WO2021166220A1 - Surface mounter and image analyzing method - Google Patents

Surface mounter and image analyzing method Download PDF

Info

Publication number
WO2021166220A1
WO2021166220A1 PCT/JP2020/007042 JP2020007042W WO2021166220A1 WO 2021166220 A1 WO2021166220 A1 WO 2021166220A1 JP 2020007042 W JP2020007042 W JP 2020007042W WO 2021166220 A1 WO2021166220 A1 WO 2021166220A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
component
image
unit
analysis
Prior art date
Application number
PCT/JP2020/007042
Other languages
French (fr)
Japanese (ja)
Inventor
和志 高間
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2020/007042 priority Critical patent/WO2021166220A1/en
Priority to JP2022501553A priority patent/JP7290790B2/en
Publication of WO2021166220A1 publication Critical patent/WO2021166220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the techniques disclosed in this specification relate to surface mounters and image analysis methods.
  • An imaging unit provided in the above, which includes an imaging unit that images a component held by a component holding unit to generate image data, and an analysis unit that analyzes image data received from the imaging unit. It is known (see, for example, Patent Document 1).
  • the electronic component mounting device described in Patent Document 1 includes a mounting head that supports an suction nozzle that holds an electronic component so as to be able to move up and down, and a moving device that moves the mounting head to an arbitrary position on a substrate.
  • the parts camera which is provided on the mounting head and captures the electronic components sucked and held by the suction nozzle, and the first image data input from the parts camera are subjected to gradation compression processing, and the processed result is the first.
  • It includes a transmission unit that transmits image data to the control unit and a control unit. The control unit determines whether or not the electronic component is normally held by the mounting head based on the received second image data.
  • bending-resistant cables generally have a narrower transfer band than fixed cables. It is possible to widen the transfer band by increasing the number of communication cables, but it may be difficult due to layout restrictions, and problems such as increased cost and assembly man-hours will occur.
  • the electronic component mounting device described in Patent Document 1 compresses the gradation of the first image data, so that the amount of data can be reduced. Therefore, the image data can be transferred at high speed even in a narrow transfer band as compared with the case where the gradation is not compressed (in other words, the transmission time per image data can be shortened).
  • the method of reducing the amount of data is not limited to gradation compression.
  • Patent Document 1 does not study the problem in reducing the amount of data by a method other than the method of compressing gradation.
  • This specification discloses a technique that can reduce the amount of data while enabling highly accurate image analysis when the amount of data is reduced by thinning out the image data.
  • the surface mounting machine disclosed in the present specification is a surface mounting machine that mounts components on a substrate, and has a head portion that supports the component holding portion that holds the component so as to be able to move up and down, and the head portion.
  • An image data is generated by imaging the component held by the component holding unit, which is a moving unit that moves in a direction parallel to the plate surface of the substrate and an imaging unit provided on the head unit.
  • An imaging unit that thins out the generated image data and transmits the image data, and an analysis unit that is connected to the imaging unit via a communication cable and analyzes the thinned-out image data received from the imaging unit.
  • the imaging unit thins out one of the vertical direction and the horizontal direction of the image represented by the image data in one direction set according to the analysis content of the image data with a thinning rate larger than that of the other direction. While thinning out in one direction, it is not thinned out in the other direction.
  • one direction is thinned out, while the other direction is not thinned out. Therefore, for example, when the analysis content is the measurement of the thickness of a part, if the horizontal direction is set as one direction, the image data is not thinned out in the vertical direction (or thinned out at a thinning rate smaller than the horizontal direction). The amount of data can be reduced by thinning out the image data in the horizontal direction (or thinning out at a thinning rate larger than that in the vertical direction) while suppressing a decrease in the thickness measurement accuracy.
  • the analysis content is the measurement of the horizontal width of the part
  • the vertical direction is set as one direction
  • the image data will not be thinned out in the horizontal direction (or thinned out at a thinning rate smaller than the vertical direction).
  • the amount of data can be reduced by thinning out image data in the vertical direction (or thinning out at a thinning rate larger than that in the horizontal direction) while suppressing a decrease in width measurement accuracy.
  • the thinning ratio is made different in the vertical direction and the horizontal direction of the image according to the analysis content of the image data. The amount of data can be reduced while enabling highly accurate image analysis.
  • the imaging unit is provided on the head unit, and the component held by the component holding unit may be imaged from a horizontal direction.
  • the amount of data can be reduced while enabling highly accurate image analysis. ..
  • the analysis of the image data is the measurement of the thickness of the component, and the one direction may be the lateral direction.
  • the amount of data can be reduced while enabling highly accurate image analysis.
  • the analysis of the image data is the measurement of the width of the component, and the one direction may be the vertical direction.
  • the amount of data can be reduced while enabling highly accurate image analysis.
  • the analysis unit may execute a stretching process for stretching the image represented by the image data received from the imaging unit and analyze the stretched image.
  • the width may be measured from the image data thinned out in the horizontal direction with a thinning rate larger than that in the vertical direction.
  • the amount of calculation increases because the process of doubling the width measured from the image is required.
  • the analysis unit stretches the image represented by the image data received from the imaging unit, the amount of calculation for measuring the width (or thickness) can be reduced by stretching the image to the number of pixels before thinning. .. As a result, the width (or thickness) of the component can be measured at high speed.
  • the image received from the imaging unit may be displayed on the display device for reasons such as investigating the cause when a problem occurs.
  • a natural image or an image close to the natural image
  • the image analysis method disclosed in the present specification is an image analysis method in a surface mounting machine that mounts a component on a substrate, and the surface mounting machine supports a component holding portion that holds the component so as to be able to move up and down.
  • the image analysis method includes an image pickup unit that generates data and an analysis unit that is connected to the image pickup unit via a communication cable and analyzes the image data received from the image pickup unit.
  • one of the vertical direction and the horizontal direction of the image represented by the image data is thinned out at a thinning rate larger than that of the other direction in one direction set according to the analysis content of the image data, or the one of the above.
  • a thinning step in which the image data is thinned out in the other direction but not in the other direction
  • a transmission step in which the imaging unit transmits the image data after being thinned out in the thinning step to the analysis unit.
  • the thinning ratio is made different in the vertical direction and the horizontal direction of the image according to the analysis content of the image data, so that the image is highly accurate.
  • the amount of data can be reduced while enabling the analysis of.
  • the invention disclosed herein can be realized in various aspects such as a device, a method, a computer program for realizing the function of these devices or methods, a recording medium on which the computer program is recorded, and the like.
  • FIG. 1 Top view of the surface mounter according to the first embodiment Perspective view of rotary head Perspective view of rotary head Side view of head moving part and rotary head Top view of rotary head Schematic diagram of rotary head and parts measurement camera Schematic diagram for explaining thinning out of image data
  • Block diagram showing the electrical configuration of the surface mounter
  • Block diagram showing the electrical configuration of the parts measurement camera
  • Schematic diagram of the image sensor Schematic diagram for explaining thinning out of image data according to the second embodiment
  • FIGS. 1 to 10 The first embodiment will be described with reference to FIGS. 1 to 10.
  • the left-right direction shown in FIG. 1 is referred to as an X-axis direction
  • the front-back direction is referred to as a Y-axis direction
  • the up-down direction shown in FIG. 4 is referred to as a Z-axis direction.
  • the right side shown in FIG. 1 is referred to as an upstream side
  • the left side is referred to as a downstream side.
  • the reference numerals of the drawings may be omitted for the same constituent members except for a part.
  • the surface mounter 1 is a device for mounting a component E such as an electronic component on a printed circuit board P (hereinafter, simply referred to as “board P”).
  • the surface mounter 1 includes a base 10, a conveyor 11, a backup device (not shown), four tape component supply devices 13, a rotary head 14 (an example of a head unit), a head moving unit 15 (an example of a moving unit), and a component imaging camera. 16.
  • the substrate imaging camera 17 and the like are provided.
  • the surface mounter 1 also includes a component measurement camera 71 (an example of an imaging unit) shown in FIG. 4, a control unit 80 shown in FIG. 8, an operation unit 90 shown in FIG. 8, and the like.
  • the base 10 has a rectangular shape in a plan view.
  • the rectangular frame A shown by the alternate long and short dash line in FIG. 1 indicates a working position (hereinafter referred to as a working position A) when the component E is mounted on the substrate P.
  • the conveyor 11 carries the substrate P from the upstream side in the X-axis direction to the work position A, and carries out the substrate P on which the component E is mounted at the work position A to the downstream side.
  • the conveyor 11 includes a pair of conveyor belts 11A and 11B that circulate and drive in the X-axis direction, a conveyor drive motor 106 that drives those conveyor belts (see FIG. 8), and the like.
  • the rear conveyor belt 11A can be moved in the front-rear direction, and the distance between the two conveyor belts 11A and 11B can be adjusted according to the width of the substrate P.
  • a backup device (not shown) is arranged below the working position A.
  • the backup device fixes the substrate P transported to the working position A at the working position A and supports the substrate P from below.
  • the tape component supply devices 13 are arranged at two locations along the X-axis direction on both sides of the conveyor 11 in the Y-axis direction, for a total of four locations.
  • a plurality of feeders 20 are attached to these tape component supply devices 13 so as to be arranged side by side in the X-axis direction.
  • Each feeder 20 is a so-called tape feeder, and includes a reel on which a component tape containing a plurality of components E is wound, an electric tape delivery device for pulling out the component tape from the reel, and the like.
  • the parts E are supplied one by one from the parts supply position provided at the end on the side.
  • the tape component supply device 13 will be described as an example of the component supply device, but the component supply device may be a so-called tray feeder that supplies a tray on which the component E is placed, or a device that supplies a semiconductor wafer. It may be.
  • the rotary head 14 includes a plurality of mounting heads 21 (an example of a component holding portion) arranged at equal intervals on the circumference.
  • the mounting head 21 sucks (an example of holding) and releases the component E supplied by the tape component supply device 13.
  • the mounting head 21 is supported so as to be able to move up and down in the vertical direction.
  • the rotary head 14 is also provided with a component measurement camera 71.
  • the component measurement camera 71 is a camera for photographing the component E attracted by the mounting head 21 from the horizontal direction and measuring the thickness (width in the vertical direction) of the component E (an example of analysis).
  • the configuration of the rotary head 14 and the component measurement camera 71 will be described later.
  • the rotary head 14 will be described as an example of the head portion, but the head portion may be a so-called in-line type in which the mounting heads 21 are arranged in a row.
  • the head moving unit 15 moves the rotary head 14 in the X-axis direction and the Y-axis direction within a predetermined movable range.
  • the head moving portion 15 includes a beam 22 that supports the rotary head 14 so as to be reciprocally movable in the X-axis direction, a pair of Y-axis guide rails 23 that support the beam 22 so that the rotary head 14 can be reciprocated in the Y-axis direction, and a rotary head 14. It is provided with an X-axis servo motor 101 that reciprocates the beam 22 in the X-axis direction, a Y-axis servo motor 102 that reciprocates the beam 22 in the Y-axis direction, and the like.
  • the two component imaging cameras 16 are provided between the two tape component supply devices 13 arranged in the X-axis direction, respectively.
  • the component imaging camera 16 is for capturing an image of the component E attracted to the mounting head 21 from below to recognize the rotation angle of the component E with respect to the mounting head 21, the component shape, and the like.
  • the two substrate imaging cameras 17 are provided on the rotary head 14.
  • the substrate imaging camera 17 is for recognizing the position and inclination of the substrate P by imaging a fiducial mark (not shown) attached to the substrate P.
  • the rotary head 14 will be schematically described with reference to FIGS. 2 to 5.
  • the rotary head 14 has an arm shape in which the head main body 52, which is the main body, is covered with the covers 53 and 54.
  • the rotary head 14 has a head body 52 supported by the beam 22, a substantially columnar shaft 55 rotatably supported by the head body 52 around a vertical line, and a pair fixed to the head body 52.
  • a substrate imaging camera 17 see FIG. 1
  • a component measurement camera 71 see FIG. 4
  • a shaft holding portion 56 having a large diameter is provided at the lower end portion of the shaft portion 55.
  • a plurality of through holes (18 in this embodiment) are formed in the shaft holding portion 56 at equal intervals in the circumferential direction, and the shaft-shaped mounting head 21 penetrates the shaft holding portion 56 in the Z-axis direction. It is held so that it can be raised and lowered so that it extends along the line.
  • Each mounting head 21 includes a nozzle shaft 57 and a suction nozzle 58 detachably attached to the lower end of the nozzle shaft 57.
  • a coil spring 59 is mounted on the nozzle shaft 57 so that the nozzle shaft 57 passes through the inside.
  • the Z-axis drive device 60 is a Z-axis linear motor 103 (see FIG. 8) that is housed in a device main body 60A, an elevating part 60B that is supported by the device main body 60A so as to be able to move up and down, and is housed in the device main body 60A to move the elevating part 60B up and down.
  • Etc. are provided.
  • the rotary head 14 is provided with a mechanism for supplying negative pressure or positive pressure to the suction nozzle 58, but the description thereof will be omitted here.
  • a bending-resistant cable 110 (an example of a communication cable) connecting the rotary head 14 and the control unit 80 will be described with reference to FIG. FIG. 4 schematically shows the rotary head 14, and the substrate imaging camera 17 and the like are omitted.
  • a bending resistant cable 110 (so-called flexible cable) is connected to the rotary head 14.
  • the other end of the bending resistant cable 110 is connected to the beam 22.
  • one end of a bending-resistant cable other than the bending-resistant cable 110 is connected to the beam 22.
  • the other end of another bending-resistant cable is connected to a connector (not shown) provided on a non-movable portion such as a base 10.
  • the control unit 80 supplies power to the rotary head 14 and communicates with the rotary head 14 via the bending-resistant cable 110 and another bending-resistant cable described above.
  • the surface mounter 1 is the elevating part 60B of one of the two Z-axis drive devices 60 (for example, the Z-axis drive device 60 closer to the component supply position for supplying the component E to be sucked).
  • the rotary head 14 is moved so as to be located above the component supply position, and the suction nozzle 58 for sucking the component E is located below the elevating portion 60B of the one Z-axis drive device 60. 14 is rotated.
  • the surface mounter 1 drives the Z-axis drive device 60 to lower the elevating unit 60B.
  • the elevating part 60B is lowered, the mounting head 21 is pushed by the elevating part 60B and lowered, and the component E is sucked by the suction nozzle 58.
  • the surface mounter 1 drives the Z-axis drive device 60 to raise the elevating portion 60B.
  • the elevating portion 60B rises, the mounting head 21 rises due to the urging force of the coil spring 59.
  • the light source 70 and the parts measurement camera 71 will be described with reference to FIG. As shown in FIG. 6, a light source 70 that illuminates the component E held by the mounting head 21 from the horizontal direction is fixed to the lower surface of the shaft portion 55 of the rotary head 14.
  • the light source 70 is formed in a columnar shape, and the outer peripheral surface emits light substantially uniformly.
  • the component measurement camera 71 is fixed to the head main body 52.
  • the image 120 shown in FIG. 7 represents an image represented by the image data generated by the component measurement camera 71.
  • the component E is imaged by the component measurement camera 71
  • the light emitted from the light source 70 is blocked by the mounting head 21 and the component E. Therefore, the mounting head 21 and the component E appear as shadows in the image 120.
  • the density of the pixel representing the shadow is close to 0 (black)
  • the density of the pixel to which the light from the light source 70 is incident is close to 255 (white).
  • the surface mount machine 1 includes a control unit 80 and an operation unit 90.
  • the control unit 80 includes an arithmetic processing unit 81, a motor control unit 82, a storage unit 83, an image capture board 84, an external input / output unit 85, a feeder communication unit 86, and the like.
  • the arithmetic processing unit 81 and the image capture board 84 are examples of the analysis unit.
  • the arithmetic processing unit 81 includes a CPU, a ROM, a RAM, and the like, and controls each unit of the surface mounter 1 by executing a control program stored in the ROM.
  • the motor control unit 82 includes an X-axis servomotor 101, a Y-axis servomotor 102, a Z-axis linear motor 103, an N-axis servomotor 104, an R-axis servomotor 105, a conveyor drive motor 106, and the like. Controls the start, stop and rotation speed of each motor.
  • the storage unit 83 is a rewritable storage device (hard disk, etc.) in which data is not erased even when the power is turned off.
  • Various programs and data are stored in the storage unit 83.
  • the various data includes the model of the board P scheduled to be produced, the data related to the various parts E (shape data of the part E, etc.), the order in which each model is produced, and the data for each model (number of production sheets, board P).
  • the shape, the component E to be mounted, the mounting order of the component E, the mounting coordinates of the component E, the mounting angle, and the like are included.
  • the image capture board 84 receives the image data transmitted from the component imaging camera 16, the substrate imaging camera 17, and the component measurement camera 71, and stores the received image data in the RAM of the arithmetic processing unit 81.
  • the external input / output unit 85 is a so-called interface, and is configured to capture detection signals output from various sensors 88 provided in the main body of the surface mounter 1. Further, the external input / output unit 85 is configured to perform operation control for various actuators 89 (including an air supply device and a backup device (not shown)) based on a control signal output from the arithmetic processing unit 81.
  • the feeder communication unit 86 is connected to the feeder 20 and controls the feeder 20 in an integrated manner.
  • the operation unit 90 includes a display unit such as a liquid crystal display and an input unit such as a touch panel. The operator can operate the operation unit 90 to perform various settings and operation instructions for the surface mounter 1.
  • the parts measurement camera 71 includes an image sensor 71A, an FPGA 71B (Field Programmable Gate Array), and a communication unit 71C.
  • An ASIC Application Specific Integrated Circuit
  • the FPGA 71B may be provided instead of the FPGA 71B.
  • the image sensor 71A includes an area sensor 91 in which light receiving elements are two-dimensionally arranged and an A / D converter 92. Each light receiving element applies a voltage corresponding to the accumulated charge to the A / D converter 92.
  • the A / D converter 92 converts the voltage applied from each light receiving element into digital data of 0 (black) to 255 (white) and outputs the voltage to the FPGA 71B.
  • the FPGA 71B is a circuit that controls the image sensor 71A under the control of the control unit 80.
  • the FPGA 71B transmits the digital image data output from the image sensor 71A to the control unit 80 via the communication unit 71C.
  • the FPGA 71B does not transmit the output image data as it is, but decimates it in the horizontal direction by 1/2 and transmits it.
  • the communication unit 71C is a circuit for the FPGA 71B to communicate with the control unit 80.
  • the communication unit 71C is connected to the image capture board 84 via a bending-resistant cable 110 and another bending-resistant cable described above.
  • the thickness measurement of the part E will be described with reference to FIG. 7.
  • the component measurement camera 71 captures the component E attracted to the mounting head 21 from the horizontal direction to generate image data, thins out the generated image data, and transmits the image data to the image capture board 84.
  • the effect on the thickness measurement accuracy is small in the horizontal direction of the image 120 represented by the image data even if the thinning rate is increased as compared with the vertical direction. Therefore, in order to reduce the amount of data while enabling highly accurate image analysis (thickness measurement) on the component measurement camera 71 (more specifically, FPGA 71B), the vertical direction of the image represented by the image data and the vertical direction of the image are represented.
  • the horizontal direction which has a small influence on the measurement accuracy of the thickness, is set.
  • the component measurement camera 71 thins out in the horizontal direction, which is the set direction, but does not thin out in the vertical direction.
  • the component measurement camera 71 defines the image 120 in the horizontal direction. Thin out every other row. As a result, the image 120 is thinned out in the lateral direction (an example of one direction) by 1/2 (an example of a thinning rate) as in the image 121.
  • the component measurement camera 71 does not thin out the image 120 in the vertical direction (an example of the other direction). In other words, the thinning rate in the vertical direction is 0 (zero). Therefore, all the lines of the image 120 are transmitted. However, each line is thinned out by 1/2.
  • each light receiving element 122 is sequentially converted into digital data by the A / D converter 92 for each light receiving element 122. Specifically, for example, as shown in FIG. 10, the conversion is performed in the order from the upper row to the lower row of the area sensor 91. In each line, the light receiving element 122 on the left is converted in the order of the light receiving element 122 on the right.
  • the FPGA 71B outputs one digital data (data corresponding to one light receiving element 122) constituting the output image data for one line. It is transmitted to the image capture board 84 every other time. As a result, one line of image data is thinned out in the horizontal direction by 1/2 and transmitted.
  • the case where the image 120 is thinned out every other row (that is, the case where the image 120 is thinned out to 1/2 in the horizontal direction) has been described as an example, but the number of rows to be thinned out can be appropriately determined.
  • one of the three columns may be thinned out, or two of the three columns may be thinned out.
  • the image capture board 84 stores the thinned-out image data received from the component measurement camera 71 in the RAM of the arithmetic processing unit 81.
  • the arithmetic processing unit 81 analyzes the image data stored in the RAM. Specifically, the arithmetic processing unit 81 has the uppermost pixel representing the component E in the image 121 represented by the image data as the upper end of the component E and the lowermost pixel as the lower end of the component E from the upper end.
  • the thickness of the component E is measured by converting the number of pixels to the lower end into the thickness [mm].
  • the measured thickness is used, for example, for determining the quality of the component E, determining the amount of lowering when the mounting head 21 is lowered and the component E is mounted on the substrate P, and the like. It is possible to appropriately determine what kind of control the measured thickness is used for.
  • the thinning ratio is made different in the vertical direction and the horizontal direction of the image according to the analysis content of the image data.
  • the amount of data can be reduced while enabling accurate image analysis.
  • the influence on the analysis accuracy is small in the horizontal direction even if the thinning rate is increased as compared with the vertical direction. Therefore, "one of the vertical direction and the horizontal direction set according to the analysis content of the image data" is "the direction in which the influence on the analysis accuracy is relatively small in the vertical direction and the horizontal direction". Can be paraphrased.
  • the surface mounter 1 since the gradation is thinned out without being compressed, it is possible to suppress the loss of necessary information for the data remaining without being thinned out. Therefore, it is possible to perform highly accurate analysis as compared with the case of compressing the gradation.
  • the component measurement camera 71 is provided on the rotary head 14, and the component E held by the mount head 21 is imaged from the horizontal direction. Therefore, when measuring the thickness of the component E, the amount of data can be reduced while enabling highly accurate image analysis.
  • the component measurement camera 71 transmits images 120 by thinning them out in the vertical direction.
  • the FPGA 71B of the component measurement camera 71 transmits image data every other line.
  • Image 131 shows an image after being thinned out in the vertical direction.
  • one of the vertical direction and the horizontal direction of the image 120 represented by the image data is set according to the analysis content (measurement of the width of the component E) of the image data. While thinning out in the direction (vertical direction), it is not thinned out in the other direction (horizontal direction). Specifically, in the second embodiment, the thinning rate in the vertical direction is 1/2, and the thinning rate in the horizontal direction is 0. Therefore, it is possible to reduce the amount of data by thinning out the image data in the vertical direction while suppressing a decrease in the measurement accuracy of the width by not thinning out the image data in the horizontal direction. Therefore, when the image data is thinned out to reduce the amount of data, the amount of data can be reduced while enabling highly accurate image analysis.
  • the component measurement camera 71 is provided on the rotary head 14, and the component E held by the mount head 21 is imaged from the horizontal direction. Therefore, when measuring the width of the component E, the amount of data can be reduced while enabling highly accurate image analysis.
  • the third embodiment will be described with reference to FIG.
  • the third embodiment is a modification of the first embodiment or the second embodiment.
  • a modified example of the first embodiment will be described.
  • the arithmetic processing unit 81 according to the third embodiment measures not only the thickness of the component E but also the width of the component E from the image thinned out in the horizontal direction but not in the vertical direction.
  • the image capture board 84 stretches the received image data in the thinned direction to generate image data of the original size (an example of the stretching process), and the generated image data is generated by the arithmetic processing unit 81.
  • Store in RAM Specifically, for example, as shown in FIG. 12, when the image 120 is thinned out in the horizontal direction by 1/2, the image capture board 84 is on the right side (or left side) of each row of the thinned out images 121. Copy that column to. For example, when the even-numbered columns of the original image 120 are thinned out, the data of the odd-numbered columns such as the first column, the third column, and the fifth column of the original image 120 remains in the image 121 after the thinning out. ..
  • the image capture board 84 copies the first row between the first and third rows to make it the second row, and copies the third row between the third and fifth rows.
  • the fourth row As a result, image data of the original size is generated.
  • Image 140 shows the original size image that was generated. However, since the odd-numbered columns are only copied, the original image data (image data before thinning out) is not completely restored.
  • the time for transferring the data from the image capture board 84 to the RAM becomes long.
  • the image acquisition board 84 and the RAM are usually connected by a high-speed bus having a wider transfer band than the bending-resistant cable 110, even if the transfer time is long, the processing time is not significantly affected.
  • the image capture board 84 stretches the image represented by the image data received from the component measurement camera 71 in the horizontal direction, and therefore measures the width by stretching the image to the number of pixels before thinning. The amount of calculation for this can be reduced. As a result, the width of the component E can be measured at high speed.
  • the image received from the component measurement camera 71 may be displayed on the display unit of the operation unit 90 for reasons such as investigating the cause when a problem occurs. When the thinned image is stretched, a natural image (or an image close to the natural image) can be displayed, so that there is an advantage that the convenience of the operator who views the image is improved.
  • the thickness (width in the vertical direction) of the part E is measured, and the vertical direction of the image is not thinned out.
  • thinning may be performed in the vertical direction as long as the required measurement accuracy is satisfied and with a thinning rate smaller than that in the horizontal direction. The same applies when measuring the width.
  • the case where the image is stretched by copying each column of the thinned-out image to the right side of the column is described as an example, but the stretching method can be appropriately determined.
  • the data in the first column and the data in the third column may be expanded by interpolating the data in the second column by interpolation processing.
  • the component measurement camera 71 images the component E attracted by the mounting head 21 from the horizontal direction has been described as an example, but the imaging direction is not limited to the horizontal direction.
  • the component measurement camera 71 may image the component E from an obliquely upward direction or an obliquely downward direction.
  • the mounting head 21 that attracts and holds the component E as the component holding portion has been described as an example, but the component holding portion is held by so-called chucking that sandwiches and holds the component E. May be good.

