WO2021009834A1 - Sublimation printer and printing control method - Google Patents

Sublimation printer and printing control method Download PDF

Info

Publication number
WO2021009834A1
WO2021009834A1 PCT/JP2019/027888 JP2019027888W WO2021009834A1 WO 2021009834 A1 WO2021009834 A1 WO 2021009834A1 JP 2019027888 W JP2019027888 W JP 2019027888W WO 2021009834 A1 WO2021009834 A1 WO 2021009834A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective material
image
region
paper
state
Prior art date
Application number
PCT/JP2019/027888
Other languages
French (fr)
Japanese (ja)
Inventor
沖中 潮広
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/027888 priority Critical patent/WO2021009834A1/en
Publication of WO2021009834A1 publication Critical patent/WO2021009834A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/325Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads by selective transfer of ink from ink carrier, e.g. from ink ribbon or sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection

Definitions

  • the present invention relates to a sublimation printer that performs processing related to glossiness and a print control method.
  • the thermal head heats the ink sheet to perform printing processing to print an image on paper.
  • yellow, magenta and cyan are also referred to as “Y”, “M” and “C”, respectively.
  • Y, M, and C inks (dye) are applied to the ink sheet.
  • the image of the Y component is also referred to as a "Y image”.
  • the image of the M component is also referred to as an “M image”.
  • the image of the C component is also referred to as a “C image”.
  • the area for printing an image in the paper is also referred to as a “printing area”.
  • the sublimation printer transfers the Y image, the M image, and the C image to the printing area of the paper in the order of the Y image, the M image, and the C image. As a result, a color image is printed in the printing area of the paper.
  • the overcoat layer is transferred to the printing area.
  • the light resistance of the image, the fingerprint resistance of the image, and the like are improved.
  • the overcoat layer is a material that protects the image formed on the printing surface (printing area) of the paper.
  • the overcoat layer is a material for improving the smoothness of the surface of the paper. Further, since the overcoat layer is formed on the surface side of the printed matter, the surface of the printed matter has gloss.
  • Patent Document 1 discloses a configuration for transferring an overcoat layer (film-like sheet) (hereinafter, also referred to as "related configuration A").
  • the applied energy of the overcoat layer is controlled according to an arbitrary pattern so that the surface of the printed matter does not have gloss, and the overcoat layer is transferred.
  • the unevenness pattern data for transferring the overcoat layer is generated by the calculation.
  • the applied energy of the overcoat layer is controlled based on the unevenness pattern data, and the unevenness pattern is formed on the entire surface of the printing area of the paper.
  • the protective material as the overcoat layer has glossy properties.
  • the gloss property is a property that the glossiness of the protective material changes according to a change in the thermal energy applied to the protective material.
  • the high density region, edge portion, etc. in the image are formed on the paper by applying high thermal energy to the ink material (dye). Therefore, irregularities and the like are likely to be formed in the high density region, the edge portion, and the like of the image transferred to the paper.
  • the protective material to which the same thermal energy is applied to the entire protective material covers the transferred image, it may appear that the glossiness of the high-concentration region, the edge portion, etc. is reduced. Therefore, it is desirable that the thermal energy for covering the region is set according to the characteristics of the region of the image.
  • the present invention has been made to solve such a problem, and a sublimation printer capable of setting a thermal energy to be applied to a protective material for covering the region of an image for each region of the image. Etc. are intended to be provided.
  • the thermal head heats an ink sheet provided with an ink material for expressing an image and a protective material, and the ink material. Then, a printing process is performed to transfer the protective material to paper. In the printing process, after the ink material is transferred to the paper, the protective material is transferred to the paper so that the protective material covers the ink material expressing the image, and the protective material is transferred to the paper.
  • the protection material has a gloss property, which is in response to a change in thermal energy applied to the non-transfer state protective material in order to transfer the non-transfer state protective material to the paper. It is a characteristic that the glossiness of the protective material in the transferred state changes, and the sublimation printer identifies a target region which is one or both of a high density region and an edge portion in the image, and the high density region.
  • the thermal head is provided with an energy setting unit for setting applied energy, which is the thermal energy applied to the protective material in the non-transfer state by the thermal head in the printing process.
  • the protective material includes a first protective material for covering the target region of the image and a second protective material for covering a region of the image different from the target region, and the first protective material in the transferred state.
  • the energy setting unit is to apply to each of the first protective material and the second protective material so that the glossiness of the protective material is higher than the glossiness of the second protective material in the transferred state. Set the applied energy.
  • the sublimation printer identifies a target region in an image, which is one or both of a high density region and an edge portion.
  • the non-transferred protective material includes a first protective material for covering the target region of the image and a second protective material for covering a region of the image different from the target region. Since the energy setting unit applies to each of the first protective material and the second protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state.
  • the applied energy is the thermal energy applied to the protective material in the non-transfer state by the thermal head in the printing process.
  • the thermal energy to be applied to the protective material for covering the region can be set.
  • FIG. It is a block diagram which shows the structure of the main hardware of the sublimation type printer which concerns on Embodiment 1.
  • FIG. It is a figure which mainly shows the structure for performing a printing process among the sublimation type printer which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of an ink sheet. It is a figure which shows the structure of a paper.
  • FIG. It is a block diagram for demonstrating the operation of the sublimation type printer in the print control process which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of the correction part which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of an image. It is a graph which shows the characteristic curve which shows the relationship between applied energy and glossiness.
  • FIG. It is a flowchart of print control processing which concerns on Embodiment 1.
  • FIG. It is a graph which shows the characteristic curve which shows the relationship between applied energy and glossiness. It is a figure which shows an example of an image. It is a graph which shows the characteristic curve which shows the relationship between applied energy and glossiness. It is a block diagram for demonstrating the operation of the sublimation type printer which concerns on modification 1.
  • FIG. It is a block diagram which shows the characteristic functional structure of a sublimation type printer. It is a hardware block diagram of a sublimation type printer.
  • FIG. 1 is a block diagram showing a configuration of main hardware of the sublimation printer 100 according to the first embodiment. Note that FIG. 1 does not show components (for example, power supplies) that are not related to the first embodiment. Further, FIG. 1 also shows a PC (Personal Computer) 200 which is not included in the sublimation printer 100 for the sake of explanation. The sublimation printer 100 performs a printing process P for printing an image on paper, although details will be described later.
  • PC Personal Computer
  • the PC 200 is, for example, a host PC.
  • the PC 200 is a device that controls the sublimation printer 100.
  • the PC 200 is operated by the user. When the user performs a printing operation on the PC 200, the PC 200 transmits the printing instruction and the image data D1 to the sublimation printer 100.
  • the printing execution operation is an operation for causing the sublimation printer 100 to execute the printing processing P.
  • the printing instruction is an instruction for causing the sublimation printer 100 to execute the printing process P.
  • the image data D1 is image data for printing on paper. That is, the image data D1 is data for printing.
  • the image indicated by the image data D1 is composed of a Y image, an M image, and a C image.
  • the image for printing on paper is also referred to as "target image”. That is, the image data D1 indicates a target image.
  • the target image is composed of k pixels arranged in a matrix. "K” is an integer of 2 or more.
  • the k pixels form a matrix of m rows and n columns.
  • Each of m and n is an integer of 2 or more. That is, the target image has m rows and n lines (columns).
  • N is the number of pixels arranged in the horizontal (horizontal) direction of the target image.
  • M is the number of pixels arranged in the vertical (vertical) direction of the target image.
  • K is a value calculated by the formula (m ⁇ n).
  • Each pixel is represented by a gradation value (pixel value) indicating the density.
  • data indicating a pixel gradation value (pixel value) is also referred to as “gradation data” or “pixel data”.
  • gradation data data indicating a pixel gradation value
  • pixel data data indicating a pixel gradation value
  • the highest density that can be expressed by a pixel is also referred to as “highest density”.
  • minimum density the lowest density that a pixel can express
  • concentration intermediate between the maximum concentration and the minimum concentration is also referred to as “intermediate concentration”. The intermediate concentration is, for example, 0.5 times the maximum concentration.
  • FIG. 2 is a diagram mainly showing a configuration for performing printing processing in the sublimation printer 100 according to the first embodiment.
  • FIG. 2 shows a state in which the ink sheet 6 and the roll paper 2r are attached to the sublimation printer 100.
  • the ink sheet 6 is a long sheet.
  • the ink roll 6r is formed by winding one end of the ink sheet 6 in a roll shape.
  • the ink roll 6r is attached to the reel 11a described later.
  • the ink roll 6rm is formed by winding the other end of the ink sheet 6 in a roll shape.
  • the ink roll 6rm is attached to a reel 11b described later.
  • FIG. 3 is a diagram showing the configuration of the ink sheet 6. Further, FIG. 3 is a cross-sectional view of the ink sheet 6 along the longitudinal direction of the ink sheet 6. The configuration of the ink sheet 6 will be described later.
  • the roll paper 2r is composed of a long paper 2 wound in a roll shape.
  • FIG. 4 is a diagram showing the structure of the paper 2. Further, FIG. 4 is a cross-sectional view of the paper 2 along the longitudinal direction of the paper 2. Paper 2 is a recording medium for printing an image. The structure of the paper 2 will be described later.
  • the sublimation printer 100 includes a housing Ch1, a communication unit 8, a storage unit 9, a control unit 10, an image processing unit 30, a platen roller 4, and a thermal head 3.
  • a thermal head controller 12, an ink sheet driving unit 14, a paper transport unit 13, a cutter 7, and a data bus B1 are provided.
  • the housing Ch1 accommodates each component included in the sublimation printer 100.
  • a plurality of components included in the sublimation printer 100 of FIG. 1 are connected to the data bus B1.
  • the plurality of components of FIG. 1 can perform data communication with each other.
  • the communication unit 8 has a function of communicating with the PC 200.
  • the printing instruction and image data D1 transmitted by the PC 200 are transmitted to the control unit 10 via the communication unit 8.
  • the storage unit 9 is a memory for storing various data, programs, and the like.
  • the storage unit 9 is composed of, for example, a volatile memory and a non-volatile memory.
  • Volatile memory is a memory that temporarily stores data.
  • the volatile memory stores, for example, image data D1.
  • the volatile memory is, for example, RAM.
  • a control program, initial setting values, and the like are stored in the non-volatile memory.
  • control unit 10 performs various processes on each unit of the sublimation printer 100.
  • the control unit 10 performs the various processes according to the control program stored in the non-volatile memory of the storage unit 9.
  • the control unit 10 is, for example, a processor such as a CPU (Central Processing Unit).
  • the image processing unit 30 has a function of processing image data.
  • the thermal head controller 12 controls the thermal head 3.
  • the thermal head 3 has a function of generating heat.
  • the thermal head 3 includes a heat generating element h1 having a function of generating heat.
  • the thermal head controller 12 controls the heat generating element h1 so that the heat generating element h1 is driven. That is, the thermal head controller 12 controls the thermal head 3 (heating element h1) so that the thermal head 3 (heating element h1) generates heat.
  • heat generated by the heat generating element h1 of the thermal head 3 is also simply referred to as "heat generated by the thermal head 3.” Further, in the following, the heat generated by the thermal head 3 is also referred to as “heat energy” or “transfer energy”.
  • the paper transport unit 13 has a transport roller pair 5.
  • the paper transport unit 13 controls the transport roller pair 5.
  • the transport roller pair 5 is a roller pair for transporting the paper 2.
  • the transport roller pair 5 is composed of a grip roller 5a and a pinch roller 5b.
  • the grip roller 5a rotates according to the control of the paper transport unit 13.
  • the platen roller 4 is provided so as to face a part of the thermal head 3.
  • the platen roller 4 is movably configured by a drive unit (not shown).
  • the platen roller 4 comes into contact with the thermal head 3 (heating element h1) via the paper 2 and the ink sheet 6.
  • the platen contact state is a state in which the paper 2 and the ink sheet 6 are sandwiched between the platen roller 4 and the thermal head 3.
  • the thermal head 3 heats the ink sheet 6 in the platen contact state, the dye (ink) of the ink sheet 6 is transferred to the paper 2.
  • the ink sheet drive unit 14 has a function of rotating the reel 11b.
  • the reel 11b rotates so that the ink roll 6rm winds up the ink sheet 6.
  • the reel 11a rotates as the reel 11b rotates.
  • the reel 11a rotates so that the ink sheet 6 is supplied from the ink roll 6r.
  • the cutter 7 has a function of cutting a part of the paper 2.
  • the ink sheet 6 includes a long base film 6a.
  • the base film 6a is made of a heat-resistant plastic film material.
  • ink regions R10 are periodically arranged along the longitudinal direction of the base film 6a.
  • the ink region R10 is provided with dyes 6y, 6m, 6c and a protective material 6op.
  • Each of the dyes 6y, 6m, 6c and the protective material 6op is a transfer material that is transferred to the paper 2 by being heated by the thermal head 3.
  • Each of the dyes 6y, 6m, and 6c is an ink material showing a color.
  • the ink material is a material for expressing an image.
  • the dyes 6y, 6m, and 6c represent the colors of yellow, magenta, and cyan, respectively.
  • each of the Y dye, the M dye, and the C dye is also referred to as a "color dye”.
  • Each of the dyes 6y, 6m and 6c is a color dye.
  • the paper 2 is composed of a base material 2a and a receiving layer 2b.
  • the base material 2a is made of a material such as a plastic film or paper.
  • the receiving layer 2b is made of a material that receives the color dye.
  • the protective material 6op is a material (overcoat layer) for protecting the color dye transferred to the paper 2.
  • the protective material 6op is a material for protecting the image printed on the paper 2 with the dyes 6y, 6m, 6c. Further, the protective material 6op is a member for improving light resistance, scratch resistance and the like.
  • the protective material 6op has translucency. Further, the protective material 6op is a transparent material. In the following, the protective material 6op is also referred to as an “OP material”. Further, in the following, the area for printing an image in the paper 2 is also referred to as a “printing area”.
  • the printing process P is a process in which the thermal head 3 heats the ink sheet 6 provided with the ink material (color dye) and the protective material 6 op, and transfers the ink material and the protective material 6 op to the paper 2. ..
  • the unit printing process is performed.
  • the transfer roller pair 5 simultaneously conveys the ink sheet 6 and the paper 2 while the thermal head 3 heats the transfer material of the ink sheet 6 in the platen contact state. As a result, the transfer material is transferred to the printing area of the paper 2 line by line.
  • the above unit printing process is repeated for each of the dyes 6y, 6m, 6c and the protective material 6op, which are transfer materials.
  • the dyes 6y, 6m, 6c and the protective material 6op are transferred to the printing area of the paper 2 in the order of the dyes 6y, 6m, 6c and the protective material 6op.
  • the dyes 6y, 6m, 6c which are ink materials (color dyes)
  • the protective material 6op is transferred to the paper 2.
  • the image is expressed by the dyes 6y, 6m, 6c which are the transferred ink materials (color dyes).
  • the protective material 6op is transferred to the paper 2 so that the protective material 6op covers the ink material (color dye) expressing the image.
  • an image printed on the printing area of paper 2 is also referred to as a "printed matter”.
  • a protective material 6op is formed on the surface side of the printed matter.
  • the printed matter is a part of paper 2.
  • the cutter 7 cuts the paper 2 so that the printed matter is separated from the paper 2. As a result, the printed matter is discharged to the outside of the sublimation printer 100.
  • the thermal energy applied to the color dye is unreasonably high, uneven gloss occurs in the high density area, the edge portion, etc. in the printed image.
  • the edge portion is a boundary portion between the high-concentration region and the region around the high-concentration region.
  • the thermal energy for the thermal head 3 to apply to the transfer material is also referred to as “applied energy”.
  • the applied energy applied to the color dye in the high density region is higher than the applied energy applied to the color dye in the low density region.
  • the higher the applied energy the more fine irregularities are formed on the surface of the paper. Therefore, the flatness of the surface of the paper is lowered. As a result, the state of the surface of the paper becomes a state in which the surface is scorched and a state in which the surface is dull.
  • the flatness of the high-concentration region on the surface of the paper after the transfer of the color dye is lower than the flatness of the low-concentration region of the surface due to the different applied energies corresponding to the high-concentration region and the low-concentration region. Therefore, uneven gloss occurs.
  • FIG. 5 is a block diagram for explaining the operation of the sublimation printer 100 in the print control process according to the first embodiment.
  • FIG. 5 shows the components of the sublimation printer 100 that are mainly used in the print control process.
  • the sublimation printer 100 includes frame memories 9y, 9m, 9c, 9op, a correction unit 30a, an image adjustment processing unit 30b, and a memory controller 9mc. Each component in the sublimation printer 100 of FIG. 5 performs the processing described later under the control of the control unit 10.
  • the frame memories 9y, 9m, 9c, 9op, and the memory controller 9mc are included in the above-mentioned storage unit 9.
  • the memory controller 9mc controls the frame memories 9y, 9m, 9c, 9op.
  • the frame memories 9y, 9m, and 9c are memories for storing the Y image, the M image, and the C image, respectively.
  • the frame memory 9op is a memory for storing OP data.
  • the correction unit 30a and the image adjustment processing unit 30b are included in the image processing unit 30 described above. A detailed description of each component of FIG. 5 will be described later.
  • FIG. 6 is a diagram showing the configuration of the correction unit 30a according to the first embodiment.
  • the correction unit 30a includes a region specifying unit 31, an edge specifying unit 32, and an energy setting unit 33. A detailed description of each component of FIG. 6 will be described later.
  • the PC 200 transmits the image data D1 to the sublimation printer 100.
  • the image data D1 is, for example, the data of the target image described above.
  • the target image is composed of a Y image, an M image, and a C image.
  • Image data D1 includes YMC data and OP data.
  • the YMC data is data of a Y image, an M image, and a C image.
  • the OP data is data used for transferring the protective material 6op (overcoat layer) to the paper 2.
  • the OP data shows, for example, k energy values corresponding to each of the k pixels constituting the target image. Further, the OP data is configured so that, for example, the coordinates (positions) of k pixels corresponding to k energy values can be specified.
  • the OP data includes, for example, a table Tb showing k energy values arranged in a matrix.
  • the k energy values shown in Table Tb form a matrix of m rows and n columns.
  • the energy values in the 1st row and 1st column correspond to the pixels in the 1st row and 1st column of the target image.
  • the pixels in the first row and first column are the pixels that are at the upper end of the target image and are present at the left end of the target image.
  • the k energy values shown in Table Tb are set to the same values as initial values.
  • the format of OP data is not limited to the above format using Table Tb.
  • the format of the OP data may be a format in which the coordinates (positions) of k pixels can be specified, and may be another format that does not use the table Tb.
  • the target image is, for example, the image G11 of FIG.
  • the image G11 has, as an example, a high density region Rg1 and a low density region Rg2.
  • the high density region Rg1 is a region represented by the highest density in the image G11.
  • the shape of the high density region Rg1 of the image G11 may be different from the rectangular shape. Further, the number of high-concentration regions Rg1 contained in the image G11 is not limited to 1, and may be 2 or more.
  • the concentration contained in the range from the above-mentioned intermediate concentration to the above-mentioned maximum concentration is also referred to as "high concentration”.
  • a pixel showing a high density is also referred to as a “high density pixel”.
  • the high density region Rg1 is represented by a plurality of high density pixels.
  • the low density region Rg2 is represented by a plurality of low density pixels.
  • a low density pixel is a pixel represented by a density lower than the intermediate density.
  • the image data D1 is stored in the storage unit 9.
  • the YMC data of the image data D1 is stored in the frame memories 9y, 9m, 9c. Specifically, under the control of the memory controller 9mc, the Y image, the M image, and the C image constituting the target image are stored in the frame memories 9y, 9m, and 9c, respectively. Further, the OP data of the image data D1 is stored in the frame memory 9op.
  • the YMC data stored in the frame memories 9y, 9m, 9c is transmitted to the image adjustment processing unit 30b. Further, under the control of the memory controller 9mc, the OP data stored in the frame memory 9op is transmitted to the correction unit 30a.
  • the image adjustment processing unit 30b performs image adjustment processing on the YMC data. That is, the image adjustment processing unit 30b performs image adjustment processing on the target images (Y image, M image, and C image) of the YMC data.
  • the image adjustment process includes a color conversion process, a sharpness process, and a gamma conversion process. That is, color conversion processing, sharpness processing, and gamma conversion processing are performed on the target image. Since the color conversion process, the sharpness process, and the gamma conversion process are general processes, detailed description thereof will be omitted.
  • the print YMC data is data for printing the target image (Y image, M image, and C image) that has undergone image adjustment processing on the paper 2.
  • the YMC data for printing includes data of a target image (Y image, M image, and C image) for which image adjustment processing has been performed.
  • the image adjustment processing unit 30b transmits the printing YMC data to the thermal head controller 12 and the correction unit 30a.
  • the process included in the image adjustment process is not limited to the above three processes.
  • the process included in the image adjustment process may be, for example, a color conversion process and a gamma conversion process.
  • a process for printing the target image is performed in the printing area of the paper 2. Specifically, the unit printing process described above is performed on each of the dyes 6y, 6m, and 6c of the ink sheet 6. Since the unit printing process has been described above, detailed description thereof will be omitted.
  • the thermal head controller 12 controls the thermal head 3 based on the printing YMC data so that the thermal head 3 (heating element h1) generates heat. As a result, the target image is printed in the printing area of the paper 2.
  • the area specifying unit 31 of the correction unit 30a performs the high-concentration area specifying process described later.
  • the edge specifying unit 32 of the correction unit 30a performs an edge specifying process described later.
  • the energy setting unit 33 of the correction unit 30a performs the energy setting process described later.
  • the protective material will be explained.
  • the state in which the protective material 6op is transferred to the paper 2 by the printing process P (unit printing process) is also referred to as a “transfer state”.
  • the state in which the protective material 6op is provided on the ink sheet 6 is also referred to as a “non-transfer state”.
  • the non-transfer state is a state in which the protective material 6op provided on the ink sheet 6 is not transferred to the paper 2. That is, the state of the protective material 6op includes a transfer state and a non-transfer state.
  • the protective material 6op has glossy properties.
  • the gloss property is a property that the glossiness of the protective material 6op changes when the thermal energy applied to the protective material 6op changes.
  • FIG. 8 is a graph showing a characteristic curve L1 showing the relationship between applied energy and glossiness.
  • the characteristic curve L1 shows the gloss characteristics of the protective material 6op.
  • the “glossiness” on the vertical axis is the glossiness of the protective material 6op.
  • the “glossiness” is the glossiness of the surface of the protective material 6op.
  • the “applied energy” on the horizontal axis is the thermal energy applied to the protective material 6op in the unit printing process of the printing process P. That is, the “applied energy” on the horizontal axis is the thermal energy applied to the non-transferred protective material 6op in order to transfer the non-transferred protective material 6op to the paper 2.
  • FIG. 8 shows the thermal energies E01, E02, E3, and the regions R1, R2, R3.
  • the thermal energy E01 is the thermal energy for transferring the protective material 6op to the paper 2.
  • the region R1 is a region where the applied energy is less than the thermal energy E01.
  • Region R1 is a region where the protective material 6op is not transferred to the paper 2.
  • the applied energy in the region R1 is low. In the state where the protective material 6op is not transferred to the paper 2, the glossiness of the paper 2 is low.
  • Regions R2 and R3 are regions where the applied energy is thermal energy E01 or higher. Regions R2 and R3 are regions where the protective material 6op is transferred to the paper 2. Therefore, the gloss characteristic of the protective material 6op shown by the characteristic curve L1 in the regions R2 and R3 is a characteristic that the glossiness of the protective material 6op in the transferred state changes according to the change of the applied energy.
  • the applied energy corresponding to the region R2 is an appropriate thermal energy.
  • the region R2 is a region where the applied energy is the thermal energy E01 or more and the applied energy is the thermal energy E3 or less. Further, the region R3 is a region where the applied energy is higher than the thermal energy E3.
  • the glossiness in the region R2, in the range where the applied energy increases from the thermal energy E01 to the thermal energy E02, the glossiness rapidly increases to the maximum value (Gmax). Further, as the applied energy becomes higher than the thermal energy E02, the glossiness gradually decreases.
  • the region R3 is a region where the surface of the protective material 6op in the transferred state is matted. That is, the region R3 is a region where the protective material 6op in the transferred state has no gloss.
  • the state of the protective material 6op in the transferred state in which the glossiness of the entire protective material 6op is the same is also referred to as "same gloss state".
  • the protective material 6op having the same gloss state is generated by applying the same thermal energy to the entire protective material 6op in the unit printing process described above.
  • the state of the image in the situation where the image is printed on the paper 2 by the printing process P is also referred to as "printing state”.
  • the state of the image in the situation where the protective material 6op in the same gloss state covers the entire image in the printed state is also referred to as “the same gloss covering state”.
  • the image in the same glossy covering state is an image represented by the dyes 6y, 6m, 6c in a situation where the dyes 6y, 6m, 6c and the protective material 6op are transferred to the paper 2.
  • the high-density pixel in which the glossiness of the high-density pixel of the image covered with the same gloss seems to be lower than the glossiness of the pixel different from the high-density pixel is also referred to as "low-gloss pixel”.
  • the region other than the high-concentration region Rg1 is also referred to as a “non-high-concentration region”.
  • the high-density region Rg1 is a region in which the glossiness of the high-density region Rg1 appears to be lower than the glossiness of the non-high-density region.
  • the high-density region Rg1 of the image G11 in the same gloss-covered state is represented by a plurality of low-gloss pixels (high-density pixels).
  • the high density region Rg1 in FIG. 7 is a region of the image G11 represented by a density equal to or higher than the reference density. "Concentration above the reference concentration” includes both the same concentration as the reference concentration and a concentration higher than the reference concentration.
  • the reference concentration is a preset threshold value T.
  • the threshold value T (reference density) is a value for specifying that a pixel having a density equal to or higher than the reference density is a low-gloss pixel.
  • the threshold value T (reference concentration) is, for example, a fixed value.
  • An appropriate value is set for the threshold value T (reference concentration), for example, by repeating an experiment or the like.
  • the experiment is, for example, a printing process P, a change of an image to be a target of the printing process P, a confirmation of a glossy state of a printed matter by an operator, and the like.
  • the threshold value T (reference concentration) is not limited to the above.
  • the threshold value T (reference density) may be a value for specifying that a pixel having a density equal to or higher than the reference density is a high density pixel.
  • the reference concentration is, for example, a concentration equal to or higher than the intermediate concentration
  • the threshold value T is a value corresponding to the reference concentration.
  • the reference concentration is, for example, a concentration in the range from 0.7 times the above-mentioned maximum concentration to the maximum concentration.
  • FIG. 9 is a flowchart of the print control process according to the first embodiment.
  • FIG. 9 shows only the main steps included in the print control process.
  • the print control process performed under the following premise Pm1 will be described.
  • the sublimation printer 100 receives the image data D1 from the PC200. Further, in the premise Pm1, the target image indicated by the image data D1 is the image G11 of FIG. 7. Further, in the premise Pm1, the high density region Rg1 of the image G11 is a target region to be a specific target.
  • the correction unit 30a receives the YMC data for printing obtained by performing the image adjustment processing. Further, in the premise Pm1, the correction unit 30a has already received the OP data. Further, in the premise Pm1, the high-concentration area identification process of the area identification process of step S100 is performed, and the edge identification process of the area identification process is not performed.
  • the high-density area identification process of the area identification process is performed (step S110).
  • the region identification unit 31 of the correction unit 30a specifies the high-concentration region. Specifically, the area specifying unit 31 identifies low-gloss pixels (high-density pixels) having a density equal to or higher than the reference density (threshold value T) among the k pixels constituting the target image indicated by the print YMC data. ..
  • the target image is the image G11 of FIG. 7. Therefore, the region specifying unit 31 identifies the high density region Rg1 represented by a plurality of low gloss pixels (high density pixels).
  • the above high density region identification process is performed on each of the Y image, the M image, and the C image.
  • the high-density region identification process may be performed only on any one of the Y image, the M image, and the C image, for example.
  • the protective material in the non-transfer state for covering the high density region Rg1 of the target image in the printed state is also referred to as "protective material 6op1". Further, in the following, the protective material 6op1 is also referred to as a “high concentration protective material”. The protective material 6op1, which is a high-concentration protective material, is a part of the non-transferred protective material 6op. Further, in the following, the protective material for covering a region different from the high density region Rg1 in the target image in the printed state is also referred to as “protective material 6op2”. The protective material 6op2 is another part of the non-transferred protective material 6op.
  • the protective material 6op in the non-transfer state includes the protective material 6op1 and the protective material 6op2.
  • the target image is the image G11 of FIG. 7. Therefore, the protective material 6op1 in the premise Pm1 is a material for covering the high density region Rg1 of the image G11 in the printed state.
  • the protective material 6op2 in the premise Pm1 is a material for covering the non-high concentration region of the image G11.
  • the energy setting process is performed (step S210).
  • the energy setting unit 33 sets the applied energy in consideration of the gloss characteristics of the protective material 6op.
  • the applied energy is the thermal energy applied by the thermal head 3 to the protective material 6op in the non-transfer state in the printing process P (unit printing process).
  • the energy setting unit 33 sets the protective material 6op1 and the protective material so that the glossiness of the protective material 6op1 in the transfer state is higher than the glossiness of the protective material 6op2 in the transfer state.
  • the applied energy to be applied to each of 6op2 is set.
  • the energy setting unit 33 sets the applied energy to be applied to each of the protective material 6op1 and the protective material 6op2 so that the applied energy of the protective material 6op1 is lower than the applied energy of the protective material 6op2.
  • the energy setting unit 33 In the energy setting process in the premise Pm1, the energy setting unit 33 first specifies the coordinates (positions) of a plurality of pixels constituting the high density region Rg1 of the image G11. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E1 of FIG.
  • the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the non-high density region of the image G11. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E2 of FIG. As a result, OP data is set.
  • the thermal energy E1 is lower than the thermal energy E2.
  • E1 and E2 are thermal energies
  • G1 and G2 are glossiness
  • the glossiness corresponding to the thermal energy E1 is “G1”. That is, when the applied energy is the thermal energy E1, the glossiness of the protective material in the transferred state is “G1”. Further, in the characteristic curve L1, the glossiness corresponding to the thermal energy E2 is “G2”. The glossiness G1 is higher than the glossiness G2.
  • the OP data setting method is not limited to the above method using the table Tb.
  • the energy setting unit 33 may generate OP data indicating the coordinates (positions) of the specified plurality of pixels and the energy value (for example, thermal energy E1) in association with each other.
  • step S220 the printing process P is performed (step S220).
  • the unit printing process described above is performed on each of the dyes 6y, 6m, and 6c of the ink sheet 6.
  • the image G11 which is the target image, is printed in the printing area of the paper 2.
  • the thermal head 3 applies the applied energy set by the energy setting unit 33 to the protective material 6op in the non-transfer state. That is, the thermal head controller 12 controls the thermal head 3 so that the thermal head 3 (heating element h1) generates heat based on the latest OP data.
  • the thermal head 3 applies the thermal energy E1 to the protective material 6op1 which is a part of the protective material 6op.
  • the protective material 6op1 is transferred so that the protective material 6op1 covers the high density region Rg1 of the image G11 in the printed state.
  • the glossiness of the protective material 6op1 in the transferred state is "G1".
  • the thermal head 3 applies the thermal energy E2 to the protective material 6op2 which is another part of the protective material 6op.
  • the protective material 6op2 is transferred so that the protective material 6op2 covers the non-high density region of the image G11 in the printed state.
  • the glossiness of the protective material 6op2 in the transferred state is "G2".
  • the glossiness G1 of the protective material 6op1 in the transferred state is higher than the glossiness G2 of the protective material 6op2 in the transferred state. That is, the glossiness G1 of the protective material 6op1 that covers the high density region Rg1 of the image G11 in the printed state is higher than the glossiness G2 of the protective material 6op2 that covers the non-high density region of the image G11 in the printed state. Then, the print control process in the premise Pm1 is completed.
  • the print control process performed under the following premise Pm2 will be described.
  • the target image indicated by the image data D1 is the image G12 of FIG. 11, and the edge identification process of the area identification process of step S100 is performed, and the height of the area identification process is high.
  • the difference is that the concentration region identification process is not performed.
  • the image G12 is different from the image G11 in that the edge portion Rg3 is further included. Since the other configurations of the image G12 are the same as those of the image G11, the detailed description will not be repeated.
  • the edge portion Rg3 is a region showing an edge shown in the image G12.
  • the edge portion Rg3 is a region corresponding to the boundary between the high-concentration region Rg1 and the region surrounding the high-concentration region Rg1.
  • the edge portion Rg3 of the image G11 is a target region to be a specific target.
  • the region of the image G12 other than the edge portion Rg3 is also referred to as a “non-edge region”.
  • the edge portion Rg3 is a region in which the glossiness of the edge portion Rg3 appears to be lower than the glossiness of the non-edge region.
  • the edge identification process of the area identification process is performed (step S120).
  • the edge identification unit 32 of the correction unit 30a specifies the edge portion Rg3 in the target image (image G12) indicated by the printing YMC data. Since the method of specifying the edge portion Rg3 (edge) is a general method, the description thereof will be omitted.
  • the above edge identification process is performed on each of the Y image, the M image, and the C image.
  • the edge identification process may be performed only on any one of the Y image, the M image, and the C image, for example.
  • the protective material in the non-transfer state for covering the edge portion Rg3 of the target image in the printed state is also referred to as "protective material 6op1e". Further, in the following, the protective material 6op1e is also referred to as an “edge protective material”. The protective material 6op1e, which is an edge protective material, is a part of the protective material 6op in a non-transfer state. Further, in the following, the protective material for covering the region different from the edge portion Rg3 in the target image in the printed state is also referred to as “protective material 6op2n”. The protective material 6op2n is another part of the non-transferred protective material 6op.
  • the protective material 6op in the non-transfer state includes the protective material 6op1e and the protective material 6op2n.
  • the target image is the image G12 of FIG. Therefore, the protective material 6op1e in the premise Pm2 is a material for covering the edge portion Rg3 of the image G12 in the printed state.
  • the protective material 6op2n in the premise Pm2 is a material for covering the non-edge region of the image G12 in the printed state.
  • the energy setting process is performed (step S210).
  • the energy setting unit 33 applies to each of the protective material 6op1e and the protective material 6op2n so that the glossiness of the protective material 6op1e in the transfer state is higher than the glossiness of the protective material 6op2n in the transfer state. Set the applied energy for this.
  • the energy setting unit 33 sets the applied energy to be applied to each of the protective material 6op1e and the protective material 6op2n so that the applied energy of the protective material 6op1e is lower than the applied energy of the protective material 6op2n.
  • the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the edge portion Rg3 of the image G12. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E1 of FIG.
  • the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the non-edge region of the image G12. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E2 of FIG. As a result, OP data is set.
  • the printing process P in the premise Pm2 is performed. Since the printing process P in the premise Pm2 is the same as the above-mentioned printing process P in the premise Pm1, detailed description thereof will be omitted. The following will be briefly described.
  • the image G12 which is the target image is printed in the printing area of the paper 2.
  • the thermal head 3 applies the thermal energy E1 to the protective material 6op1e.
  • the protective material 6op1e is transferred so that the protective material 6op1e covers the edge portion Rg3 of the image G12 in the printed state.
  • the glossiness of the protective material 6op1e in the transferred state is "G1".
  • the thermal head 3 applies the thermal energy E2 to the protective material 6op2n.
  • the protective material 6op2n is transferred so that the protective material 6op2n covers the non-edge region of the image G12 in the printed state.
  • the glossiness of the protective material 6op2n in the transferred state is "G2".
  • the glossiness G1 of the protective material 6op1e that covers the edge portion Rg3 of the image G12 in the printed state is higher than the glossiness G2 of the protective material 6op2n that covers the non-edge region of the image G12 in the printed state. Then, the print control process in the premise Pm2 ends.
  • the high density region Rg1 and the edge portion Rg3 of the image G12 are target regions to be specified.
  • the high-density area identification process of the area identification process is performed (step S110).
  • the high-concentration region identification process in the premise Pm3 is the same as the high-concentration region identification process in the premise Pm1. Thereby, the high density region Rg1 of the image G12 is specified.
  • step S120 the edge identification process of the area identification process is performed (step S120).
  • the edge identification process in the premise Pm3 is the same as the edge identification process in the premise Pm2. Thereby, the edge portion Rg3 of the image G12 is specified.
  • the protective material in the non-transfer state for covering the high-density region Rg1 of the target image in the printed state is the protective material 6op1 (high-concentration protective material).
  • the protective material in the non-transfer state for covering the edge portion Rg3 of the target image in the printed state is the protective material 6op1e (edge protective material).
  • a protective material for covering a region different from the high density region Rg1 and the edge portion Rg3 in the target image in the printed state is also referred to as “protective material 6op3”.
  • the non-transferred protective material 6op in the premise Pm3 includes the protective material 6op1, the protective material 6op1e, and the protective material 6op3.
  • the regions other than the high density region Rg1 and the edge portion Rg3 in the image G12 are also referred to as “other regions”.
  • the protective material 6op3 in the premise Pm3 is a material for covering the other region of the image G12.
  • the edge portion Rg3 is a region in which the glossiness of the edge portion Rg3 seems to be lower than the glossiness of the high density region Rg1.
  • the high density region Rg1 is a region in which the glossiness of the high density region Rg1 appears to be lower than the glossiness of the other regions.
  • the energy setting process is performed (step S210).
  • the glossiness of the protective material 6op1e in the transfer state is higher than the glossiness of the protective material 6op1 in the transfer state
  • the glossiness of the protective material 6op1 in the transfer state is higher than the glossiness of the protective material 6op3 in the transfer state.
  • the energy setting unit 33 sets the applied energy to be applied to each of the protective material 6op1e, the protective material 6op1 and the protective material 6op3 so as to be high.
  • each application of the energy setting unit 33 is such that the applied energy of the protective material 6op1e is lower than the applied energy of the protective material 6op1 and the applied energy of the protective material 6op1 is lower than the applied energy of the protective material 6op3. Set the energy.
  • the same process as the energy setting process in the premise Pm2 is performed.
  • the energy values of the coordinates (positions) of the plurality of pixels corresponding to the edge portion Rg3 of the image G12 are corrected (set) to the thermal energy E1 of FIG.
  • the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the high density region Rg1 of the image G12. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E2 of FIG.
  • the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the other region of the image G12. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E3 of FIG.
  • E3 thermal energy
  • G3 glossiness
  • L1 the glossiness corresponding to the thermal energy E3 is “G3”.
  • the other items are the same as in FIG.
  • the three types of glossiness satisfy the relationship of "G1> G2> G3". Further, in FIG. 12, the three types of thermal energy (applied energy) satisfy the relationship of “E1 ⁇ E2 ⁇ E3”.
  • the printing process P in the premise Pm3 is performed. Since the printing process P in the premise Pm3 is the same as the above-mentioned printing process P in the premise Pm1, detailed description thereof will be omitted. The following will be briefly described.
  • the image G12 which is the target image, is printed in the printing area of the paper 2.
  • the thermal head 3 applies the thermal energy E1 to the protective material 6op1e.
  • the protective material 6op1e is transferred so that the protective material 6op1e covers the edge portion Rg3 of the image G12 in the printed state.
  • the glossiness of the protective material 6op1e in the transferred state is "G1".
  • the thermal head 3 applies the thermal energy E2 to the protective material 6op1.
  • the protective material 6op1 is transferred so that the protective material 6op1 covers the high density region Rg1 of the image G12 in the printed state.
  • the glossiness of the protective material 6op1 in the transferred state is "G2".
  • the thermal head 3 applies the thermal energy E3 to the protective material 6op3.
  • the protective material 6op3 is transferred so that the protective material 6op3 covers the other area of the image G12 in the printed state.
  • the glossiness of the protective material 6op3 in the transferred state is "G3".
  • the glossiness G1 of the protective material 6op1e that covers the edge portion Rg3 of the image G12 in the printed state is higher than the glossiness G2 of the protective material 6op1 that covers the high density region Rg1 of the image G12 in the printed state.
  • the glossiness G2 of the protective material 6op1 covering the high density region Rg1 of the image G12 in the printed state is higher than the glossiness G3 of the protective material 6op3 covering the other areas of the image G12 in the printed state. That is, the glossiness of the above three regions satisfies the relationship of "G1> G2> G3". Then, the print control process in the premise Pm3 is completed.
  • the sublimation printer 100 identifies a target region in the image, which is one or both of the high density region Rg1 and the edge portion Rg3.
  • the non-transferred protective material 6op includes a first protective material for covering the target region of the image and a second protective material for covering a region of the image different from the target region.
  • the energy setting unit 33 applies to each of the first protective material and the second protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state.
  • the applied energy is the thermal energy applied by the thermal head 3 to the protective material 6op in the non-transfer state in the printing process.
  • the thermal energy to be applied to the protective material for covering the region can be set.
  • the same thermal energy is applied to the entire protective material 6 op in the printing process P for printing the image G11 of FIG. 7.
  • the protective material 6op in the same gloss state covers the image G11 in the printed state. That is, as described above, in the image G11 in the same gloss covering state, the glossiness of the high density region Rg1 seems to be lower than the glossiness of the non-high density region.
  • the same gloss covering state is a state of the image in a situation where the protective material 6op in the same gloss state covers the entire image in the printed state. In this case, uneven gloss occurs.
  • the above-mentioned print control process in the premise Pm1 is performed.
  • the applied energy of the protective material is set so that the glossiness of the transfer-state protective material 6op1 covering the high-concentration region Rg1 is higher than the glossiness of the transfer-state protective material 6op2 covering the non-high-concentration region. ..
  • the set applied energy is applied to the protective material 6op.
  • the protective material 6op covers the image G11 in the printed state. Therefore, a printed matter (glossy printing) having high print quality can be obtained.
  • the same thermal energy is applied to the entire protective material 6op in the printing process P for printing the image G12 of FIG.
  • the protective material 6op in the same gloss state covers the image G12 in the printed state. That is, as described above, in the image G12 in the same gloss covering state, the glossiness of the edge portion Rg3 seems to be lower than the glossiness of the non-edge region. In this case, uneven gloss occurs.
  • the above-mentioned print control process in the premise Pm2 is performed.
  • the applied energy of the protective material is set so that the glossiness of the protective material 6op1e in the transferred state covering the edge portion Rg3 is higher than the glossiness of the protective material 6op2n in the transferred state covering the non-edge region.
  • the set applied energy is applied to the protective material 6op.
  • the protective material 6op covers the image G12 in the printed state. Therefore, a printed matter (glossy printing) having high print quality can be obtained.
  • the above-mentioned print control process in the premise Pm3 is performed.
  • the applied energy of the protective material is set so that the relationship (glossiness of edge portion Rg3> glossiness of high-concentration region Rg1> glossiness of other regions) is satisfied in the state where the protective material 6op is transferred.
  • the protective material has a glossiness of the protective material 6op1 covering the high concentration region Rg1 higher than the glossiness of the protective material 6op2 covering the non-high concentration region.
  • the applied energy is set. Therefore, the energy applied to the high concentration region is reduced, and the local heat concentration on the paper and the ink sheet is reduced. Therefore, it is possible to prevent the occurrence of sticking, paper jam, and the like.
  • the paper jam is a phenomenon generated by heat fusion of an ink sheet to paper. As a result, the reliability of the sublimation printer is improved.
  • the overcoat layer is transferred to the paper in order to obtain a glossy printed matter.
  • the thermal energy (transfer energy) applied to the dye is high in order to print the image on the paper, unintended irregularities may be formed on the printing surface side of the paper. Specifically, uneven gloss occurs in the high density region of the image transferred to the paper. As a result, there is a problem that the print quality is deteriorated.
  • the sublimation printer 100 of the present embodiment has a configuration for achieving the above effects. Therefore, the sublimation printer 100 of the present embodiment can solve the above problem. Therefore, for example, it is possible to reduce the occurrence of uneven gloss in a high density region of an image transferred by a sublimation printer. Therefore, a printed matter (glossy printing) having high print quality can be obtained.
  • the above-mentioned threshold value T is not limited to a fixed value.
  • the threshold value T may be represented by a plurality of threshold values or variable values depending on the content of the image.
  • the content of the image is, for example, a day view, a night view, a portrait, computer graphics, or the like.
  • ⁇ Modification example 1> This modification is applied to the first embodiment.
  • the glossiness on the surface side of the printed matter in the transferred state in which the protective material is transferred is also referred to as “surface glossiness”.
  • the surface glossiness is the glossiness on the printing surface side of the paper. That is, the surface glossiness is the glossiness of the protective material that covers the printed image.
  • the surface glossiness is mainly determined by the applied energy applied to the color dye.
  • the surface glossiness also varies depending on the environmental temperature, humidity, etc. of the printer as secondary factors.
  • the surface glossiness also varies depending on the composition of the material constituting the ink sheet, the composition of the material constituting the paper, and the like as secondary factors. It is considered that such a variation in glossiness occurs because the secondary factor affects the smoothness of the surface of the paper.
  • FIG. 13 is a block diagram for explaining the operation of the sublimation printer 100 according to the first modification.
  • the sublimation printer 100 in the first modification may include an environment sensor Sn1 or an information sensor Sn2.
  • the configuration in which the sublimation printer 100 is provided with the environmental sensor Sn1 is also referred to as “deformed configuration A”.
  • the environment sensor Sn1 is provided inside the housing Ch1 of the sublimation printer 100.
  • the inside of the housing Ch1 of the sublimation printer 100 is also referred to as “inside the housing”. Further, in the following, the temperature inside the housing is also referred to as “internal temperature”. Further, in the following, the humidity inside the housing is also referred to as “internal humidity”.
  • the environment sensor Sn1 has a function of measuring the internal temperature and the internal humidity.
  • the setting process Pa for setting the threshold value T is performed based on the environmental information.
  • the environmental information is internal temperature and internal humidity.
  • the setting process Pa is performed before the print control process of FIG. 9 described above is performed.
  • the threshold setting information A is used.
  • the threshold setting information A indicates, for example, an optimum concentration value A corresponding to each of a plurality of different environmental conditions.
  • the optimum density value A is a value for suppressing a decrease in the surface glossiness of the high density region Rg1 of the image shown by the printed matter.
  • Each environmental situation is represented by a combination of internal temperature and internal humidity.
  • the threshold setting information A indicates, for example, the optimum concentration value A corresponding to an environmental condition in which the internal temperature is 40 degrees or higher and the internal humidity is 60% or higher.
  • a plurality of environmental conditions and a plurality of optimum concentration values A are determined by, for example, repeating experiments and the like.
  • the experiment includes, for example, printing processing P in a plurality of different environmental conditions, changing an image to be targeted by printing processing P, and confirming a glossy state of a printed matter by an operator.
  • the environment sensor Sn1 measures the internal temperature and the internal humidity. Then, the control unit 10 sets the optimum concentration value A corresponding to the environmental conditions corresponding to the measured internal temperature and internal humidity as the threshold value T (reference concentration) based on the threshold value setting information A.
  • the threshold value T (reference concentration) is a value set based on the internal temperature and the internal humidity.
  • the above-mentioned print control process (high density area identification process) is performed using the set threshold value T (reference density).
  • T reference density
  • the environmental information may be one of the internal temperature and the internal humidity.
  • the plurality of environmental conditions in the threshold setting information A are represented by one of the internal temperature and the internal humidity.
  • the environment sensor Sn1 measures one of the internal temperature and the internal humidity.
  • the control unit 10 sets the optimum concentration value A corresponding to the environmental condition corresponding to one of the measured internal temperature and the internal humidity as the threshold value T (reference concentration) based on the threshold value setting information A.
  • the threshold value T (reference concentration) is a value set based on either the internal temperature or the internal humidity.
  • the configuration using the information sensor Sn2 will be described.
  • the configuration in which the sublimation printer 100 includes the information sensor Sn2 is also referred to as “deformed configuration B”.
  • the information sensor Sn2 is provided inside the housing Ch1 of the sublimation printer 100.
  • a plurality of different composition information 22 are stored in advance in a predetermined memory area in the storage unit 9.
  • the composition of the material constituting the ink sheet 6 mounted on the sublimation printer 100 is also referred to as "ink sheet composition”.
  • the ink sheet composition is, for example, the type of ink sheet 6, the material of the ink sheet 6, and the like.
  • the composition of the material constituting the paper 2 mounted on the sublimation printer 100 is also referred to as “paper composition”.
  • the paper composition is, for example, the type of paper 2, the material of the paper 2, and the like.
  • the plurality of composition information 22 stored in the storage unit 9 indicates various combinations of the ink sheet composition and the paper composition. Further, the optimum concentration value B is associated with each of the plurality of composition information 22.
  • the optimum density value B is a value for suppressing a decrease in the surface glossiness of the high density region Rg1 of the image shown by the printed matter.
  • the optimum concentration value B corresponding to each of the plurality of composition information 22 is determined, for example, by repeating an experiment or the like.
  • the experiment includes, for example, printing processing P using the ink sheet 6 and paper 2 corresponding to each composition information 22, changing the image to be the target of printing processing P, and confirming the glossy state of the printed matter by the operator.
  • the information sensor Sn2 has a function of detecting the composition of the ink sheet 6 (ink sheet composition) and the composition of the paper 2 (paper composition).
  • the setting process Pb for setting the threshold value T is performed based on the composition information detected by the information sensor Sn2.
  • the composition information is an ink sheet composition and a paper composition.
  • the setting process Pb is performed before the print control process of FIG. 9 described above is performed.
  • the information sensor Sn2 detects the ink sheet composition and the paper composition which are composition information.
  • the control unit 10 identifies the composition information 22 indicating the detected ink sheet composition and paper composition among the plurality of composition information 22 stored in the storage unit 9.
  • the control unit 10 sets the optimum concentration value B associated with the specified composition information 22 as the threshold value T (reference concentration).
  • the threshold value T reference density
  • the threshold value T reference density
  • the above-mentioned print control process (high density area identification process) is performed using the set threshold value T (reference density).
  • T reference density
  • the composition information detected by the information sensor Sn2 may be one of the ink sheet composition and the paper composition.
  • the plurality of composition information 22 stored in the storage unit 9 indicates one of the ink sheet composition and the paper composition.
  • the information sensor Sn2 detects one of the ink sheet composition and the paper composition which is the composition information. Then, the control unit 10 specifies the composition information 22 indicating one of the detected ink sheet composition and the paper composition among the plurality of composition information 22 stored in the storage unit 9. Then, the control unit 10 sets the optimum concentration value B associated with the specified composition information 22 as the threshold value T (reference concentration).
  • the threshold value T reference density
  • the threshold value T reference density
  • the decrease in the surface glossiness of the high density region Rg1 of the image shown by the printed matter is suppressed by utilizing the environmental information or the composition information (ink sheet composition and paper composition).
  • the sublimation printer 100 applies thermal energy.
  • FIG. 14 is a block diagram showing a characteristic functional configuration of the sublimation printer BL10.
  • the sublimation printer BL10 corresponds to the sublimation printer 100. That is, FIG. 14 is a block diagram showing the main functions related to the present technology among the functions of the sublimation printer BL10.
  • the thermal head heats an ink sheet provided with an ink material for expressing an image and a protective material, and performs a printing process of transferring the ink material and the protective material to paper.
  • the protective material is transferred to the paper so that the protective material covers the ink material expressing the image.
  • the state of the protective material includes a transfer state in which the protective material is transferred to the paper by the printing process and a non-transfer state in which the protective material is provided on the ink sheet. ..
  • the protective material has glossy properties.
  • the gloss property is the gloss of the protective material in the transferred state in response to a change in thermal energy applied to the protective material in the non-transfer state in order to transfer the protective material in the non-transfer state to the paper. It is a characteristic that the degree changes.
  • the sublimation printer BL10 identifies a target region that is one or both of a high density region and an edge portion in the image.
  • the high density region is a region of the image represented by a density equal to or higher than a reference density, which is a set threshold value.
  • the edge portion is a region showing an edge shown in the image.
  • the sublimation printer BL10 functionally includes a thermal head BL1 and an energy setting unit BL2.
  • the thermal head BL1 emits heat.
  • the thermal head BL1 corresponds to the thermal head 3.
  • the energy setting unit BL2 sets the applied energy, which is the thermal energy applied to the protective material in the non-transfer state by the thermal head BL1 in the printing process.
  • the energy setting unit BL2 corresponds to the energy setting unit 33.
  • the protective material in the non-transfer state includes a first protective material for covering the target region of the image and a second protective material for covering a region of the image different from the target region.
  • the energy setting unit BL2 has the first protective material and the second protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state.
  • the applied energy to be applied to each of the above is set.
  • the sublimation printer according to the present invention has been described above based on the embodiment, but the present invention is not limited to the embodiment.
  • the present invention also includes modifications that can be conceived by those skilled in the art without departing from the spirit of the present invention. That is, the present invention can freely combine embodiments and modifications within the scope of the invention, and can appropriately modify or omit embodiments and modifications.
  • the sublimation printer 100 does not have to include all the components shown in the figure. That is, the sublimation printer 100 needs to include only the minimum components that can realize the effect of the present technology.
  • each function of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 included in the sublimation printer 100 may be realized by a processing circuit.
  • the processing circuit is a circuit for specifying a target region which is one or both of a high density region and an edge portion in the image.
  • the first protective material and the second protective material are provided so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state. It is also a circuit for setting the applied energy to be applied to each of the above.
  • the processing circuit may be dedicated hardware. Further, the processing circuit may be a processor that executes a program stored in the memory.
  • the processor is, for example, a CPU (Central Processing Unit), a central processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • configuration Cs1 the configuration in which the processing circuit is dedicated hardware
  • configuration Cs2 the configuration in which the processing circuit is a processor
  • configuration Cs3 a configuration in which each function of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 is realized by a combination of hardware and software is also referred to as “configuration Cs3”.
  • the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Applicable.
  • the functions of the region specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 may be realized by three processing circuits, respectively. Further, all the functions of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 may be realized by one processing circuit.
  • the configuration in which all or a part of each component included in the sublimation printer 100 is shown in hardware is as follows, for example.
  • a sublimation printer in which all or a part of each component included in the sublimation printer 100 is shown by hardware is also referred to as a “sublimation printer hd10”.
  • FIG. 15 is a hardware configuration diagram of the sublimation printer hd10.
  • the sublimation printer hd10 includes a processor hd1 and a memory hd2.
  • the memory hd2 is, for example, a non-volatile or volatile semiconductor memory such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an EPROM, or an EEPROM.
  • the memory hd2 is, for example, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like. Further, the memory hd2 may be any storage medium used in the future.
  • the processing circuit is the processor hd1.
  • each function of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory hd2.
  • the processing circuit (processor hd1) reads the program stored in the memory hd2 and executes the program to execute each of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33.
  • the function is realized. That is, the memory hd2 stores the following programs.
  • the program is a program for causing a processing circuit (processor hd1) to execute a step of specifying a target region which is one or both of a high density region and an edge portion in the image.
  • the program includes the first protective material and the second protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state. It is also a program for causing the processing circuit (processor hd1) to execute the step of setting the applied energy to be applied to each of them.
  • the program also causes a computer to execute a processing procedure performed by each of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33, a method of executing the processing, and the like.
  • the functions of the area specifying unit 31 and the edge specifying unit 32 are realized by the processing circuit reading and executing the program stored in the memory. Further, for example, the function of the energy setting unit 33 is realized by a processing circuit as dedicated hardware.
  • the processing circuit can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
  • the present technology may be realized as a print control method in which the operation of a characteristic component included in the sublimation printer 100 is a step. Further, the present technology may be realized as a program for causing a computer to execute each step included in such a print control method. Further, the present technology may be realized as a computer-readable recording medium for storing such a program. Further, the program may be distributed via a transmission medium such as the Internet.
  • the print control method according to the present technology corresponds to, for example, the process of FIG.
  • the energy setting unit 33 corrects the OP data received from the PC 200, but the present invention is not limited to this.
  • the energy setting unit 33 may generate OP data indicating the thermal energy corresponding to the high concentration region Rg1, the edge portion Rg3, etc. specified by the region identification process.

