定されないが、金属繊維やカーボンナノチューブ等の導電性の物質は絶縁性を低下させるため避けた方がよく、例えばガラス繊維、ガラスフレーク、ガラスビーズ、シリカ、タルク、マイカ等が好ましく、ガラス繊維が特に好ましい。ガラス繊維の繊維長(溶融混練などにより組成物に調製する前の状態)は1~10mmのものが好ましく、ガラス繊維の直径は5~20μmのものが好ましい。
 本発明において、無機充填材は、耐熱性及び機械強度を向上させる観点から、熱可塑性樹脂A100質量部に対して20~150質量部含むことが好ましく、30~100質量部含むことがより好ましい。
<他の成分>
 本発明においては、本発明の効果を害さない範囲で、上記各成分の他、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の添加剤、即ち、バリ抑制剤、離型剤、潤滑剤、可塑剤、難燃剤、染料や顔料等の着色剤、結晶化促進剤、結晶核剤、各種酸化防止剤、熱安定剤、耐候性安定剤、腐食防止剤等を配合してもよい。
<樹脂組成物の性質>
 本発明の樹脂組成物は、体積抵抗率が1×1010~1×1017Ω・cmであり、透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上である。これらの性質は、カーボンブラックBと炭素繊維Cの添加量を調整することによって達成することができる。
 体積抵抗率を1×1010~1×1017Ω・cmにすることにより、電子機器に使用した場合の絶縁性を得ることができる。透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上であるにより、優れた電磁波シールド性を得ることができる。
<成形品>
 本発明の樹脂組成物から、成形品を作製することができ、その方法としては特に限定はなく、公知の方法を採用することができる。例えば、樹脂組成物を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。本発明の成形品は、電子機器等に有用である。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
<材料>
A 熱可塑性樹脂ポリプブチレンテレフタレート樹脂(PBT)ポリプラスチックス社製
B1 カーボンブラック(ケッチェンブラック):ライオン・スペシャリティ・ケミカルズ社製 ECX
B2 カーボンブラック(ファーネスブラック):三菱ケミカル社製#750B
B3 カーボンブラック(アセチレンブラック):デンカ社製デンカブラック粒状
C  炭素繊維:東邦テナックス社製 HTC432
酸化防止剤:BASFジャパン社製 イルガノックス1010
ガラス繊維:日本電気硝子製 ECS03T―187
<樹脂組成物試験片の作製>
 上記の材料を以下の表1に示す割合(単位は質量部)でドライブレンドし、30mmφのスクリューを有する2軸押出機((株)日本製鋼所製)にホッパーから供給して250℃で溶融混練し、ペレット状の熱可塑性樹脂組成物を得、射出成形により試験片を作製した。
<評価>
 評価は以下の通り行った。結果を表1に示す。なお特に断りの無い限り、測定は23℃50%RH雰囲気下で行った。
 ≪体積抵抗率(Ω・cm)≫
 IEC60093に準拠し、測定装置超高抵抗計R8340(アドバンテスト社製)を用い、印加電圧500Vにて測定した。試験片は、100mm×100mm×3mmtとした。
 ≪透過損失(dB)≫
 以下の装置、測定方法、周波数で測定した。試験片は、100mm×100mm×3mmtとした。
・測定装置:
    ホーンアンテナ:FSS-05(HVS社製)
    誘電体レンズ:FSS-06(HVS社製)
    ネットワークアナライザー:N5227A(キーサイトテクノロジー社製)
    ミリ波コントローラー:N5261A(キーサイトテクノロジー社製)
・測定方法:自由空間法
・周波数:75~110GHz
 ≪電磁波吸収率≫
 以下の式で算出した。
反射損失|S11|=反射波電磁波強度/入射波電磁波強度(入射波と反射波の振幅比)
S11(dB)=20log|S11|
透過損失|S21|=透過電磁波強度/入射波電磁波強度(入射波と透過波の振幅比)
S21(dB)=20log|S21|
電磁波吸収率(%)=(1-(|S11|^+|S21|^))×100
<評価結果>
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明では、高周波において優れた電磁波シールド性を有し、体積抵抗率の高いことが分かる。

 

Claims (3)

  1.  少なくとも、熱可塑性樹脂Aを100質量部、カーボンブラックBを2~6質量部および炭素繊維Cを0.3~4質量部含有し、かつ該カーボンブラックBと該炭素繊維Cの合計が7質量部以下である樹脂組成物であって、体積抵抗率が1×1010~1×1017Ω・cmであり、透過損失が75~110GHzの帯域で-30dB以下で、かつ電磁波吸収率が30%以上である樹脂組成物。
  2.  前記カーボンブラックBがケッチェンブラックである請求項1記載の樹脂組成物。
  3.  請求項1又は2記載の樹脂組成物からなる成形品。

     
PCT/JP2020/042711 2020-02-21 2020-11-17 樹脂組成物及び該樹脂組成物からなる成形品 WO2021166343A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-028083 2020-02-21
JP2020028083A JP7446127B2 (ja) 2020-02-21 2020-02-21 樹脂組成物及び該樹脂組成物からなる成形品