Abstract

This surface mounter 1 for mounting a component E on a substrate P comprises: a rotary head 14 which supports a mounting head 21 for suctioning and retaining the component E to be raised and lowered; a head moving part 15 which moves the rotary head 14 in a direction parallel to the plate surface of the substrate P; a component measurement camera 71 which is provided on the rotary head 14, captures an image of the component E suctioned by the mounting head 21 to generate image data, and thins out and transmits the generated image data; and an analysis unit (an image capture board 84 and an arithmetic processing unit 81) which is connected to the component measurement camera 71 via a bending-resistant cable 110, and analyzes the thinned-out image data received from the component measurement camera 71. The component measurement camera 71 thins out the image data at a higher thinning rate in one direction (horizontal direction) that is set in accordance with the analysis content (measurement of the thickness of the component E) of the image data among the vertical direction and the horizontal direction of the image represented by the image data, than in the other direction (vertical direction), or thins out the image data in one direction while not thinning out the image data in the other direction.

Description

表面実装機、及び、画像解析方法Surface mounter and image analysis method
 本明細書で開示する技術は表面実装機、及び、画像解析方法に関する。 The techniques disclosed in this specification relate to surface mounters and image analysis methods.
 従来、基板に部品を実装する表面実装機において、部品を保持する部品保持部を昇降可能に支持するヘッド部と、ヘッド部を基板の板面に平行な方向に移動させる移動部と、ヘッド部に設けられている撮像部であって、部品保持部によって保持されている部品を撮像して画像データを生成する撮像部と、撮像部から受信した画像データを解析する解析部とを備えるものが知られている(例えば、特許文献1参照)。 Conventionally, in a surface mounter that mounts a component on a board, a head portion that supports the component holding portion that holds the component so as to be able to move up and down, a moving portion that moves the head portion in a direction parallel to the plate surface of the substrate, and a head portion. An imaging unit provided in the above, which includes an imaging unit that images a component held by a component holding unit to generate image data, and an analysis unit that analyzes image data received from the imaging unit. It is known (see, for example, Patent Document 1).
 具体的には、特許文献1に記載の電子部品装着装置は、電子部品を保持する吸着ノズルを昇降可能に支持する装着ヘッドと、装着ヘッドを基板上の任意の位置に移動させる移動装置と、装着ヘッドに設けられており、吸着ノズルに吸着保持された電子部品を撮像するパーツカメラと、パーツカメラから入力される第1画像データに対して階調圧縮処理を実行し、処理した結果を第2画像データとして制御部に送信する送信部と、制御部とを備えている。制御部は受信した第2画像データに基づいて、電子部品が装着ヘッドに正常に保持されているか否かを判定する。 Specifically, the electronic component mounting device described in Patent Document 1 includes a mounting head that supports an suction nozzle that holds an electronic component so as to be able to move up and down, and a moving device that moves the mounting head to an arbitrary position on a substrate. The parts camera, which is provided on the mounting head and captures the electronic components sucked and held by the suction nozzle, and the first image data input from the parts camera are subjected to gradation compression processing, and the processed result is the first. 2. It includes a transmission unit that transmits image data to the control unit and a control unit. The control unit determines whether or not the electronic component is normally held by the mounting head based on the received second image data.
特許第6131315号公報Japanese Patent No. 6131315
 近年、部品の小型化に伴い、撮像部の高分解能化が求められている。撮像部が高分解能化すると画像データのデータ量が増大する。同時に近年の表面実装機は画像データを高速処理することが求められており、そのために撮像部から解析部に画像データを高速転送することが求められている。このような高分解能化及び高速化の要求により、撮像部と解析部とを接続している通信ケーブルに広い転送帯域が求められている。 In recent years, with the miniaturization of parts, higher resolution of the imaging unit has been required. When the resolution of the imaging unit is increased, the amount of image data increases. At the same time, recent surface mounters are required to process image data at high speed, and for this reason, it is required to transfer image data from the imaging unit to the analysis unit at high speed. Due to the demand for higher resolution and higher speed, a wide transfer band is required for the communication cable connecting the imaging unit and the analysis unit.
 撮像部がヘッド部に設けられている場合、移動部によってヘッド部が移動されることから、撮像部は通信ケーブルとして耐屈曲ケーブル(所謂フレキシブルケーブル)を介して解析部と接続されることが多い。しかしながら、一般に耐屈曲ケーブルは固定ケーブルよりも転送帯域が狭い。通信ケーブルを増やすことで転送帯域を広くすることも可能であるが、レイアウトの制約で難しい場合もある上、コストや組み立て工数が増加するなどの課題が発生する。 When the imaging unit is provided on the head unit, the head unit is moved by the moving unit, so that the imaging unit is often connected to the analysis unit via a bending-resistant cable (so-called flexible cable) as a communication cable. .. However, bending-resistant cables generally have a narrower transfer band than fixed cables. It is possible to widen the transfer band by increasing the number of communication cables, but it may be difficult due to layout restrictions, and problems such as increased cost and assembly man-hours will occur.
 特許文献1に記載の電子部品装着装置は第1画像データの階調を圧縮するのでデータ量を削減できる。このため、階調を圧縮しない場合に比べ、狭い転送帯域でも画像データを高速に転送できる(言い換えると1の画像データ当たりの送信時間を短縮できる)。しかしながら、データ量を削減する方法は階調の圧縮に限られるものではない。特許文献1では階調を圧縮する方法以外の方法でデータ量を削減する場合の課題について検討されていなかった。 The electronic component mounting device described in Patent Document 1 compresses the gradation of the first image data, so that the amount of data can be reduced. Therefore, the image data can be transferred at high speed even in a narrow transfer band as compared with the case where the gradation is not compressed (in other words, the transmission time per image data can be shortened). However, the method of reducing the amount of data is not limited to gradation compression. Patent Document 1 does not study the problem in reducing the amount of data by a method other than the method of compressing gradation.
 本明細書では、画像データを間引いてデータ量を削減する場合に、高精度な画像の解析を可能にしつつデータ量を削減できる技術を開示する。 This specification discloses a technique that can reduce the amount of data while enabling highly accurate image analysis when the amount of data is reduced by thinning out the image data.
 (1)本明細書で開示する表面実装機は、基板に部品を実装する表面実装機であって、前記部品を保持する部品保持部を昇降可能に支持するヘッド部と、前記ヘッド部を前記基板の板面に平行な方向に移動させる移動部と、前記ヘッド部に設けられている撮像部であって、前記部品保持部によって保持されている前記部品を撮像して画像データを生成し、生成した画像データを間引いて送信する撮像部と、通信ケーブルを介して前記撮像部と接続されており、前記撮像部から受信した間引き後の前記画像データを解析する解析部と、を備え、前記撮像部は、前記画像データが表す画像の縦方向及び横方向のうちいずれか前記画像データの解析内容に応じて設定されている一方の方向について他方の方向より大きい間引き率で間引くか、又は、前記一方の方向について間引く一方、前記他方の方向については間引かない。 (1) The surface mounting machine disclosed in the present specification is a surface mounting machine that mounts components on a substrate, and has a head portion that supports the component holding portion that holds the component so as to be able to move up and down, and the head portion. An image data is generated by imaging the component held by the component holding unit, which is a moving unit that moves in a direction parallel to the plate surface of the substrate and an imaging unit provided on the head unit. An imaging unit that thins out the generated image data and transmits the image data, and an analysis unit that is connected to the imaging unit via a communication cable and analyzes the thinned-out image data received from the imaging unit. The imaging unit thins out one of the vertical direction and the horizontal direction of the image represented by the image data in one direction set according to the analysis content of the image data with a thinning rate larger than that of the other direction. While thinning out in one direction, it is not thinned out in the other direction.
 上述した「縦方向及び横方向のうちいずれか画像データの解析内容に応じて設定されている一方の方向」は、「縦方向及び横方向のうち相対的に解析精度への影響が小さい方向」と言い換えることもできる。 The above-mentioned "one of the vertical direction and the horizontal direction set according to the analysis content of the image data" is "the direction in which the influence on the analysis accuracy is relatively small in the vertical direction and the horizontal direction". In other words.
 例えば、部品保持部に保持されている部品を水平方向から撮像して部品の厚み(縦方向の幅)を計測する場合を考える。この場合、画像データを縦方向に大きい間引き率で間引くと計測精度が低下する。これに対し、横方向は大きい間引き率で間引いても厚みの計測精度に大きく影響しない。
 上記の表面実装機によると、画像データが表す画像の縦方向及び横方向のうちいずれか画像データの解析内容に応じて設定されている一方の方向について他方の方向より大きい間引き率で間引くか、又は、一方の方向について間引く一方、他方の方向については間引かない。このため、例えば解析内容が部品の厚みの計測である場合、一方の方向として横方向を設定しておけば、画像データを縦方向に間引かない(あるいは横方向より小さい間引き率で間引く)ことによって厚みの計測精度の低下を抑制しつつ、画像データを横方向に間引く(あるいは縦方向より大きい間引き率で間引く)ことによってデータ量を削減できる。
For example, consider a case where a component held by a component holding portion is imaged from a horizontal direction and the thickness (width in the vertical direction) of the component is measured. In this case, if the image data is thinned out at a large thinning rate in the vertical direction, the measurement accuracy is lowered. On the other hand, even if thinning is performed with a large thinning rate in the lateral direction, the thickness measurement accuracy is not significantly affected.
According to the above-mentioned surface mounting machine, one of the vertical direction and the horizontal direction of the image represented by the image data, which is set according to the analysis content of the image data, is thinned out at a thinning rate larger than that of the other direction. Alternatively, one direction is thinned out, while the other direction is not thinned out. Therefore, for example, when the analysis content is the measurement of the thickness of a part, if the horizontal direction is set as one direction, the image data is not thinned out in the vertical direction (or thinned out at a thinning rate smaller than the horizontal direction). The amount of data can be reduced by thinning out the image data in the horizontal direction (or thinning out at a thinning rate larger than that in the vertical direction) while suppressing a decrease in the thickness measurement accuracy.
 解析内容が部品の横方向の幅の計測である場合は一方の方向として縦方向を設定しておけば、画像データを横方向に間引かない(あるいは縦方向より小さい間引き率で間引く)ことによって幅の計測精度の低下を抑制しつつ、画像データを縦方向に間引く(あるいは横方向より大きい間引き率で間引く)ことによってデータ量を削減できる。
 このように、上記の表面実装機によると、画像データを間引いてデータ量を削減する場合に、画像データの解析内容に応じて画像の縦方向と横方向とで間引き率を異ならせることにより、高精度な画像の解析を可能にしつつデータ量を削減できる。
If the analysis content is the measurement of the horizontal width of the part, if the vertical direction is set as one direction, the image data will not be thinned out in the horizontal direction (or thinned out at a thinning rate smaller than the vertical direction). The amount of data can be reduced by thinning out image data in the vertical direction (or thinning out at a thinning rate larger than that in the horizontal direction) while suppressing a decrease in width measurement accuracy.
As described above, according to the above-mentioned surface mounting machine, when the image data is thinned out to reduce the amount of data, the thinning ratio is made different in the vertical direction and the horizontal direction of the image according to the analysis content of the image data. The amount of data can be reduced while enabling highly accurate image analysis.
 前述した特許文献1では画像データの階調を圧縮するので必要な情報が失われる可能性がある。上記の表面実装機によると、階調を圧縮せずに間引くことにより、間引かれずに残ったデータについては必要な情報が失われることを抑制できる。このため、階調を圧縮する場合に比べて高精度な解析が可能になる。なお、上記の表面実装機において、2値化などによって階調を圧縮しても解析精度が低下し難い場合は階調を圧縮した上で間引いてもよい。 In the above-mentioned Patent Document 1, since the gradation of the image data is compressed, necessary information may be lost. According to the above-mentioned surface mounter, by thinning out the gradation without compressing it, it is possible to suppress the loss of necessary information for the data remaining without being thinned out. Therefore, it is possible to perform highly accurate analysis as compared with the case of compressing the gradation. In the above surface mounter, if the analysis accuracy is not likely to decrease even if the gradation is compressed by binarization or the like, the gradation may be compressed and then thinned out.
 (2)前記撮像部は前記ヘッド部に設けられており、前記部品保持部に保持されている前記部品を水平方向から撮像してもよい。 (2) The imaging unit is provided on the head unit, and the component held by the component holding unit may be imaged from a horizontal direction.
 上記の表面実装機によると、部品保持部に保持されている部品を水平方向から撮像して部品の厚みあるいは幅を計測する場合に、高精度な画像の解析を可能にしつつデータ量を削減できる。 According to the above surface mounter, when the component held in the component holding portion is imaged from the horizontal direction and the thickness or width of the component is measured, the amount of data can be reduced while enabling highly accurate image analysis. ..
 (3)前記画像データの解析は前記部品の厚みの計測であり、前記一方の方向は前記横方向であってもよい。 (3) The analysis of the image data is the measurement of the thickness of the component, and the one direction may be the lateral direction.
 上記の表面実装機によると、部品保持部に保持されている部品を水平方向から撮像して部品の厚みを計測する場合に、高精度な画像の解析を可能にしつつデータ量を削減できる。 According to the above surface mounter, when the component held in the component holding portion is imaged from the horizontal direction and the thickness of the component is measured, the amount of data can be reduced while enabling highly accurate image analysis.
 (4)前記画像データの解析は前記部品の幅の計測であり、前記一方の方向は前記縦方向であってもよい。 (4) The analysis of the image data is the measurement of the width of the component, and the one direction may be the vertical direction.
 上記の表面実装機によると、部品保持部に保持されている前記部品を水平方向から撮像して部品の幅を計測する場合に、高精度な画像の解析を可能にしつつデータ量を削減できる。 According to the above surface mounter, when the component held in the component holding portion is imaged from the horizontal direction and the width of the component is measured, the amount of data can be reduced while enabling highly accurate image analysis.
 (5)前記解析部は、前記撮像部から受信した画像データが表す画像を引き伸ばす引き伸ばし処理を実行し、引き伸ばした画像を解析してもよい。 (5) The analysis unit may execute a stretching process for stretching the image represented by the image data received from the imaging unit and analyze the stretched image.
 例えば部品の厚み(縦方向の幅)及び幅(横方向の幅)の両方を計測する場合に、厚みについては高精度の計測が求められるが、部品の幅については低い精度での計測が許容される場合、横方向について縦方向より大きい間引き率で間引かれた画像データから幅を計測してもよい。しかしながら、その場合、例えば画像が横方向に1/2に間引かれていたとすると、画像から計測した幅を2倍する処理が必要になるので計算量が増える。 For example, when measuring both the thickness (length in the vertical direction) and the width (width in the horizontal direction) of a part, high-precision measurement is required for the thickness, but low-precision measurement is allowed for the width of the part. If this is the case, the width may be measured from the image data thinned out in the horizontal direction with a thinning rate larger than that in the vertical direction. However, in that case, for example, if the image is thinned out in the horizontal direction by 1/2, the amount of calculation increases because the process of doubling the width measured from the image is required.
 上記の表面実装機によると、解析部は撮像部から受信した画像データが表す画像を引き伸ばすので、間引く前の画素数に引き伸ばすことにより、幅(あるいは厚み)を計測するための計算量を低減できる。これにより部品の幅(あるいは厚み)を高速に計測できる。
 問題が生じた場合の原因究明などの理由で、撮像部から受信した画像を表示装置に表示させることもある。間引いた画像を引き伸ばすと自然な画像(あるいは自然な画像に近い画像)を表示できるので、画像を見る作業者の利便性が向上するという利点もある。
According to the above surface mounter, since the analysis unit stretches the image represented by the image data received from the imaging unit, the amount of calculation for measuring the width (or thickness) can be reduced by stretching the image to the number of pixels before thinning. .. As a result, the width (or thickness) of the component can be measured at high speed.
The image received from the imaging unit may be displayed on the display device for reasons such as investigating the cause when a problem occurs. When the thinned image is stretched, a natural image (or an image close to the natural image) can be displayed, so that there is an advantage that the convenience of the operator who views the image is improved.
 (6)本明細書で開示する画像解析方法は、基板に部品を実装する表面実装機における画像解析方法であって、前記表面実装機は、前記部品を保持する部品保持部を昇降可能に支持するヘッド部と、前記ヘッド部を前記基板の板面に平行な方向に移動させる移動部と、前記ヘッド部に設けられており、前記部品保持部によって保持されている前記部品を撮像して画像データを生成する撮像部と、通信ケーブルを介して前記撮像部と接続されており、前記撮像部から受信した前記画像データを解析する解析部と、を備え、当該画像解析方法は、前記撮像部が、前記画像データが表す画像の縦方向及び横方向のうちいずれか前記画像データの解析内容に応じて設定されている一方の方向について他方の方向より大きい間引き率で間引くか、又は、前記一方の方向について間引く一方、前記他方の方向については間引かない間引きステップと、前記撮像部が、前記間引きステップで間引かれた後の前記画像データを前記解析部に送信する送信ステップと、を含む。 (6) The image analysis method disclosed in the present specification is an image analysis method in a surface mounting machine that mounts a component on a substrate, and the surface mounting machine supports a component holding portion that holds the component so as to be able to move up and down. An image of the component provided on the head portion, a moving portion for moving the head portion in a direction parallel to the plate surface of the substrate, and the component held by the component holding portion. The image analysis method includes an image pickup unit that generates data and an analysis unit that is connected to the image pickup unit via a communication cable and analyzes the image data received from the image pickup unit. However, one of the vertical direction and the horizontal direction of the image represented by the image data is thinned out at a thinning rate larger than that of the other direction in one direction set according to the analysis content of the image data, or the one of the above. Includes a thinning step in which the image data is thinned out in the other direction but not in the other direction, and a transmission step in which the imaging unit transmits the image data after being thinned out in the thinning step to the analysis unit. ..
 上記の画像解析方法によると、画像データを間引いてデータ量を削減する場合に、画像データの解析内容に応じて画像の縦方向と横方向とで間引き率を異ならせることにより、高精度な画像の解析を可能にしつつデータ量を削減できる。 According to the above image analysis method, when the image data is thinned out to reduce the amount of data, the thinning ratio is made different in the vertical direction and the horizontal direction of the image according to the analysis content of the image data, so that the image is highly accurate. The amount of data can be reduced while enabling the analysis of.
 本明細書によって開示される発明は、装置、方法、これらの装置または方法の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の種々の態様で実現できる。 The invention disclosed herein can be realized in various aspects such as a device, a method, a computer program for realizing the function of these devices or methods, a recording medium on which the computer program is recorded, and the like.
実施形態1に係る表面実装機の上面図Top view of the surface mounter according to the first embodiment ロータリーヘッドの斜視図Perspective view of rotary head ロータリーヘッドの斜視図Perspective view of rotary head ヘッド移動部及びロータリーヘッドの側面図Side view of head moving part and rotary head ロータリーヘッドの上面図Top view of rotary head ロータリーヘッド及び部品計測カメラの模式図Schematic diagram of rotary head and parts measurement camera 画像データの間引きを説明するための模式図Schematic diagram for explaining thinning out of image data 表面実装機の電気的構成を示すブロック図Block diagram showing the electrical configuration of the surface mounter 部品計測カメラの電気的構成を示すブロック図Block diagram showing the electrical configuration of the parts measurement camera 撮像センサの模式図Schematic diagram of the image sensor 実施形態2に係る画像データの間引きを説明するための模式図Schematic diagram for explaining thinning out of image data according to the second embodiment 実施形態3に係る画像データの間引き及び引き伸ばしを説明するための模式図Schematic diagram for explaining thinning and stretching of image data according to the third embodiment.
 <実施形態1>
 実施形態1を図1から図10によって説明する。以降の説明では図1に示す左右方向をX軸方向、前後方向をY軸方向、図4に示す上下方向をZ軸方向という。また、以降の説明では図1に示す右側を上流側、左側を下流側という。また、以降の説明では同一の構成部材には一部を除いて図面の符号を省略している場合がある。
<Embodiment 1>
The first embodiment will be described with reference to FIGS. 1 to 10. In the following description, the left-right direction shown in FIG. 1 is referred to as an X-axis direction, the front-back direction is referred to as a Y-axis direction, and the up-down direction shown in FIG. 4 is referred to as a Z-axis direction. Further, in the following description, the right side shown in FIG. 1 is referred to as an upstream side, and the left side is referred to as a downstream side. Further, in the following description, the reference numerals of the drawings may be omitted for the same constituent members except for a part.
 (1)表面実装機の全体構成
 図1を参照して、実施形態1に係る表面実装機1の全体構成について説明する。表面実装機1はプリント基板P(以下、単に「基板P」という)に電子部品などの部品Eを実装する装置である。表面実装機1は基台10、搬送コンベア11、図示しないバックアップ装置、4つのテープ部品供給装置13、ロータリーヘッド14(ヘッド部の一例)、ヘッド移動部15(移動部の一例)、部品撮像カメラ16、基板撮像カメラ17などを備えている。図1では示されていないが、表面実装機1は図4に示す部品計測カメラ71(撮像部の一例)、図8に示す制御部80、図8に示す操作部90なども備えている。
(1) Overall Configuration of Surface Mounter The overall configuration of the surface mounter 1 according to the first embodiment will be described with reference to FIG. The surface mounter 1 is a device for mounting a component E such as an electronic component on a printed circuit board P (hereinafter, simply referred to as “board P”). The surface mounter 1 includes a base 10, a conveyor 11, a backup device (not shown), four tape component supply devices 13, a rotary head 14 (an example of a head unit), a head moving unit 15 (an example of a moving unit), and a component imaging camera. 16. The substrate imaging camera 17 and the like are provided. Although not shown in FIG. 1, the surface mounter 1 also includes a component measurement camera 71 (an example of an imaging unit) shown in FIG. 4, a control unit 80 shown in FIG. 8, an operation unit 90 shown in FIG. 8, and the like.
 基台10は平面視長方形状をなしている。図1において二点鎖線で示す矩形枠Aは基板Pに部品Eを実装するときの作業位置(以下、作業位置Aという)を示している。
 搬送コンベア11は基板PをX軸方向の上流側から作業位置Aに搬入し、作業位置Aで部品Eが実装された基板Pを下流側に搬出する。搬送コンベア11はX軸方向に循環駆動する一対のコンベアベルト11A及び11B、それらのコンベアベルトを駆動するコンベア駆動モータ106(図8参照)などを備えている。後側のコンベアベルト11Aは前後方向に移動可能であり、基板Pの幅に応じて2つのコンベアベルト11Aと11Bとの間隔を調整できる。
The base 10 has a rectangular shape in a plan view. The rectangular frame A shown by the alternate long and short dash line in FIG. 1 indicates a working position (hereinafter referred to as a working position A) when the component E is mounted on the substrate P.
The conveyor 11 carries the substrate P from the upstream side in the X-axis direction to the work position A, and carries out the substrate P on which the component E is mounted at the work position A to the downstream side. The conveyor 11 includes a pair of conveyor belts 11A and 11B that circulate and drive in the X-axis direction, a conveyor drive motor 106 that drives those conveyor belts (see FIG. 8), and the like. The rear conveyor belt 11A can be moved in the front-rear direction, and the distance between the two conveyor belts 11A and 11B can be adjusted according to the width of the substrate P.
 図示しないバックアップ装置は作業位置Aの下方に配されている。バックアップ装置は作業位置Aに搬送された基板Pを作業位置Aに固定するとともに、基板Pを下から支持する。
 テープ部品供給装置13は搬送コンベア11のY軸方向の両側においてX軸方向に並んで2箇所ずつ、計4箇所に配されている。これらのテープ部品供給装置13には複数のフィーダ20がX軸方向に横並び状に整列して取り付けられている。各フィーダ20は所謂テープフィーダであり、複数の部品Eが収容された部品テープが巻回されたリール、及び、リールから部品テープを引き出す電動式のテープ送出装置等を備えており、搬送コンベア11側の端部に設けられた部品供給位置から部品Eを一つずつ供給する。
A backup device (not shown) is arranged below the working position A. The backup device fixes the substrate P transported to the working position A at the working position A and supports the substrate P from below.
The tape component supply devices 13 are arranged at two locations along the X-axis direction on both sides of the conveyor 11 in the Y-axis direction, for a total of four locations. A plurality of feeders 20 are attached to these tape component supply devices 13 so as to be arranged side by side in the X-axis direction. Each feeder 20 is a so-called tape feeder, and includes a reel on which a component tape containing a plurality of components E is wound, an electric tape delivery device for pulling out the component tape from the reel, and the like. The parts E are supplied one by one from the parts supply position provided at the end on the side.
 ここでは部品供給装置としてテープ部品供給装置13を例に説明するが、部品供給装置は部品Eが載置されているトレイを供給する所謂トレイフィーダであってもよいし、半導体ウェハを供給するものであってもよい。 Here, the tape component supply device 13 will be described as an example of the component supply device, but the component supply device may be a so-called tray feeder that supplies a tray on which the component E is placed, or a device that supplies a semiconductor wafer. It may be.
