WO2021164541A1 - 一种通信设备及时钟同步的方法 - Google Patents

一种通信设备及时钟同步的方法 Download PDF

Info

Publication number
WO2021164541A1
WO2021164541A1 PCT/CN2021/074864 CN2021074864W WO2021164541A1 WO 2021164541 A1 WO2021164541 A1 WO 2021164541A1 CN 2021074864 W CN2021074864 W CN 2021074864W WO 2021164541 A1 WO2021164541 A1 WO 2021164541A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
clock
cross
service
connect
Prior art date
Application number
PCT/CN2021/074864
Other languages
English (en)
French (fr)
Inventor
林沛庆
王晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21756637.1A priority Critical patent/EP4096121A4/en
Publication of WO2021164541A1 publication Critical patent/WO2021164541A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0691Synchronisation in a TDM node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0688Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]

Definitions

  • This application relates to the field of communication technology, and in particular to a communication device and a method for clock synchronization.
  • Optical transport network can support the transmission of a variety of signals. It has developed rapidly in recent years and has gradually become one of the mainstream technologies in the field of optical communications. Multiple OTN transmission devices are usually set in the network constructed by this technology to realize signal transmission.
  • Fig. 1 is a schematic diagram of the structure of OTN transmission equipment.
  • the device includes a control board, a cross-connect board, and a service board.
  • the control board integrates a clock function, so the control board can provide a clock for synchronization to a single board such as a crossover board and a service board, so that the entire device is in a clock synchronization state to perform related service processing normally.
  • This application provides a communication device and a method for clock synchronization. After the control board is offline, the cross-connect board and the service board can maintain clock synchronization to continue normal execution of related service processing and avoid service processing interruption.
  • the first aspect of the embodiments of the present application provides a communication device.
  • the communication device includes a control board, a first cross board, and a service board.
  • the control board integrates a clock function. When the control board is online, it can generate the first clock required for the synchronization of each single board in the device, and provide each single board with the first clock for synchronization. Therefore, when the control board is online, the control board can be used as a clock source to provide the first clock for the first cross-connect board and the service board, so that the first cross-connect board and the service board can work synchronously to perform related services.
  • the control board After the control board receives the offline signal, it can send a first notification signal to the first cross-connect board and the service board.
  • the first notification signal is used to instruct the clock source to switch from the control board to the first cross-connect board.
  • the first cross board After receiving the first notification signal, the first cross board maintains the second clock through the local crystal oscillator of the first cross board according to the first notification signal.
  • the frequency of the second clock is the same as the frequency of the first clock.
  • the phase of is the same as the phase of the first clock.
  • the service board switches from the first clock to the second clock according to the first notification signal.
  • the first cross-connect board and the service board can be notified through the first notification signal. Based on this signal, the first cross-connect board can maintain the first clock generated by the control board. With the same second clock, the service board can switch from the first clock to the second clock. Therefore, after the control board is offline, the clock source is switched from the control board to the first cross-connect board.
  • the first cross-connect board can provide synchronization for the service board. Therefore, the clock synchronization between the first cross-connect board and the service board can be maintained to continue the normal execution of related services, so that the service will not be interrupted.
  • the communication device further includes a second cross board, and the first cross board is connected to the second cross board.
  • the first cross-connect board is further configured to send a second notification signal to the second cross-connect board and the service board after receiving the offline signal, and the second notification signal is used to instruct the clock source to switch from the first cross-connect board to the second cross-connect board.
  • the second cross board is used to maintain the third clock through the local crystal oscillator of the second cross board according to the second notification signal.
  • the frequency of the third clock is the same as that of the second clock, and the phase of the third clock is the same as the phase of the second clock.
  • the service board is also used to switch from the second clock to the third clock according to the second notification signal.
  • the communication device after the first cross-connect board also receives the offline signal, the communication device also includes a standby board of the first cross-connect board, that is, the second cross-connect board.
  • the first cross-connect board can send a second notification signal to the second cross-connect board and the service board. Based on this signal, the second cross-connect board can maintain the same third clock as the second clock, and the service board can switch from the second clock to the third clock. Therefore, after the first cross-connect board goes offline, the clock source is switched from the first cross-connect board to the second cross-connect board, and the second cross-connect board can provide the service board with a third clock for synchronization. Therefore, the clock synchronization can be maintained between the second cross-connect board and the service board to continue the normal execution of related services, so that the service will not be interrupted.
  • the service board is specifically configured to respond to signals from the first cross-connect board according to the first notification signal. Perform clock data recovery on the service signal to obtain the second clock.
  • the service board after receiving the first notification signal, can perform clock data recovery on the service signal from the first cross-connect board, and then obtain the second clock to achieve clock synchronization, so that the service is not interrupted, which improves The flexibility and selectivity of the program.
  • the service board is specifically configured to, according to the second notification signal, Perform clock data recovery on the service signal from the second cross-connect board to obtain the third clock.
  • the service board after receiving the second notification signal, can perform clock data recovery on the service signal from the second cross-connect board, and then obtain the third clock to achieve clock synchronization, so that the service is not interrupted, which improves The flexibility and selectivity of the program.
  • the control board It is also used to: after the online state is restored, obtain the first clock based on the second clock maintained by the first cross-connect board; send a third notification signal to the first cross-connect board and the service board, where the third notification signal is used to indicate
  • the clock source is switched from the first cross-connect board to the control board; the first cross-connect board is also used to switch from the second clock to the first clock; the service board is also used to switch from the second clock to the first clock.
  • the control board after the control board receives the online signal and goes online again, it can obtain the first clock according to the second clock maintained by the first cross-connect board, and then notify the first cross-connect board and the service board through the third notification signal, so that The first cross board and the service board use the control board as the clock source, and receive the first clock from the control board to achieve clock synchronization, which improves the flexibility and selectivity of the solution.
  • the first The notification signal is specifically used to indicate that the control board is about to go offline.
  • the first notification signal is specifically used to instruct the first cross-connect board to maintain the second clock or instruct the service board to switch from the first clock to the second clock. This implementation method improves the flexibility and selectivity of the solution.
  • the second notification signal is specifically used for Indicates that the first cross-connect board is about to go offline.
  • the second notification signal is specifically used to instruct the second cross-connect board to maintain the third clock or instruct the service board to switch from the second clock to the third clock.
  • the second aspect of the embodiments of the present application provides a method for clock synchronization, which is applied to a communication device.
  • the communication device includes: a control board, a first cross board and a service board.
  • the method includes: after the control board receives the offline signal, sending a first notification signal to the first cross-connect board and the service board, the first notification signal is used to instruct the clock source to switch from the control board to the first cross-connect board;
  • the first notification signal maintains the second clock through the local crystal oscillator of the first cross board.
  • the frequency of the second clock is the same as that of the first clock.
  • the phase of the second clock is the same as that of the first clock.
  • the first clock is generated by the control board. ;
  • the service board switches from the first clock to the second clock according to the first notification signal.
  • the first cross board and the service board can be notified through the first notification signal. Based on the signal, the first cross board can maintain the information generated by the control board. With the same second clock as the first clock, the service board can switch from the first clock to the second clock. Therefore, after the control board is offline, the clock source is switched from the control board to the first cross-connect board, and the first cross-connect board can provide the service board The second clock is used for synchronization. Therefore, the clock synchronization between the first cross-connect board and the service board can be maintained to continue the normal execution of related services, so that the service will not be interrupted.
  • the communication device further includes a second cross board, the first cross board is connected to the second cross board, and the service board responds to the first notification signal After switching from the first clock to the second clock, the method further includes:
  • the first cross-connect board After receiving the offline signal, the first cross-connect board sends a second notification signal to the second cross-connect board and the service board.
  • the second notification signal is used to instruct the clock source to switch from the first cross-connect board to the second cross-connect board.
  • the second cross board maintains the third clock through the local crystal oscillator of the second cross board according to the second notification signal.
  • the frequency of the third clock is the same as the frequency of the second clock
  • the phase of the third clock is the same as the phase of the second clock.
  • the service board switches from the second clock to the third clock according to the second notification signal.
  • the communication device also includes a standby board of the first cross-connect board, that is, the second cross-connect board.
  • the first cross-connect board can send a second notification signal to the second cross-connect board and the service board, and based on the signal, the second cross-connect board can maintain the third clock that is the same as the second clock.
  • the service board can switch from the second clock to the third clock, so after the first cross board goes offline, the clock source is switched from the first cross board to the second cross board, and the second cross board can provide the service board with the second clock for synchronization. Three clocks. Therefore, the clock synchronization can be maintained between the second cross-connect board and the service board to continue the normal execution of related services, so that the service will not be interrupted.
  • the service board switching from the first clock to the second clock according to the first notification signal specifically includes : The service board performs clock data recovery on the service signal from the first cross-connect board according to the first notification signal to obtain the second clock.
  • the service board after receiving the first notification signal, can perform clock data recovery on the service signal from the first cross-connect board, and then obtain the second clock to achieve clock synchronization, so that the service is not interrupted, which improves The flexibility and selectivity of the program.
  • the service board switches from the second clock according to the second notification signal
  • the third clock specifically includes: the service board performs clock data recovery on the service signal from the second cross-connect board according to the second notification signal to obtain the third clock.
