WO2021164648A1 - 用于加热单元的控制方法及加热单元和冷藏冷冻装置 - Google Patents

用于加热单元的控制方法及加热单元和冷藏冷冻装置 Download PDF

Info

Publication number
WO2021164648A1
WO2021164648A1 PCT/CN2021/076240 CN2021076240W WO2021164648A1 WO 2021164648 A1 WO2021164648 A1 WO 2021164648A1 CN 2021076240 W CN2021076240 W CN 2021076240W WO 2021164648 A1 WO2021164648 A1 WO 2021164648A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave generating
generating module
heat dissipation
air outlet
Prior art date
Application number
PCT/CN2021/076240
Other languages
English (en)
French (fr)
Inventor
戚斐斐
宋向鹏
崔展鹏
韩志强
薛文超
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020180615.8U external-priority patent/CN211823376U/zh
Priority claimed from CN202010099918.1A external-priority patent/CN113347750B/zh
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to US17/800,594 priority Critical patent/US20230345591A1/en
Priority to AU2021223034A priority patent/AU2021223034B2/en
Priority to EP21757869.9A priority patent/EP4098958A4/en
Priority to JP2022547676A priority patent/JP7406643B2/ja
Priority to KR1020227027941A priority patent/KR20220157940A/ko
Publication of WO2021164648A1 publication Critical patent/WO2021164648A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/48Circuits
    • H05B6/50Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/642Cooling of the microwave components and related air circulation systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20209Thermal management, e.g. fan control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater

Definitions

  • the invention relates to the field of food processing, in particular to a control method for a heating unit, a heating unit and a refrigerating and freezing device.
  • the quality of the food is maintained during the freezing process, but the frozen food needs to be heated before being processed or eaten.
  • the prior art generally defrosts food by installing electromagnetic wave heating units in refrigerators and other refrigerating and freezing devices.
  • the electromagnetic wave generating system of the heating unit will generate a lot of heat during the working process, which will not only cause temperature fluctuations in the storage compartment, affect the preservation quality of the ingredients in the storage compartment, but also reduce the working efficiency of the electromagnetic wave generation system itself. Long-term exposure to high temperature will seriously reduce the service life of electrical components.
  • An object of the first aspect of the present invention is to overcome at least one technical defect of the prior art and provide a control method for an electromagnetic wave heating unit.
  • a further object of the first aspect of the present invention is to reduce energy consumption.
  • An object of the second aspect of the present invention is to provide a heating unit.
  • An object of the third aspect of the present invention is to provide a refrigerating and freezing device having the heating unit.
  • a further object of the third aspect of the present invention is to improve the heat dissipation efficiency of the electromagnetic wave generating system.
  • a control method for a heating unit comprising a cylinder for placing the object to be treated, and at least a part of the cylinder is arranged in the cylinder or accessible to the cylinder.
  • An electromagnetic wave generating system in the body, and the electromagnetic wave generating system includes an electromagnetic wave generating module for generating electromagnetic wave signals and a heat dissipation fan for dissipating heat for the electromagnetic wave generating module; wherein, the control method includes:
  • the rotation speed of the cooling fan is adjusted according to the power value of the forward power signal and the electromagnetic wave absorption rate.
  • the step of adjusting the rotation speed of the cooling fan according to the power value of the forward power signal and the electromagnetic wave absorption rate includes:
  • the rotation speed of the cooling fan is matched according to the power value of the forward power signal and the electromagnetic wave absorption rate according to a preset rotation speed comparison relationship;
  • the rotation speed comparison relationship records the rotation speeds corresponding to different ranges of power values and different ranges of electromagnetic wave absorption rates
  • the rotation speed of the cooling fan is negatively correlated with the average value of the electromagnetic wave absorption rate in different ranges; when the electromagnetic wave absorption rate is the same, the cooling fan The speed is positively correlated with the average value of the power values in different ranges.
  • the electromagnetic wave generating module includes a frequency source, a power amplifier, and a processing unit; the control method further includes:
  • the frequency source and the power amplifier are controlled to stop working.
  • the method further includes:
  • the cooling fan is controlled to work at a rated speed for a first preset time, and stop working after the first preset time.
  • a heating unit including:
  • the cylinder is used to place the objects to be processed
  • An electromagnetic wave generating system at least a part of which is arranged in the cylinder or accessible to the cylinder to generate electromagnetic waves in the cylinder to heat the object to be processed, the electromagnetic wave generating system includes an electromagnetic wave generating module for generating electromagnetic wave signals, and A heat dissipating fan for dissipating heat from the electromagnetic wave generating module; and
  • Controller configured to execute any of the control methods described above.
  • the electromagnetic wave generating system further includes:
  • a radiating antenna arranged in the cylinder and electrically connected to the electromagnetic wave generating module to radiate electromagnetic waves in the cylinder;
  • a bidirectional coupler connected in series between the electromagnetic wave generating module and the radiating antenna, is configured to monitor the forward power signal and the reverse power signal.
  • the barrel defines a heating chamber for placing the object to be processed
  • the electromagnetic wave generating module is arranged outside the heating chamber.
  • a refrigerating and freezing device including:
  • a box defining at least one storage compartment
  • the cylinder is arranged in one of the storage compartments, and the electromagnetic wave generating module is arranged on the outside of the heat insulation layer of the box.
  • the refrigerating and freezing device further includes:
  • a cover configured to house the electromagnetic wave generating module and the heat dissipation fan inside;
  • the partition is arranged in the casing and located on the side of the heat dissipation fan away from the electromagnetic wave generating module, so as to divide the space in the casing into an air inlet area and an air outlet area;
  • the heat dissipation fan and the electromagnetic wave generating module are arranged in the air outlet area;
  • the air inlet area and the air outlet area are respectively provided with at least one air inlet and at least one air outlet in the circumferential direction of the heat dissipation fan, and at least one air outlet is provided on the partition corresponding to the position of the heat dissipation fan. Vent;
  • the air flow direction from the at least one air inlet to the at least one air outlet is perpendicular to the air flow direction from the at least one air outlet to each air outlet.
  • the electromagnetic wave generating system further includes:
  • a power supply module configured to provide electrical energy for the electromagnetic wave generating module
  • the power supply module is arranged in the air outlet area, and is located on a side of the electromagnetic wave generating module perpendicular to the air flow direction from the at least one air vent to each air outlet;
  • the power supply module is provided with a thermally conductive material, and the thermally conductive material is configured to be thermally connected to the partition.
  • the present invention adjusts the rotation speed of the heat dissipation fan of the electromagnetic wave generating module to dissipate heat. Compared with adjusting the rotation speed of the heat dissipation fan according to the temperature of the electromagnetic wave generating module, There is no need to set up an additional temperature sensing device, which can more accurately reflect the heat generated by the electromagnetic wave generating module, while achieving sufficient heat dissipation of the electromagnetic wave generating module, avoiding undesired energy waste and noise pollution, and improving user experience.
  • the electromagnetic wave generating module is arranged on the outside of the heat insulation layer of the box body, and the cover is divided into the air inlet area and the air outlet area, and the electromagnetic wave generating module and the heat dissipation fan are arranged in the air outlet area, so that any The air flow direction from an air inlet to the vent is perpendicular to the air flow direction from the vent to each air outlet, which not only reduces the influence of the heat generated by the electromagnetic wave generating system on the storage compartment of the box, but also improves the storage compartment
  • the preservation quality of indoor ingredients also reduces the wind resistance of the cooling fan, further improves the heat dissipation efficiency, and also prevents water and dust from entering the enclosure through the air inlet and outlet, causing the electromagnetic wave generating module and the cooling fan to be damp and fall off. This phenomenon occurs, avoiding potential safety hazards.
  • the power supply module is arranged on the side of the electromagnetic wave generating module in the air outlet area that is perpendicular to the air flow direction from the at least one vent to each air outlet, and a thermal conductive material is arranged to connect the partition and the power supply module,
  • the cooling fan heats the power supply module and the electromagnetic wave generating module during the process of inhaling and blowing out the air flow, making the structure more compact, and further improving the heat dissipation efficiency of the electromagnetic wave generating module and the power supply module as a whole, and ensuring the treatment of the object.
  • the heating efficiency extends the service life of the electromagnetic wave generating module and the power supply module.
  • a refrigerating and freezing device including:
  • the cylinder is arranged in the box and is used to place the objects to be treated;
  • the electromagnetic wave generating system at least a part of which is arranged in the cylinder or accessible to the cylinder, to generate electromagnetic waves in the cylinder to heat the object to be treated; wherein the electromagnetic wave generating system includes:
  • An electromagnetic wave generating module configured to generate electromagnetic wave signals
  • the power supply module is configured to provide electrical energy for the electromagnetic wave generating module; and the heating unit further includes:
  • At least one heat dissipation fan is configured to dissipate heat for the electromagnetic wave generating module and the power supply module.
  • the refrigerating and freezing device further includes:
  • the heat dissipation fin includes a plurality of ribs perpendicular to the electromagnetic wave generating module and thermally connected to the electromagnetic wave generating module;
  • the at least one heat dissipation fan is arranged on a side of the heat dissipation fin far away from the electromagnetic wave generating module, and is arranged to blow the air flow toward the electromagnetic wave generating module, wherein
  • the electromagnetic wave generating module and the power supply module are arranged outside the heat insulation layer of the box; and/or
  • the at least one heat dissipation fan is arranged above the electromagnetic wave generating module.
  • the extending direction of the plurality of ribs is set to be perpendicular to the direction in which the electromagnetic wave generating module approaches the power supply module;
  • At least one of the ribs thermally connected to the middle of the electromagnetic wave generating module is provided with a receiving portion recessed toward the electromagnetic wave generating module;
  • the at least one heat dissipation fan is arranged in the accommodating part, and the projection of the at least one heat dissipation fan in the extending direction perpendicular to the plurality of ribs is located in at least one of the ribs.