Publications (1)

Publication Number Publication Date
WO2021166343A1 true WO2021166343A1 (ja) 2021-08-26

Family

ID=77390620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042711 WO2021166343A1 (ja) 2020-02-21 2020-11-17 樹脂組成物及び該樹脂組成物からなる成形品

Country Status (2)

Country Link
JP (1) JP7446127B2 (ja)
WO (1) WO2021166343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100923A1 (ja) * 2021-12-01 2023-06-08 京セラ株式会社 電磁干渉抑制材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210013A1 (ja) * 2021-04-02 2022-10-06 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223494A (ja) * 2000-02-10 2001-08-17 Yazaki Corp 電磁波吸収材
JP2006045385A (ja) * 2004-08-05 2006-02-16 Teijin Chem Ltd 電磁波遮蔽性熱可塑性樹脂組成物
JP2010031257A (ja) * 2008-06-27 2010-02-12 Toray Ind Inc 長繊維強化熱可塑性樹脂組成物およびその成形品
JP2012229345A (ja) * 2011-04-27 2012-11-22 Toray Ind Inc 成形品
JP2018059087A (ja) * 2016-09-29 2018-04-12 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP2018104680A (ja) * 2016-12-26 2018-07-05 キヤノン株式会社 樹脂組成物および樹脂成形物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223494A (ja) * 2000-02-10 2001-08-17 Yazaki Corp 電磁波吸収材
JP2006045385A (ja) * 2004-08-05 2006-02-16 Teijin Chem Ltd 電磁波遮蔽性熱可塑性樹脂組成物
JP2010031257A (ja) * 2008-06-27 2010-02-12 Toray Ind Inc 長繊維強化熱可塑性樹脂組成物およびその成形品
JP2012229345A (ja) * 2011-04-27 2012-11-22 Toray Ind Inc 成形品
JP2018059087A (ja) * 2016-09-29 2018-04-12 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP2018104680A (ja) * 2016-12-26 2018-07-05 キヤノン株式会社 樹脂組成物および樹脂成形物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100923A1 (ja) * 2021-12-01 2023-06-08 京セラ株式会社 電磁干渉抑制材料

Also Published As

Publication number Publication date
JP2021130795A (ja) 2021-09-09
JP7446127B2 (ja) 2024-03-08

Similar Documents

Publication Publication Date Title
KR102480208B1 (ko) 수지 성형체
Gargama et al. Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications
Al‐Saleh et al. Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black
KR100570634B1 (ko) 탄소나노튜브와 금속분말 혼성 복합에 의해 제조된 전자파차폐재
US7939167B2 (en) Resin composition
WO2021166343A1 (ja) 樹脂組成物及び該樹脂組成物からなる成形品
CN101050307A (zh) 一种具有电磁屏蔽性能的导电硅橡胶及其制造方法
Wang et al. Electromagnetic wave absorption of multi-walled carbon nanotube–epoxy composites in the R band
JP2009144000A (ja) 樹脂炭素複合材料
EP1446446A2 (en) Electrically conductive thermoplastic polymer composition
KR100808146B1 (ko) 전자파 차폐용 박형 도전성 테이프 조성물, 이의 제조방법및 상기 조성물로 제조한 전자파 차폐용 박형 도전성테이프
JP2956875B2 (ja) 電磁遮蔽用成形材料
Kim et al. Microwave absorption and shielding property of Fe–Si–Al alloy/MWCNT/polymer nanocomposites
Yim et al. EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites
KR100638393B1 (ko) 전자파 차폐용 페인트 및 그 제조 방법
KR20040078002A (ko) 전자파 차폐용 탄소 나노 복합재료 및 그것의 제조방법
JPH10195311A (ja) 熱可塑性樹脂成形品、および成形品用材料、成形品の製造方法
KR20190053666A (ko) 탄소소재 복합체
Bal et al. Scheming of microwave shielding effectiveness for X band considering functionalized MWNTs/epoxy composites
CN115746531A (zh) 一种pc-abs电磁屏蔽复合材料及其制备方法和应用
Kruželák et al. Cross‐linking, mechanical, dynamical, and EMI absorption shielding effectiveness of NBR based composites filled with combination on ferrite and carbon based fillers
JP2008074992A (ja) 炭素繊維強化熱可塑性樹脂組成物および成形品
KR102275117B1 (ko) 방열 및 emi 차폐용 폴리부틸렌 테레프탈레이트 수지 조성물 및 이로부터 제조된 성형품
JP2006152207A (ja) 電磁波シールドゴム材
Kruželák et al. Electromagnetic Interference Shielding and Physical-Mechanical Characteristics of Rubber Composites Filled with Manganese-Zinc Ferrite and Carbon Black. Polymers [online]. 2021, 13 (4), 616 [viewed 2022-07-06]

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919823

Country of ref document: EP

Kind code of ref document: A1