  • the service board can perform clock data recovery on the service signal from the second cross-connect board, and then obtain the third clock to achieve clock synchronization, so that the service is not interrupted and improves This improves the flexibility and selectivity of the program.
  • the method It also includes: after the control board returns to the online state, it acquires the first clock based on the second clock maintained by the first cross-connect board; the control board sends a third notification signal to the first cross-connect board and the service board, where the third notification signal is used Instructs the clock source to switch from the first cross-connect board to the control board; the first cross-connect board switches from the second clock to the first clock; the service board switches from the second clock to the first clock.
  • the control board after the control board receives the online signal and goes online again, it can obtain the first clock according to the second clock maintained by the first cross-connect board, and then notify the first cross-connect board and the service board through the third notification signal, so that The first cross board and the service board use the control board as the clock source, and receive the first clock from the control board to achieve clock synchronization, which improves the flexibility and selectivity of the solution.
  • this application has the following advantages: after the control board is offline, the clock source is switched from the control board to the first cross-connect board, and both the first cross-connect board and the service board perform subsequent related services based on the second clock. In order to continue the normal execution of the relevant business, so that the business will not be interrupted.
  • Figure 1 is a schematic diagram of the structure of OTN transmission equipment
  • Fig. 2 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a bidirectional clock channel provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a unidirectional clock channel provided by an embodiment of the application.
  • FIG. 5 is another schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a clock synchronization method provided by an embodiment of the application.
  • the embodiment of the present application provides a communication device and a clock synchronization method. After the control board is offline, the cross-connect board and the service board can maintain clock synchronization to continue normal execution of related service processing and avoid service processing interruption.
  • OTN transmission equipment includes: a control board, a cross-connect board, and a service board.
  • the control board can centrally manage and control the remaining single boards.
  • the cross-connect board also called the switch board
  • the business board is used to process the corresponding business under the scheduling of the cross board.
  • the communication device may also be a flexible Ethernet (Flexible Ethernet) device.
  • OTN transmission equipment is usually equipped with multiple control boards, multiple crossover boards, and multiple service boards (as shown in Figure 1, the equipment shown in solid lines is based on the control board, crossover board, and service board).
  • the OTN transmission equipment includes two identical control boards, one is the main control board, and the other is the standby control board, which serves as the standby board of the main control board.
  • each board needs to keep clock synchronization.
  • the main control board is usually used as the clock source of the entire device and provides the clock for synchronization required by each board in the device. If the main control board is offline, the standby control board can take over the main control board as the clock source and continue to provide clocks for synchronization to each board. If the main control board and the standby control board are both offline, the cross-connect board and the service board cannot continue to maintain synchronization, resulting in interruption of service processing.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • the communication device includes: a control board, a service board, a cross-connect board with clock maintenance function (ie, the cross-connect board indicated by a solid line in Figure 2) and multiple cross-board boards without clock maintenance function (ie, Figure 2 shows the cross board with a dashed line).
  • clock maintenance is also called clock maintenance.
  • clock channels connected between the control board and the crossover board and between the control board and the service board ( Figure 2 only shows the clock channel between the control board and the crossover board, that is, the connection line between the two ), the control board can send the first clock to the cross-connect board and the service board through the clock channel to achieve clock synchronization.
  • the communication device includes a cross-connect board with a clock maintenance function, hereinafter referred to as the first cross-board board.
  • each cross-connect board has a local crystal oscillator with high rate stability, which is used to maintain a clock consistent with the first clock parameter.
  • FIG. 3 is a schematic diagram of a bidirectional clock channel provided by an embodiment of the application. As shown in Fig. 3, in the process that the first cross board maintains the clock through the local crystal oscillator, it needs to perform clock-based interaction with the control board, which can be implemented through a bidirectional clock channel.
  • FIG. 4 is a schematic diagram of a unidirectional clock channel provided by an embodiment of the application. As shown in Figure 4, among multiple cross-connect boards that do not have a clock maintenance function, each cross-connect board and the control board have a unidirectional clock channel. Therefore, the control board can only send the clock to the cross-connect board, but the cross-connect board cannot send the clock to the control board, so this part of the cross-connect board does not have the clock maintenance function.
  • FIG. 2 there is a service channel connected between any cross board and any service board, and the cross board can send service signals to the service board through the service channel, so that the service board executes corresponding services based on the service signals.
  • the control board After the control board receives the offline signal, it can send a first notification signal to the first cross-connect board and the service board.
  • the first notification signal is used to instruct the clock source to switch from the control board to the first cross-connect board.
  • the control board can receive offline signals in a variety of ways. In one possible way, if the control board needs to be pulled out of the device, the control board itself has a wrench. When the position of the wrench changes due to an external force, the control board can determine the position of the wrench in real time. When determining the position of the wrench After the change satisfies certain conditions, it is determined that the control board is about to go offline, which is equivalent to receiving an offline signal.
  • control board is provided with an offline detection switch, which can detect the position change of the wrench of the control board in real time. If it is determined that the position change of the wrench satisfies a certain condition, it is determined that the control board is about to go offline, which is equivalent to receiving Offline signal. Or, it can also send instructions through the network management system. In this regard, this application is not limited.
  • the first notification signal is used to indicate that the control board is about to go offline.
  • the control board sends first notification signals to the first cross-connect board and the service board respectively, and all the first notification signals are used to indicate that the control board is about to go offline. All boards in the device are preset with corresponding rules. Based on this rule, when each single board receives the first notification signal, it is determined that the control board is about to go offline.
  • the first cross-connect board maintains the second clock, and the service board switches between the first clock and the second clock.
  • the first notification signal is specifically used to instruct the first cross-connect board to maintain the second clock or to instruct the service board to switch from the first clock to the second clock.
  • the control board sends a first notification signal to the first cross-connect board and the service board, respectively, where the first notification signal received by the first cross-connect board is used to instruct to maintain the second clock.
  • the first notification signal received by the service board is used to instruct to switch between the first clock and the second clock. Therefore, after the first cross-connect board and the service board respectively receive the first notification signal, the corresponding operation is performed.
  • the first cross board After receiving the first notification signal, the first cross board maintains the second clock through the local crystal oscillator of the first cross board according to the first notification signal.
  • the frequency of the second clock is the same as the frequency of the first clock.
  • the phase of is the same as the phase of the first clock. It is understandable that the parameters of the second clock and the first clock are basically the same, the first clock is derived from the control board, and the second clock is derived from the first cross-connect board.
  • the service board After receiving the first notification signal, the service board switches from the first clock to the second clock according to the first notification signal.
  • the service board may perform clock and data recovery (CDR) on the service signal from the first cross-connect board according to the first notification signal to obtain the second clock.
  • CDR clock and data recovery
  • a service channel is connected between a serializer/deserializer (serializer/deserializer, serializer) on the first cross-connect board and a serializer on the service board. Regardless of whether the control board is offline, in order to maintain uninterrupted services, the first cross-connect board will continue to send service signals to each service board through the service channel.
  • the first cross-connect board sends service signals to the service board at a certain rhythm based on the first clock. After the control board is offline, since the first cross-connect board maintains the second clock, the first cross-connect board still sends service signals to the service board at the same rhythm based on the second clock. Therefore, after receiving the first notification signal, the service board can perform CDR based on the service signal received by its own serdes, and then obtain the second clock, that is, complete the switch between the first clock and the second clock. After the service board is switched from the first clock to the second clock, it is equivalent to synchronously tracking to the first cross-connect board, and the first cross-connect board is used as the clock source, so that the current service of the communication device can be kept uninterrupted.
  • the control board goes online again, all the boards can switch back to the clock of the control board.
  • the first clock is obtained based on the second clock maintained by the first cross-connect board.
  • the control board sends a third notification signal to the first cross-connect board and the service board, so that both the first cross-connect board and the service board switch from the second clock to the first clock.
  • the third notification signal is used to instruct the clock source to switch from the first cross board to the control board.
  • the control board when the control board is re-inserted into the corresponding slot of the device and fully started, the parameter information of the second clock is obtained from the first cross-connect board, and the own clock of the control board is gradually adjusted so that the parameters of the own clock are the same as that of the second clock. If the clock parameters are the same, it is equivalent to obtaining the first clock.
  • the control board After the control board obtains the first clock, it sends a third notification signal to the first cross-connect board, the service board, and the cross-connect board that does not have a clock maintenance function. Because the third notification signal can be used to indicate that the control board is online. Based on the third notification signal, the cross-connect board and the service board switch from the second clock to the first clock to continue to maintain clock synchronization, so that the service will not be interrupted.
  • the first cross-connect board and the service board can be notified through the first notification signal. Based on this signal, the first cross-connect board can maintain the same second clock as the first clock generated by the control board, and the service board can switch from the first clock to the second clock. Therefore, after the control board is offline, the clock source is switched from the control board to the first cross-connect board, and the first cross-connect board can provide the service board with the second clock for synchronization. Therefore, the clock synchronization between the first cross-connect board and the service board can be maintained to continue the normal execution of related services, so that the services will not be interrupted.
  • FIG. 5 is a schematic diagram of another structure of a communication device provided by an embodiment of the application.
  • the communication equipment includes: a main control board, a standby control board, a service board, multiple cross-connect boards with clock maintenance functions (ie, the cross-connect board indicated by a solid line in Figure 5) and multiple cross-connect boards without clock Maintain the function of the cross board (that is, the cross board indicated by the dashed line in Figure 5).