  • the at least one heat dissipating fan is configured to suck airflow through the power supply module and cause the airflow to blow out to the electromagnetic wave generating module.
  • the refrigerating and freezing device further includes:
  • a housing configured to house the electromagnetic wave generating module, the power supply module, and the at least one heat dissipation fan inside;
  • the partition is arranged in the casing and located on the side of the at least one heat dissipation fan away from the electromagnetic wave generating module, so as to divide the space in the casing into an air inlet area and an air outlet area;
  • the at least one heat dissipation fan and the electromagnetic wave generating module are arranged in the air outlet area;
  • the air inlet area and the air outlet area are respectively provided with at least one air inlet and at least one air outlet in the circumferential direction of the at least one heat dissipation fan, and the partition corresponds to the position of the at least one heat dissipation fan At least one vent is provided.
  • the air flow direction from the at least one air inlet to the at least one air outlet is perpendicular to the air flow direction from the at least one air outlet to each air outlet;
  • the power supply module is arranged in the air outlet area and is located on a side of the electromagnetic wave generating module perpendicular to the air flow direction from the at least one vent to each air outlet, and the refrigerating and freezing device further includes :
  • the thermally conductive material is arranged to be thermally connected to the power supply module and the partition board.
  • the invention uses the heat dissipation fan to simultaneously dissipate the electromagnetic wave generating module and the power supply module, which can not only realize the high-efficiency cooling of the electromagnetic wave generation module and the power supply module, but also reduces the occupied space and improves the storage space of the refrigerating and freezing device.
  • the present invention divides the cover into an air inlet area and an air outlet area, and arranges the electromagnetic wave generating module, the power supply module, and the heat dissipation fan in the air outlet area, and makes the heat dissipation fan separately in the process of inhaling airflow and blowing out airflow. Dissipate heat for the power supply module and the electromagnetic wave generation module, making the structure more compact, and further improve the heat dissipation efficiency of the electromagnetic wave generation module and the power supply module as a whole, ensure the heating efficiency of the treatment object, and extend the use of the electromagnetic wave generation module and the power supply module life.
  • the electromagnetic wave generating module and the power supply module are arranged above the heat insulation layer of the box body, and the air flow direction from any air inlet to the vent and the air flow direction from the vent to each air outlet are set.
  • Vertical not only reduces the influence of the heat generated by the electromagnetic wave generation system on the storage compartment of the box, improves the storage quality of the indoor ingredients in the storage compartment, but also reduces the wind resistance of the cooling fan, further improving the heat dissipation efficiency, and also It avoids the phenomenon that water and dust enter the enclosure through the air inlet and the air outlet to cause the electromagnetic wave generating module and the power supply module to get damp and dust, and avoid the emergence of potential safety hazards.
  • Fig. 1 is a schematic exploded view of a refrigerating and freezing device according to an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a heating unit according to an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of the controller in Fig. 2;
  • Fig. 4 is a schematic structural diagram of the electromagnetic wave generating module in Fig. 2;
  • Fig. 5 is a schematic partial cross-sectional view of the refrigerating and freezing device shown in Fig. 1;
  • Fig. 6 is a schematic top view of the wind outlet area in Fig. 5;
  • Fig. 7 is a schematic flowchart of a control method for a heating unit according to an embodiment of the present invention.
  • Fig. 8 is a detailed flowchart of a control method for a heating unit according to an embodiment of the present invention.
  • Fig. 1 is a schematic exploded view of a refrigerating and freezing device 200 according to an embodiment of the present invention
  • Fig. 2 is a schematic structural view of a heating unit 100 according to an embodiment of the present invention.
  • the refrigerating and freezing device 200 may include a box 210 defining at least one storage compartment, at least one door for opening and closing at least one storage compartment, a heating unit 100, and a controller.
  • the refrigerating and freezing device 200 may be a device having a refrigerating or freezing function, such as a refrigerator, a freezer, a freezer, and a wine cabinet.
  • the box body 210 may include an inner box defining at least one storage compartment, an outer box, and a heat insulation layer disposed between the inner box and the outer box.
  • the heating unit 100 may include a cylinder 110 arranged in a storage compartment of the box 210, a door, and an electromagnetic wave generating system.
  • the barrel 110 may define a heating chamber for placing the object 170 to be processed, and the front wall of the cylinder 110 may be provided with a take-out opening for taking and placing the object 170 to be processed.
  • the door can be installed with the cylinder 110 by a suitable method, such as sliding rail connection, hinged connection, etc., for opening and closing the access opening.
  • the electromagnetic wave generating system may be at least partially disposed in the barrel 110 or accessible to the barrel 110 to generate electromagnetic waves in the barrel 110 to heat the object 170 to be processed.
  • the cylinder body 110 and the door body may be respectively provided with electromagnetic shielding features, so that the door body is conductively connected with the cylinder body 110 when the door body is in the closed state, so as to prevent electromagnetic leakage.
  • Fig. 3 is a schematic structural diagram of the controller in Fig. 2.
  • the controller 140 may include a processing unit 141 and a storage unit 142.
  • the storage unit 142 stores a computer program 143, which is used to implement the control method of the embodiment of the present invention when the computer program 143 is executed by the processing unit 141.
  • the electromagnetic wave generation system may include an electromagnetic wave generation module 120, a power supply module 180, a radiation antenna 150, and a matching module 160.
  • the electromagnetic wave generating module 120 may be configured to generate electromagnetic wave signals.
  • FIG. 4 is a schematic structural diagram of the electromagnetic wave generating module 120 in FIG. 2.
  • the electromagnetic wave generating module 120 may include a frequency source 121, a power amplifier 122 and a processing unit 123.
  • the power supply module 180 may be configured to be electrically connected to the electromagnetic wave generating module 120 to provide electrical energy to the electromagnetic wave generating module 120, so that the electromagnetic wave generating module 120 generates electromagnetic wave signals.
  • the radiating antenna 150 may be disposed in the barrel 110 and electrically connected to the electromagnetic wave generating module 120 to generate electromagnetic waves of a corresponding frequency according to the electromagnetic wave signal to heat the object 170 in the barrel 110.
  • the matching module 160 can be connected in series between the electromagnetic wave generating module 120 and the radiating antenna 150, and is configured to adjust the load impedance of the electromagnetic wave generating module 120 by adjusting its own impedance, so as to achieve load matching and improve heating efficiency.
  • the barrel 110 may be made of metal to serve as the receiving pole of the radiating antenna 150.
  • the barrel 110 itself is the electromagnetic shielding feature of the barrel 110.
  • the electromagnetic wave generating system further includes a receiving plate arranged opposite to the radiation antenna 150 and electrically connected to the electromagnetic wave generating module 120.
  • the inner wall of the barrel 110 may be coated with a metal coating or attached with a metal mesh, etc., as an electromagnetic shielding feature of the barrel 110.
  • FIG. 5 is a schematic partial cross-sectional view of the refrigerating and freezing device 200 shown in FIG. 1.
  • the heating unit 100 may further include at least one heat dissipation fan 190 for dissipating heat for the electromagnetic wave generating module 120 and the power supply module 180.
  • the present invention uses the cooling fan 190 to simultaneously dissipate the electromagnetic wave generating module 120 and the power supply module 180, which not only realizes the efficient cooling of the electromagnetic wave generating module 120 and the power supply module 180, but also reduces the occupied space and improves the storage of the refrigerating and freezing device 200 space.
  • the number of the cooling fan 190 may be one, two, or more than two. In order to facilitate the understanding of the present invention, the number of the cooling fan 190 is taken as an example to introduce the present invention in the following.
  • the refrigerating and freezing device 200 may further include heat dissipation fins 240 thermally connected to the electromagnetic wave generating module 120 to increase the heat dissipation area of the electromagnetic wave generating module 120, thereby improving the heat dissipation efficiency of the electromagnetic wave generating module 120.
  • the heat dissipation fin 240 may include a plurality of ribs perpendicular to the electromagnetic wave generating module 120, that is, each rib extends from the electromagnetic wave generating module 120 in a direction away from the electromagnetic wave generating module 120, and is perpendicular to the mounting surface of the rib.
  • the heat dissipation fin 240 may further include a substrate made integrally with a plurality of ribs for thermal connection with the electromagnetic wave generating module 120.
  • the heat dissipation fan 190 may be arranged on the side of the heat dissipation fin 240 away from the electromagnetic wave generating module 120 and configured to blow the air flow toward the electromagnetic wave generating module 120, that is, the electromagnetic wave generating module 120 is arranged downstream of the heat dissipation fan 190 to reduce wind resistance and increase electromagnetic waves. The heat dissipation efficiency of the module 120 occurs.
  • the extending direction of the plurality of ribs may be further set to be perpendicular to the direction in which the electromagnetic wave generating module 120 approaches the power supply module 180 to reduce the influence of the heat generated by the electromagnetic wave generating module 120 on the power supply module 180.
  • At least one rib thermally connected to the middle of the electromagnetic wave generating module 120 is provided with a accommodating portion recessed in a direction approaching the electromagnetic wave generating module 120.