Abstract

A sublimation printer 100 specifies a target region that is one or both of a high density region Rg1 and an edge part Rg3 in an image. A protective material 6op in a non-transfer state includes a first protective material for covering the target region in the image and a second protective material for covering, in the image, a region that is different from the target region. An energy setting unit 33 sets application energy to be applied to each of the first protective material and the second protective material such that the level of glossiness of the first protective material in a transfer state becomes higher than the level of glossiness of the second protective material in the transfer state. The application energy is thermal energy to be applied by a thermal head 3 to the protective material 6op in the non-transfer state in a printing process.

Description

昇華型プリンターおよび印刷制御方法Sublimation printer and print control method
 本発明は、光沢度に関する処理を行なう昇華型プリンターおよび印刷制御方法に関する。 The present invention relates to a sublimation printer that performs processing related to glossiness and a print control method.
 昇華型プリンターでは、サーマルヘッドがインクシートを加熱することにより、ペーパーに画像を印刷する印画処理を行う。以下においては、イエロー、マゼンタおよびシアンを、それぞれ、「Y」、「M」および「C」ともいう。インクシートには、Y,M,Cのインク(染料)が塗布されている。 In a sublimation printer, the thermal head heats the ink sheet to perform printing processing to print an image on paper. In the following, yellow, magenta and cyan are also referred to as "Y", "M" and "C", respectively. Y, M, and C inks (dye) are applied to the ink sheet.
 以下においては、Y成分の画像を、「Y画像」ともいう。また、以下においては、M成分の画像を、「M画像」ともいう。また、以下においては、C成分の画像を、「C画像」ともいう。また、以下においては、ペーパーのうち、画像を印刷するための領域を、「印画領域」ともいう。 In the following, the image of the Y component is also referred to as a "Y image". Further, in the following, the image of the M component is also referred to as an “M image”. Further, in the following, the image of the C component is also referred to as a “C image”. Further, in the following, the area for printing an image in the paper is also referred to as a “printing area”.
 具体的には、昇華型プリンターは、Y画像、M画像およびC画像を、当該Y画像、M画像およびC画像の順で、ペーパーの印画領域に転写する。これにより、ペーパーの印画領域にカラー画像が印刷される。 Specifically, the sublimation printer transfers the Y image, the M image, and the C image to the printing area of the paper in the order of the Y image, the M image, and the C image. As a result, a color image is printed in the printing area of the paper.
 また、昇華型プリンターは、ペーパーの印画領域に画像(カラー画像)が印刷された後、当該印画領域に、オーバーコート層を転写する。これにより、当該画像の耐光性、当該画像の耐指紋性等が向上する。 Further, in the sublimation printer, after the image (color image) is printed on the printing area of the paper, the overcoat layer is transferred to the printing area. As a result, the light resistance of the image, the fingerprint resistance of the image, and the like are improved.
 オーバーコート層は、ペーパーの印刷面(印画領域)に形成された画像を保護する材料である。また、オーバーコート層は、ペーパーの表面の平滑性を高めるための材料である。また、オーバーコート層が印刷物の表面側に形成されることにより、当該印刷物の表面が光沢を有する。 The overcoat layer is a material that protects the image formed on the printing surface (printing area) of the paper. The overcoat layer is a material for improving the smoothness of the surface of the paper. Further, since the overcoat layer is formed on the surface side of the printed matter, the surface of the printed matter has gloss.
 特許文献1では、オーバーコート層(フィルム状シート)を転写するための構成(以下、「関連構成A」ともいう)が開示されている。関連構成Aでは、印刷物の表面が光沢を有さないように、任意のパターンに応じてオーバーコート層の印加エネルギーが制御されて、当該オーバーコート層が転写される。具体的には、演算により、オーバーコート層を転写するための凹凸パターンデータが生成される。凹凸パターンデータに基づいて、オーバーコート層の印加エネルギーが制御され、ペーパーの印画領域の全面に凹凸パターンが形成される。 Patent Document 1 discloses a configuration for transferring an overcoat layer (film-like sheet) (hereinafter, also referred to as "related configuration A"). In the related configuration A, the applied energy of the overcoat layer is controlled according to an arbitrary pattern so that the surface of the printed matter does not have gloss, and the overcoat layer is transferred. Specifically, the unevenness pattern data for transferring the overcoat layer is generated by the calculation. The applied energy of the overcoat layer is controlled based on the unevenness pattern data, and the unevenness pattern is formed on the entire surface of the printing area of the paper.
国際公開第97/39898号International Publication No. 97/39898
 オーバーコート層としての保護材料は、光沢特性を有する。当該光沢特性は、保護材料に印加される熱エネルギーの変化に応じて、当該保護材料の光沢度が変化するという特性である。なお、画像における高濃度領域、エッジ部等は、インク材料(染料)に、高い熱エネルギーが印加されることにより、ペーパーに形成される。そのため、ペーパーに転写された画像の高濃度領域、エッジ部等には、凹凸等が形成されやすい。 The protective material as the overcoat layer has glossy properties. The gloss property is a property that the glossiness of the protective material changes according to a change in the thermal energy applied to the protective material. The high density region, edge portion, etc. in the image are formed on the paper by applying high thermal energy to the ink material (dye). Therefore, irregularities and the like are likely to be formed in the high density region, the edge portion, and the like of the image transferred to the paper.
 したがって、保護材料全体に同じ熱エネルギーが印加された当該保護材料が、転写された画像を覆った状態では、高濃度領域、エッジ部等の光沢度が低下しているようにみえる場合がある。そのため、画像の領域の特徴に応じて、当該領域を覆うための熱エネルギーが設定されることが望ましい。 Therefore, when the protective material to which the same thermal energy is applied to the entire protective material covers the transferred image, it may appear that the glossiness of the high-concentration region, the edge portion, etc. is reduced. Therefore, it is desirable that the thermal energy for covering the region is set according to the characteristics of the region of the image.
 そこで、画像の領域毎に、当該領域を覆うための保護材料に印加するための熱エネルギーを設定することが要求される。関連構成Aでは、この要求を満たすことはできない。 Therefore, for each region of the image, it is required to set the thermal energy to be applied to the protective material for covering the region. The related configuration A cannot meet this requirement.
 本発明は、このような問題を解決するためになされたものであり、画像の領域毎に、当該領域を覆うための保護材料に印加するための熱エネルギーを設定することが可能な昇華型プリンター等を提供することを目的とする。 The present invention has been made to solve such a problem, and a sublimation printer capable of setting a thermal energy to be applied to a protective material for covering the region of an image for each region of the image. Etc. are intended to be provided.
 上記目的を達成するために、本発明の一態様に係る昇華型プリンターは、画像を表現するためのインク材料と、保護材料とが設けられたインクシートをサーマルヘッドが加熱して、当該インク材料および当該保護材料をペーパーに転写する印画処理を行なう。前記印画処理では、前記インク材料が前記ペーパーに転写された後、前記保護材料が、前記画像を表現している当該インク材料を覆うように、当該保護材料が当該ペーパーに転写され、前記保護材料の状態には、前記印画処理により当該保護材料が前記ペーパーに転写された状態である転写状態と、当該保護材料が前記インクシートに設けられた状態である非転写状態とが存在し、前記保護材料は、光沢特性を有し、前記光沢特性は、前記非転写状態の前記保護材料を前記ペーパーに転写するために当該非転写状態の当該保護材料に印加される熱エネルギーの変化に応じて、前記転写状態の当該保護材料の光沢度が変化するという特性であり、前記昇華型プリンターは、前記画像における、高濃度領域およびエッジ部の一方または両方である対象領域を特定し、前記高濃度領域は、前記画像のうち、設定された閾値である基準濃度以上の濃度で表現される領域であり、前記エッジ部は、前記画像に示されるエッジを示す領域であり、前記昇華型プリンターは、熱を発する前記サーマルヘッドと、前記印画処理において、前記サーマルヘッドが前記非転写状態の前記保護材料に印加する前記熱エネルギーである印加エネルギーを設定するエネルギー設定部とを備え、前記非転写状態の前記保護材料は、前記画像の前記対象領域を覆うための第1保護材料と、前記画像のうち、前記対象領域と異なる領域を覆うための第2保護材料とを含み、前記転写状態の前記第1保護材料の光沢度が、前記転写状態の前記第2保護材料の光沢度より高くなるように、前記エネルギー設定部は、当該第1保護材料および当該第2保護材料の各々に印加するための前記印加エネルギーを設定する。 In order to achieve the above object, in the sublimation printer according to one aspect of the present invention, the thermal head heats an ink sheet provided with an ink material for expressing an image and a protective material, and the ink material. Then, a printing process is performed to transfer the protective material to paper. In the printing process, after the ink material is transferred to the paper, the protective material is transferred to the paper so that the protective material covers the ink material expressing the image, and the protective material is transferred to the paper. In the state of, there are a transfer state in which the protective material is transferred to the paper by the printing process and a non-transfer state in which the protective material is provided on the ink sheet, and the protection The material has a gloss property, which is in response to a change in thermal energy applied to the non-transfer state protective material in order to transfer the non-transfer state protective material to the paper. It is a characteristic that the glossiness of the protective material in the transferred state changes, and the sublimation printer identifies a target region which is one or both of a high density region and an edge portion in the image, and the high density region. Is a region of the image represented by a density equal to or higher than a set threshold value of a reference density, the edge portion is a region showing an edge shown in the image, and the sublimation printer has heat. The thermal head is provided with an energy setting unit for setting applied energy, which is the thermal energy applied to the protective material in the non-transfer state by the thermal head in the printing process. The protective material includes a first protective material for covering the target region of the image and a second protective material for covering a region of the image different from the target region, and the first protective material in the transferred state. The energy setting unit is to apply to each of the first protective material and the second protective material so that the glossiness of the protective material is higher than the glossiness of the second protective material in the transferred state. Set the applied energy.
 本発明によれば、昇華型プリンターは、画像における、高濃度領域およびエッジ部の一方または両方である対象領域を特定する。非転写状態の保護材料は、前記画像の対象領域を覆うための第1保護材料と、前記画像のうち、対象領域と異なる領域を覆うための第2保護材料とを含む。転写状態の第1保護材料の光沢度が、転写状態の第2保護材料の光沢度より高くなるように、エネルギー設定部は、当該第1保護材料および当該第2保護材料の各々に印加するための印加エネルギーを設定する。当該印加エネルギーは、印画処理において、サーマルヘッドが非転写状態の前記保護材料に印加する熱エネルギーである。 According to the present invention, the sublimation printer identifies a target region in an image, which is one or both of a high density region and an edge portion. The non-transferred protective material includes a first protective material for covering the target region of the image and a second protective material for covering a region of the image different from the target region. Since the energy setting unit applies to each of the first protective material and the second protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state. Set the applied energy of. The applied energy is the thermal energy applied to the protective material in the non-transfer state by the thermal head in the printing process.
 これにより、画像の領域毎に、当該領域を覆うための保護材料に印加するための熱エネルギーを設定することができる。 Thereby, for each region of the image, the thermal energy to be applied to the protective material for covering the region can be set.
 この発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The purpose, features, aspects, and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
実施の形態1に係る昇華型プリンターの主要なハードウエアの構成を示すブロック図である。It is a block diagram which shows the structure of the main hardware of the sublimation type printer which concerns on Embodiment 1. FIG. 実施の形態1に係る昇華型プリンターのうち印画処理を行うための構成を主に示す図である。It is a figure which mainly shows the structure for performing a printing process among the sublimation type printer which concerns on Embodiment 1. FIG. インクシートの構成を示す図である。It is a figure which shows the structure of an ink sheet. ペーパーの構成を示す図である。It is a figure which shows the structure of a paper. 実施の形態1に係る印刷制御処理における、昇華型プリンターの動作を説明するためのブロック図である。It is a block diagram for demonstrating the operation of the sublimation type printer in the print control process which concerns on Embodiment 1. FIG. 実施の形態1に係る補正部の構成を示す図である。It is a figure which shows the structure of the correction part which concerns on Embodiment 1. FIG. 画像の一例を示す図である。It is a figure which shows an example of an image. 印加エネルギーと光沢度との関係を示す特性曲線を示すグラフである。It is a graph which shows the characteristic curve which shows the relationship between applied energy and glossiness. 実施の形態1に係る印刷制御処理のフローチャートである。It is a flowchart of print control processing which concerns on Embodiment 1. FIG. 印加エネルギーと光沢度との関係を示す特性曲線を示すグラフである。It is a graph which shows the characteristic curve which shows the relationship between applied energy and glossiness. 画像の一例を示す図である。It is a figure which shows an example of an image. 印加エネルギーと光沢度との関係を示す特性曲線を示すグラフである。It is a graph which shows the characteristic curve which shows the relationship between applied energy and glossiness. 変形例1に係る昇華型プリンターの動作を説明するためのブロック図である。It is a block diagram for demonstrating the operation of the sublimation type printer which concerns on modification 1. FIG. 昇華型プリンターの特徴的な機能構成を示すブロック図である。It is a block diagram which shows the characteristic functional structure of a sublimation type printer. 昇華型プリンターのハードウエア構成図である。It is a hardware block diagram of a sublimation type printer.
 以下、図面を参照しつつ、実施の形態について説明する。以下の図面では、同一の各構成要素には同一の符号を付してある。同一の符号が付されている各構成要素の名称および機能は同じである。したがって、同一の符号が付されている各構成要素の一部についての詳細な説明を省略する場合がある。 Hereinafter, embodiments will be described with reference to the drawings. In the drawings below, the same components are designated by the same reference numerals. The names and functions of the components with the same reference numerals are the same. Therefore, detailed description of a part of each component having the same reference numeral may be omitted.
 <実施の形態1>
 (構成)
 図1は、実施の形態1に係る昇華型プリンター100の主要なハードウエアの構成を示すブロック図である。なお、図1には、実施の形態1に関連しない構成要素(例えば、電源)は示されていない。また、図1には、説明のために、昇華型プリンター100に含まれないPC(Personal Computer)200も示される。昇華型プリンター100は、詳細は後述するが、ペーパーに画像を印刷するための印画処理Pを行なう。
<Embodiment 1>
(Constitution)
FIG. 1 is a block diagram showing a configuration of main hardware of the sublimation printer 100 according to the first embodiment. Note that FIG. 1 does not show components (for example, power supplies) that are not related to the first embodiment. Further, FIG. 1 also shows a PC (Personal Computer) 200 which is not included in the sublimation printer 100 for the sake of explanation. The sublimation printer 100 performs a printing process P for printing an image on paper, although details will be described later.
 PC200は、例えば、ホストPCである。PC200は、昇華型プリンター100を制御する装置である。PC200は、ユーザによって操作される。ユーザが、PC200に対し、印画実行操作を行った場合、PC200は、印画指示、および、画像データD1を、昇華型プリンター100へ送信する。 The PC 200 is, for example, a host PC. The PC 200 is a device that controls the sublimation printer 100. The PC 200 is operated by the user. When the user performs a printing operation on the PC 200, the PC 200 transmits the printing instruction and the image data D1 to the sublimation printer 100.
 当該印画実行操作は、印画処理Pを昇華型プリンター100に実行させるための操作である。また、当該印画指示は、昇華型プリンター100に印画処理Pを実行させるための指示である。当該画像データD1は、ペーパーに印刷するための画像のデータである。すなわち、画像データD1は、印刷用のデータである。画像データD1が示す画像は、Y画像、M画像およびC画像から構成される。 The printing execution operation is an operation for causing the sublimation printer 100 to execute the printing processing P. Further, the printing instruction is an instruction for causing the sublimation printer 100 to execute the printing process P. The image data D1 is image data for printing on paper. That is, the image data D1 is data for printing. The image indicated by the image data D1 is composed of a Y image, an M image, and a C image.
 以下においては、ペーパーに印刷するための画像を、「対象画像」ともいう。すなわち、画像データD1は、対象画像を示す。対象画像は、行列状に配置されるk個の画素から構成される。「k」は、2以上の整数である。k個の画素は、m行n列の行列を構成する。mおよびnの各々は、2以上の整数である。すなわち、対象画像は、m本の行と、n本のライン(列)とを有する。 In the following, the image for printing on paper is also referred to as "target image". That is, the image data D1 indicates a target image. The target image is composed of k pixels arranged in a matrix. "K" is an integer of 2 or more. The k pixels form a matrix of m rows and n columns. Each of m and n is an integer of 2 or more. That is, the target image has m rows and n lines (columns).
 「n」は、対象画像の水平(横)方向に並ぶ画素の数である。「m」は、対象画像の垂直(縦)方向に並ぶ画素の数である。「k」は、(m×n)の式で算出される値である。 "N" is the number of pixels arranged in the horizontal (horizontal) direction of the target image. “M” is the number of pixels arranged in the vertical (vertical) direction of the target image. “K” is a value calculated by the formula (m × n).
 各画素は、濃度を示す階調値(画素値)により表現される。以下においては、画素の階調値(画素値)を示すデータを、「階調データ」または「画素データ」ともいう。また、以下においては、画素が表現可能な最も高い濃度を、「最高濃度」ともいう。また、以下においては、画素が表現可能な最も低い濃度を、「最低濃度」ともいう。また、以下においては、最高濃度と最低濃度との中間の濃度を、「中間濃度」ともいう。中間濃度は、例えば、最高濃度の0.5倍の濃度である。 Each pixel is represented by a gradation value (pixel value) indicating the density. In the following, data indicating a pixel gradation value (pixel value) is also referred to as “gradation data” or “pixel data”. Further, in the following, the highest density that can be expressed by a pixel is also referred to as "highest density". Further, in the following, the lowest density that a pixel can express is also referred to as "minimum density". Further, in the following, the concentration intermediate between the maximum concentration and the minimum concentration is also referred to as "intermediate concentration". The intermediate concentration is, for example, 0.5 times the maximum concentration.
 図2は、実施の形態1に係る昇華型プリンター100のうち印画処理を行うための構成を主に示す図である。図2は、昇華型プリンター100に、インクシート6およびロール紙2rが装着されている状態を示す。 FIG. 2 is a diagram mainly showing a configuration for performing printing processing in the sublimation printer 100 according to the first embodiment. FIG. 2 shows a state in which the ink sheet 6 and the roll paper 2r are attached to the sublimation printer 100.
 インクシート6は、長尺状のシートである。インクシート6の一方側の端部がロール状に巻かれることにより、インクロール6rが構成される。インクロール6rは、後述のリール11aに取り付けられる。インクシート6の他方側の端部がロール状に巻かれることにより、インクロール6rmが構成される。インクロール6rmは、後述のリール11bに取り付けられる。 The ink sheet 6 is a long sheet. The ink roll 6r is formed by winding one end of the ink sheet 6 in a roll shape. The ink roll 6r is attached to the reel 11a described later. The ink roll 6rm is formed by winding the other end of the ink sheet 6 in a roll shape. The ink roll 6rm is attached to a reel 11b described later.
 図3は、インクシート6の構成を示す図である。また、図3は、インクシート6の長手方向に沿った、当該インクシート6の断面図である。インクシート6の構成については後述する。 FIG. 3 is a diagram showing the configuration of the ink sheet 6. Further, FIG. 3 is a cross-sectional view of the ink sheet 6 along the longitudinal direction of the ink sheet 6. The configuration of the ink sheet 6 will be described later.
 ロール紙2rは、長尺状のペーパー2がロール状に巻かれて構成される。図4は、ペーパー2の構成を示す図である。また、図4は、ペーパー2の長手方向に沿った、当該ペーパー2の断面図である。ペーパー2は、画像を印刷するための記録媒体である。ペーパー2の構成については後述する。 The roll paper 2r is composed of a long paper 2 wound in a roll shape. FIG. 4 is a diagram showing the structure of the paper 2. Further, FIG. 4 is a cross-sectional view of the paper 2 along the longitudinal direction of the paper 2. Paper 2 is a recording medium for printing an image. The structure of the paper 2 will be described later.
 図1および図2を参照して、昇華型プリンター100は、筐体Ch1と、通信部8と、記憶部9と、制御部10と、画像処理部30と、プラテンローラー4と、サーマルヘッド3と、サーマルヘッドコントローラー12と、インクシート駆動部14と、用紙搬送部13と、カッター7と、データバスB1とを備える。 With reference to FIGS. 1 and 2, the sublimation printer 100 includes a housing Ch1, a communication unit 8, a storage unit 9, a control unit 10, an image processing unit 30, a platen roller 4, and a thermal head 3. A thermal head controller 12, an ink sheet driving unit 14, a paper transport unit 13, a cutter 7, and a data bus B1 are provided.
 筐体Ch1は、昇華型プリンター100が備える各構成要素を収容する。データバスB1には、図1の昇華型プリンター100に含まれる複数の構成要素が接続されている。これにより、図1の複数の構成要素は、相互にデータ通信を行うことができる。 The housing Ch1 accommodates each component included in the sublimation printer 100. A plurality of components included in the sublimation printer 100 of FIG. 1 are connected to the data bus B1. As a result, the plurality of components of FIG. 1 can perform data communication with each other.
 通信部8は、PC200と通信する機能を有する。PC200が送信した印画指示および画像データD1は、通信部8を介して、制御部10へ送信される。 The communication unit 8 has a function of communicating with the PC 200. The printing instruction and image data D1 transmitted by the PC 200 are transmitted to the control unit 10 via the communication unit 8.
 記憶部9は、各種データ、プログラム等を記憶するメモリである。記憶部9は、例えば、揮発性メモリと不揮発性メモリとから構成される。揮発性メモリは、データを一時的に記憶するメモリである。揮発性メモリは、例えば、画像データD1を記憶する。揮発性メモリは、例えば、RAMである。当該不揮発性メモリには、制御プログラム、初期設定値等が記憶されている。 The storage unit 9 is a memory for storing various data, programs, and the like. The storage unit 9 is composed of, for example, a volatile memory and a non-volatile memory. Volatile memory is a memory that temporarily stores data. The volatile memory stores, for example, image data D1. The volatile memory is, for example, RAM. A control program, initial setting values, and the like are stored in the non-volatile memory.
 制御部10は、詳細は後述するが、昇華型プリンター100の各部に対して各種処理を行う。制御部10は、記憶部9の不揮発性メモリに記憶されている制御プログラムに従って当該各種処理を行う。制御部10は、例えば、CPU(Central Processing Unit)等のプロセッサである。画像処理部30は、画像データを処理する機能を有する。 Although the details will be described later, the control unit 10 performs various processes on each unit of the sublimation printer 100. The control unit 10 performs the various processes according to the control program stored in the non-volatile memory of the storage unit 9. The control unit 10 is, for example, a processor such as a CPU (Central Processing Unit). The image processing unit 30 has a function of processing image data.
 サーマルヘッドコントローラー12は、サーマルヘッド3を制御する。サーマルヘッド3は、熱を発する機能を有する。具体的には、サーマルヘッド3は、熱を発する機能を有する発熱素子h1を含む。サーマルヘッドコントローラー12は、発熱素子h1が駆動するように、当該発熱素子h1を制御する。すなわち、サーマルヘッドコントローラー12は、サーマルヘッド3(発熱素子h1)が熱を発するように、サーマルヘッド3(発熱素子h1)を制御する。 The thermal head controller 12 controls the thermal head 3. The thermal head 3 has a function of generating heat. Specifically, the thermal head 3 includes a heat generating element h1 having a function of generating heat. The thermal head controller 12 controls the heat generating element h1 so that the heat generating element h1 is driven. That is, the thermal head controller 12 controls the thermal head 3 (heating element h1) so that the thermal head 3 (heating element h1) generates heat.
 以下の説明では、処理を分かりやすくするために、「サーマルヘッド3の発熱素子h1が発する熱」を、簡略して、「サーマルヘッド3が発する熱」ともいう。また、以下においては、サーマルヘッド3が発する熱を、「熱エネルギー」または「転写エネルギー」ともいう。 In the following description, in order to make the process easier to understand, "heat generated by the heat generating element h1 of the thermal head 3" is also simply referred to as "heat generated by the thermal head 3." Further, in the following, the heat generated by the thermal head 3 is also referred to as "heat energy" or "transfer energy".
 用紙搬送部13は、搬送ローラー対5を有する。用紙搬送部13は、搬送ローラー対5を制御する。搬送ローラー対5は、ペーパー2を搬送するためのローラー対である。搬送ローラー対5は、グリップローラー5aとピンチローラー5bとから構成される。グリップローラー5aは、用紙搬送部13の制御に従って、回転する。 The paper transport unit 13 has a transport roller pair 5. The paper transport unit 13 controls the transport roller pair 5. The transport roller pair 5 is a roller pair for transporting the paper 2. The transport roller pair 5 is composed of a grip roller 5a and a pinch roller 5b. The grip roller 5a rotates according to the control of the paper transport unit 13.
 プラテンローラー4は、サーマルヘッド3の一部と対向するように設けられる。プラテンローラー4は、図示しない駆動部により、移動自在に構成されている。プラテンローラー4は、ペーパー2およびインクシート6を介して、サーマルヘッド3(発熱素子h1)に接触する。 The platen roller 4 is provided so as to face a part of the thermal head 3. The platen roller 4 is movably configured by a drive unit (not shown). The platen roller 4 comes into contact with the thermal head 3 (heating element h1) via the paper 2 and the ink sheet 6.
 以下においては、プラテンローラー4が、ペーパー2およびインクシート6を介して、サーマルヘッド3に接触している状況における、当該プラテンローラー4の状態を、「プラテン接触状態」ともいう。プラテン接触状態は、プラテンローラー4およびサーマルヘッド3により、ペーパー2およびインクシート6が挟まれている状態である。 In the following, the state of the platen roller 4 in the state where the platen roller 4 is in contact with the thermal head 3 via the paper 2 and the ink sheet 6 is also referred to as a “platen contact state”. The platen contact state is a state in which the paper 2 and the ink sheet 6 are sandwiched between the platen roller 4 and the thermal head 3.
 プラテン接触状態において、サーマルヘッド3が、インクシート6を加熱することにより、インクシート6の染料(インク)が、ペーパー2に転写される。 When the thermal head 3 heats the ink sheet 6 in the platen contact state, the dye (ink) of the ink sheet 6 is transferred to the paper 2.