  • the main control board integrates a clock function. When the main control board is online, it can generate the first clock required for the synchronization of each single board in the device, and provide each single board with the first clock for synchronization.
  • the main control board can be used as the clock source of the entire communication device, providing the first clock for the standby control board, all crossover boards, and all service boards, so that all single boards of the entire device can work synchronously to perform related service processing.
  • clock channels are connected between the main control board and the standby control board, between the main control board and the crossover board, and between the main control board and the service board (the connection line between the two boards in Figure 5).
  • the main control board can respectively send the first clock to the standby control board, cross-connect board and service board through the clock channel to realize clock synchronization.
  • the standby control board can synchronously track the main control board to maintain the first clock.
  • the standby control board can take over the main control board as the clock source of the entire device and provide the first clock to all cross-connect boards and service boards.
  • the communication device includes multiple cross-connect boards with clock maintenance functions.
  • each cross-connect board and the control board have a one-way clock channel, so this part of the cross-board boards does not have the clock maintenance function.
  • any two crossover boards are connected to each other, and this part of the crossover boards can be preset with priority sorting.
  • the control board is offline, the highest priority can be selected according to the priority
  • the cross-connect board is used as the clock source.
  • a service channel is connected between any cross board and any service board (that is, the connection line between the cross board and the service board in Figure 5), and the cross board can send services to the service board through the service channel Signal so that the service board executes the corresponding service based on the service signal.
  • the standby control board can be used as the clock source of the entire device. After the standby control board receives the offline signal, it can send a first notification signal to the first cross-connect board and the service board. The first notification signal is used to instruct the clock source to switch from the standby control board to the first cross-connect board.
  • the standby control board can receive offline signals in a variety of ways. In one possible way, if the standby control board needs to be pulled out of the device, the standby control board itself has a wrench. When it changes, the standby control board can determine the position change of the wrench in real time.
  • the standby control board When it is determined that the change in the position of the wrench satisfies certain conditions, it is determined that the standby control board is about to go offline, which is equivalent to receiving an offline signal. Furthermore, the standby control board is equipped with an offline detection switch, which can detect the position change of the wrench of the standby control board in real time. If it is determined that the position change of the wrench meets certain conditions, it can be determined that the standby control board is about to go offline, that is, an offline signal is received. .
  • the first notification signal can be presented in multiple ways, which will be introduced separately below.
  • the first notification signal is sent to all service boards and all cross-connect boards with clock maintenance functions to notify each single board that the standby control board is about to go offline.
  • control board sends the first notification signal to multiple cross-connect boards and service boards with clock maintenance functions, respectively.
  • the first notification signal received by the cross-connect board with clock maintenance function is used to instruct to maintain the second clock.
  • multiple cross-connect boards that have received the first notification signal may determine one of them as the new clock source through information exchange.
  • a cross-connect board with clock maintenance function can be configured with priority information for clock source selection.
  • the first notification signal received by the service board is used to instruct to switch between the first clock and the second clock.
  • control board If any control board is back online, all single boards can resynchronize and track the control board. After the control board receives the online signal, it obtains the parameter information of the second clock from the first cross-connect board, and gradually adjusts the control board's own clock so that the parameters of its own clock are the same as those of the second clock, that is, the first clock is obtained . After the control board obtains the first clock, it sends a third notification signal to all cross-connect boards and service boards that have a clock maintenance function, and all cross-connect boards that do not have a clock maintenance function.
  • the third notification signal can be used to indicate that the control board is online, based on the third notification signal, all cross-connect boards, service boards with clock maintenance function, and all cross-connect boards without clock maintenance function begin to receive the first clock from the control board , To continue to maintain clock synchronization, so that business will not be interrupted.
  • the first cross-connect board sends the second notification signal to the second cross-connect board and the service board.
  • the second notification signal is used to instruct the clock source to switch from the first cross-connect board to the second cross-connect board.
  • the second cross board maintains the third clock through the local crystal oscillator of the second cross board according to the second notification signal.
  • the frequency of the third clock is the same as the frequency of the second clock
  • the phase of the third clock is the same as the phase of the second clock.
  • the service board switches from the second clock to the third clock according to the second notification signal to complete clock synchronization.
  • the first cross-connect board sends the second notification signal to other cross-connect boards and service boards among the multiple cross-connect boards with clock maintenance functions.
  • the second notification signal can be presented in multiple ways, which will be described separately below.
  • the second notification signal is specifically used to indicate that the first cross-connect board is about to go offline.
  • the second notification signal is specifically used to instruct the other cross-connect boards (including the second cross-connect board) of the multiple cross-connect boards with clock maintenance function to maintain the third clock or Instruct the service board to switch from the second clock to the third clock.
  • the first cross-connect board can be determined from this part of the cross-connect boards.
  • each cross-connect board maintains the third clock through the local crystal oscillator according to the second notification signal.
  • the phase of the third clock is the same as the phase of the second clock
  • the frequency of the third clock is the same as the frequency of the second clock.
  • the other cross-connect boards except the first cross-connect board among the multiple cross-connect boards with clock maintenance function perform information exchange, and from this part of the cross-connect boards, it is determined that the cross board with the highest status and the highest priority is used as the clock source. , That is, it is determined that the cross-connect board with the normal status and the highest priority is the second cross-connect board.
  • the other cross-connect boards except the first cross-connect board of the multiple cross-connect boards with clock maintenance function receive the first notification signal
  • all the cross-connect boards carry out information exchange, and from this part of the cross board It is determined that the cross-connect board with the highest status and the highest priority is the clock source, that is, it is determined that the cross-connect board with the normal status and the highest priority is the second cross-connect board, and finally the second cross-connect board passes the local crystal oscillator based on the second notification signal. Maintain the third clock.
  • the service board After receiving the second notification signal, the service board switches from the second clock to the third clock according to the second notification signal.
  • the specific description of the service board switching from the second clock to the third clock is similar to the aforementioned related description of the service board switching from the first clock to the second clock, and will not be repeated here.
  • FIG. 6 is a schematic flowchart of a clock synchronization method provided by an embodiment of the application. As shown in FIG. 6, the method is applied to a communication device, and the communication device includes: a control board, a first cross board, and a service board. The method includes:
  • control board After receiving the offline signal, the control board sends a first notification signal to the first cross-connect board and the service board, where the first notification signal is used to instruct the clock source to switch from the control board to the first cross-connect board.
  • the first cross board maintains a second clock through the local crystal oscillator of the first cross board according to the first notification signal.
  • the frequency of the second clock is the same as the frequency of the first clock
  • the phase of the second clock is the same as the phase of the first clock.
  • the first clock is generated by the control board.
  • the service board switches from the first clock to the second clock according to the first notification signal.
  • the communication device further includes a second cross board
  • the first cross board is connected to the second cross board
  • the service board switches from the first clock to the second clock according to the first notification signal
  • the method further includes : After the first cross-connect board receives the offline signal, it sends a second notification signal to the second cross-connect board and the service board.
  • the second notification signal is used to instruct the clock source to switch from the first cross-connect board to the second cross-connect board; the second cross-connect board According to the second notification signal, the third clock is maintained through the local crystal oscillator of the second cross-connect board.
  • the frequency of the third clock is the same as that of the second clock, and the phase of the third clock is the same as the phase of the second clock;
  • the signal is switched from the second clock to the third clock.
  • the service board switching from the first clock to the second clock according to the first notification signal specifically includes: the service board performs CDR on the service signal from the first cross-connect board according to the first notification signal to obtain the first notification signal. Two clocks.
  • the service board switching from the second clock to the third clock according to the second notification signal specifically includes: the service board performs CDR on the service signal from the second cross-connect board according to the second notification signal to obtain the first Three clocks.
  • the method further includes: after the control board returns to the online state, obtaining the first clock based on the second clock maintained by the first cross-connect board; and the control board sends the first clock to the first cross-connect board and the service board.
  • Three notification signals where the third notification signal is used to instruct the clock source to switch from the first cross-connect board to the control board; the first cross-connect board switches from the second clock to the first clock; the service board switches from the second clock to the first clock .
  • the first notification signal is specifically used to indicate that the control board is about to go offline.
  • the first notification signal is specifically used to instruct the first cross-connect board to maintain the second clock or to instruct the service board to switch from the first clock to the second clock.
  • the second notification signal is specifically used to indicate that the first cross-connect board is about to go offline.
  • the second notification signal is specifically used to instruct the second cross-connect board to maintain the third clock or to instruct the service board to switch from the second clock to the third clock.
  • the first cross-connect board and the service board can be notified through the first notification signal. Based on this signal, the first cross-connect board can maintain the first clock generated by the control board. With the same second clock, the service board can switch from the first clock to the second clock. Therefore, after the control board is offline, the clock source is switched from the control board to the first cross-connect board.
  • the first cross-connect board can provide synchronization for the service board. Therefore, the clock synchronization between the first cross-connect board and the service board can be maintained to continue the normal execution of related services, so that the service will not be interrupted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种通信设备及时钟同步的方法。该通信设备包括:控制板、第一交叉板和业务板。当控制板准备从通信设备中抽离时,可通过第一通知信号通知第一交叉板和业务板,基于该信号,第一交叉板可维持与控制板产生的第一时钟相同的第二时钟,业务板可从第一时钟切换至第二时钟。在控制板离线后,时钟源从控制板切换至第一交叉板,第一交叉板和业务板均基于第二时钟进行后续相关的业务以继续正常执行相关的业务处理,避免业务处理中断。