  • the heat dissipation fan 190 may be arranged in the accommodating part, and the projection of the heat dissipation fan 190 in the extending direction perpendicular to the plurality of ribs is located in at least one rib, so as to further reduce the influence of heat on the power supply module 180 and further improve electromagnetic waves.
  • the heat dissipation efficiency of the module 120 occurs.
  • the heat dissipation fan 190 may be configured to draw in air flow through the power supply module 180 and cause the air flow to blow out to the electromagnetic wave generating module 120, so as to improve the compactness of the structure and improve the heat dissipation efficiency of the electromagnetic wave generating module 120 and the power supply module 180 as a whole.
  • the refrigerating and freezing device 200 may further include a cover 220 and a partition.
  • the cover 220 can be used to house the electromagnetic wave generating module 120, the power supply module 180, and the cooling fan 190 inside.
  • the partition may be arranged in the casing 220 and located on the side of the heat dissipation fan 190 away from the electromagnetic wave generating module 120 to separate the space in the casing 220 into an air inlet area and an air outlet area.
  • the cooling fan 190 and the electromagnetic wave generating module 120 may be arranged in the air outlet area.
  • Fig. 6 is a schematic top view of the air outlet area in Fig. 5. 5 and 6, at least one air inlet 221 and at least one air outlet 222 are respectively opened in the air inlet area and the air outlet area in the circumferential direction of the heat dissipation fan 190, and the partition is opened at a position corresponding to the at least one heat dissipation fan 190 There is at least one vent 231 to prevent water and dust from entering the housing 220 through the air inlet 221 and the air outlet 222 to cause the electromagnetic wave generating module 120 and the power supply module 180 to be damp and dust, thereby avoiding potential safety hazards.
  • the air flow direction from the at least one air inlet 221 to the at least one air vent 231 is perpendicular to the air flow direction from the at least one air vent 231 to each air outlet 222 to further reduce wind resistance and improve heat dissipation efficiency.
  • the power supply module 180 may be arranged in the air outlet area and located on the side of the electromagnetic wave generating module 120 perpendicular to the air flow direction from the at least one air vent 231 to each air outlet 222, so that the heat dissipation fan 190 is in a position between the suction air flow and the blowing air flow.
  • the power supply module 180 and the electromagnetic wave generation module 120 are respectively dissipated, which further reduces the influence of heat on the power supply module 180 and improves the heat dissipation efficiency.
  • the refrigerating and freezing device 200 further includes a thermally conductive material 250 thermally connected to the power supply module 180 and the partition plate to improve the heat dissipation efficiency of the power supply module 180.
  • the electromagnetic wave generating module 120, the power supply module 180, the heat dissipation fan 190 and the cover 220 may be arranged outside the heating chamber to reduce the influence of the heat generated by the electromagnetic wave generating module 120 and the power supply module 180 on the object 170 in the heating chamber. Further, the electromagnetic wave generating module 120 and the like may be arranged on the outside of the heat insulation layer of the box body 210.
  • the heat dissipation fan 190 may be disposed above the electromagnetic wave generating module 120, that is, the electromagnetic wave generating module 120 may be disposed above the heat insulation layer, so as to improve the stability of the electromagnetic wave generating module 120 and the heat dissipation fan 190.
  • the processing unit 141 may be configured to obtain the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal returned to the electromagnetic wave generating module 120 when the electromagnetic wave generating module 120 is working, and calculate the object to be processed according to the forward power signal and the reverse power signal
  • the electromagnetic wave absorption rate of 170 is adjusted according to the power value of the forward power signal (that is, the output power of the electromagnetic wave generating module 120) and the electromagnetic wave absorption rate to adjust the rotation speed of the cooling fan 190.
  • a bidirectional coupler 130 may be connected in series between the electromagnetic wave generating module 120 and the radiating antenna 150 to monitor the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal of the returning electromagnetic wave generating module 120.
  • the heating unit 100 of the present invention adjusts the rotation speed of the heat dissipation fan 190 of the electromagnetic wave generating module 120 to dissipate heat according to the power value of the forward power signal output by the electromagnetic wave generating module 120 and the electromagnetic wave absorption rate of the to-be-processed object 170.
  • the temperature of 120 adjusts the rotation speed of the heat dissipation fan 190, without the need to provide additional temperature sensing devices, which can more accurately reflect the heat generated by the electromagnetic wave generating module 120, while achieving sufficient heat dissipation of the electromagnetic wave generating module 120, avoiding undesirable Energy waste and noise pollution improve the user experience.
  • the processing unit 141 may be configured to match the rotation speed of the cooling fan 190 according to a preset rotation speed comparison relationship according to the power value of the forward power signal and the electromagnetic wave absorption rate. Among them, the rotation speed comparison relationship records the rotation speeds corresponding to different ranges of power values and different ranges of electromagnetic wave absorption rates.
  • the rotation speed of the cooling fan 190 may be negatively correlated with the average value of electromagnetic wave absorption rates in different ranges; when the electromagnetic wave absorption rate is the same, the rotation speed of the cooling fan 190 may be different from The average value of the power value of the range is positively correlated, and the electromagnetic wave generating module 120 is dissipated efficiently and energy-savingly.
  • the speed control relation can also be a formula that records different power values, electromagnetic wave absorption rate and speed.
  • the processing unit 141 may also be configured to obtain the temperature of the processing unit 123 of the electromagnetic wave generating module 120 in real time when the electromagnetic wave generating module 120 is working, and to control the frequency source 121 and the power when the temperature of the processing unit 123 is greater than or equal to a preset temperature threshold.
  • the amplifier 122 stops working to ensure the service life of the processing unit 123.
  • the processing unit 141 may be further configured to, after the control frequency source 121 and the power amplifier 122 stop working, control the cooling fan 190 to operate at a rated speed for a first preset time and then stop working, so as to quickly dissipate the heat in the casing 220, Avoid heat buildup.
  • Fig. 7 is a schematic flowchart of a control method for the heating unit 100 according to an embodiment of the present invention.
  • the control method for the heating unit 100 executed by the controller 140 of any of the above embodiments of the present invention may include the following steps:
  • Step S702 Obtain the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal returning to the electromagnetic wave generating module 120.
  • Step S704 Calculate the electromagnetic wave absorption rate of the object 170 to be processed according to the forward power signal and the reverse power signal.
  • Step S706 Adjust the rotation speed of the cooling fan 190 according to the power value of the forward power signal and the electromagnetic wave absorption rate.
  • the control method of the present invention adjusts the rotation speed of the heat dissipation fan 190 of the electromagnetic wave generating module 120 to dissipate heat according to the power value of the forward power signal output by the electromagnetic wave generating module 120 and the electromagnetic wave absorption rate of the object 170.
  • the temperature adjusts the speed of the heat dissipation fan 190 without the need for additional temperature sensing devices, which can more accurately reflect the heat generated by the electromagnetic wave generating module 120, while achieving sufficient heat dissipation of the electromagnetic wave generating module 120, avoiding undesired energy Waste and noise pollution improve the user experience.
  • FIG. 8 is a detailed flowchart of a control method for the heating unit 100 according to an embodiment of the present invention.
  • the control method for the heating unit 100 of the present invention may include the following steps:
  • Step S802 Obtain the temperature of the processing unit of the electromagnetic wave generating module 120.
  • Step S804 Determine whether the temperature of the processing unit 123 of the electromagnetic wave generating module 120 itself is greater than or equal to a preset temperature threshold. If yes, go to step S806; if not, go to step S808.
  • Step S806 Control the frequency source 121 and the power amplifier 122 to stop working, and the cooling fan 190 operates at the rated speed for the first preset time and stops working after the first preset time, so as to ensure the service life of the processing unit 123 and avoid the casing Heat accumulates in 220.
  • Step S808 Obtain the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal returning to the electromagnetic wave generating module 120.
  • the forward power signal and the reverse power signal can be monitored and obtained by the bidirectional coupler 130 connected in series between the electromagnetic wave generating module 120 and the radiating antenna 150.
  • Step S810 is executed.
  • Step S810 Calculate the electromagnetic wave absorption rate of the object 170 to be processed according to the forward power signal and the reverse power signal. Step S812 is executed.
  • Step S812 According to the power value of the forward power signal and the electromagnetic wave absorption rate, the rotation speed of the cooling fan 190 is matched according to the preset rotation speed comparison relationship. Wherein, when the power value of the positive power signal is the same, the rotation speed of the cooling fan 190 can be negatively correlated with the average value of electromagnetic wave absorption rates in different ranges; when the electromagnetic wave absorption rate is the same, the rotation speed of the cooling fan 190 can be It is positively correlated with the average value of the power values in different ranges, and the electromagnetic wave generating module 120 can be dissipated efficiently and energy-savingly. Return to step S802.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cookers (AREA)

Abstract

一种用于加热单元(100)的控制方法及加热单元(100)和冷藏冷冻装置(200)。控制方法包括:获取电磁波发生模块(120)输出的正向功率信号和返回电磁波发生模块(120)的反向功率信号(S702);根据正向功率信号和反向功率信号计算待处理物的电磁波吸收率(S704);根据正向功率信号的功率值和电磁波吸收率调节散热风扇(190)的转速(S706)。根据电磁波发生模块(120)输出的正向功率信号的功率值和待处理物的电磁波吸收率调节为电磁波发生模块(120)散热的散热风扇(190)的转速,相比于根据电磁波发生模块(120)的温度调节散热风扇(190)的转速,无需设置额外的温度感测装置,可更加准确地反映电磁波发生模块(120)产生的热量,在实现对电磁波发生模块(120)的充分散热的同时,避免了不期望的能源浪费和噪音污染。

Description

用于加热单元的控制方法及加热单元和冷藏冷冻装置 技术领域
本发明涉及食物处理领域,特别是涉及一种用于加热单元的控制方法及加热单元和冷藏冷冻装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要加热。为了便于用户冷冻和加热食物,现有技术一般通过在冰箱等冷藏冷冻装置中设置电磁波加热单元来解冻食物。
然而,加热单元的电磁波发生系统在工作过程中会产生较多的热量,不仅导致储物间室的温度波动,影响储物间室内食材的保藏品质,而且会降低电磁波发生系统本身的工作效率,若长期处于高温状态还会严重减少电器件的使用寿命。
发明内容
本发明第一方面的一个目的是要克服现有技术的至少一个技术缺陷,提供一种用于电磁波加热单元的控制方法。
本发明第一方面的一个进一步的目的是要降低能耗。
本发明第二方面的一个目的是要提供一种加热单元。
本发明第三方面的一个目的是要提供一种具有该加热单元的冷藏冷冻装置。
本发明第三方面的一个进一步的目的是要提高电磁波发生系统的散热效率。
根据本发明的第一方面,提供了一种用于加热单元的控制方法,所述加热单元包括用于放置待处理物的筒体、以及至少一部分设置于所述筒体内或通达至所述筒体内的电磁波发生系统,且所述电磁波发生系统包括用于产生电磁波信号的电磁波发生模块以及为所述电磁波发生模块散热的散热风扇;其中,所述控制方法包括:
获取所述电磁波发生模块输出的正向功率信号和返回所述电磁波发生模块的反向功率信号;
根据所述正向功率信号和所述反向功率信号计算待处理物的电磁波吸收率;
根据所述正向功率信号的功率值和所述电磁波吸收率调节所述散热风扇的转速。
可选地,所述根据所述正向功率信号的功率值和所述电磁波吸收率调节所述散热风扇的转速的步骤包括:
根据所述正向功率信号的功率值和所述电磁波吸收率按照预置的转速对照关系匹配所述散热风扇的转速;其中
所述转速对照关系记录有不同范围的功率值和不同范围的电磁波吸收率对应的转速;且
在所述正向功率信号的功率值相同的情况下,所述散热风扇的转速与不同范围的电磁波吸收率的平均值呈负相关;在所述电磁波吸收率相同的情况下,所述散热风扇的转速与不同范围的功率值的平均值呈正相关。
可选地,所述电磁波发生模块包括频率源、功率放大器和处理单元;所述控制方法还包括:
获取所述处理单元的温度;
若所述处理单元的温度大于等于预设温度阈值,控制所述频率源和功率放大器停止工作。
可选地,在所述控制所述频率源和功率放大器停止工作的步骤之后还包括:
控制所述散热风扇以额定转速工作第一预设时间,并在所述第一预设时间后停止工作。
根据本发明的第二方面,提供了一种加热单元,包括:
筒体,用于放置待处理物;
电磁波发生系统,至少一部分设置于所述筒体内或通达至所述筒体内,以在所述筒体内产生电磁波来加热待处理物,所述电磁波发生系统包括用于产生电磁波信号的电磁波发生模块以及为所述电磁波发生模块散热的散热风扇;以及
控制器;配置为用于执行以上任一所述的控制方法。
可选地,所述电磁波发生系统还包括:
辐射天线,设置于所述筒体内,并与所述电磁波发生模块电连接,以在 所述筒体内辐射电磁波;和
双向耦合器,串联在所述电磁波发生模块与所述辐射天线之间,配置为监测所述正向功率信号和所述反向功率信号。
可选地,所述筒体限定有用于放置待处理物的加热室;且
所述电磁波发生模块设置于所述加热室的外侧。
根据本发明的第三方面,提供了一种冷藏冷冻装置,包括:
箱体,限定有至少一个储物间室;以及
根据以上任一所述的加热单元;其中
所述筒体设置于一个所述储物间室内,且所述电磁波发生模块设置于所述箱体的隔热层的外侧。
可选地,所述冷藏冷冻装置还包括:
罩壳,设置为将所述电磁波发生模块和所述散热风扇罩设在内;以及
隔板,设置于所述罩壳内并位于所述散热风扇远离所述电磁波发生模块的一侧,以将所述罩壳内的空间分隔为进风区和出风区;其中
所述散热风扇和所述电磁波发生模块设置于所述出风区;
所述进风区和所述出风区在所述散热风扇的周向方向上分别开设有至少一个进风口和至少一个出风口,所述隔板对应所述散热风扇的位置处开设有至少一个通风口;且
所述至少一个进风口分别至所述至少一个通风口的气流流动方向均垂直于所述至少一个通风口至每个所述出风口的气流流动方向。
可选地,所述电磁波发生系统还包括:
供电模块,配置为为所述电磁波发生模块提供电能;其中
所述供电模块设置于所述出风区,并位于所述电磁波发生模块的垂直于所述至少一个通风口至每个所述出风口的气流流动方向的一侧;且
所述供电模块设置有导热材料,所述导热材料设置为与所述隔板热连接。
本发明根据电磁波发生模块输出的正向功率信号的功率值和待处理物的电磁波吸收率调节为电磁波发生模块散热的散热风扇的转速,相比于根据电磁波发生模块的温度调节散热风扇的转速,无需设置额外的温度感测装置,可更加准确地反映电磁波发生模块产生的热量,在实现对电磁波发生模块的充分散热的同时,避免了不期望的能源浪费和噪音污染,提高了用户体 验。
进一步地,本发明通过将电磁波发生模块设置在箱体的隔热层的外侧,并将罩壳分隔为进风区和出风区,将电磁波发生模块和散热风扇设置在出风区,使任意一个进风口至通风口的气流流动方向与该通风口至每个出风口的气流流动方向垂直,不仅降低了电磁波发生系统产生的热量对箱体的储物间室的影响,提高了储物间室内食材的保藏品质,还降低了散热风扇的风阻,进一步地提高了散热效率,而且还避免了水和灰尘经由进风口和出风口进入罩壳内使电磁波发生模块和散热风扇受潮和落灰的现象发生,避免了出现安全隐患。
进一步地,本发明将供电模块设置在出风区的位于电磁波发生模块的垂直于至少一个通风口至每个出风口的气流流动方向的一侧,并设置导热材料来连接隔板和供电模块,使散热风扇在吸入气流和吹出气流的过程中分别为供电模块和电磁波发生模块散热,使得结构更加紧凑,并在整体上进一步提高了电磁波发生模块和供电模块的散热效率,保证了对待处理物的加热效率,延长了电磁波发生模块和供电模块的使用寿命。
根据本发明的另一方面,还提供了一种冷藏冷冻装置,包括:
箱体和加热单元;其特征在于,所述加热单元包括:
筒体,设置于所述箱体内,用于放置待处理物;以及
电磁波发生系统,至少一部分设置于所述筒体内或通达至所述筒体内,以在所述筒体内产生电磁波来加热待处理物;其中所述电磁波发生系统包括:
电磁波发生模块,配置为产生电磁波信号;和
供电模块,配置为为所述电磁波发生模块提供电能;且所述加热单元还包括:
至少一个散热风扇,设置为为所述电磁波发生模块和所述供电模块散热。
可选地,所述冷藏冷冻装置还包括:
散热翅片,包括垂直于所述电磁波发生模块并与所述电磁波发生模块的热连接的多个肋板;其中
所述至少一个散热风扇设置于所述散热翅片远离所述电磁波发生模块的一侧,并设置为将气流向所述电磁波发生模块吹出,其中
所述电磁波发生模块和所述供电模块设置于所述箱体的隔热层的外侧;和/或
所述至少一个散热风扇设置于所述电磁波发生模块的上方。
可选地,所述多个肋板的延伸方向设置为垂直于所述电磁波发生模块靠近所述供电模块的方向;
与所述电磁波发生模块的中部热连接的至少一个所述肋板设置有向靠近所述电磁波发生模块的方向凹陷的容置部;且
所述至少一个散热风扇设置于所述容置部,且所述至少一个散热风扇在垂直于所述多个肋板的延伸方向上的投影至少位于一个所述肋板内。
可选地,所述至少一个散热风扇设置为经由所述供电模块吸入气流并促使气流向所述电磁波发生模块吹出。
可选地,所述冷藏冷冻装置,还包括:
罩壳,设置为将所述电磁波发生模块、所述供电模块以及所述至少一个散热风扇罩设在内;和
隔板,设置于所述罩壳内并位于所述至少一个散热风扇远离所述电磁波发生模块的一侧,以将所述罩壳内的空间分隔为进风区和出风区;其中
所述至少一个散热风扇和所述电磁波发生模块设置于所述出风区;且
所述进风区和所述出风区在所述至少一个散热风扇的周向方向上分别开设有至少一个进风口和至少一个出风口,所述隔板对应所述至少一个散热风扇的位置处开设有至少一个通风口。
可选地,所述至少一个进风口分别至所述至少一个通风口的气流流动方向均垂直于所述至少一个通风口至每个所述出风口的气流流动方向;
所述供电模块设置于所述出风区,并位于所述电磁波发生模块的垂直于所述至少一个通风口至每个所述出风口的气流流动方向的一侧,所述冷藏冷冻装置还包括:
导热材料,设置为与所述供电模块和所述隔板热连接。
本发明通过散热风扇同时为电磁波发生模块和供电模块散热,不仅可实现对电磁波发生模块和供电模块的高效降温,还减小了占用空间,提高了冷藏冷冻装置的储物空间。
进一步地,本发明通过将罩壳分隔为进风区和出风区,将电磁波发生模块、供电模块和散热风扇均设置在出风区,并使散热风扇在吸入气流和吹出 气流的过程中分别为供电模块和电磁波发生模块散热,使得结构更加紧凑,并在整体上进一步提高了电磁波发生模块和供电模块的散热效率,保证了对待处理物的加热效率,延长了电磁波发生模块和供电模块的使用寿命。
进一步地,本发明通过将电磁波发生模块和供电模块设置于箱体的隔热层的上方,并使任意一个进风口至通风口的气流流动方向与该通风口至每个出风口的气流流动方向垂直,不仅降低了电磁波发生系统产生的热量对箱体的储物间室的影响,提高了储物间室内食材的保藏品质,还降低了散热风扇的风阻,进一步地提高了散热效率,而且还避免了水和灰尘经由进风口和出风口进入罩壳内使电磁波发生模块和供电模块受潮和落灰的现象发生,避免了安全隐患的出现。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意性爆炸视图;
图2是本发明一个实施例的加热单元的示意性结构图;
图3是图2中控制器的示意性结构图;
图4是图2中电磁波发生模块的示意性结构图;
图5是图1所示冷藏冷冻装置的示意性局部剖视图;
图6是图5中出风区的示意性俯视图;
图7是根据本发明一个实施例的用于加热单元的控制方法的示意性流程图;
图8是根据本发明一个实施例的用于加热单元的控制方法的详细流程图。
具体实施方式
图1是根据本发明一个实施例的冷藏冷冻装置200的示意性爆炸视图;图2是本发明一个实施例的加热单元100的示意性结构图。参见图1和图2,冷藏冷冻装置200可包括限定有至少一个储物间室的箱体210、用于开闭至 少一个储物间室的至少一个门体、加热单元100以及控制器。在本发明中,冷藏冷冻装置200可为冰箱、冰柜、冷柜、酒柜等具有冷藏或冷冻功能的装置。