 インクシート駆動部14は、リール11bを回転させる機能を有する。リール11bは、インクロール6rmがインクシート6を巻き取るように、回転する。リール11aは、リール11bの回転に伴って回転する。リール11aは、インクロール6rからインクシート6が供給されるように、回転する。カッター7は、ペーパー2の一部を切断する機能を有する。 The ink sheet drive unit 14 has a function of rotating the reel 11b. The reel 11b rotates so that the ink roll 6rm winds up the ink sheet 6. The reel 11a rotates as the reel 11b rotates. The reel 11a rotates so that the ink sheet 6 is supplied from the ink roll 6r. The cutter 7 has a function of cutting a part of the paper 2.
 図3を参照して、インクシート6は、長尺状の基材フィルム6aを含む。基材フィルム6aは、耐熱性を有するプラスティックフィルム材料からなる。インクシート6の基材フィルム6aには、インク領域R10が、当該基材フィルム6aの長手方向に沿って、周期的に配置されている。 With reference to FIG. 3, the ink sheet 6 includes a long base film 6a. The base film 6a is made of a heat-resistant plastic film material. In the base film 6a of the ink sheet 6, ink regions R10 are periodically arranged along the longitudinal direction of the base film 6a.
 インク領域R10には、染料6y,6m,6cと保護材料6opとが設けられている。染料6y,6m,6cおよび保護材料6opの各々は、サーマルヘッド3により加熱されることにより、ペーパー2に転写される転写材料である。なお、染料6y,6m,6cの各々は、色を示すインク材料である。当該インク材料は、画像を表現するための材料である。 The ink region R10 is provided with dyes 6y, 6m, 6c and a protective material 6op. Each of the dyes 6y, 6m, 6c and the protective material 6op is a transfer material that is transferred to the paper 2 by being heated by the thermal head 3. Each of the dyes 6y, 6m, and 6c is an ink material showing a color. The ink material is a material for expressing an image.
 染料6y,6m,6cは、それぞれ、イエロー、マゼンタおよびシアンの色を示す。以下においては、Yの染料、Mの染料、および、Cの染料の各々を、「色染料」ともいう。染料6y,6m,6cの各々は、色染料である。 The dyes 6y, 6m, and 6c represent the colors of yellow, magenta, and cyan, respectively. In the following, each of the Y dye, the M dye, and the C dye is also referred to as a "color dye". Each of the dyes 6y, 6m and 6c is a color dye.
 図4を参照して、ペーパー2は、基材2aと、受容層2bとから構成される。基材2aは、プラスティックフィルム、紙等の材料からなる。受容層2bは、色染料を受容する材料からなる。 With reference to FIG. 4, the paper 2 is composed of a base material 2a and a receiving layer 2b. The base material 2a is made of a material such as a plastic film or paper. The receiving layer 2b is made of a material that receives the color dye.
 保護材料6opは、ペーパー2に転写された色染料を保護するための材料(オーバーコート層)である。具体的には、保護材料6opは、染料6y,6m,6cによりペーパー2に印刷された画像を保護するための材料である。また、保護材料6opは、耐光性、耐擦過性等を向上させるための部材である。 The protective material 6op is a material (overcoat layer) for protecting the color dye transferred to the paper 2. Specifically, the protective material 6op is a material for protecting the image printed on the paper 2 with the dyes 6y, 6m, 6c. Further, the protective material 6op is a member for improving light resistance, scratch resistance and the like.
 保護材料6opは、透光性を有する。また、保護材料6opは、透明な材料である。以下においては、保護材料6opを、「OP材料」ともいう。また、以下においては、ペーパー2のうち、画像を印刷するための領域を、「印画領域」ともいう。 The protective material 6op has translucency. Further, the protective material 6op is a transparent material. In the following, the protective material 6op is also referred to as an “OP material”. Further, in the following, the area for printing an image in the paper 2 is also referred to as a “printing area”.
 次に、印画処理Pについて説明する。印画処理Pは、インク材料(色染料)と、保護材料6opとが設けられたインクシート6をサーマルヘッド3が加熱して、当該インク材料および当該保護材料6opをペーパー2に転写する処理である。 Next, the printing process P will be described. The printing process P is a process in which the thermal head 3 heats the ink sheet 6 provided with the ink material (color dye) and the protective material 6 op, and transfers the ink material and the protective material 6 op to the paper 2. ..
 具体的には、印画処理Pでは、単位印画処理が行われる。単位印画処理では、プラテン接触状態において、サーマルヘッド3がインクシート6の転写材料を加熱しながら、搬送ローラー対5が、インクシート6およびペーパー2が同時に搬送する。これにより、1ライン毎に転写材料がペーパー2の印画領域に転写される。 Specifically, in the printing process P, the unit printing process is performed. In the unit printing process, the transfer roller pair 5 simultaneously conveys the ink sheet 6 and the paper 2 while the thermal head 3 heats the transfer material of the ink sheet 6 in the platen contact state. As a result, the transfer material is transferred to the printing area of the paper 2 line by line.
 上記の単位印画処理が、転写材料である染料6y,6m,6cおよび保護材料6opの各々に対して、繰り返し行われる。これにより、ペーパー2の印画領域に、染料6y,6m,6cおよび保護材料6opが、当該染料6y,6m,6cおよび保護材料6opの順で、転写される。 The above unit printing process is repeated for each of the dyes 6y, 6m, 6c and the protective material 6op, which are transfer materials. As a result, the dyes 6y, 6m, 6c and the protective material 6op are transferred to the printing area of the paper 2 in the order of the dyes 6y, 6m, 6c and the protective material 6op.
 すなわち、印画処理Pでは、インク材料(色染料)である染料6y,6m,6cがペーパー2に転写された後、保護材料6opが当該ペーパー2に転写される。これにより、転写されたインク材料(色染料)である染料6y,6m,6cにより画像が表現される。また、印画処理Pでは、保護材料6opが、画像を表現しているインク材料(色染料)を覆うように、当該保護材料6opが当該ペーパー2に転写される。 That is, in the printing process P, the dyes 6y, 6m, 6c, which are ink materials (color dyes), are transferred to the paper 2, and then the protective material 6op is transferred to the paper 2. As a result, the image is expressed by the dyes 6y, 6m, 6c which are the transferred ink materials (color dyes). Further, in the printing process P, the protective material 6op is transferred to the paper 2 so that the protective material 6op covers the ink material (color dye) expressing the image.
 その結果、ペーパー2の印画領域に画像が印刷されるとともに、当該画像が保護材料6opからなる保護層で保護される。これにより、当該画像の耐光性、当該画像の耐指紋性等が向上する。 As a result, an image is printed on the printing area of the paper 2, and the image is protected by a protective layer made of a protective material 6 op. As a result, the light resistance of the image, the fingerprint resistance of the image, and the like are improved.
 以下においては、ペーパー2の印画領域に画像が印刷されたものを、「印刷物」ともいう。印刷物の表面側には、保護材料6opが形成されている。当該印刷物は、ペーパー2の一部である。 In the following, an image printed on the printing area of paper 2 is also referred to as a "printed matter". A protective material 6op is formed on the surface side of the printed matter. The printed matter is a part of paper 2.
 カッター7は、ペーパー2から印刷物が切り離されるように、当該ペーパー2を切断する。これにより、印刷物が、昇華型プリンター100の外部へ排出される。 The cutter 7 cuts the paper 2 so that the printed matter is separated from the paper 2. As a result, the printed matter is discharged to the outside of the sublimation printer 100.
 なお、印画処理Pの単位印画処理において、色染料に印加される熱エネルギーが、不当に高い場合、印刷された画像における、高濃度領域、エッジ部等に、光沢のムラが発生する。エッジ部は、高濃度領域と、当該高濃度領域の周辺の領域との境界の部分である。 In the unit printing process of the printing process P, if the thermal energy applied to the color dye is unreasonably high, uneven gloss occurs in the high density area, the edge portion, etc. in the printed image. The edge portion is a boundary portion between the high-concentration region and the region around the high-concentration region.
 次に、光沢のムラが発生する原因について述べる。以下においては、サーマルヘッド3が転写材料に印加するための熱エネルギーを、「印加エネルギー」ともいう。 Next, the cause of uneven gloss will be described. In the following, the thermal energy for the thermal head 3 to apply to the transfer material is also referred to as “applied energy”.
 単位印画処理において、高濃度領域の色染料に印加される印加エネルギーは、低濃度領域の色染料に印加される印加エネルギーより高い。インクシート6の色染料をペーパーに転写させる際に、印加エネルギーが高いほど、当該ペーパーの表面に意図しない細かい凹凸が形成される。そのため、ペーパーの表面の平坦度が低下する。その結果、ペーパーの表面の状態は、当該表面が焦げたような状態、および、当該表面がくすんだ状態になる。 In the unit printing process, the applied energy applied to the color dye in the high density region is higher than the applied energy applied to the color dye in the low density region. When the color dye of the ink sheet 6 is transferred to the paper, the higher the applied energy, the more fine irregularities are formed on the surface of the paper. Therefore, the flatness of the surface of the paper is lowered. As a result, the state of the surface of the paper becomes a state in which the surface is scorched and a state in which the surface is dull.
 すなわち、高濃度領域および低濃度領域の各々に対応する異なる印加エネルギーにより、色染料の転写後のペーパーの表面の高濃度領域の平坦度は、当該表面の低濃度領域の平坦度より低くなる。そのため、光沢のムラが発生する。 That is, the flatness of the high-concentration region on the surface of the paper after the transfer of the color dye is lower than the flatness of the low-concentration region of the surface due to the different applied energies corresponding to the high-concentration region and the low-concentration region. Therefore, uneven gloss occurs.
 また、高濃度領域のエッジ部においても、大きな熱集中が起きやすい。そのため、ペーパーに印刷された画像である印刷画像の高濃度領域のエッジ部のみが、非光沢な線で縁取られたように見える場合もある。このような局所的な、光沢のムラは、レリーフ状のムラ、または、エンボス(凹凸)状のムラと呼ばれる。 Also, large heat concentration is likely to occur even at the edge of the high concentration region. Therefore, only the edge portion of the high density region of the printed image, which is the image printed on the paper, may appear to be bordered by a non-glossy line. Such local gloss unevenness is called relief-like unevenness or embossed (unevenness) -like unevenness.
 (プリンターの動作)
 本実施の形態では、前述した光沢のムラの発生を抑制するために、昇華型プリンター100が、以下の印刷制御処理を行う。図5は、実施の形態1に係る印刷制御処理における、昇華型プリンター100の動作を説明するためのブロック図である。図5には、印刷制御処理において主に使用される、昇華型プリンター100の構成要素が示されている。
(Printer operation)
In the present embodiment, the sublimation printer 100 performs the following print control processing in order to suppress the occurrence of the above-mentioned uneven gloss. FIG. 5 is a block diagram for explaining the operation of the sublimation printer 100 in the print control process according to the first embodiment. FIG. 5 shows the components of the sublimation printer 100 that are mainly used in the print control process.
 図5を参照して、昇華型プリンター100は、フレームメモリ9y,9m,9c,9opと、補正部30aと、画像調整処理部30bと、メモリコントローラー9mcとを備える。図5の昇華型プリンター100内の各構成要素は、制御部10の制御に従って、後述の処理を行なう。 With reference to FIG. 5, the sublimation printer 100 includes frame memories 9y, 9m, 9c, 9op, a correction unit 30a, an image adjustment processing unit 30b, and a memory controller 9mc. Each component in the sublimation printer 100 of FIG. 5 performs the processing described later under the control of the control unit 10.
 フレームメモリ9y,9m,9c,9op、および、メモリコントローラー9mcは、前述の記憶部9に含まれる。メモリコントローラー9mcは、フレームメモリ9y,9m,9c,9opを制御する。フレームメモリ9y,9m,9cは、それぞれ、Y画像、M画像およびC画像を記憶するためのメモリである。フレームメモリ9opは、OPデータを記憶するためのメモリである。 The frame memories 9y, 9m, 9c, 9op, and the memory controller 9mc are included in the above-mentioned storage unit 9. The memory controller 9mc controls the frame memories 9y, 9m, 9c, 9op. The frame memories 9y, 9m, and 9c are memories for storing the Y image, the M image, and the C image, respectively. The frame memory 9op is a memory for storing OP data.
 補正部30aおよび画像調整処理部30bは、前述の画像処理部30に含まれる。なお、図5の各構成要素の詳細な説明は、後述する。 The correction unit 30a and the image adjustment processing unit 30b are included in the image processing unit 30 described above. A detailed description of each component of FIG. 5 will be described later.
 図6は、実施の形態1に係る補正部30aの構成を示す図である。補正部30aは、領域特定部31と、エッジ特定部32と、エネルギー設定部33とを含む。図6の各構成要素の詳細な説明は、後述する。 FIG. 6 is a diagram showing the configuration of the correction unit 30a according to the first embodiment. The correction unit 30a includes a region specifying unit 31, an edge specifying unit 32, and an energy setting unit 33. A detailed description of each component of FIG. 6 will be described later.
 次に、印刷制御処理における、昇華型プリンター100の動作を簡単に説明する。まず、PC200が、画像データD1を、昇華型プリンター100へ送信する。当該画像データD1は、例えば、前述の対象画像のデータである。対象画像は、Y画像、M画像およびC画像から構成される。 Next, the operation of the sublimation printer 100 in the print control process will be briefly described. First, the PC 200 transmits the image data D1 to the sublimation printer 100. The image data D1 is, for example, the data of the target image described above. The target image is composed of a Y image, an M image, and a C image.
 画像データD1は、YMCデータと、OPデータとを含む。YMCデータは、Y画像、M画像およびC画像のデータである。OPデータは、保護材料6op(オーバーコート層)をペーパー2に転写するために使用されるデータである。 Image data D1 includes YMC data and OP data. The YMC data is data of a Y image, an M image, and a C image. The OP data is data used for transferring the protective material 6op (overcoat layer) to the paper 2.
 OPデータは、例えば、対象画像を構成するk個の画素に、それぞれ対応するk個のエネルギー値を示す。また、OPデータは、例えば、k個のエネルギー値に対応するk個の画素の座標(位置)が特定可能なように、構成されている。 The OP data shows, for example, k energy values corresponding to each of the k pixels constituting the target image. Further, the OP data is configured so that, for example, the coordinates (positions) of k pixels corresponding to k energy values can be specified.
 OPデータは、例えば、行列状に配置されるk個のエネルギー値を示す表Tbを含む。表Tbが示すk個のエネルギー値は、m行n列の行列を構成する。例えば、1行1列目のエネルギー値は、対象画像の1行1列目の画素に対応する。1行1列目の画素は、対象画像の上端であって、かつ、対象画像の左端に存在する画素である。なお、表Tbが示すk個のエネルギー値は、初期値として、同じ値が設定されている。 The OP data includes, for example, a table Tb showing k energy values arranged in a matrix. The k energy values shown in Table Tb form a matrix of m rows and n columns. For example, the energy values in the 1st row and 1st column correspond to the pixels in the 1st row and 1st column of the target image. The pixels in the first row and first column are the pixels that are at the upper end of the target image and are present at the left end of the target image. The k energy values shown in Table Tb are set to the same values as initial values.
 なお、OPデータの形式は、表Tbを使用した上記の形式に限定されない。OPデータの形式は、k個の画素の座標(位置)を特定可能な形式であって、かつ、表Tbを使用しない他の形式であってもよい。 The format of OP data is not limited to the above format using Table Tb. The format of the OP data may be a format in which the coordinates (positions) of k pixels can be specified, and may be another format that does not use the table Tb.
 また、対象画像は、例えば、図7の画像G11である。図7を参照して、画像G11は、一例として、高濃度領域Rg1と、低濃度領域Rg2とを有する。高濃度領域Rg1は、画像G11のうち、最も高い濃度で表現される領域である。なお、画像G11の高濃度領域Rg1の形状は、矩形と異なる形状であってもよい。また、画像G11に含まれる高濃度領域Rg1の数は、1に限定されず、2以上であってもよい。 The target image is, for example, the image G11 of FIG. With reference to FIG. 7, the image G11 has, as an example, a high density region Rg1 and a low density region Rg2. The high density region Rg1 is a region represented by the highest density in the image G11. The shape of the high density region Rg1 of the image G11 may be different from the rectangular shape. Further, the number of high-concentration regions Rg1 contained in the image G11 is not limited to 1, and may be 2 or more.
 以下においては、前述の中間濃度から前述の最高濃度までの範囲に含まれる濃度を、「高濃度」ともいう。また、以下においては、高濃度を示す画素を、「高濃度画素」ともいう。高濃度領域Rg1は、複数の高濃度画素で表現される。低濃度領域Rg2は、複数の低濃度画素で表現される。低濃度画素は、中間濃度より低い濃度で表現される画素である。 In the following, the concentration contained in the range from the above-mentioned intermediate concentration to the above-mentioned maximum concentration is also referred to as "high concentration". Further, in the following, a pixel showing a high density is also referred to as a “high density pixel”. The high density region Rg1 is represented by a plurality of high density pixels. The low density region Rg2 is represented by a plurality of low density pixels. A low density pixel is a pixel represented by a density lower than the intermediate density.
 次に、記憶処理が行なわれる。記憶処理では、画像データD1が記憶部9に記憶される。画像データD1のYMCデータは、フレームメモリ9y,9m,9cに記憶される。具体的には、メモリコントローラー9mcの制御により、対象画像を構成するY画像、M画像およびC画像は、それぞれ、フレームメモリ9y,9m,9cに記憶される。また、画像データD1のOPデータは、フレームメモリ9opに記憶される。 Next, amnestics are performed. In the storage process, the image data D1 is stored in the storage unit 9. The YMC data of the image data D1 is stored in the frame memories 9y, 9m, 9c. Specifically, under the control of the memory controller 9mc, the Y image, the M image, and the C image constituting the target image are stored in the frame memories 9y, 9m, and 9c, respectively. Further, the OP data of the image data D1 is stored in the frame memory 9op.
 次に、メモリコントローラー9mcの制御により、フレームメモリ9y,9m,9cに記憶されたYMCデータは、画像調整処理部30bへ送信される。また、メモリコントローラー9mcの制御により、フレームメモリ9opに記憶されたOPデータは、補正部30aへ送信される。 Next, under the control of the memory controller 9mc, the YMC data stored in the frame memories 9y, 9m, 9c is transmitted to the image adjustment processing unit 30b. Further, under the control of the memory controller 9mc, the OP data stored in the frame memory 9op is transmitted to the correction unit 30a.
 次に、画像調整処理部30bは、YMCデータに対し画像調整処理を行なう。すなわち、画像調整処理部30bは、YMCデータの対象画像(Y画像、M画像およびC画像)に対し、画像調整処理を行なう。画像調整処理は、色変換処理と、シャープネス処理と、ガンマ変換処理とを含む。すなわち、対象画像に対し、色変換処理、シャープネス処理およびガンマ変換処理が行われる。色変換処理、シャープネス処理およびガンマ変換処理は、一般的な処理であるため、詳細な説明は省略する。 Next, the image adjustment processing unit 30b performs image adjustment processing on the YMC data. That is, the image adjustment processing unit 30b performs image adjustment processing on the target images (Y image, M image, and C image) of the YMC data. The image adjustment process includes a color conversion process, a sharpness process, and a gamma conversion process. That is, color conversion processing, sharpness processing, and gamma conversion processing are performed on the target image. Since the color conversion process, the sharpness process, and the gamma conversion process are general processes, detailed description thereof will be omitted.
 画像調整処理が行なわれることにより、印刷用YMCデータが得られる。印刷用YMCデータは、画像調整処理が行なわれた対象画像(Y画像、M画像およびC画像)を、ペーパー2に印刷するためのデータである。印刷用YMCデータは、画像調整処理が行なわれた対象画像(Y画像、M画像およびC画像)のデータを含む。画像調整処理部30bは、印刷用YMCデータを、サーマルヘッドコントローラー12および補正部30aへ送信する。なお、画像調整処理に含まれる処理は、上記の3つの処理に限定されない。画像調整処理に含まれる処理は、例えば、色変換処理およびガンマ変換処理であってもよい。 By performing the image adjustment processing, YMC data for printing can be obtained. The print YMC data is data for printing the target image (Y image, M image, and C image) that has undergone image adjustment processing on the paper 2. The YMC data for printing includes data of a target image (Y image, M image, and C image) for which image adjustment processing has been performed. The image adjustment processing unit 30b transmits the printing YMC data to the thermal head controller 12 and the correction unit 30a. The process included in the image adjustment process is not limited to the above three processes. The process included in the image adjustment process may be, for example, a color conversion process and a gamma conversion process.
 次に、ペーパー2の印画領域に、対象画像を印刷するための処理が行われる。具体的には、インクシート6の染料6y,6m,6cの各々に対し、前述の単位印画処理が行なわれる。単位印画処理は、前述したので詳細な説明は省略する。 Next, a process for printing the target image is performed in the printing area of the paper 2. Specifically, the unit printing process described above is performed on each of the dyes 6y, 6m, and 6c of the ink sheet 6. Since the unit printing process has been described above, detailed description thereof will be omitted.
 以下、単位印画処理について簡単に説明する。印画処理Pの単位印画処理では、サーマルヘッド3(発熱素子h1)が熱を発するように、サーマルヘッドコントローラー12が、印刷用YMCデータに基づいて、当該サーマルヘッド3を制御する。これにより、ペーパー2の印画領域に、対象画像が印刷される。 The unit printing process will be briefly described below. In the unit printing process of the printing process P, the thermal head controller 12 controls the thermal head 3 based on the printing YMC data so that the thermal head 3 (heating element h1) generates heat. As a result, the target image is printed in the printing area of the paper 2.
 また、補正部30aの領域特定部31は、後述の高濃度領域特定処理を行なう。また、補正部30aのエッジ特定部32は、後述のエッジ特定処理を行なう。また、補正部30aのエネルギー設定部33は、後述のエネルギー設定処理を行なう。 Further, the area specifying unit 31 of the correction unit 30a performs the high-concentration area specifying process described later. Further, the edge specifying unit 32 of the correction unit 30a performs an edge specifying process described later. Further, the energy setting unit 33 of the correction unit 30a performs the energy setting process described later.
 そして、保護材料6opを、ペーパー2の印画領域に印刷するための処理が行なわれる。以上により、印刷制御処理が終了する。 Then, a process for printing the protective material 6op on the printing area of the paper 2 is performed. As a result, the print control process is completed.
 ここで、保護材料について説明する。以下においては、印画処理P(単位印画処理)により保護材料6opがペーパー2に転写された状態を、「転写状態」ともいう。また、以下においては、保護材料6opがインクシート6に設けられた状態を、「非転写状態」ともいう。非転写状態は、インクシート6に設けられた保護材料6opがペーパー2に転写されてない状態である。すなわち、保護材料6opの状態には、転写状態と、非転写状態とが存在する。 Here, the protective material will be explained. In the following, the state in which the protective material 6op is transferred to the paper 2 by the printing process P (unit printing process) is also referred to as a “transfer state”. Further, in the following, the state in which the protective material 6op is provided on the ink sheet 6 is also referred to as a “non-transfer state”. The non-transfer state is a state in which the protective material 6op provided on the ink sheet 6 is not transferred to the paper 2. That is, the state of the protective material 6op includes a transfer state and a non-transfer state.
 保護材料6opは、光沢特性を有する。当該光沢特性は、保護材料6opに印加される熱エネルギーが変化する場合、当該保護材料6opの光沢度が変化するという特性である。 The protective material 6op has glossy properties. The gloss property is a property that the glossiness of the protective material 6op changes when the thermal energy applied to the protective material 6op changes.
 図8は、印加エネルギーと光沢度との関係を示す特性曲線L1を示すグラフである。特性曲線L1は、保護材料6opの光沢特性を示す。図8において、縦軸の「光沢度」とは、保護材料6opの光沢度である。具体的には、「光沢度」とは、保護材料6opの表面の光沢度である。また、図8において、横軸の「印加エネルギー」は、印画処理Pの単位印画処理において、保護材料6opに印加される熱エネルギーである。すなわち、横軸の「印加エネルギー」は、非転写状態の保護材料6opをペーパー2に転写するために当該非転写状態の当該保護材料6opに印加される熱エネルギーである。 FIG. 8 is a graph showing a characteristic curve L1 showing the relationship between applied energy and glossiness. The characteristic curve L1 shows the gloss characteristics of the protective material 6op. In FIG. 8, the “glossiness” on the vertical axis is the glossiness of the protective material 6op. Specifically, the "glossiness" is the glossiness of the surface of the protective material 6op. Further, in FIG. 8, the “applied energy” on the horizontal axis is the thermal energy applied to the protective material 6op in the unit printing process of the printing process P. That is, the “applied energy” on the horizontal axis is the thermal energy applied to the non-transferred protective material 6op in order to transfer the non-transferred protective material 6op to the paper 2.
 また、図8には、熱エネルギーE01,E02,E3、および領域R1,R2,R3が示されている。熱エネルギーE01は、保護材料6opをペーパー2に転写するための熱エネルギーである。領域R1は、印加エネルギーが熱エネルギーE01未満の領域である。 Further, FIG. 8 shows the thermal energies E01, E02, E3, and the regions R1, R2, R3. The thermal energy E01 is the thermal energy for transferring the protective material 6op to the paper 2. The region R1 is a region where the applied energy is less than the thermal energy E01.
 領域R1は、保護材料6opがペーパー2に転写されない領域である。領域R1における印加エネルギーは低い。なお、保護材料6opがペーパー2に転写されない状態では、ペーパー2の光沢度は低い。 Region R1 is a region where the protective material 6op is not transferred to the paper 2. The applied energy in the region R1 is low. In the state where the protective material 6op is not transferred to the paper 2, the glossiness of the paper 2 is low.
 領域R2,R3は、印加エネルギーが熱エネルギーE01以上の領域である。領域R2,R3は、保護材料6opがペーパー2に転写される領域である。そのため、領域R2,R3において特性曲線L1が示す、保護材料6opの光沢特性は、印加エネルギーの変化に応じて、転写状態の保護材料6opの光沢度が変化するという特性である。 Regions R2 and R3 are regions where the applied energy is thermal energy E01 or higher. Regions R2 and R3 are regions where the protective material 6op is transferred to the paper 2. Therefore, the gloss characteristic of the protective material 6op shown by the characteristic curve L1 in the regions R2 and R3 is a characteristic that the glossiness of the protective material 6op in the transferred state changes according to the change of the applied energy.
 領域R2に対応する印加エネルギーは、適正な熱エネルギーである。領域R2は、印加エネルギーが熱エネルギーE01以上であって、かつ、印加エネルギーが熱エネルギーE3以下の領域である。また、領域R3は、印加エネルギーが熱エネルギーE3より高い領域である。 The applied energy corresponding to the region R2 is an appropriate thermal energy. The region R2 is a region where the applied energy is the thermal energy E01 or more and the applied energy is the thermal energy E3 or less. Further, the region R3 is a region where the applied energy is higher than the thermal energy E3.
 領域R2において、印加エネルギーが、熱エネルギーE01から熱エネルギーE02まで上がる範囲では、光沢度は、最大値(Gmax)まで急激に上昇する。また、印加エネルギーが、熱エネルギーE02より高くなるほど、光沢度は除々に低下していく。 In the region R2, in the range where the applied energy increases from the thermal energy E01 to the thermal energy E02, the glossiness rapidly increases to the maximum value (Gmax). Further, as the applied energy becomes higher than the thermal energy E02, the glossiness gradually decreases.