Description

一种通信设备及时钟同步的方法
本申请要求于2020年2月20日提交中国国家知识产权局、申请号为202010104370.5、发明名称为“一种通信设备及时钟同步的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信设备及时钟同步的方法。
背景技术
光传送网(optical transport network,OTN)能够支持多种信号的传输,在近几年得到飞速发展,逐渐成为光通信领域的主流技术之一。该技术所架构的网络中通常设置有多台OTN传输设备,以实现信号传输。
图1为OTN传输设备的一个结构示意图。如图1所示,该设备包括控制板、交叉板和业务板。其中,控制板上集成有时钟功能,故控制板可向交叉板、业务板等单板提供用于同步的时钟,使得整个设备处于时钟同步的状态,以正常执行相关的业务处理。
然而,若由于某些因素导致主控制板离线(即从设备中拔出),单板之间无法再保持同步关系,进而无法正常执行相关的业务,导致业务中断。
发明内容
本申请提供了一种通信设备及时钟同步的方法,在控制板离线后,能够使交叉板和业务板保持时钟同步,以继续正常执行相关的业务处理,避免业务处理中断。
本申请实施例的第一方面提供了一种通信设备,该通信设备包括:控制板、第一交叉板和业务板。控制板集成有时钟功能。控制板在线时,可产生设备内各个单板同步工作所需的第一时钟,并向各个单板提供用于同步的第一时钟。故当控制板在线时,控制板可作为时钟源,为第一交叉板和业务板提供第一时钟,使得第一交叉板和业务板能够同步工作,以执行相关的业务。
当控制板接收到离线信号后,可向第一交叉板和业务板发送第一通知信号,第一通知信号用于指示时钟源从控制板切换至第一交叉板。第一交叉板在接收到第一通知信号后,则根据第一通知信号通过第一交叉板的本地晶振维持第二时钟,其中,第二时钟的频率与第一时钟的频率相同,第二时钟的相位与第一时钟的相位相同。业务板在接收到第一通知信号后,则根据第一通知信号从第一时钟切换至第二时钟。
通过上述过程可知:当控制板准备从通信设备中抽离时,可通过第一通知信号通知第一交叉板和业务板,基于该信号,第一交叉板可维持与控制板产生的第一时钟相同的第二时钟,业务板可从第一时钟切换至第二时钟,故在控制板离线后,时钟源从控制板切换至第一交叉板,第一交叉板可为业务板提供用于同步的第二时钟,因此,第一交叉板与业务板之间可保持时钟同步,以继续正常执行相关的业务,使得业务不会中断。
结合第一方面,在本申请实施例提供的第一方面的第一种实现方式中,通信设备还包括第二交叉板,第一交叉板与第二交叉板连接。第一交叉板,还用于在接收离线信号后, 向第二交叉板和业务板发送第二通知信号,第二通知信号用于指示时钟源从第一交叉板切换至第二交叉板。第二交叉板,用于根据第二通知信号通过第二交叉板的本地晶振维持第三时钟,第三时钟的频率与第二时钟的频率相同,第三时钟的相位与第二时钟的相位相同。业务板,还用于根据第二通知信号从第二时钟切换至第三时钟。
上述实现方式中,当第一交叉板也接收到离线信号后,由于通信设备中还包括第一交叉板的备用板,即第二交叉板。第一交叉板可向第二交叉板和业务板发送第二通知信号,基于该信号,第二交叉板可维持与第二时钟相同的第三时钟,业务板可从第二时钟切换至第三时钟,故在第一交叉板离线后,时钟源从第一交叉板切换至第二交叉板,第二交叉板可为业务板提供用于同步的第三时钟。因此,第二交叉板与业务板之间可保持时钟同步,以继续正常执行相关的业务,使得业务不会中断。
结合第一方面或第一方面的第一种实现方式,在本申请实施例的第一方面的第二种实现方式中,业务板,具体用于根据第一通知信号,对来自第一交叉板的业务信号进行时钟数据恢复,得到第二时钟。
上述实现方式中,业务板在接收到第一通知信号后,可对来自第一交叉板的业务信号进行时钟数据恢复,进而得到第二时钟,以实现时钟同步,使得业务不被中断,提高了方案的灵活度和可选择性。
结合第一方面的第一种实现方式或第一方面的第二种实现方式,在本申请实施例的第一方面的第三种实现方式中,业务板,具体用于根据第二通知信号,对来自第二交叉板的业务信号进行时钟数据恢复,得到第三时钟。
上述实现方式中,业务板在接收到第二通知信号后,可对来自第二交叉板的业务信号进行时钟数据恢复,进而得到第三时钟,以实现时钟同步,使得业务不被中断,提高了方案的灵活度和可选择性。
结合第一方面,或第一方面的第一种实现方式至第一方面的第三种实现方式中的任意一种,在本申请实施例的第一方面的第四种实现方式中,控制板还用于:在恢复在线状态后,基于第一交叉板所维持的第二时钟,获取第一时钟;向第一交叉板和业务板发送第三通知信号,其中,第三通知信号用于指示时钟源从第一交叉板切换至控制板;第一交叉板,还用于从第二时钟切换至第一时钟;业务板,还用于从第二时钟切换至第一时钟。
上述实现方式中,控制板在接收到在线信号重新上线后,可根据第一交叉板所维持的第二时钟,获取第一时钟,然后通过第三通知信号通知第一交叉板和业务板,使得第一交叉板和业务板以控制板为时钟源,接收来自控制板的第一时钟,以实现时钟同步,提高了方案的灵活度和可选择性。
结合第一方面,或第一方面的第一种实现方式至第一方面的第四种实现方式中的任意一种,在本申请实施例的第一方面的第五种实现方式中,第一通知信号具体用于指示控制板即将离线。或者,第一通知信号具体用于指示第一交叉板维持第二时钟或指示业务板从第一时钟切换至第二时钟。这种实现方式提高了方案的灵活度和可选择性。
结合第一方面的第一种实现方式至第一方面的第六种实现方式中的任意一种,在本申请实施例的第一方面的第六种实现方式中,第二通知信号具体用于指示第一交叉板即将离线。或者,第二通知信号具体用于指示第二交叉板维持第三时钟或指示业务板从第二时钟 切换至第三时钟。这种实现方式提高了方案的灵活度和可选择性。
本申请实施例的第二方面提供了一种时钟同步的方法,该方法应用于一种通信设备。该通信设备包括:控制板、第一交叉板和业务板。该方法包括:控制板在接收离线信号后,向第一交叉板和业务板发送第一通知信号,第一通知信号用于指示时钟源从控制板切换至第一交叉板;第一交叉板根据第一通知信号通过第一交叉板的本地晶振维持第二时钟,第二时钟的频率与第一时钟的频率相同,第二时钟的相位与第一时钟的相位相同,第一时钟由控制板产生;业务板根据第一通知信号从第一时钟切换至第二时钟。
通过上述方法中可以看出:当控制板准备从通信设备中抽离时,可通过第一通知信号通知第一交叉板和业务板,基于该信号,第一交叉板可维持与控制板产生的第一时钟相同的第二时钟,业务板可从第一时钟切换至第二时钟,故在控制板离线后,时钟源从控制板切换至第一交叉板,第一交叉板可为业务板提供用于同步的第二时钟,因此,第一交叉板与业务板之间可保持时钟同步,以继续正常执行相关的业务,使得业务不会中断。
结合第二方面,在本申请实施例提供的第二方面的第一种实现方式中,通信设备还包括第二交叉板,第一交叉板与第二交叉板连接,业务板根据第一通知信号从第一时钟切换至第二时钟之后,方法还包括:
第一交叉板在接收离线信号后,向第二交叉板和业务板发送第二通知信号,第二通知信号用于指示时钟源从第一交叉板切换至第二交叉板。
第二交叉板根据第二通知信号通过第二交叉板的本地晶振维持第三时钟,第三时钟的频率与第二时钟的频率相同,第三时钟的相位与第二时钟的相位相同。
业务板根据第二通知信号从第二时钟切换至第三时钟。
上述实现方式中,当第一交叉板也接收到离线信号后,由于通信设备中还包括第一交叉板的备用板,即第二交叉板。第一交叉板可向第二交叉板和业务板发送第二通知信号,基于该信号,第二交叉板可维持与第二时钟相同的第三时钟。业务板可从第二时钟切换至第三时钟,故在第一交叉板离线后,时钟源从第一交叉板切换至第二交叉板,第二交叉板可为业务板提供用于同步的第三时钟。因此,第二交叉板与业务板之间可保持时钟同步,以继续正常执行相关的业务,使得业务不会中断。
结合第二方面或第二方面的第一种实现方式,在本申请实施例的第二方面的第二种实现方式中,业务板根据第一通知信号从第一时钟切换至第二时钟具体包括:业务板根据第一通知信号,对来自第一交叉板的业务信号进行时钟数据恢复,得到第二时钟。
上述实现方式中,业务板在接收到第一通知信号后,可对来自第一交叉板的业务信号进行时钟数据恢复,进而得到第二时钟,以实现时钟同步,使得业务不被中断,提高了方案的灵活度和可选择性。