箱体210可包括限定有至少一个储物间室的内胆、外箱和设置于内胆和外箱之间的隔热层。
加热单元100可包括设置于箱体210的一个储物间室内的筒体110、门体和电磁波发生系统。
具体地,筒体110可限定有加热室,用于放置待处理物170,且其前壁可开设有取放口,用于取放待处理物170。
门体可通过适当方法与筒体110安装在一起,例如滑轨连接、铰接等,用于开闭取放口。
电磁波发生系统可至少一部分设置于筒体110内或通达至筒体110内,以在筒体110内产生电磁波来加热待处理物170。
筒体110和门体可分别设置有电磁屏蔽特征,使门体在关闭状态时与筒体110导电连接,以防止电磁泄露。
图3是图2中控制器的示意性结构图。参见图3,控制器140可包括处理单元141和存储单元142。其中存储单元142存储有计算机程序143,计算机程序143被处理单元141执行时用于实现本发明实施例的控制方法。
在一些实施例中,电磁波发生系统可包括电磁波发生模块120、供电模块180、辐射天线150、以及匹配模块160。
电磁波发生模块120可配置为产生电磁波信号。图4是图2中电磁波发生模块120的示意性结构图。参见图4,在一些实施例中,电磁波发生模块120可包括频率源121、功率放大器122和处理单元123。
供电模块180可设置为与电磁波发生模块120电连接,以为电磁波发生模块120提供电能,进而使电磁波发生模块120产生电磁波信号。
辐射天线150可设置于筒体110内并与电磁波发生模块120电连接,以根据电磁波信号产生相应频率的电磁波,对筒体110内的待处理物170进行加热。
匹配模块160可串联在电磁波发生模块120与辐射天线150之间,并配置为可通过调节自身阻抗来调节电磁波发生模块120的负载阻抗,以实现负载匹配,提高加热效率。
在一些进一步的实施例中,筒体110可由金属制成,以作为辐射天线150的接收极。在该实施例中,筒体110本身即为筒体110的电磁屏蔽特征。
在另一些进一步的实施例中,电磁波发生系统还包括与辐射天线150相对设置并与电磁波发生模块120电连接的接收极板。在该实施例中,筒体110的内壁可涂覆有金属涂层或贴附有金属网等,以作为筒体110的电磁屏蔽特征。
图5是图1所示冷藏冷冻装置200的示意性局部剖视图。参见图5,特别地,加热单元100还可包括至少一个散热风扇190,用于为电磁波发生模块120和供电模块180散热。本发明通过散热风扇190同时为电磁波发生模块120和供电模块180散热,不仅可实现对电磁波发生模块120和供电模块180的高效降温,还减小了占用空间,提高了冷藏冷冻装置200的储物空间。
在本发明中,散热风扇190的数量可为一个、两个或两个以上的更多个。为便于理解本发明,后文以散热风扇190的数量为一个为例对本发明进行介绍。
在一些实施例中,冷藏冷冻装置200还可包括与电磁波发生模块120热连接的散热翅片240,以提高电磁波发生模块120的散热面积,进而提高电磁波发生模块120的散热效率。
散热翅片240可包括垂直于电磁波发生模块120的多个肋板,即每个肋板自电磁波发生模块120向远离电磁波发生模块120的方向延伸,并垂直该肋板的安装表面。
散热翅片240还可包括与多个肋板一体制成的基板,用于与电磁波发生模块120热连接。
散热风扇190可设置于散热翅片240远离电磁波发生模块120的一侧,并设置为将气流向电磁波发生模块120吹出,即电磁波发生模块120设置在散热风扇190的下游,以降低风阻,提高电磁波发生模块120的散热效率。
多个肋板的延伸方向可进一步设置为垂直于电磁波发生模块120靠近供电模块180的方向,以降低电磁波发生模块120产生的热量对供电模块180的影响。
与电磁波发生模块120的中部热连接的至少一个肋板设置有向靠近电磁波发生模块120的方向凹陷的容置部。
散热风扇190可设置于容置部,且散热风扇190在垂直于多个肋板的延 伸方向上的投影至少位于一个肋板内,以进一步地降低热量对供电模块180的影响,并进一步提高电磁波发生模块120的散热效率。
散热风扇190可设置为经由供电模块180吸入气流并促使气流向电磁波发生模块120吹出,以在提高结构紧凑性的同时,在整体上提高了电磁波发生模块120和供电模块180的散热效率。
冷藏冷冻装置200还可包括罩壳220和隔板。罩壳220可用于将电磁波发生模块120、供电模块180以及散热风扇190罩设在内。
隔板可设置于罩壳220内并位于散热风扇190远离电磁波发生模块120的一侧,以将罩壳220内的空间分隔为进风区和出风区。散热风扇190和电磁波发生模块120可设置于出风区。
图6是图5中出风区的示意性俯视图。参见图5和图6,进风区和出风区在散热风扇190的周向方向上分别开设有至少一个进风口221和至少一个出风口222,隔板对应至少一个散热风扇190的位置处开设有至少一个通风口231,以避免水和灰尘经由进风口221和出风口222进入罩壳220内使电磁波发生模块120和供电模块180受潮和落灰的现象发生,避免了安全隐患的出现。
至少一个进风口221分别至至少一个通风口231的气流流动方向均垂直于至少一个通风口231至每个出风口222的气流流动方向,以进一步降低风阻,提高散热效率。
供电模块180可设置于出风区,并位于电磁波发生模块120的垂直于至少一个通风口231至每个出风口222的气流流动方向的一侧,以使散热风扇190在吸入气流和吹出气流的过程中分别为供电模块180和电磁波发生模块120散热,进一步降低热量对供电模块180的影响,并提高散热效率。
进一步地,冷藏冷冻装置200还包括与供电模块180和隔板热连接的导热材料250,以提高供电模块180的散热效率。
电磁波发生模块120、供电模块180、散热风扇190和罩壳220可设置于加热室的外侧,以降低电磁波发生模块120和供电模块180产生热量对加热室内待处理物170的影响。进一步地,电磁波发生模块120等可设置于箱体210的隔热层的外侧。
散热风扇190可设置于电磁波发生模块120的上方,即电磁波发生模块120可设置于隔热层的上方,以提高电磁波发生模块120和散热风扇190的 稳定性。
处理单元141可配置为在电磁波发生模块120工作时获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号,根据正向功率信号和反向功率信号计算待处理物170的电磁波吸收率,再根据正向功率信号的功率值(即电磁波发生模块120的输出功率)和电磁波吸收率调节散热风扇190的转速。
电磁波发生模块120与辐射天线150之间可串联有双向耦合器130,以监测电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号。
本发明的加热单元100根据电磁波发生模块120输出的正向功率信号的功率值和待处理物170的电磁波吸收率调节为电磁波发生模块120散热的散热风扇190的转速,相比于根据电磁波发生模块120的温度调节散热风扇190的转速,无需设置额外的温度感测装置,可更加准确地反映电磁波发生模块120产生的热量,在实现对电磁波发生模块120的充分散热的同时,避免了不期望的能源浪费和噪音污染,提高了用户体验。
在一些进一步地实施例中,处理单元141可配置为根据正向功率信号的功率值和电磁波吸收率按照预置的转速对照关系匹配散热风扇190的转速。其中,转速对照关系记录有不同范围的功率值和不同范围的电磁波吸收率对应的转速。
在正向功率信号的功率值相同的情况下,散热风扇190的转速可与不同范围的电磁波吸收率的平均值呈负相关;在电磁波吸收率相同的情况下,散热风扇190的转速可与不同范围的功率值的平均值呈正相关,以高效、节能地为电磁波发生模块120散热。
转速对照关系也可为记载有不同功率值、电磁波吸收率和转速的公式。
处理单元141还可配置为在电磁波发生模块120工作时,实时获取电磁波发生模块120本身的处理单元123的温度,并在处理单元123的温度大于等于预设温度阈值时,控制频率源121和功率放大器122停止工作,以保证处理单元123的使用寿命。
处理单元141还可进一步地配置为在控制频率源121和功率放大器122停止工作之后,控制散热风扇190以额定转速工作第一预设时间再停止工作,以快速将罩壳220内的热量散热,避免热量积聚。
图7是根据本发明一个实施例的用于加热单元100的控制方法的示意性流程图。参见图7,本发明的由上述任一实施例的控制器140执行的用于加热单元100的控制方法可包括如下步骤:
步骤S702:获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号。
步骤S704:根据正向功率信号和反向功率信号计算待处理物170的电磁波吸收率。
步骤S706:根据正向功率信号的功率值和电磁波吸收率调节散热风扇190的转速。
本发明的控制方法根据电磁波发生模块120输出的正向功率信号的功率值和待处理物170的电磁波吸收率调节为电磁波发生模块120散热的散热风扇190的转速,相比于根据电磁波发生模块120的温度调节散热风扇190的转速,无需设置额外的温度感测装置,可更加准确地反映电磁波发生模块120产生的热量,在实现对电磁波发生模块120的充分散热的同时,避免了不期望的能源浪费和噪音污染,提高了用户体验。
图8是根据本发明一个实施例的用于加热单元100的控制方法的详细流程图。参见图8,本发明的用于加热单元100的控制方法可包括如下步骤:
步骤S802:获取电磁波发生模块120的处理单元的温度。
步骤S804:判断电磁波发生模块120本身的处理单元123的温度是否大于等于预设温度阈值。若是,执行步骤S806;若否,执行步骤S808。
步骤S806:控制频率源121和功率放大器122停止工作,散热风扇190以额定转速工作第一预设时间并在第一预设时间后停止工作,以保证处理单元123的使用寿命,并避免罩壳220内积聚热量。
步骤S808:获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号。在该步骤中,正向功率信号和反向功率信号可由串联在电磁波发生模块120与辐射天线150之间的双向耦合器130监测获得。运行步骤S810。
步骤S810:根据正向功率信号和反向功率信号计算待处理物170的电磁波吸收率。运行步骤S812。
步骤S812:根据正向功率信号的功率值和电磁波吸收率按照预置的转速对照关系匹配散热风扇190的转速。其中,在正向功率信号的功率值相同 的情况下,散热风扇190的转速可与不同范围的电磁波吸收率的平均值呈负相关;在电磁波吸收率相同的情况下,散热风扇190的转速可与不同范围的功率值的平均值呈正相关,以高效、节能地为电磁波发生模块120散热。返回步骤S802。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (15)

