WO2021166106A1 - Printing device and printing control method - Google Patents

Printing device and printing control method Download PDF

Info

Publication number
WO2021166106A1
WO2021166106A1 PCT/JP2020/006458 JP2020006458W WO2021166106A1 WO 2021166106 A1 WO2021166106 A1 WO 2021166106A1 JP 2020006458 W JP2020006458 W JP 2020006458W WO 2021166106 A1 WO2021166106 A1 WO 2021166106A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
printing
head temperature
adjacent
print
Prior art date
Application number
PCT/JP2020/006458
Other languages
French (fr)
Japanese (ja)
Inventor
宏一 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/006458 priority Critical patent/WO2021166106A1/en
Priority to JP2020533037A priority patent/JP6783415B1/en
Publication of WO2021166106A1 publication Critical patent/WO2021166106A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/325Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads by selective transfer of ink from ink carrier, e.g. from ink ribbon or sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection

Definitions

  • the present disclosure relates to a thermal transfer type printing apparatus and a printing control method.
  • the thermal transfer type printing device prints using the ink sheet and the paper constituting the roll paper.
  • yellow, magenta and cyan are also referred to as “Y”, “M” and “C”, respectively.
  • each of yellow, magenta and cyan is also referred to as "primary color”.
  • an image represented by primary colors is also referred to as a "primary color image”.
  • the overcoat layer is also referred to as an “OP layer”, an “OP image” or an “OP”.
  • the material constituting the OP layer is also referred to as “OP material”.
  • Ink areas are periodically arranged on the ink sheet along the longitudinal direction of the ink sheet.
  • Y, M, and C inks (dye) and OP material are provided in the ink region.
  • the thermal head heats the ink sheet to perform a printing process for printing an image on paper.
  • the direction orthogonal to the transport direction of the ink sheet and the paper is also referred to as a “main scanning direction”.
  • the thermal head is provided with a plurality of heat generating resistors along the main scanning direction.
  • the printing apparatus heats the heat-generating resistors by selectively energizing a plurality of heat-generating resistors in the thermal head.
  • the thermal head (plurality of heat generating resistors) generates heat with respect to the ink region of the ink sheet.
  • the Y, M, and C inks and the transfer material such as the OP material in the ink region are sublimated by heat, and the transfer material is fixed on the paper.
  • the image of the Y component is also referred to as a "Y image”.
  • the image of the M component is also referred to as an “M image”.
  • the image of the C component is also referred to as a “C image”.
  • Each of the Y image, the M image, and the C image is a primary color image.
  • each of the Y image, the M image, and the C image, which are the primary color images is also referred to as a “print primary color image”.
  • the print primary color image is an image for printing.
  • the area for printing an image on the paper is also referred to as a “print area”.
  • the printing apparatus transfers the Y image, the M image, and the C image to the print area of the paper in the order of the Y image, the M image, and the C image. As a result, a color image is printed in the print area of the paper. After that, the printing apparatus transfers the OP layer to the printing area.
  • the print size of such a printing device is generally the size of an ink area corresponding to one screen in an ink sheet.
  • Printing devices are often required to reduce printing time.
  • the printing time is the time required to execute a process related to printing.
  • Patent Document 1 discloses a configuration (hereinafter, also referred to as "related configuration A") for realizing a reduction in printing time.
  • related configuration A a process of printing a plurality of small images side by side using an ink sheet capable of printing a large format image is repeatedly performed.
  • the large format is, for example, 2L size.
  • the size of a component whose horizontal size is “u” mm and vertical size is “v” mm in a plan view is also referred to as “u ⁇ v size”.
  • Each of "u” and “v” is a natural number.
  • the above 2L size is, for example, 178 ⁇ 127 size or 127 ⁇ 178 size.
  • the size of the small image in the related configuration A is, for example, L size.
  • the L size is, for example, 127 ⁇ 89 size or 89 ⁇ 127 size.
  • a printing device having a function of continuously printing a plurality of images uses a thermal head to print the plurality of images so that the plurality of images are adjacent to each other.
  • the temperature of the thermal head may become a high temperature such that wrinkles or the like are generated on the ink sheet, for example.
  • the present disclosure has been made in order to solve such a problem, and an object of the present disclosure is to provide a printing apparatus or the like capable of executing a printing process in consideration of the temperature of the thermal head.
  • the printing apparatus uses a thermal head to print a plurality of images so that the plurality of images are adjacent to each other. It is a device.
  • a head temperature prediction unit having a function of predicting a head temperature, which is the temperature of the thermal head, is provided, and the plurality of images are a first image which is a j (an integer of 1 or more) th image and a (j + 1) th image.
  • the head temperature prediction unit one or both of the first image and the second image are the printing apparatus so that the first image and the second image are adjacent to each other.
  • the head temperature in the situation assumed to be printed by the above is predicted based on the image data which is the data of one or both of the first image and the second image, and the printing apparatus further predicts the predicted said.
  • a determination unit for determining whether or not to cause the printing apparatus to perform an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other based on the head temperature is provided. When it is determined that the printing device executes the adjacent printing process, the printing device executes the adjacent printing process, and when it is determined that the printing device does not execute the adjacent printing process, the printing device performs the adjacent printing process. The adjacent print process is not executed.
  • the head temperature prediction unit has a function of predicting the head temperature, which is the temperature of the thermal head.
  • the head temperature predicting unit determines the head temperature in a situation where it is assumed that one or both of the first image and the second image are printed by the printing device so that the first image and the second image are adjacent to each other. The prediction is made based on the image data which is the data of one or both of the first image and the second image.
  • the determination unit causes the printing apparatus to execute an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other. To judge. When it is determined that the printing device executes the adjacent printing process, the printing device executes the adjacent printing process.
  • FIG. It is a figure which mainly shows the printing mechanism of the printing apparatus which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram which concerns on the control of the printing operation of the printing apparatus which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating an ink sheet.
  • FIG. shows the functional structure for demonstrating the operation of the printing apparatus in the print control process which concerns on Embodiment 1.
  • FIG. It is a flowchart of the print control process which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the adjacent print control process which concerns on Embodiment 1.
  • FIG. It is a figure which shows the functional structure for demonstrating the operation of the printing apparatus which has the structure of the modification 1.
  • FIG. 1 It is a figure which shows the table which shows a plurality of kinds of head temperatures as a predicted head temperature. It is a figure which shows the table which shows an example of the mixed printing condition. It is a figure which shows an example of the changed printing order of an image. It is a flowchart of the print control process A which concerns on modification 1.
  • FIG. It is a figure for demonstrating an example of the mixed printing control processing which concerns on modification 1.
  • FIG. It is a figure for demonstrating an example of the mixed printing control processing which concerns on modification 1.
  • FIG. It is a figure which shows the functional structure for demonstrating the operation of the printing apparatus which has the structure of the modification 2.
  • FIG. It is a figure for demonstrating an example of the mixed cutting control processing which concerns on modification 2.
  • FIG. It is a figure for demonstrating an example of the mixed cutting control processing which concerns on modification 2.
  • FIG. It is a figure for demonstrating an example of the mixed cutting control processing which concerns on modification 2.
  • FIG. It is a block diagram which shows the characteristic functional composition of a printing apparatus. It is a hardware block diagram of a printing apparatus. It is a figure for demonstrating the normal print control processing as a comparative example.
  • FIG. 1 is a diagram mainly showing a printing mechanism of the printing apparatus 100 according to the first embodiment.
  • the printing mechanism is a mechanism related to printing.
  • the printing device 100 is a sublimation type printing device (printer). That is, the printing device 100 is a thermal transfer type printing device. Although the details will be described later, the printing apparatus 100 performs a printing process P for printing an image on paper.
  • FIG. 2 is a hardware block diagram related to control of the printing operation of the printing apparatus 100 according to the first embodiment.
  • FIG. 2 shows an information processing device 200 that is not included in the printing device 100 for the sake of explanation.
  • FIGS. 1 and 2 in order to make the configuration easy to understand, components having low relevance to the present technology are not shown.
  • the component is, for example, a power supply unit or the like.
  • the printing device 100 is communicably connected to the information processing device 200 of FIG. 2 by a communication cable or the like.
  • the information processing device 200 is a device that controls the printing device 100.
  • the information processing device 200 is, for example, a PC (Personal Computer).
  • the information processing device 200 is operated by the user.
  • the information processing device 200 transmits print information including a print instruction and image data Gd to the printing device 100.
  • the print execution operation is an operation for causing the printing apparatus 100 to execute the print process P.
  • the print instruction is an instruction for causing the printing apparatus 100 to execute the print process P.
  • the image data Gd is image data for printing on paper.
  • the print information is also referred to as a “print job”.
  • the print job includes print condition information indicating the print condition.
  • the printing conditions are, for example, the printing speed, the number of printed sheets, the printing size, the printing orientation, and the like.
  • the number of prints is the number of images to be printed.
  • an image for the printing device 100 to print on paper is also referred to as a "target image”. That is, the image data Gd indicates a target image.
  • the target image is composed of k pixels arranged in a matrix. "K” is an integer of 2 or more.
  • the k pixels form a matrix of y rows and x columns.
  • Each of "y” and “x” is an integer of 2 or more. That is, the target image has y rows and x lines (columns).
  • X is the number of pixels arranged in the horizontal (horizontal) direction of the target image.
  • Y is the number of pixels arranged in the vertical (vertical) direction of the target image.
  • K is a value calculated by the formula (xxy).
  • Each pixel is represented by a pixel value (gradation value) that expresses the density.
  • data indicating the pixel value of a pixel is also referred to as “pixel data”.
  • the highest density that a pixel can express is also referred to as "highest density”.
  • the highest density is, for example, the density of black.
  • the lowest density that a pixel can express is also referred to as "minimum density”.
  • the lowest density is, for example, the density of white.
  • concentration intermediate concentration is, for example, 0.5 times the maximum concentration.
  • the pixel value is represented by an 8-bit numerical value as an example. That is, the pixel value is represented by a numerical value in the range of 0 to 255.
  • the pixel value corresponding to the minimum density is also referred to as “minimum density value”.
  • the minimum concentration value is, for example, 255.
  • the pixel value corresponding to the maximum density is also referred to as “maximum density value”.
  • the maximum concentration value is, for example, 0.
  • the density of the pixel corresponding to the pixel data is the maximum density. Further, for example, when the pixel data shows 255, the density of the pixel corresponding to the pixel data is the lowest density.
  • the pixel value is not limited to being represented by 8 bits. The pixel value may be represented by, for example, 10 bits.
  • each of red, green and blue is also referred to as "primary color”.
  • red, green and blue are also referred to as "R”, “G” and “B”, respectively.
  • the image of the R component is also referred to as an “R image”.
  • the image of the G component is also referred to as a “G image”.
  • the image of the B component is also referred to as a “B image”.
  • Each of the R image, the G image, and the B image is a primary color image.
  • each of the R image, the G image, and the B image, which are the primary color images is also referred to as a "target primary color image”.
  • the target image or the primary color image is also referred to as "image A”.
  • the primary color image is a print primary color image or a target primary color image.
  • the average of the plurality of densities indicated by the plurality of pixels constituting the image A is also referred to as "average density”.
  • the target image indicated by the image data Gd is represented by an R image, a G image, and a B image.
  • the data indicating the R image is also referred to as "R image data”.
  • the data indicating the G image is also referred to as "G image data”.
  • the data indicating the B image is also referred to as "B image data”.
  • the pixel of the R component is also referred to as an “R pixel”.
  • an R image is represented by a plurality of R pixels.
  • the pixel of the G component is also referred to as a “G pixel”.
  • the pixel of the B component is also referred to as a “B pixel”.
  • pixel data indicating the pixel value of R pixel is also referred to as "R pixel data”.
  • pixel data indicating the pixel value of the G pixel is also referred to as “G pixel data”.
  • pixel data indicating the pixel value of B pixel is also referred to as “B pixel data”.
  • each of the R pixel data, the G pixel data, and the B pixel data is also referred to as “target pixel data”.
  • the R image data includes a plurality of R pixel data.
  • the G image data includes a plurality of G pixel data.
  • the B image data includes a plurality of B pixel data.
  • the data indicating the Y image is also referred to as "Y image data”.
  • the data indicating the M image is also referred to as "M image data”.
  • the data indicating the C image is also referred to as "C image data”.
  • the pixel of the Y component is also referred to as a “Y pixel”.
  • a Y image is represented by a plurality of Y pixels.
  • the pixel of the M component is also referred to as “M pixel”.
  • the pixel of the C component is also referred to as a “C pixel”.
  • pixel data indicating the pixel value of Y pixel is also referred to as "Y pixel data”.
  • pixel data indicating the pixel value of M pixel is also referred to as “M pixel data”.
  • pixel data indicating the pixel value of C pixel is also referred to as “C pixel data”.
  • each of the Y pixel data, the M pixel data, and the C pixel data is also referred to as “print pixel data”.
  • the Y image data includes a plurality of Y pixel data.
  • the M image data includes a plurality of M pixel data.
  • the C image data includes a plurality of C pixel data.
  • a roll paper 18 and an ink ribbon 19 are attached to the printing apparatus 100.
  • the roll paper 18 is formed by rolling a long paper 8 into a roll shape.
  • the ink ribbon 19 is composed of a long ink sheet 9.
  • FIG. 3 is a diagram for explaining the ink sheet 9.
  • the X and Y directions are orthogonal to each other.
  • the direction including the X direction and the direction opposite to the X direction ( ⁇ X direction) is also referred to as “X-axis direction”.
  • the direction including the Y direction and the direction opposite to the Y direction ( ⁇ Y direction) is also referred to as “Y-axis direction”.
  • a plane including the X-axis direction and the Y-axis direction is also referred to as an “XY plane”.
  • the ⁇ X direction is the direction toward the ink roll 9r described later. Further, in FIG. 3, the X direction is a direction toward the ink roll 9 rm, which will be described later. A detailed description of the ink sheet 9 will be described later.
  • the printing apparatus 100 includes a housing Ch1, a thermal head 2, a head temperature sensor Sn3, a heat sink 4, a cooling fan 5, a paper carrier 7, and reels 10a and 10b. , A platen roller 6, a cutter Ct1, and an environmental temperature sensor Sn1.
  • the housing Ch1 accommodates each component included in the printing apparatus 100.
  • the housing Ch1 houses, for example, a thermal head 2, a heat sink 4, a cooling fan 5, a paper transport unit 7, a platen roller 6, a cutter Ct1 and the like.
  • the shape of the housing Ch1 is, for example, a rectangular parallelepiped.
  • the temperature inside the housing Ch1 is also referred to as “environmental temperature”.
  • the environmental temperature is the temperature inside the printing apparatus 100.
  • the thermal head 2 has a function of generating heat.
  • the thermal head 2 includes a heat generating element h1 having a function of generating heat.
  • the heat generating element h1 is, for example, a heat generating resistor.
  • heat generated by the heat generating element h1 of the thermal head 2 is also simply referred to as "heat generated by the thermal head 2.”
  • the heat generated by the thermal head 2 is also referred to as "heat energy”.
  • the thermal head 2 is provided with a head temperature sensor Sn3.
  • the temperature of the thermal head 2 is also referred to as “head temperature”.
  • the region where the heat generating element h1 exists on the outer surface of the thermal head 2 is also referred to as a “heat generating region”.
  • the head temperature is, for example, the temperature of a region of the outer surface of the thermal head 2 that is different from the heat generation region. That is, the head temperature is the temperature of the outer surface of the thermal head 2.
  • the head temperature may be the temperature of the heat generating region in which the heat generating element h1 is present.
  • the head temperature sensor Sn3 is a head temperature measuring unit having a function of measuring the head temperature.
  • the head temperature sensor Sn3 is provided, for example, on the outer surface of the thermal head 2 in a region different from the heat generation region.
  • the head temperature sensor Sn3 is provided, for example, in the vicinity of the heat generating element h1.
  • the head temperature sensor Sn3 is configured by using, for example, a thermistor or the like.
  • a heat sink 4 is attached to the thermal head 2.
  • the heat sink 4 is a cooling mechanism for cooling the thermal head 2.
  • the cooling fan 5 cools the heat sink 4. Specifically, the cooling fan 5 generates a wind toward the heat sink 4.
  • the paper transport unit 7 has a function of transporting the paper 8.
  • the paper transport unit 7 is composed of a grip roller 7a and a pinch roller 7b.
  • the grip roller 7a is configured to rotate by a stepping motor (not shown).
  • the paper transport unit 7 is configured to transport the paper 8 by rotating the grip roller 7a with the paper 8 sandwiched between the grip roller 7a and the pinch roller 7b. When the paper 8 is conveyed, the paper 8 is pulled out from the roll paper 18.
  • the ink roll 9r is formed by winding one end of the ink sheet 9 in a roll shape.
  • the ink roll 9r is attached to the reel 10b.
  • the ink roll 9rm is formed by winding the other end of the ink sheet 9 in a roll shape.
  • the ink roll 9rm is attached to the reel 10a.
  • the ink roll 9r is a roll for supplying the ink sheet 9.
  • the ink roll 9rm is a roll for winding the ink sheet 9.
  • the reel 10a rotates so that the ink roll 9rm winds up the ink sheet 9.
  • the ink roll 9r rotates with the rotation of the ink roll 9rm.
  • the reel 10b rotates so that the ink sheet 9 is supplied from the ink roll 9r.
  • the platen roller 6 is provided so as to face a part of the thermal head 2.
  • the platen roller 6 is configured to be movable so that the ink sheet 9 and the paper 8 can be sandwiched between the platen roller 6 and the thermal head 2.
  • the platen roller 6 comes into contact with the thermal head 2 via the paper 8 and the ink sheet 9.
  • the platen contact state is a state in which the paper 8 and the ink sheet 9 are sandwiched between the platen roller 6 and the thermal head 2.
  • the thermal head 2 heats the ink sheet 9 in the platen contact state, the dye (ink) of the ink sheet 9 is transferred to the paper 8.
  • Cutter Ct1 has a function of cutting a part of paper 8.
  • the environmental temperature sensor Sn1 has a function of measuring the environmental temperature, which is the internal temperature of the printing device 100.
  • the environmental temperature sensor Sn1 is provided inside the housing Ch1.
  • the environmental temperature sensor Sn1 may be provided outside the housing Ch1.
  • the ink region R10 is periodically arranged in the ink sheet 9 along the longitudinal direction (X-axis direction) of the ink sheet 9.
  • the ink region R10 is provided with dyes 6y, 6m, 6c and a protective material 6op.
  • Each of the dyes 6y, 6m, 6c and the protective material 6op is a transfer material that is transferred to the paper 8 by being heated by the thermal head 2.
  • the thermal energy for the thermal head 2 to apply to the transfer material is also referred to as "printing energy", printing energy Ep "or” Ep ".
  • Each of the dyes 6y, 6m, and 6c shows a color to be transferred to the paper 8.
  • the dyes 6y, 6m and 6c show the colors of yellow, magenta and cyan, respectively.
  • each of the Y dye, the M dye, and the C dye is also referred to as a "color dye”.
  • the protective material 6op is a material (overcoat) for protecting the color transferred to the paper 8.
  • the protective material 6op is a material for protecting the image formed on the paper 8 by the dyes 6y, 6m, 6c.
  • the protective material 6op is also referred to as an “OP material”.
  • the area for printing an image on the paper 8 is also referred to as a “print area”.
  • the ink sheet 9 is provided with the mark Mk1.
  • the mark Mk1 is provided in association with each transfer material (for example, dye 6y).
  • the mark Mk1 is a mark for specifying the position of each transfer material.
  • the printing apparatus 100 further includes a communication unit 51, a memory 52, a control unit 53, an image data processing unit 54, a printing data processing unit 55, and a reel driving unit 56, 56 m.
  • the paper sensor Sn8 and the ink sensor Sn9 are provided.
  • the communication unit 51 has a function of communicating with the information processing device 200.
  • the communication unit 51 receives a print job from the information processing device 200.
  • the memory 52 is composed of, for example, a volatile memory and a non-volatile memory.
  • Volatile memory is a memory that temporarily stores data.
  • the volatile memory stores, for example, a print job including image data Gd.
  • the volatile memory is, for example, RAM (Random Access Memory).
  • a control program, initial setting values, and the like are stored in the non-volatile memory.
  • the non-volatile memory is, for example, a flash memory.
  • the control unit 53 controls each component included in the printing device 100.
  • the control unit 53 controls each component according to the control program stored in the memory 52.
  • the control unit 53 is, for example, a processor such as a CPU (Central Processing Unit).
  • the control unit 53 controls, for example, the thermal head 2.
  • the control unit 53 controls the thermal head 2 (heating element h1) so that the thermal head 2 (heating element h1) emits thermal energy (printing energy Ep).
  • the image data processing unit 54 performs various processes on the image data (print data) as needed.
  • the print data processing unit 55 has a function of converting image data into print data.
  • the print data is data for controlling heat generation of the thermal head 2.
  • the print data is data for printing the target image (Y image, M image, and C image) on the paper 8.
  • the print data includes the data of the target image (Y image, M image and C image).
  • the reel drive unit 56 has a function of rotating the reel 10b (ink roll 9r).
  • the reel drive unit 56m has a function of rotating the reel 10a (ink roll 9rm).
  • the paper sensor Sn8 has a function of detecting the paper 8.
  • the paper sensor Sn8 is provided at a position near the path for the paper 8 to be conveyed and at a position where the paper 8 can be detected.
  • the ink sensor Sn9 has a function of detecting information about the ink sheet 9. Further, the ink sensor Sn9 has a function of detecting the mark Mk1 (position of the transfer material) on the ink sheet 9. By detecting the mark Mk1, the ink sensor Sn9 detects the position of the transfer material (for example, dye 6y) associated with the mark Mk1.
  • the transfer material for example, dye 6y
  • the print process P a unit print process is performed.
  • the ink sheet 9 and the paper 8 are simultaneously conveyed while the thermal head 2 heats the transfer material of the ink sheet 9 in the platen contact state. As a result, the transfer material is transferred to the print area of the paper 8 line by line.
  • the above unit printing process is repeatedly performed for each of the dyes 6y, 6m, 6c and the protective material 6op, which are transfer materials.
  • the dyes 6y, 6m, 6c and the protective material 6op are transferred to the printing area of the paper 8 in the order of the dyes 6y, 6m, 6c and the protective material 6op. That is, the Y image, the M image, the C image, and the OP image are transferred to the print area of the paper 8 in the order of the Y image, the M image, the C image, and the OP image.
  • the image is printed on the print area of the paper 8, and the image is protected by the protective layer (OP image) made of the protective material 6 op.
  • an image printed in the print area of the paper 8 is also referred to as a "printed matter".
  • the printed matter is a part of paper 8.
  • the cutter Ct1 cuts the paper 8 so that the printed matter is separated from the paper 8. As a result, the printed matter is discharged to the outside of the printing apparatus 100.
  • the image printed in the print area of the paper 8 is also referred to as "image Gn".
  • the direction in which the paper 8 is conveyed is also referred to as a “paper conveying direction”.
  • the paper transport direction is the X-axis direction including the X direction and the ⁇ X direction.
  • the sub-scanning direction is the paper transport direction. Further, the main scanning direction is a direction orthogonal to the sub-scanning direction.
  • region Rt1 the region in which each of the dyes 6y, 6m, 6c and the protective material 6op is provided in the ink sheet 9 is also referred to as “region Rt1” or “Rt1” (see FIG. 3).
  • the area Rt1 is used to print the maximum size image that can be generated by one printing process P.
  • the size of the area Rt1 which is the area of the ink sheet 9 is the size of one screen corresponding to the image Gn. Equivalent to.
  • the size of the area Rt1 is also referred to as “one screen size”.
  • the length of the region Rt1 in the sub-scanning direction (X-axis direction) is also referred to as "length L" or "L".
  • the length L is predetermined. Therefore, when the ink sheet 9 is used, the upper limit of the length of the image Gn in the sub-scanning direction is the length L.
  • the printing device 100 has a function of using the thermal head 2 to print the plurality of images on the paper 8 so that the plurality of images as the target images are adjacent to each other.
  • Each of the plurality of images is an image printed in a specified order.
  • a plurality of images are adjacent to each other means “a plurality of images are adjacent to each other”.
  • an image and another image are adjacent to each other means “an image and another image are adjacent to each other”.
  • the two images as the target images are also referred to as an image G1 and an image G2, respectively.
  • the image data Gd indicating the image G1 is also referred to as “image data Gd1”. That is, the image data Gd1 is the image data of the image G1.
  • the image data Gd indicating the image G2 is also referred to as “image data Gd2”. That is, the image data Gd2 is the image data of the image G2.
  • the j-th target image among all the target images is also referred to as “j-th target image” or “image j".
  • "J" is an integer of 1 or more.
  • the j-th target image is a target image for the printing device 100 to print at the j-th target image.
  • the first target image is the target image to be printed first among all the target images.
  • the (j + 1) th image among all the target images is also referred to as "(j + 1) th target image” or "image (j + 1)".
  • Each of the image j and the image (j + 1) is an image printed in a specified order.
  • the image (j + 1) is an image to be printed next to the image j.
  • the situation in which the image A is assumed to be printed by the printing device 100 is also referred to as a “hypothetical printing situation”.
  • the head temperature in the hypothetical printing situation is also referred to as “predicted head temperature", “head temperature The” or “The”.
  • the head temperature Th is the head temperature at the timing when the printing device 100 finishes printing the image A.
  • the image being printed by the printing apparatus 100 will also be referred to as a "printing image”.
  • the head temperature immediately before the printing of the first target image is started is also referred to as “head temperature T0” or “T0”.
  • the maximum size of the target image that the printing device 100 can print on the paper 8 is also referred to as “maximum printing size Sx” or “Sx”. .. Further, in the following, the target image in a situation where the density of all the pixels constituting the target image is the maximum density is also referred to as a “highest density target image”.
  • the maximum density is, for example, a density indicating black.
  • the printing energy Ep required to print the maximum density target image having the maximum printing size Sx on the paper 8 is also referred to as “reference printing energy”, “reference printing energy Pmax”, or “Pmax”. ..
  • the head temperature immediately after the thermal head 2 emits the reference printing energy Pmax is also referred to as “maximum head temperature”.
  • the head temperature immediately before the thermal head 2 emits the reference printing energy Pmax is also referred to as “normal head temperature”.
  • the difference between the maximum head temperature and the normal head temperature is also referred to as “rising temperature ⁇ Tmax” or “ ⁇ Tmax”.
  • the rising temperature ⁇ Tmax is obtained by subtracting the normal head temperature from the maximum head temperature.
  • the rising temperature ⁇ Tmax has been measured in advance by experiments or the like. The experiment is, for example, an execution of a print process P for printing a maximum density target image having a maximum print size Sx, a process for the head temperature sensor Sn3 to acquire a normal head temperature and a maximum head temperature, and the like.
  • the rising temperature ⁇ Tmax is stored in the memory 52.
  • the feature of this technique is to predict the head temperature The as the predicted head temperature in consideration of the image data. Further, a feature of this technology is whether or not it is possible to execute a process of printing the next image following the image being printed when printing a plurality of images using a one-screen size ink sheet. The determination is made, and the process is executed based on the result of the determination.
  • FIG. 4 is a diagram showing a functional configuration for explaining the operation of the printing apparatus 100 in the printing control process according to the first embodiment.
  • the memory 52 stores the temperature prediction information for predicting the head temperature Th as the predicted head temperature and the adjacent printing conditions.
  • the method of predicting the head temperature Th as the predicted head temperature is also referred to as a “temperature prediction method”.
  • the temperature prediction method for example, the head temperature The is predicted by using an arithmetic expression.
  • the temperature prediction information indicates a temperature prediction method.
  • the printing device 100 includes a receiving unit 61, a head temperature prediction unit 62, a determination unit 63, a print control unit 64, and a print state acquisition unit 65.
  • a part or all of the head temperature prediction unit 62, the determination unit 63, the print control unit 64, and the print state acquisition unit 65 are realized by the control unit 53 executing the control program stored in the memory 52.
  • a part or all of the head temperature prediction unit 62, the determination unit 63, the print control unit 64, and the print state acquisition unit 65 may be composed of hardware such as an electric circuit.
  • the receiving unit 61 receives information, data, etc. from the information processing device 200.
  • the head temperature prediction unit 62 has a function of predicting the head temperature. Although the details will be described later, the head temperature prediction unit 62 predicts the head temperature Tha in the situation where the image is printed based on the image data received by the reception unit 61 and the head temperature measured by the head temperature sensor Sn3. ..
  • the operating state of the printing device 100 regarding printing is also referred to as a "printing state”.
  • the print state includes “printing”, “standby state”, “error occurrence”, and the like.
  • Print is a state of the printing device 100 in a situation where the printing device 100 is printing an image.
  • standby state is a state of the printing device 100 in a situation where the printing device 100 is not printing.
  • the print status acquisition unit 65 checks the print status at any time.
  • the print state acquisition unit 65 transmits the print state information indicating the print state to the determination unit 63.
  • the determination unit 63 determines whether or not to cause the printing device 100 to execute the adjacent printing process described later based on the predicted head temperature The and the printing state acquired by the printing state acquisition unit 65. judge.
  • the print control unit 64 controls a configuration for printing (for example, a thermal head 2, a reel drive unit 56 m, etc.).
  • the print control unit 64 is, for example, a control unit 53.
  • the print control unit 64 controls the printing device 100 so that the printing device 100 prints based on the determination result by the determination unit 63.
  • FIG. 5 is a flowchart of the print control process according to the first embodiment.
  • FIG. 5 shows only the main steps included in the print control process.
  • the print control process performed under the following premise Pm1 will be described.
  • the image G1 and the image G2 are printed. Further, in the premise Pm1, the image G1 is the j-th target image as the image j. Further, the image G1 is the first target image. Further, in the premise Pm1, the image G2 is the (j + 1) th target image as the image (j + 1).
  • each of the plurality of pixels constituting each of the images G1 and G2 as the target image is R pixel (R pixel data), G pixel (G pixel data), and B pixel (B pixel data). Be expressed.
  • R pixel data R pixel data
  • G pixel data G pixel data
  • B pixel data B pixel data
  • the head temperature prediction unit 62 of the printing device 100 has already received the print job including the image data Gd1 indicating the image G1 from the information processing device 200.
  • the image data Gd1 includes the above-mentioned R image data, the above-mentioned G image data, and the above-mentioned B image data.
  • the R image data includes a plurality of R pixel data.
  • the print job including the image data Gd1 is stored in the memory 52. Further, in the premise Pm1, the printing device 100 starts printing the image G1 in response to the reception of the print job corresponding to the image G1. Therefore, in the premise Pm1, the image G1 at the timing when the print control process is started is the image being printed.
  • the printing device 100 executes the adjacent printing process described later.
  • the image printed on the paper 8 is also referred to as a “printed image”.
  • an image that is not printed on the paper 8 is also referred to as a “non-printed image”.
  • the adjacent printing process is a process of printing the non-printing image on the paper 8 so that the printed image and the non-printing image are adjacent to each other.
  • the adjacent printing process in the premise Pm1 is a process of printing the image G2 so that the image G1 and the image G2 are adjacent to each other.
  • the target image which is the image G1 or the image G2 is printed
  • the Y image, the M image, and the C image corresponding to the R image data, the G image data, and the B image data are used.
  • the target image is printed.
  • the head temperature sensor Sn3 has already measured the head temperature T0 immediately before the printing of the image G1 which is the first target image is started, and the head temperature T0 is set to the head temperature prediction unit. Notify 62.
  • the temperature prediction method indicated by the temperature prediction information in the premise Pm1 has the following feature C1.
  • Feature C1 is characterized in that the closer the average density of the image A is to the maximum density, the higher the predicted head temperature The.
  • the information processing device 200 transmits a print job including the image data Gd2 indicating the image G2 to the printing device 100.
  • the image data Gd2 includes the above-mentioned R image data, G image data, and B image data.
  • the print state acquisition unit 65 transmits the print state information indicating “printing” as the print state to the determination unit 63.
  • the receiving unit 61 of the printing apparatus 100 receives the print job and stores the print job in the memory 52 (step S110).
  • step S120 the information acquisition process is performed (step S120).
  • the head temperature prediction unit 62 acquires the image data Gd1 and Gd2 as print data, the head temperature T0, and the temperature prediction information.
  • the image data Gd1 and Gd2 are acquired from the print job stored in the memory 52.
  • the head temperature T0 is acquired from the head temperature sensor Sn3.
  • the head temperature T0 is the temperature measured by the head temperature sensor Sn3.
  • the temperature prediction information is acquired from the memory 52.
  • the temperature prediction method indicated by the temperature prediction information in the premise Pm1 has a feature C1 that the predicted head temperature Tha is higher as the average density of the image A is closer to the maximum density.
  • the temperature prediction method in the premise Pm1 as an example, the head temperature Tha as the predicted head temperature is predicted by using the prediction calculation formula. Therefore, the temperature prediction information in the premise Pm1 indicates the prediction calculation formula.
  • the prediction calculation formulas are, for example, the following formulas (1), (2) and (3). Equation (1) is expressed as follows.
  • Equation (1) is an equation in which the calculated head temperature The increases as the printing energy Ep increases. Only when the head temperature Tha corresponding to the first target image is predicted, the measured head temperature T0 is set in "Th” in the equation (1). When the head temperature Th is predicted a plurality of times, the head temperature Th already predicted by the formula (1) is set in "Th” in the formula (1).
  • ⁇ Tmax in the formula (1) is the above-mentioned rising temperature ⁇ Tmax. Further, “ ⁇ ” is an environmental temperature correction coefficient which will be described later with respect to the environmental temperature.
  • the temperature range of the environment in which the printing apparatus 100 is used is in the range of 5 ° C. to 45 ° C. Further, it is assumed that the environmental temperature corresponding to ⁇ Tmax is 45 ° C.
  • " ⁇ " is represented by, for example, a real number in the range of 0 to 1.
  • in the premise Pm1 is set to, for example, a fixed value (for example, 1).
  • Ep in the formula (1) is the printing energy.
  • the value of the print energy Ep is expressed as a relative value as an example.
  • the print energy Ep is represented by a real number in the range of 0 to 200 as an example.
  • the print energy Ep is expressed by the following equation (2).
  • Equation (2) is an equation in which the calculated printing energy Ep increases as the average density of the target image or the target primary color image approaches the maximum density.
  • “Argb” in the formula (2) is a speed correction coefficient described later with respect to the printing speed of the print primary color image (Y image, M image and C image). In the premise Pm1, the printing speed is not taken into consideration in the calculation of the head temperature Th. Therefore, “Argb” in the premise Pm1 is set to, for example, a fixed value (for example, 1.0).
  • n 1
  • D1 indicates the first pixel in the target image.
  • N is the number of pixels constituting the above-mentioned image having the maximum print size Sx.
  • the size of the target image is assumed to be the maximum print size Sx.
  • N is "k” corresponding to the number of pixels constituting the target image.
  • “Dn” in the formula (2) is the sum (total value) of the R, G, and B pixel data corresponding to a plurality of pixels constituting the target image.
  • the sum of the R, G, and B pixel data corresponding to the target image is the total value of the R pixel sum, the G pixel sum, and the B pixel sum corresponding to the target image.
  • the R pixel sum corresponding to the target image is the sum of a plurality of R pixel data corresponding to a plurality of pixels constituting the target image.
  • the G pixel sum corresponding to the target image is the sum of a plurality of G pixel data corresponding to the plurality of pixels constituting the target image.
  • the B pixel sum corresponding to the target image is the sum of a plurality of B pixel data corresponding to the plurality of pixels constituting the target image.
  • “Aop” in the formula (2) is a speed correction coefficient described later regarding the printing speed of the OP image described above.
  • the printing speed is not taken into consideration in the calculation of the head temperature Th. Therefore, “Aop” in the premise Pm1 is set to, for example, a fixed value (for example, 0.5).
  • “Doppn” in the formula (2) is the sum (total value) of the R, G, and B pixel data corresponding to the plurality of pixels constituting the OP image.
  • the sum of the R, G, and B pixel data corresponding to the OP image is the total value of the R pixel sum, the G pixel sum, and the B pixel sum corresponding to the OP image.
  • the R pixel sum corresponding to the OP image is the sum of a plurality of R pixel data corresponding to the plurality of pixels constituting the OP image.
  • the G pixel sum corresponding to the OP image is the sum of a plurality of G pixel data corresponding to the plurality of pixels constituting the OP image.
  • the B pixel sum corresponding to the OP image is the sum of a plurality of B pixel data corresponding to the plurality of pixels constituting the OP image.
  • Pmax in the formula (2) is the above-mentioned reference printing energy.
  • the reference printing energy Pmax is expressed by, for example, the following equation (3).
  • n of “Dn” in the formula (3) a numerical value within the range of 1 to N is set.
  • N is the number of pixels constituting the above-mentioned image having the maximum print size Sx.
  • Dn in the formula (3) is the sum (total value) of the R, G, and B pixel data corresponding to a plurality of pixels constituting the image showing black (that is, the above-mentioned maximum density target image).
  • Pmax is a value obtained by the formula (255 ⁇ 3 ⁇ N).
  • the head temperature prediction process is a process for predicting the head temperature The. Specifically, in the head temperature prediction process, the head temperature prediction unit 62 predicts the head temperature The according to the temperature prediction method indicated by the temperature prediction information.
  • the head temperature prediction unit 62 assumes that the image G1 and the image G2 are printed by the printing device 100 so that the image G1 and the image G2 are adjacent to each other.
  • the temperature Tha is predicted based on the measured head temperature T0 and the image data Gd1 and Gd2. That is, the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation assuming that the image G1 and the image G2 are printed by the printing device 100, based on the image data Gd1 and Gd2.
  • the head temperature prediction unit 62 first predicts the head temperature Tha corresponding to the image G1 which is the first target image.
  • the head temperature Tha corresponding to the image G1 is a head temperature Tha in a hypothetical printing situation assuming that the image G1 is printed by the printing apparatus 100.
  • the head temperature Tha corresponding to the image G1 is a prediction calculation formula indicated by the measured head temperature T0, the R image data, the G image data and the B image data included in the image data Gd1, and the temperature prediction information in the premise Pm1. It is calculated by the equations (1), (2) and (3) as.
  • the R image data includes a plurality of R pixel data.
  • the head temperature prediction unit 62 uses the equation (2) and the R image data, the G image data, and the B image data included in the image data Gd1 to print energy corresponding to the image G1. Calculate Ep.
  • the head temperature prediction unit 62 calculates the head temperature Tha corresponding to the image G1 by the calculated printing energy Ep, the measured head temperature T0, and the equation (1).
  • the head temperature Th is calculated by setting the head temperature T0 in "Th" of the formula (1).
  • the head temperature prediction unit 62 predicts the calculated head temperature The as the head temperature The corresponding to the image G1.
  • the head temperature prediction unit 62 predicts the head temperature The corresponding to the image G2.
  • the head temperature Tha corresponding to the image G2 is the head temperature Tha in a hypothetical printing situation assuming that the image G2 is printed by the printing apparatus 100.
  • the head temperature Tha corresponding to the image G2 is a prediction calculation formula indicated by the head temperature Tha corresponding to the image G1, the R image data, the G image data and the B image data included in the image data Gd2, and the temperature prediction information. It is calculated by the formulas (1), (2) and (3) of.
  • the head temperature prediction unit 62 uses the equation (2) and the R image data, the G image data, and the B image data included in the image data Gd2 to print energy corresponding to the image G2. Calculate Ep.
  • the head temperature prediction unit 62 calculates the head temperature The corresponding to the image G2 by the calculated printing energy Ep, the calculated head temperature The corresponding to the image G1, and the equation (1).
  • the head temperature Tha corresponding to the image G2 is calculated by setting the calculated head temperature Tha corresponding to the image G1 in "Th" of the equation (1).
  • the head temperature prediction unit 62 predicts the calculated head temperature The corresponding to the image G2 as the predicted head temperature. That is, in the head temperature prediction process in the premise Pm1, the head temperature prediction unit 62 predicts the head temperature Tha corresponding to the image G2.
  • the head temperature The finally predicted in the head temperature prediction process is also referred to as the "final predicted head temperature The”.
  • the final predicted head temperature Tha in the premise Pm1 is the head temperature Tha corresponding to the image G2.
  • the head temperature prediction unit 62 notifies the determination unit 63 of the final predicted head temperature The, which is the head temperature The corresponding to the image G2.
  • the prediction calculation formula in the temperature prediction information is not limited to the formula (1), the formula (2) and the formula (3).
  • the prediction calculation formula may be, for example, another formula having a feature that the calculated head temperature Tha is higher as the average density of the image A is closer to the maximum density.
  • the temperature prediction method may be a method Md1 for predicting the head temperature Tha by using print pixel data (for example, Y pixel data) instead of the target pixel data (for example, R pixel data).
  • print pixel data for example, Y pixel data
  • target pixel data for example, R pixel data
  • the R pixel data, the G pixel data, and the B pixel data are converted into Y pixel data, M pixel data, and C pixel data, respectively.
  • the head temperature Tha is predicted according to the following explanations D1 and D2.
  • the explanatory text D1 is the explanatory text in which "R”, “G” and “B” in the explanatory text of the formula (2) are replaced with “Y”, “M” and “C”, respectively.
  • the “R pixel”, “G pixel”, and “B pixel” in the above-mentioned explanatory text of the head temperature prediction processing in the premise Pm1 are referred to as “Y pixel”, “M pixel”, and “C pixel”, respectively. It is the explanation that was replaced with.
  • explanatory text D2 further includes the “R image”, the “G image”, and the “B image” in the above-mentioned explanatory text of the head temperature prediction process in the premise Pm1, the “Y image”, the “M image”, and the “M image”, respectively. It is the explanation which was replaced with "C image”.
  • the print energy Ep based on the print pixel data (Y pixel data, M pixel data, and C pixel data) is calculated according to the explanations D1 and D2, and the head temperature Tha is calculated.
  • the head temperature prediction unit 62 predicts the calculated head temperature The as the predicted head temperature.
  • Th in the formula (1) for calculating the head temperature Th corresponding to the image G2 is the head temperature Th as the predicted head temperature corresponding to the image G1 being printed, but the present invention is not limited to this.
  • the “Th” in the formula (1) for calculating the head temperature Th corresponding to the image G2 may be configured to be the head temperature T0 measured immediately after the printing of the image G1 is completed. With this configuration, the head temperature Tha corresponding to the image G2 can be predicted more accurately.
  • the temperature prediction method may be, for example, the method Md2 using the reference tables T1 and T2.
  • the method Md2 is a method of predicting the head temperature Tha corresponding to the image A by using the reference tables T1 and T2.
  • Method Md2 is a method in which the specified print energy Ep increases as the average density of the image A approaches the maximum density.
  • the method Md2 is a method in which the predicted head temperature Tha increases as the average density of the image A approaches the maximum density.
  • the method Md2 is a method in which the head temperature prediction unit 62 predicts the head temperature Tha in a hypothetical printing situation assuming that the image A is printed by the printing device 100, based on the data of the image A.
  • the reference table T1 shows the average density of the image A and the printing energy Ep required for printing the image A in association with each other.
  • a plurality of printing energies Ep are associated with each of a plurality of different average densities.
  • the respective numbers of the average density and the print energy Ep shown in the reference table T1 are, for example, 50 or more.
  • the plurality of average densities and the plurality of printing energies Ep in the reference table T1 are determined, for example, by repeating experiments and the like. In the experiment, for example, the image A to be printed in the print process P is changed, the average density of the image A is calculated, the print process P is executed, and the print energy Ep generated by the thermal head 2 in the executed print process P. Is specified, etc.
  • a plurality of rising temperatures are associated with a plurality of different printing energies Ep.
  • the rising temperature is a temperature obtained by subtracting the head temperature immediately before the thermal head 2 emits the printing energy Ep from the head temperature immediately after the thermal head 2 emits the printing energy Ep.
  • the respective numbers of the print energy Ep and the rising temperature shown in the reference table T2 are, for example, 50 or more.
  • the plurality of printing energies Ep and the plurality of rising temperatures in the reference table T2 are determined by, for example, repeating an experiment or the like.
  • the experiment includes, for example, changing the magnitude of the printing energy Ep generated by the thermal head 2 in the printing process P, measuring the head temperature, executing the printing process P, calculating the rising temperature, and the like.
  • the reference tables T1 and T2 are used.
  • the reference tables T1 and T2 corresponding to each of the R image, the G image, and the B image are used.
  • the reference tables T1 and T2 corresponding to each of the Y image, the M image, and the C image are used.
  • the head temperature sensor Sn3 measures the head temperature at a predetermined timing.
  • the predetermined timing is timing A or timing B.
  • the timing A is the timing immediately before the printing device 100 starts printing the image A.
  • the timing B is the timing at which the process of predicting the head temperature Tha according to the method Md2 is started.
  • the average density of the image A is calculated.
  • the average density closest to the calculated average density is selected from the plurality of average concentrations shown in the reference table T1 corresponding to the image A.
  • the print energy Ep indicated by the reference table T1 associated with the selected average density is specified.
  • the print energy Ep closest to the specified print energy Ep is selected from the plurality of print energy Eps shown in the reference table T2 corresponding to the image A.
  • the rising temperature indicated by the reference table T2, which is associated with the selected print energy Ep, is specified.
  • the temperature obtained by adding the specified rising temperature to the head temperature measured by the head temperature sensor Sn3 is predicted as the head temperature The corresponding to the image A.
  • the head temperature Tha corresponding to the image A is predicted by the method Md2.
  • the determination unit 63 acquires the adjacent print conditions stored in the memory 52 (step S141).
  • the adjacent printing condition is a condition for determining whether or not the printing apparatus 100 can execute the adjacent printing process.
  • the maximum head temperature at the specified temperature of the thermal head 2 is defined as "maximum temperature Thmax" or "Thmax".
  • the specified temperature of the thermal head 2 is, for example, a temperature at which a problem related to the ink sheet does not occur.
  • the problem is, for example, that wrinkles or the like occur on the ink sheet when the printing process is performed. Therefore, the maximum temperature Thmax is a temperature as a threshold value so that a problem related to the ink sheet does not occur.
  • the printing apparatus 100 Under the adjacent printing conditions, for example, when the relational expression expressed by Th ⁇ Thmax is satisfied, the printing apparatus 100 is allowed to execute the adjacent printing process. “Tha” in the above relational expression is the final predicted head temperature The. Further, under the adjacent printing condition, for example, when the relational expression of Th> Thmax is satisfied, the printing apparatus 100 is not allowed to execute the adjacent printing process.
  • step S150 the determination unit 63 determines whether or not the printing apparatus 100 can execute the adjacent printing process based on the final predicted head temperature The and the adjacent printing conditions.
  • the final predicted head temperature Th is equal to or lower than the maximum temperature Thmax
  • the printing apparatus 100 is allowed to execute the adjacent printing process, and the process proceeds to step S152.
  • the final predicted head temperature Th is larger than the maximum temperature Thmax
  • the printing apparatus 100 is not allowed to execute the adjacent printing process, and the process proceeds to step S174.
  • the process shifts to step S152 based on the determination of step S150 in the premise Pm1.
  • step S152 the determination unit 63 inquires the print state acquisition unit 65 about the print state, which is the operating state of the printing device 100. As a result, the determination unit 63 receives the print state information indicating the print state, which is the latest operating state of the printing device 100, from the print state acquisition unit 65. In the premise Pm1, the determination unit 63 receives the print state information indicating "printing" as the print state.
  • step S154 the determination unit 63 determines whether or not the printing state is "printing". Specifically, the determination unit 63 determines whether or not the print state information received from the print state acquisition unit 65 indicates "printing". In the case of Yes in step S154, the determination unit 63 determines that the printing device 100 executes the adjacent printing process. Then, the process proceeds to step S171. On the other hand, if No in step S154, the determination unit 63 determines that the printing device 100 does not execute the adjacent printing process. Then, the process proceeds to step S174.
  • the determination unit 63 determines whether or not the printing device 100 executes the adjacent printing process.
  • the process proceeds to step S174, and the printing device 100 does not execute the adjacent printing process.
  • the determination unit 63 determines whether or not to cause the printing apparatus 100 to execute the adjacent printing process based on the predicted final predicted head temperature The and the printing state.
  • the configuration may be such that it is determined whether or not the printing device 100 executes the adjacent printing process without considering the printing state.
  • the process of step S171 is performed without performing the processes of steps S152 and S154. That is, in this configuration, in step S150, the determination unit 63 determines whether or not to cause the printing apparatus 100 to execute the adjacent printing process based on the predicted final predicted head temperature The.
  • step S171 the printing device 100 executes the adjacent printing process according to the determination result of the determination unit 63.
  • the print control process causes the printing apparatus 100 to execute the adjacent print process.
  • the adjacent print process is performed after the image G1 is printed on the paper 8 by the above-mentioned print process P.
  • the printing apparatus 100 prints the image G2 so that the image G1 and the image G2 are adjacent to each other under the control of the print control unit 64.
  • the image G2 is printed on the paper 8 by, for example, the printing process P described above. As a result, the print control process ends.
  • step S174 may be performed depending on the determination result of step S150 or step S154 described above. In this case, the print control process does not cause the printing apparatus 100 to execute the adjacent print process.
  • step S174 the normal printing process is executed.
  • the normal printing process is a process of printing one image on paper 8.
  • the printing apparatus 100 prints, for example, the image G1 on the paper 8 under the control of the print control unit 64. As a result, the print control process is completed.
  • the adjacent print control process is a process according to the present embodiment.
  • the adjacent print control process is a process of continuously printing a plurality of images.
  • the adjacent print control process is, for example, a process that mainly performs a process related to printing among the print control processes in the premise Pm1.
  • the normal print control process is a process of repeating the normal print process when printing a plurality of target images.
  • the plurality of target images are, for example, image G1 and image G2.
  • Image G1 is the j-th target image.
  • Image G2 is the (j + 1) th target image.
  • FIG. 21 is a diagram for explaining a normal print control process as a comparative example. For the sake of clarity, FIG. 21 shows positions P0, P1, P2 on paper 8, a thermal head 2, and a cutter Ct1.
  • Position P0 is the tip of the paper 8.
  • the position where printing of an image is started on the paper 8 is also referred to as a “printing start position”.
  • Each of the positions P1 and P2 is a printing start position.
  • the area between the position P1 and the position P0 of the paper 8 corresponds to one print area.
  • the area between the position P2 and the position P1 of the paper 8 corresponds to another printing area.
  • FIG. 21 the state of the paper 8 corresponding to each step is shown. Further, in FIG. 21, a character string “(X1)” is shown for the processing related to the image G1. Further, in FIG. 21, a character string “(X2)” is shown for the processing related to the image G2.
  • the print process P for the image G1 is also referred to as “print Pr (X1)” or “Pr (X1)”. Further, in the following, the print process P for the image G2 is also referred to as “print Pr (X2)” or “Pr (X2)”.
  • step S510 the state of the printing apparatus 100 is the standby state.
  • the printing device 100 in the standby state is not printing.
  • the position P0 of the paper 8 exists at the standby position corresponding to the standby state.
  • preparations are made for performing printing Pr (X1) as a normal printing process.
  • the printing apparatus 100 cue the paper 8 so that the position P1 (printing start position) of the paper 8 is detected (step S520).
  • the printing apparatus 100 performs printing Pr (X1) as a normal printing process (step S530). As a result, a printed matter showing the image G1 is formed on the paper 8. After the printing Pr (X1) is completed, the paper ejection process (X1) is performed (step S571).
  • the printing device 100 conveys the paper 8 in order to eject the printed matter to the outside. Then, the cutter Ct1 cuts the position P1 of the paper 8 so that the printed matter is separated from the paper 8.
  • Step S551 preparations are made for performing printing Pr (X2) as a normal printing process.
  • the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S551).
  • the printing apparatus 100 performs printing Pr (X2) as a normal printing process (step S560). As a result, a printed matter showing the image G2 is formed on the paper 8. After the printing Pr (X2) is completed, the paper ejection process (X2) is performed (step S572).
  • the printing device 100 conveys the paper 8 in order to eject the printed matter showing the image G2 to the outside. Then, the cutter Ct1 cuts the position P2 of the paper 8 so that the printed matter is separated from the paper 8.
  • step S580 a process for changing the state of the printing device 100 to the standby state. Specifically, the printing device 100 conveys the paper 8 so that the position P2 of the paper 8 becomes the standby position corresponding to the standby state. As a result, the normal print control process is completed.
  • the adjacent print process included in the adjacent print control process is a print Pr (X2) that prints the image G2 so that the image G1 and the image G2 are adjacent to each other.
  • FIG. 6 is a diagram for explaining the adjacent print control process according to the first embodiment.
  • the process of the same step number as the step number of FIG. 21 is the same as the process described with respect to FIG. 21, so that the detailed description will not be repeated.
  • the points different from the normal print control process will be mainly described.
  • step S510 the state of the printing apparatus 100 is the standby state.
  • the position P0 of the paper 8 exists at the standby position corresponding to the standby state.
  • the printing device 100 cue the paper 8 so that the position P1 (printing start position) of the paper 8 is detected (step S520).
  • the printing device 100 performs printing Pr (X1) for printing the image G1 on the paper 8 (step S530). As a result, a printed matter showing the image G1 is formed on the paper 8.
  • step S552 the paper 8 having a length required for printing the image G2 is pulled out from the roll paper 18.
  • the printing apparatus 100 performs printing Pr (X2) as an adjacent printing process (step S560). As a result, a printed matter showing the image G2 is formed on the paper 8.
  • the paper ejection process (X1) is performed (step S571).
  • the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G1 to the outside. Then, the cutter Ct1 cuts the position P1 of the paper 8 so that the printed matter is separated from the paper 8.
  • the paper ejection process (X2) is performed (step S572).
  • the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G2 to the outside.
  • the cutter Ct1 cuts the position P2 of the paper 8 so that the printed matter is separated from the paper 8.
  • step S580 a process for changing the state of the printing device 100 to the standby state. Specifically, the printing device 100 conveys the paper 8 so that the position P2 of the paper 8 becomes the standby position corresponding to the standby state. As a result, the adjacent print control process is completed.
  • the printing of the image G2 is started immediately after the printing of the image G1 is completed without discharging the printed matter. Therefore, in the adjacent print control process, the transport distance of the paper 8 can be shortened. Therefore, the print time required for printing the images G1 and G2 by the adjacent print control process can be made shorter than the print time required for printing the images G1 and G2 by the normal print control process.
  • the process of printing two target images to be printed has been described, but the number of the target images is not limited to two.
  • the number of target images in the adjacent print control process may be 3 or more.
  • an upper limit may be set in advance for the number of target images in the adjacent print control process.
  • the head temperature prediction unit 62 has a function of predicting the head temperature, which is the temperature of the thermal head 2.
  • the head temperature prediction unit 62 sets the head temperature in a situation where it is assumed that one or both of the image G1 and the image G2 are printed by the printing device 100 so that the image G1 and the image G2 are adjacent to each other. Prediction is made based on image data which is one or both data of the image G2.
  • the determination unit 63 determines whether or not to cause the printing device 100 to execute an adjacent printing process for printing the image G2 so that the image G1 and the image G2 are adjacent to each other. When it is determined that the printing device 100 executes the adjacent printing process, the printing device 100 executes the adjacent printing process.
  • the head temperature prediction unit 62 predicts the head temperature Th in the assumed printing situation based on the image data and the head temperature measured by the head temperature sensor Sn3.
  • the determination unit 63 determines whether or not to cause the printing apparatus 100 to execute the adjacent printing process based on the predicted head temperature The. The determination is made during printing of image G1. In the following, the time required to cool the thermal head is also referred to as “cooling time”.
  • printing is started after receiving the print job of the image G1, and whether or not the determination unit 63 causes the printing device 100 to execute an adjacent printing process for printing the image G2 during printing of the image G1. judge.
  • the determination unit 63 determines that the printing apparatus 100 executes the adjacent printing process only when the predicted head temperature Th corresponding to the image G2 is equal to or less than the maximum temperature Thmax which is the specified temperature.
  • the adjacent printing process for printing the image G2 is executed only when the head temperature Th corresponding to the image G2 is equal to or less than the maximum temperature Thmax. Therefore, it is possible to prevent the head temperature of the thermal head 2 from becoming higher than the maximum temperature Thmax, which is a specified temperature. Therefore, even in a situation where a large number of images are continuously printed at high speed, the cooling time of the thermal head 2 when the head temperature becomes high can be shortened. As a result, the printing time of the image can be efficiently shortened.
  • the roll paper 18 is used to print an image. Paper 8 of a required length is pulled out, and an image is printed on the paper 8. This makes it possible to prevent the paper from running out during printing.
  • the temperature prediction method may be the above-mentioned method Md1 in which the target pixel data is converted into print pixel data and the head temperature Tha is predicted using the print pixel data. Further, in the method Md1, the head temperature Tha corresponding to each of the Y image, the M image, and the C image as the print primary color image may be predicted. Thereby, a plurality of types of head temperature The can be predicted.
  • the printing device 100 may be configured to combine a plurality of images and print a composite image showing the plurality of images. Further, in this configuration, the print energy Ep corresponding to the composite image is calculated. The print energy Ep corresponding to the composite image is expressed by the sum of the plurality of print energies corresponding to the plurality of images, as shown in the following equation (4).
  • the print energy Ep corresponding to the composite image is represented by a real number in the range of 0 to 200 as an example. Further, Ep1 to Epn indicate the printing energy corresponding to each image. Ep1 to Epn are represented by real numbers in the range of 0 to 200 as an example.
  • the head temperature Tha corresponding to the composite image can be predicted.
  • non-printing process a process different from the process for printing is also referred to as "non-printing process".
  • the process for printing is, for example, the print process P.
  • the printing apparatus 100 executes a plurality of non-printing processes, but the present invention is not limited to this.
  • the information processing device 200 may execute the plurality of non-printing processes.
  • a situation in which the printing apparatus 100 executes a plurality of non-printing processes is also referred to as a “non-printing process execution status”.
  • the information processing device 200 can prevent the following problems from occurring by executing the plurality of non-printing processes.
  • the problem is that in the non-printing process execution situation, a lot of time is spent for predicting the head temperature, etc., and an unnecessary waiting time is required between the end of printing the previous image and the start of printing the next image. Is a problem that occurs. When this problem does not occur, the printing apparatus 100 can efficiently execute the process for printing.
  • the head temperature prediction unit 62 predicts the head temperature Th as the predicted head temperature in the assumed printing situation based on the image data, but the present invention is not limited to this.
  • the head temperature The may be predicted by the following deformation configuration A.
  • the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation based on the environmental temperature of the printing apparatus 100 and the image data.
  • the head temperature prediction unit 62 acquires the environmental temperature in addition to the acquisition of the image data, the head temperature T0, and the temperature prediction information.
  • the acquisition of the environmental temperature is performed as follows. First, the head temperature prediction unit 62 requests the latest environmental temperature from the environmental temperature sensor Sn1.
  • the environmental temperature sensor Sn1 measures the latest environmental temperature in response to the request, and notifies the head temperature prediction unit 62 of the latest environmental temperature. As a result, the head temperature prediction unit 62 acquires the environmental temperature.
  • the head temperature prediction unit 62 predicts the head temperature The according to the temperature prediction method indicated by the temperature prediction information.
  • the temperature prediction method in the modified configuration A has the above-mentioned features C1 and C2.
  • the feature C2 is that the higher the acquired environmental temperature, the higher the predicted head temperature The. That is, the feature C2 is that the lower the acquired environmental temperature, the lower the predicted head temperature The.
  • the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation based on the environmental temperature of the printing device 100 and the image data. ..
  • the head temperature Th as the predicted head temperature is predicted by using the above-mentioned formulas (1), (2) and (3) as the prediction calculation formulas. ..
  • the " ⁇ " as the environmental temperature correction coefficient in the equation (1) is represented by, for example, a real number in the range of 0 to 1. The higher the acquired environmental temperature, the larger the value of " ⁇ " is set. Further, the lower the acquired environmental temperature, the smaller the value is set for the “ ⁇ ”. Therefore, the higher the acquired environmental temperature, the higher the head temperature The obtained by the equation (1).
  • the above-mentioned prediction method is a method of predicting the head temperature Th using a prediction calculation formula as the head temperature prediction processing in the premise Pm1.
  • the head temperature Tha in the assumed printing situation is predicted.
  • the head temperature Tha is predicted based on the environmental temperature of the printing apparatus 100 and the image data, the head temperature Tha can be accurately predicted.
  • the head temperature The may be predicted by the following deformation configuration B.
  • the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation based on the printing conditions and the image data.
  • the printing condition is, for example, a printing condition performed in the adjacent printing process.
  • the printing condition is, for example, a printing speed.
  • the printing speed is, for example, the printing speed of the primary color images (Y image, M image, and C image) and the printing speed of the OP image.
  • the head temperature prediction unit 62 acquires the printing speed in addition to acquiring the image data, the head temperature T0, and the temperature prediction information.
  • the print speed is a print job received by the receiving unit 61, and is shown in the above-mentioned print condition information included in the print job stored in the memory 52. Therefore, the head temperature prediction unit 62 acquires the print speed from the print job.
  • the head temperature prediction unit 62 predicts the head temperature The according to the temperature prediction method indicated by the temperature prediction information.
  • the temperature prediction method in the modified configuration B has the above-mentioned features C1 and C3.
  • Feature C3 is a feature of predicting the head temperature Tha in consideration of the acquired printing speed.
  • the head temperature prediction unit 62 has the head temperature Tha in the assumed printing situation based on the acquired printing conditions, the printing speed, and the image data. Predict.
  • the head temperature The as the predicted head temperature is predicted by using the above-mentioned formulas (1), (2) and (3) as the prediction calculation formulas. ..
  • the acquired print speed is the print speed of the print primary color image (for example, Y image) and the print speed of the OP image.
  • a value based on the printing speed of the print primary color image is set in "Argb" as the speed correction coefficient in the formula (2).
  • a value based on the printing speed of the OP image is set in "Aop" as the speed correction coefficient.
  • the speed correction coefficient of the print primary color image and the speed correction coefficient of the OP image are determined based on the simple ratio based on the print speed of the print primary color image.
  • the printing speed of the print primary color image is 1.0 ms / line.
  • the printing speed of the OP image is 2.0 ms / line. In this case, for example, "1.0" is set for "Argb" and "0.5" is set for "Aop".
  • the above-mentioned prediction method is a method of predicting the head temperature Th using a prediction calculation formula as the head temperature prediction processing in the premise Pm1.
  • the head temperature Tha in the assumed printing situation is predicted.
  • the head temperature Tha is predicted based on the printing speed, which is the printing condition, and the image data, the head temperature Tha can be accurately predicted.
  • the head temperature Th for each printing speed may be measured in advance, and the speed correction coefficient of the equation (2) may be set based on the measurement result. Further, the print speed does not have to be obtained from a print job provided from the outside. Further, the printing speed may be determined, for example, by a determination standard set in advance in the printing apparatus 100. Further, the printing speed may be obtained from, for example, an internal component of the printing apparatus 100.
  • the head temperature The may be predicted by, for example, the following deformation configuration C.
  • the head temperature prediction unit 62 predicts the head temperature Th in the assumed printing situation based on the environmental temperature of the printing apparatus 100, the printing conditions, the image data, and the measured head temperature. be.
  • the modified configuration C is realized by combining the modified configuration A and the modified configuration B.
  • the head temperature The can be predicted more accurately.
  • the printing time is shortened by speeding up the thermal transfer process.
  • this method increases the thermal energy stored in the thermal head. Therefore, the temperature of the thermal head rises.
  • heat damage accumulates on the ink sheet. Therefore, wrinkles are generated in the ink sheet due to heat shrinkage.
  • the printing apparatus cools the thermal head by stopping the execution of the printing process. Then, when the temperature of the thermal head drops to the specified temperature, the printing apparatus restarts the printing process.
  • the printing process for printing a high-density image is repeated in a situation where the environmental temperature of a printing device that prints a plurality of images using a one-screen size ink sheet is high.
  • the problem is, for example, that the cooling time of the thermal head, which has become a high head temperature, becomes long, and the printing time becomes very long.
  • the printing apparatus 100 of the present embodiment has a configuration for achieving the above effects. Therefore, the printing apparatus 100 of the present embodiment can solve the above problem.
  • the head temperature prediction unit 62 predicts the head temperature Th as the predicted head temperature.
  • the determination unit 63 determines whether or not the printing device 100 can execute the adjacent printing process based on the predicted head temperature The. When the printing device 100 can execute the adjacent printing process, the printing device 100 prints the image G1 and the image G2 in succession.
  • This modification is characterized by a printing method of primary color images such as Y image, M image, and C image.
  • a process for performing mixed printing is performed.
  • the mixed printing for example, printing of a print primary color image (for example, Y image) expressing the image G1 and printing of another print primary color image (for example, M image) expressing the image G2 are performed in a mixed manner. It is a process.
  • adjacent printing processing corresponding to mixed printing is performed.
  • the adjacent printing process corresponding to mixed printing is also referred to as “mixed adjacent printing process”.
  • the mixed adjacent printing process in this modification is a process of printing the other printing primary color image so that the printing primary color image representing the image G1 and another printing primary color image representing the image G2 are adjacent to each other.
  • FIG. 7 is a diagram showing a functional configuration for explaining the operation of the printing apparatus 100 having the configuration of the first modification.
  • the mixed printing conditions are further stored in the memory 52.
  • the mixed printing condition is a condition for determining whether or not the printing apparatus 100 can execute the mixed adjacent printing process.
  • the head temperature prediction unit 62 predicts the head temperature Tha corresponding to each of the Y image, the M image, and the C image as print primary color images expressing each of the image G1 and the image G2.
  • the concentration contained in the range from the above-mentioned minimum concentration to the above-mentioned intermediate concentration is also referred to as "low concentration”.
  • the image in which the average density of the image is low is also referred to as a “low density image”.
  • a concentration higher than the above-mentioned intermediate concentration is also referred to as “high concentration”.
  • the image in which the average density of the image is high is also referred to as a “high density image”.
  • the head temperature The corresponding to the image G1 is also referred to as “head temperature The1” or “Tha1”. Further, in the following, the head temperature The corresponding to the Y image representing the image G1 is also referred to as “head temperature The1y” or “Tha1y”. Further, in the following, the head temperature The corresponding to the M image representing the image G1 is also referred to as “head temperature The1 m” or “Tha 1 m”. Further, in the following, the head temperature The corresponding to the C image representing the image G1 is also referred to as "head temperature The1c" or “Tha1c”.
  • the head temperature The corresponding to the image G2 is also referred to as “head temperature The2” or “Tha2”. Further, in the following, the head temperature The corresponding to the Y image representing the image G2 is also referred to as “head temperature The2y” or “Tha2y”. Further, in the following, the head temperature The corresponding to the M image representing the image G2 is also referred to as “head temperature The 2m” or “The 2m”. Further, in the following, the head temperature The corresponding to the C image representing the image G2 is also referred to as "head temperature The2c” or “Tha2c”.
  • Each of the head temperature The1y, The1m, The1c, The2y, The2m, and The2c is a head temperature in a hypothetical printing situation assuming that the print primary color image is printed independently by the printing apparatus 100. Therefore, for example, the head temperature The1y is lower than the head temperature in the assumed printing situation assuming that two print primary color images are printed continuously.
  • the image G1 is a high density image and the image G2 is a low density image.
  • the head temperature Tha as the predicted head temperature corresponding to each of the image G1 and the image G2 is shown, for example, as shown in Table Tb1 of FIG.
  • "(Y)”, “(M)” and “(C)” indicate a Y image, an M image and a C image, respectively.
  • the determination unit 63 determines whether or not the printing device 100 can execute the mixed adjacent printing process based on the mixed printing conditions.
  • the mixed printing conditions are defined, for example, as shown in Table Tb2 of FIG. Table Tb2 shows the mixed printing conditions.
  • Table Tb2 shows the mixed printing conditions.
  • "(Y)”, “(M)” and “(C)” indicate a Y image, an M image and a C image, respectively.
  • Table Tb2 shows the conditions corresponding to each of the Y image, the M image, and the C image.
  • the condition “ ⁇ 20” corresponding to the Y image is, for example, a condition that the difference between the head temperature Th1y corresponding to the Y image and the head temperature Th2y corresponding to the Y image is 20 ° C. or more. be.
  • the mixed printing conditions may be different from the conditions shown in Table Tb2 of FIG.
  • the print primary color image expressing the low-density image G2 is printed between the plurality of prints corresponding to the plurality of print primary color images expressing the image G1.
  • the print primary color image expressing the low-density image G2 is printed between the plurality of prints corresponding to the plurality of print primary color images expressing the image G1.
  • the print control unit 64 controls the printing device 100 so that the printing device 100 prints based on the determination result by the determination unit 63.
  • FIG. 11 is a flowchart of the print control process A according to the first modification.
  • FIG. 11 shows only the main steps included in the print control process A.
  • the print control process A performed under the following premise Pm2 will be described.
  • the process of the same step number as the step number of FIG. 5 is the same as the process described in the first embodiment, and thus the detailed description is not repeated.
  • the points different from those of the first embodiment will be mainly described.
  • the premise Pm2 differs from the above-mentioned premise Pm1 in the following points. Other points in the premise Pm2 are the same as those in the premise Pm1.
  • the head temperature prediction unit 62 of the printing device 100 has already received a print job including the image data Gd1 indicating the image G1 from the information processing device 200.
  • the printing device 100 starts printing the Y image representing the image G1. Further, in the premise Pm2, the head temperature Th corresponding to the image G2 is larger than the maximum temperature Thmax. Further, in the premise Pm2, Table Tb2 of FIG. 9 is stored in the memory 52 as a mixed printing condition. Further, in the premise Pm2, the predicted head temperatures The1y, Th1m, Tha1c, Tha2y, Tha2m, and Tha2c are temperatures that satisfy the mixed printing condition shown in Table Tb2 of FIG. That is, in the premise Pm2, all of "The1y-Tha2y", “Tha1m-Tha2m” and “Tha1c-Tha2c" are 20 ° C. or higher.
  • the printing order of each print primary color image is changed as shown in Table Tb3 of FIG.
  • the image G1 is a high-density image and the image G2 is a low-density image.
  • the high-density image and the low-density image are images capable of suppressing an increase in head temperature when the printing order of each print primary color image is changed, as shown in Table Tb3 of FIG.
  • the processes of steps S110 and S120 are performed as in the first embodiment.
  • the head temperature prediction unit 62 acquires the image data Gd1 and Gd2 as print data, the head temperature T0, and the temperature prediction information.
  • the head temperature prediction process A is performed (step S130A).
  • the temperature prediction process A1 is performed.
  • the head temperature prediction unit 62 predicts the head temperature Tha corresponding to the image G2 in the same manner as in step S130 of FIG.
  • the head temperature prediction unit 62 notifies the determination unit 63 of the final predicted head temperature The, which is the head temperature The corresponding to the image G2.
  • the final predicted head temperature Th notified in the temperature prediction process A1 is larger than the maximum temperature Thmax.
  • the temperature prediction process A2 is performed.
  • the head temperature prediction unit 62 represents each of the image G1 and the image G2 according to the temperature prediction method indicated by the temperature prediction information, and each of the Y image, the M image, and the C image as the print primary color image.
  • the head temperature The corresponding to is predicted.
  • the temperature prediction method used for predicting the head temperature Tha corresponding to the print primary color image is, for example, the above-mentioned method Md2.
  • the temperature prediction method may be the same as the above-mentioned method Md1.
  • the method similar to the method Md1 is a method in which the above-mentioned method Md1 is changed to a method of predicting the head temperature Tha corresponding to each of the Y image, the M image, and the C image.
  • the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation assuming that the print primary color image representing the image G1 is printed by the printing device 100. Further, the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation assuming that the print primary color image representing the image G2 is printed by the printing device 100.
  • each head temperature The shown in FIG. 8 is predicted.
  • the predicted head temperatures The1y, The1m, The1c, The2y, The2m, and Th2c are the predicted temperatures when the head temperature sensor Sn3 measures the head temperature at the above-mentioned timing B in the method Md2. ..
  • the timing B is, for example, the timing at which the printing of the Y image representing the image G1 is started.
  • the head temperature measured by the head temperature sensor Sn3 at the timing B is also referred to as “head temperature Th0” or “Th0”.
  • the head temperature Th0 is the head temperature at the timing B at which printing of the Y image representing the image G1 is started.
  • Each of the head temperatures The1y, The1m, The1c, The2y, The2m, and Th2c is a predicted temperature with respect to the head temperature Th0. Therefore, for example, the temperature obtained by the formula "Tha1y-Th0" is the rising temperature of the thermal head 2.
  • the predicted head temperatures The1y, The1m, The1c, The2y, The2m, and The2c are "The1y-Tha2y", “The1m-Tha2m”, and “Tha1c-Tha2c", respectively, at 20 ° C. or higher.
  • the predicted head temperatures The1y, The1m, The1c, The2y, The2m, and The2c are the temperatures that satisfy the mixed printing condition of Table Tb2 in FIG.
  • the head temperature prediction unit 62 notifies the determination unit 63 of the predicted head temperature corresponding to the print primary color image.
  • the predicted head temperature is the head temperature The1y, The1m, The1c, The2y, The2m, The2c.
  • the determination unit 63 acquires the adjacent print conditions stored in the memory 52.
  • the determination process A3 is performed.
  • the determination unit 63 determines whether or not the above-mentioned relational expression (Tha ⁇ Thmax) as the relational expression A is satisfied under the adjacent printing conditions.
  • the relational expression A is satisfied, the head temperature prediction process A ends, and the process proceeds to step S142.
  • the relational expression A is not satisfied, the following order change process A4 is performed.
  • the head temperature Th corresponding to the image G2 is larger than the maximum temperature Thmax. Therefore, in the determination process A3 in the premise Pm2, since the relational expression A does not hold, the order change process A4 is performed.
  • the determination unit 63 changes the printing order of each print primary color image so as to suppress the rise in the head temperature as much as possible.
  • the print primary color image expressing the low density image G2 is printed between the plurality of prints corresponding to the plurality of print primary color images representing the image G1.
  • the printing order of each print primary color image is changed.
  • the determination unit 63 changes the printing order of each print primary color image as shown in Table Tb3 of FIG.
  • the determination unit 63 notifies the head temperature prediction unit 62 of the printing order of each print primary color image.
  • the table Tb3 of FIG. 10 is notified to the head temperature prediction unit 62.
  • the final temperature prediction process A5 is performed.
  • the head temperature prediction unit 62 predicts the final prediction head temperature The corresponding to the changed printing order.
  • the head temperature prediction unit 62 predicts the final prediction head temperature Tha corresponding to the printing order shown in Table Tb3 of FIG.
  • the head temperature prediction unit 62 predicts, for example, the temperature obtained by the formula "The1y + The1m + The1c + The2y + The2m + The2c-5xTh0" as the final predicted head temperature The.
  • the predicted final predicted head temperature Th is equal to or lower than the maximum temperature Thmax.
  • the head temperature prediction unit 62 notifies the determination unit 63 of the predicted final predicted head temperature The. As a result, the head temperature prediction process A is completed.
  • the determination unit 63 acquires the mixed printing conditions stored in the memory 52 (step S142). In step S142 in the premise Pm2, Table Tb2 of FIG. 9 is acquired as the mixed printing condition.
  • step S150 the determination unit 63 determines whether or not the printing apparatus 100 can execute the adjacent printing process based on the latest final predicted head temperature The and the adjacent printing conditions.
  • the final predicted head temperature Th is equal to or lower than the maximum temperature Thmax
  • the printing apparatus 100 is allowed to execute the adjacent printing process, and the process proceeds to step S152.
  • the final predicted head temperature Th is larger than the maximum temperature Thmax
  • the printing apparatus 100 is not allowed to execute the adjacent printing process, and the process proceeds to step S174.
  • the process shifts to step S152 based on the determination of step S150 in the premise Pm2.
  • step S152 as in the first embodiment, the determination unit 63 inquires the print state acquisition unit 65 about the print state, which is the operating state of the printing device 100. In the premise Pm2, the determination unit 63 receives the print state information indicating "printing" as the print state.
  • step S154 the determination unit 63 determines whether or not the printing state is "printing". If Yes in step S154, the process proceeds to step S156. On the other hand, if No in step S154, the process proceeds to step S174.
  • step S156 the determination unit 63 determines whether or not the printing apparatus 100 executes the mixed adjacent printing process, which is the adjacent printing process, based on each head temperature The.
  • step S156 in the premise Pm2 whether the determination unit 63 causes the printing apparatus 100 to execute the mixed adjacent printing process, which is the adjacent printing process, based on the head temperatures The1y, The1m, The1c and the head temperatures The2y, The2m, The2c. Judge whether or not.
  • the determination unit 63 determines whether or not the printing apparatus 100 can execute the mixed adjacent printing process based on each head temperature Th as the predicted head temperature and the mixed printing condition. do.
  • the determination unit 63 determines that the printing apparatus 100 executes the mixed adjacent printing process. Then, the process proceeds to step S172. On the other hand, if the mixed printing condition is not satisfied, it is determined that the printing apparatus 100 cannot execute the mixed adjacent printing process. In this case, the determination unit 63 determines that the printing apparatus 100 does not execute the mixed adjacent printing process. Then, the process proceeds to step S171.
  • step S156 the determination unit 63 determines whether or not to cause the printing apparatus 100 to execute the mixed adjacent printing process, which is the adjacent printing process, based on the predicted head temperature Th and the mixed printing conditions. ..
  • step S156 in the premise Pm2 the determination unit 63 determines that the mixed adjacent printing process can be executed, and determines that the printing device 100 executes the mixed adjacent printing process. Then, the process proceeds to step S172.
  • step S172 the printing device 100 executes the mixed adjacent printing process according to the determination result of the determination unit 63.
  • the process according to Table Tb3 in FIG. 10 is performed. That is, in the mixed adjacent printing process in the premise Pm2, the printing apparatus 100 controls a print control unit 64 to represent a print primary color image (Y image) representing the image G1 and another print primary color image (M) representing the image G2. The other print primary color image (M image) is printed so as to be adjacent to the image).
  • each print primary color image is printed according to Table Tb3 in FIG.
  • the print control process A ends. Since steps S171 and S174 are performed in the same manner as in the first embodiment, detailed description thereof will be omitted.
  • processing related to printing including mixed adjacent printing processing, is also referred to as “mixed printing control processing”.
  • FIGS. 12 and 13 are diagrams for explaining an example of the mixed print control process according to the first modification.
  • the process of printing the OP image is omitted in order to simplify the explanation.
  • the process of the same step number as the step number of FIG. 6 is the same as the process described with respect to FIG. 6, so that the detailed description will not be repeated.
  • the points different from the processing of FIG. 6 will be mainly described.
  • the printing apparatus 100 cue the paper 8 in steps S510 and S520.
  • the printing apparatus 100 performs printing Pr (X1) (Y) for printing a Y image representing the image G1 on the paper 8 (step S530Y).
  • the image G1 is represented by a Y image as a print primary color image.
  • Step S552M After the printing Pr (X1) (Y) is completed, preparations are made for printing Pr (X2) (M) for printing the M image representing the image G2 on the paper 8 as the mixed adjacent printing process. Specifically, the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S552M).
  • the printing apparatus 100 performs printing Pr (X2) (M) as a mixed adjacent printing process for printing the M image representing the image G2 on the paper 8 (step S560M).
  • the image G2 is represented by an M image as a print primary color image.
  • the Y image representing the image G1 and the M image representing the image G2 are adjacent to each other.
  • the printing apparatus 100 After the printing Pr (X2) (M) is completed, the printing apparatus 100 performs the printing Pr (X1) (C) for printing the C image representing the image G1 on the paper 8 (step S530C).
  • Step S552Y After the printing Pr (X1) (C) is completed, preparations are made for printing Pr (X2) (Y) for printing the Y image representing the image G2 on the paper 8. Specifically, the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S552Y).
  • the printing device 100 performs printing Pr (X2) (Y) for printing a Y image representing the image G2 on the paper 8 (step S560Y).
  • the printing apparatus 100 performs the printing Pr (X1) (M) for printing the M image representing the image G1 on the paper 8 (step). S530M).
  • a printed matter showing the image G1 is formed on the paper 8.
  • Step S552C After the printing Pr (X1) (M) is completed, preparations are made for printing Pr (X2) (C) for printing the C image representing the image G2 on the paper 8. Specifically, the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S552C).
  • the printing device 100 performs printing Pr (X2) (C) for printing the C image representing the image G2 on the paper 8 (step S560C). As a result, a printed matter showing the image G2 is formed on the paper 8.
  • the paper ejection process (X1) is performed (step S571).
  • the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G1 to the outside. Then, the cutter Ct1 cuts the position P1 of the paper 8 so that the printed matter is separated from the paper 8.
  • the paper ejection process (X2) is performed (step S572).
  • the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G2 to the outside.
  • the cutter Ct1 cuts the position P2 of the paper 8 so that the printed matter is separated from the paper 8.
  • step S580 a process for changing the state of the printing device 100 to the standby state is performed. Specifically, the printing device 100 conveys the paper 8 so that the position P2 of the paper 8 becomes the standby position corresponding to the standby state (step S580). With the above, the mixed print control process is completed.
  • the printing primary color image expressing the low density image G2 is printed between the plurality of printings corresponding to the plurality of printing primary color images expressing the image G1.
  • the printing order of each print primary color image is changed.
  • ⁇ Modification 2> The configuration of this modification is applied to modification 1.
  • the head temperature prediction unit 62 predicts the head temperature The.
  • the determination unit 63 determines whether or not the printing device 100 can execute the adjacent printing process based on the predicted head temperature The. Further, in the modification 1, the mixed print control process in which the printing of the print primary color image expressing the image G1 and the printing of another print primary color image expressing the image G2 are performed in a mixed manner is performed.
  • the printing device 100 of this modification has a function of executing mixed printing control processing.
  • the mixed print control process is, for example, the mixed print control process described in the first modification.
  • the mixed print control process is a process including a process of printing a print primary color image representing the image G1 and a process of printing another print primary color image representing the image G2.
  • the mixed cutting process of cutting the paper 8 is performed in the middle of the period during which the mixed printing control process is being executed.
  • the mixed print control process includes the mixed adjacent print process described above.
  • the mixed cutting process is, for example, a process for separating the printed matter showing the image G1 from the paper 8 during the printing of the image G2.
  • FIG. 14 is a diagram showing a functional configuration for explaining the operation of the printing apparatus 100 having the configuration of the second modification.
  • the mixed disconnection condition is further stored in the memory 52.
  • the mixed cutting condition indicates the minimum number of adjacent prints based on the cutting position on the paper 8 and the printing start position of the paper 8 in the mixed printing control process.
  • the cutting position is a position on the paper 8 for the cutter Ct1 to perform cutting.
  • the minimum number of adjacent prints is the minimum number of images that can be printed adjacently when mixed cutting processing is performed.
  • the mixed cutting condition is, for example, a relational expression of "number of prints> minimum number of adjacent prints".
  • the minimum number of adjacent prints is 2 as an example. Therefore, the mixed cutting process is performed during the period in which the mixed print control process using three or more target images is being executed.
  • the printing start position (for example, position P1) of the paper 8 is set to be used as the cutting position in the situation where the transport of the paper 8 is temporarily stopped. Therefore, it is possible to perform the process of switching the image to be printed and the process of cutting the paper 8 on which the printed matter is formed in parallel.
  • the three images as the target images are the above-mentioned image G1, the above-mentioned image G2, and the image G3.
  • the image data Gd indicating the image G3 is also referred to as “image data Gd3”. That is, the image data Gd3 is the image data of the image G3.
  • the mixed print control process including the mixed cutting process is also referred to as a “mixed cutting control process”.
  • FIG. 15 is a flowchart of the print control process B according to the second modification.
  • FIG. 15 shows only the main steps included in the print control process B.
  • FIG. 15 shows, as an example, a print control process B in which the determination of “printing” is not performed so that the description of the print control process B is not complicated.
  • FIGS. 16, 17, and 18 are diagrams for explaining an example of the mixed cutting control process according to the second modification.
  • the process of printing the OP image is omitted for the sake of simplification of the description.
  • the process of the same step number as that of the step numbers of FIGS. 12 and 13 is the same as the process described with respect to FIGS. 12 and 13, so that a detailed description thereof will be given. Does not repeat.
  • the character string “(X3)” is shown for the processing related to the image G3.
  • the print process P for the image G3 is also referred to as “print Pr (X3)” or “Pr (X3)”.
  • 16A, 17th and 18th are diagrams for explaining an example of mixed cutting control processing in a situation where the printing order of the print primary color images is changed in order to print the images G1, G2 and G3.
  • the printing order of each print primary color image is changed based on the head temperature Tha corresponding to each print primary color image of the images G1, G2, and G3. Further, the printing order of each printing primary color image is changed so that the mixed printing condition is satisfied.
  • the print job indicates the number of prints.
  • the number of prints is 3.
  • the printing order of the printing primary color images is changed so as to be the printing order of the printing primary color images shown in FIGS. 16, 17, and 18.
  • the mixed printing condition in the premise Pm3 is a condition in which the mixed cutting control process corresponding to the printing order of each print primary color image shown in FIGS. 16, 17 and 18 can be executed.
  • the mixed cutting condition (number of prints> minimum number of adjacent prints) is satisfied.
  • the predicted head temperature Tha corresponding to each print primary color image representing each of the images G1, G2, and G3 is a temperature satisfying the mixed printing condition.
  • step S110 is performed in the same manner as in the first modification.
  • the print job is stored in the memory 52.
  • the information acquisition process B is performed (step S120B).
  • the head temperature prediction unit 62 acquires image data Gd1, Gd2, Gd3, head temperature T0, temperature prediction information, and the number of prints as print data.
  • the head temperature prediction process A is performed (step S130A).
  • the same process as the head temperature prediction process A of FIG. 11 in the first modification is performed on the images G1, G2, and G3. Therefore, a detailed description of the head temperature prediction process A in FIG. 15 will be omitted.
  • the predicted head temperature Tha corresponding to each print primary color image representing each of the images G1, G2, and G3 is a temperature that satisfies the mixed printing condition.
  • the determination unit 63 changes the printing order of each print primary color image as shown in FIGS. 16, 17, and 18.
  • the determination unit 63 acquires the mixed printing conditions stored in the memory 52 (step S142). Next, the determination unit 63 acquires the mixed disconnection condition stored in the memory 52 (step S143).
  • step S150 the determination unit 63 determines whether or not the printing apparatus 100 can execute the adjacent printing process based on the final predicted head temperature The and the adjacent printing conditions.
  • the process of step S150 is the same as the process of step S150 of the first modification. In the premise Pm3, it is determined that the printing apparatus 100 can execute the adjacent printing process, and the process proceeds to step S156.
  • step S156 the determination unit 63 determines whether or not the printing apparatus 100 executes the mixed adjacent printing process. When the mixed printing condition is satisfied, it is determined that the printing apparatus 100 can execute the mixed adjacent printing process. Then, the process proceeds to step S158. On the other hand, if the mixed printing condition is not satisfied, it is determined that the printing apparatus 100 cannot execute the mixed adjacent printing process. Then, the process proceeds to step S171. In the premise Pm3, assuming that the mixed printing condition is satisfied, the process proceeds to step S158.
  • step S158 whether or not the printing device 100 can execute the mixed cutting process during the period in which the mixed cutting control process, which is the mixed printing control process, is being executed by the determination unit 63 based on the mixed cutting condition. Is determined.
  • the determination unit 63 determines whether or not the mixed cutting condition is satisfied. When the mixed cutting condition is satisfied, the printing apparatus 100 determines that the mixed cutting process can be executed. Then, the process proceeds to step S173. On the other hand, if the mixed cutting condition is not satisfied, the printing apparatus 100 determines that the mixed cutting process cannot be executed. Then, the process proceeds to step S172. In the premise Pm3, the mixed printing condition is satisfied. Therefore, the process proceeds to step S173.
  • step S173 the printing apparatus 100 executes the mixed cutting process under the control of the print control unit 64. Specifically, the printing apparatus 100 executes the mixed cutting process during the period during which the mixed cutting control process, which is the mixed printing control process, is being executed. The mixed cutting process is executed when the cutting condition A is satisfied.
  • the cutting condition A is a condition for cutting the paper 8.
  • the cutting condition A is, for example, a condition that the printing of the image G1 is completed.
  • FIGS. 16, 17, and 18 further show the position P3 as the print start position.
  • the area between the position P3 and the position P2 of the paper 8 corresponds to another printing area.
  • the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected.
  • the printing device 100 performs printing Pr (X2) (Y) for printing a Y image representing the image G2 on the paper 8 (step S560Y).
  • the printing apparatus 100 performs printing Pr (X1) (M) for printing the M image representing the image G1 on the paper 8 (step S530M).
  • the printing device 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S552C).
  • the printing apparatus 100 performs printing Pr (X2) (C) for printing the C image representing the image G2 on the paper 8 (step S560C).
  • the printing apparatus 100 performs printing Pr (X1) (Y) for printing a Y image representing the image G1 on the paper 8 (step S530Y).
  • the printing device 100 cue the paper 8 so that the position P3 (printing start position) of the paper 8 is detected (step S553). With reference to FIG. 17, the printing apparatus 100 then performs printing Pr (X3) (M) for printing the M image representing the image G3 on the paper 8 (step S563M).
  • the printing device 100 cue the paper 8 so that the position P1 (printing start position) of the paper 8 is detected (step S520C).
  • the printing apparatus 100 performs printing Pr (X1) (C) for printing the C image representing the image G1 on the paper 8 (step S530C).
  • the cutting condition A that the printing of the image G1 is completed is satisfied.
  • a printed matter showing the image G1 is formed on the paper 8.
  • the paper ejection process (X1) is performed (step S571).
  • the printing apparatus 100 conveys the paper 8 in order to eject the printed matter to the outside. Further, in the paper ejection process (X1), the printing apparatus 100 performs a mixed cutting process for cutting the paper 8.
  • the mixed cutting process is, for example, a process for separating the printed matter showing the image G1 from the paper 8 during the printing of the image G2.
  • the cutter Ct1 of the printing apparatus 100 cuts the position P1 of the paper 8 so that the printed matter showing the image G1 is separated from the paper 8.
  • the printing device 100 cue the paper 8 so that the position P3 (printing start position) of the paper 8 is detected (step S553Y).
  • the printing apparatus 100 performs printing Pr (X3) (Y) for printing a Y image representing the image G3 on the paper 8 (step S563Y).
  • the printing apparatus 100 then performs printing Pr (X2) (M) for printing the M image representing the image G2 on the paper 8 (step S560M).
  • the printing of the image G2 is completed, and the printed matter showing the image G2 is formed on the paper 8.
  • the paper ejection process (X2) is performed (step S572).
  • the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G2 to the outside.
  • the cutter Ct1 cuts the position P2 of the paper 8 so that the printed matter is separated from the paper 8.
  • the printing device 100 cue the paper 8 so that the position P3 (printing start position) of the paper 8 is detected (step S553C).
  • the printing apparatus 100 performs printing Pr (X3) (C) for printing the C image representing the image G3 on the paper 8 (step S563C).
  • the printing of the image G3 is completed, and the printed matter showing the image G3 is formed on the paper 8.
  • the paper ejection process (X3) is performed (step S573).
  • the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G3 to the outside. Then, the cutter Ct1 cuts the position P3 of the paper 8 so that the printed matter is separated from the paper 8.
  • the printing device 100 conveys the paper 8 so that the position P3 of the paper 8 becomes the standby position corresponding to the standby state (step S580).
  • the mixed cutting control process in the premise Pm3 is completed. According to the above description, the above-mentioned mixed cutting process is performed during the period in which the mixed cutting control process, which is the mixed printing control process, is being executed.
  • the mixed cutting process for separating the printed matter showing the image G1 from the paper 8 is performed during the period in which the mixed cutting control process, which is the mixed printing control process, is being executed. Further, in the mixed cutting control process, the print start position (for example, position P1) of the paper 8 is set to be used as the cutting position in the situation where the transport of the paper 8 is temporarily stopped. As a result, the process of switching the image to be printed and the process of cutting the paper 8 on which the printed matter is formed are performed in parallel. Therefore, the paper ejection process can be performed in the middle of the period during which the mixed cut control process, which is the mixed print control process, is being executed, and the time required to execute the mixed cut control process can be shortened. Therefore, efficient printing can be realized.
  • FIG. 19 is a block diagram showing a characteristic functional configuration of the printing apparatus BL10.
  • the printing device BL10 corresponds to the printing device 100. That is, FIG. 19 is a block diagram showing the main functions related to the present technology among the functions of the printing apparatus BL10.
  • the printing device BL10 is a thermal transfer type printing device having a function of printing a plurality of images so that the plurality of images are adjacent to each other by using a thermal head.
  • the printing device BL10 functionally includes a head temperature prediction unit BL1.
  • the head temperature prediction unit BL1 has a function of predicting the head temperature, which is the temperature of the thermal head.
  • the head temperature prediction unit BL1 corresponds to the head temperature prediction unit 62.
  • the plurality of images include a first image which is the j (integer of 1 or more) th image and a second image which is the (j + 1) th image.
  • the head temperature prediction unit BL1 assumes that one or both of the first image and the second image are printed by the printing device BL10 so that the first image and the second image are adjacent to each other.
  • the temperature is predicted based on the image data which is the data of one or both of the first image and the second image.
  • the printing device BL10 further includes a determination unit BL2. Whether or not the determination unit BL2 causes the printing device BL10 to perform an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other based on the predicted head temperature. Is determined.
  • the determination unit BL2 corresponds to the determination unit 63.
  • the printing device BL10 executes the adjacent printing process. If it is determined that the printing device BL10 does not execute the adjacent printing process, the printing device BL10 does not execute the adjacent printing process.
  • the present technology is not limited to the embodiment.
  • the present technology also includes modifications that can be conceived by those skilled in the art within the scope of the present technology. That is, in the present technology, within the scope of the technology, the embodiments and the modified examples can be freely combined, and the embodiments and the modified examples can be appropriately modified or omitted.
  • the printing apparatus 100 does not have to include all the components shown in the figure. That is, the printing apparatus 100 needs to include only the minimum components that can realize the effect of the present technology.
  • each function of the head temperature prediction unit 62 and the determination unit 63 included in the printing apparatus 100 may be realized by a processing circuit.
  • the processing circuit measures the head temperature in a situation where it is assumed that one or both of the first image and the second image are printed by the printing device so that the first image and the second image are adjacent to each other.
  • a circuit for making a prediction based on image data which is data of one or both of the first image and the second image.
  • the processing circuit causes the printing apparatus to execute an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other based on the predicted head temperature. It is also a circuit for determining whether or not.
  • the processing circuit may be dedicated hardware. Further, the processing circuit may be a processor that executes a program stored in the memory.
  • the processor is, for example, a CPU (Central Processing Unit), a central processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • configuration Cs1 the configuration in which the processing circuit is dedicated hardware
  • configuration Cs2 the configuration in which the processing circuit is a processor
  • configuration Cs3 a configuration in which each function of the head temperature prediction unit 62 and the determination unit 63 is realized by a combination of hardware and software is also referred to as “configuration Cs3”.
  • the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Applicable.
  • the functions of the head temperature prediction unit 62 and the determination unit 63 may be realized by two processing circuits, respectively. Further, all the functions of the head temperature prediction unit 62 and the determination unit 63 may be realized by one processing circuit.
  • the configuration in which all or a part of each component included in the printing apparatus 100 is shown in hardware is as follows, for example.
  • a printing device in which all or a part of each component included in the printing device 100 is shown by hardware is also referred to as “printing device hd10”.
  • FIG. 20 is a hardware configuration diagram of the printing device hd10.
  • the printing apparatus hd10 includes a processor hd1 and a memory hd2.
  • the memory hd2 is, for example, a non-volatile or volatile semiconductor memory such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an EPROM, or an EEPROM.
  • the memory hd2 is, for example, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like. Further, the memory hd2 may be any storage medium used in the future.
  • the processing circuit is the processor hd1.
  • each function of the head temperature prediction unit 62 and the determination unit 63 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory hd2.
  • the processing circuit (processor hd1) reads the program stored in the memory hd2 and executes the program, so that each function of the head temperature prediction unit 62 and the determination unit 63 is realized. .. That is, the memory hd2 stores the following programs.
  • the program sets the head temperature in a situation where it is assumed that one or both of the first image and the second image are printed by the printing device so that the first image and the second image are adjacent to each other. It is a program for causing a processing circuit (processor hd1) to execute a step of prediction based on image data which is data of one or both of the first image and the second image.
  • the program causes the printing apparatus to execute an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other based on the predicted head temperature. It is also a program for causing the processing circuit (processor hd1) to execute the step of determining whether or not it is present.
  • the program also causes a computer to execute a procedure of processing performed by each of the head temperature prediction unit 62 and the determination unit 63, a method of executing the processing, and the like.
  • the head temperature prediction unit 62 and the determination unit 63 are realized by dedicated hardware. Further, in the configuration Cs3, another part of the functions of the head temperature prediction unit 62 and the determination unit 63 is realized by software or firmware.
  • the function of the head temperature prediction unit 62 is realized by the processing circuit reading and executing the program stored in the memory. Further, for example, the function of the determination unit 63 is realized by a processing circuit as dedicated hardware.
  • the processing circuit can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
  • the present technology may be realized as a print control method in which the operation of a characteristic component included in the printing apparatus 100 is a step. Further, the present technology may be realized as a program for causing a computer to execute each step included in such a print control method. Further, the present technology may be realized as a computer-readable recording medium for storing such a program. Further, the program may be distributed via a transmission medium such as the Internet.
  • the print control method according to the present technology corresponds to, for example, the processing of FIG. 5, FIG. 11 or FIG.
  • the mixed printing conditions are not limited to the conditions shown in Table Tb2 of FIG.
  • the difference between the two head temperatures Tha corresponding to the two images A in the hypothetical printing situation assuming that the two images A are printed so that the two images A are adjacent to each other is, for example, It may be a condition that the temperature is 20 ° C. or higher.
  • thermal head 8 paper, 9 ink sheet, 62, BL1 head temperature prediction unit, 63, BL2 judgment unit, 100, BL10, hd10 printing device, Sn1 environmental temperature sensor, Sn3 head temperature sensor.