结合第二方面的第一种实现方式或第二方面的第二种实现方式,在本申请实施例的第二方面的第三种实现方式中,业务板根据第二通知信号从第二时钟切换至第三时钟具体包括:业务板根据第二通知信号,对来自第二交叉板的业务信号进行时钟数据恢复,得到第三时钟。这种实现方式中,业务板在接收到第二通知信号后,可对来自第二交叉板的业务信号进行时钟数据恢复,进而得到第三时钟,以实现时钟同步,使得业务不被中断,提高了方案的灵活度和可选择性。
结合第二方面,或第二方面的第一种实现方式至第二方面的第三种实现方式中的任意一种,在本申请实施例的第二方面的第四种实现方式中,该方法还包括:控制板恢复在线状态后,基于第一交叉板所维持的第二时钟,获取第一时钟;控制板向第一交叉板和业务板发送第三通知信号,其中,第三通知信号用于指示时钟源从第一交叉板切换至控制板;第一交叉板从第二时钟切换至第一时钟;业务板从第二时钟切换至第一时钟。
上述实现方式中,控制板在接收到在线信号重新上线后,可根据第一交叉板所维持的第二时钟,获取第一时钟,然后通过第三通知信号通知第一交叉板和业务板,使得第一交叉板和业务板以控制板为时钟源,接收来自控制板的第一时钟,以实现时钟同步,提高了方案的灵活度和可选择性。
关于第一通知信号和第二通知信号的具体实现方式和有益效果可参见上述第一方面的第五方面和第六方面的描述,在此不再赘述。
从以上技术方案可以看出,本申请具有以下优点:在控制板离线后,时钟源从控制板切换至第一交叉板,第一交叉板和业务板均基于第二时钟进行后续相关的业务,以继续正常执行相关的业务,使得业务不会中断。
附图说明
图1为OTN传输设备的一个结构示意图;
图2为本申请实施例提供的通信设备的一个结构示意图;
图3为本申请实施例提供的双向的时钟通道的一个示意图;
图4为本申请实施例提供的单向的时钟通道的一个示意图;
图5为本申请实施例提供的通信设备的另一结构示意图;
图6为本申请实施例提供的时钟同步的方法的一个流程示意图。
具体实施方式
本申请实施例提供了一种通信设备及时钟同步的方法,在控制板离线后,能够使交叉板和业务板保持时钟同步,以继续正常执行相关的业务处理,避免业务处理中断。
本申请实施例可应用于通信网络中。为了便于说明,以下均以通信设备为OTN传输设备作为例子进行介绍。如图1所示,OTN传输设备包括:控制板、交叉板和业务板。控制板作为整个OTN传输设备的管理单板,可对其余单板进行集中管理和控制。交叉板(也可称为交换板)则用于对业务板的业务进行调度。业务板则用于在交叉板的调度下处理相应的业务。应理解,本申请并不对通信设备的具体类型做限制。例如,通信设备还可以是灵活以太网(Flexible Ethernet)设备。
OTN传输设备中通常设置有多个控制板、多个交叉板和多个业务板(如图1所示的设备,在以实线呈现的控制板、交叉板和业务板的基础上,增加以虚线呈现的控制板、交叉板和业务板)。如图1所示,该OTN传输设备包含两个相同的控制板,一个为主控制板,另一个则为备用控制板,作为主控制板的备用板。
为了使整台OTN传输设备能够正常执行业务处理,各个单板需要保持时钟同步。主控制板通常作为整台设备的时钟源,提供设备内各个单板所需的用于同步的时钟。若主控制 板离线,备用控制板可接替主控制板作为时钟源,继续向各个单板提供用于同步的时钟。若主控制板和备用控制板均离线后,交叉板和业务板则无法继续保持同步,导致业务处理中断。
为此,本申请实施例提供了一种通信设备。图2为本申请实施例提供的通信设备的一个结构示意图。如图2所示,该通信设备包括:控制板、业务板、具有时钟维持功能的交叉板(即图2中以实线示意的交叉板)和多个不具有时钟维持功能的交叉板(即图2中以虚线示意的交叉板)。需要说明的是,时钟维持也称为时钟保持。
需要说明的是,控制板和交叉板之间以及控制板和业务板之间连接有时钟通道(图2中仅示意出控制板和交叉板之间的时钟通道,即二者之间的连接线),控制板可通过时钟通道分别向交叉板和业务板发送第一时钟,以实现时钟同步。
本实施例中,通信设备包含一个具有时钟维持功能的交叉板,以下简称第一交叉板。在通信设备的所有交叉板中,每个交叉板均具有率稳定度高的本地晶振,用于维持和第一时钟参数一致的时钟。第一交叉板与控制板之间具有双向的时钟通道。图3为本申请实施例提供的双向的时钟通道的一个示意图。如图3所示,在第一交叉板通过本地晶振维持时钟的过程中,需要和控制板进行基于时钟的交互,可通过双向的时钟通道实现。图4为本申请实施例提供的单向的时钟通道的一个示意图。如图4所示,在多个不具备时钟维持功能的交叉板中,每个交叉板与控制板之间具有单向的时钟通道。因此,控制板只能向交叉板发送时钟,而交叉板无法向控制板发送时钟,故这一部分交叉板不具备时钟维持功能。
如图2所示,任意一个交叉板与任意一个业务板之间均连接有业务通道,交叉板可通过业务通道向业务板发送业务信号,以使得业务板基于业务信号执行相应的业务。
当控制板接收到离线信号后,可向第一交叉板和业务板发送第一通知信号,第一通知信号用于指示时钟源从控制板切换至第一交叉板。具体地,控制板可通过多种方式接收到离线信号。在一种可能实现的方式中,若需要将控制板从设备中拔出,控制板本身具有扳手,当扳手受到外力发生位置变化时,控制板可实时确定扳手的位置变化,当确定扳手的位置变化满足一定条件后,即确定控制板即将离线,相当于接收到离线信号。更进一步地,控制板上设置有离线检测开关,该离线检测开关可实时检测控制板的扳手的位置变化,若确定扳手的位置变化满足一定条件后,即确定控制板即将离线,相当于接收到离线信号。或者,也可以通过网管系统发送指令的方式。对此,本申请不做限定。
在一种可能实现的方式中,第一通知信号用于指示控制板即将离线。具体地,当控制板在即将离线时,控制板向第一交叉板、业务板分别发送第一通知信号,所有第一通知信号均用于指示控制板即将离线。设备内的所有单板均预置有相应的规则。基于该规则,当各个单板在接收到第一通知信号时,即确定控制板即将离线。第一交叉板则维持第二时钟,业务板则进行第一时钟和第二时钟之间的切换。
在另一种可能实现的方式中,第一通知信号具体用于指示第一交叉板维持第二时钟或指示业务板从第一时钟切换至第二时钟。具体地,当控制板在即将离线时,控制板向第一交叉板、业务板分别发送第一通知信号,其中,第一交叉板所接收到的第一通知信号用于指示维持第二时钟。业务板所接收到的第一通知信号用于指示进行第一时钟和第二时钟之间的切换,故在第一交叉板和业务板分别接收到第一通知信号后,则执行相应的操作。
第一交叉板在接收到第一通知信号后,则根据第一通知信号通过第一交叉板的本地晶振维持第二时钟,其中,第二时钟的频率与第一时钟的频率相同,第二时钟的相位与第一时钟的相位相同。可以理解的是,第二时钟与第一时钟的参数基本相同,第一时钟来源于控制板,第二时钟来源于第一交叉板。
业务板在接收到第一通知信号后,则根据第一通知信号从第一时钟切换至第二时钟。在一种可能实现的方式中,业务板可根据第一通知信号,对来自第一交叉板的业务信号进行时钟数据恢复(clock and data recovery,CDR),得到第二时钟。具体地,第一交叉板上的串行器/解串器(serializer/deserializer,serdes)与业务板上的serdes之间连接有业务通道。无论控制板是否离线,为了保持业务不中断,第一交叉板会持续通过业务通道向各个业务板发送业务信号。值得注意的是,在控制板离线前,第一交叉板基于第一时钟,以一定的节奏向业务板发送业务信号。在控制板离线后,由于第一交叉板维持有第二时钟,故第一交叉板基于第二时钟,依旧以相同的节奏向业务板发送业务信号。因此,业务板在接收到第一通知信号后,可基于自身的serdes所接收到的业务信号进行CDR,进而得到第二时钟,即完成第一时钟和第二时钟之间的切换。在业务板从第一时钟切换至第二时钟后,则相当于同步跟踪至第一交叉板上,以第一交叉板为时钟源,进而能够保持通信设备当前的业务不中断。
若控制板重新上线,所有单板可切换回控制板的时钟。在一种可能实现的方式中,控制板恢复在线状态后,基于第一交叉板所维持的第二时钟,获取第一时钟。然后,控制板向第一交叉板和业务板发送第三通知信号,以使得第一交叉板和业务板均从第二时钟切换至第一时钟。其中,第三通知信号用于指示时钟源从第一交叉板切换至控制板。具体地,当控制板重新被插入设备的相应槽位且完全启动后,则向从第一交叉板获取第二时钟的参数信息,逐渐调整控制板的自身时钟,使得自身时钟的参数与第二时钟的参数相同,则相当于获取到第一时钟。在控制板获取第一时钟后,则分别向第一交叉板、业务板以及不具有时钟维持功能的交叉板发送第三通知信号。由于第三通知信号可用于指示控制板在线。基于第三通知信号,交叉板和业务板从第二时钟切换至第一时钟,以继续保持时钟同步,使得业务不会中断。