 ロータリーヘッド14は円周上に等間隔に配されている複数の実装ヘッド21(部品保持部の一例)を備えている。実装ヘッド21はテープ部品供給装置13によって供給された部品Eを吸着(保持の一例)及び解放するものである。実装ヘッド21は上下方向に昇降可能に支持されている。図1では示されていないが、ロータリーヘッド14には部品計測カメラ71も設けられている。部品計測カメラ71は実装ヘッド21によって吸着された部品Eを水平方向から撮像して部品Eの厚み(縦方向の幅)を計測(解析の一例)するためのカメラである。ロータリーヘッド14及び部品計測カメラ71の構成については後述する。
 ここではヘッド部としてロータリーヘッド14を例に説明するが、ヘッド部は実装ヘッド21が一列に配列された所謂インライン型であってもよい。
The rotary head 14 includes a plurality of mounting heads 21 (an example of a component holding portion) arranged at equal intervals on the circumference. The mounting head 21 sucks (an example of holding) and releases the component E supplied by the tape component supply device 13. The mounting head 21 is supported so as to be able to move up and down in the vertical direction. Although not shown in FIG. 1, the rotary head 14 is also provided with a component measurement camera 71. The component measurement camera 71 is a camera for photographing the component E attracted by the mounting head 21 from the horizontal direction and measuring the thickness (width in the vertical direction) of the component E (an example of analysis). The configuration of the rotary head 14 and the component measurement camera 71 will be described later.
Here, the rotary head 14 will be described as an example of the head portion, but the head portion may be a so-called in-line type in which the mounting heads 21 are arranged in a row.
 ヘッド移動部15はロータリーヘッド14を所定の可動範囲内でX軸方向及びY軸方向に移動させるものである。ヘッド移動部15はロータリーヘッド14をX軸方向に往復移動可能に支持しているビーム22、ビーム22をY軸方向に往復移動可能に支持している一対のY軸ガイドレール23、ロータリーヘッド14をX軸方向に往復移動させるX軸サーボモータ101、ビーム22をY軸方向に往復移動させるY軸サーボモータ102などを備えている。 The head moving unit 15 moves the rotary head 14 in the X-axis direction and the Y-axis direction within a predetermined movable range. The head moving portion 15 includes a beam 22 that supports the rotary head 14 so as to be reciprocally movable in the X-axis direction, a pair of Y-axis guide rails 23 that support the beam 22 so that the rotary head 14 can be reciprocated in the Y-axis direction, and a rotary head 14. It is provided with an X-axis servo motor 101 that reciprocates the beam 22 in the X-axis direction, a Y-axis servo motor 102 that reciprocates the beam 22 in the Y-axis direction, and the like.
 2つの部品撮像カメラ16はそれぞれX軸方向に並んだ2つのテープ部品供給装置13の間に設けられている。部品撮像カメラ16は実装ヘッド21に吸着されている部品Eを下から撮像して実装ヘッド21に対する部品Eの回転角度や部品形状などを認識するためのものである。
 2つの基板撮像カメラ17はロータリーヘッド14に設けられている。基板撮像カメラ17は基板Pに付されている図示しないフィデューシャルマークを撮像して基板Pの位置や傾きを認識するためのものである。
The two component imaging cameras 16 are provided between the two tape component supply devices 13 arranged in the X-axis direction, respectively. The component imaging camera 16 is for capturing an image of the component E attracted to the mounting head 21 from below to recognize the rotation angle of the component E with respect to the mounting head 21, the component shape, and the like.
The two substrate imaging cameras 17 are provided on the rotary head 14. The substrate imaging camera 17 is for recognizing the position and inclination of the substrate P by imaging a fiducial mark (not shown) attached to the substrate P.
 (1-1)ロータリーヘッド
 図2から図5を参照して、ロータリーヘッド14について概略的に説明する。
 図2に示すように、ロータリーヘッド14は本体であるヘッド本体部52がカバー53、54によって覆われたアーム状をなしている。ロータリーヘッド14はビーム22に支持されるヘッド本体部52、鉛直線周りに回転可能にヘッド本体部52に支持されている略円柱状の軸部55、ヘッド本体部52に固定されている一対のZ軸駆動装置60、軸部55を鉛直線周りに回転駆動するN軸サーボモータ104(図8参照)、実装ヘッド21を実装ヘッド21の軸線周りに自転させるR軸サーボモータ105(図8参照)、基板撮像カメラ17(図1参照)、部品計測カメラ71(図4参照)などを備えている。
(1-1) Rotary Head The rotary head 14 will be schematically described with reference to FIGS. 2 to 5.
As shown in FIG. 2, the rotary head 14 has an arm shape in which the head main body 52, which is the main body, is covered with the covers 53 and 54. The rotary head 14 has a head body 52 supported by the beam 22, a substantially columnar shaft 55 rotatably supported by the head body 52 around a vertical line, and a pair fixed to the head body 52. The Z-axis drive device 60, the N-axis servomotor 104 that rotationally drives the shaft portion 55 around a vertical line (see FIG. 8), and the R-axis servomotor 105 that rotates the mounting head 21 around the axis of the mounting head 21 (see FIG. 8). ), A substrate imaging camera 17 (see FIG. 1), a component measurement camera 71 (see FIG. 4), and the like.
 図3に示すように、軸部55の下端部には径の大きいシャフト保持部56が設けられている。シャフト保持部56には周方向に等間隔で複数個(本実施形態では18個)の貫通孔が形成されており、軸状をなす実装ヘッド21がシャフト保持部56を貫通しつつZ軸方向に沿って伸びる形で昇降可能に保持されている。各実装ヘッド21はノズルシャフト57とノズルシャフト57の下端部に着脱可能に取り付けられている吸着ノズル58とを備えている。ノズルシャフト57にはノズルシャフト57が内側を通過する形態でコイルばね59が装着されている。 As shown in FIG. 3, a shaft holding portion 56 having a large diameter is provided at the lower end portion of the shaft portion 55. A plurality of through holes (18 in this embodiment) are formed in the shaft holding portion 56 at equal intervals in the circumferential direction, and the shaft-shaped mounting head 21 penetrates the shaft holding portion 56 in the Z-axis direction. It is held so that it can be raised and lowered so that it extends along the line. Each mounting head 21 includes a nozzle shaft 57 and a suction nozzle 58 detachably attached to the lower end of the nozzle shaft 57. A coil spring 59 is mounted on the nozzle shaft 57 so that the nozzle shaft 57 passes through the inside.
 Z軸駆動装置60は装置本体部60A、装置本体部60Aに昇降可能に支持されている昇降部60B、装置本体部60Aに収容されて昇降部60Bを昇降させるZ軸リニアモータ103(図8参照)などを備えている。
 ロータリーヘッド14はこの他に吸着ノズル58に負圧や正圧を供給するための機構などを備えているが、ここでは説明を省略する。
The Z-axis drive device 60 is a Z-axis linear motor 103 (see FIG. 8) that is housed in a device main body 60A, an elevating part 60B that is supported by the device main body 60A so as to be able to move up and down, and is housed in the device main body 60A to move the elevating part 60B up and down. ) Etc. are provided.
In addition to this, the rotary head 14 is provided with a mechanism for supplying negative pressure or positive pressure to the suction nozzle 58, but the description thereof will be omitted here.
 図4を参照して、ロータリーヘッド14と制御部80とを接続している耐屈曲ケーブル110(通信ケーブルの一例)について説明する。図4はロータリーヘッド14を模式的に示しており、基板撮像カメラ17などは省略している。図4に示すように、ロータリーヘッド14には耐屈曲ケーブル110(所謂フレキシブルケーブル)の一端が接続されている。耐屈曲ケーブル110の他端はビーム22に接続されている。図示していないが、ビーム22には耐屈曲ケーブル110とは別の耐屈曲ケーブルの一端が接続されている。別の耐屈曲ケーブルの他端は基台10などの非可動部分に設けられている図示しないコネクタに接続されている。制御部80は耐屈曲ケーブル110及び上述した別の耐屈曲ケーブルを介してロータリーヘッド14への電力供給やロータリーヘッド14との通信を行う。 A bending-resistant cable 110 (an example of a communication cable) connecting the rotary head 14 and the control unit 80 will be described with reference to FIG. FIG. 4 schematically shows the rotary head 14, and the substrate imaging camera 17 and the like are omitted. As shown in FIG. 4, one end of a bending resistant cable 110 (so-called flexible cable) is connected to the rotary head 14. The other end of the bending resistant cable 110 is connected to the beam 22. Although not shown, one end of a bending-resistant cable other than the bending-resistant cable 110 is connected to the beam 22. The other end of another bending-resistant cable is connected to a connector (not shown) provided on a non-movable portion such as a base 10. The control unit 80 supplies power to the rotary head 14 and communicates with the rotary head 14 via the bending-resistant cable 110 and another bending-resistant cable described above.
 図5を参照して、テープ部品供給装置13によって供給される部品Eを吸着ノズル58によって吸着する場合について説明する。部品Eを吸着する場合、表面実装機1は2つのZ軸駆動装置60のうちいずれか一方(例えば吸着する部品Eを供給する部品供給位置に近い方のZ軸駆動装置60)の昇降部60Bが部品供給位置の上方に位置するようにロータリーヘッド14を移動させるとともに、その部品Eを吸着する吸着ノズル58が当該一方のZ軸駆動装置60の昇降部60Bの下方に位置するようにロータリーヘッド14を回転させる。 A case where the component E supplied by the tape component supply device 13 is sucked by the suction nozzle 58 will be described with reference to FIG. When the component E is sucked, the surface mounter 1 is the elevating part 60B of one of the two Z-axis drive devices 60 (for example, the Z-axis drive device 60 closer to the component supply position for supplying the component E to be sucked). The rotary head 14 is moved so as to be located above the component supply position, and the suction nozzle 58 for sucking the component E is located below the elevating portion 60B of the one Z-axis drive device 60. 14 is rotated.
 そして、表面実装機1はZ軸駆動装置60を駆動して昇降部60Bを下降させる。昇降部60Bを下降させると実装ヘッド21が昇降部60Bに押されて下降し、吸着ノズル58によって部品Eが吸着される。表面実装機1は部品Eが吸着されるとZ軸駆動装置60を駆動して昇降部60Bを上昇させる。昇降部60Bが上昇するとコイルばね59の付勢力によって実装ヘッド21が上昇する。ここでは部品Eの吸着について説明したが、吸着した部品Eを基板Pに搭載するときも同様である。 Then, the surface mounter 1 drives the Z-axis drive device 60 to lower the elevating unit 60B. When the elevating part 60B is lowered, the mounting head 21 is pushed by the elevating part 60B and lowered, and the component E is sucked by the suction nozzle 58. When the component E is attracted to the surface mounter 1, the surface mounter 1 drives the Z-axis drive device 60 to raise the elevating portion 60B. When the elevating portion 60B rises, the mounting head 21 rises due to the urging force of the coil spring 59. Although the suction of the component E has been described here, the same applies when the suctioned component E is mounted on the substrate P.
 (1-2)光源及び部品計測カメラ
 図6を参照して、光源70及び部品計測カメラ71について説明する。図6に示すように、ロータリーヘッド14の軸部55の下面には実装ヘッド21に保持されている部品Eを水平方向から照明する光源70が固定されている。光源70は円柱状に形成されており、外周面が略一様に発光する。部品計測カメラ71はヘッド本体部52に固定されている。
(1-2) Light Source and Parts Measurement Camera The light source 70 and the parts measurement camera 71 will be described with reference to FIG. As shown in FIG. 6, a light source 70 that illuminates the component E held by the mounting head 21 from the horizontal direction is fixed to the lower surface of the shaft portion 55 of the rotary head 14. The light source 70 is formed in a columnar shape, and the outer peripheral surface emits light substantially uniformly. The component measurement camera 71 is fixed to the head main body 52.
 図7に示す画像120は部品計測カメラ71によって生成された画像データが表す画像を表している。部品計測カメラ71によって部品Eを撮像するとき、光源70から出射された光は実装ヘッド21及び部品Eによって遮られる。このため、画像120において実装ヘッド21及び部品Eは影となって表れる。画像120において影を表す画素の濃度は0(黒)に近い値となり、光源70からの光が入射した画素の濃度は255(白)に近い値となる。 The image 120 shown in FIG. 7 represents an image represented by the image data generated by the component measurement camera 71. When the component E is imaged by the component measurement camera 71, the light emitted from the light source 70 is blocked by the mounting head 21 and the component E. Therefore, the mounting head 21 and the component E appear as shadows in the image 120. In the image 120, the density of the pixel representing the shadow is close to 0 (black), and the density of the pixel to which the light from the light source 70 is incident is close to 255 (white).
 (2)表面実装機の電気的構成
 図8に示すように、表面実装機1は制御部80及び操作部90を備えている。制御部80は演算処理部81、モータ制御部82、記憶部83、画像取り込みボード84、外部入出力部85、フィーダ通信部86などを備えている。演算処理部81及び画像取り込みボード84は解析部の一例である。
(2) Electrical Configuration of Surface Mount Machine As shown in FIG. 8, the surface mount machine 1 includes a control unit 80 and an operation unit 90. The control unit 80 includes an arithmetic processing unit 81, a motor control unit 82, a storage unit 83, an image capture board 84, an external input / output unit 85, a feeder communication unit 86, and the like. The arithmetic processing unit 81 and the image capture board 84 are examples of the analysis unit.
 演算処理部81はCPU、ROM、RAMなどを備えており、ROMに記憶されている制御プログラムを実行することによって表面実装機1の各部を制御する。
 モータ制御部82は演算処理部81の制御の下でX軸サーボモータ101、Y軸サーボモータ102、Z軸リニアモータ103、N軸サーボモータ104、R軸サーボモータ105、コンベア駆動モータ106などの各モータの運転、停止及び回転速度を制御する。
The arithmetic processing unit 81 includes a CPU, a ROM, a RAM, and the like, and controls each unit of the surface mounter 1 by executing a control program stored in the ROM.
Under the control of the arithmetic processing unit 81, the motor control unit 82 includes an X-axis servomotor 101, a Y-axis servomotor 102, a Z-axis linear motor 103, an N-axis servomotor 104, an R-axis servomotor 105, a conveyor drive motor 106, and the like. Controls the start, stop and rotation speed of each motor.