Landscapes

  • Electronic Switches (AREA)

Abstract

A head temperature prediction unit 62 predicts a head temperature based on the assumption that one or both of an image G1 and an image G2 are printed by a printing device 100 so as to be adjacent to each other on the basis of image data including one or both of the image G1 and the image G2. A determination unit 63 determines whether to cause the printing device 100 to perform adjacent printing processing to print the image G2 so that the image G1 and the image G2 are adjacent to each other on the basis of the predicted head temperature. When it is determined that the printing device 100 is caused to perform the adjacent printing processing, the printing device 100 performs the adjacent printing processing.

Description

印刷装置および印刷制御方法Printing device and printing control method
 本開示は、熱転写方式の印刷装置および印刷制御方法に関する。 The present disclosure relates to a thermal transfer type printing apparatus and a printing control method.
 熱転写方式の印刷装置は、インクシートと、ロール紙を構成する用紙とを用いて印刷する。以下においては、イエロー、マゼンタおよびシアンを、それぞれ、「Y」、「M」および「C」ともいう。また、以下においては、イエロー、マゼンタおよびシアンの各々を、「原色」ともいう。また、以下においては、原色で表現される画像を、「原色画像」ともいう。また、以下においては、オーバーコート層を、「OP層」、「OP画像」または「OP」ともいう。また、以下においては、OP層を構成する材料を、「OP材料」ともいう。 The thermal transfer type printing device prints using the ink sheet and the paper constituting the roll paper. In the following, yellow, magenta and cyan are also referred to as "Y", "M" and "C", respectively. Further, in the following, each of yellow, magenta and cyan is also referred to as "primary color". Further, in the following, an image represented by primary colors is also referred to as a "primary color image". Further, in the following, the overcoat layer is also referred to as an “OP layer”, an “OP image” or an “OP”. Further, in the following, the material constituting the OP layer is also referred to as “OP material”.
 インクシートには、インク領域が、当該インクシートの長手方向に沿って、周期的に配置されている。当該インク領域には、Y,M,Cのインク(染料)、および、OP材料が設けられている。 Ink areas are periodically arranged on the ink sheet along the longitudinal direction of the ink sheet. Y, M, and C inks (dye) and OP material are provided in the ink region.
 熱転写方式の印刷装置は、サーマルヘッドがインクシートを加熱することにより、用紙に画像を印刷する印刷処理を行う。以下においては、インクシートおよび用紙の搬送方向と直交する方向を、「主走査方向」ともいう。 In the thermal transfer type printing device, the thermal head heats the ink sheet to perform a printing process for printing an image on paper. In the following, the direction orthogonal to the transport direction of the ink sheet and the paper is also referred to as a “main scanning direction”.
 サーマルヘッドには、主走査方向に沿って複数の発熱抵抗体が設けられている。印刷装置は、サーマルヘッドにおける複数の発熱抵抗体を、選択的に通電させることにより、当該発熱抵抗体を発熱させる。これにより、サーマルヘッド(複数の発熱抵抗体)は、インクシートのインク領域に対して、熱を発する。インク領域における、Y,M,Cのインク、および、OP材料等の転写材料は、熱により昇華し、当該転写材料は用紙に定着する。 The thermal head is provided with a plurality of heat generating resistors along the main scanning direction. The printing apparatus heats the heat-generating resistors by selectively energizing a plurality of heat-generating resistors in the thermal head. As a result, the thermal head (plurality of heat generating resistors) generates heat with respect to the ink region of the ink sheet. The Y, M, and C inks and the transfer material such as the OP material in the ink region are sublimated by heat, and the transfer material is fixed on the paper.
 以下においては、Y成分の画像を、「Y画像」ともいう。また、以下においては、M成分の画像を、「M画像」ともいう。また、以下においては、C成分の画像を、「C画像」ともいう。Y画像、M画像およびC画像の各々は、原色画像である。また、以下においては、原色画像であるY画像、M画像およびC画像の各々を、「印刷原色画像」ともいう。印刷原色画像は、印刷を行うための画像である。また、以下においては、用紙のうち、画像を印刷するための領域を、「印刷領域」ともいう。 In the following, the image of the Y component is also referred to as a "Y image". Further, in the following, the image of the M component is also referred to as an “M image”. Further, in the following, the image of the C component is also referred to as a “C image”. Each of the Y image, the M image, and the C image is a primary color image. Further, in the following, each of the Y image, the M image, and the C image, which are the primary color images, is also referred to as a “print primary color image”. The print primary color image is an image for printing. Further, in the following, the area for printing an image on the paper is also referred to as a “print area”.
 具体的には、印刷装置は、Y画像、M画像およびC画像を、当該Y画像、M画像およびC画像の順で、用紙の印刷領域に転写する。これにより、用紙の印刷領域にカラー画像が印刷される。その後、印刷装置は、OP層を当該印刷領域に転写する。 Specifically, the printing apparatus transfers the Y image, the M image, and the C image to the print area of the paper in the order of the Y image, the M image, and the C image. As a result, a color image is printed in the print area of the paper. After that, the printing apparatus transfers the OP layer to the printing area.
 このような印刷装置の印刷サイズは、一般的に、インクシートにおける、1画面に相当するインク領域のサイズである。印刷装置は、印刷時間の短縮が要求される場合が多い。印刷時間とは、印刷に関する処理を実行するために必要な時間である。 The print size of such a printing device is generally the size of an ink area corresponding to one screen in an ink sheet. Printing devices are often required to reduce printing time. The printing time is the time required to execute a process related to printing.
 特許文献1では、印刷時間の短縮を実現するための構成(以下、「関連構成A」ともいう)が開示されている。関連構成Aでは、大判サイズの画像を印刷可能なインクシートを使用して、複数の小さい画像を並べて印刷する処理が、繰り返し行われる。大判サイズは、例えば、2Lサイズである。 Patent Document 1 discloses a configuration (hereinafter, also referred to as "related configuration A") for realizing a reduction in printing time. In the related configuration A, a process of printing a plurality of small images side by side using an ink sheet capable of printing a large format image is repeatedly performed. The large format is, for example, 2L size.
 以下においては、平面視において、横のサイズが「u」mmであり、縦のサイズが「v」mmである構成要素のサイズを、「u×vサイズ」とも表記する。「u」および「v」の各々は、自然数である。上記の2Lサイズは、例えば、178×127サイズ、または、127×178サイズである。関連構成Aにおける、上記の小さい画像のサイズは、例えば、Lサイズである。Lサイズは、例えば、127×89サイズ、または、89×127サイズである。 In the following, the size of a component whose horizontal size is "u" mm and vertical size is "v" mm in a plan view is also referred to as "u × v size". Each of "u" and "v" is a natural number. The above 2L size is, for example, 178 × 127 size or 127 × 178 size. The size of the small image in the related configuration A is, for example, L size. The L size is, for example, 127 × 89 size or 89 × 127 size.
特開2007-090798号公報JP-A-2007-090798
 複数の画像を連続して印刷する機能を有する印刷装置は、サーマルヘッドを使用して、複数の画像が隣接するように、当該複数の画像を印刷する。各画像の濃度が高い状況において上記の処理が行われた場合、サーマルヘッドの温度が、例えば、インクシートにシワ等が発生するような高い温度になる可能性がある。 A printing device having a function of continuously printing a plurality of images uses a thermal head to print the plurality of images so that the plurality of images are adjacent to each other. When the above processing is performed in a situation where the density of each image is high, the temperature of the thermal head may become a high temperature such that wrinkles or the like are generated on the ink sheet, for example.
 そこで、サーマルヘッドの温度を考慮して、印刷処理を実行することが要求される。関連構成Aでは、この要求を満たすことはできない。 Therefore, it is required to execute the printing process in consideration of the temperature of the thermal head. The related configuration A cannot meet this requirement.
 本開示は、このような問題を解決するためになされたものであり、サーマルヘッドの温度を考慮して、印刷処理を実行することが可能な印刷装置等を提供することを目的とする。 The present disclosure has been made in order to solve such a problem, and an object of the present disclosure is to provide a printing apparatus or the like capable of executing a printing process in consideration of the temperature of the thermal head.
 上記目的を達成するために、本開示の一態様に係る印刷装置は、サーマルヘッドを使用して、複数の画像が隣接するように、当該複数の画像を印刷する機能を有する、熱転写方式の印刷装置である。前記サーマルヘッドの温度であるヘッド温度を予測する機能を有するヘッド温度予測部を備え、前記複数の画像は、j(1以上の整数)番目の画像である第1画像、および、(j+1)番目の画像である第2画像を含み、前記ヘッド温度予測部は、前記第1画像と前記第2画像とが隣接するように、当該第1画像および当該第2画像の一方または両方が前記印刷装置により印刷されたと仮定した状況における前記ヘッド温度を、当該第1画像および当該第2画像の一方または両方のデータである画像データに基づいて、予測し、前記印刷装置は、さらに、予測された前記ヘッド温度に基づいて、前記第1画像と前記第2画像とが隣接するように、当該第2画像を印刷する隣接印刷処理を前記印刷装置に実行させるか否かを判定する判定部を備え、前記隣接印刷処理を前記印刷装置に実行させると判定された場合、当該印刷装置は当該隣接印刷処理を実行し、前記隣接印刷処理を前記印刷装置に実行させないと判定された場合、前記印刷装置は当該隣接印刷処理を実行しない。 In order to achieve the above object, the printing apparatus according to one aspect of the present disclosure uses a thermal head to print a plurality of images so that the plurality of images are adjacent to each other. It is a device. A head temperature prediction unit having a function of predicting a head temperature, which is the temperature of the thermal head, is provided, and the plurality of images are a first image which is a j (an integer of 1 or more) th image and a (j + 1) th image. In the head temperature prediction unit, one or both of the first image and the second image are the printing apparatus so that the first image and the second image are adjacent to each other. The head temperature in the situation assumed to be printed by the above is predicted based on the image data which is the data of one or both of the first image and the second image, and the printing apparatus further predicts the predicted said. A determination unit for determining whether or not to cause the printing apparatus to perform an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other based on the head temperature is provided. When it is determined that the printing device executes the adjacent printing process, the printing device executes the adjacent printing process, and when it is determined that the printing device does not execute the adjacent printing process, the printing device performs the adjacent printing process. The adjacent print process is not executed.
 本開示によれば、ヘッド温度予測部は、サーマルヘッドの温度であるヘッド温度を予測する機能を有する。前記ヘッド温度予測部は、第1画像と第2画像とが隣接するように、当該第1画像および当該第2画像の一方または両方が印刷装置により印刷されたと仮定した状況における前記ヘッド温度を、当該第1画像および当該第2画像の一方または両方のデータである画像データに基づいて、予測する。判定部は、予測された前記ヘッド温度に基づいて、前記第1画像と前記第2画像とが隣接するように、当該第2画像を印刷する隣接印刷処理を前記印刷装置に実行させるか否かを判定する。前記隣接印刷処理を前記印刷装置に実行させると判定された場合、当該印刷装置は当該隣接印刷処理を実行する。 According to the present disclosure, the head temperature prediction unit has a function of predicting the head temperature, which is the temperature of the thermal head. The head temperature predicting unit determines the head temperature in a situation where it is assumed that one or both of the first image and the second image are printed by the printing device so that the first image and the second image are adjacent to each other. The prediction is made based on the image data which is the data of one or both of the first image and the second image. Based on the predicted head temperature, the determination unit causes the printing apparatus to execute an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other. To judge. When it is determined that the printing device executes the adjacent printing process, the printing device executes the adjacent printing process.
 これにより、サーマルヘッドの温度を考慮して、印刷処理を実行することができる。 This makes it possible to execute the printing process in consideration of the temperature of the thermal head.
 本開示の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The purpose, features, aspects, and advantages of the present disclosure will be made clearer by the following detailed description and accompanying drawings.
実施の形態1に係る印刷装置の印刷機構を主に示す図である。It is a figure which mainly shows the printing mechanism of the printing apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る印刷装置の印刷動作の制御に関わるハードウェアブロック図である。It is a hardware block diagram which concerns on the control of the printing operation of the printing apparatus which concerns on Embodiment 1. FIG. インクシートを説明するための図である。It is a figure for demonstrating an ink sheet. 実施の形態1に係る印刷制御処理における、印刷装置の動作を説明するための機能構成を示す図である。It is a figure which shows the functional structure for demonstrating the operation of the printing apparatus in the print control process which concerns on Embodiment 1. FIG. 実施の形態1に係る印刷制御処理のフローチャートである。It is a flowchart of the print control process which concerns on Embodiment 1. FIG. 実施の形態1に係る隣接印刷制御処理を説明するための図である。It is a figure for demonstrating the adjacent print control process which concerns on Embodiment 1. FIG. 変形例1の構成を有する印刷装置の動作を説明するための機能構成を示す図である。It is a figure which shows the functional structure for demonstrating the operation of the printing apparatus which has the structure of the modification 1. FIG. 予測ヘッド温度としての、複数種類のヘッド温度を示す表を示す図である。It is a figure which shows the table which shows a plurality of kinds of head temperatures as a predicted head temperature. 混在印刷条件の一例を示す表を示す図である。It is a figure which shows the table which shows an example of the mixed printing condition. 変更された、画像の印刷の順番の一例を示す図である。It is a figure which shows an example of the changed printing order of an image. 変形例1に係る印刷制御処理Aのフローチャートである。It is a flowchart of the print control process A which concerns on modification 1. FIG. 変形例1に係る混在印刷制御処理の一例を説明するための図である。It is a figure for demonstrating an example of the mixed printing control processing which concerns on modification 1. FIG. 変形例1に係る混在印刷制御処理の一例を説明するための図である。It is a figure for demonstrating an example of the mixed printing control processing which concerns on modification 1. FIG. 変形例2の構成を有する印刷装置の動作を説明するための機能構成を示す図である。It is a figure which shows the functional structure for demonstrating the operation of the printing apparatus which has the structure of the modification 2. FIG. 変形例2に係る印刷制御処理Bのフローチャートである。It is a flowchart of the print control process B which concerns on modification 2. FIG. 変形例2に係る混在切断制御処理の一例を説明するための図である。It is a figure for demonstrating an example of the mixed cutting control processing which concerns on modification 2. FIG. 変形例2に係る混在切断制御処理の一例を説明するための図である。It is a figure for demonstrating an example of the mixed cutting control processing which concerns on modification 2. FIG. 変形例2に係る混在切断制御処理の一例を説明するための図である。It is a figure for demonstrating an example of the mixed cutting control processing which concerns on modification 2. FIG. 印刷装置の特徴的な機能構成を示すブロック図である。It is a block diagram which shows the characteristic functional composition of a printing apparatus. 印刷装置のハードウエア構成図である。It is a hardware block diagram of a printing apparatus. 比較例としての通常印刷制御処理を説明するための図である。It is a figure for demonstrating the normal print control processing as a comparative example.
 以下、図面を参照しつつ、実施の形態について説明する。以下の図面では、同一の構成要素には同一の符号を付してある。同一の符号が付されている構成要素の名称および機能は同じである。したがって、同一の符号が付されている構成要素の一部についての詳細な説明を省略する場合がある。 Hereinafter, embodiments will be described with reference to the drawings. In the drawings below, the same components are designated by the same reference numerals. The names and functions of the components with the same reference numerals are the same. Therefore, detailed description of some of the components having the same reference numerals may be omitted.
 <実施の形態1>
 (構成)
 図1は、実施の形態1に係る印刷装置100の印刷機構を主に示す図である。印刷機構は、印刷に関する機構である。印刷装置100は、昇華型の印刷装置(プリンタ)である。すなわち、印刷装置100は、熱転写方式の印刷装置である。印刷装置100は、詳細は後述するが、画像を用紙に印刷するための印刷処理Pを行う。
<Embodiment 1>
(composition)
FIG. 1 is a diagram mainly showing a printing mechanism of the printing apparatus 100 according to the first embodiment. The printing mechanism is a mechanism related to printing. The printing device 100 is a sublimation type printing device (printer). That is, the printing device 100 is a thermal transfer type printing device. Although the details will be described later, the printing apparatus 100 performs a printing process P for printing an image on paper.
 図2は、実施の形態1に係る印刷装置100の印刷動作の制御に関わるハードウェアブロック図である。なお、図2には、説明のために、印刷装置100に含まれない情報処理装置200が示される。また、図1および図2では、構成を分かり易くするために、本技術に対し、関連性の低い構成要素は、図示していない。当該構成要素は、例えば、電源部等である。 FIG. 2 is a hardware block diagram related to control of the printing operation of the printing apparatus 100 according to the first embodiment. Note that FIG. 2 shows an information processing device 200 that is not included in the printing device 100 for the sake of explanation. Further, in FIGS. 1 and 2, in order to make the configuration easy to understand, components having low relevance to the present technology are not shown. The component is, for example, a power supply unit or the like.
 印刷装置100は、通信ケーブル等により、図2の情報処理装置200と通信可能に接続される。情報処理装置200は、印刷装置100を制御する装置である。情報処理装置200は、例えば、PC(Personal Computer)である。情報処理装置200は、ユーザによって操作される。 The printing device 100 is communicably connected to the information processing device 200 of FIG. 2 by a communication cable or the like. The information processing device 200 is a device that controls the printing device 100. The information processing device 200 is, for example, a PC (Personal Computer). The information processing device 200 is operated by the user.
 ユーザが、情報処理装置200に対し、印刷実行操作を行った場合、情報処理装置200は、印刷指示および画像データGdを含む印刷情報を、印刷装置100へ送信する。当該印刷実行操作は、印刷処理Pを印刷装置100に実行させるための操作である。また、当該印刷指示は、印刷処理Pを印刷装置100に実行させるための指示である。当該画像データGdは、用紙に印刷するための画像のデータである。以下においては、印刷情報を、「印刷ジョブ」ともいう。印刷ジョブは、印刷条件を示す印刷条件情報を含む。印刷条件は、例えば、印刷速度、印刷枚数、印刷サイズ、印刷の向き等である。印刷枚数とは、印刷を行う対象となる画像の数である。 When the user performs a print execution operation on the information processing device 200, the information processing device 200 transmits print information including a print instruction and image data Gd to the printing device 100. The print execution operation is an operation for causing the printing apparatus 100 to execute the print process P. Further, the print instruction is an instruction for causing the printing apparatus 100 to execute the print process P. The image data Gd is image data for printing on paper. In the following, the print information is also referred to as a “print job”. The print job includes print condition information indicating the print condition. The printing conditions are, for example, the printing speed, the number of printed sheets, the printing size, the printing orientation, and the like. The number of prints is the number of images to be printed.
 以下においては、印刷装置100が、用紙に印刷するための画像を、「対象画像」ともいう。すなわち、画像データGdは、対象画像を示す。対象画像は、行列状に配置されるk個の画素から構成される。「k」は、2以上の整数である。k個の画素は、y行x列の行列を構成する。「y」および「x」の各々は、2以上の整数である。すなわち、対象画像は、y本の行と、x本のライン(列)とを有する。 In the following, an image for the printing device 100 to print on paper is also referred to as a "target image". That is, the image data Gd indicates a target image. The target image is composed of k pixels arranged in a matrix. "K" is an integer of 2 or more. The k pixels form a matrix of y rows and x columns. Each of "y" and "x" is an integer of 2 or more. That is, the target image has y rows and x lines (columns).
 「x」は、対象画像の水平(横)方向に並ぶ画素の数である。「y」は、対象画像の垂直(縦)方向に並ぶ画素の数である。「k」は、(x×y)の式で算出される値である。 "X" is the number of pixels arranged in the horizontal (horizontal) direction of the target image. “Y” is the number of pixels arranged in the vertical (vertical) direction of the target image. “K” is a value calculated by the formula (xxy).
 各画素は、濃度を表現する画素値(階調値)により表現される。以下においては、画素の画素値を示すデータを、「画素データ」ともいう。また、以下においては、画素が表現可能な最も高い濃度を、「最高濃度」ともいう。最高濃度は、例えば、黒の濃度である。また、以下においては、画素が表現可能な最も低い濃度を、「最低濃度」ともいう。最低濃度は、例えば、白の濃度である。また、以下においては、最高濃度と最低濃度との中間の濃度を、「中間濃度」ともいう。中間濃度は、例えば、最高濃度の0.5倍の濃度である。 Each pixel is represented by a pixel value (gradation value) that expresses the density. In the following, data indicating the pixel value of a pixel is also referred to as “pixel data”. Further, in the following, the highest density that a pixel can express is also referred to as "highest density". The highest density is, for example, the density of black. Further, in the following, the lowest density that a pixel can express is also referred to as "minimum density". The lowest density is, for example, the density of white. Further, in the following, the concentration intermediate between the maximum concentration and the minimum concentration is also referred to as "intermediate concentration". The intermediate concentration is, for example, 0.5 times the maximum concentration.
 画素値は、一例として、8ビットの数値で表現される。すなわち、画素値は、0から255までの範囲内の数値で表現される。以下においては、最低濃度に対応する画素値を、「最低濃度値」ともいう。最低濃度値は、例えば、255である。また、以下においては、最高濃度に対応する画素値を、「最高濃度値」ともいう。最高濃度値は、例えば、0である。 The pixel value is represented by an 8-bit numerical value as an example. That is, the pixel value is represented by a numerical value in the range of 0 to 255. In the following, the pixel value corresponding to the minimum density is also referred to as “minimum density value”. The minimum concentration value is, for example, 255. Further, in the following, the pixel value corresponding to the maximum density is also referred to as “maximum density value”. The maximum concentration value is, for example, 0.
 例えば、画素データが0を示す場合、当該画素データに対応する画素の濃度は、最高濃度である。また、例えば、画素データが255を示す場合、当該画素データに対応する画素の濃度は、最低濃度である。なお、画素値は、8ビットで表現されることに限定されない。画素値は、例えば、10ビットで表現されてもよい。 For example, when the pixel data shows 0, the density of the pixel corresponding to the pixel data is the maximum density. Further, for example, when the pixel data shows 255, the density of the pixel corresponding to the pixel data is the lowest density. The pixel value is not limited to being represented by 8 bits. The pixel value may be represented by, for example, 10 bits.
 以下においては、赤、緑および青の各々を、「原色」ともいう。また、以下においては、赤、緑および青を、それぞれ、「R」、「G」および「B」ともいう。また、以下においては、R成分の画像を、「R画像」ともいう。また、以下においては、G成分の画像を、「G画像」ともいう。また、以下においては、B成分の画像を、「B画像」ともいう。R画像、G画像およびB画像の各々は、原色画像である。 In the following, each of red, green and blue is also referred to as "primary color". In the following, red, green and blue are also referred to as "R", "G" and "B", respectively. Further, in the following, the image of the R component is also referred to as an “R image”. Further, in the following, the image of the G component is also referred to as a “G image”. Further, in the following, the image of the B component is also referred to as a “B image”. Each of the R image, the G image, and the B image is a primary color image.
 以下においては、原色画像であるR画像、G画像およびB画像の各々を、「対象原色画像」ともいう。また、以下においては、対象画像または原色画像を、「画像A」ともいう。当該原色画像は、印刷原色画像または対象原色画像である。また、以下においては、画像Aを構成する複数の画素が、それぞれ示す複数の濃度の平均を、「平均濃度」ともいう。本実施の形態では、画像データGdが示す対象画像は、R画像、G画像およびB画像で表現される。 In the following, each of the R image, the G image, and the B image, which are the primary color images, is also referred to as a "target primary color image". Further, in the following, the target image or the primary color image is also referred to as "image A". The primary color image is a print primary color image or a target primary color image. Further, in the following, the average of the plurality of densities indicated by the plurality of pixels constituting the image A is also referred to as "average density". In the present embodiment, the target image indicated by the image data Gd is represented by an R image, a G image, and a B image.
 以下においては、R画像を示すデータを、「R画像データ」ともいう。また、以下においては、G画像を示すデータを、「G画像データ」ともいう。また、以下においては、B画像を示すデータを、「B画像データ」ともいう。また、以下においては、R成分の画素を、「R画素」ともいう。例えば、R画像は、複数のR画素で表現される。また、以下においては、G成分の画素を、「G画素」ともいう。また、以下においては、B成分の画素を、「B画素」ともいう。 In the following, the data indicating the R image is also referred to as "R image data". Further, in the following, the data indicating the G image is also referred to as "G image data". Further, in the following, the data indicating the B image is also referred to as "B image data". Further, in the following, the pixel of the R component is also referred to as an “R pixel”. For example, an R image is represented by a plurality of R pixels. Further, in the following, the pixel of the G component is also referred to as a “G pixel”. Further, in the following, the pixel of the B component is also referred to as a “B pixel”.
 以下においては、R画素の画素値を示す画素データを、「R画素データ」ともいう。また、以下においては、G画素の画素値を示す画素データを、「G画素データ」ともいう。また、以下においては、B画素の画素値を示す画素データを、「B画素データ」ともいう。また、以下においては、R画素データ、G画素データおよびB画素データの各々を、「対象画素データ」ともいう。R画像データは、複数のR画素データを含む。G画像データは、複数のG画素データを含む。B画像データは、複数のB画素データを含む。 In the following, pixel data indicating the pixel value of R pixel is also referred to as "R pixel data". Further, in the following, pixel data indicating the pixel value of the G pixel is also referred to as “G pixel data”. Further, in the following, pixel data indicating the pixel value of B pixel is also referred to as “B pixel data”. Further, in the following, each of the R pixel data, the G pixel data, and the B pixel data is also referred to as “target pixel data”. The R image data includes a plurality of R pixel data. The G image data includes a plurality of G pixel data. The B image data includes a plurality of B pixel data.
 以下においては、Y画像を示すデータを、「Y画像データ」ともいう。また、以下においては、M画像を示すデータを、「M画像データ」ともいう。また、以下においては、C画像を示すデータを、「C画像データ」ともいう。また、以下においては、Y成分の画素を、「Y画素」ともいう。例えば、Y画像は、複数のY画素で表現される。また、以下においては、M成分の画素を、「M画素」ともいう。また、以下においては、C成分の画素を、「C画素」ともいう。 In the following, the data indicating the Y image is also referred to as "Y image data". Further, in the following, the data indicating the M image is also referred to as "M image data". Further, in the following, the data indicating the C image is also referred to as "C image data". Further, in the following, the pixel of the Y component is also referred to as a “Y pixel”. For example, a Y image is represented by a plurality of Y pixels. Further, in the following, the pixel of the M component is also referred to as “M pixel”. Further, in the following, the pixel of the C component is also referred to as a “C pixel”.
 また、以下においては、Y画素の画素値を示す画素データを、「Y画素データ」ともいう。また、以下においては、M画素の画素値を示す画素データを、「M画素データ」ともいう。また、以下においては、C画素の画素値を示す画素データを、「C画素データ」ともいう。また、以下においては、Y画素データ、M画素データおよびC画素データの各々を、「印刷画素データ」ともいう。Y画像データは、複数のY画素データを含む。M画像データは、複数のM画素データを含む。C画像データは、複数のC画素データを含む。 Further, in the following, pixel data indicating the pixel value of Y pixel is also referred to as "Y pixel data". Further, in the following, pixel data indicating the pixel value of M pixel is also referred to as “M pixel data”. Further, in the following, pixel data indicating the pixel value of C pixel is also referred to as “C pixel data”. Further, in the following, each of the Y pixel data, the M pixel data, and the C pixel data is also referred to as “print pixel data”. The Y image data includes a plurality of Y pixel data. The M image data includes a plurality of M pixel data. The C image data includes a plurality of C pixel data.
 図1を参照して、印刷装置100には、ロール紙18およびインクリボン19が装着されている。ロール紙18は、長尺状の用紙8がロール状に巻かれて構成される。インクリボン19は、長尺状のインクシート9により構成される。 With reference to FIG. 1, a roll paper 18 and an ink ribbon 19 are attached to the printing apparatus 100. The roll paper 18 is formed by rolling a long paper 8 into a roll shape. The ink ribbon 19 is composed of a long ink sheet 9.
 図3は、インクシート9を説明するための図である。図3において、X方向およびY方向は、互いに直交する。以下においては、X方向と、当該X方向の反対の方向(-X方向)とを含む方向を「X軸方向」ともいう。また、以下においては、Y方向と、当該Y方向の反対の方向(-Y方向)とを含む方向を「Y軸方向」ともいう。また、以下においては、X軸方向およびY軸方向を含む平面を、「XY面」ともいう。 FIG. 3 is a diagram for explaining the ink sheet 9. In FIG. 3, the X and Y directions are orthogonal to each other. In the following, the direction including the X direction and the direction opposite to the X direction (−X direction) is also referred to as “X-axis direction”. Further, in the following, the direction including the Y direction and the direction opposite to the Y direction (−Y direction) is also referred to as “Y-axis direction”. Further, in the following, a plane including the X-axis direction and the Y-axis direction is also referred to as an “XY plane”.
 図3において、-X方向は、後述のインクロール9rに向かう方向である。また、図3において、X方向は、後述のインクロール9rmに向かう方向である。インクシート9の詳細な説明は後述する。 In FIG. 3, the −X direction is the direction toward the ink roll 9r described later. Further, in FIG. 3, the X direction is a direction toward the ink roll 9 rm, which will be described later. A detailed description of the ink sheet 9 will be described later.
 再び、図1を参照して、印刷装置100は、筐体Ch1と、サーマルヘッド2と、ヘッド温度センサSn3と、ヒートシンク4と、冷却ファン5と、用紙搬送部7と、リール10a,10bと、プラテンローラ6と、カッターCt1と、環境温度センサSn1とを備える。 Again, referring to FIG. 1, the printing apparatus 100 includes a housing Ch1, a thermal head 2, a head temperature sensor Sn3, a heat sink 4, a cooling fan 5, a paper carrier 7, and reels 10a and 10b. , A platen roller 6, a cutter Ct1, and an environmental temperature sensor Sn1.
 筐体Ch1は、印刷装置100が備える各構成要素を収容する。筐体Ch1は、例えば、サーマルヘッド2と、ヒートシンク4と、冷却ファン5と、用紙搬送部7と、プラテンローラ6と、カッターCt1等を収容する。筐体Ch1の形状は、例えば、直方体である。以下においては、筐体Ch1の内部の温度を、「環境温度」ともいう。環境温度は、印刷装置100の内部の温度である。 The housing Ch1 accommodates each component included in the printing apparatus 100. The housing Ch1 houses, for example, a thermal head 2, a heat sink 4, a cooling fan 5, a paper transport unit 7, a platen roller 6, a cutter Ct1 and the like. The shape of the housing Ch1 is, for example, a rectangular parallelepiped. In the following, the temperature inside the housing Ch1 is also referred to as “environmental temperature”. The environmental temperature is the temperature inside the printing apparatus 100.
 サーマルヘッド2は、熱を発する機能を有する。具体的には、サーマルヘッド2は、熱を発する機能を有する発熱素子h1を含む。発熱素子h1は、例えば、発熱抵抗体である。以下の説明では、処理を分かりやすくするために、「サーマルヘッド2の発熱素子h1が発する熱」を、簡略して、「サーマルヘッド2が発する熱」ともいう。また、以下においては、サーマルヘッド2が発する熱を、「熱エネルギー」ともいう。 The thermal head 2 has a function of generating heat. Specifically, the thermal head 2 includes a heat generating element h1 having a function of generating heat. The heat generating element h1 is, for example, a heat generating resistor. In the following description, in order to make the process easier to understand, "heat generated by the heat generating element h1 of the thermal head 2" is also simply referred to as "heat generated by the thermal head 2." Further, in the following, the heat generated by the thermal head 2 is also referred to as "heat energy".
 サーマルヘッド2には、ヘッド温度センサSn3が設けられている。以下においては、サーマルヘッド2の温度を、「ヘッド温度」ともいう。また、以下においては、サーマルヘッド2の外面のうち、発熱素子h1が存在する領域を、「発熱領域」ともいう。ヘッド温度は、例えば、サーマルヘッド2の外面のうち、発熱領域と異なる領域の温度である。すなわち、ヘッド温度は、サーマルヘッド2の外面の温度である。なお、ヘッド温度は、発熱素子h1が存在する発熱領域の温度であってもよい。 The thermal head 2 is provided with a head temperature sensor Sn3. In the following, the temperature of the thermal head 2 is also referred to as “head temperature”. Further, in the following, the region where the heat generating element h1 exists on the outer surface of the thermal head 2 is also referred to as a “heat generating region”. The head temperature is, for example, the temperature of a region of the outer surface of the thermal head 2 that is different from the heat generation region. That is, the head temperature is the temperature of the outer surface of the thermal head 2. The head temperature may be the temperature of the heat generating region in which the heat generating element h1 is present.
 ヘッド温度センサSn3は、ヘッド温度を計測する機能を有するヘッド温度計測部である。ヘッド温度センサSn3は、例えば、サーマルヘッド2の外面のうち、発熱領域と異なる領域に設けられている。ヘッド温度センサSn3は、例えば、発熱素子h1の近傍に設けられている。ヘッド温度センサSn3は、例えば、サーミスタ等を利用して構成される。 The head temperature sensor Sn3 is a head temperature measuring unit having a function of measuring the head temperature. The head temperature sensor Sn3 is provided, for example, on the outer surface of the thermal head 2 in a region different from the heat generation region. The head temperature sensor Sn3 is provided, for example, in the vicinity of the heat generating element h1. The head temperature sensor Sn3 is configured by using, for example, a thermistor or the like.
 サーマルヘッド2には、ヒートシンク4が取り付けられている。ヒートシンク4は、サーマルヘッド2を冷却するための冷却機構である。冷却ファン5は、ヒートシンク4の冷却を行う。具体的には、冷却ファン5は、ヒートシンク4に向かう風を発生させる。 A heat sink 4 is attached to the thermal head 2. The heat sink 4 is a cooling mechanism for cooling the thermal head 2. The cooling fan 5 cools the heat sink 4. Specifically, the cooling fan 5 generates a wind toward the heat sink 4.
 用紙搬送部7は、用紙8を搬送する機能を有する。用紙搬送部7は、グリップローラ7aとピンチローラ7bとから構成される。グリップローラ7aは、図示しないステッピングモータにより、回転するように構成される。 The paper transport unit 7 has a function of transporting the paper 8. The paper transport unit 7 is composed of a grip roller 7a and a pinch roller 7b. The grip roller 7a is configured to rotate by a stepping motor (not shown).
 用紙搬送部7は、グリップローラ7aとピンチローラ7bとにより用紙8を挟んだ状態で、当該グリップローラ7aを回転させることにより、当該用紙8を搬送するように構成される。用紙8が搬送される場合、ロール紙18から用紙8が引き出される。 The paper transport unit 7 is configured to transport the paper 8 by rotating the grip roller 7a with the paper 8 sandwiched between the grip roller 7a and the pinch roller 7b. When the paper 8 is conveyed, the paper 8 is pulled out from the roll paper 18.
 インクシート9の一方側の端部がロール状に巻かれることにより、インクロール9rが構成される。インクロール9rは、リール10bに取り付けられる。インクシート9の他方側の端部がロール状に巻かれることにより、インクロール9rmが構成される。インクロール9rmは、リール10aに取り付けられる。インクロール9rは、インクシート9を供給するためのロールである。インクロール9rmは、インクシート9を巻き取るためのロールである。 The ink roll 9r is formed by winding one end of the ink sheet 9 in a roll shape. The ink roll 9r is attached to the reel 10b. The ink roll 9rm is formed by winding the other end of the ink sheet 9 in a roll shape. The ink roll 9rm is attached to the reel 10a. The ink roll 9r is a roll for supplying the ink sheet 9. The ink roll 9rm is a roll for winding the ink sheet 9.
 リール10aは、インクロール9rmがインクシート9を巻き取るように回転する。インクロール9rは、インクロール9rmの回転に伴って回転する。リール10bは、インクロール9rからインクシート9が供給されるように、回転する。 The reel 10a rotates so that the ink roll 9rm winds up the ink sheet 9. The ink roll 9r rotates with the rotation of the ink roll 9rm. The reel 10b rotates so that the ink sheet 9 is supplied from the ink roll 9r.
 プラテンローラ6は、サーマルヘッド2の一部と対向するように設けられる。プラテンローラ6は、当該プラテンローラ6とサーマルヘッド2とにより、インクシート9および用紙8を挟むことが可能なように、移動自在に構成される。プラテンローラ6は、用紙8およびインクシート9を介して、サーマルヘッド2に接触する。 The platen roller 6 is provided so as to face a part of the thermal head 2. The platen roller 6 is configured to be movable so that the ink sheet 9 and the paper 8 can be sandwiched between the platen roller 6 and the thermal head 2. The platen roller 6 comes into contact with the thermal head 2 via the paper 8 and the ink sheet 9.
 以下においては、プラテンローラ6が、用紙8およびインクシート9を介して、サーマルヘッド2に接触している状況における、当該プラテンローラ6の状態を、「プラテン接触状態」ともいう。プラテン接触状態は、プラテンローラ6およびサーマルヘッド2により、用紙8およびインクシート9が挟まれている状態である。 In the following, the state of the platen roller 6 in the state where the platen roller 6 is in contact with the thermal head 2 via the paper 8 and the ink sheet 9 is also referred to as a “platen contact state”. The platen contact state is a state in which the paper 8 and the ink sheet 9 are sandwiched between the platen roller 6 and the thermal head 2.
 プラテン接触状態において、サーマルヘッド2が、インクシート9を加熱することにより、インクシート9の染料(インク)が、用紙8に転写される。 When the thermal head 2 heats the ink sheet 9 in the platen contact state, the dye (ink) of the ink sheet 9 is transferred to the paper 8.
 カッターCt1は、用紙8の一部を切断する機能を有する。 Cutter Ct1 has a function of cutting a part of paper 8.
 環境温度センサSn1は、印刷装置100の内部の温度である環境温度を計測する機能を有する。環境温度センサSn1は、筐体Ch1の内部に設けられる。なお、環境温度センサSn1は、筐体Ch1の外部に設けられてもよい。 The environmental temperature sensor Sn1 has a function of measuring the environmental temperature, which is the internal temperature of the printing device 100. The environmental temperature sensor Sn1 is provided inside the housing Ch1. The environmental temperature sensor Sn1 may be provided outside the housing Ch1.
 再び、図3を参照して、インクシート9には、インク領域R10が、当該インクシート9の長手方向(X軸方向)に沿って、周期的に配置されている。インク領域R10には、染料6y,6m,6cと保護材料6opとが設けられている。染料6y,6m,6cおよび保護材料6opの各々は、サーマルヘッド2により加熱されることにより、用紙8に転写される転写材料である。以下においては、サーマルヘッド2が転写材料に印加するための熱エネルギーを、「「印刷エネルギー」、印刷エネルギーEp」または「Ep」ともいう。 Again, referring to FIG. 3, the ink region R10 is periodically arranged in the ink sheet 9 along the longitudinal direction (X-axis direction) of the ink sheet 9. The ink region R10 is provided with dyes 6y, 6m, 6c and a protective material 6op. Each of the dyes 6y, 6m, 6c and the protective material 6op is a transfer material that is transferred to the paper 8 by being heated by the thermal head 2. In the following, the thermal energy for the thermal head 2 to apply to the transfer material is also referred to as "printing energy", printing energy Ep "or" Ep ".
 染料6y,6m,6cの各々は、用紙8に転写するための色を示す。染料6y,6m,6cは、それぞれ、イエロー、マゼンタおよびシアンの色を示す。以下においては、Yの染料、Mの染料、および、Cの染料の各々を、「色染料」ともいう。 Each of the dyes 6y, 6m, and 6c shows a color to be transferred to the paper 8. The dyes 6y, 6m and 6c show the colors of yellow, magenta and cyan, respectively. In the following, each of the Y dye, the M dye, and the C dye is also referred to as a "color dye".
 保護材料6opは、用紙8に転写された色を保護するための材料(オーバーコート)である。具体的には、保護材料6opは、染料6y,6m,6cにより用紙8に形成された画像を保護するための材料である。以下においては、保護材料6opを、「OP材料」ともいう。また、以下においては、用紙8のうち、画像を印刷するための領域を、「印刷領域」ともいう。 The protective material 6op is a material (overcoat) for protecting the color transferred to the paper 8. Specifically, the protective material 6op is a material for protecting the image formed on the paper 8 by the dyes 6y, 6m, 6c. In the following, the protective material 6op is also referred to as an “OP material”. Further, in the following, the area for printing an image on the paper 8 is also referred to as a “print area”.
 また、インクシート9には、マークMk1が設けられている。マークMk1は、各転写材料(例えば、染料6y)に対応づけて設けられている。マークMk1は、各転写材料の位置を特定するためのマークである。 Further, the ink sheet 9 is provided with the mark Mk1. The mark Mk1 is provided in association with each transfer material (for example, dye 6y). The mark Mk1 is a mark for specifying the position of each transfer material.
 図2を参照して、印刷装置100は、さらに、通信部51と、メモリ52と、制御部53と、画像データ処理部54と、印刷用データ処理部55と、リール駆動部56,56mと、用紙センサSn8と、インクセンサSn9とを備える。 With reference to FIG. 2, the printing apparatus 100 further includes a communication unit 51, a memory 52, a control unit 53, an image data processing unit 54, a printing data processing unit 55, and a reel driving unit 56, 56 m. , The paper sensor Sn8 and the ink sensor Sn9 are provided.
 通信部51は、情報処理装置200と通信する機能を有する。通信部51は、情報処理装置200から、印刷ジョブを受信する。メモリ52は、例えば、揮発性メモリと不揮発性メモリとから構成される。揮発性メモリは、データを一時的に記憶するメモリである。揮発性メモリは、例えば、画像データGdを含む印刷ジョブ等を記憶する。揮発性メモリは、例えば、RAM(Random Access Memory)である。当該不揮発性メモリには、制御プログラム、初期設定値等が記憶されている。不揮発性メモリは、例えば、フラッシュメモリである。 The communication unit 51 has a function of communicating with the information processing device 200. The communication unit 51 receives a print job from the information processing device 200. The memory 52 is composed of, for example, a volatile memory and a non-volatile memory. Volatile memory is a memory that temporarily stores data. The volatile memory stores, for example, a print job including image data Gd. The volatile memory is, for example, RAM (Random Access Memory). A control program, initial setting values, and the like are stored in the non-volatile memory. The non-volatile memory is, for example, a flash memory.
 制御部53は、印刷装置100に含まれる各構成要素を制御する。制御部53は、メモリ52に記憶されている制御プログラムに従って、当該各構成要素を制御する。制御部53は、例えば、CPU(Central Processing Unit)等のプロセッサである。制御部53は、例えば、サーマルヘッド2を制御する。制御部53は、サーマルヘッド2(発熱素子h1)が熱エネルギー(印刷エネルギーEp)を発するように、サーマルヘッド2(発熱素子h1)を制御する。 The control unit 53 controls each component included in the printing device 100. The control unit 53 controls each component according to the control program stored in the memory 52. The control unit 53 is, for example, a processor such as a CPU (Central Processing Unit). The control unit 53 controls, for example, the thermal head 2. The control unit 53 controls the thermal head 2 (heating element h1) so that the thermal head 2 (heating element h1) emits thermal energy (printing energy Ep).
 画像データ処理部54は、必要に応じて、画像データ(印刷データ)に対し、各種の処理を行う。印刷用データ処理部55は、画像データを印刷用データに変換する機能を有する。印刷用データは、サーマルヘッド2の発熱制御を行うためのデータである。印刷用データは、対象画像(Y画像、M画像およびC画像)を、用紙8に印刷するためのデータである。印刷用データは、対象画像(Y画像、M画像およびC画像)のデータを含む。 The image data processing unit 54 performs various processes on the image data (print data) as needed. The print data processing unit 55 has a function of converting image data into print data. The print data is data for controlling heat generation of the thermal head 2. The print data is data for printing the target image (Y image, M image, and C image) on the paper 8. The print data includes the data of the target image (Y image, M image and C image).
 リール駆動部56は、リール10b(インクロール9r)を回転させる機能を有する。リール駆動部56mは、リール10a(インクロール9rm)を回転させる機能を有する。 The reel drive unit 56 has a function of rotating the reel 10b (ink roll 9r). The reel drive unit 56m has a function of rotating the reel 10a (ink roll 9rm).
 用紙センサSn8は、用紙8を検出する機能を有する。用紙センサSn8は、用紙8が搬送されるための経路の近傍の位置であって、かつ、当該用紙8を検出可能な位置に設けられる。 The paper sensor Sn8 has a function of detecting the paper 8. The paper sensor Sn8 is provided at a position near the path for the paper 8 to be conveyed and at a position where the paper 8 can be detected.
 インクセンサSn9は、インクシート9に関する情報を検出する機能を有する。また、インクセンサSn9は、インクシート9におけるマークMk1(転写材料の位置)を検出する機能を有する。インクセンサSn9は、マークMk1を検出することにより、当該マークMk1に対応づけられた転写材料(例えば、染料6y)の位置を検出する。 The ink sensor Sn9 has a function of detecting information about the ink sheet 9. Further, the ink sensor Sn9 has a function of detecting the mark Mk1 (position of the transfer material) on the ink sheet 9. By detecting the mark Mk1, the ink sensor Sn9 detects the position of the transfer material (for example, dye 6y) associated with the mark Mk1.
 次に、印刷処理Pについて説明する。印刷処理Pでは、単位印刷処理が行われる。単位印刷処理では、プラテン接触状態において、サーマルヘッド2がインクシート9の転写材料を加熱しながら、インクシート9および用紙8が同時に搬送される。これにより、1ライン毎に転写材料が用紙8の印刷領域に転写される。 Next, the print process P will be described. In the print process P, a unit print process is performed. In the unit printing process, the ink sheet 9 and the paper 8 are simultaneously conveyed while the thermal head 2 heats the transfer material of the ink sheet 9 in the platen contact state. As a result, the transfer material is transferred to the print area of the paper 8 line by line.
 印刷処理Pでは、上記の単位印刷処理が、転写材料である染料6y,6m,6cおよび保護材料6opの各々に対して、繰り返し行われる。これにより、染料6y,6m,6cおよび保護材料6opが、当該染料6y,6m,6cおよび保護材料6opの順で、用紙8の印刷領域に転写される。すなわち、Y画像、M画像、C画像およびOP画像が、当該Y画像、M画像、C画像およびOP画像の順で、用紙8の印刷領域に転写される。その結果、用紙8の印刷領域に画像が印刷されるとともに、当該画像が保護材料6opからなる保護層(OP画像)で保護される。 In the printing process P, the above unit printing process is repeatedly performed for each of the dyes 6y, 6m, 6c and the protective material 6op, which are transfer materials. As a result, the dyes 6y, 6m, 6c and the protective material 6op are transferred to the printing area of the paper 8 in the order of the dyes 6y, 6m, 6c and the protective material 6op. That is, the Y image, the M image, the C image, and the OP image are transferred to the print area of the paper 8 in the order of the Y image, the M image, the C image, and the OP image. As a result, the image is printed on the print area of the paper 8, and the image is protected by the protective layer (OP image) made of the protective material 6 op.
 以下においては、用紙8の印刷領域に画像が印刷されたものを、「印刷物」ともいう。当該印刷物は、用紙8の一部である。カッターCt1は、用紙8から印刷物が切り離されるように、当該用紙8を切断する。これにより、印刷物が、印刷装置100の外部へ排出される。 In the following, an image printed in the print area of the paper 8 is also referred to as a "printed matter". The printed matter is a part of paper 8. The cutter Ct1 cuts the paper 8 so that the printed matter is separated from the paper 8. As a result, the printed matter is discharged to the outside of the printing apparatus 100.
 以下においては、用紙8の印刷領域に印刷された画像を、「画像Gn」ともいう。また、以下においては、用紙8が搬送される方向を、「用紙搬送方向」ともいう。図3において、用紙搬送方向は、X方向および-X方向を含むX軸方向である。 In the following, the image printed in the print area of the paper 8 is also referred to as "image Gn". Further, in the following, the direction in which the paper 8 is conveyed is also referred to as a “paper conveying direction”. In FIG. 3, the paper transport direction is the X-axis direction including the X direction and the −X direction.
 印刷装置100が用紙8に画像を印刷するための方向には、主走査方向および副走査方向が存在する。副走査方向は、用紙搬送方向である。また、主走査方向は、副走査方向と直交する方向である。 There are a main scanning direction and a sub-scanning direction in the direction in which the printing device 100 prints an image on the paper 8. The sub-scanning direction is the paper transport direction. Further, the main scanning direction is a direction orthogonal to the sub-scanning direction.
 以下においては、インクシート9において、染料6y,6m,6cおよび保護材料6opの各々が設けられている領域を、「領域Rt1」または「Rt1」ともいう(図3参照)。領域Rt1は、1回の印刷処理Pで生成可能な最大サイズの画像を印刷するために使用される、インクシート9の領域である領域Rt1のサイズは、画像Gnに相当する1画面のサイズに相当する。以下においては、領域Rt1のサイズを、「1画面サイズ」ともいう。 In the following, the region in which each of the dyes 6y, 6m, 6c and the protective material 6op is provided in the ink sheet 9 is also referred to as “region Rt1” or “Rt1” (see FIG. 3). The area Rt1 is used to print the maximum size image that can be generated by one printing process P. The size of the area Rt1 which is the area of the ink sheet 9 is the size of one screen corresponding to the image Gn. Equivalent to. In the following, the size of the area Rt1 is also referred to as “one screen size”.
 また、以下においては、副走査方向(X軸方向)における、領域Rt1の長さを、「長さL」または「L」ともいう。長さLは、予め決められている。そのため、インクシート9を使用する場合、画像Gnの副走査方向の長さの上限値は、長さLである。 Further, in the following, the length of the region Rt1 in the sub-scanning direction (X-axis direction) is also referred to as "length L" or "L". The length L is predetermined. Therefore, when the ink sheet 9 is used, the upper limit of the length of the image Gn in the sub-scanning direction is the length L.
 印刷装置100は、サーマルヘッド2を使用して、対象画像としての複数の画像が隣接するように、当該複数の画像を用紙8に印刷する機能を有する。当該複数の画像の各々は、規定の順序で印刷される画像である。 The printing device 100 has a function of using the thermal head 2 to print the plurality of images on the paper 8 so that the plurality of images as the target images are adjacent to each other. Each of the plurality of images is an image printed in a specified order.
 本明細書において、「複数の画像が隣接する」とは、「複数の画像が互いに隣接する」ことを示す。例えば、「画像と別の画像とが隣接する」とは、「画像と別の画像とが互いに隣接する」ことを示す。 In the present specification, "a plurality of images are adjacent to each other" means "a plurality of images are adjacent to each other". For example, "an image and another image are adjacent to each other" means "an image and another image are adjacent to each other".
 本実施の形態では、説明を分かりやすくするために、対象画像として、2枚の画像を使用した処理について説明する。以下においては、対象画像としての2枚の画像を、それぞれ、画像G1および画像G2ともいう。また、以下においては、画像G1を示す画像データGdを、「画像データGd1」ともいう。すなわち、画像データGd1は、画像G1の画像データである。また、以下においては、画像G2を示す画像データGdを、「画像データGd2」ともいう。すなわち、画像データGd2は、画像G2の画像データである。 In the present embodiment, in order to make the explanation easy to understand, a process using two images as target images will be described. In the following, the two images as the target images are also referred to as an image G1 and an image G2, respectively. Further, in the following, the image data Gd indicating the image G1 is also referred to as “image data Gd1”. That is, the image data Gd1 is the image data of the image G1. Further, in the following, the image data Gd indicating the image G2 is also referred to as “image data Gd2”. That is, the image data Gd2 is the image data of the image G2.
 また、以下においては、全ての対象画像のうち、j番目の対象画像を、「j番目対象画像」または「画像j」ともいう。「j」は、1以上の整数である。j番目対象画像とは、印刷装置100が、j番目に印刷するための対象画像である。例えば、1番目対象画像は、全ての対象画像のうち、1番目に印刷される対象画像である。 Further, in the following, the j-th target image among all the target images is also referred to as "j-th target image" or "image j". "J" is an integer of 1 or more. The j-th target image is a target image for the printing device 100 to print at the j-th target image. For example, the first target image is the target image to be printed first among all the target images.
 また、以下においては、全ての対象画像のうち、(j+1)番目の画像を、「(j+1)番目対象画像」または「画像(j+1)」ともいう。画像jおよび画像(j+1)の各々は、規定の順序で印刷される画像である。画像(j+1)は、画像jの次に印刷される画像である。 Further, in the following, the (j + 1) th image among all the target images is also referred to as "(j + 1) th target image" or "image (j + 1)". Each of the image j and the image (j + 1) is an image printed in a specified order. The image (j + 1) is an image to be printed next to the image j.
 以下においては、画像Aが、印刷装置100により印刷されたと仮定した状況を、「仮定印刷状況」ともいう。また、以下においては、仮定印刷状況におけるヘッド温度を、「予測ヘッド温度」、「ヘッド温度Tha」または「Tha」ともいう。ヘッド温度Thaは、印刷装置100による、当該画像Aの印刷が終了したタイミングにおける、ヘッド温度である。 In the following, the situation in which the image A is assumed to be printed by the printing device 100 is also referred to as a “hypothetical printing situation”. Further, in the following, the head temperature in the hypothetical printing situation is also referred to as "predicted head temperature", "head temperature The" or "The". The head temperature Th is the head temperature at the timing when the printing device 100 finishes printing the image A.
 以下においては、印刷装置100において、印刷中の画像を、「印刷中画像」ともいう。また、以下においては、1番目対象画像の印刷が開始される直前におけるヘッド温度を、「ヘッド温度T0」または「T0」ともいう。 In the following, the image being printed by the printing apparatus 100 will also be referred to as a "printing image". Further, in the following, the head temperature immediately before the printing of the first target image is started is also referred to as “head temperature T0” or “T0”.
 以下においては、印刷装置100が使用可能なインクシート9を使用して、当該印刷装置100が用紙8に印刷可能な対象画像の最大のサイズを、「最大印刷サイズSx」または「Sx」ともいう。また、以下においては、対象画像を構成する全ての画素の濃度が最高濃度である状況における当該対象画像を、「最高濃度対象画像」ともいう。当該最高濃度は、例えば、黒を示す濃度である。 In the following, using the ink sheet 9 that can be used by the printing device 100, the maximum size of the target image that the printing device 100 can print on the paper 8 is also referred to as “maximum printing size Sx” or “Sx”. .. Further, in the following, the target image in a situation where the density of all the pixels constituting the target image is the maximum density is also referred to as a “highest density target image”. The maximum density is, for example, a density indicating black.
 また、以下においては、最大印刷サイズSxを有する最高濃度対象画像を用紙8に印刷するために必要な印刷エネルギーEpを、「基準印刷エネルギー」、「基準印刷エネルギーPmax」または、「Pmax」ともいう。また、以下においては、サーマルヘッド2が基準印刷エネルギーPmaxを発した直後のヘッド温度を、「最高ヘッド温度」ともいう。また、以下においては、サーマルヘッド2が基準印刷エネルギーPmaxを発する直前のヘッド温度を、「通常ヘッド温度」ともいう。 Further, in the following, the printing energy Ep required to print the maximum density target image having the maximum printing size Sx on the paper 8 is also referred to as "reference printing energy", "reference printing energy Pmax", or "Pmax". .. Further, in the following, the head temperature immediately after the thermal head 2 emits the reference printing energy Pmax is also referred to as “maximum head temperature”. Further, in the following, the head temperature immediately before the thermal head 2 emits the reference printing energy Pmax is also referred to as “normal head temperature”.
 また、以下においては、最高ヘッド温度と通常ヘッド温度との差分を、「上昇温度ΔTmax」または「ΔTmax」ともいう。上昇温度ΔTmaxは、最高ヘッド温度から通常ヘッド温度を減算することにより得られる。上昇温度ΔTmaxは、予め、実験等により測定されている。当該実験は、例えば、最大印刷サイズSxを有する最高濃度対象画像を印刷する印刷処理Pの実施、ヘッド温度センサSn3が通常ヘッド温度および最高ヘッド温度を取得するための処理等である。上昇温度ΔTmaxは、メモリ52に記憶されている。 Further, in the following, the difference between the maximum head temperature and the normal head temperature is also referred to as “rising temperature ΔTmax” or “ΔTmax”. The rising temperature ΔTmax is obtained by subtracting the normal head temperature from the maximum head temperature. The rising temperature ΔTmax has been measured in advance by experiments or the like. The experiment is, for example, an execution of a print process P for printing a maximum density target image having a maximum print size Sx, a process for the head temperature sensor Sn3 to acquire a normal head temperature and a maximum head temperature, and the like. The rising temperature ΔTmax is stored in the memory 52.
 (動作)
 次に、印刷装置100の動作について説明する。本技術の特徴は、画像データを考慮して、予測ヘッド温度としてのヘッド温度Thaを予測することである。また、本技術の特徴は、1画面サイズのインクシートを使用して複数の画像を印刷する場合、印刷中の画像に続けて次の画像を印刷する処理が実行可能であるか否かを、判定し、当該判定の結果に基づいて、当該処理を実行することである。
(motion)
Next, the operation of the printing device 100 will be described. The feature of this technique is to predict the head temperature The as the predicted head temperature in consideration of the image data. Further, a feature of this technology is whether or not it is possible to execute a process of printing the next image following the image being printed when printing a plurality of images using a one-screen size ink sheet. The determination is made, and the process is executed based on the result of the determination.
 本実施の形態では、印刷装置100が、以下の印刷制御処理を行う。図4は、実施の形態1に係る印刷制御処理における、印刷装置100の動作を説明するための機能構成を示す図である。 In the present embodiment, the printing apparatus 100 performs the following printing control processing. FIG. 4 is a diagram showing a functional configuration for explaining the operation of the printing apparatus 100 in the printing control process according to the first embodiment.
 メモリ52には、予測ヘッド温度としてのヘッド温度Thaを予測するための温度予測情報と、隣接印刷条件とが記憶されている。以下においては、予測ヘッド温度としてのヘッド温度Thaを予測する方法を、「温度予測方法」ともいう。温度予測方法では、例えば、演算式を使用して、ヘッド温度Thaが予測される。温度予測情報は、温度予測方法を示す。 The memory 52 stores the temperature prediction information for predicting the head temperature Th as the predicted head temperature and the adjacent printing conditions. Hereinafter, the method of predicting the head temperature Th as the predicted head temperature is also referred to as a “temperature prediction method”. In the temperature prediction method, for example, the head temperature The is predicted by using an arithmetic expression. The temperature prediction information indicates a temperature prediction method.
 印刷装置100は、受信部61と、ヘッド温度予測部62と、判定部63と、印刷制御部64と、印刷状態取得部65とを備える。ヘッド温度予測部62、判定部63、印刷制御部64および印刷状態取得部65の一部または全ては、メモリ52に記憶されている制御プログラムを、制御部53が実行することにより実現される。なお、ヘッド温度予測部62、判定部63、印刷制御部64および印刷状態取得部65の一部または全ては、電気回路等のハードウエアで構成されてもよい。 The printing device 100 includes a receiving unit 61, a head temperature prediction unit 62, a determination unit 63, a print control unit 64, and a print state acquisition unit 65. A part or all of the head temperature prediction unit 62, the determination unit 63, the print control unit 64, and the print state acquisition unit 65 are realized by the control unit 53 executing the control program stored in the memory 52. A part or all of the head temperature prediction unit 62, the determination unit 63, the print control unit 64, and the print state acquisition unit 65 may be composed of hardware such as an electric circuit.
 受信部61は、情報処理装置200から、情報、データ等を受信する。ヘッド温度予測部62は、ヘッド温度を予測する機能を有する。ヘッド温度予測部62は、詳細は後述するが、受信部61が受信した画像データと、ヘッド温度センサSn3が計測したヘッド温度とに基づいて、画像が印刷された状況におけるヘッド温度Thaを予測する。 The receiving unit 61 receives information, data, etc. from the information processing device 200. The head temperature prediction unit 62 has a function of predicting the head temperature. Although the details will be described later, the head temperature prediction unit 62 predicts the head temperature Tha in the situation where the image is printed based on the image data received by the reception unit 61 and the head temperature measured by the head temperature sensor Sn3. ..
 以下においては、印刷に関する、印刷装置100の動作状態を、「印刷状態」ともいう。印刷状態には、「印刷中」、「待機状態」、「エラー発生」等が存在する。「印刷中」とは、印刷装置100が画像を印刷している状況における、当該印刷装置100の状態である。「待機状態」とは、印刷装置100が印刷を行っていない状況における、当該印刷装置100の状態である。 In the following, the operating state of the printing device 100 regarding printing is also referred to as a "printing state". The print state includes "printing", "standby state", "error occurrence", and the like. “Printing” is a state of the printing device 100 in a situation where the printing device 100 is printing an image. The "standby state" is a state of the printing device 100 in a situation where the printing device 100 is not printing.
 印刷状態取得部65は、印刷状態を、随時、確認している。印刷状態取得部65は、印刷状態を示す印刷状態情報を、判定部63へ送信する。判定部63は、詳細は後述するが、予測されたヘッド温度Thaと、印刷状態取得部65が取得した印刷状態とに基づいて、後述の隣接印刷処理を印刷装置100に実行させるか否かを判定する。 The print status acquisition unit 65 checks the print status at any time. The print state acquisition unit 65 transmits the print state information indicating the print state to the determination unit 63. Although the details will be described later, the determination unit 63 determines whether or not to cause the printing device 100 to execute the adjacent printing process described later based on the predicted head temperature The and the printing state acquired by the printing state acquisition unit 65. judge.
 印刷制御部64は、印刷を行うための構成(例えば、サーマルヘッド2、リール駆動部56m等)を制御する。印刷制御部64は、例えば、制御部53である。印刷制御部64は、判定部63による判定結果に基づいて、印刷装置100が印刷を行うように、当該印刷装置100を制御する。 The print control unit 64 controls a configuration for printing (for example, a thermal head 2, a reel drive unit 56 m, etc.). The print control unit 64 is, for example, a control unit 53. The print control unit 64 controls the printing device 100 so that the printing device 100 prints based on the determination result by the determination unit 63.
 次に、印刷制御処理について詳細に説明する。図5は、実施の形態1に係る印刷制御処理のフローチャートである。図5では、印刷制御処理に含まれる、主要なステップのみを示している。印刷制御処理の一例を分かりやすくするために、以下の前提Pm1のもとで行われる印刷制御処理について説明する。 Next, the print control process will be described in detail. FIG. 5 is a flowchart of the print control process according to the first embodiment. FIG. 5 shows only the main steps included in the print control process. In order to make an example of the print control process easy to understand, the print control process performed under the following premise Pm1 will be described.
 前提Pm1では、画像G1および画像G2が印刷される。また、前提Pm1では、画像G1は、画像jとしてのj番目対象画像である。また、画像G1は、1番目対象画像である。また、前提Pm1では、画像G2は、画像(j+1)としての(j+1)番目対象画像である。 In the premise Pm1, the image G1 and the image G2 are printed. Further, in the premise Pm1, the image G1 is the j-th target image as the image j. Further, the image G1 is the first target image. Further, in the premise Pm1, the image G2 is the (j + 1) th target image as the image (j + 1).
 また、前提Pm1では、対象画像としての画像G1,G2の各々を構成する複数の画素の各々は、R画素(R画素データ)、G画素(G画素データ)およびB画素(B画素データ)で表現される。R画素データ、G画素データおよびB画素データの各々は、0から255までの範囲内の数値を示す。 Further, in the premise Pm1, each of the plurality of pixels constituting each of the images G1 and G2 as the target image is R pixel (R pixel data), G pixel (G pixel data), and B pixel (B pixel data). Be expressed. Each of the R pixel data, the G pixel data, and the B pixel data shows a numerical value in the range of 0 to 255.
 また、前提Pm1では、印刷装置100のヘッド温度予測部62は、画像G1を示す画像データGd1を含む印刷ジョブを、情報処理装置200から既に受信している。画像データGd1は、前述のR画像データ、前述のG画像データおよび前述のB画像データを含む。前述したように、例えば、R画像データは、複数のR画素データを含む。 Further, in the premise Pm1, the head temperature prediction unit 62 of the printing device 100 has already received the print job including the image data Gd1 indicating the image G1 from the information processing device 200. The image data Gd1 includes the above-mentioned R image data, the above-mentioned G image data, and the above-mentioned B image data. As described above, for example, the R image data includes a plurality of R pixel data.
 また、前提Pm1では、画像データGd1を含む印刷ジョブは、メモリ52に記憶されている。また、前提Pm1では、印刷装置100が、画像G1に対応する印刷ジョブの受信に応じて、当該画像G1の印刷を開始している。そのため、前提Pm1では、印刷制御処理が開始されるタイミングにおける画像G1は、印刷中画像である。 Further, in the premise Pm1, the print job including the image data Gd1 is stored in the memory 52. Further, in the premise Pm1, the printing device 100 starts printing the image G1 in response to the reception of the print job corresponding to the image G1. Therefore, in the premise Pm1, the image G1 at the timing when the print control process is started is the image being printed.
 前提Pm1では、後述の条件が満たされる場合、印刷装置100が、後述の隣接印刷処理を実行する。以下においては、用紙8に印刷されている画像を、「印刷画像」ともいう。また、以下においては、用紙8に印刷されていない画像を、「非印刷画像」ともいう。 In the premise Pm1, when the conditions described below are satisfied, the printing device 100 executes the adjacent printing process described later. In the following, the image printed on the paper 8 is also referred to as a “printed image”. Further, in the following, an image that is not printed on the paper 8 is also referred to as a “non-printed image”.
 隣接印刷処理は、印刷画像と非印刷画像とが隣接するように、当該非印刷画像を用紙8に印刷する処理である。前提Pm1における隣接印刷処理は、画像G1と画像G2とが隣接するように、当該画像G2を印刷する処理である。 The adjacent printing process is a process of printing the non-printing image on the paper 8 so that the printed image and the non-printing image are adjacent to each other. The adjacent printing process in the premise Pm1 is a process of printing the image G2 so that the image G1 and the image G2 are adjacent to each other.
 また、前提Pm1では、画像G1または画像G2である対象画像が印刷される場合、R画像データ、G画像データおよびB画像データに対応する、Y画像、M画像およびC画像を使用して、当該対象画像が印刷される。 Further, in the premise Pm1, when the target image which is the image G1 or the image G2 is printed, the Y image, the M image, and the C image corresponding to the R image data, the G image data, and the B image data are used. The target image is printed.
 また、前提Pm1では、1番目対象画像である画像G1の印刷が開始される直前において、ヘッド温度センサSn3がヘッド温度T0を既に計測しており、かつ、当該ヘッド温度T0を、ヘッド温度予測部62へ通知する。 Further, in the premise Pm1, the head temperature sensor Sn3 has already measured the head temperature T0 immediately before the printing of the image G1 which is the first target image is started, and the head temperature T0 is set to the head temperature prediction unit. Notify 62.
 また、前提Pm1における、温度予測情報が示す温度予測方法は、以下の特徴C1を有する。特徴C1は、画像Aの平均濃度が最高濃度に近い程、予測されるヘッド温度Thaは高いという特徴である。 Further, the temperature prediction method indicated by the temperature prediction information in the premise Pm1 has the following feature C1. Feature C1 is characterized in that the closer the average density of the image A is to the maximum density, the higher the predicted head temperature The.
 また、前提Pm1では、情報処理装置200は、画像G2を示す画像データGd2を含む印刷ジョブを、印刷装置100へ送信する。画像データGd2は、前述のR画像データ、G画像データおよびB画像データを含む。また、前提Pm1では、印刷状態取得部65は、印刷状態としての「印刷中」を示す印刷状態情報を、判定部63へ送信する。 Further, in the premise Pm1, the information processing device 200 transmits a print job including the image data Gd2 indicating the image G2 to the printing device 100. The image data Gd2 includes the above-mentioned R image data, G image data, and B image data. Further, in the premise Pm1, the print state acquisition unit 65 transmits the print state information indicating “printing” as the print state to the determination unit 63.
 図4および図5を参照して、前提Pm1における印刷制御処理では、まず、印刷装置100の受信部61が、印刷ジョブを受信し、当該印刷ジョブを、メモリ52に記憶させる(ステップS110)。 With reference to FIGS. 4 and 5, in the print control process in the premise Pm1, first, the receiving unit 61 of the printing apparatus 100 receives the print job and stores the print job in the memory 52 (step S110).
 次に、情報取得処理が行われる(ステップS120)。前提Pm1における情報取得処理では、ヘッド温度予測部62が、印刷データとしての画像データGd1,Gd2、ヘッド温度T0、および、温度予測情報を取得する。 Next, the information acquisition process is performed (step S120). In the information acquisition process in the premise Pm1, the head temperature prediction unit 62 acquires the image data Gd1 and Gd2 as print data, the head temperature T0, and the temperature prediction information.
 画像データGd1,Gd2は、メモリ52に記憶された印刷ジョブから取得される。ヘッド温度T0は、ヘッド温度センサSn3から取得される。ヘッド温度T0は、ヘッド温度センサSn3により計測された温度である。温度予測情報は、メモリ52から取得される。 The image data Gd1 and Gd2 are acquired from the print job stored in the memory 52. The head temperature T0 is acquired from the head temperature sensor Sn3. The head temperature T0 is the temperature measured by the head temperature sensor Sn3. The temperature prediction information is acquired from the memory 52.
 前述したように、前提Pm1における、温度予測情報が示す温度予測方法は、画像Aの平均濃度が最高濃度に近い程、予測されるヘッド温度Thaが高いという特徴C1を有する。前提Pm1における温度予測方法では、一例として、予測演算式を使用して、予測ヘッド温度としてのヘッド温度Thaが予測される。そのため、前提Pm1における温度予測情報は、当該予測演算式を示す。予測演算式は、例えば、以下の式(1)、式(2)および式(3)である。式(1)は、以下のように表現される。 As described above, the temperature prediction method indicated by the temperature prediction information in the premise Pm1 has a feature C1 that the predicted head temperature Tha is higher as the average density of the image A is closer to the maximum density. In the temperature prediction method in the premise Pm1, as an example, the head temperature Tha as the predicted head temperature is predicted by using the prediction calculation formula. Therefore, the temperature prediction information in the premise Pm1 indicates the prediction calculation formula. The prediction calculation formulas are, for example, the following formulas (1), (2) and (3). Equation (1) is expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)は、印刷エネルギーEpが高い程、算出されるヘッド温度Thaが高くなる式である。1番目対象画像に対応するヘッド温度Thaが予測される場合のみ、式(1)における「Th」には、計測されたヘッド温度T0が設定される。ヘッド温度Thaが複数回予測される場合、式(1)における「Th」には、式(1)により既に予測されたヘッド温度Thaが設定される。 Equation (1) is an equation in which the calculated head temperature The increases as the printing energy Ep increases. Only when the head temperature Tha corresponding to the first target image is predicted, the measured head temperature T0 is set in "Th" in the equation (1). When the head temperature Th is predicted a plurality of times, the head temperature Th already predicted by the formula (1) is set in "Th" in the formula (1).
 式(1)における「ΔTmax」は、前述の上昇温度ΔTmaxである。また、「α」は、環境温度に関する後述の環境温度補正係数である。ここで、印刷装置100が使用される環境の温度の範囲が、5℃から45℃の範囲であると仮定する。また、ΔTmaxに対応する環境温度が45℃であると仮定する。この場合、「α」は、例えば、0から1までの範囲内の実数で表現される。 “ΔTmax” in the formula (1) is the above-mentioned rising temperature ΔTmax. Further, "α" is an environmental temperature correction coefficient which will be described later with respect to the environmental temperature. Here, it is assumed that the temperature range of the environment in which the printing apparatus 100 is used is in the range of 5 ° C. to 45 ° C. Further, it is assumed that the environmental temperature corresponding to ΔTmax is 45 ° C. In this case, "α" is represented by, for example, a real number in the range of 0 to 1.
 前提Pm1では、ヘッド温度Thaの予測において、環境温度を考慮しない。そのため、前提Pm1における「α」は、例えば、固定値(例えば、1)とする。 In the premise Pm1, the environmental temperature is not considered in the prediction of the head temperature The. Therefore, “α” in the premise Pm1 is set to, for example, a fixed value (for example, 1).
 式(1)における「Ep」は、印刷エネルギーである。印刷エネルギーEpの値は、一例として、相対値として表現される。印刷エネルギーEpは、一例として、0から200までの範囲内の実数で表現される。印刷エネルギーEpは、以下の式(2)により表現される。 "Ep" in the formula (1) is the printing energy. The value of the print energy Ep is expressed as a relative value as an example. The print energy Ep is represented by a real number in the range of 0 to 200 as an example. The print energy Ep is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)は、対象画像または対象原色画像の平均濃度が最高濃度に近い程、算出される印刷エネルギーEpが高くなる式である。式(2)における「Argb」は、印刷原色画像(Y画像、M画像およびC画像)の印刷速度に関する後述の速度補正係数である。前提Pm1では、ヘッド温度Thaの算出において、当該印刷速度を考慮しない。そのため、前提Pm1における「Argb」は、例えば、固定値(例えば、1.0)とする。 Equation (2) is an equation in which the calculated printing energy Ep increases as the average density of the target image or the target primary color image approaches the maximum density. “Argb” in the formula (2) is a speed correction coefficient described later with respect to the printing speed of the print primary color image (Y image, M image and C image). In the premise Pm1, the printing speed is not taken into consideration in the calculation of the head temperature Th. Therefore, “Argb” in the premise Pm1 is set to, for example, a fixed value (for example, 1.0).
 また、式(2)における「Dn」の「n」は、1からNまでの範囲内の数値が設定される。例えば、n=1である場合、「D1」は、対象画像における1番目の画素を示す。「N」は、前述の最大印刷サイズSxの画像を構成する画素の数である。本実施の形態では、対象画像のサイズは、最大印刷サイズSxであるとする。この場合、「N」は、対象画像を構成する画素の数に相当する「k」である。 Further, for "n" of "Dn" in the formula (2), a numerical value within the range of 1 to N is set. For example, when n = 1, "D1" indicates the first pixel in the target image. “N” is the number of pixels constituting the above-mentioned image having the maximum print size Sx. In the present embodiment, the size of the target image is assumed to be the maximum print size Sx. In this case, "N" is "k" corresponding to the number of pixels constituting the target image.
 式(2)における「Dn」は、対象画像を構成する複数の画素に対応するR,G,B画素データの和(合計値)である。対象画像に対応するR,G,B画素データの和は、対象画像に対応する、R画素和、G画素和およびB画素和の合計値である。 "Dn" in the formula (2) is the sum (total value) of the R, G, and B pixel data corresponding to a plurality of pixels constituting the target image. The sum of the R, G, and B pixel data corresponding to the target image is the total value of the R pixel sum, the G pixel sum, and the B pixel sum corresponding to the target image.
 対象画像に対応するR画素和は、対象画像を構成する複数の画素に対応する複数のR画素データの和である。対象画像に対応するG画素和は、対象画像を構成する複数の画素に対応する複数のG画素データの和である。対象画像に対応するB画素和は、対象画像を構成する複数の画素に対応する複数のB画素データの和である。 The R pixel sum corresponding to the target image is the sum of a plurality of R pixel data corresponding to a plurality of pixels constituting the target image. The G pixel sum corresponding to the target image is the sum of a plurality of G pixel data corresponding to the plurality of pixels constituting the target image. The B pixel sum corresponding to the target image is the sum of a plurality of B pixel data corresponding to the plurality of pixels constituting the target image.
 また、式(2)における「Aop」は、前述のOP画像の印刷速度に関する後述の速度補正係数である。前提Pm1では、ヘッド温度Thaの算出において、当該印刷速度を考慮しない。そのため、前提Pm1における「Aop」は、例えば、固定値(例えば、0.5)とする。 Further, "Aop" in the formula (2) is a speed correction coefficient described later regarding the printing speed of the OP image described above. In the premise Pm1, the printing speed is not taken into consideration in the calculation of the head temperature Th. Therefore, “Aop” in the premise Pm1 is set to, for example, a fixed value (for example, 0.5).
 また、式(2)における「Dopn」の「n」は、1からNまでの範囲内の数値が設定される。式(2)における「Dopn」は、OP画像を構成する複数の画素に対応するR,G,B画素データの和(合計値)である。OP画像に対応するR,G,B画素データの和は、OP画像に対応する、R画素和、G画素和およびB画素和の合計値である。OP画像に対応するR画素和は、OP画像を構成する複数の画素に対応する複数のR画素データの和である。OP画像に対応するG画素和は、OP画像を構成する複数の画素に対応する複数のG画素データの和である。OP画像に対応するB画素和は、OP画像を構成する複数の画素に対応する複数のB画素データの和である。 Further, for "n" of "Doppn" in the formula (2), a numerical value within the range of 1 to N is set. “Doppn” in the formula (2) is the sum (total value) of the R, G, and B pixel data corresponding to the plurality of pixels constituting the OP image. The sum of the R, G, and B pixel data corresponding to the OP image is the total value of the R pixel sum, the G pixel sum, and the B pixel sum corresponding to the OP image. The R pixel sum corresponding to the OP image is the sum of a plurality of R pixel data corresponding to the plurality of pixels constituting the OP image. The G pixel sum corresponding to the OP image is the sum of a plurality of G pixel data corresponding to the plurality of pixels constituting the OP image. The B pixel sum corresponding to the OP image is the sum of a plurality of B pixel data corresponding to the plurality of pixels constituting the OP image.
 また、式(2)における「Pmax」は、前述の基準印刷エネルギーである。基準印刷エネルギーPmaxは、例えば、以下の式(3)により表現される。 Further, "Pmax" in the formula (2) is the above-mentioned reference printing energy. The reference printing energy Pmax is expressed by, for example, the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)における「Dn」の「n」は、1からNまでの範囲内の数値が設定される。「N」は、前述の最大印刷サイズSxの画像を構成する画素の数である。式(3)における「Dn」は、黒を示す画像(すなわち、前述の最高濃度対象画像)を構成する複数の画素に対応するR,G,B画素データの和(合計値)である。式(3)における「Dn」は、0である。すなわち、基準印刷エネルギーPmaxは、(255×3×N)の式で得られる値である。 For "n" of "Dn" in the formula (3), a numerical value within the range of 1 to N is set. “N” is the number of pixels constituting the above-mentioned image having the maximum print size Sx. “Dn” in the formula (3) is the sum (total value) of the R, G, and B pixel data corresponding to a plurality of pixels constituting the image showing black (that is, the above-mentioned maximum density target image). "Dn" in the formula (3) is 0. That is, the reference printing energy Pmax is a value obtained by the formula (255 × 3 × N).
 前述の情報取得処理が終了すると、ヘッド温度予測処理が行われる(ステップS130)。ヘッド温度予測処理は、ヘッド温度Thaを予測する処理である。具体的には、ヘッド温度予測処理では、ヘッド温度予測部62が、温度予測情報が示す温度予測方法にしたがって、ヘッド温度Thaを予測する。 When the above-mentioned information acquisition process is completed, the head temperature prediction process is performed (step S130). The head temperature prediction process is a process for predicting the head temperature The. Specifically, in the head temperature prediction process, the head temperature prediction unit 62 predicts the head temperature The according to the temperature prediction method indicated by the temperature prediction information.
 前提Pm1におけるヘッド温度予測処理では、ヘッド温度予測部62が、画像G1と画像G2とが隣接するように、当該画像G1および当該画像G2が印刷装置100により印刷されたと仮定した仮定印刷状況におけるヘッド温度Thaを、計測されたヘッド温度T0と、画像データGd1,Gd2とに基づいて、予測する。すなわち、ヘッド温度予測部62が、画像G1および画像G2が印刷装置100により印刷されたと仮定した仮定印刷状況におけるヘッド温度Thaを、画像データGd1,Gd2に基づいて、予測する。 In the head temperature prediction process in the premise Pm1, the head temperature prediction unit 62 assumes that the image G1 and the image G2 are printed by the printing device 100 so that the image G1 and the image G2 are adjacent to each other. The temperature Tha is predicted based on the measured head temperature T0 and the image data Gd1 and Gd2. That is, the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation assuming that the image G1 and the image G2 are printed by the printing device 100, based on the image data Gd1 and Gd2.
 具体的には、ヘッド温度予測部62は、まず、1番目対象画像である画像G1に対応するヘッド温度Thaを予測する。画像G1に対応するヘッド温度Thaとは、画像G1が印刷装置100により印刷されたと仮定した仮定印刷状況におけるヘッド温度Thaである。 Specifically, the head temperature prediction unit 62 first predicts the head temperature Tha corresponding to the image G1 which is the first target image. The head temperature Tha corresponding to the image G1 is a head temperature Tha in a hypothetical printing situation assuming that the image G1 is printed by the printing apparatus 100.
 画像G1に対応するヘッド温度Thaは、計測されたヘッド温度T0と、画像データGd1に含まれる、R画像データ、G画像データおよびB画像データと、前提Pm1における温度予測情報が示す、予測演算式としての式(1)、式(2)および式(3)とにより算出される。前述したように、例えば、R画像データは、複数のR画素データを含む。 The head temperature Tha corresponding to the image G1 is a prediction calculation formula indicated by the measured head temperature T0, the R image data, the G image data and the B image data included in the image data Gd1, and the temperature prediction information in the premise Pm1. It is calculated by the equations (1), (2) and (3) as. As described above, for example, the R image data includes a plurality of R pixel data.
 前提Pm1におけるヘッド温度予測処理では、ヘッド温度予測部62が、式(2)と、画像データGd1に含まれる、R画像データ、G画像データおよびB画像データとにより、画像G1に対応する印刷エネルギーEpを算出する。 In the head temperature prediction process in the premise Pm1, the head temperature prediction unit 62 uses the equation (2) and the R image data, the G image data, and the B image data included in the image data Gd1 to print energy corresponding to the image G1. Calculate Ep.
 そして、ヘッド温度予測部62は、算出した印刷エネルギーEpと、計測されたヘッド温度T0と、式(1)とにより、画像G1に対応するヘッド温度Thaを算出する。当該ヘッド温度Thaは、式(1)の「Th」に、ヘッド温度T0が設定されることにより、算出される。これにより、ヘッド温度予測部62は、算出したヘッド温度Thaを、画像G1に対応するヘッド温度Thaとして予測する。 Then, the head temperature prediction unit 62 calculates the head temperature Tha corresponding to the image G1 by the calculated printing energy Ep, the measured head temperature T0, and the equation (1). The head temperature Th is calculated by setting the head temperature T0 in "Th" of the formula (1). As a result, the head temperature prediction unit 62 predicts the calculated head temperature The as the head temperature The corresponding to the image G1.
 次に、ヘッド温度予測部62は、画像G2に対応するヘッド温度Thaを予測する。画像G2に対応するヘッド温度Thaとは、画像G2が印刷装置100により印刷されたと仮定した仮定印刷状況におけるヘッド温度Thaである。 Next, the head temperature prediction unit 62 predicts the head temperature The corresponding to the image G2. The head temperature Tha corresponding to the image G2 is the head temperature Tha in a hypothetical printing situation assuming that the image G2 is printed by the printing apparatus 100.
 画像G2に対応するヘッド温度Thaは、画像G1に対応するヘッド温度Thaと、画像データGd2に含まれる、R画像データ、G画像データおよびB画像データと、温度予測情報が示す、予測演算式としての式(1)、式(2)および式(3)とにより算出される。 The head temperature Tha corresponding to the image G2 is a prediction calculation formula indicated by the head temperature Tha corresponding to the image G1, the R image data, the G image data and the B image data included in the image data Gd2, and the temperature prediction information. It is calculated by the formulas (1), (2) and (3) of.
 前提Pm1におけるヘッド温度予測処理では、ヘッド温度予測部62が、式(2)と、画像データGd2に含まれる、R画像データ、G画像データおよびB画像データとにより、画像G2に対応する印刷エネルギーEpを算出する。 In the head temperature prediction process in the premise Pm1, the head temperature prediction unit 62 uses the equation (2) and the R image data, the G image data, and the B image data included in the image data Gd2 to print energy corresponding to the image G2. Calculate Ep.
 そして、ヘッド温度予測部62は、算出した印刷エネルギーEpと、画像G1に対応する、算出済みのヘッド温度Thaと、式(1)とにより、画像G2に対応するヘッド温度Thaを算出する。画像G2に対応するヘッド温度Thaは、式(1)の「Th」に、画像G1に対応する、算出済みのヘッド温度Thaが設定されることにより、算出される。 Then, the head temperature prediction unit 62 calculates the head temperature The corresponding to the image G2 by the calculated printing energy Ep, the calculated head temperature The corresponding to the image G1, and the equation (1). The head temperature Tha corresponding to the image G2 is calculated by setting the calculated head temperature Tha corresponding to the image G1 in "Th" of the equation (1).
 ヘッド温度予測部62は、算出した、画像G2に対応するヘッド温度Thaを、予測ヘッド温度として予測する。すなわち、前提Pm1におけるヘッド温度予測処理では、ヘッド温度予測部62が、画像G2に対応するヘッド温度Thaを予測する。 The head temperature prediction unit 62 predicts the calculated head temperature The corresponding to the image G2 as the predicted head temperature. That is, in the head temperature prediction process in the premise Pm1, the head temperature prediction unit 62 predicts the head temperature Tha corresponding to the image G2.
 以下においては、ヘッド温度予測処理において最終的に予測されたヘッド温度Thaを、「最終予測ヘッド温度Tha」ともいう。前提Pm1における最終予測ヘッド温度Thaは、画像G2に対応するヘッド温度Thaである。 In the following, the head temperature The finally predicted in the head temperature prediction process is also referred to as the "final predicted head temperature The". The final predicted head temperature Tha in the premise Pm1 is the head temperature Tha corresponding to the image G2.
 そして、ヘッド温度予測部62は、画像G2に対応するヘッド温度Thaである最終予測ヘッド温度Thaを、判定部63へ通知する。 Then, the head temperature prediction unit 62 notifies the determination unit 63 of the final predicted head temperature The, which is the head temperature The corresponding to the image G2.
 なお、温度予測情報における予測演算式は、式(1)、式(2)および式(3)に限定されない。予測演算式は、例えば、画像Aの平均濃度が最高濃度に近い程、算出されるヘッド温度Thaが高いという特徴を有する別の式であってもよい。 The prediction calculation formula in the temperature prediction information is not limited to the formula (1), the formula (2) and the formula (3). The prediction calculation formula may be, for example, another formula having a feature that the calculated head temperature Tha is higher as the average density of the image A is closer to the maximum density.
 また、温度予測方法は、対象画素データ(例えば、R画素データ)の代わりに、印刷画素データ(例えば、Y画素データ)を使用してヘッド温度Thaを予測する方法Md1であってもよい。方法Md1では、R画素データ、G画素データおよびB画素データが、それぞれ、Y画素データ、M画素データおよびC画素データに変換される。また、方法Md1では、以下の説明文D1,D2に従って、ヘッド温度Thaが予測される。 Further, the temperature prediction method may be a method Md1 for predicting the head temperature Tha by using print pixel data (for example, Y pixel data) instead of the target pixel data (for example, R pixel data). In the method Md1, the R pixel data, the G pixel data, and the B pixel data are converted into Y pixel data, M pixel data, and C pixel data, respectively. Further, in the method Md1, the head temperature Tha is predicted according to the following explanations D1 and D2.
 説明文D1は、式(2)の説明文における、「R」、「G」および「B」を、それぞれ、「Y」、「M」および「C」に置き換えた当該説明文である。説明文D2は、前提Pm1におけるヘッド温度予測処理の前述の説明文における、「R画素」、「G画素」および「B画素」を、それぞれ、「Y画素」、「M画素」および「C画素」に置き換えた当該説明文である。また、説明文D2は、さらに、前提Pm1におけるヘッド温度予測処理の前述の説明文における「R画像」、「G画像」および「B画像」を、それぞれ、「Y画像」、「M画像」および「C画像」に置き換えた当該説明文である。 The explanatory text D1 is the explanatory text in which "R", "G" and "B" in the explanatory text of the formula (2) are replaced with "Y", "M" and "C", respectively. In the explanatory text D2, the “R pixel”, “G pixel”, and “B pixel” in the above-mentioned explanatory text of the head temperature prediction processing in the premise Pm1 are referred to as “Y pixel”, “M pixel”, and “C pixel”, respectively. It is the explanation that was replaced with. Further, the explanatory text D2 further includes the “R image”, the “G image”, and the “B image” in the above-mentioned explanatory text of the head temperature prediction process in the premise Pm1, the “Y image”, the “M image”, and the “M image”, respectively. It is the explanation which was replaced with "C image".
 方法Md1では、説明文D1,D2に従って、印刷画素データ(Y画素データ、M画素データおよびC画素データ)に基づいた印刷エネルギーEpが算出され、かつ、ヘッド温度Thaが算出される。ヘッド温度予測部62は、算出したヘッド温度Thaを、予測ヘッド温度として予測する。 In the method Md1, the print energy Ep based on the print pixel data (Y pixel data, M pixel data, and C pixel data) is calculated according to the explanations D1 and D2, and the head temperature Tha is calculated. The head temperature prediction unit 62 predicts the calculated head temperature The as the predicted head temperature.
 また、画像G2に対応するヘッド温度Thaを算出する式(1)の「Th」は、印刷中の画像G1に対応する、予測ヘッド温度としてのヘッド温度Thaとしたが、これに限定されない。画像G2に対応するヘッド温度Thaを算出する式(1)の「Th」は、画像G1の印刷完了直後に計測されたヘッド温度T0とする構成としてもよい。当該構成では、画像G2に対応するヘッド温度Thaを、さらに正確に予測することができる。 Further, "Th" in the formula (1) for calculating the head temperature Th corresponding to the image G2 is the head temperature Th as the predicted head temperature corresponding to the image G1 being printed, but the present invention is not limited to this. The “Th” in the formula (1) for calculating the head temperature Th corresponding to the image G2 may be configured to be the head temperature T0 measured immediately after the printing of the image G1 is completed. With this configuration, the head temperature Tha corresponding to the image G2 can be predicted more accurately.
 また、温度予測方法は、例えば、参照テーブルT1,T2を使用した方法Md2であってもよい。方法Md2は、参照テーブルT1,T2を使用して、画像Aに対応するヘッド温度Thaを予測する方法である。方法Md2は、画像Aの平均濃度が最高濃度に近い程、特定される印刷エネルギーEpが高くなる方法である。また、方法Md2は、画像Aの平均濃度が最高濃度に近い程、予測されるヘッド温度Thaが高くなる方法である。 Further, the temperature prediction method may be, for example, the method Md2 using the reference tables T1 and T2. The method Md2 is a method of predicting the head temperature Tha corresponding to the image A by using the reference tables T1 and T2. Method Md2 is a method in which the specified print energy Ep increases as the average density of the image A approaches the maximum density. Further, the method Md2 is a method in which the predicted head temperature Tha increases as the average density of the image A approaches the maximum density.
 また、方法Md2は、画像Aが印刷装置100により印刷されたと仮定した仮定印刷状況におけるヘッド温度Thaを、ヘッド温度予測部62が当該画像Aのデータに基づいて、予測する方法である。 Further, the method Md2 is a method in which the head temperature prediction unit 62 predicts the head temperature Tha in a hypothetical printing situation assuming that the image A is printed by the printing device 100, based on the data of the image A.