  1. 一种用于加热单元的控制方法,所述加热单元包括用于放置待处理物的筒体、以及至少一部分设置于所述筒体内或通达至所述筒体内的电磁波发生系统,且所述电磁波发生系统包括用于产生电磁波信号的电磁波发生模块以及为所述电磁波发生模块散热的散热风扇;其中,所述控制方法包括:
    获取所述电磁波发生模块输出的正向功率信号和返回所述电磁波发生模块的反向功率信号;
    根据所述正向功率信号和所述反向功率信号计算待处理物的电磁波吸收率;
    根据所述正向功率信号的功率值和所述电磁波吸收率调节所述散热风扇的转速。
  2. 根据权利要求1所述的控制方法,其中,所述根据所述正向功率信号的功率值和所述电磁波吸收率调节所述散热风扇的转速的步骤包括:
    根据所述正向功率信号的功率值和所述电磁波吸收率按照预置的转速对照关系匹配所述散热风扇的转速;其中
    所述转速对照关系记录有不同范围的功率值和不同范围的电磁波吸收率对应的转速;且
    在所述正向功率信号的功率值相同的情况下,所述散热风扇的转速与不同范围的电磁波吸收率的平均值呈负相关;在所述电磁波吸收率相同的情况下,所述散热风扇的转速与不同范围的功率值的平均值呈正相关。
  3. 根据权利要求1所述的控制方法,其中,所述电磁波发生模块包括频率源、功率放大器和处理单元;所述控制方法还包括:
    获取所述处理单元的温度;
    若所述处理单元的温度大于等于预设温度阈值,控制所述频率源和功率放大器停止工作。
  4. 根据权利要求3所述的控制方法,其中,在所述控制所述频率源和功率放大器停止工作的步骤之后还包括:
    控制所述散热风扇以额定转速工作第一预设时间,并在所述第一预设时间后停止工作。
  5. 一种加热单元,包括:
    筒体,用于放置待处理物;
    电磁波发生系统,至少一部分设置于所述筒体内或通达至所述筒体内,以在所述筒体内产生电磁波来加热待处理物,所述电磁波发生系统包括用于产生电磁波信号的电磁波发生模块以及为所述电磁波发生模块散热的散热风扇;以及
    控制器,配置为用于执行权利要求1-4中任一所述的控制方法。
  6. 根据权利要求5所述的加热单元,其中,所述电磁波发生系统还包括:
    辐射天线,设置于所述筒体内,并与所述电磁波发生模块电连接,以在所述筒体内辐射电磁波;和
    双向耦合器,串联在所述电磁波发生模块与所述辐射天线之间,配置为监测所述正向功率信号和所述反向功率信号,其中
    所述筒体限定有用于放置待处理物的加热室;且
    所述电磁波发生模块设置于所述加热室的外侧。
  7. 一种冷藏冷冻装置,包括:
    箱体,限定有至少一个储物间室;以及
    根据权利要求5或6所述的加热单元;其中
    所述筒体设置于一个所述储物间室内,且所述电磁波发生模块设置于所述箱体的隔热层的外侧。
  8. 根据权利要求7所述的冷藏冷冻装置,还包括:
    罩壳,设置为将所述电磁波发生模块和所述散热风扇罩设在内;以及
    隔板,设置于所述罩壳内并位于所述散热风扇远离所述电磁波发生模块的一侧,以将所述罩壳内的空间分隔为进风区和出风区;其中
    所述散热风扇和所述电磁波发生模块设置于所述出风区;
    所述进风区和所述出风区在所述散热风扇的周向方向上分别开设有至少一个进风口和至少一个出风口,所述隔板对应所述散热风扇的位置处开设有至少一个通风口;且
    所述至少一个进风口分别至所述至少一个通风口的气流流动方向均垂直于所述至少一个通风口至每个所述出风口的气流流动方向。
  9. 根据权利要求8所述的冷藏冷冻装置,其中,所述电磁波发生系统还包括:
    供电模块,配置为为所述电磁波发生模块提供电能;其中
    所述供电模块设置于所述出风区,并位于所述电磁波发生模块的垂直于 所述至少一个通风口至每个所述出风口的气流流动方向的一侧;且
    所述供电模块设置有导热材料,所述导热材料设置为与所述隔板热连接。
  10. 一种冷藏冷冻装置,包括:
    箱体和加热单元;其特征在于,所述加热单元包括:
    筒体,设置于所述箱体内,用于放置待处理物;以及
    电磁波发生系统,至少一部分设置于所述筒体内或通达至所述筒体内,以在所述筒体内产生电磁波来加热待处理物;其中所述电磁波发生系统包括:
    电磁波发生模块,配置为产生电磁波信号;和
    供电模块,配置为为所述电磁波发生模块提供电能;且所述加热单元还包括:
    至少一个散热风扇,设置为为所述电磁波发生模块和所述供电模块散热。
  11. 根据权利要求10所述的冷藏冷冻装置,还包括:
    散热翅片,包括垂直于所述电磁波发生模块并与所述电磁波发生模块的热连接的多个肋板;其中
    所述至少一个散热风扇设置于所述散热翅片远离所述电磁波发生模块的一侧,并设置为将气流向所述电磁波发生模块吹出,其中
    所述电磁波发生模块和所述供电模块设置于所述箱体的隔热层的外侧;和/或
    所述至少一个散热风扇设置于所述电磁波发生模块的上方。
  12. 根据权利要求11所述的冷藏冷冻装置,其中,
    所述多个肋板的延伸方向设置为垂直于所述电磁波发生模块靠近所述供电模块的方向;
    与所述电磁波发生模块的中部热连接的至少一个所述肋板设置有向靠近所述电磁波发生模块的方向凹陷的容置部;且
    所述至少一个散热风扇设置于所述容置部,且所述至少一个散热风扇在垂直于所述多个肋板的延伸方向上的投影至少位于一个所述肋板内。
  13. 根据权利要求10所述的冷藏冷冻装置,其中,
    所述至少一个散热风扇设置为经由所述供电模块吸入气流并促使气流 向所述电磁波发生模块吹出。
  14. 根据权利要求10所述的冷藏冷冻装置,还包括:
    罩壳,设置为将所述电磁波发生模块、所述供电模块以及所述至少一个散热风扇罩设在内;和
    隔板,设置于所述罩壳内并位于所述至少一个散热风扇远离所述电磁波发生模块的一侧,以将所述罩壳内的空间分隔为进风区和出风区;其中
    所述至少一个散热风扇和所述电磁波发生模块设置于所述出风区;且
    所述进风区和所述出风区在所述至少一个散热风扇的周向方向上分别开设有至少一个进风口和至少一个出风口,所述隔板对应所述至少一个散热风扇的位置处开设有至少一个通风口。
  15. 根据权利要求14所述的冷藏冷冻装置,其中,
    所述至少一个进风口分别至所述至少一个通风口的气流流动方向均垂直于所述至少一个通风口至每个所述出风口的气流流动方向;
    所述供电模块设置于所述出风区,并位于所述电磁波发生模块的垂直于所述至少一个通风口至每个所述出风口的气流流动方向的一侧,所述冷藏冷冻装置还包括:
    导热材料,设置为与所述供电模块和所述隔板热连接。
PCT/CN2021/076240 2020-02-18 2021-02-09 用于加热单元的控制方法及加热单元和冷藏冷冻装置 WO2021164648A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/800,594 US20230345591A1 (en) 2020-02-18 2021-02-09 Control method for heating unit, heating unit, and refrigerating and freezing apparatus
AU2021223034A AU2021223034B2 (en) 2020-02-18 2021-02-09 Control method for heating unit, heating unit, and refrigerating and freezing apparatus
EP21757869.9A EP4098958A4 (en) 2020-02-18 2021-02-09 CONTROL METHOD FOR HEATING UNIT, HEATING UNIT AND REFRIGERATION AND FREEZING APPLIANCE
JP2022547676A JP7406643B2 (ja) 2020-02-18 2021-02-09 加熱ユニットの制御方法、加熱ユニット及び冷蔵冷凍装置
KR1020227027941A KR20220157940A (ko) 2020-02-18 2021-02-09 가열유닛의 제어방법 및 가열유닛 및 냉장냉동장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020180615.8U CN211823376U (zh) 2020-02-18 2020-02-18 冷藏冷冻装置
CN202010099918.1 2020-02-18
CN202020180615.8 2020-02-18
CN202010099918.1A CN113347750B (zh) 2020-02-18 2020-02-18 用于加热单元的控制方法及加热单元和冷藏冷冻装置

Publications (1)

Publication Number Publication Date
WO2021164648A1 true WO2021164648A1 (zh) 2021-08-26

Family

ID=77391848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076240 WO2021164648A1 (zh) 2020-02-18 2021-02-09 用于加热单元的控制方法及加热单元和冷藏冷冻装置

Country Status (6)

Country Link
US (1) US20230345591A1 (zh)
EP (1) EP4098958A4 (zh)
JP (1) JP7406643B2 (zh)
KR (1) KR20220157940A (zh)
AU (1) AU2021223034B2 (zh)
WO (1) WO2021164648A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428931A (zh) * 2012-05-18 2013-12-04 上海松下微波炉有限公司 微波炉的控制电路
CN106016391A (zh) * 2016-06-21 2016-10-12 广东美的厨房电器制造有限公司 微波炉
JP2018141625A (ja) * 2018-06-19 2018-09-13 パナソニックIpマネジメント株式会社 冷蔵庫
CN209893783U (zh) * 2019-01-30 2020-01-03 青岛海尔电冰箱有限公司 加热装置及具有该加热装置的冰箱
CN209893724U (zh) * 2019-02-19 2020-01-03 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN211823376U (zh) * 2020-02-18 2020-10-30 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN212211435U (zh) * 2020-04-02 2020-12-22 青岛海尔电冰箱有限公司 加热单元及具有该加热单元的冷藏冷冻装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392388B1 (ko) * 2000-11-08 2003-07-22 삼성전자주식회사 과열방지 기능을 갖는 전자렌지 및 그 팬모터 제어방법
PL2469974T3 (pl) 2010-12-21 2017-06-30 Whirlpool Corporation Sposób sterowania chłodzeniem w urządzeniu do podgrzewania mikrofalowego i urządzenie do podgrzewania mikrofalowego
CN209897305U (zh) * 2019-01-04 2020-01-03 青岛海尔股份有限公司 加热装置及具有该加热装置的冰箱
CN209893723U (zh) * 2019-02-19 2020-01-03 青岛海尔电冰箱有限公司 冷藏冷冻装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428931A (zh) * 2012-05-18 2013-12-04 上海松下微波炉有限公司 微波炉的控制电路
CN106016391A (zh) * 2016-06-21 2016-10-12 广东美的厨房电器制造有限公司 微波炉
JP2018141625A (ja) * 2018-06-19 2018-09-13 パナソニックIpマネジメント株式会社 冷蔵庫
CN209893783U (zh) * 2019-01-30 2020-01-03 青岛海尔电冰箱有限公司 加热装置及具有该加热装置的冰箱
CN209893724U (zh) * 2019-02-19 2020-01-03 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN211823376U (zh) * 2020-02-18 2020-10-30 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN212211435U (zh) * 2020-04-02 2020-12-22 青岛海尔电冰箱有限公司 加热单元及具有该加热单元的冷藏冷冻装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4098958A4 *

Also Published As

Publication number Publication date
KR20220157940A (ko) 2022-11-29
AU2021223034A1 (en) 2022-08-25
JP7406643B2 (ja) 2023-12-27
AU2021223034B2 (en) 2023-11-02
US20230345591A1 (en) 2023-10-26
EP4098958A4 (en) 2023-10-18
JP2023514140A (ja) 2023-04-05
EP4098958A1 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
CN211823376U (zh) 冷藏冷冻装置
WO2021223779A1 (zh) 用于冷藏冷冻装置的控制方法及冷藏冷冻装置
WO2020156333A1 (zh) 加热装置及具有该加热装置的冰箱
JP7197713B2 (ja) 加熱装置及び加熱装置を有する冷蔵庫
WO2020168945A1 (zh) 冷藏冷冻装置
WO2020220789A1 (zh) 用于冷藏冷冻装置的解冻方法及冷藏冷冻装置
WO2020140722A1 (zh) 冷藏冷冻装置
CN113498225A (zh) 加热单元及具有该加热单元的冷藏冷冻装置
CN109990530B (zh) 解冻装置及具有该解冻装置的冰箱
WO2021164648A1 (zh) 用于加热单元的控制方法及加热单元和冷藏冷冻装置
CN113347750B (zh) 用于加热单元的控制方法及加热单元和冷藏冷冻装置
WO2020168944A1 (zh) 冷藏冷冻装置
WO2020168959A1 (zh) 冷藏冷冻装置
WO2023213317A1 (zh) 冷藏冷冻装置
CN212211435U (zh) 加热单元及具有该加热单元的冷藏冷冻装置
CN211372860U (zh) 风冷冰箱
CN213273345U (zh) 冷藏冷冻装置
WO2020151595A1 (zh) 加热装置及冰箱
CN112824785B (zh) 用于风冷冰箱的控制方法及风冷冰箱
CN210220352U (zh) 冰箱
CN210625066U (zh) 冰箱
WO2024002089A1 (zh) 用于冷藏冷冻装置的控制方法及冷藏冷冻装置
WO2019120172A1 (zh) 冷藏冷冻装置的控制方法
CN112824786A (zh) 风冷冰箱
RU2778309C1 (ru) Холодильное и морозильное устройство

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547676

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021223034

Country of ref document: AU

Date of ref document: 20210209

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021757869

Country of ref document: EP

Effective date: 20220830

NENP Non-entry into the national phase

Ref country code: DE