 記憶部83は電源をオフにしてもデータが消えない書き換え可能な記憶装置(ハードディスク等)である。記憶部83には各種のプログラムやデータが記憶されている。各種のデータには、生産が予定されている基板Pの機種、各種の部品Eに関するデータ(部品Eの形状データなど)、各機種を生産する順序、機種ごとのデータ(生産枚数、基板Pの形状、実装される部品E、部品Eの実装順序、部品Eの実装座標、実装角度)などが含まれる。 The storage unit 83 is a rewritable storage device (hard disk, etc.) in which data is not erased even when the power is turned off. Various programs and data are stored in the storage unit 83. The various data includes the model of the board P scheduled to be produced, the data related to the various parts E (shape data of the part E, etc.), the order in which each model is produced, and the data for each model (number of production sheets, board P). The shape, the component E to be mounted, the mounting order of the component E, the mounting coordinates of the component E, the mounting angle, and the like are included.
 画像取り込みボード84は部品撮像カメラ16、基板撮像カメラ17、部品計測カメラ71から送信された画像データを受信し、受信した画像データを演算処理部81のRAMに記憶させる。
 外部入出力部85はいわゆるインターフェースであり、表面実装機1の本体に設けられている各種センサ類88から出力される検出信号が取り込まれるように構成されている。また、外部入出力部85は演算処理部81から出力される制御信号に基づいて各種アクチュエータ類89(図示しない空気供給装置、バックアップ装置を含む)に対する動作制御を行うように構成されている。
The image capture board 84 receives the image data transmitted from the component imaging camera 16, the substrate imaging camera 17, and the component measurement camera 71, and stores the received image data in the RAM of the arithmetic processing unit 81.
The external input / output unit 85 is a so-called interface, and is configured to capture detection signals output from various sensors 88 provided in the main body of the surface mounter 1. Further, the external input / output unit 85 is configured to perform operation control for various actuators 89 (including an air supply device and a backup device (not shown)) based on a control signal output from the arithmetic processing unit 81.
 フィーダ通信部86はフィーダ20に接続されており、フィーダ20を統括して制御する。
 操作部90は液晶ディスプレイなどの表示部と、タッチパネルなどの入力部とを備えている。作業者は操作部90を操作して表面実装機1に対する各種の設定や動作の指示などを行うことができる。
The feeder communication unit 86 is connected to the feeder 20 and controls the feeder 20 in an integrated manner.
The operation unit 90 includes a display unit such as a liquid crystal display and an input unit such as a touch panel. The operator can operate the operation unit 90 to perform various settings and operation instructions for the surface mounter 1.
 (3)部品計測カメラの電気的構成
 図9に示すように、部品計測カメラ71は撮像センサ71A、FPGA71B(Field Programmable Gate Array)、及び、通信部71Cを備えている。FPGA71Bに代えてASIC(Application Specific Integrated Circuit)を備えていてもよい。
(3) Electrical Configuration of Parts Measurement Camera As shown in FIG. 9, the parts measurement camera 71 includes an image sensor 71A, an FPGA 71B (Field Programmable Gate Array), and a communication unit 71C. An ASIC (Application Specific Integrated Circuit) may be provided instead of the FPGA 71B.
 撮像センサ71Aは受光素子が二次元配列されたエリアセンサ91及びA/Dコンバータ92を備えている。各受光素子は蓄積した電荷に応じた電圧をA/Dコンバータ92に印加する。A/Dコンバータ92は各受光素子から印加された電圧を0(黒)~255(白)のデジタルデータに変換してFPGA71Bに出力する。 The image sensor 71A includes an area sensor 91 in which light receiving elements are two-dimensionally arranged and an A / D converter 92. Each light receiving element applies a voltage corresponding to the accumulated charge to the A / D converter 92. The A / D converter 92 converts the voltage applied from each light receiving element into digital data of 0 (black) to 255 (white) and outputs the voltage to the FPGA 71B.
 FPGA71Bは制御部80の制御の下で撮像センサ71Aを制御する回路である。FPGA71Bは、撮像センサ71Aから出力されたデジタルの画像データを、通信部71Cを介して制御部80に送信する。詳しくは後述するが、FPGA71Bは出力された画像データをそのまま送信するのではなく、横方向に1/2に間引いて送信する。
 通信部71CはFPGA71Bが制御部80と通信するための回路である。通信部71Cは耐屈曲ケーブル110及び前述した別の耐屈曲ケーブルを介して画像取り込みボード84に接続されている。
The FPGA 71B is a circuit that controls the image sensor 71A under the control of the control unit 80. The FPGA 71B transmits the digital image data output from the image sensor 71A to the control unit 80 via the communication unit 71C. As will be described in detail later, the FPGA 71B does not transmit the output image data as it is, but decimates it in the horizontal direction by 1/2 and transmits it.
The communication unit 71C is a circuit for the FPGA 71B to communicate with the control unit 80. The communication unit 71C is connected to the image capture board 84 via a bending-resistant cable 110 and another bending-resistant cable described above.
 (4)部品の厚み計測
 図7を参照して、部品Eの厚み計測について説明する。部品計測カメラ71は実装ヘッド21に吸着されている部品Eを水平方向から撮像して画像データを生成し、生成した画像データを間引いて画像取り込みボード84に送信する。
 部品Eの厚みを計測する場合、画像データが表す画像120の横方向は縦方向に比べて間引き率を大きくしても厚みの計測精度(解析精度の一例)への影響が小さい。このため、部品計測カメラ71(より具体的にはFPGA71B)には、高精度な画像の解析(厚みの計測)を可能にしつつデータ量を削減するために、画像データが表す画像の縦方向及び横方向のうちいずれか画像データの解析内容に応じて設定されている一方の方向として、厚みの計測精度への影響が小さい方向である横方向が設定されている。部品計測カメラ71は、画像データを間引くとき、設定されている方向である横方向について間引く一方、縦方向については間引かない。
(4) Part Thickness Measurement The thickness measurement of the part E will be described with reference to FIG. 7. The component measurement camera 71 captures the component E attracted to the mounting head 21 from the horizontal direction to generate image data, thins out the generated image data, and transmits the image data to the image capture board 84.
When measuring the thickness of the component E, the effect on the thickness measurement accuracy (an example of analysis accuracy) is small in the horizontal direction of the image 120 represented by the image data even if the thinning rate is increased as compared with the vertical direction. Therefore, in order to reduce the amount of data while enabling highly accurate image analysis (thickness measurement) on the component measurement camera 71 (more specifically, FPGA 71B), the vertical direction of the image represented by the image data and the vertical direction of the image are represented. As one of the horizontal directions set according to the analysis content of the image data, the horizontal direction, which has a small influence on the measurement accuracy of the thickness, is set. When thinning out image data, the component measurement camera 71 thins out in the horizontal direction, which is the set direction, but does not thin out in the vertical direction.
 具体的には例えば、画像データが表す画像120において横方向に一列に並ぶ画素を行と定義し、縦方向に一列に並ぶ画素を列と定義したとき、部品計測カメラ71は画像120を横方向に1列おきに間引く。これにより、画像121のように、画像120が横方向(一方の方向の一例)に1/2(間引き率の一例)に間引かれる。これに対し、部品計測カメラ71は、縦方向(他方の方向の一例)には画像120を間引かない。言い換えると、縦方向の間引き率は0(零)である。このため画像120の全ての行が送信される。ただし、各行はそれぞれ1/2に間引かれている。 Specifically, for example, in the image 120 represented by the image data, when the pixels arranged in a row in the horizontal direction are defined as rows and the pixels arranged in a row in the vertical direction are defined as columns, the component measurement camera 71 defines the image 120 in the horizontal direction. Thin out every other row. As a result, the image 120 is thinned out in the lateral direction (an example of one direction) by 1/2 (an example of a thinning rate) as in the image 121. On the other hand, the component measurement camera 71 does not thin out the image 120 in the vertical direction (an example of the other direction). In other words, the thinning rate in the vertical direction is 0 (zero). Therefore, all the lines of the image 120 are transmitted. However, each line is thinned out by 1/2.
 図10を参照して、画像データの送信についてより具体的に説明する。撮像センサ71Aの露光が完了すると、各受光素子122に蓄積されている電荷に応じた電圧がA/Dコンバータ92によって1受光素子122ずつ順にデジタルデータに変換される。具体的には例えば、図10に示すようにエリアセンサ91の上の行から下の行の順に変換される。各行においては左の受光素子122から右の受光素子122の順に変換される。FPGA71BはA/Dコンバータ92から1行分の画像データが出力されると、出力された1行分の画像データを構成しているデジタルデータ(一つの受光素子122に対応するデータ)を1つおきに画像取り込みボード84に送信する。これにより1行分の画像データが横方向に1/2に間引かれて送信される。 The transmission of image data will be described more specifically with reference to FIG. When the exposure of the image sensor 71A is completed, the voltage corresponding to the electric charge stored in each light receiving element 122 is sequentially converted into digital data by the A / D converter 92 for each light receiving element 122. Specifically, for example, as shown in FIG. 10, the conversion is performed in the order from the upper row to the lower row of the area sensor 91. In each line, the light receiving element 122 on the left is converted in the order of the light receiving element 122 on the right. When the image data for one line is output from the A / D converter 92, the FPGA 71B outputs one digital data (data corresponding to one light receiving element 122) constituting the output image data for one line. It is transmitted to the image capture board 84 every other time. As a result, one line of image data is thinned out in the horizontal direction by 1/2 and transmitted.
 ここでは画像120を1列おきに間引く場合(すなわち横方向に1/2に間引く場合)を例に説明したが、何列おきに間引くかは適宜に決定可能である。例えば3列のうち1列を間引いてもよいし、3列のうち2列を間引いてもよい。 Here, the case where the image 120 is thinned out every other row (that is, the case where the image 120 is thinned out to 1/2 in the horizontal direction) has been described as an example, but the number of rows to be thinned out can be appropriately determined. For example, one of the three columns may be thinned out, or two of the three columns may be thinned out.
 画像取り込みボード84は部品計測カメラ71から受信した間引き後の画像データを演算処理部81のRAMに記憶させる。演算処理部81はRAMに記憶された画像データを解析する。具体的には、演算処理部81は画像データが表す画像121において部品Eを表している画素のうち最も上側の画素を部品Eの上端、最も下側の画素を部品Eの下端とし、上端から下端までの画素数を厚み[mm]に換算することによって部品Eの厚みを計測する。 The image capture board 84 stores the thinned-out image data received from the component measurement camera 71 in the RAM of the arithmetic processing unit 81. The arithmetic processing unit 81 analyzes the image data stored in the RAM. Specifically, the arithmetic processing unit 81 has the uppermost pixel representing the component E in the image 121 represented by the image data as the upper end of the component E and the lowermost pixel as the lower end of the component E from the upper end. The thickness of the component E is measured by converting the number of pixels to the lower end into the thickness [mm].
 計測した厚みは、例えば部品Eの良否判定や、実装ヘッド21を下降させて基板Pに部品Eを搭載するときの下降量の決定などに用いられる。計測した厚みをどのような制御に用いるかは適宜に決定可能である。 The measured thickness is used, for example, for determining the quality of the component E, determining the amount of lowering when the mounting head 21 is lowered and the component E is mounted on the substrate P, and the like. It is possible to appropriately determine what kind of control the measured thickness is used for.
 (5)実施形態の効果
 実施形態1に係る表面実装機1によると、画像データが表す画像の縦方向及び横方向のうちいずれか画像データの解析内容(部品Eの厚みの計測)に応じて設定されている一方の方向(横方向)について間引く一方、他方の方向(縦方向)については間引かない。具体的には、実施形態1では横方向の間引き率が1/2であり、縦方向の間引き率が0である。このため、画像データを縦方向に間引かないことによって厚みの計測精度の低下を抑制しつつ、画像データを横方向に間引くことによってデータ量を削減できる。このように、表面実装機1によると、画像データを間引いてデータ量を削減する場合に、画像データの解析内容に応じて画像の縦方向と横方向とで間引き率を異ならせることにより、高精度な画像の解析を可能にしつつデータ量を削減できる。
 部品Eの厚みを計測する場合、横方向は縦方向に比べて間引き率を大きくしても解析精度への影響が小さい。このため、「縦方向及び横方向のうちいずれか画像データの解析内容に応じて設定されている一方の方向」は、「縦方向及び横方向のうち相対的に解析精度への影響が小さい方向」と言い換えることもできる。
(5) Effect of the Embodiment According to the surface mounting machine 1 according to the first embodiment, depending on the analysis content (measurement of the thickness of the component E) of the image data in either the vertical direction or the horizontal direction of the image represented by the image data. While thinning out in one set direction (horizontal direction), it does not thin out in the other direction (vertical direction). Specifically, in the first embodiment, the thinning rate in the horizontal direction is 1/2, and the thinning rate in the vertical direction is 0. Therefore, it is possible to reduce the amount of data by thinning out the image data in the horizontal direction while suppressing a decrease in the thickness measurement accuracy by not thinning out the image data in the vertical direction. As described above, according to the surface mounting machine 1, when the image data is thinned out to reduce the amount of data, the thinning ratio is made different in the vertical direction and the horizontal direction of the image according to the analysis content of the image data. The amount of data can be reduced while enabling accurate image analysis.