 参照テーブルT1は、画像Aの平均濃度と、画像Aの印刷に必要な印刷エネルギーEpとを対応づけて示す。参照テーブルT1では、異なる複数の平均濃度に、それぞれ、複数の印刷エネルギーEpが対応づけられている。参照テーブルT1における平均濃度が高い程、当該平均濃度に対応づけられる印刷エネルギーEpは高い。参照テーブルT1が示す、平均濃度および印刷エネルギーEpの各々の数は、例えば、50以上である。参照テーブルT1が示す、平均濃度および印刷エネルギーEpの各々の数が多い程、特定される印刷エネルギーEpの精度が高くなる。 The reference table T1 shows the average density of the image A and the printing energy Ep required for printing the image A in association with each other. In the reference table T1, a plurality of printing energies Ep are associated with each of a plurality of different average densities. The higher the average density in the reference table T1, the higher the print energy Ep associated with the average density. The respective numbers of the average density and the print energy Ep shown in the reference table T1 are, for example, 50 or more. The larger the number of each of the average density and the print energy Ep shown in the reference table T1, the higher the accuracy of the specified print energy Ep.
 参照テーブルT1における、複数の平均濃度、および、複数の印刷エネルギーEpは、例えば、実験等を繰り返し行うことにより、決定される。当該実験は、例えば、印刷処理Pにおいて印刷の対象となる画像Aの変更、画像Aの平均濃度の算出、印刷処理Pの実行、実行された印刷処理Pにおいてサーマルヘッド2が発した印刷エネルギーEpの特定等である。 The plurality of average densities and the plurality of printing energies Ep in the reference table T1 are determined, for example, by repeating experiments and the like. In the experiment, for example, the image A to be printed in the print process P is changed, the average density of the image A is calculated, the print process P is executed, and the print energy Ep generated by the thermal head 2 in the executed print process P. Is specified, etc.
 また、参照テーブルT2では、異なる複数の印刷エネルギーEpに、それぞれ、複数の上昇温度が対応づけられている。上昇温度とは、サーマルヘッド2が印刷エネルギーEpを発した直後のヘッド温度から、サーマルヘッド2が当該印刷エネルギーEpを発する直前のヘッド温度を減算することにより得られる温度である。 Further, in the reference table T2, a plurality of rising temperatures are associated with a plurality of different printing energies Ep. The rising temperature is a temperature obtained by subtracting the head temperature immediately before the thermal head 2 emits the printing energy Ep from the head temperature immediately after the thermal head 2 emits the printing energy Ep.
 参照テーブルT2における印刷エネルギーEpが高い程、当該印刷エネルギーEpに対応づけられる上昇温度は高い。参照テーブルT2が示す、印刷エネルギーEpおよび上昇温度の各々の数は、例えば、50以上である。参照テーブルT2が示す、印刷エネルギーEpおよび上昇温度の各々の数が多い程、予測される上昇温度(ヘッド温度Tha)の精度が高くなる。 The higher the printing energy Ep in the reference table T2, the higher the rising temperature associated with the printing energy Ep. The respective numbers of the print energy Ep and the rising temperature shown in the reference table T2 are, for example, 50 or more. The larger the number of each of the printing energy Ep and the rising temperature shown in the reference table T2, the higher the accuracy of the predicted rising temperature (head temperature Tha).
 参照テーブルT2における、複数の印刷エネルギーEp、および、複数の上昇温度は、例えば、実験等を繰り返し行うことにより、決定される。当該実験は、例えば、印刷処理Pにおいてサーマルヘッド2が発する印刷エネルギーEpの大きさの変更、ヘッド温度の計測、印刷処理Pの実行、上昇温度の算出等である。 The plurality of printing energies Ep and the plurality of rising temperatures in the reference table T2 are determined by, for example, repeating an experiment or the like. The experiment includes, for example, changing the magnitude of the printing energy Ep generated by the thermal head 2 in the printing process P, measuring the head temperature, executing the printing process P, calculating the rising temperature, and the like.
 方法Md2では、画像Aが原色画像である場合、3組の参照テーブルT1,T2が使用される。例えば、画像Aが対象原色画像である場合、R画像、G画像およびB画像の各々に対応する参照テーブルT1,T2が使用される。画像Aが印刷原色画像である場合、Y画像、M画像およびC画像の各々に対応する参照テーブルT1,T2が使用される。 In the method Md2, when the image A is a primary color image, three sets of reference tables T1 and T2 are used. For example, when the image A is the target primary color image, the reference tables T1 and T2 corresponding to each of the R image, the G image, and the B image are used. When the image A is a print primary color image, the reference tables T1 and T2 corresponding to each of the Y image, the M image, and the C image are used.
 方法Md2では、ヘッド温度センサSn3が、所定タイミングにおいて、ヘッド温度を計測する。所定タイミングは、タイミングAまたはタイミングBである。タイミングAは、印刷装置100が、画像Aの印刷を開始する直前のタイミングである。タイミングBは、方法Md2に従ったヘッド温度Thaを予測する処理が開始されるタイミングである。 In the method Md2, the head temperature sensor Sn3 measures the head temperature at a predetermined timing. The predetermined timing is timing A or timing B. The timing A is the timing immediately before the printing device 100 starts printing the image A. The timing B is the timing at which the process of predicting the head temperature Tha according to the method Md2 is started.
 また、方法Md2では、画像Aの平均濃度が算出される。次に、画像Aに対応する参照テーブルT1が示す複数の平均濃度のうち、算出された平均濃度に最も近い平均濃度が選択される。次に、選択された平均濃度に対応づけられた、当該参照テーブルT1が示す印刷エネルギーEpが特定される。 Further, in the method Md2, the average density of the image A is calculated. Next, the average density closest to the calculated average density is selected from the plurality of average concentrations shown in the reference table T1 corresponding to the image A. Next, the print energy Ep indicated by the reference table T1 associated with the selected average density is specified.
 次に、画像Aに対応する参照テーブルT2が示す複数の印刷エネルギーEpのうち、特定された印刷エネルギーEpに最も近い印刷エネルギーEpが選択される。次に、選択された印刷エネルギーEpに対応づけられた、当該参照テーブルT2が示す上昇温度が特定される。 Next, the print energy Ep closest to the specified print energy Ep is selected from the plurality of print energy Eps shown in the reference table T2 corresponding to the image A. Next, the rising temperature indicated by the reference table T2, which is associated with the selected print energy Ep, is specified.
 次に、ヘッド温度センサSn3により計測されたヘッド温度に、特定された上昇温度を加算して得られる温度が、画像Aに対応するヘッド温度Thaとして予測される。以上のようにして、方法Md2により、画像Aに対応するヘッド温度Thaが予測される。 Next, the temperature obtained by adding the specified rising temperature to the head temperature measured by the head temperature sensor Sn3 is predicted as the head temperature The corresponding to the image A. As described above, the head temperature Tha corresponding to the image A is predicted by the method Md2.
 前述のヘッド温度予測処理が終了すると、判定部63は、メモリ52に記憶されている隣接印刷条件を取得する(ステップS141)。隣接印刷条件は、印刷装置100が隣接印刷処理を実行可能であるか否かを、判定するための条件である。 When the above-mentioned head temperature prediction process is completed, the determination unit 63 acquires the adjacent print conditions stored in the memory 52 (step S141). The adjacent printing condition is a condition for determining whether or not the printing apparatus 100 can execute the adjacent printing process.
 ここで、サーマルヘッド2の規定温度における最大のヘッド温度を、「最大温度Thmax」または「Thmax」と定義する。サーマルヘッド2の規定温度とは、例えば、インクシートに関する不具合が発生しないための温度である。当該不具合は、例えば、印刷処理が行われた場合、インクシートにシワ等が発生するという不具合である。そのため、最大温度Thmaxは、インクシートに関する不具合が発生しないための、閾値としての温度である。 Here, the maximum head temperature at the specified temperature of the thermal head 2 is defined as "maximum temperature Thmax" or "Thmax". The specified temperature of the thermal head 2 is, for example, a temperature at which a problem related to the ink sheet does not occur. The problem is, for example, that wrinkles or the like occur on the ink sheet when the printing process is performed. Therefore, the maximum temperature Thmax is a temperature as a threshold value so that a problem related to the ink sheet does not occur.
 隣接印刷条件では、例えば、Tha≦Thmaxで表現される関係式が成立する場合、印刷装置100が隣接印刷処理を実行することが認められる。上記関係式の「Tha」は、最終予測ヘッド温度Thaである。また、隣接印刷条件では、例えば、Tha>Thmaxの関係式が成立する場合、印刷装置100が隣接印刷処理を実行することが認められない。 Under the adjacent printing conditions, for example, when the relational expression expressed by Th ≤ Thmax is satisfied, the printing apparatus 100 is allowed to execute the adjacent printing process. “Tha” in the above relational expression is the final predicted head temperature The. Further, under the adjacent printing condition, for example, when the relational expression of Th> Thmax is satisfied, the printing apparatus 100 is not allowed to execute the adjacent printing process.
 ステップS150では、判定部63が、最終予測ヘッド温度Thaおよび隣接印刷条件に基づいて、印刷装置100が隣接印刷処理を実行可能であるか否かを、判定する。最終予測ヘッド温度Thaが最大温度Thmax以下の場合、印刷装置100が隣接印刷処理を実行することが認められ、処理はステップS152へ移行する。一方、最終予測ヘッド温度Thaが最大温度Thmaxより大きい場合、印刷装置100が隣接印刷処理を実行することが認められず、処理はステップS174へ移行する。 In step S150, the determination unit 63 determines whether or not the printing apparatus 100 can execute the adjacent printing process based on the final predicted head temperature The and the adjacent printing conditions. When the final predicted head temperature Th is equal to or lower than the maximum temperature Thmax, the printing apparatus 100 is allowed to execute the adjacent printing process, and the process proceeds to step S152. On the other hand, when the final predicted head temperature Th is larger than the maximum temperature Thmax, the printing apparatus 100 is not allowed to execute the adjacent printing process, and the process proceeds to step S174.
 前提Pm1では、最終予測ヘッド温度Thaが最大温度Thmax以下である。そのため、前提Pm1におけるステップS150の判定により、処理はステップS152へ移行する。 In the premise Pm1, the final predicted head temperature Th is equal to or less than the maximum temperature Thmax. Therefore, the process shifts to step S152 based on the determination of step S150 in the premise Pm1.
 ステップS152では、判定部63が、印刷装置100の動作状態である印刷状態を、印刷状態取得部65に問い合わせる。これにより、判定部63は、印刷状態取得部65から、印刷装置100の最新の動作状態である印刷状態を示す印刷状態情報を受信する。前提Pm1では、判定部63は、印刷状態としての「印刷中」を示す印刷状態情報を受信する。 In step S152, the determination unit 63 inquires the print state acquisition unit 65 about the print state, which is the operating state of the printing device 100. As a result, the determination unit 63 receives the print state information indicating the print state, which is the latest operating state of the printing device 100, from the print state acquisition unit 65. In the premise Pm1, the determination unit 63 receives the print state information indicating "printing" as the print state.
 ステップS154では、判定部63が、印刷状態が「印刷中」であるか否かを判定する。具体的には、判定部63が、印刷状態取得部65から受信した印刷状態情報が「印刷中」を示すか否かを判定する。ステップS154においてYesの場合、判定部63は隣接印刷処理を印刷装置100に実行させると判定する。そして、処理はステップS171へ移行する。一方、ステップS154においてNoの場合、判定部63は、隣接印刷処理を印刷装置100に実行させないと判定する。そして、処理はステップS174へ移行する。 In step S154, the determination unit 63 determines whether or not the printing state is "printing". Specifically, the determination unit 63 determines whether or not the print state information received from the print state acquisition unit 65 indicates "printing". In the case of Yes in step S154, the determination unit 63 determines that the printing device 100 executes the adjacent printing process. Then, the process proceeds to step S171. On the other hand, if No in step S154, the determination unit 63 determines that the printing device 100 does not execute the adjacent printing process. Then, the process proceeds to step S174.
 すなわち、ステップS154における判定結果に基づいて、判定部63が、隣接印刷処理を印刷装置100に実行させるか否かを判定する。判定部63により、隣接印刷処理を印刷装置100に実行させないと判定された場合、処理はステップS174へ移行し、印刷装置100は隣接印刷処理を実行しない。 That is, based on the determination result in step S154, the determination unit 63 determines whether or not the printing device 100 executes the adjacent printing process. When the determination unit 63 determines that the printing device 100 does not execute the adjacent printing process, the process proceeds to step S174, and the printing device 100 does not execute the adjacent printing process.
 前提Pm1では、印刷状態が「印刷中」であると判定されて、処理はステップS171へ移行する。ステップS150,S154が行われることにより、判定部63は、予測された最終予測ヘッド温度Thaと、印刷状態とに基づいて、隣接印刷処理を印刷装置100に実行させるか否かを判定する。 In the premise Pm1, it is determined that the printing state is "printing", and the process proceeds to step S171. By performing steps S150 and S154, the determination unit 63 determines whether or not to cause the printing apparatus 100 to execute the adjacent printing process based on the predicted final predicted head temperature The and the printing state.
 なお、印刷状態を考慮せずに、隣接印刷処理を印刷装置100に実行させるか否かが判定される構成としてもよい。当該構成では、ステップS150において、印刷装置100が隣接印刷処理を実行可能と判定された場合、ステップS152,S154の処理を行うことなく、ステップS171の処理が行われる。すなわち、当該構成では、ステップS150において、判定部63は、予測された最終予測ヘッド温度Thaに基づいて、隣接印刷処理を印刷装置100に実行させるか否かを判定する。 It should be noted that the configuration may be such that it is determined whether or not the printing device 100 executes the adjacent printing process without considering the printing state. In this configuration, when it is determined in step S150 that the printing apparatus 100 can execute the adjacent printing process, the process of step S171 is performed without performing the processes of steps S152 and S154. That is, in this configuration, in step S150, the determination unit 63 determines whether or not to cause the printing apparatus 100 to execute the adjacent printing process based on the predicted final predicted head temperature The.
 ステップS171では、印刷装置100が、判定部63の判定結果に従って、隣接印刷処理を実行する。この場合、印刷制御処理は当該隣接印刷処理を印刷装置100に実行させる。 In step S171, the printing device 100 executes the adjacent printing process according to the determination result of the determination unit 63. In this case, the print control process causes the printing apparatus 100 to execute the adjacent print process.
 前提Pm1における印刷制御処理では、前述の印刷処理Pにより画像G1が用紙8に印刷された後に、隣接印刷処理が行われる。前提Pm1における隣接印刷処理では、印刷装置100が、印刷制御部64の制御に従って、画像G1と画像G2とが隣接するように、当該画像G2を印刷する。画像G2は、例えば、前述の印刷処理Pにより、用紙8に印刷される。これにより、印刷制御処理が終了する。 In the print control process in the premise Pm1, the adjacent print process is performed after the image G1 is printed on the paper 8 by the above-mentioned print process P. In the adjacent printing process in the premise Pm1, the printing apparatus 100 prints the image G2 so that the image G1 and the image G2 are adjacent to each other under the control of the print control unit 64. The image G2 is printed on the paper 8 by, for example, the printing process P described above. As a result, the print control process ends.
 前述のステップS150またはステップS154の判定結果により、ステップS174の処理が行われる場合がある。この場合、印刷制御処理は当該隣接印刷処理を印刷装置100に実行させない。 The process of step S174 may be performed depending on the determination result of step S150 or step S154 described above. In this case, the print control process does not cause the printing apparatus 100 to execute the adjacent print process.
 ステップS174では、通常印刷処理が実行される。通常印刷処理とは、1枚の画像を用紙8に印刷する処理である。前提Pm1における通常印刷処理では、印刷装置100が、印刷制御部64の制御に従って、例えば、画像G1を用紙8に印刷する。以上により、印刷制御処理が終了する。 In step S174, the normal printing process is executed. The normal printing process is a process of printing one image on paper 8. In the normal printing process in the premise Pm1, the printing apparatus 100 prints, for example, the image G1 on the paper 8 under the control of the print control unit 64. As a result, the print control process is completed.
 以下においては、隣接印刷処理を含む、印刷に関する処理を、「隣接印刷制御処理」ともいう。隣接印刷制御処理は、本実施の形態に係る処理である。隣接印刷制御処理は、複数の画像を連続的に印刷する処理である。隣接印刷制御処理は、例えば、前提Pm1における印刷制御処理のうちの、印刷に関する処理を主に行う処理である。 In the following, processing related to printing, including adjacent printing processing, is also referred to as "adjacent printing control processing". The adjacent print control process is a process according to the present embodiment. The adjacent print control process is a process of continuously printing a plurality of images. The adjacent print control process is, for example, a process that mainly performs a process related to printing among the print control processes in the premise Pm1.
 また、以下においては、隣接印刷制御処理と比較の対象となる、比較例としての処理を、「通常印刷制御処理」ともいう。通常印刷制御処理は、複数の対象画像を印刷する場合、通常印刷処理を繰り返して行う処理である。複数の対象画像は、例えば、画像G1および画像G2である。 Further, in the following, the process as a comparative example, which is the target of comparison with the adjacent print control process, is also referred to as "normal print control process". The normal print control process is a process of repeating the normal print process when printing a plurality of target images. The plurality of target images are, for example, image G1 and image G2.
 次に、通常印刷制御処理または隣接印刷制御処理における印刷装置100の動作について説明する。まず、画像G1および画像G2を印刷する通常印刷制御処理について説明する。画像G1は、j番目対象画像である。画像G2は、(j+1)番目対象画像である。 Next, the operation of the printing apparatus 100 in the normal print control process or the adjacent print control process will be described. First, a normal print control process for printing the image G1 and the image G2 will be described. Image G1 is the j-th target image. Image G2 is the (j + 1) th target image.
 図21は、比較例としての通常印刷制御処理を説明するための図である。説明を分かりやすくするために、図21には、用紙8における位置P0,P1,P2と、サーマルヘッド2と、カッターCt1とが示される。 FIG. 21 is a diagram for explaining a normal print control process as a comparative example. For the sake of clarity, FIG. 21 shows positions P0, P1, P2 on paper 8, a thermal head 2, and a cutter Ct1.
 位置P0は、用紙8の先端である。以下においては、用紙8において、画像の印刷が開始される位置を、「印刷開始位置」ともいう。位置P1,P2の各々は、印刷開始位置である。用紙8のうち、位置P1と位置P0との間の領域は、1つの印刷領域に対応する。用紙8のうち、位置P2と位置P1との間の領域は、別の1つの印刷領域に対応する。 Position P0 is the tip of the paper 8. In the following, the position where printing of an image is started on the paper 8 is also referred to as a “printing start position”. Each of the positions P1 and P2 is a printing start position. The area between the position P1 and the position P0 of the paper 8 corresponds to one print area. The area between the position P2 and the position P1 of the paper 8 corresponds to another printing area.
 また、図21では、各ステップに対応する、用紙8の状態が示される。また、図21では、画像G1に関連する処理に対して、文字列「(X1)」が示される。また、図21では、画像G2に関連する処理に対して、文字列「(X2)」が示される。 Further, in FIG. 21, the state of the paper 8 corresponding to each step is shown. Further, in FIG. 21, a character string “(X1)” is shown for the processing related to the image G1. Further, in FIG. 21, a character string “(X2)” is shown for the processing related to the image G2.
 以下においては、画像G1に対する印刷処理Pを、「印刷Pr(X1)」または「Pr(X1)」ともいう。また、以下においては、画像G2に対する印刷処理Pを、「印刷Pr(X2)」または「Pr(X2)」ともいう。 In the following, the print process P for the image G1 is also referred to as "print Pr (X1)" or "Pr (X1)". Further, in the following, the print process P for the image G2 is also referred to as "print Pr (X2)" or "Pr (X2)".
 図21を参照して、ステップS510では、印刷装置100の状態は待機状態である。待機状態の印刷装置100は印刷を行っていない。このとき、用紙8の位置P0は、当該待機状態に対応する待機位置に存在する。 With reference to FIG. 21, in step S510, the state of the printing apparatus 100 is the standby state. The printing device 100 in the standby state is not printing. At this time, the position P0 of the paper 8 exists at the standby position corresponding to the standby state.
 まず、通常印刷処理としての印刷Pr(X1)を行うための準備が行われる。具体的には、印刷装置100が、用紙8の位置P1(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS520)。 First, preparations are made for performing printing Pr (X1) as a normal printing process. Specifically, the printing apparatus 100 cue the paper 8 so that the position P1 (printing start position) of the paper 8 is detected (step S520).
 次に、印刷装置100が、通常印刷処理としての印刷Pr(X1)を行う(ステップS530)。これにより、用紙8に、画像G1を示す印刷物が形成される。印刷Pr(X1)が終了した後に、排紙処理(X1)が行われる(ステップS571)。 Next, the printing apparatus 100 performs printing Pr (X1) as a normal printing process (step S530). As a result, a printed matter showing the image G1 is formed on the paper 8. After the printing Pr (X1) is completed, the paper ejection process (X1) is performed (step S571).
 排紙処理(X1)では、印刷物を外部に排出するために、印刷装置100が、用紙8を搬送する。そして、用紙8から印刷物が切り離されるように、カッターCt1が、当該用紙8の位置P1を切断する。 In the paper ejection process (X1), the printing device 100 conveys the paper 8 in order to eject the printed matter to the outside. Then, the cutter Ct1 cuts the position P1 of the paper 8 so that the printed matter is separated from the paper 8.
 次に、通常印刷処理としての印刷Pr(X2)を行うための準備が行われる。具体的には、印刷装置100が、用紙8の位置P2(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS551)。 Next, preparations are made for performing printing Pr (X2) as a normal printing process. Specifically, the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S551).
 次に、印刷装置100が、通常印刷処理としての印刷Pr(X2)を行う(ステップS560)。これにより、用紙8に、画像G2を示す印刷物が形成される。印刷Pr(X2)が終了した後に、排紙処理(X2)が行われる(ステップS572)。 Next, the printing apparatus 100 performs printing Pr (X2) as a normal printing process (step S560). As a result, a printed matter showing the image G2 is formed on the paper 8. After the printing Pr (X2) is completed, the paper ejection process (X2) is performed (step S572).
 排紙処理(X2)では、画像G2を示す印刷物を外部に排出するために、印刷装置100が、用紙8を搬送する。そして、用紙8から当該印刷物が切り離されるように、カッターCt1が、当該用紙8の位置P2を切断する。 In the paper ejection process (X2), the printing device 100 conveys the paper 8 in order to eject the printed matter showing the image G2 to the outside. Then, the cutter Ct1 cuts the position P2 of the paper 8 so that the printed matter is separated from the paper 8.
 次に、印刷装置100の状態を待機状態にするための処理が行われる。具体的には、用紙8の位置P2が、待機状態に対応する待機位置となるように、印刷装置100が、用紙8を搬送する(ステップS580)。以上により、通常印刷制御処理は終了する。 Next, a process for changing the state of the printing device 100 to the standby state is performed. Specifically, the printing device 100 conveys the paper 8 so that the position P2 of the paper 8 becomes the standby position corresponding to the standby state (step S580). As a result, the normal print control process is completed.
 次に、画像G1および画像G2を、連続的に印刷する隣接印刷制御処理について説明する。隣接印刷制御処理に含まれる隣接印刷処理は、画像G1と画像G2とが隣接するように、当該画像G2を印刷する印刷Pr(X2)である。 Next, the adjacent print control process for continuously printing the images G1 and G2 will be described. The adjacent print process included in the adjacent print control process is a print Pr (X2) that prints the image G2 so that the image G1 and the image G2 are adjacent to each other.
 図6は、実施の形態1に係る隣接印刷制御処理を説明するための図である。図6において、図21のステップ番号と同じステップ番号の処理は、図21に対して説明した処理と同様な処理が行われるので詳細な説明は繰り返さない。以下、通常印刷制御処理と異なる点を主に説明する。 FIG. 6 is a diagram for explaining the adjacent print control process according to the first embodiment. In FIG. 6, the process of the same step number as the step number of FIG. 21 is the same as the process described with respect to FIG. 21, so that the detailed description will not be repeated. Hereinafter, the points different from the normal print control process will be mainly described.
 図6を参照して、ステップS510では、印刷装置100の状態は待機状態である。このとき、用紙8の位置P0は、待機状態に対応する待機位置に存在する。 With reference to FIG. 6, in step S510, the state of the printing apparatus 100 is the standby state. At this time, the position P0 of the paper 8 exists at the standby position corresponding to the standby state.
 次に、印刷装置100が、用紙8の位置P1(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS520)。 Next, the printing device 100 cue the paper 8 so that the position P1 (printing start position) of the paper 8 is detected (step S520).
 次に、印刷装置100が、画像G1を用紙8に印刷する印刷Pr(X1)を行う(ステップS530)。これにより、用紙8に、画像G1を示す印刷物が形成される。 Next, the printing device 100 performs printing Pr (X1) for printing the image G1 on the paper 8 (step S530). As a result, a printed matter showing the image G1 is formed on the paper 8.
 印刷Pr(X1)が終了した後に、隣接印刷処理としての印刷Pr(X2)を行うための準備が行われる。具体的には、印刷装置100が、用紙8の位置P2(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS552)。ステップS552の処理により、ロール紙18から、画像G2の印刷のために必要な長さの用紙8が引き出される。 After the print Pr (X1) is completed, preparations are made for performing the print Pr (X2) as the adjacent print process. Specifically, the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S552). By the process of step S552, the paper 8 having a length required for printing the image G2 is pulled out from the roll paper 18.
 次に、印刷装置100が、隣接印刷処理としての印刷Pr(X2)を行う(ステップS560)。これにより、用紙8に、画像G2を示す印刷物が形成される。 Next, the printing apparatus 100 performs printing Pr (X2) as an adjacent printing process (step S560). As a result, a printed matter showing the image G2 is formed on the paper 8.
 印刷Pr(X2)が終了した後に、排紙処理(X1)が行われる(ステップS571)。排紙処理(X1)では、画像G1を示す印刷物を外部に排出するために、印刷装置100が、用紙8を搬送する。そして、用紙8から当該印刷物が切り離されるように、カッターCt1が、当該用紙8の位置P1を切断する。 After the printing Pr (X2) is completed, the paper ejection process (X1) is performed (step S571). In the paper ejection process (X1), the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G1 to the outside. Then, the cutter Ct1 cuts the position P1 of the paper 8 so that the printed matter is separated from the paper 8.
 次に、排紙処理(X2)が行われる(ステップS572)。排紙処理(X2)では、画像G2を示す印刷物を外部に排出するために、印刷装置100が、用紙8を搬送する。そして、用紙8から当該印刷物が切り離されるように、カッターCt1が、当該用紙8の位置P2を切断する。 Next, the paper ejection process (X2) is performed (step S572). In the paper ejection process (X2), the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G2 to the outside. Then, the cutter Ct1 cuts the position P2 of the paper 8 so that the printed matter is separated from the paper 8.
 次に、印刷装置100の状態を待機状態にするための処理が行われる。具体的には、用紙8の位置P2が、待機状態に対応する待機位置となるように、印刷装置100が、用紙8を搬送する(ステップS580)。以上により、隣接印刷制御処理は終了する。 Next, a process for changing the state of the printing device 100 to the standby state is performed. Specifically, the printing device 100 conveys the paper 8 so that the position P2 of the paper 8 becomes the standby position corresponding to the standby state (step S580). As a result, the adjacent print control process is completed.
 図6の隣接印刷制御処理では、画像G1の印刷の終了後に印刷物を排出せずに、すぐに、画像G2の印刷を開始する。そのため、隣接印刷制御処理では、用紙8の搬送距離を短くすることができる。したがって、隣接印刷制御処理による、画像G1,G2の印刷に要する印刷時間を、通常印刷制御処理による、画像G1,G2の印刷に要する印刷時間よりも短くすることができる。 In the adjacent print control process of FIG. 6, the printing of the image G2 is started immediately after the printing of the image G1 is completed without discharging the printed matter. Therefore, in the adjacent print control process, the transport distance of the paper 8 can be shortened. Therefore, the print time required for printing the images G1 and G2 by the adjacent print control process can be made shorter than the print time required for printing the images G1 and G2 by the normal print control process.
 なお、図6の隣接印刷制御処理では、印刷の対象となる2枚の対象画像を印刷する処理について説明したが、当該対象画像の数は2に限定されない。隣接印刷制御処理における対象画像の数は3以上であってもよい。ただし、印刷機構に関わる構造的なスペース等について制約がある場合、予め、隣接印刷制御処理における対象画像の数に上限を設定してもよい。 In the adjacent print control process of FIG. 6, the process of printing two target images to be printed has been described, but the number of the target images is not limited to two. The number of target images in the adjacent print control process may be 3 or more. However, if there are restrictions on the structural space related to the printing mechanism, an upper limit may be set in advance for the number of target images in the adjacent print control process.
 (まとめ)
 以上説明したように、本実施の形態によれば、ヘッド温度予測部62は、サーマルヘッド2の温度であるヘッド温度を予測する機能を有する。ヘッド温度予測部62は、画像G1と画像G2とが隣接するように、当該画像G1および当該画像G2の一方または両方が印刷装置100により印刷されたと仮定した状況におけるヘッド温度を、当該画像G1および当該画像G2の一方または両方のデータである画像データに基づいて、予測する。判定部63は、予測されたヘッド温度に基づいて、画像G1と画像G2とが隣接するように、当該画像G2を印刷する隣接印刷処理を印刷装置100に実行させるか否かを判定する。隣接印刷処理を印刷装置100に実行させると判定された場合、当該印刷装置100は当該隣接印刷処理を実行する。
(summary)
As described above, according to the present embodiment, the head temperature prediction unit 62 has a function of predicting the head temperature, which is the temperature of the thermal head 2. The head temperature prediction unit 62 sets the head temperature in a situation where it is assumed that one or both of the image G1 and the image G2 are printed by the printing device 100 so that the image G1 and the image G2 are adjacent to each other. Prediction is made based on image data which is one or both data of the image G2. Based on the predicted head temperature, the determination unit 63 determines whether or not to cause the printing device 100 to execute an adjacent printing process for printing the image G2 so that the image G1 and the image G2 are adjacent to each other. When it is determined that the printing device 100 executes the adjacent printing process, the printing device 100 executes the adjacent printing process.
 これにより、サーマルヘッドの温度を考慮して、印刷処理を実行することができる。 This makes it possible to execute the printing process in consideration of the temperature of the thermal head.
 また、本実施の形態では、ヘッド温度予測部62が、画像データと、ヘッド温度センサSn3が計測したヘッド温度とに基づいて、仮定印刷状況におけるヘッド温度Thaを予測する。判定部63は、予測されたヘッド温度Thaに基づいて、隣接印刷処理を印刷装置100に実行させるか否かを判定する。当該判定は、画像G1の印刷中に行われる。以下においては、サーマルヘッドを冷却するために必要な時間を、「冷却時間」ともいう。 Further, in the present embodiment, the head temperature prediction unit 62 predicts the head temperature Th in the assumed printing situation based on the image data and the head temperature measured by the head temperature sensor Sn3. The determination unit 63 determines whether or not to cause the printing apparatus 100 to execute the adjacent printing process based on the predicted head temperature The. The determination is made during printing of image G1. In the following, the time required to cool the thermal head is also referred to as “cooling time”.
 具体的には、画像G1の印刷ジョブの受信後に印刷が開始され、当該画像G1の印刷中に、判定部63が、画像G2を印刷する隣接印刷処理を印刷装置100に実行させるか否かを判定する。判定部63は、画像G2に対応する、予測されたヘッド温度Thaが、規定温度である最大温度Thmax以下の場合のみ、隣接印刷処理を印刷装置100に実行させると判定する。 Specifically, printing is started after receiving the print job of the image G1, and whether or not the determination unit 63 causes the printing device 100 to execute an adjacent printing process for printing the image G2 during printing of the image G1. judge. The determination unit 63 determines that the printing apparatus 100 executes the adjacent printing process only when the predicted head temperature Th corresponding to the image G2 is equal to or less than the maximum temperature Thmax which is the specified temperature.
 これにより、画像G2に対応するヘッド温度Thaが最大温度Thmax以下の場合のみ、画像G2を印刷する隣接印刷処理が実行される。そのため、サーマルヘッド2のヘッド温度が、規定温度である最大温度Thmaxより高い温度になることを防ぐことができる。したがって、多くの画像を連続的に印刷する処理を高速に行う状況においても、ヘッド温度が高い温度になったサーマルヘッド2の冷却時間を短縮することができる。その結果、画像の印刷時間を効率的に短縮することができる。 As a result, the adjacent printing process for printing the image G2 is executed only when the head temperature Th corresponding to the image G2 is equal to or less than the maximum temperature Thmax. Therefore, it is possible to prevent the head temperature of the thermal head 2 from becoming higher than the maximum temperature Thmax, which is a specified temperature. Therefore, even in a situation where a large number of images are continuously printed at high speed, the cooling time of the thermal head 2 when the head temperature becomes high can be shortened. As a result, the printing time of the image can be efficiently shortened.
 また、本実施の形態では、事前に、印刷としての隣接印刷処理を実行可能であるか否かが判定され、かつ、当該印刷が行われる前に、ロール紙18から、画像の印刷のために必要な長さの用紙8が引き出され、当該用紙8に画像が印刷される。これにより、印刷中における用紙切れ等が発生することを防止することができる。 Further, in the present embodiment, it is determined in advance whether or not the adjacent printing process as printing can be executed, and before the printing is performed, the roll paper 18 is used to print an image. Paper 8 of a required length is pulled out, and an image is printed on the paper 8. This makes it possible to prevent the paper from running out during printing.
 また、本実施の形態では、温度予測方法は、対象画素データを印刷画素データに変換し、当該印刷画素データを使用してヘッド温度Thaを予測する前述の方法Md1であってもよい。また、方法Md1において、印刷原色画像としてのY画像、M画像およびC画像の各々に対応するヘッド温度Thaを予測してもよい。これにより、複数種類のヘッド温度Thaを予測することができる。 Further, in the present embodiment, the temperature prediction method may be the above-mentioned method Md1 in which the target pixel data is converted into print pixel data and the head temperature Tha is predicted using the print pixel data. Further, in the method Md1, the head temperature Tha corresponding to each of the Y image, the M image, and the C image as the print primary color image may be predicted. Thereby, a plurality of types of head temperature The can be predicted.
 また、印刷装置100が複数の画像を合成し、当該複数の画像を示す合成画像を印刷する構成としてもよい。また、当該構成では、合成画像に対応する印刷エネルギーEpが算出される。合成画像に対応する印刷エネルギーEpは、以下の式(4)のように、複数の画像にそれぞれ対応する複数の印刷エネルギーの和で表現される。 Alternatively, the printing device 100 may be configured to combine a plurality of images and print a composite image showing the plurality of images. Further, in this configuration, the print energy Ep corresponding to the composite image is calculated. The print energy Ep corresponding to the composite image is expressed by the sum of the plurality of print energies corresponding to the plurality of images, as shown in the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)において、合成画像に対応する印刷エネルギーEpは、一例として、0から200までの範囲内の実数で表現される。また、Ep1からEpnは、各画像に対応する印刷エネルギーを示す。Ep1からEpnは、一例として、0から200までの範囲内の実数で表現される。式(4)で得られる印刷エネルギーEpを使用することで、合成画像に対応するヘッド温度Thaを予測することができる。 In the formula (4), the print energy Ep corresponding to the composite image is represented by a real number in the range of 0 to 200 as an example. Further, Ep1 to Epn indicate the printing energy corresponding to each image. Ep1 to Epn are represented by real numbers in the range of 0 to 200 as an example. By using the print energy Ep obtained by the formula (4), the head temperature Tha corresponding to the composite image can be predicted.
 以下においては、印刷を行うための処理と異なる処理を、「非印刷処理」ともいう。印刷を行うための処理は、例えば、印刷処理Pである。 In the following, a process different from the process for printing is also referred to as "non-printing process". The process for printing is, for example, the print process P.
 また、本実施の形態では、印刷装置100が、複数の非印刷処理を実行するとしたがこれに限定されない。情報処理装置200が、当該複数の非印刷処理を実行してもよい。以下においては、印刷装置100が、複数の非印刷処理を実行する状況を、「非印刷処理実行状況」ともいう。 Further, in the present embodiment, the printing apparatus 100 executes a plurality of non-printing processes, but the present invention is not limited to this. The information processing device 200 may execute the plurality of non-printing processes. In the following, a situation in which the printing apparatus 100 executes a plurality of non-printing processes is also referred to as a “non-printing process execution status”.
 情報処理装置200が、当該複数の非印刷処理を実行することにより、以下の問題の発生を防ぐことができる。当該問題は、非印刷処理実行状況において、ヘッド温度の予測等のために多くの時間が費やされ、前の画像の印刷の終了から次の画像の印刷の開始までの間に不要な待ち時間が発生するという問題である。この問題が発生しないことにより、印刷装置100は、印刷を行うための処理を、効率的に、実行することが可能になる。 The information processing device 200 can prevent the following problems from occurring by executing the plurality of non-printing processes. The problem is that in the non-printing process execution situation, a lot of time is spent for predicting the head temperature, etc., and an unnecessary waiting time is required between the end of printing the previous image and the start of printing the next image. Is a problem that occurs. When this problem does not occur, the printing apparatus 100 can efficiently execute the process for printing.
 また、本実施の形態のヘッド温度予測処理では、ヘッド温度予測部62が、画像データに基づいて、仮定印刷状況における予測ヘッド温度としてのヘッド温度Thaを予測したが、これに限定されない。ヘッド温度Thaは、以下の変形構成Aにより予測されてもよい。変形構成Aは、ヘッド温度予測部62が、印刷装置100の環境温度と、画像データとに基づいて、仮定印刷状況におけるヘッド温度Thaを予測する構成である。 Further, in the head temperature prediction process of the present embodiment, the head temperature prediction unit 62 predicts the head temperature Th as the predicted head temperature in the assumed printing situation based on the image data, but the present invention is not limited to this. The head temperature The may be predicted by the following deformation configuration A. In the modified configuration A, the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation based on the environmental temperature of the printing apparatus 100 and the image data.
 次に、変形構成Aが適用された、図5の印刷制御処理について詳細に説明する。以下、変形構成Aが適用された印刷制御処理について、前述した、前提Pm1における印刷制御処理と異なる点を主に説明する。 Next, the print control process of FIG. 5 to which the modified configuration A is applied will be described in detail. Hereinafter, the print control process to which the modified configuration A is applied will be mainly described in that it differs from the print control process in the premise Pm1 described above.
 ステップS120の情報取得処理では、ヘッド温度予測部62が、画像データ、ヘッド温度T0および温度予測情報の取得に加え、環境温度も取得する。 In the information acquisition process of step S120, the head temperature prediction unit 62 acquires the environmental temperature in addition to the acquisition of the image data, the head temperature T0, and the temperature prediction information.
 環境温度の取得は、以下のようにして行われる。まず、ヘッド温度予測部62が、最新の環境温度を環境温度センサSn1に要求する。環境温度センサSn1は、当該要求に応じて、最新の環境温度を計測し、当該最新の環境温度をヘッド温度予測部62へ通知する。これにより、ヘッド温度予測部62は、環境温度を取得する。 The acquisition of the environmental temperature is performed as follows. First, the head temperature prediction unit 62 requests the latest environmental temperature from the environmental temperature sensor Sn1. The environmental temperature sensor Sn1 measures the latest environmental temperature in response to the request, and notifies the head temperature prediction unit 62 of the latest environmental temperature. As a result, the head temperature prediction unit 62 acquires the environmental temperature.
 変形構成Aが適用された、ステップS130のヘッド温度予測処理では、ヘッド温度予測部62が、温度予測情報が示す温度予測方法にしたがって、ヘッド温度Thaを予測する。変形構成Aにおける温度予測方法は、前述の特徴C1、および、特徴C2を有する。特徴C2は、取得された環境温度が高い程、予測されるヘッド温度Thaは高いという特徴である。すなわち、特徴C2は、取得された環境温度が低い程、予測されるヘッド温度Thaは低いという特徴である。 In the head temperature prediction process of step S130 to which the modified configuration A is applied, the head temperature prediction unit 62 predicts the head temperature The according to the temperature prediction method indicated by the temperature prediction information. The temperature prediction method in the modified configuration A has the above-mentioned features C1 and C2. The feature C2 is that the higher the acquired environmental temperature, the higher the predicted head temperature The. That is, the feature C2 is that the lower the acquired environmental temperature, the lower the predicted head temperature The.
 具体的には、変形構成Aが適用されたヘッド温度予測処理では、ヘッド温度予測部62が、印刷装置100の環境温度と、画像データとに基づいて、仮定印刷状況におけるヘッド温度Thaを予測する。 Specifically, in the head temperature prediction process to which the deformation configuration A is applied, the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation based on the environmental temperature of the printing device 100 and the image data. ..
 変形構成Aにおける温度予測方法では、一例として、予測演算式としての前述の式(1)、式(2)および式(3)を使用して、予測ヘッド温度としてのヘッド温度Thaが予測される。式(1)における、環境温度補正係数としての「α」は、例えば、0から1までの範囲内の実数で表現される。当該「α」には、取得された環境温度が高い程、大きい値が設定される。また、当該「α」には、取得された環境温度が低い程、小さい値が設定される。そのため、取得された環境温度が高い程、式(1)により得られるヘッド温度Thaは大きい。 In the temperature prediction method in the modified configuration A, as an example, the head temperature Th as the predicted head temperature is predicted by using the above-mentioned formulas (1), (2) and (3) as the prediction calculation formulas. .. The "α" as the environmental temperature correction coefficient in the equation (1) is represented by, for example, a real number in the range of 0 to 1. The higher the acquired environmental temperature, the larger the value of "α" is set. Further, the lower the acquired environmental temperature, the smaller the value is set for the “α”. Therefore, the higher the acquired environmental temperature, the higher the head temperature The obtained by the equation (1).
 予測演算式を使用した、画像G1に対応するヘッド温度Thaの予測方法、および、画像G2に対応するヘッド温度Thaの予測方法は、前述した予測方法と同様であるので詳細な説明は繰り返さない。前述した予測方法とは、前提Pm1におけるヘッド温度予測処理としての、予測演算式を使用したヘッド温度Thaの予測方法である。 Since the method of predicting the head temperature Tha corresponding to the image G1 and the method of predicting the head temperature Ta corresponding to the image G2 using the prediction calculation formula are the same as the prediction method described above, detailed description will not be repeated. The above-mentioned prediction method is a method of predicting the head temperature Th using a prediction calculation formula as the head temperature prediction processing in the premise Pm1.
 以上のように、変形構成Aでは、仮定印刷状況におけるヘッド温度Thaが予測される。変形構成Aでは、印刷装置100の環境温度と、画像データとに基づいて、ヘッド温度Thaが予測されるため、当該ヘッド温度Thaを正確に予測することができる。 As described above, in the modified configuration A, the head temperature Tha in the assumed printing situation is predicted. In the modified configuration A, since the head temperature Tha is predicted based on the environmental temperature of the printing apparatus 100 and the image data, the head temperature Tha can be accurately predicted.
 また、ヘッド温度Thaは、以下の変形構成Bにより予測されてもよい。変形構成Bは、ヘッド温度予測部62が、印刷条件と、画像データとに基づいて、仮定印刷状況におけるヘッド温度Thaを予測する構成である。当該印刷条件は、例えば、隣接印刷処理において行われる印刷の条件である。当該印刷条件は、例えば、印刷速度である。印刷速度は、例えば、印刷原色画像(Y画像、M画像およびC画像)の印刷速度、および、OP画像の印刷速度である。 Further, the head temperature The may be predicted by the following deformation configuration B. In the modified configuration B, the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation based on the printing conditions and the image data. The printing condition is, for example, a printing condition performed in the adjacent printing process. The printing condition is, for example, a printing speed. The printing speed is, for example, the printing speed of the primary color images (Y image, M image, and C image) and the printing speed of the OP image.
 次に、変形構成Bが適用された、図5の印刷制御処理について詳細に説明する。以下、変形構成Bが適用された印刷制御処理について、前述した、前提Pm1における印刷制御処理と異なる点を主に説明する。 Next, the print control process of FIG. 5 to which the modified configuration B is applied will be described in detail. Hereinafter, the print control process to which the modified configuration B is applied will be mainly described in that it differs from the print control process in the premise Pm1 described above.
 ステップS120の情報取得処理では、ヘッド温度予測部62が、画像データ、ヘッド温度T0および温度予測情報の取得に加え、印刷速度も取得する。印刷速度は、受信部61が受信した印刷ジョブであって、メモリ52に記憶された当該印刷ジョブに含まれる前述の印刷条件情報に示される。そのため、ヘッド温度予測部62は、印刷ジョブから、印刷速度を取得する。 In the information acquisition process in step S120, the head temperature prediction unit 62 acquires the printing speed in addition to acquiring the image data, the head temperature T0, and the temperature prediction information. The print speed is a print job received by the receiving unit 61, and is shown in the above-mentioned print condition information included in the print job stored in the memory 52. Therefore, the head temperature prediction unit 62 acquires the print speed from the print job.
 変形構成Bが適用された、ステップS130のヘッド温度予測処理では、ヘッド温度予測部62が、温度予測情報が示す温度予測方法にしたがって、ヘッド温度Thaを予測する。変形構成Bにおける温度予測方法は、前述の特徴C1、および、特徴C3を有する。特徴C3は、取得された印刷速度を考慮したヘッド温度Thaを予測するという特徴である。 In the head temperature prediction process of step S130 to which the modified configuration B is applied, the head temperature prediction unit 62 predicts the head temperature The according to the temperature prediction method indicated by the temperature prediction information. The temperature prediction method in the modified configuration B has the above-mentioned features C1 and C3. Feature C3 is a feature of predicting the head temperature Tha in consideration of the acquired printing speed.
 具体的には、変形構成Bが適用されたヘッド温度予測処理では、ヘッド温度予測部62が、取得された印刷条件である印刷速度と、画像データとに基づいて、仮定印刷状況におけるヘッド温度Thaを予測する。 Specifically, in the head temperature prediction process to which the deformation configuration B is applied, the head temperature prediction unit 62 has the head temperature Tha in the assumed printing situation based on the acquired printing conditions, the printing speed, and the image data. Predict.
 変形構成Bにおける温度予測方法では、一例として、予測演算式としての前述の式(1)、式(2)および式(3)を使用して、予測ヘッド温度としてのヘッド温度Thaが予測される。 In the temperature prediction method in the modified configuration B, as an example, the head temperature The as the predicted head temperature is predicted by using the above-mentioned formulas (1), (2) and (3) as the prediction calculation formulas. ..
 ここで、取得された印刷速度は、印刷原色画像(例えば、Y画像)の印刷速度、および、OP画像の印刷速度であると仮定する。式(2)における、速度補正係数としての「Argb」には、印刷原色画像の印刷速度に基づいた値が設定される。 Here, it is assumed that the acquired print speed is the print speed of the print primary color image (for example, Y image) and the print speed of the OP image. A value based on the printing speed of the print primary color image is set in "Argb" as the speed correction coefficient in the formula (2).
 また、式(2)における、速度補正係数としての「Aop」には、OP画像の印刷速度に基づいた値が設定される。印刷原色画像の印刷速度を基準として、単純比率に基づいて、印刷原色画像の速度補正係数およびOP画像の速度補正係数は決定される。ここで、印刷原色画像の印刷速度は、1.0ms/lineであると仮定する。また、OP画像の印刷速度は、2.0ms/lineであると仮定する。この場合、例えば、「Argb」には「1.0」が設定され、「Aop」には「0.5」が設定される。 Further, in the equation (2), a value based on the printing speed of the OP image is set in "Aop" as the speed correction coefficient. The speed correction coefficient of the print primary color image and the speed correction coefficient of the OP image are determined based on the simple ratio based on the print speed of the print primary color image. Here, it is assumed that the printing speed of the print primary color image is 1.0 ms / line. Further, it is assumed that the printing speed of the OP image is 2.0 ms / line. In this case, for example, "1.0" is set for "Argb" and "0.5" is set for "Aop".
 予測演算式を使用した、画像G1に対応するヘッド温度Thaの予測方法、および、画像G2に対応するヘッド温度Thaの予測方法は、前述した予測方法と同様であるので詳細な説明は繰り返さない。前述した予測方法とは、前提Pm1におけるヘッド温度予測処理としての、予測演算式を使用したヘッド温度Thaの予測方法である。 Since the method of predicting the head temperature Tha corresponding to the image G1 and the method of predicting the head temperature Ta corresponding to the image G2 using the prediction calculation formula are the same as the prediction method described above, detailed description will not be repeated. The above-mentioned prediction method is a method of predicting the head temperature Th using a prediction calculation formula as the head temperature prediction processing in the premise Pm1.
 以上のように、変形構成Bでは、仮定印刷状況におけるヘッド温度Thaが予測される。変形構成Bでは、印刷条件である印刷速度と、画像データとに基づいて、ヘッド温度Thaが予測されるため、当該ヘッド温度Thaを正確に予測することができる。 As described above, in the modified configuration B, the head temperature Tha in the assumed printing situation is predicted. In the modified configuration B, since the head temperature Tha is predicted based on the printing speed, which is the printing condition, and the image data, the head temperature Tha can be accurately predicted.
 ところで、印刷速度ごとのヘッド温度Thaを予め計測し、その計測結果により、式(2)の速度補正係数が設定されてもよい。また、印刷速度は、外部から提供される印刷ジョブから取得されなくてもよい。また、印刷速度は、例えば、印刷装置100において、予め設定された判定基準により決定されてもよい。また、印刷速度は、例えば、印刷装置100の内部の構成要素から取得されてもよい。 By the way, the head temperature Th for each printing speed may be measured in advance, and the speed correction coefficient of the equation (2) may be set based on the measurement result. Further, the print speed does not have to be obtained from a print job provided from the outside. Further, the printing speed may be determined, for example, by a determination standard set in advance in the printing apparatus 100. Further, the printing speed may be obtained from, for example, an internal component of the printing apparatus 100.
 また、ヘッド温度Thaは、例えば、以下の変形構成Cにより予測されてもよい。変形構成Cは、ヘッド温度予測部62が、印刷装置100の環境温度と、印刷条件と、画像データと、計測されたヘッド温度とに基づいて、仮定印刷状況におけるヘッド温度Thaを予測する構成である。変形構成Cは、変形構成Aと、変形構成Bとを組み合わせることにより実現される。変形構成Cでは、ヘッド温度Thaを、より正確に予測することができる。 Further, the head temperature The may be predicted by, for example, the following deformation configuration C. In the modified configuration C, the head temperature prediction unit 62 predicts the head temperature Th in the assumed printing situation based on the environmental temperature of the printing apparatus 100, the printing conditions, the image data, and the measured head temperature. be. The modified configuration C is realized by combining the modified configuration A and the modified configuration B. In the modified configuration C, the head temperature The can be predicted more accurately.
 ところで、従来の印刷装置では、熱転写の処理を高速化することにより、印刷時間の短縮が実現されている。しかしながら、この方法では、サーマルヘッドに蓄積される熱エネルギーが増大する。そのため、サーマルヘッドの温度が上昇する。特に、濃度の高い画像を印刷する印刷処理が繰り返し行われる場合、インクシートに、熱によるダメージが蓄積する。そのため、インクシートにおいて、熱収縮に伴うシワが発生する。 By the way, in the conventional printing apparatus, the printing time is shortened by speeding up the thermal transfer process. However, this method increases the thermal energy stored in the thermal head. Therefore, the temperature of the thermal head rises. In particular, when the printing process for printing a high-density image is repeatedly performed, heat damage accumulates on the ink sheet. Therefore, wrinkles are generated in the ink sheet due to heat shrinkage.
 さらに、サーマルヘッドに蓄積される熱が増大した場合、インクシートが、用紙に対し熱融着する。すなわち、スティッキングが発生するという問題がある。 Furthermore, when the heat accumulated in the thermal head increases, the ink sheet is heat-sealed to the paper. That is, there is a problem that sticking occurs.
 この問題を解決するために、以下の処理が考えられる。当該処理では、サーマルヘッドの温度が規定温度に到達した場合、印刷装置は、印刷処理の実行を停止することにより、サーマルヘッドを冷却する。そして、サーマルヘッドの温度が規定温度まで低下した場合、印刷装置は、印刷処理を再開する。 The following processing can be considered to solve this problem. In this process, when the temperature of the thermal head reaches a specified temperature, the printing apparatus cools the thermal head by stopping the execution of the printing process. Then, when the temperature of the thermal head drops to the specified temperature, the printing apparatus restarts the printing process.
 これにより、シワ、スティッキング等の発生が抑制される。そのため、印刷物が示す画像の品質を、規定の品質に保つことができる。しかしながら、この処理では、印刷処理の実行時間が、著しく長いという課題がある。 This suppresses the occurrence of wrinkles, sticking, etc. Therefore, the quality of the image shown by the printed matter can be maintained at a specified quality. However, this process has a problem that the execution time of the print process is extremely long.
 特に、1画面サイズのインクシートを使用して複数の画像を印刷する印刷装置の環境温度が高い状況において、濃度の高い画像を印刷する印刷処理が繰り返し行われる場合、以下の不具合が発生するという問題がある。当該不具合は、例えば、ヘッド温度が高い温度になったサーマルヘッドの冷却時間が長くなり、かつ、印刷時間が非常に長くなるという不具合である。 In particular, when the printing process for printing a high-density image is repeated in a situation where the environmental temperature of a printing device that prints a plurality of images using a one-screen size ink sheet is high, the following problems occur. There's a problem. The problem is, for example, that the cooling time of the thermal head, which has become a high head temperature, becomes long, and the printing time becomes very long.
 そこで、本実施の形態の印刷装置100は、上記の効果を奏するための構成を有する。そのため、本実施の形態の印刷装置100により、上記の問題を解決することができる。 Therefore, the printing apparatus 100 of the present embodiment has a configuration for achieving the above effects. Therefore, the printing apparatus 100 of the present embodiment can solve the above problem.
 <変形例1>
 本変形例の構成は、実施の形態1に適用される。実施の形態1では、ヘッド温度予測部62が、予測ヘッド温度としてのヘッド温度Thaを予測する。判定部63は、予測されたヘッド温度Thaに基づいて、印刷装置100が隣接印刷処理を実行可能であるか否かを、判定する。印刷装置100が隣接印刷処理を実行可能な場合、印刷装置100が、画像G1の印刷と、画像G2の印刷とを連続して行った。
<Modification example 1>
The configuration of this modification is applied to the first embodiment. In the first embodiment, the head temperature prediction unit 62 predicts the head temperature Th as the predicted head temperature. The determination unit 63 determines whether or not the printing device 100 can execute the adjacent printing process based on the predicted head temperature The. When the printing device 100 can execute the adjacent printing process, the printing device 100 prints the image G1 and the image G2 in succession.
 本変形例では、Y画像、M画像、C画像等の印刷原色画像の印刷方法に特徴がある。本変形例では、混在印刷を行うための処理が行われる。混在印刷とは、例えば、画像G1を表現する印刷原色画像(例えば、Y画像)の印刷と、画像G2を表現する別の印刷原色画像(例えば、M画像)の印刷とが混在して行われる処理である。 This modification is characterized by a printing method of primary color images such as Y image, M image, and C image. In this modified example, a process for performing mixed printing is performed. In the mixed printing, for example, printing of a print primary color image (for example, Y image) expressing the image G1 and printing of another print primary color image (for example, M image) expressing the image G2 are performed in a mixed manner. It is a process.
 本変形例では、混在印刷に対応する隣接印刷処理が行われる。以下においては、混在印刷に対応する隣接印刷処理を、「混在隣接印刷処理」ともいう。本変形例における混在隣接印刷処理は、画像G1を表現する印刷原色画像と、画像G2を表現する別の印刷原色画像とが隣接するように、当該別の印刷原色画像を印刷する処理である。 In this modified example, adjacent printing processing corresponding to mixed printing is performed. In the following, the adjacent printing process corresponding to mixed printing is also referred to as “mixed adjacent printing process”. The mixed adjacent printing process in this modification is a process of printing the other printing primary color image so that the printing primary color image representing the image G1 and another printing primary color image representing the image G2 are adjacent to each other.
 (構成)
 図7は、変形例1の構成を有する印刷装置100の動作を説明するための機能構成を示す図である。本変形例では、メモリ52に、混在印刷条件がさらに記憶されている。混在印刷条件は、印刷装置100が混在隣接印刷処理を実行可能であるか否かを、判定するための条件である。
(composition)
FIG. 7 is a diagram showing a functional configuration for explaining the operation of the printing apparatus 100 having the configuration of the first modification. In this modification, the mixed printing conditions are further stored in the memory 52. The mixed printing condition is a condition for determining whether or not the printing apparatus 100 can execute the mixed adjacent printing process.
 本変形例では、ヘッド温度予測部62は、画像G1および画像G2の各々を表現する印刷原色画像としてのY画像、M画像およびC画像の各々に対応するヘッド温度Thaを予測する。 In this modification, the head temperature prediction unit 62 predicts the head temperature Tha corresponding to each of the Y image, the M image, and the C image as print primary color images expressing each of the image G1 and the image G2.
 以下においては、前述の最低濃度から前述の中間濃度までの範囲に含まれる濃度を、「低濃度」ともいう。また、以下においては、画像の平均濃度が低濃度である当該画像を、「低濃度画像」ともいう。また、以下においては、前述の中間濃度より高い濃度を、「高濃度」ともいう。また、以下においては、画像の平均濃度が高濃度である当該画像を、「高濃度画像」ともいう。 In the following, the concentration contained in the range from the above-mentioned minimum concentration to the above-mentioned intermediate concentration is also referred to as "low concentration". Further, in the following, the image in which the average density of the image is low is also referred to as a “low density image”. Further, in the following, a concentration higher than the above-mentioned intermediate concentration is also referred to as "high concentration". Further, in the following, the image in which the average density of the image is high is also referred to as a “high density image”.
 また、以下においては、画像G1に対応するヘッド温度Thaを、「ヘッド温度Tha1」または「Tha1」ともいう。また、以下においては、画像G1を表現するY画像に対応するヘッド温度Thaを、「ヘッド温度Tha1y」または「Tha1y」ともいう。また、以下においては、画像G1を表現するM画像に対応するヘッド温度Thaを、「ヘッド温度Tha1m」または「Tha1m」ともいう。また、以下においては、画像G1を表現するC画像に対応するヘッド温度Thaを、「ヘッド温度Tha1c」または「Tha1c」ともいう。 Further, in the following, the head temperature The corresponding to the image G1 is also referred to as "head temperature The1" or "Tha1". Further, in the following, the head temperature The corresponding to the Y image representing the image G1 is also referred to as “head temperature The1y” or “Tha1y”. Further, in the following, the head temperature The corresponding to the M image representing the image G1 is also referred to as "head temperature The1 m" or "Tha 1 m". Further, in the following, the head temperature The corresponding to the C image representing the image G1 is also referred to as "head temperature The1c" or "Tha1c".
 また、以下においては、画像G2に対応するヘッド温度Thaを、「ヘッド温度Tha2」または、「Tha2」ともいう。また、以下においては、画像G2を表現するY画像に対応するヘッド温度Thaを、「ヘッド温度Tha2y」または「Tha2y」ともいう。また、以下においては、画像G2を表現するM画像に対応するヘッド温度Thaを、「ヘッド温度Tha2m」または「Tha2m」ともいう。また、以下においては、画像G2を表現するC画像に対応するヘッド温度Thaを、「ヘッド温度Tha2c」または「Tha2c」ともいう。 Further, in the following, the head temperature The corresponding to the image G2 is also referred to as "head temperature The2" or "Tha2". Further, in the following, the head temperature The corresponding to the Y image representing the image G2 is also referred to as "head temperature The2y" or "Tha2y". Further, in the following, the head temperature The corresponding to the M image representing the image G2 is also referred to as "head temperature The 2m" or "The 2m". Further, in the following, the head temperature The corresponding to the C image representing the image G2 is also referred to as "head temperature The2c" or "Tha2c".
 ヘッド温度Tha1y,Tha1m,Tha1c,Tha2y,Tha2m,Tha2cの各々は、印刷原色画像が、単独で、印刷装置100により印刷されたと仮定した仮定印刷状況におけるヘッド温度である。そのため、例えば、ヘッド温度Tha1yは、2枚の印刷原色画像が連続して印刷されたと仮定した仮定印刷状況におけるヘッド温度より、低い温度である。 Head temperature Each of the head temperature The1y, The1m, The1c, The2y, The2m, and The2c is a head temperature in a hypothetical printing situation assuming that the print primary color image is printed independently by the printing apparatus 100. Therefore, for example, the head temperature The1y is lower than the head temperature in the assumed printing situation assuming that two print primary color images are printed continuously.
 ここで、画像G1が高濃度画像であり、画像G2が低濃度画像であると仮定する。この場合、画像G1および画像G2の各々に対応する、予測ヘッド温度としてのヘッド温度Thaは、例えば、図8の表Tb1のように示される。図8において、「(Y)」、「(M)」および「(C)」、は、それぞれ、Y画像、M画像およびC画像を示す。 Here, it is assumed that the image G1 is a high density image and the image G2 is a low density image. In this case, the head temperature Tha as the predicted head temperature corresponding to each of the image G1 and the image G2 is shown, for example, as shown in Table Tb1 of FIG. In FIG. 8, "(Y)", "(M)" and "(C)" indicate a Y image, an M image and a C image, respectively.
 また、本変形例では、判定部63が、混在印刷条件に基づいて、印刷装置100が混在隣接印刷処理を実行可能であるか否かを、判定する。混在印刷条件は、例えば、図9の表Tb2のように定義される。表Tb2は、混在印刷条件を示す。図9において、「(Y)」、「(M)」および「(C)」、は、それぞれ、Y画像、M画像およびC画像を示す。表Tb2には、Y画像、M画像およびC画像の各々に対応する条件が示される。 Further, in this modification, the determination unit 63 determines whether or not the printing device 100 can execute the mixed adjacent printing process based on the mixed printing conditions. The mixed printing conditions are defined, for example, as shown in Table Tb2 of FIG. Table Tb2 shows the mixed printing conditions. In FIG. 9, "(Y)", "(M)" and "(C)" indicate a Y image, an M image and a C image, respectively. Table Tb2 shows the conditions corresponding to each of the Y image, the M image, and the C image.
 図9において、Y画像に対応する、条件「≧20」とは、例えば、Y画像に対応するヘッド温度Tha1yと、Y画像に対応するヘッド温度Tha2yとの差が20℃以上であるという条件である。なお、混在印刷条件は、図9の表Tb2が示す条件と異なる条件であってもよい。 In FIG. 9, the condition “≧ 20” corresponding to the Y image is, for example, a condition that the difference between the head temperature Th1y corresponding to the Y image and the head temperature Th2y corresponding to the Y image is 20 ° C. or more. be. The mixed printing conditions may be different from the conditions shown in Table Tb2 of FIG.
 また、本変形例では、前述した隣接印刷条件における「Tha≦Thmax」が満たされない場合、例えば、図10の表Tb3のように、画像G1または画像G2を表現する印刷原色画像の印刷の順番が変更される。 Further, in this modification, when “Th ≦ Thmax” in the above-mentioned adjacent printing conditions is not satisfied, for example, as shown in Table Tb3 of FIG. 10, the printing order of the print primary color images expressing the image G1 or the image G2 is changed. Be changed.
 本変形例では、画像G1を表現する複数の印刷原色画像に対応する複数の印刷の間に、低濃度画像である画像G2を表現する印刷原色画像の印刷が行われる。これにより、ヘッド温度の上昇を抑えることができる。また、サーマルヘッド2の温度が、非常に高い温度になることを防止することができる。その結果、サーマルヘッド2を冷却するための処理を不要にすることができる。 In this modification, the print primary color image expressing the low-density image G2 is printed between the plurality of prints corresponding to the plurality of print primary color images expressing the image G1. As a result, it is possible to suppress an increase in the head temperature. Further, it is possible to prevent the temperature of the thermal head 2 from becoming extremely high. As a result, the process for cooling the thermal head 2 can be eliminated.
 各印刷原色画像の印刷の順番が変更されても、印刷物が示す画像の品質はほとんど変化しない。印刷制御部64は、判定部63による判定結果に基づいて、印刷装置100が印刷を行うように、当該印刷装置100を制御する。 Even if the printing order of each print primary color image is changed, the quality of the image indicated by the printed matter hardly changes. The print control unit 64 controls the printing device 100 so that the printing device 100 prints based on the determination result by the determination unit 63.
 (動作)
 次に、変形例1における印刷装置100の動作について説明する。本変形例では、印刷装置100が、以下の印刷制御処理Aを行う。図11は、変形例1に係る印刷制御処理Aのフローチャートである。
(motion)
Next, the operation of the printing apparatus 100 in the first modification will be described. In this modification, the printing apparatus 100 performs the following print control process A. FIG. 11 is a flowchart of the print control process A according to the first modification.
 図11では、印刷制御処理Aに含まれる、主要なステップのみを示している。印刷制御処理Aの一例を分かりやすくするために、以下の前提Pm2のもとで行われる印刷制御処理Aについて説明する。図11において、図5のステップ番号と同じステップ番号の処理は、実施の形態1で説明した処理と同様な処理が行われるので詳細な説明は繰り返さない。以下、実施の形態1と異なる点を主に説明する。 FIG. 11 shows only the main steps included in the print control process A. In order to make an example of the print control process A easy to understand, the print control process A performed under the following premise Pm2 will be described. In FIG. 11, the process of the same step number as the step number of FIG. 5 is the same as the process described in the first embodiment, and thus the detailed description is not repeated. Hereinafter, the points different from those of the first embodiment will be mainly described.
 前提Pm2は、前述の前提Pm1と比較して、以下の点が異なる。前提Pm2におけるそれ以外の点は、前提Pm1と同様である。前提Pm1と同様な前提Pm2では、例えば、印刷装置100のヘッド温度予測部62は、画像G1を示す画像データGd1を含む印刷ジョブを、情報処理装置200から既に受信している。 The premise Pm2 differs from the above-mentioned premise Pm1 in the following points. Other points in the premise Pm2 are the same as those in the premise Pm1. In the premise Pm2 similar to the premise Pm1, for example, the head temperature prediction unit 62 of the printing device 100 has already received a print job including the image data Gd1 indicating the image G1 from the information processing device 200.
 前提Pm2では、印刷制御処理Aが開始された直後に、印刷装置100は、画像G1を表現するY画像の印刷を開始する。また、前提Pm2では、画像G2に対応するヘッド温度Thaは、最大温度Thmaxより大きい。また、前提Pm2では、メモリ52に、混在印刷条件として、図9の表Tb2が記憶されている。また、前提Pm2では、予測されるヘッド温度Tha1y,Tha1m,Tha1c,Tha2y,Tha2m,Tha2cは、図9の表Tb2が示す混在印刷条件を満たす温度である。すなわち、前提Pm2では、「Tha1y-Tha2y」、「Tha1m-Tha2m」および「Tha1c-Tha2c」の全てが、20℃以上である。 In the premise Pm2, immediately after the print control process A is started, the printing device 100 starts printing the Y image representing the image G1. Further, in the premise Pm2, the head temperature Th corresponding to the image G2 is larger than the maximum temperature Thmax. Further, in the premise Pm2, Table Tb2 of FIG. 9 is stored in the memory 52 as a mixed printing condition. Further, in the premise Pm2, the predicted head temperatures The1y, Th1m, Tha1c, Tha2y, Tha2m, and Tha2c are temperatures that satisfy the mixed printing condition shown in Table Tb2 of FIG. That is, in the premise Pm2, all of "The1y-Tha2y", "Tha1m-Tha2m" and "Tha1c-Tha2c" are 20 ° C. or higher.
 また、前提Pm2では、ヘッド温度の上昇を抑えるために、図10の表Tb3のように、各印刷原色画像の印刷の順番が変更される。また、前提Pm2では、画像G1が高濃度画像であり、画像G2が低濃度画像である。当該高濃度画像および当該低濃度画像は、図10の表Tb3のように、各印刷原色画像の印刷の順番が変更された場合、ヘッド温度の上昇を抑えることが可能な画像である。 Further, in the premise Pm2, in order to suppress an increase in the head temperature, the printing order of each print primary color image is changed as shown in Table Tb3 of FIG. Further, in the premise Pm2, the image G1 is a high-density image and the image G2 is a low-density image. The high-density image and the low-density image are images capable of suppressing an increase in head temperature when the printing order of each print primary color image is changed, as shown in Table Tb3 of FIG.
 図11を参照して、前提Pm2における印刷制御処理Aでは、実施の形態1と同様に、ステップS110,S120の処理が行われる。これにより、ヘッド温度予測部62が、印刷データとしての画像データGd1,Gd2、ヘッド温度T0、および、温度予測情報を取得する。 With reference to FIG. 11, in the print control process A in the premise Pm2, the processes of steps S110 and S120 are performed as in the first embodiment. As a result, the head temperature prediction unit 62 acquires the image data Gd1 and Gd2 as print data, the head temperature T0, and the temperature prediction information.
 次に、ヘッド温度予測処理Aが行われる(ステップS130A)。ヘッド温度予測処理Aでは、まず、温度予測処理A1が行われる。温度予測処理A1では、ヘッド温度予測部62が、図5のステップS130と同様に、画像G2に対応するヘッド温度Thaを予測する。そして、ヘッド温度予測部62は、画像G2に対応するヘッド温度Thaである最終予測ヘッド温度Thaを、判定部63へ通知する。前提Pm2では、温度予測処理A1で通知された最終予測ヘッド温度Thaは、最大温度Thmaxより大きい。 Next, the head temperature prediction process A is performed (step S130A). In the head temperature prediction process A, first, the temperature prediction process A1 is performed. In the temperature prediction process A1, the head temperature prediction unit 62 predicts the head temperature Tha corresponding to the image G2 in the same manner as in step S130 of FIG. Then, the head temperature prediction unit 62 notifies the determination unit 63 of the final predicted head temperature The, which is the head temperature The corresponding to the image G2. In the premise Pm2, the final predicted head temperature Th notified in the temperature prediction process A1 is larger than the maximum temperature Thmax.
 次に、温度予測処理A2が行われる。温度予測処理A2では、ヘッド温度予測部62が、温度予測情報が示す温度予測方法にしたがって、画像G1および画像G2の各々を表現する、印刷原色画像としてのY画像、M画像およびC画像の各々に対応するヘッド温度Thaを予測する。 Next, the temperature prediction process A2 is performed. In the temperature prediction process A2, the head temperature prediction unit 62 represents each of the image G1 and the image G2 according to the temperature prediction method indicated by the temperature prediction information, and each of the Y image, the M image, and the C image as the print primary color image. The head temperature The corresponding to is predicted.
 印刷原色画像に対応するヘッド温度Thaの予測に使用される温度予測方法は、例えば、前述の方法Md2である。なお、当該温度予測方法は、前述の方法Md1と同様な方法であってもよい。方法Md1と同様な方法とは、前述の方法Md1を、Y画像、M画像およびC画像の各々に対応するヘッド温度Thaを予測する方法に変更した方法である。 The temperature prediction method used for predicting the head temperature Tha corresponding to the print primary color image is, for example, the above-mentioned method Md2. The temperature prediction method may be the same as the above-mentioned method Md1. The method similar to the method Md1 is a method in which the above-mentioned method Md1 is changed to a method of predicting the head temperature Tha corresponding to each of the Y image, the M image, and the C image.
 すなわち、温度予測処理A2では、ヘッド温度予測部62は、画像G1を表現する印刷原色画像が印刷装置100により印刷されたと仮定した仮定印刷状況におけるヘッド温度Thaを予測する。また、ヘッド温度予測部62は、画像G2を表現する印刷原色画像が印刷装置100により印刷されたと仮定した仮定印刷状況におけるヘッド温度Thaを予測する。 That is, in the temperature prediction process A2, the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation assuming that the print primary color image representing the image G1 is printed by the printing device 100. Further, the head temperature prediction unit 62 predicts the head temperature Tha in the assumed printing situation assuming that the print primary color image representing the image G2 is printed by the printing device 100.
 前提Pm2における温度予測処理A2では、図8に示される各ヘッド温度Thaが予測される。前提Pm2では、予測されたヘッド温度Tha1y,Tha1m,Tha1c,Tha2y,Tha2m,Tha2cは、ヘッド温度センサSn3が、方法Md2における前述のタイミングBにおいてヘッド温度を計測することにより、予測された温度である。タイミングBは、例えば、画像G1を表現するY画像の印刷が開始されたタイミングである。 In the temperature prediction process A2 in the premise Pm2, each head temperature The shown in FIG. 8 is predicted. In the premise Pm2, the predicted head temperatures The1y, The1m, The1c, The2y, The2m, and Th2c are the predicted temperatures when the head temperature sensor Sn3 measures the head temperature at the above-mentioned timing B in the method Md2. .. The timing B is, for example, the timing at which the printing of the Y image representing the image G1 is started.
 以下においては、ヘッド温度センサSn3が、タイミングBにおいて計測したヘッド温度を、「ヘッド温度Th0」または「Th0」ともいう。ヘッド温度Th0は、画像G1を表現するY画像の印刷が開始されたタイミングBにおけるヘッド温度である。ヘッド温度Tha1y,Tha1m,Tha1c,Tha2y,Tha2m,Tha2cの各々は、ヘッド温度Th0を基準として、予測された温度である。そのため、例えば、「Tha1y-Th0」の式で得られる温度は、サーマルヘッド2の上昇温度である。 In the following, the head temperature measured by the head temperature sensor Sn3 at the timing B is also referred to as “head temperature Th0” or “Th0”. The head temperature Th0 is the head temperature at the timing B at which printing of the Y image representing the image G1 is started. Each of the head temperatures The1y, The1m, The1c, The2y, The2m, and Th2c is a predicted temperature with respect to the head temperature Th0. Therefore, for example, the temperature obtained by the formula "Tha1y-Th0" is the rising temperature of the thermal head 2.
 また、前提Pm2では、予測されたヘッド温度Tha1y,Tha1m,Tha1c,Tha2y,Tha2m,Tha2cは、「Tha1y-Tha2y」、「Tha1m-Tha2m」および「Tha1c-Tha2c」の各々が20℃以上となる温度である。すなわち、前提Pm2では、予測されたヘッド温度Tha1y,Tha1m,Tha1c,Tha2y,Tha2m,Tha2cは、図9の表Tb2の混在印刷条件を満たす温度である。 Further, in the premise Pm2, the predicted head temperatures The1y, The1m, The1c, The2y, The2m, and The2c are "The1y-Tha2y", "The1m-Tha2m", and "Tha1c-Tha2c", respectively, at 20 ° C. or higher. Is. That is, in the premise Pm2, the predicted head temperatures The1y, The1m, The1c, The2y, The2m, and The2c are the temperatures that satisfy the mixed printing condition of Table Tb2 in FIG.
 また、ヘッド温度予測部62は、印刷原色画像に対応する、予測したヘッド温度を、判定部63へ通知する。予測したヘッド温度は、ヘッド温度Tha1y,Tha1m,Tha1c,Tha2y,Tha2m,Tha2cである。 Further, the head temperature prediction unit 62 notifies the determination unit 63 of the predicted head temperature corresponding to the print primary color image. The predicted head temperature is the head temperature The1y, The1m, The1c, The2y, The2m, The2c.
 次に、判定部63が、メモリ52に記憶されている隣接印刷条件を取得する。次に、判定処理A3が行われる。判定処理A3では、判定部63が、隣接印刷条件における、関係式Aとしての前述の関係式(Tha≦Thmax)が成立するか否かを判定する。関係式Aが成立する場合、このヘッド温度予測処理Aは終了して、処理はステップS142へ移行する。一方、関係式Aが満たされない場合、以下の順番変更処理A4が行われる。 Next, the determination unit 63 acquires the adjacent print conditions stored in the memory 52. Next, the determination process A3 is performed. In the determination process A3, the determination unit 63 determines whether or not the above-mentioned relational expression (Tha ≦ Thmax) as the relational expression A is satisfied under the adjacent printing conditions. When the relational expression A is satisfied, the head temperature prediction process A ends, and the process proceeds to step S142. On the other hand, when the relational expression A is not satisfied, the following order change process A4 is performed.
 前提Pm2では、画像G2に対応するヘッド温度Thaは、最大温度Thmaxより大きい。そのため、前提Pm2における判定処理A3では、関係式Aが成立しないため、順番変更処理A4が行われる。 In the premise Pm2, the head temperature Th corresponding to the image G2 is larger than the maximum temperature Thmax. Therefore, in the determination process A3 in the premise Pm2, since the relational expression A does not hold, the order change process A4 is performed.
 順番変更処理A4では、判定部63が、ヘッド温度の上昇を、なるべく抑えるように、各印刷原色画像の印刷の順番を変更する。前提Pm2における順番変更処理A4では、画像G1を表現する複数の印刷原色画像に対応する複数の印刷の間に、低濃度画像である画像G2を表現する印刷原色画像の印刷が行われるように、各印刷原色画像の印刷の順番が変更される。前提Pm2における順番変更処理A4では、例えば、判定部63が、図10の表Tb3のように、各印刷原色画像の印刷の順番を変更する。 In the order change process A4, the determination unit 63 changes the printing order of each print primary color image so as to suppress the rise in the head temperature as much as possible. In the order change process A4 in the premise Pm2, the print primary color image expressing the low density image G2 is printed between the plurality of prints corresponding to the plurality of print primary color images representing the image G1. The printing order of each print primary color image is changed. In the order change process A4 in the premise Pm2, for example, the determination unit 63 changes the printing order of each print primary color image as shown in Table Tb3 of FIG.
 そして、判定部63は、各印刷原色画像の印刷の順番を、ヘッド温度予測部62へ通知する。前提Pm2では、図10の表Tb3を、ヘッド温度予測部62へ通知する。 Then, the determination unit 63 notifies the head temperature prediction unit 62 of the printing order of each print primary color image. In the premise Pm2, the table Tb3 of FIG. 10 is notified to the head temperature prediction unit 62.
 次に、最終温度予測処理A5が行われる。最終温度予測処理A5では、ヘッド温度予測部62が、変更された印刷の順番に対応する最終予測ヘッド温度Thaを予測する。 Next, the final temperature prediction process A5 is performed. In the final temperature prediction process A5, the head temperature prediction unit 62 predicts the final prediction head temperature The corresponding to the changed printing order.
 前提Pm2における最終温度予測処理A5では、ヘッド温度予測部62は、図10の表Tb3に示される印刷の順番に対応する、最終予測ヘッド温度Thaを予測する。ヘッド温度予測部62は、例えば、「Tha1y+Tha1m+Tha1c+Tha2y+Tha2m+Tha2c-5×Th0」の式により得られた温度を、最終予測ヘッド温度Thaとして予測する。前提Pm2では、予測された当該最終予測ヘッド温度Thaは、最大温度Thmax以下である。ヘッド温度予測部62は、予測した最終予測ヘッド温度Thaを、判定部63に通知する。以上により、ヘッド温度予測処理Aが終了する。 In the final temperature prediction process A5 in the premise Pm2, the head temperature prediction unit 62 predicts the final prediction head temperature Tha corresponding to the printing order shown in Table Tb3 of FIG. The head temperature prediction unit 62 predicts, for example, the temperature obtained by the formula "The1y + The1m + The1c + The2y + The2m + The2c-5xTh0" as the final predicted head temperature The. In the premise Pm2, the predicted final predicted head temperature Th is equal to or lower than the maximum temperature Thmax. The head temperature prediction unit 62 notifies the determination unit 63 of the predicted final predicted head temperature The. As a result, the head temperature prediction process A is completed.
 ヘッド温度予測処理Aが終了すると、判定部63は、メモリ52に記憶されている混在印刷条件を取得する(ステップS142)。前提Pm2におけるステップS142では、混在印刷条件として、図9の表Tb2が取得される。 When the head temperature prediction process A is completed, the determination unit 63 acquires the mixed printing conditions stored in the memory 52 (step S142). In step S142 in the premise Pm2, Table Tb2 of FIG. 9 is acquired as the mixed printing condition.
 ステップS150では、判定部63が、最新の最終予測ヘッド温度Tha、および、隣接印刷条件に基づいて、印刷装置100が隣接印刷処理を実行可能であるか否かを、判定する。最終予測ヘッド温度Thaが最大温度Thmax以下の場合、印刷装置100が隣接印刷処理を実行することが認められ、処理はステップS152へ移行する。一方、最終予測ヘッド温度Thaが最大温度Thmaxより大きい場合、印刷装置100が隣接印刷処理を実行することが認められず、処理はステップS174へ移行する。 In step S150, the determination unit 63 determines whether or not the printing apparatus 100 can execute the adjacent printing process based on the latest final predicted head temperature The and the adjacent printing conditions. When the final predicted head temperature Th is equal to or lower than the maximum temperature Thmax, the printing apparatus 100 is allowed to execute the adjacent printing process, and the process proceeds to step S152. On the other hand, when the final predicted head temperature Th is larger than the maximum temperature Thmax, the printing apparatus 100 is not allowed to execute the adjacent printing process, and the process proceeds to step S174.
 前提Pm2では、最新の最終予測ヘッド温度Thaが最大温度Thmax以下である。そのため、前提Pm2におけるステップS150の判定により、処理はステップS152へ移行する。 In the premise Pm2, the latest final predicted head temperature Th is equal to or less than the maximum temperature Thmax. Therefore, the process shifts to step S152 based on the determination of step S150 in the premise Pm2.
 ステップS152では、実施の形態1と同様に、判定部63が、印刷装置100の動作状態である印刷状態を、印刷状態取得部65に問い合わせる。前提Pm2では、判定部63は、印刷状態としての「印刷中」を示す印刷状態情報を受信する。 In step S152, as in the first embodiment, the determination unit 63 inquires the print state acquisition unit 65 about the print state, which is the operating state of the printing device 100. In the premise Pm2, the determination unit 63 receives the print state information indicating "printing" as the print state.
 ステップS154では、実施の形態1と同様に、判定部63が、印刷状態が「印刷中」であるか否かを判定する。ステップS154においてYesならば、処理はステップS156へ移行する。一方、ステップS154においてNoならば、処理はステップS174へ移行する。 In step S154, as in the first embodiment, the determination unit 63 determines whether or not the printing state is "printing". If Yes in step S154, the process proceeds to step S156. On the other hand, if No in step S154, the process proceeds to step S174.
 ステップS156では、判定部63が、各ヘッド温度Thaに基づいて、隣接印刷処理である混在隣接印刷処理を印刷装置100に実行させるか否かを判定する。 In step S156, the determination unit 63 determines whether or not the printing apparatus 100 executes the mixed adjacent printing process, which is the adjacent printing process, based on each head temperature The.
 前提Pm2におけるステップS156では、判定部63が、ヘッド温度Tha1y,Tha1m,Tha1c、および、ヘッド温度Tha2y,Tha2m,Tha2cに基づいて、隣接印刷処理である混在隣接印刷処理を印刷装置100に実行させるか否かを判定する。 In step S156 in the premise Pm2, whether the determination unit 63 causes the printing apparatus 100 to execute the mixed adjacent printing process, which is the adjacent printing process, based on the head temperatures The1y, The1m, The1c and the head temperatures The2y, The2m, The2c. Judge whether or not.
 具体的には、まず、判定部63が、予測ヘッド温度としての各ヘッド温度Thaと、混在印刷条件とに基づいて、印刷装置100が混在隣接印刷処理を実行可能であるか否かを、判定する。 Specifically, first, the determination unit 63 determines whether or not the printing apparatus 100 can execute the mixed adjacent printing process based on each head temperature Th as the predicted head temperature and the mixed printing condition. do.
 混在印刷条件が満たされる場合、印刷装置100が混在隣接印刷処理を実行可能であると判定される。この場合、判定部63は、混在隣接印刷処理を印刷装置100に実行させると判定する。そして、処理はステップS172へ移行する。一方、混在印刷条件が満たされない場合、印刷装置100が混在隣接印刷処理を実行不能であると判定される。この場合、判定部63は、混在隣接印刷処理を印刷装置100に実行させないと判定する。そして、処理はステップS171へ移行する。 When the mixed printing condition is satisfied, it is determined that the printing device 100 can execute the mixed adjacent printing process. In this case, the determination unit 63 determines that the printing apparatus 100 executes the mixed adjacent printing process. Then, the process proceeds to step S172. On the other hand, if the mixed printing condition is not satisfied, it is determined that the printing apparatus 100 cannot execute the mixed adjacent printing process. In this case, the determination unit 63 determines that the printing apparatus 100 does not execute the mixed adjacent printing process. Then, the process proceeds to step S171.
 すなわち、ステップS156では、判定部63が、予測された各ヘッド温度Thaと、混在印刷条件とに基づいて、隣接印刷処理である混在隣接印刷処理を印刷装置100に実行させるか否かを判定する。 That is, in step S156, the determination unit 63 determines whether or not to cause the printing apparatus 100 to execute the mixed adjacent printing process, which is the adjacent printing process, based on the predicted head temperature Th and the mixed printing conditions. ..
 前提Pm2では、予測されたヘッド温度Tha1y,Tha1m,Tha1c,Tha2y,Tha2m,Tha2cは、図9の表Tb2の混在印刷条件を満たす。そのため、前提Pm2におけるステップS156では、判定部63は、混在隣接印刷処理を実行可能と判定し、かつ、混在隣接印刷処理を印刷装置100に実行させると判定する。そして、処理はステップS172へ移行する。 In the premise Pm2, the predicted head temperatures The1y, The1m, The1c, The2y, The2m, and The2c satisfy the mixed printing condition of Table Tb2 in FIG. Therefore, in step S156 in the premise Pm2, the determination unit 63 determines that the mixed adjacent printing process can be executed, and determines that the printing device 100 executes the mixed adjacent printing process. Then, the process proceeds to step S172.
 ステップS172では、印刷装置100が、判定部63の判定結果に従って、混在隣接印刷処理を実行する。前提Pm2における混在隣接印刷処理では、図10の表Tb3に従った処理が行われる。すなわち、前提Pm2における混在隣接印刷処理では、印刷装置100が、印刷制御部64の制御に従って、画像G1を表現する印刷原色画像(Y画像)と、画像G2を表現する別の印刷原色画像(M画像)とが隣接するように、当該別の印刷原色画像(M画像)を印刷する。 In step S172, the printing device 100 executes the mixed adjacent printing process according to the determination result of the determination unit 63. In the mixed adjacent printing process in the premise Pm2, the process according to Table Tb3 in FIG. 10 is performed. That is, in the mixed adjacent printing process in the premise Pm2, the printing apparatus 100 controls a print control unit 64 to represent a print primary color image (Y image) representing the image G1 and another print primary color image (M) representing the image G2. The other print primary color image (M image) is printed so as to be adjacent to the image).
 その後、図10の表Tb3に従って、各印刷原色画像の印刷が行われる。これにより、印刷制御処理Aが終了する。ステップS171,S174は、実施の形態1と同様に行われるので詳細な説明は省略する。以下においては、混在隣接印刷処理を含む、印刷に関する処理を、「混在印刷制御処理」ともいう。 After that, each print primary color image is printed according to Table Tb3 in FIG. As a result, the print control process A ends. Since steps S171 and S174 are performed in the same manner as in the first embodiment, detailed description thereof will be omitted. In the following, processing related to printing, including mixed adjacent printing processing, is also referred to as “mixed printing control processing”.
 次に、前提Pm2における混在印刷制御処理について説明する。図12および図13は、変形例1に係る混在印刷制御処理の一例を説明するための図である。なお、図12および図13における混在印刷制御処理では、説明を簡略化するために、OP画像の印刷の処理は省略している。図12および図13において、図6のステップ番号と同じステップ番号の処理は、図6に対して説明した処理と同様な処理が行われるので詳細な説明は繰り返さない。以下、図6の処理と異なる点を主に説明する。 Next, the mixed print control process in the premise Pm2 will be described. 12 and 13 are diagrams for explaining an example of the mixed print control process according to the first modification. In the mixed print control process in FIGS. 12 and 13, the process of printing the OP image is omitted in order to simplify the explanation. In FIGS. 12 and 13, the process of the same step number as the step number of FIG. 6 is the same as the process described with respect to FIG. 6, so that the detailed description will not be repeated. Hereinafter, the points different from the processing of FIG. 6 will be mainly described.
 図12を参照して、ステップS510、S520により、印刷装置100が、用紙8の頭出しを行う。次に、印刷装置100が、画像G1を表現するY画像を用紙8に印刷する印刷Pr(X1)(Y)を行う(ステップS530Y)。この場合、画像G1は、印刷原色画像としてのY画像で表現される。 With reference to FIG. 12, the printing apparatus 100 cue the paper 8 in steps S510 and S520. Next, the printing apparatus 100 performs printing Pr (X1) (Y) for printing a Y image representing the image G1 on the paper 8 (step S530Y). In this case, the image G1 is represented by a Y image as a print primary color image.
 印刷Pr(X1)(Y)が終了した後に、混在隣接印刷処理として、画像G2を表現するM画像を用紙8に印刷する印刷Pr(X2)(M)を行うための準備が行われる。具体的には、印刷装置100が、用紙8の位置P2(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS552M)。 After the printing Pr (X1) (Y) is completed, preparations are made for printing Pr (X2) (M) for printing the M image representing the image G2 on the paper 8 as the mixed adjacent printing process. Specifically, the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S552M).
 次に、印刷装置100が、画像G2を表現するM画像を用紙8に印刷する混在隣接印刷処理としての印刷Pr(X2)(M)を行う(ステップS560M)。この場合、画像G2は、印刷原色画像としてのM画像で表現される。また、画像G1を表現するY画像と、画像G2を表現するM画像とが隣接する。 Next, the printing apparatus 100 performs printing Pr (X2) (M) as a mixed adjacent printing process for printing the M image representing the image G2 on the paper 8 (step S560M). In this case, the image G2 is represented by an M image as a print primary color image. Further, the Y image representing the image G1 and the M image representing the image G2 are adjacent to each other.
 印刷Pr(X2)(M)が終了した後に、印刷装置100が、画像G1を表現するC画像を用紙8に印刷する印刷Pr(X1)(C)を行う(ステップS530C)。 After the printing Pr (X2) (M) is completed, the printing apparatus 100 performs the printing Pr (X1) (C) for printing the C image representing the image G1 on the paper 8 (step S530C).
 印刷Pr(X1)(C)が終了した後に、画像G2を表現するY画像を用紙8に印刷する印刷Pr(X2)(Y)を行うための準備が行われる。具体的には、印刷装置100が、用紙8の位置P2(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS552Y)。 After the printing Pr (X1) (C) is completed, preparations are made for printing Pr (X2) (Y) for printing the Y image representing the image G2 on the paper 8. Specifically, the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S552Y).