本实施例中,当控制板准备从通信设备中抽离时,可通过第一通知信号通知第一交叉板和业务板。基于该信号,第一交叉板可维持与控制板产生的第一时钟相同的第二时钟,业务板可从第一时钟切换至第二时钟。故在控制板离线后,时钟源从控制板切换至第一交叉板,第一交叉板可为业务板提供用于同步的第二时钟。因此,第一交叉板与业务板之间可保持时钟同步,以继续正常执行相关的业务,使得业务不会中断。
图2所示的通信设备仅包含一个具有时钟保持功能的交叉板。在实际应用中,通信设备也可包含多个具有时钟保持功能的交叉板。图5为本申请实施例提供的通信设备的另一结构示意图。如图5所示,该通信设备包括:主控制板、备用控制板、业务板、多个具备时钟维持功能的交叉板(即图5中以实线示意的交叉板)和多个不具备时钟维持功能的交叉板(即图5中以虚线示意的交叉板)。
主控制板集成有时钟功能。当主控制板在线时,可产生设备内各个单板同步工作所需的第一时钟,并向各个单板提供用于同步的第一时钟。主控制板可作为整台通信设备的时 钟源,为备用控制板、所有交叉板和所有业务板提供第一时钟,使得整台设备的所有单板能够同步工作,以执行相关的业务处理。需要说明的是,主控制板和备用控制板之间、主控制板和交叉板之间以及主控制板和业务板之间连接有时钟通道(图5中二个板之间的连接线)。主控制板可通过时钟通道分别向备用控制板、交叉板和业务板发送第一时钟,以实现时钟同步。
当主控制板在线时,备用控制板可同步跟踪主控制板,以维持第一时钟。当主控制板离线后,备用控制板可接替主控制板,作为整台设备的时钟源,向所有交叉板和业务板提供第一时钟。
本实施例中,通信设备包含多个具有时钟维持功能的交叉板。这类交叉板的每一个与控制板(主控制板和备用控制板)之间具有双向的时钟通道。因此,在这类交叉板通过本地晶振维持时钟的过程中,需要和控制板进行基于时钟的交互(即二者之间需要相互发送时钟),可通过双向的时钟通道实现。而在多个不具备时钟维持功能的交叉板中,每个交叉板与控制板之间具有单向的时钟通道,故这一部分交叉板不具备时钟维持功能。在多个具有时钟维持功能的交叉板中,任意两个交叉板之间相互连接,且这一部分交叉板可预置有优先级排序,当控制板离线后,可根据该优先级挑选优先级最高的交叉板作为时钟源。
在该通信设备中,任意一个交叉板与任意一个业务板之间均连接有业务通道(即图5中交叉板与业务板之间的连接线),交叉板可通过业务通道向业务板发送业务信号,以使得业务板基于业务信号执行相应的业务。
若主控制板已被拔出,则备用控制板可作为整台设备的时钟源。当备用控制板接收到离线信号后,可向第一交叉板和业务板发送第一通知信号,第一通知信号用于指示时钟源从备用控制板切换至第一交叉板。具体地,备用控制板可通过多种方式接收到离线信号,在一种可能实现的方式中,若需要将备用控制板从设备中拔出,备用控制板本身具有扳手,当扳手受到外力发生位置变化时,备用控制板可实时确定扳手的位置变化,当确定扳手的位置变化满足一定条件后,即确定备用控制板即将离线,相当于接收到离线信号。更进一步地,备用控制板上设置有离线检测开关,可实时检测备用控制板的扳手的位置变化,若确定扳手的位置变化满足一定条件后,可确定备用控制板即将离线,即接收到离线信号。
值得注意的是,第一通知信号可以多种方式呈现,以下将分别进行介绍。
在一种可能实现的方式中,当备用控制板在即将离线时,向所有业务板和所有具有时钟维持功能的交叉板发送第一通知信号,以通知各个单板备用控制板即将离线。
在另一种可能实现的方式中,控制板向多个具有时钟维持功能的交叉板、业务板分别发送第一通知信号。具有时钟维持功能的交叉板所接收到的第一通知信号用于指示维持第二时钟。可选地,收到第一通知信号的多个交叉板可以通过信息交互,来确定其中一个作为新的时钟源。例如,具有时钟维持功能的交叉板可配置优先级信息,用于进行时钟源选择。业务板所接收到第一通知信号用于指示进行第一时钟和第二时钟之间的切换。时钟切换的具体说明可参考前述图2所示实施例中的相关说明部分,此处不再赘述。
此外,当第一交叉板作为整台设备的时钟源时,可能出现以下几种情况:
(1)若有控制板恢复在线状态,所有单板可重新同步跟踪该控制板。控制板接收到在线信号后,则向从第一交叉板获取第二时钟的参数信息,逐渐调整控制板的自身时钟,使 得自身时钟的参数与第二时钟的参数相同,即获取到第一时钟。在控制板获取第一时钟后,则分别向所有具有时钟维持功能的交叉板、业务板以及所有不具有时钟维持功能的交叉板发送第三通知信号。由于第三通知信号可用于指示控制板在线,故基于第三通知信号,所有具有时钟维持功能的交叉板、业务板以及所有不具有时钟维持功能的交叉板则开始接收来自控制板的第一时钟,以继续保持时钟同步,使得业务不会中断。
(2)若第一交叉板接收到离线信号,则第一交叉板向第二交叉板和业务板发送第二通知信号。第二通知信号用于指示时钟源从第一交叉板切换至第二交叉板。然后,第二交叉板根据第二通知信号通过第二交叉板的本地晶振维持第三时钟,第三时钟的频率与第二时钟的频率相同,第三时钟的相位与第二时钟的相位相同。最后,业务板根据第二通知信号从第二时钟切换至第三时钟,以完成时钟同步。
具体地,第一交叉板向多个具有时钟维持功能的交叉板中其他交叉板以及业务板发送第二通知信号。第二通知信号可以多种方式呈现,以下将分别进行说明。
在一种可能实现的方式中,第二通知信号具体用于指示第一交叉板即将离线。
在另一种可能实现的方式中,第二通知信号具体用于指示多个具有时钟维持功能的交叉板中除第一交叉板外的其余交叉板(包含第二交叉板)维持第三时钟或指示业务板从第二时钟切换至第三时钟。
当多个具有时钟维持功能的交叉板中除第一交叉板外的其余交叉板接收到第二通知信号后,可在这一部分交叉板之中确定出第一交叉板。在一种可能实现的方式中,在多个具有时钟维持功能的交叉板中除第一交叉板外的其余交叉板中,每个交叉板根据第二通知信号通过本地晶振维持第三时钟,第三时钟的相位与第二时钟的相位相同,第三时钟的频率与第二时钟的频率相同。然后,多个具有时钟维持功能的交叉板中除第一交叉板外的其余交叉板进行信息交互,从这一部分交叉板中确定状态正常(能够正常运行)且优先级最高的交叉板作为时钟源,即确定状态正常且优先级最高的交叉板为第二交叉板。在另一种可能实现的方式中,多个具有时钟维持功能的交叉板中除第一交叉板外的其余交叉板接收到第一通知信号后,所有交叉板进行信息交互,从这一部分交叉板中确定状态正常(能够正常运行)且优先级最高的交叉板作为时钟源,即确定状态正常且优先级最高的交叉板为第二交叉板,最后第二交叉板基于第二通知信号通过本地晶振维持第三时钟。
业务板在接收到第二通知信号后,则根据第二通知信号从第二时钟切换至第三时钟。业务板从第二时钟切换至第三时钟的具体说明与前述业务板从第一时钟切换至第二时钟的相关说明类似,此处不再赘述。
(3)基于情况(2),若有一个控制板恢复在线状态,则设备内的所有单板需要重新同步跟踪该控制板。在该情况下,控制板重新上线后各个单板同步跟踪的具体说明可参考前述情况(1)中的相关说明部分,此处不再赘述。
应理解,图5中各种类型的单板(控制板、交叉板等)的数量仅为示意。本申请对此不做限制。例如,若通信设备中包含三个、四个等多个控制板的情况,通常以最后一个控制板即将离线时视为控制板接收到离线信号。
基于上述对通信设备的多个实施例描述,以下将对本申请实施例提供的时钟同步的方法进行说明。图6为本申请实施例提供的时钟同步的方法的一个流程示意图。如图6所示, 该方法应用于一种通信设备,该通信设备包括:控制板、第一交叉板和业务板。该方法包括:
601、控制板在接收离线信号后,向第一交叉板和业务板发送第一通知信号,第一通知信号用于指示时钟源从控制板切换至第一交叉板。
602、第一交叉板根据第一通知信号通过第一交叉板的本地晶振维持第二时钟,第二时钟的频率与第一时钟的频率相同,第二时钟的相位与第一时钟的相位相同,第一时钟由控制板产生。
603、业务板根据第一通知信号从第一时钟切换至第二时钟。