When measuring the thickness of the component E, the influence on the analysis accuracy is small in the horizontal direction even if the thinning rate is increased as compared with the vertical direction. Therefore, "one of the vertical direction and the horizontal direction set according to the analysis content of the image data" is "the direction in which the influence on the analysis accuracy is relatively small in the vertical direction and the horizontal direction". Can be paraphrased.
 表面実装機1によると、階調を圧縮せずに間引くので、間引かれずに残ったデータについては必要な情報が失われることを抑制できる。このため、階調を圧縮する場合に比べて高精度な解析が可能になる。 According to the surface mounter 1, since the gradation is thinned out without being compressed, it is possible to suppress the loss of necessary information for the data remaining without being thinned out. Therefore, it is possible to perform highly accurate analysis as compared with the case of compressing the gradation.
 表面実装機1によると、部品計測カメラ71はロータリーヘッド14に設けられており、実装ヘッド21に保持されている部品Eを水平方向から撮像する。このため、部品Eの厚みを計測する場合に、高精度な画像の解析を可能にしつつデータ量を削減できる。 According to the surface mounter 1, the component measurement camera 71 is provided on the rotary head 14, and the component E held by the mount head 21 is imaged from the horizontal direction. Therefore, when measuring the thickness of the component E, the amount of data can be reduced while enabling highly accurate image analysis.
 <実施形態2>
 実施形態2を図11によって説明する。前述した実施形態1では画像データが表す画像120から部品Eの厚みを計測する場合を例に説明した。これに対し、実施形態2では部品Eの横方向の幅を計測する。
<Embodiment 2>
The second embodiment will be described with reference to FIG. In the first embodiment described above, a case where the thickness of the component E is measured from the image 120 represented by the image data has been described as an example. On the other hand, in the second embodiment, the width of the component E in the lateral direction is measured.
 図11に示すように、実施形態2に係る部品計測カメラ71は画像120を縦方向に間引いて送信する。具体的には、部品計測カメラ71のFPGA71Bは1行おきに画像データを送信する。これにより画像データが縦方向に1/2に間引かれて送信される。画像131は縦方向に間引かれた後の画像を示している。 As shown in FIG. 11, the component measurement camera 71 according to the second embodiment transmits images 120 by thinning them out in the vertical direction. Specifically, the FPGA 71B of the component measurement camera 71 transmits image data every other line. As a result, the image data is thinned out in the vertical direction by 1/2 and transmitted. Image 131 shows an image after being thinned out in the vertical direction.
 実施形態2に係る表面実装機1によると、画像データが表す画像120の縦方向及び横方向のうちいずれか画像データの解析内容(部品Eの幅の計測)に応じて設定されている一方の方向(縦方向)について間引く一方、他方の方向(横方向)については間引かない。具体的には、実施形態2では縦方向の間引き率が1/2であり、横方向の間引き率が0である。このため、画像データを横方向に間引かないことによって幅の計測精度の低下を抑制しつつ、画像データを縦方向に間引くことによってデータ量を削減できる。このため、画像データを間引いてデータ量を削減する場合に、高精度な画像の解析を可能にしつつデータ量を削減できる。 According to the surface mounting machine 1 according to the second embodiment, one of the vertical direction and the horizontal direction of the image 120 represented by the image data is set according to the analysis content (measurement of the width of the component E) of the image data. While thinning out in the direction (vertical direction), it is not thinned out in the other direction (horizontal direction). Specifically, in the second embodiment, the thinning rate in the vertical direction is 1/2, and the thinning rate in the horizontal direction is 0. Therefore, it is possible to reduce the amount of data by thinning out the image data in the vertical direction while suppressing a decrease in the measurement accuracy of the width by not thinning out the image data in the horizontal direction. Therefore, when the image data is thinned out to reduce the amount of data, the amount of data can be reduced while enabling highly accurate image analysis.
 表面実装機1によると、部品計測カメラ71はロータリーヘッド14に設けられており、実装ヘッド21に保持されている部品Eを水平方向から撮像する。このため、部品Eの幅を計測する場合に、高精度な画像の解析を可能にしつつデータ量を削減できる。 According to the surface mounter 1, the component measurement camera 71 is provided on the rotary head 14, and the component E held by the mount head 21 is imaged from the horizontal direction. Therefore, when measuring the width of the component E, the amount of data can be reduced while enabling highly accurate image analysis.
 <実施形態3>
 実施形態3を図12によって説明する。
 実施形態3は実施形態1又は実施形態2の変形例である。ここでは実施形態1の変形例として説明する。実施形態3に係る演算処理部81は、横方向について間引かれた一方、縦方向については間引かれていない画像から、部品Eの厚みだけでなく部品Eの幅も計測する。
<Embodiment 3>
The third embodiment will be described with reference to FIG.
The third embodiment is a modification of the first embodiment or the second embodiment. Here, a modified example of the first embodiment will be described. The arithmetic processing unit 81 according to the third embodiment measures not only the thickness of the component E but also the width of the component E from the image thinned out in the horizontal direction but not in the vertical direction.
 実施形態3に係る画像取り込みボード84は、受信した画像データを間引かれた方向に引き伸ばして元のサイズの画像データを生成し(引き伸ばし処理の一例)、生成した画像データを演算処理部81のRAMに記憶させる。
 具体的には例えば、図12に示すように、画像120を横方向に1/2に間引いた場合、画像取り込みボード84は間引かれた画像121の各列についてその列の右側(あるいは左側)にその列をコピーする。例えば元の画像120の偶数列を間引いた場合、間引かれた後の画像121には元の画像120の1列目、3列目、5列目のように奇数列のデータが残っている。この場合、画像取り込みボード84は1列目と3列目との間に1列目をコピーして2列目とし、3列目と5列目との間に3列目をコピーすることによって4列目とする。これにより元のサイズの画像データが生成される。画像140は生成された元のサイズの画像を示している。ただし、奇数列をコピーしただけであるので、元の画像データ(間引かれる前の画像データ)は完全には復元されない。
The image capture board 84 according to the third embodiment stretches the received image data in the thinned direction to generate image data of the original size (an example of the stretching process), and the generated image data is generated by the arithmetic processing unit 81. Store in RAM.
Specifically, for example, as shown in FIG. 12, when the image 120 is thinned out in the horizontal direction by 1/2, the image capture board 84 is on the right side (or left side) of each row of the thinned out images 121. Copy that column to. For example, when the even-numbered columns of the original image 120 are thinned out, the data of the odd-numbered columns such as the first column, the third column, and the fifth column of the original image 120 remains in the image 121 after the thinning out. .. In this case, the image capture board 84 copies the first row between the first and third rows to make it the second row, and copies the third row between the third and fifth rows. The fourth row. As a result, image data of the original size is generated. Image 140 shows the original size image that was generated. However, since the odd-numbered columns are only copied, the original image data (image data before thinning out) is not completely restored.
 画像データを引き伸ばすとデータ量が増大するので、画像取り込みボード84からRAMにデータを転送する時間が長くなる。しかしながら、通常、画像取り込みボード84とRAMとは耐屈曲ケーブル110よりも転送帯域が広い高速なバスによって接続されているので、転送に要する時間が長くなっても処理時間に大きな影響はない。 Since the amount of data increases when the image data is stretched, the time for transferring the data from the image capture board 84 to the RAM becomes long. However, since the image acquisition board 84 and the RAM are usually connected by a high-speed bus having a wider transfer band than the bending-resistant cable 110, even if the transfer time is long, the processing time is not significantly affected.
 実施形態3に係る表面実装機1によると、画像取り込みボード84は部品計測カメラ71から受信した画像データが表す画像を横方向に引き伸ばすので、間引く前の画素数に引き伸ばすことにより、幅を計測するための計算量を低減できる。これにより部品Eの幅を高速に計測できる。
 問題が生じた場合の原因究明などの理由で、部品計測カメラ71から受信した画像を操作部90の表示部に表示させることもある。間引いた画像を引き伸ばすと自然な画像(あるいは自然な画像に近い画像)を表示できるので、画像を見る作業者の利便性が向上するという利点もある。
According to the surface mounter 1 according to the third embodiment, the image capture board 84 stretches the image represented by the image data received from the component measurement camera 71 in the horizontal direction, and therefore measures the width by stretching the image to the number of pixels before thinning. The amount of calculation for this can be reduced. As a result, the width of the component E can be measured at high speed.
The image received from the component measurement camera 71 may be displayed on the display unit of the operation unit 90 for reasons such as investigating the cause when a problem occurs. When the thinned image is stretched, a natural image (or an image close to the natural image) can be displayed, so that there is an advantage that the convenience of the operator who views the image is improved.
 ここでは間引く前の画素数に引き伸ばす場合を例に説明したが、どのような画素数に引き伸ばすかは適宜に決定できる。 Here, the case of expanding to the number of pixels before thinning is described as an example, but the number of pixels to be expanded can be appropriately determined.
 <他の実施形態>
 本明細書によって開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書によって開示される技術的範囲に含まれる。
<Other embodiments>
The techniques disclosed herein are not limited to the embodiments described above and in the drawings, and for example, the following embodiments are also included in the technical scope disclosed herein.
 (1)上記実施形態1は部品Eの厚み(縦方向の幅)を計測するものであり、画像の縦方向については間引かない。これに対し、縦方向についても要求される計測精度が満たされる範囲で、且つ、横方向より小さい間引き率で間引いてもよい。幅を計測する場合も同様である。 (1) In the first embodiment, the thickness (width in the vertical direction) of the part E is measured, and the vertical direction of the image is not thinned out. On the other hand, thinning may be performed in the vertical direction as long as the required measurement accuracy is satisfied and with a thinning rate smaller than that in the horizontal direction. The same applies when measuring the width.
 (2)上記実施形態では画像データの階調を圧縮することなく間引いて送信する場合を例に説明したが、2値化などによって階調を圧縮した上で間引いてもよい。 (2) In the above embodiment, the case where the gradation of the image data is thinned out and transmitted without being compressed has been described as an example, but the gradation may be compressed by binarization or the like and then thinned out.
 (3)上記実施形態3では間引かれた画像の各列についてその列の右側にその列をコピーすることによって画像を引き伸ばす場合を例に説明したが、引き伸ばす方法は適宜に決定できる。例えば補間処理によって1列目のデータと3列目のデータとから2列目のデータを補間することによって引き伸ばしてもよい。 (3) In the third embodiment, the case where the image is stretched by copying each column of the thinned-out image to the right side of the column is described as an example, but the stretching method can be appropriately determined. For example, the data in the first column and the data in the third column may be expanded by interpolating the data in the second column by interpolation processing.
 (4)上記実施形態では部品計測カメラ71から制御部80に画像データを間引いて送信する場合を例に説明したが、間引いて送信する場合と間引かずに送信する場合とを切り替え可能であってもよい。 (4) In the above embodiment, the case where the image data is thinned out and transmitted from the component measurement camera 71 to the control unit 80 has been described as an example, but it is possible to switch between the case where the image data is thinned out and the case where the image data is transmitted without thinning out. You may.
 (5)上記実施形態では実装ヘッド21によって吸着されている部品Eを部品計測カメラ71が水平方向から撮像する場合を例に説明したが、撮像する方向は水平方向に限られない。例えば、部品計測カメラ71は部品Eを斜め上方向あるいは斜め下方向から撮像してもよい。 (5) In the above embodiment, the case where the component measurement camera 71 images the component E attracted by the mounting head 21 from the horizontal direction has been described as an example, but the imaging direction is not limited to the horizontal direction. For example, the component measurement camera 71 may image the component E from an obliquely upward direction or an obliquely downward direction.
 (6)上記実施形態では部品保持部として部品Eを吸着して保持する実装ヘッド21を例に説明したが、部品保持部は部品Eを挟んで保持する所謂チャッキングによって保持するものであってもよい。 (6) In the above embodiment, the mounting head 21 that attracts and holds the component E as the component holding portion has been described as an example, but the component holding portion is held by so-called chucking that sandwiches and holds the component E. May be good.
1…表面実装機
14…ロータリーヘッド(ヘッド部の一例)
15…ヘッド移動部(移動部の一例)
21…実装ヘッド(部品保持部の一例)
71…部品計測カメラ(撮像部の一例)
81…演算処理部(解析部の一例)
84…画像取り込みボード(解析部の一例)
110…耐屈曲ケーブル(通信ケーブルの一例)
E…部品
P…プリント基板(基板の一例)
1 ... Surface mounter 14 ... Rotary head (example of head part)
15 ... Head moving part (an example of moving part)
21 ... Mounting head (an example of component holding unit)
71 ... Parts measurement camera (example of imaging unit)
81 ... Arithmetic processing unit (an example of analysis unit)
84 ... Image capture board (example of analysis unit)
110 ... Bending resistant cable (an example of communication cable)
E ... Parts P ... Printed circuit board (an example of a board)

Claims (6)

  1.  基板に部品を実装する表面実装機であって、
     前記部品を保持する部品保持部を昇降可能に支持するヘッド部と、
     前記ヘッド部を前記基板の板面に平行な方向に移動させる移動部と、
     前記ヘッド部に設けられている撮像部であって、前記部品保持部によって保持されている前記部品を撮像して画像データを生成し、生成した画像データを間引いて送信する撮像部と、
     通信ケーブルを介して前記撮像部と接続されており、前記撮像部から受信した間引き後の前記画像データを解析する解析部と、
    を備え、
     前記撮像部は、前記画像データが表す画像の縦方向及び横方向のうちいずれか前記画像データの解析内容に応じて設定されている一方の方向について他方の方向より大きい間引き率で間引くか、又は、前記一方の方向について間引く一方、前記他方の方向については間引かない、表面実装機。
    A surface mounter that mounts components on a board
    A head portion that supports the component holding portion that holds the component so as to be able to move up and down,
    A moving portion that moves the head portion in a direction parallel to the plate surface of the substrate, and a moving portion.
    An imaging unit provided on the head unit, which captures the component held by the component holding unit to generate image data, thins out the generated image data, and transmits the image data.
    An analysis unit that is connected to the image pickup unit via a communication cable and analyzes the image data after thinning out received from the image pickup unit.
    With
    The imaging unit thins out one of the vertical direction and the horizontal direction of the image represented by the image data in one direction set according to the analysis content of the image data with a thinning rate larger than that of the other direction. , A surface mounter that thins out in one direction, but does not thin out in the other direction.
  2.  請求項1に記載の表面実装機であって、
     前記撮像部は、前記部品保持部に保持されている前記部品を水平方向から撮像する、表面実装機。
    The surface mounter according to claim 1.
    The imaging unit is a surface mounter that images the component held by the component holding unit from a horizontal direction.
  3.  請求項2に記載の表面実装機であって、
     前記画像データの解析は前記部品の厚みの計測であり、
     前記一方の方向は前記横方向である、表面実装機。
    The surface mounter according to claim 2.
    The analysis of the image data is the measurement of the thickness of the part.
    A surface mounter in which one direction is the lateral direction.
  4.  請求項2に記載の表面実装機であって、
     前記画像データの解析は前記部品の幅の計測であり、
     前記一方の方向は前記縦方向である、表面実装機。
    The surface mounter according to claim 2.
    The analysis of the image data is the measurement of the width of the component.
    A surface mounter in which one direction is the vertical direction.
  5.  請求項1から請求項4のいずれか一項に記載の表面実装機であって、
     前記解析部は、前記撮像部から受信した画像データが表す画像を引き伸ばす引き伸ばし処理を実行し、引き伸ばした画像を解析する、表面実装機。
    The surface mounter according to any one of claims 1 to 4.
    The analysis unit is a surface mounting machine that executes a stretching process for stretching an image represented by image data received from the imaging unit and analyzes the stretched image.
  6.  基板に部品を実装する表面実装機における画像解析方法であって、
     前記表面実装機は、
     前記部品を保持する部品保持部を昇降可能に支持するヘッド部と、
     前記ヘッド部を前記基板の板面に平行な方向に移動させる移動部と、
     前記ヘッド部に設けられており、前記部品保持部によって保持されている前記部品を撮像して画像データを生成する撮像部と、
     通信ケーブルを介して前記撮像部と接続されており、前記撮像部から受信した前記画像データを解析する解析部と、
    を備え、
     当該画像解析方法は、
     前記撮像部が、前記画像データが表す画像の縦方向及び横方向のうちいずれか前記画像データの解析内容に応じて設定されている一方の方向について他方の方向より大きい間引き率で間引くか、又は、前記一方の方向について間引く一方、前記他方の方向については間引かない間引きステップと、
     前記撮像部が、前記間引きステップで間引かれた後の前記画像データを前記解析部に送信する送信ステップと、
    を含む、画像解析方法。
    This is an image analysis method for surface mounters that mount components on a board.
    The surface mounter is
    A head portion that supports the component holding portion that holds the component so as to be able to move up and down,
    A moving portion that moves the head portion in a direction parallel to the plate surface of the substrate, and a moving portion.
    An imaging unit provided on the head unit and holding an image of the component held by the component holding unit to generate image data.
    An analysis unit that is connected to the image pickup unit via a communication cable and analyzes the image data received from the image pickup unit.
    With
    The image analysis method is
    The imaging unit thins out one of the vertical and horizontal directions of the image represented by the image data according to the analysis content of the image data with a thinning rate larger than that of the other direction. , A thinning step in which one direction is thinned out, while the other direction is not thinned out.
    A transmission step in which the imaging unit transmits the image data after being thinned out in the thinning step to the analysis unit.
    Image analysis methods, including.
PCT/JP2020/007042 2020-02-21 2020-02-21 Surface mounter and image analyzing method WO2021166220A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/007042 WO2021166220A1 (en) 2020-02-21 2020-02-21 Surface mounter and image analyzing method
JP2022501553A JP7290790B2 (en) 2020-02-21 2020-02-21 SURFACE MOUNTING MACHINE AND IMAGE ANALYSIS METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007042 WO2021166220A1 (en) 2020-02-21 2020-02-21 Surface mounter and image analyzing method

Publications (1)

Publication Number Publication Date
WO2021166220A1 true WO2021166220A1 (en) 2021-08-26

Family

ID=77390761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007042 WO2021166220A1 (en) 2020-02-21 2020-02-21 Surface mounter and image analyzing method

Country Status (2)

Country Link
JP (1) JP7290790B2 (en)
WO (1) WO2021166220A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273589A (en) * 2002-03-19 2003-09-26 Fuji Mach Mfg Co Ltd Electronic circuit component mounting apparatus and image processing system
JP2010232295A (en) * 2009-03-26 2010-10-14 Hitachi High-Technologies Corp Operation processing device or acf sticking state inspection method, and display substrate module assembling line or display substrate module assembling method
JP2014090076A (en) * 2012-10-30 2014-05-15 Juki Corp Image processing device and electronic component mounting device
WO2015019487A1 (en) * 2013-08-09 2015-02-12 富士機械製造株式会社 Mounting device and part detection method
JP2019110257A (en) * 2017-12-20 2019-07-04 ヤマハ発動機株式会社 Component mounting system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135442A (en) * 1995-11-10 1997-05-20 Sony Corp Image data processing nit and its method
JPH09259250A (en) * 1996-03-19 1997-10-03 Hitachi Ltd Medical image managing method
JP3839526B2 (en) * 1996-09-20 2006-11-01 富士写真フイルム株式会社 Digital camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273589A (en) * 2002-03-19 2003-09-26 Fuji Mach Mfg Co Ltd Electronic circuit component mounting apparatus and image processing system
JP2010232295A (en) * 2009-03-26 2010-10-14 Hitachi High-Technologies Corp Operation processing device or acf sticking state inspection method, and display substrate module assembling line or display substrate module assembling method
JP2014090076A (en) * 2012-10-30 2014-05-15 Juki Corp Image processing device and electronic component mounting device
WO2015019487A1 (en) * 2013-08-09 2015-02-12 富士機械製造株式会社 Mounting device and part detection method
JP2019110257A (en) * 2017-12-20 2019-07-04 ヤマハ発動機株式会社 Component mounting system

Also Published As

Publication number Publication date
JP7290790B2 (en) 2023-06-13
JPWO2021166220A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP2937785B2 (en) Component state detection device for mounting machine
JP5588331B2 (en) 3D shape recognition device
KR101605587B1 (en) Die bonder, bond head device thereof and method of adjusting collet position
WO2017006416A1 (en) Mounting device, photographic processing method, and photographic unit
KR20140120804A (en) Component mounting apparatus
JP6472873B2 (en) Parts inspection machine and parts placement machine
JP2010016115A (en) Component mounting method
WO2021166220A1 (en) Surface mounter and image analyzing method
KR102439362B1 (en) Maskless exposure device and exposure method
JP6789602B2 (en) Mounting device
JP4546635B2 (en) Electronic component mounting method and apparatus
JP3186387B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP6990309B2 (en) Surface mounter
JP2009170528A (en) Component transfer apparatus, component mounting device and component test instrument
JP4956007B2 (en) Screen printing device
JP4401210B2 (en) Electronic component mounting equipment
JP6707403B2 (en) Mounting related processing equipment
JP7398309B2 (en) Surface mounter and image data transmission method
JP2022168960A (en) Surface mounting machine
JP4540837B2 (en) Electrical component mounting system and method for obtaining relative positional relationship thereof
JP3954378B2 (en) Image processing method and component mounting apparatus using the same
WO2024057415A1 (en) Inspection device and inspection method
JPWO2019012576A1 (en) Imaging device, surface mounter and inspection device
JP7019065B2 (en) Production optimization system for component mounting line
CN110034060B (en) Stripping device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919385

Country of ref document: EP

Kind code of ref document: A1