 次に、印刷装置100が、画像G2を表現するY画像を用紙8に印刷する印刷Pr(X2)(Y)を行う(ステップS560Y)。図13を参照して、印刷Pr(X2)(Y)が終了した後に、印刷装置100が、画像G1を表現するM画像を用紙8に印刷する印刷Pr(X1)(M)を行う(ステップS530M)。これにより、用紙8に、画像G1を示す印刷物が形成される。 Next, the printing device 100 performs printing Pr (X2) (Y) for printing a Y image representing the image G2 on the paper 8 (step S560Y). With reference to FIG. 13, after the printing Pr (X2) (Y) is completed, the printing apparatus 100 performs the printing Pr (X1) (M) for printing the M image representing the image G1 on the paper 8 (step). S530M). As a result, a printed matter showing the image G1 is formed on the paper 8.
 印刷Pr(X1)(M)が終了した後に、画像G2を表現するC画像を用紙8に印刷する印刷Pr(X2)(C)を行うための準備が行われる。具体的には、印刷装置100が、用紙8の位置P2(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS552C)。 After the printing Pr (X1) (M) is completed, preparations are made for printing Pr (X2) (C) for printing the C image representing the image G2 on the paper 8. Specifically, the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S552C).
 次に、印刷装置100が、画像G2を表現するC画像を用紙8に印刷する印刷Pr(X2)(C)を行う(ステップS560C)。これにより、用紙8に、画像G2を示す印刷物が形成される。 Next, the printing device 100 performs printing Pr (X2) (C) for printing the C image representing the image G2 on the paper 8 (step S560C). As a result, a printed matter showing the image G2 is formed on the paper 8.
 印刷Pr(X2)(C)が終了した後に、排紙処理(X1)が行われる(ステップS571)。排紙処理(X1)では、画像G1を示す印刷物を外部に排出するために、印刷装置100が、用紙8を搬送する。そして、用紙8から当該印刷物が切り離されるように、カッターCt1が、当該用紙8の位置P1を切断する。 After the printing Pr (X2) (C) is completed, the paper ejection process (X1) is performed (step S571). In the paper ejection process (X1), the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G1 to the outside. Then, the cutter Ct1 cuts the position P1 of the paper 8 so that the printed matter is separated from the paper 8.
 次に、排紙処理(X2)が行われる(ステップS572)。排紙処理(X2)では、画像G2を示す印刷物を外部に排出するために、印刷装置100が、用紙8を搬送する。そして、用紙8から当該印刷物が切り離されるように、カッターCt1が、当該用紙8の位置P2を切断する。 Next, the paper ejection process (X2) is performed (step S572). In the paper ejection process (X2), the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G2 to the outside. Then, the cutter Ct1 cuts the position P2 of the paper 8 so that the printed matter is separated from the paper 8.
 次に、印刷装置100の状態を待機状態にするための処理が行われる。具体的には、用紙8の位置P2が、待機状態に対応する待機位置となるように、印刷装置100が、用紙8を搬送する(ステップS580)。以上により、混在印刷制御処理は終了する。 Next, a process for changing the state of the printing device 100 to the standby state is performed. Specifically, the printing device 100 conveys the paper 8 so that the position P2 of the paper 8 becomes the standby position corresponding to the standby state (step S580). With the above, the mixed print control process is completed.
 (まとめ)
 以上説明したように、本変形例によれば、画像G1を表現する複数の印刷原色画像に対応する複数の印刷の間に、低濃度画像である画像G2を表現する印刷原色画像の印刷が行われるように、各印刷原色画像の印刷の順番が変更される。これにより、ヘッド温度の上昇を抑えることができる。すなわち、サーマルヘッド2の温度が、非常に高い温度になることを防止することができる。また、本変形例の混在印刷制御処理が実行されることにより、効率的な印刷を実現することができる。
(summary)
As described above, according to the present modification, the printing primary color image expressing the low density image G2 is printed between the plurality of printings corresponding to the plurality of printing primary color images expressing the image G1. As a result, the printing order of each print primary color image is changed. As a result, it is possible to suppress an increase in the head temperature. That is, it is possible to prevent the temperature of the thermal head 2 from becoming extremely high. Further, efficient printing can be realized by executing the mixed print control process of this modification.
 <変形例2>
 本変形例の構成は、変形例1に適用される。実施の形態1では、ヘッド温度予測部62が、ヘッド温度Thaを予測する。判定部63は、予測されたヘッド温度Thaに基づいて、印刷装置100が隣接印刷処理を実行可能であるか否かを、判定する。また、変形例1では、画像G1を表現する印刷原色画像の印刷と、画像G2を表現する別の印刷原色画像の印刷とが混在して行われる混在印刷制御処理が行われる。
<Modification 2>
The configuration of this modification is applied to modification 1. In the first embodiment, the head temperature prediction unit 62 predicts the head temperature The. The determination unit 63 determines whether or not the printing device 100 can execute the adjacent printing process based on the predicted head temperature The. Further, in the modification 1, the mixed print control process in which the printing of the print primary color image expressing the image G1 and the printing of another print primary color image expressing the image G2 are performed in a mixed manner is performed.
 本変形例の印刷装置100は、混在印刷制御処理を実行する機能を有する。混在印刷制御処理は、例えば、変形例1で説明した混在印刷制御処理である。当該混在印刷制御処理は、画像G1を表現する印刷原色画像を印刷する処理と、画像G2を表現する別の印刷原色画像を印刷する処理とを含む処理である。 The printing device 100 of this modification has a function of executing mixed printing control processing. The mixed print control process is, for example, the mixed print control process described in the first modification. The mixed print control process is a process including a process of printing a print primary color image representing the image G1 and a process of printing another print primary color image representing the image G2.
 本変形例では、混在印刷制御処理が実行されている期間の途中に用紙8を切断する混在切断処理が行われる。前述したように、当該混在印刷制御処理は、前述の混在隣接印刷処理を含む。混在切断処理とは、例えば、画像G2の印刷の途中に、画像G1を示す印刷物を用紙8から切り離すための処理である。 In this modification, the mixed cutting process of cutting the paper 8 is performed in the middle of the period during which the mixed printing control process is being executed. As described above, the mixed print control process includes the mixed adjacent print process described above. The mixed cutting process is, for example, a process for separating the printed matter showing the image G1 from the paper 8 during the printing of the image G2.
 (構成)
 図14は、変形例2の構成を有する印刷装置100の動作を説明するための機能構成を示す図である。本変形例では、メモリ52に、混在切断条件がさらに記憶されている。混在切断条件は、用紙8における切断位置と、混在印刷制御処理における、用紙8の印刷開始位置とに基づいた最小隣接印刷数を示す。当該切断位置とは、用紙8のうち、カッターCt1が切断を行うための位置である。
(composition)
FIG. 14 is a diagram showing a functional configuration for explaining the operation of the printing apparatus 100 having the configuration of the second modification. In this modification, the mixed disconnection condition is further stored in the memory 52. The mixed cutting condition indicates the minimum number of adjacent prints based on the cutting position on the paper 8 and the printing start position of the paper 8 in the mixed printing control process. The cutting position is a position on the paper 8 for the cutter Ct1 to perform cutting.
 最小隣接印刷数は、混在切断処理が行われる場合の、隣接して印刷可能な画像の最小数である。混在切断条件は、例えば、「印刷枚数>最小隣接印刷数」の関係式である。 The minimum number of adjacent prints is the minimum number of images that can be printed adjacently when mixed cutting processing is performed. The mixed cutting condition is, for example, a relational expression of "number of prints> minimum number of adjacent prints".
 本変形例では、最小隣接印刷数は、一例として2である。そのため、3枚以上の対象画像を使用した混在印刷制御処理が実行されている期間の途中に、混在切断処理が行われる。 In this modified example, the minimum number of adjacent prints is 2 as an example. Therefore, the mixed cutting process is performed during the period in which the mixed print control process using three or more target images is being executed.
 通常、印刷原色画像(Y画像、M画像、C画像)、OP画像等のような、印刷の対象となる画像を切替える処理が行われる場合、用紙8の搬送が一時的に停止される必要がある。本変形例では、用紙8の搬送が一時的に停止される状況において、用紙8の印刷開始位置(例えば、位置P1)が、切断位置として使用されるように設定される。そのため、印刷の対象となる画像を切替える処理と、印刷物が形成された用紙8の切断を行うための処理とを、並列的に行うことが可能となる。 Normally, when a process of switching an image to be printed such as a print primary color image (Y image, M image, C image), OP image, etc. is performed, it is necessary to temporarily stop the transportation of the paper 8. be. In this modification, the printing start position (for example, position P1) of the paper 8 is set to be used as the cutting position in the situation where the transport of the paper 8 is temporarily stopped. Therefore, it is possible to perform the process of switching the image to be printed and the process of cutting the paper 8 on which the printed matter is formed in parallel.
 本変形例では、対象画像として、3枚の画像を使用した処理について説明する。対象画像としての3枚の画像は、前述の画像G1、前述の画像G2、および、画像G3である。以下においては、画像G3を示す画像データGdを、「画像データGd3」ともいう。すなわち、画像データGd3は、画像G3の画像データである。以下においては、混在切断処理を含む混在印刷制御処理を、「混在切断制御処理」ともいう。 In this modified example, processing using three images as target images will be described. The three images as the target images are the above-mentioned image G1, the above-mentioned image G2, and the image G3. In the following, the image data Gd indicating the image G3 is also referred to as “image data Gd3”. That is, the image data Gd3 is the image data of the image G3. In the following, the mixed print control process including the mixed cutting process is also referred to as a “mixed cutting control process”.
 (動作)
 次に、変形例2における印刷装置100の動作について説明する。本変形例では、印刷装置100が、以下の印刷制御処理Bを行う。図15は、変形例2に係る印刷制御処理Bのフローチャートである。図15では、印刷制御処理Bに含まれる、主要なステップのみを示している。図15では、印刷制御処理Bの説明が複雑にならないように、一例として、「印刷中」の判定を行わない印刷制御処理Bを示す。
(motion)
Next, the operation of the printing apparatus 100 in the second modification will be described. In this modification, the printing apparatus 100 performs the following print control process B. FIG. 15 is a flowchart of the print control process B according to the second modification. FIG. 15 shows only the main steps included in the print control process B. FIG. 15 shows, as an example, a print control process B in which the determination of “printing” is not performed so that the description of the print control process B is not complicated.
 印刷制御処理Bの一例を分かりやすくするために、以下の前提Pm3のもとで行われる印刷制御処理Bについて説明する。図15において、図11のステップ番号と同じステップ番号の処理は、変形例1で説明した処理と同様な処理が行われるので詳細な説明は繰り返さない。以下、変形例1と異なる点を主に説明する。 In order to make it easier to understand an example of the print control process B, the print control process B performed under the following premise Pm3 will be described. In FIG. 15, the process of the same step number as the step number of FIG. 11 is the same as the process described in the first modification, so that the detailed description will not be repeated. Hereinafter, the points different from the modification 1 will be mainly described.
 また、図16、図17および図18は、変形例2に係る混在切断制御処理の一例を説明するための図である。図16、図17および図18における混在切断制御処理では、説明を簡略化するために、OP画像の印刷の処理は省略している。また、図16、図17および図18において、図12および図13のステップ番号と同じステップ番号の処理は、図12および図13に対して説明した処理と同様な処理が行われるので詳細な説明は繰り返さない。また、図16、図17および図18では、画像G3に関連する処理に対して、文字列「(X3)」が示される。以下においては、画像G3に対する印刷処理Pを、「印刷Pr(X3)」または「Pr(X3)」ともいう。 16 and 17 and 18 are diagrams for explaining an example of the mixed cutting control process according to the second modification. In the mixed cutting control process in FIGS. 16, 17, and 18, the process of printing the OP image is omitted for the sake of simplification of the description. Further, in FIGS. 16, 17 and 18, the process of the same step number as that of the step numbers of FIGS. 12 and 13 is the same as the process described with respect to FIGS. 12 and 13, so that a detailed description thereof will be given. Does not repeat. Further, in FIGS. 16, 17, and 18, the character string “(X3)” is shown for the processing related to the image G3. In the following, the print process P for the image G3 is also referred to as “print Pr (X3)” or “Pr (X3)”.
 図16、図17および図18では、画像G1,G2,G3を印刷するために、印刷原色画像の印刷の順番が変更された状況における混在切断制御処理の一例を説明するための図である。各印刷原色画像の印刷の順番の変更は、画像G1,G2,G3の各々の印刷原色画像に対応するヘッド温度Thaに基づいて行われる。また、各印刷原色画像の印刷の順番の変更は、混在印刷条件が満たされるように行われる。 16A, 17th and 18th are diagrams for explaining an example of mixed cutting control processing in a situation where the printing order of the print primary color images is changed in order to print the images G1, G2 and G3. The printing order of each print primary color image is changed based on the head temperature Tha corresponding to each print primary color image of the images G1, G2, and G3. Further, the printing order of each printing primary color image is changed so that the mixed printing condition is satisfied.
 前提Pm3では、印刷ジョブは、印刷枚数を示す。当該印刷枚数は、3である。また、前提Pm3では、図16、図17および図18が示す、各印刷原色画像の印刷の順番となるように、当該各印刷原色画像の印刷の順番が変更される。前提Pm3における混在印刷条件は、図16、図17および図18が示す、各印刷原色画像の印刷の順番に対応する混在切断制御処理を実行可能な条件である。また、前提Pm3では、混在切断条件(印刷枚数>最小隣接印刷数)が満たされる。また、前提Pm3では、画像G1,G2,G3の各々を表現する、各印刷原色画像に対応する予測されたヘッド温度Thaは、混在印刷条件を満たす温度である。 In the premise Pm3, the print job indicates the number of prints. The number of prints is 3. Further, in the premise Pm3, the printing order of the printing primary color images is changed so as to be the printing order of the printing primary color images shown in FIGS. 16, 17, and 18. The mixed printing condition in the premise Pm3 is a condition in which the mixed cutting control process corresponding to the printing order of each print primary color image shown in FIGS. 16, 17 and 18 can be executed. Further, in the premise Pm3, the mixed cutting condition (number of prints> minimum number of adjacent prints) is satisfied. Further, in the premise Pm3, the predicted head temperature Tha corresponding to each print primary color image representing each of the images G1, G2, and G3 is a temperature satisfying the mixed printing condition.
 図15を参照して、前提Pm3における印刷制御処理Bでは、変形例1と同様に、ステップS110の処理が行われる。これにより、印刷ジョブが、メモリ52に記憶される。 With reference to FIG. 15, in the print control process B in the premise Pm3, the process of step S110 is performed in the same manner as in the first modification. As a result, the print job is stored in the memory 52.
 次に、情報取得処理Bが行われる(ステップS120B)。前提Pm3における情報取得処理Bでは、ヘッド温度予測部62が、印刷データとしての画像データGd1,Gd2,Gd3、ヘッド温度T0、温度予測情報、および、印刷枚数を取得する。 Next, the information acquisition process B is performed (step S120B). In the information acquisition process B in the premise Pm3, the head temperature prediction unit 62 acquires image data Gd1, Gd2, Gd3, head temperature T0, temperature prediction information, and the number of prints as print data.
 次に、ヘッド温度予測処理Aが行われる(ステップS130A)。ヘッド温度予測処理Aでは、画像G1,G2,G3を対象として、変形例1における、図11のヘッド温度予測処理Aと同様な処理が行われる。そのため、図15のヘッド温度予測処理Aの詳細な説明は省略する。前提Pm3では、例えば、画像G1,G2,G3の各々を表現する、各印刷原色画像に対応する予測されたヘッド温度Thaは、混在印刷条件を満たす温度である。また、例えば、判定部63が、図16、図17および図18のように、各印刷原色画像の印刷の順番を変更する。 Next, the head temperature prediction process A is performed (step S130A). In the head temperature prediction process A, the same process as the head temperature prediction process A of FIG. 11 in the first modification is performed on the images G1, G2, and G3. Therefore, a detailed description of the head temperature prediction process A in FIG. 15 will be omitted. In the premise Pm3, for example, the predicted head temperature Tha corresponding to each print primary color image representing each of the images G1, G2, and G3 is a temperature that satisfies the mixed printing condition. Further, for example, the determination unit 63 changes the printing order of each print primary color image as shown in FIGS. 16, 17, and 18.
 次に、判定部63は、メモリ52に記憶されている混在印刷条件を取得する(ステップS142)。次に、判定部63は、メモリ52に記憶されている混在切断条件を取得する(ステップS143)。 Next, the determination unit 63 acquires the mixed printing conditions stored in the memory 52 (step S142). Next, the determination unit 63 acquires the mixed disconnection condition stored in the memory 52 (step S143).
 ステップS150では、判定部63が、最終予測ヘッド温度Thaおよび隣接印刷条件に基づいて、印刷装置100が隣接印刷処理を実行可能であるか否かを、判定する。ステップS150の処理は、変形例1のステップS150の処理と同様である。前提Pm3では、印刷装置100が隣接印刷処理を実行可能と判定されて、処理はステップS156へ移行する。 In step S150, the determination unit 63 determines whether or not the printing apparatus 100 can execute the adjacent printing process based on the final predicted head temperature The and the adjacent printing conditions. The process of step S150 is the same as the process of step S150 of the first modification. In the premise Pm3, it is determined that the printing apparatus 100 can execute the adjacent printing process, and the process proceeds to step S156.
 ステップS156では、判定部63が、混在隣接印刷処理を印刷装置100に実行させるか否かを判定する。混在印刷条件が満たされる場合、印刷装置100が混在隣接印刷処理を実行可能であると判定される。そして、処理はステップS158へ移行する。一方、混在印刷条件が満たされない場合、印刷装置100が混在隣接印刷処理を実行不能であると判定される。そして、処理はステップS171へ移行する。前提Pm3では、混在印刷条件が満たされるとして、処理はステップS158へ移行する。 In step S156, the determination unit 63 determines whether or not the printing apparatus 100 executes the mixed adjacent printing process. When the mixed printing condition is satisfied, it is determined that the printing apparatus 100 can execute the mixed adjacent printing process. Then, the process proceeds to step S158. On the other hand, if the mixed printing condition is not satisfied, it is determined that the printing apparatus 100 cannot execute the mixed adjacent printing process. Then, the process proceeds to step S171. In the premise Pm3, assuming that the mixed printing condition is satisfied, the process proceeds to step S158.
 ステップS158では、判定部63が、混在切断条件に基づいて、混在印刷制御処理である混在切断制御処理が実行されている期間の途中に、印刷装置100が混在切断処理を実行可能であるか否かを、判定する。 In step S158, whether or not the printing device 100 can execute the mixed cutting process during the period in which the mixed cutting control process, which is the mixed printing control process, is being executed by the determination unit 63 based on the mixed cutting condition. Is determined.
 具体的には、判定部63は、混在切断条件が満たされるか否かを判定する。混在切断条件が満たされる場合、印刷装置100は混在切断処理を実行可能であると判定される。そして、処理はステップS173へ移行する。一方、混在切断条件が満たされない場合、印刷装置100は混在切断処理を実行不能であると判定される。そして、処理はステップS172へ移行する。前提Pm3では、混在印刷条件が満たされる。そのため、処理はステップS173へ移行する。 Specifically, the determination unit 63 determines whether or not the mixed cutting condition is satisfied. When the mixed cutting condition is satisfied, the printing apparatus 100 determines that the mixed cutting process can be executed. Then, the process proceeds to step S173. On the other hand, if the mixed cutting condition is not satisfied, the printing apparatus 100 determines that the mixed cutting process cannot be executed. Then, the process proceeds to step S172. In the premise Pm3, the mixed printing condition is satisfied. Therefore, the process proceeds to step S173.
 ステップS173では、印刷装置100が、印刷制御部64の制御に従って、混在切断処理を実行する。具体的には、印刷装置100は、混在印刷制御処理である混在切断制御処理が実行されている期間の途中に、混在切断処理を実行する。混在切断処理は、切断条件Aが満たされた場合に実行される。当該切断条件Aは、用紙8を切断するための条件である。切断条件Aは、一例として、画像G1の印刷が終了したという条件である。 In step S173, the printing apparatus 100 executes the mixed cutting process under the control of the print control unit 64. Specifically, the printing apparatus 100 executes the mixed cutting process during the period during which the mixed cutting control process, which is the mixed printing control process, is being executed. The mixed cutting process is executed when the cutting condition A is satisfied. The cutting condition A is a condition for cutting the paper 8. The cutting condition A is, for example, a condition that the printing of the image G1 is completed.
 次に、図16、図17および図18を使用して、前提Pm3における混在切断制御処理について説明する。図16、図17および図18には、印刷開始位置としての位置P3がさらに示される。用紙8のうち、位置P3と位置P2との間の領域は、別の1つの印刷領域に対応する。 Next, the mixed cutting control process in the premise Pm3 will be described with reference to FIGS. 16, 17, and 18. 16, FIG. 17 and FIG. 18 further show the position P3 as the print start position. The area between the position P3 and the position P2 of the paper 8 corresponds to another printing area.
 図16を参照して、ステップS510,S552により、印刷装置100が、用紙8の位置P2(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う。 With reference to FIG. 16, in steps S510 and S552, the printing apparatus 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected.
 次に、印刷装置100が、画像G2を表現するY画像を用紙8に印刷する印刷Pr(X2)(Y)を行う(ステップS560Y)。次に、印刷装置100が、画像G1を表現するM画像を用紙8に印刷する印刷Pr(X1)(M)を行う(ステップS530M)。 Next, the printing device 100 performs printing Pr (X2) (Y) for printing a Y image representing the image G2 on the paper 8 (step S560Y). Next, the printing apparatus 100 performs printing Pr (X1) (M) for printing the M image representing the image G1 on the paper 8 (step S530M).
 次に、印刷装置100が、用紙8の位置P2(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS552C)。次に、印刷装置100が、画像G2を表現するC画像を用紙8に印刷する印刷Pr(X2)(C)を行う(ステップS560C)。次に、印刷装置100が、画像G1を表現するY画像を用紙8に印刷する印刷Pr(X1)(Y)を行う(ステップS530Y)。 Next, the printing device 100 cue the paper 8 so that the position P2 (printing start position) of the paper 8 is detected (step S552C). Next, the printing apparatus 100 performs printing Pr (X2) (C) for printing the C image representing the image G2 on the paper 8 (step S560C). Next, the printing apparatus 100 performs printing Pr (X1) (Y) for printing a Y image representing the image G1 on the paper 8 (step S530Y).
 次に、印刷装置100が、用紙8の位置P3(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS553)。図17を参照して、次に、印刷装置100が、画像G3を表現するM画像を用紙8に印刷する印刷Pr(X3)(M)を行う(ステップS563M)。 Next, the printing device 100 cue the paper 8 so that the position P3 (printing start position) of the paper 8 is detected (step S553). With reference to FIG. 17, the printing apparatus 100 then performs printing Pr (X3) (M) for printing the M image representing the image G3 on the paper 8 (step S563M).
 次に、印刷装置100が、用紙8の位置P1(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS520C)。次に、印刷装置100が、画像G1を表現するC画像を用紙8に印刷する印刷Pr(X1)(C)を行う(ステップS530C)。これにより、画像G1の印刷が終了したという切断条件Aが満たされる。また、用紙8に、画像G1を示す印刷物が形成される。 Next, the printing device 100 cue the paper 8 so that the position P1 (printing start position) of the paper 8 is detected (step S520C). Next, the printing apparatus 100 performs printing Pr (X1) (C) for printing the C image representing the image G1 on the paper 8 (step S530C). As a result, the cutting condition A that the printing of the image G1 is completed is satisfied. Further, a printed matter showing the image G1 is formed on the paper 8.
 次に、排紙処理(X1)が行われる(ステップS571)。排紙処理(X1)では、印刷物を外部に排出するために、印刷装置100が、用紙8を搬送する。また、排紙処理(X1)では、印刷装置100は、用紙8を切断する混在切断処理を行う。 Next, the paper ejection process (X1) is performed (step S571). In the paper ejection process (X1), the printing apparatus 100 conveys the paper 8 in order to eject the printed matter to the outside. Further, in the paper ejection process (X1), the printing apparatus 100 performs a mixed cutting process for cutting the paper 8.
 混在切断処理は、例えば、画像G2の印刷の途中に、画像G1を示す印刷物を用紙8から切り離すための処理である。混在切断処理では、用紙8から、画像G1を示す印刷物が切り離されるように、印刷装置100のカッターCt1が、当該用紙8の位置P1を切断する。 The mixed cutting process is, for example, a process for separating the printed matter showing the image G1 from the paper 8 during the printing of the image G2. In the mixed cutting process, the cutter Ct1 of the printing apparatus 100 cuts the position P1 of the paper 8 so that the printed matter showing the image G1 is separated from the paper 8.
 次に、印刷装置100が、用紙8の位置P3(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS553Y)。次に、印刷装置100が、画像G3を表現するY画像を用紙8に印刷する印刷Pr(X3)(Y)を行う(ステップS563Y)。図18を参照して、次に、印刷装置100が、画像G2を表現するM画像を用紙8に印刷する印刷Pr(X2)(M)を行う(ステップS560M)。これにより、画像G2の印刷が終了し、用紙8に、画像G2を示す印刷物が形成される。 Next, the printing device 100 cue the paper 8 so that the position P3 (printing start position) of the paper 8 is detected (step S553Y). Next, the printing apparatus 100 performs printing Pr (X3) (Y) for printing a Y image representing the image G3 on the paper 8 (step S563Y). With reference to FIG. 18, the printing apparatus 100 then performs printing Pr (X2) (M) for printing the M image representing the image G2 on the paper 8 (step S560M). As a result, the printing of the image G2 is completed, and the printed matter showing the image G2 is formed on the paper 8.
 次に、排紙処理(X2)が行われる(ステップS572)。排紙処理(X2)では、画像G2を示す印刷物を外部に排出するために、印刷装置100が、用紙8を搬送する。そして、用紙8から当該印刷物が切り離されるように、カッターCt1が、当該用紙8の位置P2を切断する。 Next, the paper ejection process (X2) is performed (step S572). In the paper ejection process (X2), the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G2 to the outside. Then, the cutter Ct1 cuts the position P2 of the paper 8 so that the printed matter is separated from the paper 8.
 次に、印刷装置100が、用紙8の位置P3(印刷開始位置)が検出されるように、当該用紙8の頭出しを行う(ステップS553C)。次に、印刷装置100が、画像G3を表現するC画像を用紙8に印刷する印刷Pr(X3)(C)を行う(ステップS563C)。これにより、画像G3の印刷が終了し、用紙8に、画像G3を示す印刷物が形成される。 Next, the printing device 100 cue the paper 8 so that the position P3 (printing start position) of the paper 8 is detected (step S553C). Next, the printing apparatus 100 performs printing Pr (X3) (C) for printing the C image representing the image G3 on the paper 8 (step S563C). As a result, the printing of the image G3 is completed, and the printed matter showing the image G3 is formed on the paper 8.
 次に、排紙処理(X3)が行われる(ステップS573)。排紙処理(X3)では、画像G3を示す印刷物を外部に排出するために、印刷装置100が、用紙8を搬送する。そして、用紙8から当該印刷物が切り離されるように、カッターCt1が、当該用紙8の位置P3を切断する。 Next, the paper ejection process (X3) is performed (step S573). In the paper ejection process (X3), the printing apparatus 100 conveys the paper 8 in order to eject the printed matter showing the image G3 to the outside. Then, the cutter Ct1 cuts the position P3 of the paper 8 so that the printed matter is separated from the paper 8.
 次に、用紙8の位置P3が、待機状態に対応する待機位置となるように、印刷装置100が、用紙8を搬送する(ステップS580)。以上により、前提Pm3における混在切断制御処理は終了する。上記の説明によれば、混在印刷制御処理である混在切断制御処理が実行されている期間の途中に前述の混在切断処理が行われる。 Next, the printing device 100 conveys the paper 8 so that the position P3 of the paper 8 becomes the standby position corresponding to the standby state (step S580). As described above, the mixed cutting control process in the premise Pm3 is completed. According to the above description, the above-mentioned mixed cutting process is performed during the period in which the mixed cutting control process, which is the mixed printing control process, is being executed.
 (まとめ)
 以上説明したように、本変形例によれば、混在印刷制御処理である混在切断制御処理が実行されている期間の途中に、画像G1を示す印刷物を用紙8から切り離す混在切断処理が行われる。また、混在切断制御処理では、用紙8の搬送が一時的に停止される状況において、用紙8の印刷開始位置(例えば、位置P1)が、切断位置として使用されるように設定される。これにより、印刷の対象となる画像を切替える処理と、印刷物が形成された用紙8の切断を行うための処理とが、並列的に行われる。そのため、混在印刷制御処理である混在切断制御処理が実行されている期間の途中に排紙処理を行うことができ、かつ、当該混在切断制御処理の実行に必要な時間を短縮することができる。そのため、効率的な印刷を実現することができる。
(summary)
As described above, according to the present modification, the mixed cutting process for separating the printed matter showing the image G1 from the paper 8 is performed during the period in which the mixed cutting control process, which is the mixed printing control process, is being executed. Further, in the mixed cutting control process, the print start position (for example, position P1) of the paper 8 is set to be used as the cutting position in the situation where the transport of the paper 8 is temporarily stopped. As a result, the process of switching the image to be printed and the process of cutting the paper 8 on which the printed matter is formed are performed in parallel. Therefore, the paper ejection process can be performed in the middle of the period during which the mixed cut control process, which is the mixed print control process, is being executed, and the time required to execute the mixed cut control process can be shortened. Therefore, efficient printing can be realized.
 (機能ブロック図)
 図19は、印刷装置BL10の特徴的な機能構成を示すブロック図である。印刷装置BL10は、印刷装置100に相当する。つまり、図19は、印刷装置BL10の有する機能のうち、本技術に関わる主要な機能を示すブロック図である。
(Functional block diagram)
FIG. 19 is a block diagram showing a characteristic functional configuration of the printing apparatus BL10. The printing device BL10 corresponds to the printing device 100. That is, FIG. 19 is a block diagram showing the main functions related to the present technology among the functions of the printing apparatus BL10.
 印刷装置BL10は、サーマルヘッドを使用して、複数の画像が隣接するように、当該複数の画像を印刷する機能を有する、熱転写方式の印刷装置である。印刷装置BL10は、機能的には、ヘッド温度予測部BL1を備える。ヘッド温度予測部BL1は、前記サーマルヘッドの温度であるヘッド温度を予測する機能を有する。ヘッド温度予測部BL1は、ヘッド温度予測部62に相当する。前記複数の画像は、j(1以上の整数)番目の画像である第1画像、および、(j+1)番目の画像である第2画像を含む。 The printing device BL10 is a thermal transfer type printing device having a function of printing a plurality of images so that the plurality of images are adjacent to each other by using a thermal head. The printing device BL10 functionally includes a head temperature prediction unit BL1. The head temperature prediction unit BL1 has a function of predicting the head temperature, which is the temperature of the thermal head. The head temperature prediction unit BL1 corresponds to the head temperature prediction unit 62. The plurality of images include a first image which is the j (integer of 1 or more) th image and a second image which is the (j + 1) th image.
 ヘッド温度予測部BL1は、前記第1画像と前記第2画像とが隣接するように、当該第1画像および当該第2画像の一方または両方が印刷装置BL10により印刷されたと仮定した状況における前記ヘッド温度を、当該第1画像および当該第2画像の一方または両方のデータである画像データに基づいて、予測する。 The head temperature prediction unit BL1 assumes that one or both of the first image and the second image are printed by the printing device BL10 so that the first image and the second image are adjacent to each other. The temperature is predicted based on the image data which is the data of one or both of the first image and the second image.
 印刷装置BL10は、機能的には、さらに、判定部BL2を備える。判定部BL2は、予測された前記ヘッド温度に基づいて、前記第1画像と前記第2画像とが隣接するように、当該第2画像を印刷する隣接印刷処理を印刷装置BL10に実行させるか否かを判定する。判定部BL2は、判定部63に相当する。 Functionally, the printing device BL10 further includes a determination unit BL2. Whether or not the determination unit BL2 causes the printing device BL10 to perform an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other based on the predicted head temperature. Is determined. The determination unit BL2 corresponds to the determination unit 63.
 前記隣接印刷処理を印刷装置BL10に実行させると判定された場合、当該印刷装置BL10は当該隣接印刷処理を実行する。前記隣接印刷処理を印刷装置BL10に実行させないと判定された場合、前記印刷装置BL10は当該隣接印刷処理を実行しない。 When it is determined that the printing device BL10 executes the adjacent printing process, the printing device BL10 executes the adjacent printing process. If it is determined that the printing device BL10 does not execute the adjacent printing process, the printing device BL10 does not execute the adjacent printing process.
 (その他の変形例)
 以上、本技術に係る印刷装置について、実施の形態に基づいて説明したが、本技術は、当該実施の形態に限定されるものではない。本技術の主旨を逸脱しない範囲内で、当業者が思いつく変形を実施の形態に施したものも、本技術に含まれる。つまり、本技術は、その技術の範囲内において、実施の形態、各変形例を自由に組み合わせたり、実施の形態、各変形例を適宜、変形、省略することが可能である。
(Other variants)
Although the printing apparatus according to the present technology has been described above based on the embodiment, the present technology is not limited to the embodiment. The present technology also includes modifications that can be conceived by those skilled in the art within the scope of the present technology. That is, in the present technology, within the scope of the technology, the embodiments and the modified examples can be freely combined, and the embodiments and the modified examples can be appropriately modified or omitted.
 例えば、印刷装置100は、図で示される全ての構成要素を含まなくてもよい。すなわち、印刷装置100は、本技術の効果を実現できる最小限の構成要素のみを含めばよい。 For example, the printing apparatus 100 does not have to include all the components shown in the figure. That is, the printing apparatus 100 needs to include only the minimum components that can realize the effect of the present technology.
 また、印刷装置100に含まれる、ヘッド温度予測部62および判定部63の各々の機能は、処理回路により実現されてもよい。 Further, each function of the head temperature prediction unit 62 and the determination unit 63 included in the printing apparatus 100 may be realized by a processing circuit.
 当該処理回路は、前記第1画像と前記第2画像とが隣接するように、当該第1画像および当該第2画像の一方または両方が前記印刷装置により印刷されたと仮定した状況における前記ヘッド温度を、当該第1画像および当該第2画像の一方または両方のデータである画像データに基づいて、予測するための回路である。 The processing circuit measures the head temperature in a situation where it is assumed that one or both of the first image and the second image are printed by the printing device so that the first image and the second image are adjacent to each other. , A circuit for making a prediction based on image data which is data of one or both of the first image and the second image.
 また、当該処理回路は、予測された前記ヘッド温度に基づいて、前記第1画像と前記第2画像とが隣接するように、当該第2画像を印刷する隣接印刷処理を前記印刷装置に実行させるか否かを判定するための回路でもある。 Further, the processing circuit causes the printing apparatus to execute an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other based on the predicted head temperature. It is also a circuit for determining whether or not.
 処理回路は、専用のハードウエアであってよい。また、処理回路は、メモリに格納されるプログラムを実行するプロセッサであってもよい。当該プロセッサは、例えば、CPU(Central Processing Unit)、中央処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等である。 The processing circuit may be dedicated hardware. Further, the processing circuit may be a processor that executes a program stored in the memory. The processor is, for example, a CPU (Central Processing Unit), a central processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
 以下においては、処理回路が専用のハードウエアである構成を、「構成Cs1」ともいう。また、以下においては、処理回路が、プロセッサである構成を、「構成Cs2」ともいう。また、以下においては、ヘッド温度予測部62および判定部63の各々の機能を、ハードウエアとソフトウエアとの組み合わせにより実現する構成を、「構成Cs3」ともいう。 In the following, the configuration in which the processing circuit is dedicated hardware is also referred to as "configuration Cs1". Further, in the following, the configuration in which the processing circuit is a processor is also referred to as “configuration Cs2”. Further, in the following, a configuration in which each function of the head temperature prediction unit 62 and the determination unit 63 is realized by a combination of hardware and software is also referred to as “configuration Cs3”.
 構成Cs1では、処理回路は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。ヘッド温度予測部62および判定部63の機能は、それぞれ、2つの処理回路で実現されてもよい。また、ヘッド温度予測部62および判定部63の全ての機能が、1つの処理回路で実現されてもよい。 In configuration Cs1, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Applicable. The functions of the head temperature prediction unit 62 and the determination unit 63 may be realized by two processing circuits, respectively. Further, all the functions of the head temperature prediction unit 62 and the determination unit 63 may be realized by one processing circuit.
 なお、印刷装置100に含まれる各構成要素の全てまたは一部を、ハードウエアで示した構成は、例えば、以下のようになる。以下においては、印刷装置100に含まれる各構成要素の全てまたは一部を、ハードウエアで示した印刷装置を、「印刷装置hd10」ともいう。 The configuration in which all or a part of each component included in the printing apparatus 100 is shown in hardware is as follows, for example. In the following, a printing device in which all or a part of each component included in the printing device 100 is shown by hardware is also referred to as “printing device hd10”.
 図20は、印刷装置hd10のハードウエア構成図である。図20を参照して、印刷装置hd10は、プロセッサhd1と、メモリhd2とを備える。メモリhd2は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。また、メモリhd2は、例えば、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。また、メモリhd2は、今後使用されるあらゆる記憶媒体であってもよい。 FIG. 20 is a hardware configuration diagram of the printing device hd10. With reference to FIG. 20, the printing apparatus hd10 includes a processor hd1 and a memory hd2. The memory hd2 is, for example, a non-volatile or volatile semiconductor memory such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an EPROM, or an EEPROM. The memory hd2 is, for example, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like. Further, the memory hd2 may be any storage medium used in the future.
 構成Cs2では、処理回路は、プロセッサhd1である。構成Cs2では、ヘッド温度予測部62および判定部63の各々の機能は、ソフトウエア、ファームウエア、またはソフトウエアとファームウエアとの組み合わせにより実現される。ソフトウエアまたはファームウエアは、プログラムとして記述され、メモリhd2に格納される。 In the configuration Cs2, the processing circuit is the processor hd1. In the configuration Cs2, each function of the head temperature prediction unit 62 and the determination unit 63 is realized by software, firmware, or a combination of software and firmware. The software or firmware is described as a program and stored in the memory hd2.
 また、構成Cs2では、処理回路(プロセッサhd1)が、メモリhd2に記憶されたプログラムを読み出して、当該プログラムを実行することにより、ヘッド温度予測部62および判定部63の各々の機能は実現される。すなわち、メモリhd2は、以下のプログラムを格納する。 Further, in the configuration Cs2, the processing circuit (processor hd1) reads the program stored in the memory hd2 and executes the program, so that each function of the head temperature prediction unit 62 and the determination unit 63 is realized. .. That is, the memory hd2 stores the following programs.
 当該プログラムは、前記第1画像と前記第2画像とが隣接するように、当該第1画像および当該第2画像の一方または両方が前記印刷装置により印刷されたと仮定した状況における前記ヘッド温度を、当該第1画像および当該第2画像の一方または両方のデータである画像データに基づいて、予測するステップを、処理回路(プロセッサhd1)に実行させるためのプログラムである。 The program sets the head temperature in a situation where it is assumed that one or both of the first image and the second image are printed by the printing device so that the first image and the second image are adjacent to each other. It is a program for causing a processing circuit (processor hd1) to execute a step of prediction based on image data which is data of one or both of the first image and the second image.
 また、当該プログラムは、予測された前記ヘッド温度に基づいて、前記第1画像と前記第2画像とが隣接するように、当該第2画像を印刷する隣接印刷処理を前記印刷装置に実行させるか否かを判定するステップを、処理回路(プロセッサhd1)に実行させるためのプログラムでもある。 Further, the program causes the printing apparatus to execute an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other based on the predicted head temperature. It is also a program for causing the processing circuit (processor hd1) to execute the step of determining whether or not it is present.
 また、当該プログラムは、ヘッド温度予測部62および判定部63の各々が行う処理の手順、当該処理を実行する方法等をコンピュータに実行させるものでもある。 Further, the program also causes a computer to execute a procedure of processing performed by each of the head temperature prediction unit 62 and the determination unit 63, a method of executing the processing, and the like.
 構成Cs3では、ヘッド温度予測部62および判定部63の一部の機能は、専用のハードウエアで実現される。また、構成Cs3では、ヘッド温度予測部62および判定部63の別の一部の機能は、ソフトウエアまたはファームウエアで実現される。 In the configuration Cs3, some functions of the head temperature prediction unit 62 and the determination unit 63 are realized by dedicated hardware. Further, in the configuration Cs3, another part of the functions of the head temperature prediction unit 62 and the determination unit 63 is realized by software or firmware.
 例えば、ヘッド温度予測部62の機能は、処理回路がメモリに格納されたプログラムを読み出して実行することによって実現される。また、例えば、判定部63の機能は、専用のハードウエアとしての処理回路で実現される。 For example, the function of the head temperature prediction unit 62 is realized by the processing circuit reading and executing the program stored in the memory. Further, for example, the function of the determination unit 63 is realized by a processing circuit as dedicated hardware.
 以上の構成Cs1、構成Cs2および構成Cs3のように、処理回路は、ハードウエア、ソフトウエア、ファームウエア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 Like the above configurations Cs1, configuration Cs2, and configuration Cs3, the processing circuit can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
 また、本技術は、印刷装置100が備える特徴的な構成部の動作をステップとする印刷制御方法として実現してもよい。また、本技術は、そのような印刷制御方法に含まれる各ステップをコンピュータに実行させるプログラムとして実現してもよい。また、本技術は、そのようなプログラムを格納するコンピュータ読み取り可能な記録媒体として実現されてもよい。また、当該プログラムは、インターネット等の伝送媒体を介して配信されてもよい。本技術に係る印刷制御方法は、例えば、図5、図11または図15の処理に相当する。 Further, the present technology may be realized as a print control method in which the operation of a characteristic component included in the printing apparatus 100 is a step. Further, the present technology may be realized as a program for causing a computer to execute each step included in such a print control method. Further, the present technology may be realized as a computer-readable recording medium for storing such a program. Further, the program may be distributed via a transmission medium such as the Internet. The print control method according to the present technology corresponds to, for example, the processing of FIG. 5, FIG. 11 or FIG.
 上記実施の形態および変形例で用いた全ての数値は、本技術を具体的に説明するための一例の数値である。すなわち、本技術は、上記実施の形態および変形例で用いた各数値に制限されない。 All the numerical values used in the above-described embodiment and modified examples are numerical values of an example for concretely explaining the present technology. That is, the present technology is not limited to each numerical value used in the above-described embodiment and modification.
 なお、実施の形態、各変形例を自由に組み合わせたり、実施の形態、各変形例を適宜、変形、省略することが可能である。 It is possible to freely combine the embodiments and the modified examples, and to appropriately modify or omit the embodiments and the modified examples.
 例えば、混在印刷条件は、図9の表Tb2が示す条件に限定されない。混在印刷条件は、2つの画像Aが隣接するように、当該2つの画像Aが印刷されたと仮定した仮定印刷状況における、当該2つの画像Aに対応する2つのヘッド温度Thaの差が、例えば、20℃以上であるという条件であってもよい。 For example, the mixed printing conditions are not limited to the conditions shown in Table Tb2 of FIG. In the mixed printing condition, for example, the difference between the two head temperatures Tha corresponding to the two images A in the hypothetical printing situation assuming that the two images A are printed so that the two images A are adjacent to each other is, for example, It may be a condition that the temperature is 20 ° C. or higher.
 本開示は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、本開示がそれに限定されるものではない。例示されていない無数の変形例が、本開示の範囲から外れることなく想定され得るものと解される。 Although the present disclosure has been described in detail, the above description is exemplary in all embodiments and the present disclosure is not limited thereto. It is understood that a myriad of variations not illustrated can be envisioned without departing from the scope of the present disclosure.
 2 サーマルヘッド、8 用紙、9 インクシート、62,BL1 ヘッド温度予測部、63,BL2 判定部、100,BL10,hd10 印刷装置、Sn1 環境温度センサ、Sn3 ヘッド温度センサ。 2 thermal head, 8 paper, 9 ink sheet, 62, BL1 head temperature prediction unit, 63, BL2 judgment unit, 100, BL10, hd10 printing device, Sn1 environmental temperature sensor, Sn3 head temperature sensor.

Claims (8)

  1.  サーマルヘッドを使用して、複数の画像が隣接するように、当該複数の画像を印刷する機能を有する、熱転写方式の印刷装置であって、
     前記サーマルヘッドの温度であるヘッド温度を予測する機能を有するヘッド温度予測部を備え、
     前記複数の画像は、j(1以上の整数)番目の画像である第1画像、および、(j+1)番目の画像である第2画像を含み、
     前記ヘッド温度予測部は、前記第1画像と前記第2画像とが隣接するように、当該第1画像および当該第2画像の一方または両方が前記印刷装置により印刷されたと仮定した状況における前記ヘッド温度を、当該第1画像および当該第2画像の一方または両方のデータである画像データに基づいて、予測し、
     前記印刷装置は、さらに、
      予測された前記ヘッド温度に基づいて、前記第1画像と前記第2画像とが隣接するように、当該第2画像を印刷する隣接印刷処理を前記印刷装置に実行させるか否かを判定する判定部を備え、
     前記隣接印刷処理を前記印刷装置に実行させると判定された場合、当該印刷装置は当該隣接印刷処理を実行し、
     前記隣接印刷処理を前記印刷装置に実行させないと判定された場合、前記印刷装置は当該隣接印刷処理を実行しない、
     印刷装置。
    A thermal transfer type printing apparatus having a function of printing a plurality of images so that the plurality of images are adjacent to each other by using a thermal head.
    A head temperature prediction unit having a function of predicting a head temperature, which is the temperature of the thermal head, is provided.
    The plurality of images include a first image which is the j (integer of 1 or more) th image and a second image which is the (j + 1) th image.
    The head temperature prediction unit is a head in a situation where it is assumed that one or both of the first image and the second image are printed by the printing device so that the first image and the second image are adjacent to each other. The temperature is predicted based on the image data, which is the data of one or both of the first image and the second image.
    The printing apparatus further
    Based on the predicted head temperature, a determination is made as to whether or not to cause the printing apparatus to execute an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other. With a part
    When it is determined that the printing device executes the adjacent printing process, the printing device executes the adjacent printing process.
    If it is determined that the printing device does not execute the adjacent printing process, the printing device does not execute the adjacent printing process.
    Printing device.
  2.  前記ヘッド温度予測部は、前記印刷装置の内部の温度である環境温度と、前記画像データとに基づいて、仮定された前記状況における前記ヘッド温度を予測する、
     請求項1に記載の印刷装置。
    The head temperature prediction unit predicts the head temperature in the assumed situation based on the environmental temperature, which is the temperature inside the printing apparatus, and the image data.
    The printing apparatus according to claim 1.
  3.  前記ヘッド温度予測部は、前記隣接印刷処理において行われる印刷の条件と、前記画像データとに基づいて、仮定された前記状況における前記ヘッド温度を予測する、
     請求項1に記載の印刷装置。
    The head temperature predicting unit predicts the head temperature in the assumed situation based on the printing conditions performed in the adjacent printing process and the image data.
    The printing apparatus according to claim 1.
  4.  前記印刷装置は、さらに、
      前記ヘッド温度を計測するヘッド温度計測部を備え、
     前記ヘッド温度予測部は、計測された前記ヘッド温度と、前記画像データとに基づいて、仮定された前記状況における前記ヘッド温度を予測する、
     請求項1に記載の印刷装置。
    The printing apparatus further
    A head temperature measuring unit for measuring the head temperature is provided.
    The head temperature predicting unit predicts the head temperature in the assumed situation based on the measured head temperature and the image data.
    The printing apparatus according to claim 1.
  5.  前記判定部は、予測された前記ヘッド温度と、印刷に関する、前記印刷装置の動作状態とに基づいて、前記隣接印刷処理を前記印刷装置に実行させるか否かを判定する、
     請求項1から4のいずれか1項に記載の印刷装置。
    The determination unit determines whether or not to cause the printing apparatus to execute the adjacent printing process based on the predicted head temperature and the operating state of the printing apparatus regarding printing.
    The printing apparatus according to any one of claims 1 to 4.
  6.  前記第1画像は、原色で表現される第1原色画像で表現される画像であり、
     前記第2画像は、別の原色で表現される第2原色画像で表現される画像であり、
     前記隣接印刷処理は、前記第1画像を表現する前記第1原色画像と、前記第2画像を表現する前記第2原色画像とが隣接するように、当該第2原色画像を印刷する混在隣接印刷処理であり、
     前記ヘッド温度予測部は、前記第1画像を表現する前記第1原色画像が前記印刷装置により印刷されたと仮定した状況における前記ヘッド温度である第1温度を予測し、
     前記ヘッド温度予測部は、前記第2画像を表現する前記第2原色画像が前記印刷装置により印刷されたと仮定した状況における前記ヘッド温度である第2温度を予測し、
     前記判定部は、予測された前記ヘッド温度である前記第1温度および前記第2温度に基づいて、前記隣接印刷処理である前記混在隣接印刷処理を前記印刷装置に実行させるか否かを判定し、
     前記隣接印刷処理である前記混在隣接印刷処理を前記印刷装置に実行させると判定された場合、当該印刷装置は当該混在隣接印刷処理を実行する、
     請求項1に記載の印刷装置。
    The first image is an image represented by a first primary color image represented by primary colors.
    The second image is an image represented by a second primary color image represented by another primary color.
    The adjacent printing process prints the second primary color image so that the first primary color image representing the first image and the second primary color image representing the second image are adjacent to each other. It ’s a process,
    The head temperature predicting unit predicts the first temperature, which is the head temperature, in a situation where it is assumed that the first primary color image representing the first image is printed by the printing apparatus.
    The head temperature predicting unit predicts the second temperature, which is the head temperature, in a situation where it is assumed that the second primary color image representing the second image is printed by the printing apparatus.
    The determination unit determines whether or not to cause the printing apparatus to execute the mixed adjacent printing process, which is the adjacent printing process, based on the predicted first temperature and the second temperature, which are the predicted head temperatures. ,
    When it is determined that the printing device executes the mixed adjacent printing process, which is the adjacent printing process, the printing device executes the mixed adjacent printing process.
    The printing apparatus according to claim 1.
  7.  前記混在隣接印刷処理において、前記第2画像を表現する前記第2原色画像は、用紙に印刷され、
     前記印刷装置は、前記混在隣接印刷処理を含む混在印刷制御処理を実行する機能を有し、
     前記混在印刷制御処理は、前記第1画像を表現する前記第1原色画像を印刷する処理と、前記第2画像を表現する前記第2原色画像を印刷する処理とを含む処理であり、
     前記印刷装置は、前記用紙を切断するための切断条件が満たされた場合、前記混在印刷制御処理が実行されている期間の途中に前記用紙を切断する、
     請求項6に記載の印刷装置。
    In the mixed adjacent printing process, the second primary color image representing the second image is printed on paper.
    The printing apparatus has a function of executing mixed printing control processing including the mixed adjacent printing processing.
    The mixed print control process is a process including a process of printing the first primary color image expressing the first image and a process of printing the second primary color image expressing the second image.
    When the cutting conditions for cutting the paper are satisfied, the printing apparatus cuts the paper in the middle of the period in which the mixed printing control process is being executed.
    The printing apparatus according to claim 6.
  8.  サーマルヘッドを使用して、複数の画像が隣接するように、当該複数の画像を印刷する機能を有する、熱転写方式の印刷装置を制御する印刷制御方法であって、
     前記印刷制御方法は、
      前記サーマルヘッドの温度であるヘッド温度を予測する予測ステップを備え、
     前記複数の画像は、j(1以上の整数)番目の画像である第1画像、および、(j+1)番目の画像である第2画像を含み、
     前記予測ステップは、前記第1画像と前記第2画像とが隣接するように、当該第1画像および当該第2画像の一方または両方が前記印刷装置により印刷されたと仮定した状況における前記ヘッド温度を、当該第1画像および当該第2画像の一方または両方のデータである画像データに基づいて、予測し、
     前記印刷制御方法は、さらに、
      予測された前記ヘッド温度に基づいて、前記第1画像と前記第2画像とが隣接するように、当該第2画像を印刷する隣接印刷処理を前記印刷装置に実行させるか否かを判定する判定ステップを備え、
     前記隣接印刷処理を前記印刷装置に実行させると判定された場合、前記印刷制御方法は当該隣接印刷処理を当該印刷装置に実行させ、
     前記隣接印刷処理を前記印刷装置に実行させないと判定された場合、前記印刷制御方法は当該隣接印刷処理を前記印刷装置に実行させない、
     印刷制御方法。
    A printing control method for controlling a thermal transfer type printing apparatus having a function of printing a plurality of images so that a plurality of images are adjacent to each other by using a thermal head.
    The print control method is
    A prediction step for predicting the head temperature, which is the temperature of the thermal head, is provided.
    The plurality of images include a first image which is the j (integer of 1 or more) th image and a second image which is the (j + 1) th image.
    The prediction step measures the head temperature in a situation where it is assumed that one or both of the first image and the second image are printed by the printing device so that the first image and the second image are adjacent to each other. , Predict based on image data, which is the data of one or both of the first image and the second image.
    The print control method further comprises
    Based on the predicted head temperature, a determination is made as to whether or not to cause the printing apparatus to execute an adjacent printing process for printing the second image so that the first image and the second image are adjacent to each other. With steps
    When it is determined that the printing device executes the adjacent printing process, the printing control method causes the printing device to execute the adjacent printing process.
    When it is determined that the printing device does not execute the adjacent printing process, the printing control method does not cause the printing device to execute the adjacent printing process.
    Print control method.
PCT/JP2020/006458 2020-02-19 2020-02-19 Printing device and printing control method WO2021166106A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/006458 WO2021166106A1 (en) 2020-02-19 2020-02-19 Printing device and printing control method
JP2020533037A JP6783415B1 (en) 2020-02-19 2020-02-19 Printing device and printing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006458 WO2021166106A1 (en) 2020-02-19 2020-02-19 Printing device and printing control method

Publications (1)

Publication Number Publication Date
WO2021166106A1 true WO2021166106A1 (en) 2021-08-26

Family

ID=73043478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006458 WO2021166106A1 (en) 2020-02-19 2020-02-19 Printing device and printing control method

Country Status (2)

Country Link
JP (1) JP6783415B1 (en)
WO (1) WO2021166106A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130486A1 (en) * 2020-12-15 2022-06-23 三菱電機株式会社 Printing system and printing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090798A (en) * 2005-09-30 2007-04-12 Shinko Electric Co Ltd Printer and printing controlling method
JP2007185793A (en) * 2006-01-11 2007-07-26 Alps Electric Co Ltd Printer
JP2017159452A (en) * 2016-03-07 2017-09-14 三菱電機株式会社 Printer and printing method
JP2018052042A (en) * 2016-09-30 2018-04-05 ブラザー工業株式会社 Printer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090798A (en) * 2005-09-30 2007-04-12 Shinko Electric Co Ltd Printer and printing controlling method
JP2007185793A (en) * 2006-01-11 2007-07-26 Alps Electric Co Ltd Printer
JP2017159452A (en) * 2016-03-07 2017-09-14 三菱電機株式会社 Printer and printing method
JP2018052042A (en) * 2016-09-30 2018-04-05 ブラザー工業株式会社 Printer

Also Published As

Publication number Publication date
JPWO2021166106A1 (en) 2021-08-26
JP6783415B1 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
EP2247091B1 (en) Image forming apparatus, image forming method, and computer-readable recording medium having image forming program recorded therein
JP4843830B2 (en) Printer and print control method
US8780156B2 (en) Print control device
JP2010100044A (en) Image forming apparatus and image forming method
JP2007313848A (en) Thermal printer and its controlling method
CN101668640A (en) Thermal printer and control method thereof
JP2017113909A (en) Image forming apparatus and image forming method
JP6783415B1 (en) Printing device and printing control method
TWI478820B (en) Thermal transfer printer
JP2018051931A (en) Printing device
US9423731B2 (en) Image forming apparatus and non-transitory recording medium having recorded therein temperature control program for use in image forming apparatus
JP5328298B2 (en) Printing method, printing apparatus, and program
US7397489B2 (en) System and method for efficient donor material use
JP2009078385A (en) Printer, printing method and program
JP5773689B2 (en) Printing device
JP2007230206A (en) Printer, heat storage correction control method, and print control method
WO2022130486A1 (en) Printing system and printing method
JP2013116605A (en) Print control device
CN113928033B (en) Printing method, device, printer and storage medium
JP2013129086A (en) Thermal printer, and control method thereof
JP2007090543A (en) Method of controlling preheating of printer and thermal head
JP2008012728A (en) Printer and method for controlling printer
WO2021009834A1 (en) Sublimation printer and printing control method
JP2005271361A (en) Printing method
JP5995550B2 (en) Thermal printer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020533037

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920196

Country of ref document: EP

Kind code of ref document: A1