 印加エネルギーが、熱エネルギーE3より高くなると、保護材料6opの表面に凹凸が生じて、光沢度は急激に低下する。領域R3は、転写状態の保護材料6opの表面がマット化する領域である。すなわち、領域R3は、転写状態の保護材料6opが光沢を有さない領域である。 When the applied energy becomes higher than the thermal energy E3, the surface of the protective material 6op becomes uneven, and the glossiness drops sharply. The region R3 is a region where the surface of the protective material 6op in the transferred state is matted. That is, the region R3 is a region where the protective material 6op in the transferred state has no gloss.
 以下においては、転写状態の保護材料6op全体の光沢度が同一である状況における、当該保護材料6opの状態を、「同一光沢状態」ともいう。同一光沢状態の保護材料6opは、前述の単位印画処理において当該保護材料6op全体に同じ熱エネルギーが印加されることにより、生成される。 In the following, the state of the protective material 6op in the transferred state in which the glossiness of the entire protective material 6op is the same is also referred to as "same gloss state". The protective material 6op having the same gloss state is generated by applying the same thermal energy to the entire protective material 6op in the unit printing process described above.
 また、以下においては、印画処理Pにより画像がペーパー2に印刷された状況における当該画像の状態を、「印刷状態」ともいう。また、以下においては、同一光沢状態の保護材料6opが印刷状態の画像全体を覆っている状況における、当該画像の状態を、「同一光沢覆い状態」ともいう。同一光沢覆い状態の画像は、染料6y,6m,6cおよび保護材料6opがペーパー2に転写された状況において、染料6y,6m,6cにより表現される画像である。 Further, in the following, the state of the image in the situation where the image is printed on the paper 2 by the printing process P is also referred to as "printing state". Further, in the following, the state of the image in the situation where the protective material 6op in the same gloss state covers the entire image in the printed state is also referred to as “the same gloss covering state”. The image in the same glossy covering state is an image represented by the dyes 6y, 6m, 6c in a situation where the dyes 6y, 6m, 6c and the protective material 6op are transferred to the paper 2.
 以下においては、同一光沢覆い状態の画像の高濃度画素の光沢度が、当該高濃度画素と異なる画素の光沢度より低いようにみえる当該高濃度画素を、「低光沢画素」ともいう。 In the following, the high-density pixel in which the glossiness of the high-density pixel of the image covered with the same gloss seems to be lower than the glossiness of the pixel different from the high-density pixel is also referred to as "low-gloss pixel".
 また、以下においては、図7の画像G11のうち、高濃度領域Rg1以外の領域を、「非高濃度領域」ともいう。なお、同一光沢覆い状態の画像G11において、高濃度領域Rg1は、当該高濃度領域Rg1の光沢度が非高濃度領域の光沢度よりも低いようにみえる領域である。なお、同一光沢覆い状態の画像G11の高濃度領域Rg1は、複数の低光沢画素(高濃度画素)で表現される。 Further, in the following, in the image G11 of FIG. 7, the region other than the high-concentration region Rg1 is also referred to as a “non-high-concentration region”. In the image G11 in the same gloss-covered state, the high-density region Rg1 is a region in which the glossiness of the high-density region Rg1 appears to be lower than the glossiness of the non-high-density region. The high-density region Rg1 of the image G11 in the same gloss-covered state is represented by a plurality of low-gloss pixels (high-density pixels).
 また、本実施の形態では、図7の高濃度領域Rg1は、画像G11のうち、基準濃度以上の濃度で表現される領域である。「基準濃度以上の濃度」は、基準濃度と同じ濃度、および、基準濃度より濃い濃度の両方を含む。 Further, in the present embodiment, the high density region Rg1 in FIG. 7 is a region of the image G11 represented by a density equal to or higher than the reference density. "Concentration above the reference concentration" includes both the same concentration as the reference concentration and a concentration higher than the reference concentration.
 基準濃度は、予め設定された閾値Tである。閾値T(基準濃度)は、当該基準濃度以上の濃度の画素が低光沢画素であることを特定するための値である。閾値T(基準濃度)は、例えば、固定値である。 The reference concentration is a preset threshold value T. The threshold value T (reference density) is a value for specifying that a pixel having a density equal to or higher than the reference density is a low-gloss pixel. The threshold value T (reference concentration) is, for example, a fixed value.
 閾値T(基準濃度)には、例えば、実験等を繰り返し行うことにより、適切な値が設定される。当該実験は、例えば、印画処理P、印画処理Pの対象となる画像の変更、作業者による印刷物の光沢状態の確認等である。 An appropriate value is set for the threshold value T (reference concentration), for example, by repeating an experiment or the like. The experiment is, for example, a printing process P, a change of an image to be a target of the printing process P, a confirmation of a glossy state of a printed matter by an operator, and the like.
 なお、閾値T(基準濃度)は、上記に限定されない。閾値T(基準濃度)は、基準濃度以上の濃度の画素が高濃度画素であることを特定するための値であってもよい。この場合、基準濃度は、例えば、中間濃度以上の濃度であり、閾値Tは、当該基準濃度に対応する値である。また、この場合、基準濃度は、例えば、前述の最高濃度の0.7倍の濃度から当該最高濃度までの範囲内の濃度である。 The threshold value T (reference concentration) is not limited to the above. The threshold value T (reference density) may be a value for specifying that a pixel having a density equal to or higher than the reference density is a high density pixel. In this case, the reference concentration is, for example, a concentration equal to or higher than the intermediate concentration, and the threshold value T is a value corresponding to the reference concentration. Further, in this case, the reference concentration is, for example, a concentration in the range from 0.7 times the above-mentioned maximum concentration to the maximum concentration.
 次に、印刷制御処理について詳細に説明する。図9は、実施の形態1に係る印刷制御処理のフローチャートである。図9では、印刷制御処理に含まれる、主要なステップのみを示している。印刷制御処理の一例を分かりやすくするために、以下の前提Pm1のもとで行われる印刷制御処理について説明する。 Next, the print control process will be described in detail. FIG. 9 is a flowchart of the print control process according to the first embodiment. FIG. 9 shows only the main steps included in the print control process. In order to make an example of the print control process easy to understand, the print control process performed under the following premise Pm1 will be described.
 前提Pm1では、昇華型プリンター100が、PC200から画像データD1を受信している。また、前提Pm1では、画像データD1が示す対象画像は、図7の画像G11である。また、前提Pm1では、画像G11の高濃度領域Rg1は、特定の対象となる対象領域である。 In the premise Pm1, the sublimation printer 100 receives the image data D1 from the PC200. Further, in the premise Pm1, the target image indicated by the image data D1 is the image G11 of FIG. 7. Further, in the premise Pm1, the high density region Rg1 of the image G11 is a target region to be a specific target.
 また、前提Pm1では、既に、前述の記憶処理および、前述の画像調整処理が実行されている。また、前提Pm1では、画像調整処理が行なわれることにより得られた印刷用YMCデータを、補正部30aが受信している。また、前提Pm1では、既に、補正部30aがOPデータを受信している。また、前提Pm1では、ステップS100の領域特定処理の高濃度領域特定処理が行なわれ、当該領域特定処理のエッジ特定処理は行われない。 Further, in the premise Pm1, the above-mentioned storage process and the above-mentioned image adjustment process have already been executed. Further, in the premise Pm1, the correction unit 30a receives the YMC data for printing obtained by performing the image adjustment processing. Further, in the premise Pm1, the correction unit 30a has already received the OP data. Further, in the premise Pm1, the high-concentration area identification process of the area identification process of step S100 is performed, and the edge identification process of the area identification process is not performed.
 前提Pm1における印刷制御処理では、まず、領域特定処理の高濃度領域特定処理が行なわれる(ステップS110)。前提Pm1における高濃度領域特定処理では、補正部30aの領域特定部31が高濃度領域を特定する。具体的には、領域特定部31が、印刷用YMCデータが示す対象画像を構成するk個の画素のうち、基準濃度(閾値T)以上の濃度の低光沢画素(高濃度画素)を特定する。 In the print control process in the premise Pm1, first, the high-density area identification process of the area identification process is performed (step S110). In the high-concentration region identification process in the premise Pm1, the region identification unit 31 of the correction unit 30a specifies the high-concentration region. Specifically, the area specifying unit 31 identifies low-gloss pixels (high-density pixels) having a density equal to or higher than the reference density (threshold value T) among the k pixels constituting the target image indicated by the print YMC data. ..
 なお、前提Pm1では、対象画像は、図7の画像G11である。そのため、領域特定部31は、複数の低光沢画素(高濃度画素)で表現される高濃度領域Rg1を特定する。 In the premise Pm1, the target image is the image G11 of FIG. 7. Therefore, the region specifying unit 31 identifies the high density region Rg1 represented by a plurality of low gloss pixels (high density pixels).
 上記の高濃度領域特定処理が、Y画像、M画像およびC画像の各々に対して、行なわれる。なお、高濃度領域特定処理は、例えば、Y画像、M画像およびC画像のいずれか1つに対してのみ行なわれてもよい。 The above high density region identification process is performed on each of the Y image, the M image, and the C image. The high-density region identification process may be performed only on any one of the Y image, the M image, and the C image, for example.
 以下においては、印刷状態の対象画像の高濃度領域Rg1を覆うための、非転写状態の保護材料を、「保護材料6op1」ともいう。また、以下においては、保護材料6op1を、「高濃度保護材料」ともいう。高濃度保護材料である保護材料6op1は、非転写状態の保護材料6opの一部である。また、以下においては、印刷状態の対象画像のうち、高濃度領域Rg1と異なる領域を覆うための保護材料を、「保護材料6op2」ともいう。保護材料6op2は、非転写状態の保護材料6opの別の一部である。 In the following, the protective material in the non-transfer state for covering the high density region Rg1 of the target image in the printed state is also referred to as "protective material 6op1". Further, in the following, the protective material 6op1 is also referred to as a “high concentration protective material”. The protective material 6op1, which is a high-concentration protective material, is a part of the non-transferred protective material 6op. Further, in the following, the protective material for covering a region different from the high density region Rg1 in the target image in the printed state is also referred to as “protective material 6op2”. The protective material 6op2 is another part of the non-transferred protective material 6op.
 すなわち、非転写状態の保護材料6opは、保護材料6op1と、保護材料6op2とを含む。なお、前提Pm1では、対象画像は、図7の画像G11である。そのため、前提Pm1における保護材料6op1は、印刷状態の画像G11の高濃度領域Rg1を覆うための材料である。前提Pm1における保護材料6op2は、画像G11の非高濃度領域を覆うための材料である。 That is, the protective material 6op in the non-transfer state includes the protective material 6op1 and the protective material 6op2. In the premise Pm1, the target image is the image G11 of FIG. 7. Therefore, the protective material 6op1 in the premise Pm1 is a material for covering the high density region Rg1 of the image G11 in the printed state. The protective material 6op2 in the premise Pm1 is a material for covering the non-high concentration region of the image G11.
 次に、エネルギー設定処理が行なわれる(ステップS210)。エネルギー設定処理では、エネルギー設定部33が、保護材料6opの光沢特性を考慮して、印加エネルギーを設定する。当該印加エネルギーは、印画処理P(単位印画処理)において、サーマルヘッド3が非転写状態の保護材料6opに印加する熱エネルギーである。 Next, the energy setting process is performed (step S210). In the energy setting process, the energy setting unit 33 sets the applied energy in consideration of the gloss characteristics of the protective material 6op. The applied energy is the thermal energy applied by the thermal head 3 to the protective material 6op in the non-transfer state in the printing process P (unit printing process).
 具体的には、エネルギー設定処理では、転写状態の保護材料6op1の光沢度が、転写状態の保護材料6op2の光沢度より高くなるように、エネルギー設定部33は、当該保護材料6op1および当該保護材料6op2の各々に印加するための印加エネルギーを設定する。 Specifically, in the energy setting process, the energy setting unit 33 sets the protective material 6op1 and the protective material so that the glossiness of the protective material 6op1 in the transfer state is higher than the glossiness of the protective material 6op2 in the transfer state. The applied energy to be applied to each of 6op2 is set.
 言い換えれば、保護材料6op1の印加エネルギーが保護材料6op2の印加エネルギーより低くなるように、エネルギー設定部33は、当該保護材料6op1および当該保護材料6op2の各々に印加するための印加エネルギーを設定する。 In other words, the energy setting unit 33 sets the applied energy to be applied to each of the protective material 6op1 and the protective material 6op2 so that the applied energy of the protective material 6op1 is lower than the applied energy of the protective material 6op2.
 前提Pm1におけるエネルギー設定処理では、まず、エネルギー設定部33が、画像G11の高濃度領域Rg1を構成する複数の画素の座標(位置)を特定する。そして、エネルギー設定部33は、OPデータの表Tbにおいて、特定された複数の画素の座標(位置)のエネルギー値を、図10の熱エネルギーE1に補正(設定)する。 In the energy setting process in the premise Pm1, the energy setting unit 33 first specifies the coordinates (positions) of a plurality of pixels constituting the high density region Rg1 of the image G11. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E1 of FIG.
 また、エネルギー設定部33が、画像G11の非高濃度領域を構成する複数の画素の座標(位置)を特定する。そして、エネルギー設定部33は、OPデータの表Tbにおいて、特定された複数の画素の座標(位置)のエネルギー値を、図10の熱エネルギーE2に補正(設定)する。これにより、OPデータが設定される。なお、熱エネルギーE1は、熱エネルギーE2より低い。 Further, the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the non-high density region of the image G11. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E2 of FIG. As a result, OP data is set. The thermal energy E1 is lower than the thermal energy E2.
 図10において、E1,E2は熱エネルギーであり、G1,G2は光沢度である。図10の特性曲線L1において、熱エネルギーE1に対応する、光沢度は「G1」である。すなわち、印加エネルギーが熱エネルギーE1である場合、転写状態の保護材料の光沢度は、「G1」である。また、特性曲線L1において、熱エネルギーE2に対応する、光沢度は「G2」である。光沢度G1は、光沢度G2より高い。 In FIG. 10, E1 and E2 are thermal energies, and G1 and G2 are glossiness. In the characteristic curve L1 of FIG. 10, the glossiness corresponding to the thermal energy E1 is “G1”. That is, when the applied energy is the thermal energy E1, the glossiness of the protective material in the transferred state is “G1”. Further, in the characteristic curve L1, the glossiness corresponding to the thermal energy E2 is “G2”. The glossiness G1 is higher than the glossiness G2.
 なお、OPデータの設定方法は、表Tbを使用する上記の方法に限定されない。例えば、エネルギー設定部33は、特定された複数の画素の座標(位置)と、エネルギー値(例えば、熱エネルギーE1)とを対応づけて示すOPデータを生成してもよい。 The OP data setting method is not limited to the above method using the table Tb. For example, the energy setting unit 33 may generate OP data indicating the coordinates (positions) of the specified plurality of pixels and the energy value (for example, thermal energy E1) in association with each other.
 次に、印画処理Pが行われる(ステップS220)。前提Pm1における印画処理Pでは、まず、インクシート6の染料6y,6m,6cの各々に対し、前述の単位印画処理が行なわれる。これにより、ペーパー2の印画領域に、対象画像である画像G11が印刷される。 Next, the printing process P is performed (step S220). In the printing process P in the premise Pm1, first, the unit printing process described above is performed on each of the dyes 6y, 6m, and 6c of the ink sheet 6. As a result, the image G11, which is the target image, is printed in the printing area of the paper 2.
 次に、インクシート6の保護材料6opに対し、前述の単位印画処理が行なわれる。単位印画処理は、前述したので詳細な説明は省略する。以下、保護材料6opに対して行なわれる単位印画処理について簡単に説明する。 Next, the unit printing process described above is performed on the protective material 6op of the ink sheet 6. Since the unit printing process has been described above, detailed description thereof will be omitted. Hereinafter, the unit printing process performed on the protective material 6op will be briefly described.
 前提Pm1における当該単位印画処理では、サーマルヘッド3が、エネルギー設定部33が設定した印加エネルギーを、非転写状態の保護材料6opに印加する。すなわち、サーマルヘッドコントローラー12が、最新のOPデータに基づいて、サーマルヘッド3(発熱素子h1)が熱を発するように、当該サーマルヘッド3を制御する。 In the unit printing process in the premise Pm1, the thermal head 3 applies the applied energy set by the energy setting unit 33 to the protective material 6op in the non-transfer state. That is, the thermal head controller 12 controls the thermal head 3 so that the thermal head 3 (heating element h1) generates heat based on the latest OP data.
 具体的には、前提Pm1における単位印画処理では、サーマルヘッド3が、保護材料6opの一部である保護材料6op1に、熱エネルギーE1を印加する。これにより、保護材料6op1が印刷状態の画像G11の高濃度領域Rg1を覆うように、当該保護材料6op1が転写される。転写状態の保護材料6op1の光沢度は、「G1」である。 Specifically, in the unit printing process in the premise Pm1, the thermal head 3 applies the thermal energy E1 to the protective material 6op1 which is a part of the protective material 6op. As a result, the protective material 6op1 is transferred so that the protective material 6op1 covers the high density region Rg1 of the image G11 in the printed state. The glossiness of the protective material 6op1 in the transferred state is "G1".
 また、前提Pm1における単位印画処理では、サーマルヘッド3が、保護材料6opの別の一部である保護材料6op2に、熱エネルギーE2を印加する。これにより、保護材料6op2が印刷状態の画像G11の非高濃度領域を覆うように、当該保護材料6op2が転写される。転写状態の保護材料6op2の光沢度は、「G2」である。 Further, in the unit printing process in the premise Pm1, the thermal head 3 applies the thermal energy E2 to the protective material 6op2 which is another part of the protective material 6op. As a result, the protective material 6op2 is transferred so that the protective material 6op2 covers the non-high density region of the image G11 in the printed state. The glossiness of the protective material 6op2 in the transferred state is "G2".
 以上により、転写状態の保護材料6op1の光沢度G1は、転写状態の保護材料6op2の光沢度G2より高い。すなわち、印刷状態の画像G11の高濃度領域Rg1を覆う保護材料6op1の光沢度G1は、印刷状態の画像G11の非高濃度領域を覆う保護材料6op2の光沢度G2より高い。そして、前提Pm1における印刷制御処理が終了する。 From the above, the glossiness G1 of the protective material 6op1 in the transferred state is higher than the glossiness G2 of the protective material 6op2 in the transferred state. That is, the glossiness G1 of the protective material 6op1 that covers the high density region Rg1 of the image G11 in the printed state is higher than the glossiness G2 of the protective material 6op2 that covers the non-high density region of the image G11 in the printed state. Then, the print control process in the premise Pm1 is completed.
 次に、以下の前提Pm2のもとで行われる印刷制御処理について説明する。前提Pm2は、前提Pm1と比較して、画像データD1が示す対象画像が、図11の画像G12である点と、ステップS100の領域特定処理のエッジ特定処理が行なわれ、当該領域特定処理の高濃度領域特定処理が行われない点とが異なる。 Next, the print control process performed under the following premise Pm2 will be described. In the premise Pm2, as compared with the premise Pm1, the target image indicated by the image data D1 is the image G12 of FIG. 11, and the edge identification process of the area identification process of step S100 is performed, and the height of the area identification process is high. The difference is that the concentration region identification process is not performed.
 画像G12は、画像G11と比較して、エッジ部Rg3をさらに含む点が異なる。画像G12のそれ以外の構成は、画像G11と同様なので詳細な説明は繰り返さない。エッジ部Rg3は、画像G12に示されるエッジを示す領域である。エッジ部Rg3は、高濃度領域Rg1と、当該高濃度領域Rg1を囲む領域との境界に相当する領域である。なお、前提Pm2では、画像G11のエッジ部Rg3は、特定の対象となる対象領域である。 The image G12 is different from the image G11 in that the edge portion Rg3 is further included. Since the other configurations of the image G12 are the same as those of the image G11, the detailed description will not be repeated. The edge portion Rg3 is a region showing an edge shown in the image G12. The edge portion Rg3 is a region corresponding to the boundary between the high-concentration region Rg1 and the region surrounding the high-concentration region Rg1. In the premise Pm2, the edge portion Rg3 of the image G11 is a target region to be a specific target.
 以下においては、画像G12のうち、エッジ部Rg3以外の領域を、「非エッジ領域」ともいう。なお、同一光沢覆い状態の画像G12において、エッジ部Rg3は、当該エッジ部Rg3の光沢度が非エッジ領域の光沢度よりも低いようにみえる領域である。 In the following, the region of the image G12 other than the edge portion Rg3 is also referred to as a “non-edge region”. In the image G12 in the same gloss covering state, the edge portion Rg3 is a region in which the glossiness of the edge portion Rg3 appears to be lower than the glossiness of the non-edge region.
 前提Pm2における印刷制御処理では、まず、領域特定処理のエッジ特定処理が行なわれる(ステップS120)。前提Pm2におけるエッジ特定処理では、補正部30aのエッジ特定部32が、印刷用YMCデータが示す対象画像(画像G12)において、エッジ部Rg3を特定する。なお、エッジ部Rg3(エッジ)を特定する方法は、一般的な方法であるので説明は省略する。 In the print control process in the premise Pm2, first, the edge identification process of the area identification process is performed (step S120). In the edge identification process in the premise Pm2, the edge identification unit 32 of the correction unit 30a specifies the edge portion Rg3 in the target image (image G12) indicated by the printing YMC data. Since the method of specifying the edge portion Rg3 (edge) is a general method, the description thereof will be omitted.
 上記のエッジ特定処理が、Y画像、M画像およびC画像の各々に対して、行なわれる。なお、エッジ特定処理は、例えば、Y画像、M画像およびC画像のいずれか1つに対してのみ行なわれてもよい。 The above edge identification process is performed on each of the Y image, the M image, and the C image. The edge identification process may be performed only on any one of the Y image, the M image, and the C image, for example.
 以下においては、印刷状態の対象画像のエッジ部Rg3を覆うための、非転写状態の保護材料を、「保護材料6op1e」ともいう。また、以下においては、保護材料6op1eを、「エッジ保護材料」ともいう。エッジ保護材料である保護材料6op1eは、非転写状態の保護材料6opの一部である。また、以下においては、印刷状態の対象画像のうち、エッジ部Rg3と異なる領域を覆うための保護材料を、「保護材料6op2n」ともいう。保護材料6op2nは、非転写状態の保護材料6opの別の一部である。 In the following, the protective material in the non-transfer state for covering the edge portion Rg3 of the target image in the printed state is also referred to as "protective material 6op1e". Further, in the following, the protective material 6op1e is also referred to as an “edge protective material”. The protective material 6op1e, which is an edge protective material, is a part of the protective material 6op in a non-transfer state. Further, in the following, the protective material for covering the region different from the edge portion Rg3 in the target image in the printed state is also referred to as “protective material 6op2n”. The protective material 6op2n is another part of the non-transferred protective material 6op.
 すなわち、非転写状態の保護材料6opは、保護材料6op1eと、保護材料6op2nとを含む。なお、前提Pm2では、対象画像は、図11の画像G12である。そのため、前提Pm2における保護材料6op1eは、印刷状態の画像G12のエッジ部Rg3を覆うための材料である。前提Pm2における保護材料6op2nは、印刷状態の画像G12の非エッジ領域を覆うための材料である。 That is, the protective material 6op in the non-transfer state includes the protective material 6op1e and the protective material 6op2n. In the premise Pm2, the target image is the image G12 of FIG. Therefore, the protective material 6op1e in the premise Pm2 is a material for covering the edge portion Rg3 of the image G12 in the printed state. The protective material 6op2n in the premise Pm2 is a material for covering the non-edge region of the image G12 in the printed state.
 次に、エネルギー設定処理が行なわれる(ステップS210)。エネルギー設定処理では、転写状態の保護材料6op1eの光沢度が、転写状態の保護材料6op2nの光沢度より高くなるように、エネルギー設定部33は、当該保護材料6op1eおよび当該保護材料6op2nの各々に印加するための印加エネルギーを設定する。 Next, the energy setting process is performed (step S210). In the energy setting process, the energy setting unit 33 applies to each of the protective material 6op1e and the protective material 6op2n so that the glossiness of the protective material 6op1e in the transfer state is higher than the glossiness of the protective material 6op2n in the transfer state. Set the applied energy for this.
 言い換えれば、保護材料6op1eの印加エネルギーが保護材料6op2nの印加エネルギーより低くなるように、エネルギー設定部33は、当該保護材料6op1eおよび当該保護材料6op2nの各々に印加するための印加エネルギーを設定する。 In other words, the energy setting unit 33 sets the applied energy to be applied to each of the protective material 6op1e and the protective material 6op2n so that the applied energy of the protective material 6op1e is lower than the applied energy of the protective material 6op2n.
 具体的には、前提Pm2におけるエネルギー設定処理では、エネルギー設定部33が、画像G12のエッジ部Rg3を構成する複数の画素の座標(位置)を特定する。そして、エネルギー設定部33は、OPデータの表Tbにおいて、特定された複数の画素の座標(位置)のエネルギー値を、図10の熱エネルギーE1に補正(設定)する。 Specifically, in the energy setting process in the premise Pm2, the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the edge portion Rg3 of the image G12. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E1 of FIG.
 また、エネルギー設定部33が、画像G12の非エッジ領域を構成する複数の画素の座標(位置)を特定する。そして、エネルギー設定部33は、OPデータの表Tbにおいて、特定された複数の画素の座標(位置)のエネルギー値を、図10の熱エネルギーE2に補正(設定)する。これにより、OPデータが設定される。 Further, the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the non-edge region of the image G12. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E2 of FIG. As a result, OP data is set.
 次に、前提Pm2における印画処理Pが行なわれる。前提Pm2における印画処理Pは、前提Pm1における前述の印画処理Pと同様であるので詳細な説明は省略する。以下、簡単に説明する。前提Pm2における印画処理Pにより、ペーパー2の印画領域に、対象画像である画像G12が印刷される。 Next, the printing process P in the premise Pm2 is performed. Since the printing process P in the premise Pm2 is the same as the above-mentioned printing process P in the premise Pm1, detailed description thereof will be omitted. The following will be briefly described. By the printing process P in the premise Pm2, the image G12 which is the target image is printed in the printing area of the paper 2.
 前提Pm2における印画処理Pにより、サーマルヘッド3が、保護材料6op1eに、熱エネルギーE1を印加する。これにより、保護材料6op1eが印刷状態の画像G12のエッジ部Rg3を覆うように、当該保護材料6op1eが転写される。転写状態の保護材料6op1eの光沢度は、「G1」である。 By the printing process P in the premise Pm2, the thermal head 3 applies the thermal energy E1 to the protective material 6op1e. As a result, the protective material 6op1e is transferred so that the protective material 6op1e covers the edge portion Rg3 of the image G12 in the printed state. The glossiness of the protective material 6op1e in the transferred state is "G1".