在一种可能实现的方式中,通信设备还包括第二交叉板,第一交叉板与第二交叉板连接,业务板根据第一通知信号从第一时钟切换至第二时钟之后,方法还包括:第一交叉板在接收离线信号后,向第二交叉板和业务板发送第二通知信号,第二通知信号用于指示时钟源从第一交叉板切换至第二交叉板;第二交叉板根据第二通知信号通过第二交叉板的本地晶振维持第三时钟,第三时钟的频率与第二时钟的频率相同,第三时钟的相位与第二时钟的相位相同;业务板根据第二通知信号从第二时钟切换至第三时钟。
在一种可能实现的方式中,业务板根据第一通知信号从第一时钟切换至第二时钟具体包括:业务板根据第一通知信号,对来自第一交叉板的业务信号进行CDR,得到第二时钟。
在一种可能实现的方式中,业务板根据第二通知信号从第二时钟切换至第三时钟具体包括:业务板根据第二通知信号,对来自第二交叉板的业务信号进行CDR,得到第三时钟。
在一种可能实现的方式中,该方法还包括:控制板恢复在线状态后,基于第一交叉板所维持的第二时钟,获取第一时钟;控制板向第一交叉板和业务板发送第三通知信号,其中,第三通知信号用于指示时钟源从第一交叉板切换至控制板;第一交叉板从第二时钟切换至第一时钟;业务板从第二时钟切换至第一时钟。
在一种可能实现的方式中,第一通知信号具体用于指示控制板即将离线。在另一种可能实现的方式中,第一通知信号具体用于指示第一交叉板维持第二时钟或指示业务板从第一时钟切换至第二时钟。
在一种可能实现的方式中,第二通知信号具体用于指示第一交叉板即将离线。在另一种可能实现的方式中,第二通知信号具体用于指示第二交叉板维持第三时钟或指示业务板从第二时钟切换至第三时钟。
图6所示实施例中各步骤的说明可参考图3-图4所示实施例的相关说明,此处不再赘述。
本实施例中,当控制板准备从通信设备中抽离时,可通过第一通知信号通知第一交叉板和业务板,基于该信号,第一交叉板可维持与控制板产生的第一时钟相同的第二时钟,业务板可从第一时钟切换至第二时钟,故在控制板离线后,时钟源从控制板切换至第一交叉板,第一交叉板可为业务板提供用于同步的第二时钟,因此,第一交叉板与业务板之间可保持时钟同步,以继续正常执行相关的业务,使得业务不会中断。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种通信设备,其特征在于,包括:控制板、第一交叉板和业务板;其中,
    所述控制板,用于在接收离线信号后,向所述第一交叉板和所述业务板发送第一通知信号,所述第一通知信号用于指示时钟源从所述控制板切换至所述第一交叉板;
    所述第一交叉板,用于根据所述第一通知信号通过所述第一交叉板的本地晶振维持第二时钟,所述第二时钟的频率与第一时钟的频率相同,所述第二时钟的相位与所述第一时钟的相位相同,所述第一时钟由所述控制板产生;
    所述业务板,用于根据所述第一通知信号从所述第一时钟切换至所述第二时钟。
  2. 根据权利要求1所述的通信设备,其特征在于,所述通信设备还包括第二交叉板,所述第一交叉板与所述第二交叉板连接;
    所述第一交叉板还,用于在接收所述离线信号后,向所述第二交叉板和所述业务板发送第二通知信号,所述第二通知信号用于指示时钟源从所述第一交叉板切换至所述第二交叉板;
    所述第二交叉板,用于根据所述第二通知信号通过所述第二交叉板的本地晶振维持第三时钟,所述第三时钟的频率与所述第二时钟的频率相同,所述第三时钟的相位与所述第二时钟的相位相同;
    所述业务板,还用于根据所述第二通知信号从所述第二时钟切换至所述第三时钟。
  3. 根据权利要求1或2所述的通信设备,其特征在于,所述业务板,具体用于根据所述第一通知信号,对来自所述第一交叉板的业务信号进行时钟数据恢复CDR,得到所述第二时钟。
  4. 根据权利要求2或3所述的通信设备,其特征在于,所述业务板,具体用于根据所述第二通知信号,对来自所述第二交叉板的业务信号进行CDR,得到所述第三时钟。
  5. 根据权利要求1至4任意一项所述的通信设备,其特征在于,所述控制板还用于:
    在恢复在线状态后,基于所述第一交叉板所维持的所述第二时钟,获取所述第一时钟;
    向所述第一交叉板和所述业务板发送第三通知信号,其中,所述第三通知信号用于指示时钟源从所述第一交叉板切换至所述控制板;
    所述第一交叉板,还用于从所述第二时钟切换至所述第一时钟;
    所述业务板,还用于从所述第二时钟切换至所述第一时钟。
  6. 根据权利要求1至5任意一项所述的通信设备,其特征在于,所述第一通知信号具体用于指示所述控制板即将离线。
  7. 根据权利要求1至5任意一项所述的通信设备,其特征在于,所述第一通知信号具体用于指示所述第一交叉板维持所述第二时钟或指示所述业务板从所述第一时钟切换至所述第二时钟。
  8. 根据权利要求2至7任意一项所述的通信设备,其特征在于,所述第二通知信号具体用于指示所述第一交叉板即将离线。
  9. 根据权利要求2至7任意一项所述的通信设备,其特征在于,所述第二通知信号具体用于指示所述第二交叉板维持所述第三时钟或指示所述业务板从所述第二时钟切换至所述第三时钟。
  10. 一种时钟同步的方法,其特征在于,所述方法应用于通信设备,所述通信设备包括:控制板、第一交叉板和业务板,所述方法包括:
    所述控制板在接收离线信号后,向所述第一交叉板和所述业务板发送第一通知信号,所述第一通知信号用于指示时钟源从所述控制板切换至所述第一交叉板;
    所述第一交叉板根据所述第一通知信号通过所述第一交叉板的本地晶振维持第二时钟,所述第二时钟的频率与第一时钟的频率相同,所述第二时钟的相位与所述第一时钟的相位相同,所述第一时钟由所述控制板产生;
    所述业务板根据所述第一通知信号从所述第一时钟切换至所述第二时钟。
  11. 根据权利要求10所述的方法,其特征在于,所述通信设备还包括第二交叉板,所述第一交叉板与所述第二交叉板连接,所述业务板根据所述第一通知信号从所述第一时钟切换至所述第二时钟之后,所述方法还包括:
    所述第一交叉板在接收所述离线信号后,向所述第二交叉板和所述业务板发送第二通知信号,所述第二通知信号用于指示时钟源从所述第一交叉板切换至所述第二交叉板;
    所述第二交叉板根据所述第二通知信号通过所述第二交叉板的本地晶振维持第三时钟,所述第三时钟的频率与所述第二时钟的频率相同,所述第三时钟的相位与所述第二时钟的相位相同;
    所述业务板根据所述第二通知信号从所述第二时钟切换至所述第三时钟。
  12. 根据权利要求10或11所述的方法,其特征在于,所述业务板根据所述第一通知信号从所述第一时钟切换至所述第二时钟具体包括:
    所述业务板根据所述第一通知信号,对来自所述第一交叉板的业务信号进行CDR,得到所述第二时钟。
  13. 根据权利要求11或12所述的方法,其特征在于,所述业务板根据所述第二通知信号从所述第二时钟切换至所述第三时钟具体包括:
    所述业务板根据所述第二通知信号,对来自所述第二交叉板的业务信号进行CDR,得到所述第三时钟。
  14. 根据权利要求10至13任意一项所述的方法,其特征在于,所述方法还包括:
    所述控制板恢复在线状态后,基于所述第一交叉板所维持的所述第二时钟,获取所述第一时钟;
    所述控制板向所述第一交叉板和所述业务板发送第三通知信号,其中,所述第三通知信号用于指示时钟源从所述第一交叉板切换至所述控制板;
    所述第一交叉板从所述第二时钟切换至所述第一时钟;
    所述业务板从所述第二时钟切换至所述第一时钟。
PCT/CN2021/074864 2020-02-20 2021-02-02 一种通信设备及时钟同步的方法 WO2021164541A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21756637.1A EP4096121A4 (en) 2020-02-20 2021-02-02 COMMUNICATION DEVICE AND CLOCK SYNCHRONIZATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010104370.5 2020-02-20
CN202010104370.5A CN113285779B (zh) 2020-02-20 2020-02-20 一种通信设备及时钟同步的方法

Publications (1)

Publication Number Publication Date
WO2021164541A1 true WO2021164541A1 (zh) 2021-08-26

Family

ID=77274980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074864 WO2021164541A1 (zh) 2020-02-20 2021-02-02 一种通信设备及时钟同步的方法

Country Status (3)

Country Link
EP (1) EP4096121A4 (zh)
CN (1) CN113285779B (zh)
WO (1) WO2021164541A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510845A (zh) * 2002-12-26 2004-07-07 华为技术有限公司 一种交叉主备保护的热备份方法
CN101882967A (zh) * 2010-06-13 2010-11-10 中兴通讯股份有限公司 用于同步数字系列系统的时钟调整方法和线卡
CN109995452A (zh) * 2017-12-29 2019-07-09 中兴通讯股份有限公司 一种时钟频率的确定方法、交换板系统、主控板系统和计算机存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616032B (zh) * 2009-07-20 2012-07-18 中兴通讯股份有限公司 一种实现交叉容量升级的方法及装置
CN107229305B (zh) * 2017-05-31 2020-01-07 成都欧飞凌通讯技术有限公司 一种系统时钟无损切换的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510845A (zh) * 2002-12-26 2004-07-07 华为技术有限公司 一种交叉主备保护的热备份方法
CN101882967A (zh) * 2010-06-13 2010-11-10 中兴通讯股份有限公司 用于同步数字系列系统的时钟调整方法和线卡
CN109995452A (zh) * 2017-12-29 2019-07-09 中兴通讯股份有限公司 一种时钟频率的确定方法、交换板系统、主控板系统和计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4096121A4

Also Published As

Publication number Publication date
EP4096121A4 (en) 2023-08-09
CN113285779A (zh) 2021-08-20
EP4096121A1 (en) 2022-11-30
CN113285779B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
US10855623B2 (en) Frontplane communication network between multiple pluggable modules on a single faceplate
US9215092B2 (en) Clock selection for synchronous Ethernet
EP2688240B1 (en) Method, system and device for switching and selecting clock source device
US6738345B1 (en) Method for failover management in a synchronous optical network using standard protocols
CN102843205A (zh) 一种基于精确时间协议的时间同步收敛的方法和装置
US20120063296A1 (en) Systems and Methods for Providing a Dual-Master Mode in a Synchronous Ethernet Environment
US9166868B2 (en) Distributed control plane for link aggregation
JP6437587B2 (ja) クロックを同期するための方法、システム、および装置
JP2000209245A (ja) ネットワーク同期制御装置及びタイミングループ発生防止方法
CN112929119B (zh) 分布式系统链路切换方法、装置、设备及存储介质
JP6097450B2 (ja) 可変レート光トランスポンダにおけるヒットレスサービス
WO2021164541A1 (zh) 一种通信设备及时钟同步的方法
CN101719837A (zh) 时钟板、适用于服务器的网络系统及时钟倒换方法
US10334539B2 (en) Metered interface
JP2023554065A (ja) クロックソースを選択するための方法及び装置
WO2017166969A1 (zh) 1588报文发送方法、装置及存储介质
JP6274918B2 (ja) 通信システム
JP2018093369A (ja) 従属装置、同期システム、及び、従属装置の同期方法
JP7496794B2 (ja) 光通信装置
JP2010219850A (ja) 伝送通信装置の同期タイミングソース切り替え方法
WO2022222852A1 (zh) 确定时钟的方法、装置及存储介质
JP3804652B2 (ja) スイッチングハードウェア管理制御装置及び方法
JPH07107105A (ja) 二重化ループlanの従属同期制御方法
JPH08265355A (ja) Lan通信システム
JP2011087186A (ja) パケット転送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021756637

Country of ref document: EP

Effective date: 20220825

NENP Non-entry into the national phase

Ref country code: DE