 また、前提Pm2における印画処理Pにより、サーマルヘッド3が、保護材料6op2nに、熱エネルギーE2を印加する。これにより、保護材料6op2nが印刷状態の画像G12の非エッジ領域を覆うように、当該保護材料6op2nが転写される。転写状態の保護材料6op2nの光沢度は、「G2」である。 Further, by the printing process P in the premise Pm2, the thermal head 3 applies the thermal energy E2 to the protective material 6op2n. As a result, the protective material 6op2n is transferred so that the protective material 6op2n covers the non-edge region of the image G12 in the printed state. The glossiness of the protective material 6op2n in the transferred state is "G2".
 以上により、印刷状態の画像G12のエッジ部Rg3を覆う保護材料6op1eの光沢度G1は、印刷状態の画像G12の非エッジ領域を覆う保護材料6op2nの光沢度G2より高い。そして、前提Pm2における印刷制御処理が終了する。 As described above, the glossiness G1 of the protective material 6op1e that covers the edge portion Rg3 of the image G12 in the printed state is higher than the glossiness G2 of the protective material 6op2n that covers the non-edge region of the image G12 in the printed state. Then, the print control process in the premise Pm2 ends.
 次に、以下の前提Pm3のもとで行われる印刷制御処理について説明する。前提Pm3は、前提Pm1と比較して、画像データD1が示す対象画像が、図11の画像G12である点と、ステップS100の領域特定処理の高濃度領域特定処理およびエッジ特定処理の両方が行なわれる点とが異なる。なお、前提Pm3では、画像G12の高濃度領域Rg1およびエッジ部Rg3は、特定の対象となる対象領域である。 Next, the print control process performed under the following premise Pm3 will be described. In the premise Pm3, as compared with the premise Pm1, both the point that the target image indicated by the image data D1 is the image G12 of FIG. 11 and the high-concentration area identification process and the edge identification process of the area identification process of step S100 are performed. It is different from the point. In the premise Pm3, the high density region Rg1 and the edge portion Rg3 of the image G12 are target regions to be specified.
 前提Pm3における印刷制御処理では、まず、領域特定処理の高濃度領域特定処理が行なわれる(ステップS110)。前提Pm3における高濃度領域特定処理は、前提Pm1における高濃度領域特定処理と同様である。これにより、画像G12の高濃度領域Rg1が特定される。 In the print control process in the premise Pm3, first, the high-density area identification process of the area identification process is performed (step S110). The high-concentration region identification process in the premise Pm3 is the same as the high-concentration region identification process in the premise Pm1. Thereby, the high density region Rg1 of the image G12 is specified.
 次に、領域特定処理のエッジ特定処理が行なわれる(ステップS120)。前提Pm3におけるエッジ特定処理は、前提Pm2におけるエッジ特定処理と同様である。これにより、画像G12のエッジ部Rg3が特定される。 Next, the edge identification process of the area identification process is performed (step S120). The edge identification process in the premise Pm3 is the same as the edge identification process in the premise Pm2. Thereby, the edge portion Rg3 of the image G12 is specified.
 ここで、前述したように、印刷状態の対象画像の高濃度領域Rg1を覆うための、非転写状態の保護材料は、保護材料6op1(高濃度保護材料)である。また、前述したように、印刷状態の対象画像のエッジ部Rg3を覆うための、非転写状態の保護材料は、保護材料6op1e(エッジ保護材料)である。以下においては、印刷状態の対象画像のうち、高濃度領域Rg1およびエッジ部Rg3と異なる領域を覆うための保護材料を、「保護材料6op3」ともいう。 Here, as described above, the protective material in the non-transfer state for covering the high-density region Rg1 of the target image in the printed state is the protective material 6op1 (high-concentration protective material). Further, as described above, the protective material in the non-transfer state for covering the edge portion Rg3 of the target image in the printed state is the protective material 6op1e (edge protective material). In the following, a protective material for covering a region different from the high density region Rg1 and the edge portion Rg3 in the target image in the printed state is also referred to as “protective material 6op3”.
 前提Pm3における非転写状態の保護材料6opは、保護材料6op1と、保護材料6op1eと、保護材料6op3とを含む。以下においては、画像G12のうち、高濃度領域Rg1およびエッジ部Rg3以外の領域を、「その他領域」ともいう。前提Pm3における保護材料6op3は、画像G12のその他領域を覆うための材料である。 The non-transferred protective material 6op in the premise Pm3 includes the protective material 6op1, the protective material 6op1e, and the protective material 6op3. In the following, the regions other than the high density region Rg1 and the edge portion Rg3 in the image G12 are also referred to as “other regions”. The protective material 6op3 in the premise Pm3 is a material for covering the other region of the image G12.
 なお、同一光沢覆い状態の画像G12において、エッジ部Rg3は、当該エッジ部Rg3の光沢度が高濃度領域Rg1の光沢度よりも低いようにみえる領域である。また、同一光沢覆い状態の画像G12において、高濃度領域Rg1は、当該高濃度領域Rg1の光沢度がその他領域の光沢度よりも低いようにみえる領域である。 In the image G12 in the same gloss covering state, the edge portion Rg3 is a region in which the glossiness of the edge portion Rg3 seems to be lower than the glossiness of the high density region Rg1. Further, in the image G12 in the same gloss covering state, the high density region Rg1 is a region in which the glossiness of the high density region Rg1 appears to be lower than the glossiness of the other regions.
 次に、エネルギー設定処理が行なわれる(ステップS210)。エネルギー設定処理では、転写状態の保護材料6op1eの光沢度が転写状態の保護材料6op1の光沢度より高く、かつ、転写状態の当該保護材料6op1の光沢度が転写状態の保護材料6op3の光沢度より高くなるように、エネルギー設定部33は、当該保護材料6op1e、当該保護材料6op1および当該保護材料6op3の各々に印加するための印加エネルギーを設定する。 Next, the energy setting process is performed (step S210). In the energy setting process, the glossiness of the protective material 6op1e in the transfer state is higher than the glossiness of the protective material 6op1 in the transfer state, and the glossiness of the protective material 6op1 in the transfer state is higher than the glossiness of the protective material 6op3 in the transfer state. The energy setting unit 33 sets the applied energy to be applied to each of the protective material 6op1e, the protective material 6op1 and the protective material 6op3 so as to be high.
 言い換えれば、保護材料6op1eの印加エネルギーが、保護材料6op1の印加エネルギーより低く、かつ、保護材料6op1の印加エネルギーが、保護材料6op3の印加エネルギーより低くなるように、エネルギー設定部33は、各印加エネルギーを設定する。 In other words, each application of the energy setting unit 33 is such that the applied energy of the protective material 6op1e is lower than the applied energy of the protective material 6op1 and the applied energy of the protective material 6op1 is lower than the applied energy of the protective material 6op3. Set the energy.
 具体的には、前提Pm3におけるエネルギー設定処理では、まず、前提Pm2におけるエネルギー設定処理と同様な処理が行われる。これにより、OPデータの表Tbにおいて、画像G12のエッジ部Rg3に対応する複数の画素の座標(位置)のエネルギー値が、図12の熱エネルギーE1に補正(設定)される。 Specifically, in the energy setting process in the premise Pm3, first, the same process as the energy setting process in the premise Pm2 is performed. As a result, in the OP data table Tb, the energy values of the coordinates (positions) of the plurality of pixels corresponding to the edge portion Rg3 of the image G12 are corrected (set) to the thermal energy E1 of FIG.
 次に、エネルギー設定部33が、画像G12の高濃度領域Rg1を構成する複数の画素の座標(位置)を特定する。そして、エネルギー設定部33は、OPデータの表Tbにおいて、特定された複数の画素の座標(位置)のエネルギー値を、図12の熱エネルギーE2に補正(設定)する。 Next, the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the high density region Rg1 of the image G12. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E2 of FIG.
 また、エネルギー設定部33が、画像G12のその他領域を構成する複数の画素の座標(位置)を特定する。そして、エネルギー設定部33は、OPデータの表Tbにおいて、特定された複数の画素の座標(位置)のエネルギー値を、図12の熱エネルギーE3に補正(設定)する。 Further, the energy setting unit 33 specifies the coordinates (positions) of a plurality of pixels constituting the other region of the image G12. Then, the energy setting unit 33 corrects (sets) the energy values of the coordinates (positions) of the specified plurality of pixels in the OP data table Tb to the thermal energy E3 of FIG.
 図12において、E3は熱エネルギーであり、G3は光沢度である。特性曲線L1において、熱エネルギーE3に対応する、光沢度は「G3」である。なお、その他の項目については、図10と同様である。 In FIG. 12, E3 is thermal energy and G3 is glossiness. In the characteristic curve L1, the glossiness corresponding to the thermal energy E3 is “G3”. The other items are the same as in FIG.
 図12において、3種類の光沢度は、「G1>G2>G3」の関係を満たす。また、図12において、3種類の熱エネルギー(印加エネルギー)は、「E1<E2<E3」の関係を満たす。 In FIG. 12, the three types of glossiness satisfy the relationship of "G1> G2> G3". Further, in FIG. 12, the three types of thermal energy (applied energy) satisfy the relationship of “E1 <E2 <E3”.
 次に、前提Pm3における印画処理Pが行なわれる。前提Pm3における印画処理Pは、前提Pm1における前述の印画処理Pと同様であるので詳細な説明は省略する。以下、簡単に説明する。前提Pm3における印画処理Pにより、ペーパー2の印画領域に、対象画像である画像G12が印刷される。 Next, the printing process P in the premise Pm3 is performed. Since the printing process P in the premise Pm3 is the same as the above-mentioned printing process P in the premise Pm1, detailed description thereof will be omitted. The following will be briefly described. By the printing process P in the premise Pm3, the image G12, which is the target image, is printed in the printing area of the paper 2.
 次に、インクシート6の保護材料6opに対し、前述の単位印画処理が行なわれる。単位印画処理では、サーマルヘッド3が、保護材料6op1eに、熱エネルギーE1を印加する。これにより、保護材料6op1eが印刷状態の画像G12のエッジ部Rg3を覆うように、当該保護材料6op1eが転写される。転写状態の保護材料6op1eの光沢度は、「G1」である。 Next, the unit printing process described above is performed on the protective material 6op of the ink sheet 6. In the unit printing process, the thermal head 3 applies the thermal energy E1 to the protective material 6op1e. As a result, the protective material 6op1e is transferred so that the protective material 6op1e covers the edge portion Rg3 of the image G12 in the printed state. The glossiness of the protective material 6op1e in the transferred state is "G1".
 また、サーマルヘッド3が、保護材料6op1に、熱エネルギーE2を印加する。これにより、保護材料6op1が印刷状態の画像G12の高濃度領域Rg1を覆うように、当該保護材料6op1が転写される。転写状態の保護材料6op1の光沢度は、「G2」である。 Further, the thermal head 3 applies the thermal energy E2 to the protective material 6op1. As a result, the protective material 6op1 is transferred so that the protective material 6op1 covers the high density region Rg1 of the image G12 in the printed state. The glossiness of the protective material 6op1 in the transferred state is "G2".
 また、サーマルヘッド3が、保護材料6op3に、熱エネルギーE3を印加する。これにより、保護材料6op3が印刷状態の画像G12のその他領域を覆うように、当該保護材料6op3が転写される。転写状態の保護材料6op3の光沢度は、「G3」である。 Further, the thermal head 3 applies the thermal energy E3 to the protective material 6op3. As a result, the protective material 6op3 is transferred so that the protective material 6op3 covers the other area of the image G12 in the printed state. The glossiness of the protective material 6op3 in the transferred state is "G3".
 以上により、印刷状態の画像G12のエッジ部Rg3を覆う保護材料6op1eの光沢度G1は、印刷状態の画像G12の高濃度領域Rg1を覆う保護材料6op1の光沢度G2より高い。また、印刷状態の画像G12の高濃度領域Rg1を覆う保護材料6op1の光沢度G2は、印刷状態の画像G12のその他領域を覆う保護材料6op3の光沢度G3より高い。すなわち、上記の3つの領域の光沢度は、「G1>G2>G3」の関係を満たす。そして、前提Pm3における印刷制御処理が終了する。 As described above, the glossiness G1 of the protective material 6op1e that covers the edge portion Rg3 of the image G12 in the printed state is higher than the glossiness G2 of the protective material 6op1 that covers the high density region Rg1 of the image G12 in the printed state. Further, the glossiness G2 of the protective material 6op1 covering the high density region Rg1 of the image G12 in the printed state is higher than the glossiness G3 of the protective material 6op3 covering the other areas of the image G12 in the printed state. That is, the glossiness of the above three regions satisfies the relationship of "G1> G2> G3". Then, the print control process in the premise Pm3 is completed.
 (効果)
 以上説明したように、本実施の形態によれば、昇華型プリンター100は、画像における、高濃度領域Rg1およびエッジ部Rg3の一方または両方である対象領域を特定する。非転写状態の保護材料6opは、前記画像の対象領域を覆うための第1保護材料と、前記画像のうち、対象領域と異なる領域を覆うための第2保護材料とを含む。転写状態の第1保護材料の光沢度が、転写状態の第2保護材料の光沢度より高くなるように、エネルギー設定部33は、当該第1保護材料および当該第2保護材料の各々に印加するための印加エネルギーを設定する。当該印加エネルギーは、印画処理において、サーマルヘッド3が非転写状態の保護材料6opに印加する熱エネルギーである。
(effect)
As described above, according to the present embodiment, the sublimation printer 100 identifies a target region in the image, which is one or both of the high density region Rg1 and the edge portion Rg3. The non-transferred protective material 6op includes a first protective material for covering the target region of the image and a second protective material for covering a region of the image different from the target region. The energy setting unit 33 applies to each of the first protective material and the second protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state. Set the applied energy for. The applied energy is the thermal energy applied by the thermal head 3 to the protective material 6op in the non-transfer state in the printing process.
 これにより、画像の領域毎に、当該領域を覆うための保護材料に印加するための熱エネルギーを設定することができる。 Thereby, for each region of the image, the thermal energy to be applied to the protective material for covering the region can be set.
 ここで、仮に、図7の画像G11を印刷するための印画処理Pにおいて、保護材料6op全体に同じ熱エネルギーが印加されたと仮定する。この場合、同一光沢状態の保護材料6opが印刷状態の画像G11を覆う。すなわち、前述したように、同一光沢覆い状態の画像G11において、高濃度領域Rg1の光沢度は、非高濃度領域の光沢度よりも低いようにみえる。前述したように、同一光沢覆い状態は、同一光沢状態の保護材料6opが印刷状態の画像全体を覆っている状況における、当該画像の状態である。この場合、光沢のムラが生じる。 Here, it is assumed that the same thermal energy is applied to the entire protective material 6 op in the printing process P for printing the image G11 of FIG. 7. In this case, the protective material 6op in the same gloss state covers the image G11 in the printed state. That is, as described above, in the image G11 in the same gloss covering state, the glossiness of the high density region Rg1 seems to be lower than the glossiness of the non-high density region. As described above, the same gloss covering state is a state of the image in a situation where the protective material 6op in the same gloss state covers the entire image in the printed state. In this case, uneven gloss occurs.
 そこで、本実施の形態によれば、前提Pm1における前述の印刷制御処理が行なわれる。これにより、高濃度領域Rg1を覆う転写状態の保護材料6op1の光沢度が、非高濃度領域を覆う転写状態の保護材料6op2の光沢度より高くなるように、保護材料の印加エネルギーが設定される。 Therefore, according to the present embodiment, the above-mentioned print control process in the premise Pm1 is performed. As a result, the applied energy of the protective material is set so that the glossiness of the transfer-state protective material 6op1 covering the high-concentration region Rg1 is higher than the glossiness of the transfer-state protective material 6op2 covering the non-high-concentration region. ..
 そして、印画処理Pにおいて、設定された印加エネルギーが保護材料6opに印加される。これにより、保護材料6opが印刷状態の画像G11を覆った状態において、光沢のムラが発生することを抑制することができる。そのため、印刷品位の高い印刷物(光沢印刷)が得られる。 Then, in the printing process P, the set applied energy is applied to the protective material 6op. As a result, it is possible to suppress the occurrence of uneven gloss when the protective material 6op covers the image G11 in the printed state. Therefore, a printed matter (glossy printing) having high print quality can be obtained.
 また、仮に、図11の画像G12を印刷するための印画処理Pにおいて、保護材料6op全体に同じ熱エネルギーが印加されたと仮定する。この場合、同一光沢状態の保護材料6opが印刷状態の画像G12を覆う。すなわち、前述したように、同一光沢覆い状態の画像G12において、エッジ部Rg3の光沢度は、非エッジ領域の光沢度よりも低いようにみえる。この場合、光沢のムラが生じる。 Further, it is assumed that the same thermal energy is applied to the entire protective material 6op in the printing process P for printing the image G12 of FIG. In this case, the protective material 6op in the same gloss state covers the image G12 in the printed state. That is, as described above, in the image G12 in the same gloss covering state, the glossiness of the edge portion Rg3 seems to be lower than the glossiness of the non-edge region. In this case, uneven gloss occurs.
 そこで、本実施の形態によれば、前提Pm2における前述の印刷制御処理が行なわれる。これにより、エッジ部Rg3を覆う転写状態の保護材料6op1eの光沢度が、非エッジ領域を覆う転写状態の保護材料6op2nの光沢度より高くなるように、保護材料の印加エネルギーが設定される。 Therefore, according to the present embodiment, the above-mentioned print control process in the premise Pm2 is performed. As a result, the applied energy of the protective material is set so that the glossiness of the protective material 6op1e in the transferred state covering the edge portion Rg3 is higher than the glossiness of the protective material 6op2n in the transferred state covering the non-edge region.
 そして、印画処理Pにおいて、設定された印加エネルギーが保護材料6opに印加される。これにより、保護材料6opが印刷状態の画像G12を覆った状態において、光沢のムラが発生することを抑制することができる。そのため、印刷品位の高い印刷物(光沢印刷)が得られる。 Then, in the printing process P, the set applied energy is applied to the protective material 6op. As a result, it is possible to suppress the occurrence of uneven gloss when the protective material 6op covers the image G12 in the printed state. Therefore, a printed matter (glossy printing) having high print quality can be obtained.
 また、本実施の形態によれば、前提Pm3における前述の印刷制御処理が行なわれる。これにより、保護材料6opが転写された状態において、(エッジ部Rg3の光沢度>高濃度領域Rg1の光沢度>その他領域の光沢度)の関係となるように、保護材料の印加エネルギーが設定される。 Further, according to the present embodiment, the above-mentioned print control process in the premise Pm3 is performed. As a result, the applied energy of the protective material is set so that the relationship (glossiness of edge portion Rg3> glossiness of high-concentration region Rg1> glossiness of other regions) is satisfied in the state where the protective material 6op is transferred. To.
 これにより、保護材料6opが印刷状態の画像G12を覆った状態において、光沢のムラが発生することをさらに抑制することができる。そのため、印刷品位が十分に高い印刷物(光沢印刷)が得られる。 As a result, it is possible to further suppress the occurrence of uneven gloss when the protective material 6op covers the image G12 in the printed state. Therefore, a printed matter (glossy printing) having sufficiently high print quality can be obtained.
 また、本実施の形態によれば、前述したように、高濃度領域Rg1を覆う保護材料6op1の光沢度が、非高濃度領域を覆う保護材料6op2の光沢度より高くなるように、保護材料の印加エネルギーが設定される。そのため、高濃度領域への印加エネルギーが下がり、ペーパーおよびインクシートへの局所的な熱集中が低減される。したがって、スティッキング、ペーパージャム等の発生を防ぐことができる。当該ペーパージャムは、ペーパーに対するインクシートの熱融着による発生する現象である。その結果、昇華型プリンターの信頼性が向上する。 Further, according to the present embodiment, as described above, the protective material has a glossiness of the protective material 6op1 covering the high concentration region Rg1 higher than the glossiness of the protective material 6op2 covering the non-high concentration region. The applied energy is set. Therefore, the energy applied to the high concentration region is reduced, and the local heat concentration on the paper and the ink sheet is reduced. Therefore, it is possible to prevent the occurrence of sticking, paper jam, and the like. The paper jam is a phenomenon generated by heat fusion of an ink sheet to paper. As a result, the reliability of the sublimation printer is improved.
 なお、昇華型プリンターでは、光沢感のある印刷物を得るために、ペーパーに、オーバーコート層が転写される。なお、画像をペーパーに印刷するために、染料に印加される熱エネルギー(転写エネルギー)が高い場合、ペーパーの印刷面側に意図しない凹凸が形成されることがあった。具体的には、ペーパーに転写された画像の高濃度領域に光沢のムラが生じる。その結果、印刷品位が低下するという問題があった。 In the sublimation printer, the overcoat layer is transferred to the paper in order to obtain a glossy printed matter. When the thermal energy (transfer energy) applied to the dye is high in order to print the image on the paper, unintended irregularities may be formed on the printing surface side of the paper. Specifically, uneven gloss occurs in the high density region of the image transferred to the paper. As a result, there is a problem that the print quality is deteriorated.
 そこで、本実施の形態の昇華型プリンター100は、上記の効果を奏するための構成を有する。そのため、本実施の形態の昇華型プリンター100により、上記の問題を解決することができる。そのため、例えば、昇華型プリンターによって転写される画像の高濃度領域において、光沢のムラが生じることを低減することができる。したがって、印刷品位が高い印刷物(光沢印刷)が得られる。 Therefore, the sublimation printer 100 of the present embodiment has a configuration for achieving the above effects. Therefore, the sublimation printer 100 of the present embodiment can solve the above problem. Therefore, for example, it is possible to reduce the occurrence of uneven gloss in a high density region of an image transferred by a sublimation printer. Therefore, a printed matter (glossy printing) having high print quality can be obtained.
 なお、前述した閾値Tは、固定値に限定されない。閾値Tは、画像の内容に応じて、複数の閾値、または、変数値で表現されてもよい。画像の内容とは、例えば、昼景、夜景、ポートレート、コンピュータグラフィックス等である。 The above-mentioned threshold value T is not limited to a fixed value. The threshold value T may be represented by a plurality of threshold values or variable values depending on the content of the image. The content of the image is, for example, a day view, a night view, a portrait, computer graphics, or the like.
 <変形例1>
 本変形例は、実施の形態1に適用される。以下においては、保護材料が転写された転写状態における、印刷物の表面側の光沢度を、「表面光沢度」ともいう。表面光沢度は、ペーパーの印刷面側の光沢度である。すなわち、表面光沢度は、印刷状態の画像を覆う保護材料の光沢度である。
<Modification example 1>
This modification is applied to the first embodiment. In the following, the glossiness on the surface side of the printed matter in the transferred state in which the protective material is transferred is also referred to as “surface glossiness”. The surface glossiness is the glossiness on the printing surface side of the paper. That is, the surface glossiness is the glossiness of the protective material that covers the printed image.
 前述したように、表面光沢度は、色染料に印加される印加エネルギーによって主に決まる。なお、表面光沢度は、副次的な要素としての、プリンターの環境温度、湿度等によっても変動する。また、表面光沢度は、副次的な要素としての、インクシートを構成する材料の組成、ペーパーを構成する材料の組成等によっても変動する。このような光沢度の変動は、当該副次的な要素が、ペーパーの表面の平滑性に影響を与えるために、発生すると考えられる。 As mentioned above, the surface glossiness is mainly determined by the applied energy applied to the color dye. The surface glossiness also varies depending on the environmental temperature, humidity, etc. of the printer as secondary factors. The surface glossiness also varies depending on the composition of the material constituting the ink sheet, the composition of the material constituting the paper, and the like as secondary factors. It is considered that such a variation in glossiness occurs because the secondary factor affects the smoothness of the surface of the paper.
 図13は、変形例1に係る昇華型プリンター100の動作を説明するためのブロック図である。変形例1における昇華型プリンター100は、環境センサSn1または情報センサSn2を備えてもよい。 FIG. 13 is a block diagram for explaining the operation of the sublimation printer 100 according to the first modification. The sublimation printer 100 in the first modification may include an environment sensor Sn1 or an information sensor Sn2.
 以下においては、昇華型プリンター100が環境センサSn1を備える構成を、「変形構成A」ともいう。環境センサSn1は、昇華型プリンター100の筐体Ch1の内部に設けられる。 In the following, the configuration in which the sublimation printer 100 is provided with the environmental sensor Sn1 is also referred to as “deformed configuration A”. The environment sensor Sn1 is provided inside the housing Ch1 of the sublimation printer 100.
 以下においては、昇華型プリンター100の筐体Ch1の内部を、「筐体内部」ともいう。また、以下においては、筐体内部の温度を、「内部温度」ともいう。また、以下においては、筐体内部の湿度を、「内部湿度」ともいう。環境センサSn1は、内部温度および内部湿度を計測する機能を有する。 In the following, the inside of the housing Ch1 of the sublimation printer 100 is also referred to as "inside the housing". Further, in the following, the temperature inside the housing is also referred to as "internal temperature". Further, in the following, the humidity inside the housing is also referred to as "internal humidity". The environment sensor Sn1 has a function of measuring the internal temperature and the internal humidity.
 変形構成Aでは、環境情報に基づいて閾値T(基準濃度)を設定する設定処理Paが行なわれる。当該環境情報は、内部温度および内部湿度である。 In the modified configuration A, the setting process Pa for setting the threshold value T (reference concentration) is performed based on the environmental information. The environmental information is internal temperature and internal humidity.
 設定処理Paは、前述の図9の印刷制御処理が行なわれる前に行なわれる。設定処理Paでは、例えば、閾値設定情報Aが使用される。閾値設定情報Aは、例えば、異なる複数の環境状況の各々に対応する最適濃度値Aを示す。最適濃度値Aは、印刷物が示す画像の高濃度領域Rg1の表面光沢度の低下を抑制するための値である。各環境状況は、内部温度および内部湿度の組合せにより表現される。 The setting process Pa is performed before the print control process of FIG. 9 described above is performed. In the setting process Pa, for example, the threshold setting information A is used. The threshold setting information A indicates, for example, an optimum concentration value A corresponding to each of a plurality of different environmental conditions. The optimum density value A is a value for suppressing a decrease in the surface glossiness of the high density region Rg1 of the image shown by the printed matter. Each environmental situation is represented by a combination of internal temperature and internal humidity.
 閾値設定情報Aは、例えば、内部温度が40度以上であり、かつ、内部湿度が60%以上である環境状況に対応する最適濃度値Aを示す。 The threshold setting information A indicates, for example, the optimum concentration value A corresponding to an environmental condition in which the internal temperature is 40 degrees or higher and the internal humidity is 60% or higher.
 複数の環境状況、および、複数の最適濃度値Aは、例えば、実験等を繰り返し行うことにより、決定される。当該実験は、例えば、異なる複数の環境状況における印画処理P、印画処理Pの対象となる画像の変更、作業者による印刷物の光沢状態の確認等である。 A plurality of environmental conditions and a plurality of optimum concentration values A are determined by, for example, repeating experiments and the like. The experiment includes, for example, printing processing P in a plurality of different environmental conditions, changing an image to be targeted by printing processing P, and confirming a glossy state of a printed matter by an operator.
 設定処理Paでは、環境センサSn1が、内部温度および内部湿度を計測する。そして、制御部10が、閾値設定情報Aに基づいて、計測された内部温度および内部湿度に対応する環境状況に対応する最適濃度値Aを、閾値T(基準濃度)として設定する。この場合、当該閾値T(基準濃度)は、内部温度および内部湿度に基づいて設定された値である。 In the setting process Pa, the environment sensor Sn1 measures the internal temperature and the internal humidity. Then, the control unit 10 sets the optimum concentration value A corresponding to the environmental conditions corresponding to the measured internal temperature and internal humidity as the threshold value T (reference concentration) based on the threshold value setting information A. In this case, the threshold value T (reference concentration) is a value set based on the internal temperature and the internal humidity.
 そして、設定された閾値T(基準濃度)を使用して、前述の印刷制御処理(高濃度領域特定処理)が行なわれる。これにより、印刷物が示す画像の高濃度領域Rg1の表面光沢度の低下を抑制することができる。 Then, the above-mentioned print control process (high density area identification process) is performed using the set threshold value T (reference density). As a result, it is possible to suppress a decrease in the surface glossiness of the high density region Rg1 of the image shown by the printed matter.
 なお、環境情報は、内部温度および内部湿度の一方であってもよい。この場合、閾値設定情報Aにおける、複数の環境状況は、内部温度および内部湿度の一方により表現される。また、設定処理Paでは、環境センサSn1が、内部温度および内部湿度の一方を計測する。そして、制御部10が、閾値設定情報Aに基づいて、計測された内部温度および内部湿度の一方に対応する環境状況に対応する最適濃度値Aを、閾値T(基準濃度)として設定する。この場合、当該閾値T(基準濃度)は、内部温度および内部湿度の一方に基づいて設定された値である。 The environmental information may be one of the internal temperature and the internal humidity. In this case, the plurality of environmental conditions in the threshold setting information A are represented by one of the internal temperature and the internal humidity. Further, in the setting process Pa, the environment sensor Sn1 measures one of the internal temperature and the internal humidity. Then, the control unit 10 sets the optimum concentration value A corresponding to the environmental condition corresponding to one of the measured internal temperature and the internal humidity as the threshold value T (reference concentration) based on the threshold value setting information A. In this case, the threshold value T (reference concentration) is a value set based on either the internal temperature or the internal humidity.
 次に、情報センサSn2を使用した構成について説明する。以下においては、昇華型プリンター100が情報センサSn2を備える構成を、「変形構成B」ともいう。情報センサSn2は、昇華型プリンター100の筐体Ch1の内部に設けられる。また、変形構成Bでは、記憶部9における、規定のメモリー領域に、異なる複数の組成情報22が予め記憶されている。 Next, the configuration using the information sensor Sn2 will be described. In the following, the configuration in which the sublimation printer 100 includes the information sensor Sn2 is also referred to as “deformed configuration B”. The information sensor Sn2 is provided inside the housing Ch1 of the sublimation printer 100. Further, in the modified configuration B, a plurality of different composition information 22 are stored in advance in a predetermined memory area in the storage unit 9.
 以下においては、昇華型プリンター100に装着されたインクシート6を構成する材料の組成を、「インクシート組成」ともいう。インクシート組成は、例えば、インクシート6の種類、インクシート6の材質等である。また、以下においては、昇華型プリンター100に装着されたペーパー2を構成する材料の組成を、「ペーパー組成」ともいう。ペーパー組成は、例えば、ペーパー2の種類、ペーパー2の材質等である。 In the following, the composition of the material constituting the ink sheet 6 mounted on the sublimation printer 100 is also referred to as "ink sheet composition". The ink sheet composition is, for example, the type of ink sheet 6, the material of the ink sheet 6, and the like. Further, in the following, the composition of the material constituting the paper 2 mounted on the sublimation printer 100 is also referred to as “paper composition”. The paper composition is, for example, the type of paper 2, the material of the paper 2, and the like.
 なお、記憶部9に記憶されている複数の組成情報22は、インクシート組成およびペーパー組成の様々な組合せを示す。また、当該複数の組成情報22の各々には、最適濃度値Bが対応づけられている。最適濃度値Bは、印刷物が示す画像の高濃度領域Rg1の表面光沢度の低下を抑制するための値である。 Note that the plurality of composition information 22 stored in the storage unit 9 indicates various combinations of the ink sheet composition and the paper composition. Further, the optimum concentration value B is associated with each of the plurality of composition information 22. The optimum density value B is a value for suppressing a decrease in the surface glossiness of the high density region Rg1 of the image shown by the printed matter.
 複数の組成情報22の各々に対応する最適濃度値Bは、例えば、実験等を繰り返し行うことにより、決定される。当該実験は、例えば、各組成情報22に対応するインクシート6およびペーパー2を使用した印画処理P、印画処理Pの対象となる画像の変更、作業者による印刷物の光沢状態の確認等である。 The optimum concentration value B corresponding to each of the plurality of composition information 22 is determined, for example, by repeating an experiment or the like. The experiment includes, for example, printing processing P using the ink sheet 6 and paper 2 corresponding to each composition information 22, changing the image to be the target of printing processing P, and confirming the glossy state of the printed matter by the operator.
 情報センサSn2は、インクシート6の組成(インクシート組成)、および、ペーパー2の組成(ペーパー組成)を検知する機能を有する。 The information sensor Sn2 has a function of detecting the composition of the ink sheet 6 (ink sheet composition) and the composition of the paper 2 (paper composition).
 変形構成Bでは、情報センサSn2により検知された組成情報に基づいて閾値T(基準濃度)を設定する設定処理Pbが行なわれる。当該組成情報は、インクシート組成およびペーパー組成である。 In the modified configuration B, the setting process Pb for setting the threshold value T (reference concentration) is performed based on the composition information detected by the information sensor Sn2. The composition information is an ink sheet composition and a paper composition.
 設定処理Pbは、前述の図9の印刷制御処理が行なわれる前に行なわれる。設定処理Pbでは、情報センサSn2が、組成情報であるインクシート組成およびペーパー組成を検知する。そして、制御部10が、記憶部9に記憶されている複数の組成情報22のうち、検知したインクシート組成およびペーパー組成を示す組成情報22を特定する。 The setting process Pb is performed before the print control process of FIG. 9 described above is performed. In the setting process Pb, the information sensor Sn2 detects the ink sheet composition and the paper composition which are composition information. Then, the control unit 10 identifies the composition information 22 indicating the detected ink sheet composition and paper composition among the plurality of composition information 22 stored in the storage unit 9.
 そして、制御部10は、特定した組成情報22に対応づけられた最適濃度値Bを、閾値T(基準濃度)として設定する。この場合、当該閾値T(基準濃度)は、インクシート組成およびペーパー組成に基づいて設定された値である。 Then, the control unit 10 sets the optimum concentration value B associated with the specified composition information 22 as the threshold value T (reference concentration). In this case, the threshold value T (reference density) is a value set based on the ink sheet composition and the paper composition.
 そして、設定された閾値T(基準濃度)を使用して、前述の印刷制御処理(高濃度領域特定処理)が行なわれる。これにより、印刷物が示す画像の高濃度領域Rg1の表面光沢度の低下を抑制することができる。 Then, the above-mentioned print control process (high density area identification process) is performed using the set threshold value T (reference density). As a result, it is possible to suppress a decrease in the surface glossiness of the high density region Rg1 of the image shown by the printed matter.
 なお、情報センサSn2が検知する組成情報は、インクシート組成およびペーパー組成の一方であってもよい。この場合、記憶部9に記憶されている複数の組成情報22は、インクシート組成およびペーパー組成の一方を示す。 The composition information detected by the information sensor Sn2 may be one of the ink sheet composition and the paper composition. In this case, the plurality of composition information 22 stored in the storage unit 9 indicates one of the ink sheet composition and the paper composition.
 また、設定処理Pbでは、情報センサSn2が、組成情報であるインクシート組成およびペーパー組成の一方を検知する。そして、制御部10が、記憶部9に記憶されている複数の組成情報22のうち、検知したインクシート組成およびペーパー組成の一方を示す組成情報22を特定する。そして、制御部10は、特定した組成情報22に対応づけられた最適濃度値Bを、閾値T(基準濃度)として設定する。この場合、当該閾値T(基準濃度)は、インクシート組成およびペーパー組成の一方に基づいて設定された値である。 Further, in the setting process Pb, the information sensor Sn2 detects one of the ink sheet composition and the paper composition which is the composition information. Then, the control unit 10 specifies the composition information 22 indicating one of the detected ink sheet composition and the paper composition among the plurality of composition information 22 stored in the storage unit 9. Then, the control unit 10 sets the optimum concentration value B associated with the specified composition information 22 as the threshold value T (reference concentration). In this case, the threshold value T (reference density) is a value set based on either the ink sheet composition or the paper composition.
 以上説明したように、本変形例によれば、環境情報、または、組成情報(インクシート組成およびペーパー組成)を利用して、印刷物が示す画像の高濃度領域Rg1の表面光沢度の低下を抑制するように、昇華型プリンター100は、熱エネルギーを印加する。 As described above, according to the present modification, the decrease in the surface glossiness of the high density region Rg1 of the image shown by the printed matter is suppressed by utilizing the environmental information or the composition information (ink sheet composition and paper composition). As such, the sublimation printer 100 applies thermal energy.
 そのため、印刷品位の高い印刷物(光沢印刷)が、安定的に得られる。したがって、スティッキング、ペーパージャム等の発生を防ぐことができる。その結果、昇華型プリンターの信頼性が向上する。 Therefore, printed matter (glossy printing) with high print quality can be stably obtained. Therefore, it is possible to prevent the occurrence of sticking, paper jam, and the like. As a result, the reliability of the sublimation printer is improved.
 (機能ブロック図)
 図14は、昇華型プリンターBL10の特徴的な機能構成を示すブロック図である。昇華型プリンターBL10は、昇華型プリンター100に相当する。つまり、図14は、昇華型プリンターBL10の有する機能のうち、本技術に関わる主要な機能を示すブロック図である。
(Functional block diagram)
FIG. 14 is a block diagram showing a characteristic functional configuration of the sublimation printer BL10. The sublimation printer BL10 corresponds to the sublimation printer 100. That is, FIG. 14 is a block diagram showing the main functions related to the present technology among the functions of the sublimation printer BL10.
 昇華型プリンターBL10は、画像を表現するためのインク材料と、保護材料とが設けられたインクシートをサーマルヘッドが加熱して、当該インク材料および当該保護材料をペーパーに転写する印画処理を行なう。 In the sublimation printer BL10, the thermal head heats an ink sheet provided with an ink material for expressing an image and a protective material, and performs a printing process of transferring the ink material and the protective material to paper.
 前記印画処理では、前記インク材料が前記ペーパーに転写された後、前記保護材料が、前記画像を表現している当該インク材料を覆うように、当該保護材料が当該ペーパーに転写される。 In the printing process, after the ink material is transferred to the paper, the protective material is transferred to the paper so that the protective material covers the ink material expressing the image.
 前記保護材料の状態には、前記印画処理により当該保護材料が前記ペーパーに転写された状態である転写状態と、当該保護材料が前記インクシートに設けられた状態である非転写状態とが存在する。 The state of the protective material includes a transfer state in which the protective material is transferred to the paper by the printing process and a non-transfer state in which the protective material is provided on the ink sheet. ..
 前記保護材料は、光沢特性を有する。前記光沢特性は、前記非転写状態の前記保護材料を前記ペーパーに転写するために当該非転写状態の当該保護材料に印加される熱エネルギーの変化に応じて、前記転写状態の当該保護材料の光沢度が変化するという特性である。 The protective material has glossy properties. The gloss property is the gloss of the protective material in the transferred state in response to a change in thermal energy applied to the protective material in the non-transfer state in order to transfer the protective material in the non-transfer state to the paper. It is a characteristic that the degree changes.
 昇華型プリンターBL10は、前記画像における、高濃度領域およびエッジ部の一方または両方である対象領域を特定する。前記高濃度領域は、前記画像のうち、設定された閾値である基準濃度以上の濃度で表現される領域である。前記エッジ部は、前記画像に示されるエッジを示す領域である。 The sublimation printer BL10 identifies a target region that is one or both of a high density region and an edge portion in the image. The high density region is a region of the image represented by a density equal to or higher than a reference density, which is a set threshold value. The edge portion is a region showing an edge shown in the image.
 昇華型プリンターBL10は、機能的には、サーマルヘッドBL1と、エネルギー設定部BL2とを備える。サーマルヘッドBL1は、熱を発する。サーマルヘッドBL1は、サーマルヘッド3に相当する。 The sublimation printer BL10 functionally includes a thermal head BL1 and an energy setting unit BL2. The thermal head BL1 emits heat. The thermal head BL1 corresponds to the thermal head 3.
 エネルギー設定部BL2は、前記印画処理において、サーマルヘッドBL1が前記非転写状態の前記保護材料に印加する前記熱エネルギーである印加エネルギーを設定する。エネルギー設定部BL2は、エネルギー設定部33に相当する。 The energy setting unit BL2 sets the applied energy, which is the thermal energy applied to the protective material in the non-transfer state by the thermal head BL1 in the printing process. The energy setting unit BL2 corresponds to the energy setting unit 33.
 前記非転写状態の前記保護材料は、前記画像の前記対象領域を覆うための第1保護材料と、前記画像のうち、前記対象領域と異なる領域を覆うための第2保護材料とを含む。 The protective material in the non-transfer state includes a first protective material for covering the target region of the image and a second protective material for covering a region of the image different from the target region.
 前記転写状態の前記第1保護材料の光沢度が、前記転写状態の前記第2保護材料の光沢度より高くなるように、前記エネルギー設定部BL2は、当該第1保護材料および当該第2保護材料の各々に印加するための前記印加エネルギーを設定する。 The energy setting unit BL2 has the first protective material and the second protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state. The applied energy to be applied to each of the above is set.
 (その他の変形例)
 以上、本発明に係る昇華型プリンターについて、実施の形態に基づいて説明したが、本発明は、当該実施の形態に限定されるものではない。本発明の主旨を逸脱しない範囲内で、当業者が思いつく変形を実施の形態に施したものも、本発明に含まれる。つまり、本発明は、その発明の範囲内において、実施の形態、変形例を自由に組み合わせたり、実施の形態、変形例を適宜、変形、省略することが可能である。
(Other variants)
The sublimation printer according to the present invention has been described above based on the embodiment, but the present invention is not limited to the embodiment. The present invention also includes modifications that can be conceived by those skilled in the art without departing from the spirit of the present invention. That is, the present invention can freely combine embodiments and modifications within the scope of the invention, and can appropriately modify or omit embodiments and modifications.
 また、昇華型プリンター100は、図で示される全ての構成要素を含まなくてもよい。すなわち、昇華型プリンター100は、本技術の効果を実現できる最小限の構成要素のみを含めばよい。 Further, the sublimation printer 100 does not have to include all the components shown in the figure. That is, the sublimation printer 100 needs to include only the minimum components that can realize the effect of the present technology.
 また、昇華型プリンター100に含まれる、領域特定部31、エッジ特定部32およびエネルギー設定部33の各々の機能は、処理回路により実現されてもよい。 Further, each function of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 included in the sublimation printer 100 may be realized by a processing circuit.
 当該処理回路は、前記画像における、高濃度領域およびエッジ部の一方または両方である対象領域を特定するための回路である。 The processing circuit is a circuit for specifying a target region which is one or both of a high density region and an edge portion in the image.
 また、当該処理回路は、前記転写状態の前記第1保護材料の光沢度が、前記転写状態の前記第2保護材料の光沢度より高くなるように、当該第1保護材料および当該第2保護材料の各々に印加するための前記印加エネルギーを設定するための回路でもある。 Further, in the processing circuit, the first protective material and the second protective material are provided so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state. It is also a circuit for setting the applied energy to be applied to each of the above.
 処理回路は、専用のハードウエアであってよい。また、処理回路は、メモリに格納されるプログラムを実行するプロセッサであってもよい。当該プロセッサは、例えば、CPU(Central Processing Unit)、中央処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等である。 The processing circuit may be dedicated hardware. Further, the processing circuit may be a processor that executes a program stored in the memory. The processor is, for example, a CPU (Central Processing Unit), a central processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
 以下においては、処理回路が専用のハードウエアである構成を、「構成Cs1」ともいう。また、以下においては、処理回路が、プロセッサである構成を、「構成Cs2」ともいう。また、以下においては、領域特定部31、エッジ特定部32およびエネルギー設定部33の各々の機能を、ハードウエアとソフトウエアとの組み合わせにより実現する構成を、「構成Cs3」ともいう。 In the following, the configuration in which the processing circuit is dedicated hardware is also referred to as "configuration Cs1". Further, in the following, the configuration in which the processing circuit is a processor is also referred to as “configuration Cs2”. Further, in the following, a configuration in which each function of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 is realized by a combination of hardware and software is also referred to as “configuration Cs3”.
 構成Cs1では、処理回路は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。領域特定部31、エッジ特定部32およびエネルギー設定部33の機能は、それぞれ、3つの処理回路で実現されてもよい。また、領域特定部31、エッジ特定部32およびエネルギー設定部33の全ての機能が、1つの処理回路で実現されてもよい。 In configuration Cs1, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Applicable. The functions of the region specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 may be realized by three processing circuits, respectively. Further, all the functions of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 may be realized by one processing circuit.
 なお、昇華型プリンター100に含まれる各構成要素の全てまたは一部を、ハードウエアで示した構成は、例えば、以下のようになる。以下においては、昇華型プリンター100に含まれる各構成要素の全てまたは一部を、ハードウエアで示した昇華型プリンターを、「昇華型プリンターhd10」ともいう。 The configuration in which all or a part of each component included in the sublimation printer 100 is shown in hardware is as follows, for example. In the following, a sublimation printer in which all or a part of each component included in the sublimation printer 100 is shown by hardware is also referred to as a “sublimation printer hd10”.
 図15は、昇華型プリンターhd10のハードウエア構成図である。図15を参照して、昇華型プリンターhd10は、プロセッサhd1と、メモリhd2とを備える。メモリhd2は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。また、メモリhd2は、例えば、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。また、メモリhd2は、今後使用されるあらゆる記憶媒体であってもよい。 FIG. 15 is a hardware configuration diagram of the sublimation printer hd10. With reference to FIG. 15, the sublimation printer hd10 includes a processor hd1 and a memory hd2. The memory hd2 is, for example, a non-volatile or volatile semiconductor memory such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an EPROM, or an EEPROM. The memory hd2 is, for example, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like. Further, the memory hd2 may be any storage medium used in the future.
 構成Cs2では、処理回路は、プロセッサhd1である。構成Cs2では、領域特定部31、エッジ特定部32およびエネルギー設定部33の各々の機能は、ソフトウエア、ファームウエア、またはソフトウエアとファームウエアとの組み合わせにより実現される。ソフトウエアまたはファームウエアは、プログラムとして記述され、メモリhd2に格納される。 In the configuration Cs2, the processing circuit is the processor hd1. In the configuration Cs2, each function of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 is realized by software, firmware, or a combination of software and firmware. The software or firmware is described as a program and stored in the memory hd2.
 また、構成Cs2では、処理回路(プロセッサhd1)が、メモリhd2に記憶されたプログラムを読み出して、当該プログラムを実行することにより、領域特定部31、エッジ特定部32およびエネルギー設定部33の各々の機能は実現される。すなわち、メモリhd2は、以下のプログラムを格納する。 Further, in the configuration Cs2, the processing circuit (processor hd1) reads the program stored in the memory hd2 and executes the program to execute each of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33. The function is realized. That is, the memory hd2 stores the following programs.
 当該プログラムは、前記画像における、高濃度領域およびエッジ部の一方または両方である対象領域を特定するステップを、処理回路(プロセッサhd1)に実行させるためのプログラムである。 The program is a program for causing a processing circuit (processor hd1) to execute a step of specifying a target region which is one or both of a high density region and an edge portion in the image.
 また、当該プログラムは、前記転写状態の前記第1保護材料の光沢度が、前記転写状態の前記第2保護材料の光沢度より高くなるように、当該第1保護材料および当該第2保護材料の各々に印加するための前記印加エネルギーを設定するステップを、処理回路(プロセッサhd1)に実行させるためのプログラムでもある。 In addition, the program includes the first protective material and the second protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state. It is also a program for causing the processing circuit (processor hd1) to execute the step of setting the applied energy to be applied to each of them.
 また、当該プログラムは、領域特定部31、エッジ特定部32およびエネルギー設定部33の各々が行う処理の手順、当該処理を実行する方法等をコンピュータに実行させるものでもある。 Further, the program also causes a computer to execute a processing procedure performed by each of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33, a method of executing the processing, and the like.
 構成Cs3では、領域特定部31、エッジ特定部32およびエネルギー設定部33の一部の機能は、専用のハードウエアで実現される。また、構成Cs3では、領域特定部31、エッジ特定部32およびエネルギー設定部33の別の一部の機能は、ソフトウエアまたはファームウエアで実現される。 In the configuration Cs3, some functions of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 are realized by dedicated hardware. Further, in the configuration Cs3, another part of the functions of the area specifying unit 31, the edge specifying unit 32, and the energy setting unit 33 is realized by software or firmware.
 例えば、領域特定部31およびエッジ特定部32の機能は、処理回路がメモリに格納されたプログラムを読み出して実行することによって実現される。また、例えば、エネルギー設定部33の機能は、専用のハードウエアとしての処理回路で実現される。 For example, the functions of the area specifying unit 31 and the edge specifying unit 32 are realized by the processing circuit reading and executing the program stored in the memory. Further, for example, the function of the energy setting unit 33 is realized by a processing circuit as dedicated hardware.
 以上の構成Cs1、構成Cs2および構成Cs3のように、処理回路は、ハードウエア、ソフトウエア、ファームウエア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 Like the above configurations Cs1, configuration Cs2, and configuration Cs3, the processing circuit can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
 また、本技術は、昇華型プリンター100が備える特徴的な構成部の動作をステップとする印刷制御方法として実現してもよい。また、本技術は、そのような印刷制御方法に含まれる各ステップをコンピュータに実行させるプログラムとして実現してもよい。また、本技術は、そのようなプログラムを格納するコンピュータ読み取り可能な記録媒体として実現されてもよい。また、当該プログラムは、インターネット等の伝送媒体を介して配信されてもよい。本技術に係る印刷制御方法は、例えば、図9の処理に相当する。 Further, the present technology may be realized as a print control method in which the operation of a characteristic component included in the sublimation printer 100 is a step. Further, the present technology may be realized as a program for causing a computer to execute each step included in such a print control method. Further, the present technology may be realized as a computer-readable recording medium for storing such a program. Further, the program may be distributed via a transmission medium such as the Internet. The print control method according to the present technology corresponds to, for example, the process of FIG.
 上記実施の形態および変形例で用いた全ての数値は、本技術を具体的に説明するための一例の数値である。すなわち、本技術は、上記実施の形態および変形例で用いた各数値に制限されない。 All the numerical values used in the above-described embodiment and modified examples are numerical values of an example for concretely explaining the present technology. That is, the present technology is not limited to each numerical value used in the above-described embodiment and modification.
 なお、本発明は、その発明の範囲内において、実施の形態、変形例を自由に組み合わせたり、実施の形態、変形例を適宜、変形、省略することが可能である。 It should be noted that, within the scope of the present invention, the embodiments and modifications can be freely combined, and the embodiments and modifications can be appropriately modified or omitted.
 例えば、印刷制御処理のエネルギー設定処理では、エネルギー設定部33が、PC200から受信したOPデータを補正するとしたが、これに限定されない。エネルギー設定処理では、エネルギー設定部33が、領域特定処理により特定された高濃度領域Rg1、エッジ部Rg3等に対応する熱エネルギーを示すOPデータを生成してもよい。 For example, in the energy setting process of the print control process, the energy setting unit 33 corrects the OP data received from the PC 200, but the present invention is not limited to this. In the energy setting process, the energy setting unit 33 may generate OP data indicating the thermal energy corresponding to the high concentration region Rg1, the edge portion Rg3, etc. specified by the region identification process.
 この発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is exemplary in all embodiments and the invention is not limited thereto. It is understood that a myriad of variations not illustrated can be envisioned without departing from the scope of the invention.
 2 ペーパー、3,BL1 サーマルヘッド、6 インクシート、10 制御部、30 画像処理部、30a 補正部、30b 画像調整処理部、31 領域特定部、32 エッジ特定部、33,BL2 エネルギー設定部、100,BL10,hd10 昇華型プリンター。 2 paper, 3, BL1 thermal head, 6 ink sheet, 10 control unit, 30 image processing unit, 30a correction unit, 30b image adjustment processing unit, 31 area identification unit, 32 edge identification unit, 33, BL2 energy setting unit, 100 , BL10, hd10 Sublimation printer.

Claims (10)

  1.  画像を表現するためのインク材料と、保護材料とが設けられたインクシートをサーマルヘッドが加熱して、当該インク材料および当該保護材料をペーパーに転写する印画処理を行なう昇華型プリンターであって、
     前記印画処理では、前記インク材料が前記ペーパーに転写された後、前記保護材料が、前記画像を表現している当該インク材料を覆うように、当該保護材料が当該ペーパーに転写され、
     前記保護材料の状態には、前記印画処理により当該保護材料が前記ペーパーに転写された状態である転写状態と、当該保護材料が前記インクシートに設けられた状態である非転写状態とが存在し、
     前記保護材料は、光沢特性を有し、
     前記光沢特性は、前記非転写状態の前記保護材料を前記ペーパーに転写するために当該非転写状態の当該保護材料に印加される熱エネルギーの変化に応じて、前記転写状態の当該保護材料の光沢度が変化するという特性であり、
     前記昇華型プリンターは、前記画像における、高濃度領域およびエッジ部の一方または両方である対象領域を特定し、
     前記高濃度領域は、前記画像のうち、設定された閾値である基準濃度以上の濃度で表現される領域であり、
     前記エッジ部は、前記画像に示されるエッジを示す領域であり、
     前記昇華型プリンターは、
      熱を発する前記サーマルヘッドと、
      前記印画処理において、前記サーマルヘッドが前記非転写状態の前記保護材料に印加する前記熱エネルギーである印加エネルギーを設定するエネルギー設定部とを備え、
     前記非転写状態の前記保護材料は、
      前記画像の前記対象領域を覆うための第1保護材料と、
      前記画像のうち、前記対象領域と異なる領域を覆うための第2保護材料とを含み、
     前記転写状態の前記第1保護材料の光沢度が、前記転写状態の前記第2保護材料の光沢度より高くなるように、前記エネルギー設定部は、当該第1保護材料および当該第2保護材料の各々に印加するための前記印加エネルギーを設定する、
     昇華型プリンター。
    A sublimation printer in which a thermal head heats an ink sheet provided with an ink material for expressing an image and a protective material, and performs a printing process of transferring the ink material and the protective material to paper.
    In the printing process, after the ink material is transferred to the paper, the protective material is transferred to the paper so that the protective material covers the ink material expressing the image.
    The state of the protective material includes a transfer state in which the protective material is transferred to the paper by the printing process and a non-transfer state in which the protective material is provided on the ink sheet. ,
    The protective material has glossy properties and
    The gloss property is the gloss of the protective material in the transferred state in response to a change in thermal energy applied to the protective material in the non-transfer state in order to transfer the protective material in the non-transfer state to the paper. It is a characteristic that the degree changes,
    The sublimation printer identifies a target area, which is one or both of a high density area and an edge portion, in the image.
    The high density region is a region of the image represented by a density equal to or higher than a reference density, which is a set threshold value.
    The edge portion is a region showing an edge shown in the image.
    The sublimation printer
    The thermal head that emits heat and
    In the printing process, the thermal head includes an energy setting unit for setting applied energy, which is the thermal energy applied to the protective material in the non-transfer state.
    The protective material in the non-transfer state is
    A first protective material for covering the target area of the image, and
    The image includes a second protective material for covering a region different from the target region.
    The energy setting unit of the first protective material and the second protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state. Set the applied energy to be applied to each,
    Sublimation printer.
  2.  前記対象領域は、前記高濃度領域であり、
     前記昇華型プリンターは、さらに、
      前記高濃度領域を特定する領域特定部を備える、
     請求項1に記載の昇華型プリンター。
    The target region is the high concentration region.
    The sublimation printer further
    A region specifying portion for specifying the high concentration region is provided.
    The sublimation printer according to claim 1.
  3.  前記対象領域は、前記エッジ部であり、
     前記昇華型プリンターは、さらに、
      前記エッジ部を特定するエッジ特定部を備える、
     請求項1に記載の昇華型プリンター。
    The target area is the edge portion and
    The sublimation printer further
    The edge specifying portion for specifying the edge portion is provided.
    The sublimation printer according to claim 1.
  4.  前記対象領域は、前記高濃度領域および前記エッジ部であり、
     前記第1保護材料は、
      前記エッジ部を覆うためのエッジ保護材料と、
      前記高濃度領域を覆うための高濃度保護材料とを含み、
     前記転写状態の前記エッジ保護材料の光沢度が前記転写状態の前記高濃度保護材料の光沢度より高く、かつ、前記転写状態の当該高濃度保護材料の光沢度が前記転写状態の前記第2保護材料の光沢度より高くなるように、前記エネルギー設定部は、当該エッジ保護材料、当該高濃度保護材料および当該第2保護材料の各々に印加するための前記印加エネルギーを設定する、
     請求項1に記載の昇華型プリンター。
    The target region is the high concentration region and the edge portion.
    The first protective material is
    An edge protection material for covering the edge portion and
    Including a high concentration protective material for covering the high concentration region,
    The glossiness of the edge protective material in the transfer state is higher than the glossiness of the high-concentration protective material in the transfer state, and the glossiness of the high-concentration protective material in the transfer state is the second protection in the transfer state. The energy setting unit sets the applied energy to be applied to each of the edge protective material, the high concentration protective material, and the second protective material so as to be higher than the glossiness of the material.
    The sublimation printer according to claim 1.
  5.  前記印画処理では、前記サーマルヘッドが、前記エネルギー設定部が設定した前記印加エネルギーを、前記非転写状態の前記保護材料に印加する、
     請求項1から4のいずれか1項に記載の昇華型プリンター。
    In the printing process, the thermal head applies the applied energy set by the energy setting unit to the protective material in the non-transfer state.
    The sublimation printer according to any one of claims 1 to 4.
  6.  前記閾値は、前記昇華型プリンターの筐体の内部の温度および湿度の両方または一方に基づいて設定された値である、
     請求項1から5のいずれか1項に記載の昇華型プリンター。
    The threshold value is a value set based on both or one of the temperature and humidity inside the housing of the sublimation printer.
    The sublimation printer according to any one of claims 1 to 5.
  7.  前記閾値は、前記インクシートを構成する材料の組成、および、前記ペーパーを構成する材料の組成の両方または一方に基づいて設定された値である、
     請求項1から5のいずれか1項に記載の昇華型プリンター。
    The threshold is a value set based on the composition of the material constituting the ink sheet and / or the composition of the material constituting the paper.
    The sublimation printer according to any one of claims 1 to 5.
  8.  画像を表現するためのインク材料と、保護材料とが設けられたインクシートをサーマルヘッドが加熱して、当該インク材料および当該保護材料をペーパーに転写する印画処理を行なう昇華型プリンターが行う印刷制御方法であって、
     前記印画処理では、前記インク材料が前記ペーパーに転写された後、前記保護材料が、前記画像を表現している当該インク材料を覆うように、当該保護材料が当該ペーパーに転写され、
     前記保護材料の状態には、前記印画処理により当該保護材料が前記ペーパーに転写された状態である転写状態と、当該保護材料が前記インクシートに設けられた状態である非転写状態とが存在し、
     前記保護材料は、光沢特性を有し、
     前記光沢特性は、前記非転写状態の前記保護材料を前記ペーパーに転写するために当該非転写状態の当該保護材料に印加される熱エネルギーの変化に応じて、前記転写状態の当該保護材料の光沢度が変化するという特性であり、
     前記昇華型プリンターは、前記画像における、高濃度領域およびエッジ部の一方または両方である対象領域を特定し、
     前記高濃度領域は、前記画像のうち、設定された閾値である基準濃度以上の濃度で表現される領域であり、
     前記エッジ部は、前記画像に示されるエッジを示す領域であり、
     前記印刷制御方法は、
     (a)前記印画処理において、前記サーマルヘッドが前記非転写状態の前記保護材料に印加する前記熱エネルギーである印加エネルギーを設定するステップを備え、
     前記非転写状態の前記保護材料は、
      前記画像の前記対象領域を覆うための第1保護材料と、
      前記画像のうち、前記対象領域と異なる領域を覆うための第2保護材料とを含み、
      前記ステップ(a)では、前記転写状態の前記第1保護材料の光沢度が、前記転写状態の前記第2保護材料の光沢度より高くなるように、前記昇華型プリンターは、当該第1保護材料および当該第2保護材料の各々に印加するための前記印加エネルギーを設定する、
     印刷制御方法。
    Printing control performed by a sublimation printer that heats an ink sheet provided with an ink material for expressing an image and a protective material and performs a printing process to transfer the ink material and the protective material to paper. It's a method
    In the printing process, after the ink material is transferred to the paper, the protective material is transferred to the paper so that the protective material covers the ink material expressing the image.
    The state of the protective material includes a transfer state in which the protective material is transferred to the paper by the printing process and a non-transfer state in which the protective material is provided on the ink sheet. ,
    The protective material has glossy properties and
    The gloss property is the gloss of the protective material in the transferred state in response to a change in thermal energy applied to the protective material in the non-transfer state in order to transfer the protective material in the non-transfer state to the paper. It is a characteristic that the degree changes,
    The sublimation printer identifies a target area, which is one or both of a high density area and an edge portion, in the image.
    The high density region is a region of the image represented by a density equal to or higher than a reference density, which is a set threshold value.
    The edge portion is a region showing an edge shown in the image.
    The print control method is
    (A) In the printing process, a step of setting the applied energy, which is the thermal energy applied to the protective material in the non-transfer state by the thermal head, is provided.
    The protective material in the non-transfer state is
    A first protective material for covering the target area of the image, and
    The image includes a second protective material for covering a region different from the target region.
    In the step (a), the sublimation printer uses the first protective material so that the glossiness of the first protective material in the transferred state is higher than the glossiness of the second protective material in the transferred state. And set the applied energy to be applied to each of the second protective materials.
    Print control method.
  9.  前記対象領域は、前記高濃度領域であり、
     前記印刷制御方法は、さらに、
      前記高濃度領域を特定するステップを備える、
     請求項8に記載の印刷制御方法。
    The target region is the high concentration region.
    The print control method further comprises
    A step of identifying the high concentration region.
    The print control method according to claim 8.
  10.  前記対象領域は、前記エッジ部であり、
     前記印刷制御方法は、さらに、
      前記エッジ部を特定するステップを備える、
     請求項8に記載の印刷制御方法。
    The target area is the edge portion and
    The print control method further comprises
    A step of identifying the edge portion is provided.
    The print control method according to claim 8.
PCT/JP2019/027888 2019-07-16 2019-07-16 Sublimation printer and printing control method WO2021009834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027888 WO2021009834A1 (en) 2019-07-16 2019-07-16 Sublimation printer and printing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027888 WO2021009834A1 (en) 2019-07-16 2019-07-16 Sublimation printer and printing control method

Publications (1)

Publication Number Publication Date
WO2021009834A1 true WO2021009834A1 (en) 2021-01-21

Family

ID=74209766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027888 WO2021009834A1 (en) 2019-07-16 2019-07-16 Sublimation printer and printing control method

Country Status (1)

Country Link
WO (1) WO2021009834A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971057A (en) * 1995-06-30 1997-03-18 Sony Corp Laminating method of image protective layer
JP2004042481A (en) * 2002-07-12 2004-02-12 Make Softwear:Kk Printer, photographic print forming device, printing method, and method for forming photographic print
US20090111037A1 (en) * 2007-10-31 2009-04-30 Evans Stuart G Protective overcoat transfer compensation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971057A (en) * 1995-06-30 1997-03-18 Sony Corp Laminating method of image protective layer
JP2004042481A (en) * 2002-07-12 2004-02-12 Make Softwear:Kk Printer, photographic print forming device, printing method, and method for forming photographic print
US20090111037A1 (en) * 2007-10-31 2009-04-30 Evans Stuart G Protective overcoat transfer compensation

Similar Documents

Publication Publication Date Title
EP2409841B1 (en) Inkjet printer and inkjet printing method
US8780156B2 (en) Print control device
JP5926567B2 (en) Thermal printer and protective coat printing method
AU713029B2 (en) Thermal transfer recording method and thermal transfer printer
JP6346774B2 (en) Printing apparatus and printing system
US20010046401A1 (en) Thermal print ribbon compensation
TWI478820B (en) Thermal transfer printer
WO2021009834A1 (en) Sublimation printer and printing control method
JP7005961B2 (en) Protective layer transfer method
US9067432B2 (en) Printer apparatus and laminating method
US9889676B2 (en) Printing device
JP6783415B1 (en) Printing device and printing control method
WO2019186627A1 (en) Printer and printing control method
JP4997828B2 (en) Printer, heat storage correction control method, and print control method
JP5253276B2 (en) Printer device
JP5451208B2 (en) Thermal printer control method and thermal printer
JP5669563B2 (en) Thermal transfer printer
JP5720223B2 (en) Thermal printer
WO2020245869A1 (en) Thermal printer and image printing method
US6704036B2 (en) Color thermal printer
JP2005144755A (en) Thermal printer
WO2022130487A1 (en) Printing system and printing method
WO2022137349A1 (en) Thermal printer
JP4069441B2 (en) Printing method and printer
WO2021181497A1 (en) Thermal printer and print control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP