WO2021164338A1 - 一种控制rf链路的方法及装置 - Google Patents

一种控制rf链路的方法及装置 Download PDF

Info

Publication number
WO2021164338A1
WO2021164338A1 PCT/CN2020/128418 CN2020128418W WO2021164338A1 WO 2021164338 A1 WO2021164338 A1 WO 2021164338A1 CN 2020128418 W CN2020128418 W CN 2020128418W WO 2021164338 A1 WO2021164338 A1 WO 2021164338A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
subcarrier
combination
transmission
channel
Prior art date
Application number
PCT/CN2020/128418
Other languages
English (en)
French (fr)
Inventor
马士民
朱君军
奈春英
颜子良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021164338A1 publication Critical patent/WO2021164338A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method and device for controlling a radio frequency (RF) link.
  • RF radio frequency
  • WiFi wireless fidelity
  • the power supply for WiFi devices includes DC power supply, Power over Ethernet (POE) and Universal Serial Bus (USB) power supply, etc. Due to its sufficient power supply capacity, the DC power supply can transmit signals according to the maximum capacity of its hardware to maximize the competitiveness of the product.
  • DC power supply Power over Ethernet (POE) and Universal Serial Bus (USB) power supply, etc. Due to its sufficient power supply capacity, the DC power supply can transmit signals according to the maximum capacity of its hardware to maximize the competitiveness of the product.
  • POE Power over Ethernet
  • USB Universal Serial Bus
  • the maximum power supply capacity of non-DC power supply (POE or USB or other) is fixed.
  • the maximum power supply capacity of POE power supply equipment is 90 watts (watts, W), 30W under the IEEE 802.3at standard, it may happen that the maximum power consumption of the WiFi device is greater than the maximum power supply capacity of the non-DC power supply device that supplies power to it.
  • the WiFi device needs to have the power consumption adjustment ability to adapt to the power supply.
  • the maximum power supply capacity of the device is fixed.
  • the maximum power supply capacity of POE power supply equipment is 90 watts (watts, W), 30W under the IEEE 802.3at standard
  • WiFi devices can reduce power consumption by opening part of the RF transmission link to adapt the maximum power supply capacity of the power supply device. For example, you can write a power control table in the WiFi device. When powering on, if it is determined that the maximum power consumption of the whole machine is greater than the maximum power supply capacity of the non-DC power supply device that supplies power to it, select the power control table that meets the requirements of the non-DC power supply device. The number of RF links with the maximum power supply capability. The WiFi device starts the default RF transmission link combination to transmit signals according to the selected number of RF links.
  • the opened RF transmission link is fixed after the determination, when the network transmission environment or operating status changes due to changes in the location of the terminal connected to the WiFi device, etc., this may occur
  • the opened RF transmission link is no longer the best RF transmission link for providing services to the terminal, resulting in a decrease in the transmission efficiency (throughput) of the WiFi device and poor communication quality.
  • the present application provides a method and device for controlling an RF link, which improves the transmission efficiency and communication quality of communication equipment.
  • the present application provides a method for controlling an RF link.
  • the method is used to control a communication device.
  • the communication device supports a maximum of M (M ⁇ 3) RF transmission links.
  • the method may include: determining M RF transmissions K link combinations in the link, each link combination includes at most (M-1) RF transmission links, and the RF transmission links included in different link combinations are at least not exactly the same; each link is obtained separately Channel correlation coefficients combined in N subcarriers, where the channel correlation coefficients of the first link combination in the first subcarrier reflect that the communication device opens the RF transmission link in the first link combination and closes other RF transmission links
  • the first link combination is any one of the K link combinations
  • the first subcarrier is any one of the N subcarriers.
  • Carrier control the communication device to open the RF transmission link in the second link combination and close other RF transmission links.
  • the second link combination is a link combination in which the channel correlation coefficients
  • the channel correlation coefficients of different RF transmission link combinations are obtained, the RF transmission link combination whose channel correlation coefficients meet the preset conditions is selected, and the communication device is controlled according to the selected RF transmission link Combine to send a signal.
  • the RF transmission link that conforms to the latest network environment can be selected in real time to send signals, which improves the transmission efficiency and communication quality of communication equipment .
  • the preset conditions can be configured according to the needs of users, and can also be adjusted according to actual needs after configuration, which is not uniquely limited in this application.
  • K link combinations of the M RF transmission links can be determined, and each link combination includes at most (M-1) RF transmission links, specifically, K link combinations can be determined in a variety of ways.
  • determine the type of link combination in Indicates that X transmission links can be selected from M RF transmission links for combination, X is the number of RF transmission links that are determined to be opened, and X is less than M. In this case, the number of RF transmission links opened for each of the K link combinations is X.
  • determine the type of link combination E is the maximum number of RF transmission links that can be opened in each link combination, and E is less than or equal to (M-1).
  • the maximum number of RF transmission links that are allowed to be opened is E
  • the number of RF transmission links to be opened is 2 to E respectively
  • the corresponding number of transmission links to be opened is determined respectively.
  • the number of transmission links in each of the K link combinations can be any value from 2 to E.
  • determine the type of link combination E is the maximum number of RF transmission links that are allowed to be opened, E is less than or equal to (M-1); b is the minimum number of RF transmission links that are allowed to be opened, and b is greater than or equal to 2.
  • the final K link combinations are determined according to the set range of the number of RF transmission links that are allowed to be opened (the range may be discrete or continuous).
  • the preset condition may include: the average value of the channel correlation coefficient in each subcarrier is the smallest; or, the channel correlation coefficient in each subcarrier The weighted average of the correlation coefficients is the smallest; or, the weighted sum of the channel correlation coefficients in each subcarrier is the smallest.
  • the link combination corresponding to the channel correlation coefficient with the smallest average value or the smallest weighted average value or the smallest weighted sum is selected, and the selected link combination is used to send the signal, which improves the transmission efficiency of the communication device And communication quality.
  • the second subcarrier is any subcarrier among the N subcarriers
  • the first The three-link combination is any one of the K link combinations
  • the channel correlation coefficients of each link combination on the N subcarriers are obtained, including: channel estimation is performed on the uplink signal received by the communication device on the second subcarrier to obtain The channel matrix of the second subcarrier, the channel matrix includes the channel response of each RF transmission link in the second subcarrier in the M RF transmission links; respectively calculate the third link combination for every two RF transmission links in the second subcarrier.
  • the initial channel correlation coefficients of the two subcarriers; the first calculation is performed on the initial channel correlation coefficients of each two RF transmission links in the second subcarrier in the third link combination, as the third link combination in the second subcarrier Channel correlation coefficient.
  • the initial channel correlation coefficients of each two RF transmission links in the third link combination on the second subcarrier are calculated separately, and you can Including: using formula (1) to calculate the initial channel correlation coefficient r of the RF transmission link i and the RF transmission link j on the subcarrier n.
  • cov(.) is the covariance operation
  • d(.) is the variance operation
  • h i (n) is the channel response information of the RF transmission link i on subcarrier n
  • h j (n) is the RF transmission link j
  • RF transmission link i is any RF transmission link in the third link combination
  • RF transmission link j is any RF transmission link i in the third link combination.
  • An RF transmission link; n is greater than or equal to 0 and less than or equal to N.
  • the first calculation may include: summation, or average value, or weighted average value.
  • a highly accurate channel correlation coefficient can be calculated, and then the RF transmission link transmission signal that meets the latest network environment can be filtered according to preset conditions, which is beneficial to improve the transmission efficiency and communication of communication equipment quality.
  • the method may further include: separately calculating the channel frequency response of each link combination on N subcarriers, and the channel frequency response of a link combination on one subcarrier is the N subcarriers included in the link combination.
  • the absolute value of the difference between the maximum value and the minimum value in the response; according to a preset rule, the weight of the channel correlation coefficient of each link combination in each subcarrier is determined.
  • the preset rule may include different relationships satisfied by the channel frequency response and the channel frequency response difference of the link combination on the subcarriers, and the weights corresponding to the different relationships.
  • the preset rules can be configured according to the actual needs of the user.
  • the preset rule may include: if the channel frequency response of the link combination on the subcarrier is less than the channel frequency response difference of the link combination multiplied by With the first parameter, the weight of the channel correlation coefficient of the link combination on the subcarrier is the first weight; if the channel frequency response of the link combination on the subcarrier is greater than the channel frequency response difference of the link combination multiplied by The second parameter, the weight of the channel correlation coefficient of the link combination on the subcarrier is the second weight; if the channel frequency response of the link combination on the subcarrier is greater than the channel frequency response difference of the link combination multiplied by the first A parameter, and the channel frequency response of the link combination on the subcarrier is less than the channel frequency response difference of the link combination multiplied by the second parameter, then the weight of the channel correlation coefficient of the link combination on the subcarrier is the third Weight.
  • the second parameter is greater than the first parameter.
  • the first parameter may be 0.2
  • the second parameter may be 0.8
  • the first weight may be 0.8
  • the second weight may be Is 0.2
  • the third weight can be 1.
  • the method may further include: determining that the communication device is in a power-restricted scenario.
  • the determination of K link combinations among the M RF transmission links is performed.
  • an apparatus for controlling an RF link may be part or all of a communication device.
  • the device for controlling the RF link may also be other electronic devices or chip systems that perform data transmission with the communication device.
  • the device for controlling the RF link can implement the functions performed in the above-mentioned aspects or various possible implementation manners, and the functions can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device for controlling the RF link is used to control the communication device, and the communication device supports a maximum of M (M ⁇ 3) RF transmission links.
  • the device for controlling the RF link may include: a determining unit, a first acquiring unit, and a processing unit.
  • the determining unit is used to determine K link combinations in M RF transmission links, each link combination includes at most (M-1) RF transmission links, and the RF transmission chains included in different link combinations At least the roads are not exactly the same.
  • the first obtaining unit is configured to obtain the channel correlation coefficients of each link combination on the N subcarriers.
  • the channel correlation coefficient of the first link combination in the first subcarrier is used to reflect that when the communication device opens the RF transmission link in the first link combination and closes other RF transmission links, the communication device and one or more users
  • the channel transmission environment in which the first subcarrier is used between devices, the first link combination is any link combination in K link combinations, and the first subcarrier is any subcarrier in the N subcarriers.
  • the processing unit is used to control the communication device to open the RF transmission link in the second link combination and close other RF transmission links.
  • the second link combination is a link combination in which the channel correlation coefficient meets the preset condition among the K link combinations.
  • the channel correlation coefficients of different RF transmission link combinations are obtained, the RF transmission link combination whose channel correlation coefficients meet the preset conditions is selected, and the communication device is controlled according to the selected RF transmission link Combine to send a signal.
  • the RF transmission link that conforms to the latest network environment can be selected in real time to send signals, which improves the transmission efficiency and communication quality of communication equipment .
  • the determining unit is specifically configured to determine K link combinations among the M RF transmission links, and each link is The path combination includes at most (M-1) RF transmission links. Specifically, the determining unit may determine K link combinations in multiple ways.
  • the preset condition may include: the average value of the channel correlation coefficient in each subcarrier is the smallest; or, the channel correlation coefficient in each subcarrier The weighted average of the correlation coefficients is the smallest; or, the weighted sum of the channel correlation coefficients in each subcarrier is the smallest.
  • the link combination corresponding to the channel correlation coefficient with the smallest average value or the smallest weighted average value or the smallest weighted sum is selected, and the selected link combination is used to send the signal, which improves the transmission efficiency of the communication device And communication quality.
  • the second subcarrier is any subcarrier among the N subcarriers
  • the first The three-link combination is any one of the K link combinations
  • the acquiring unit may be specifically configured to: subject the uplink signal received by the communication device on the second subcarrier to channel estimation to obtain the channel matrix of the second subcarrier, and the channel matrix Including the channel response of each RF transmission link in the second subcarrier in the M RF transmission links; respectively calculate the initial channel correlation coefficients of each two RF transmission links in the second subcarrier in the third link combination; The first calculation is performed on the initial channel correlation coefficients of every two RF transmission links in the second subcarrier in the third link combination as the channel correlation coefficients of the third link combination in the second subcarrier.
  • the acquiring unit may be specifically configured to: use formula (1) to calculate that the RF transmission link i and the RF transmission link j are in subcarriers The initial channel correlation coefficient r of n.
  • cov(.) is the covariance operation
  • d(.) is the variance operation
  • h i (n) is the channel response information of the RF transmission link i on subcarrier n
  • h j (n) is the RF transmission link j
  • RF transmission link i is any RF transmission link in the third link combination
  • RF transmission link j is any RF transmission link i in the third link combination.
  • An RF transmission link; n is greater than or equal to 0 and less than or equal to N.
  • the first calculation may include: summation, or average value, or weighted average value.
  • a highly accurate channel correlation coefficient can be calculated, and then the RF transmission link transmission signal that meets the latest network environment can be filtered according to preset conditions, which is beneficial to improve the transmission efficiency and communication of communication equipment quality.
  • the device for controlling the RF link further includes a second acquisition unit: used to calculate the channel frequency response of each link combination on the N subcarriers, and one link is combined on the channel of one subcarrier.
  • the frequency response is the sum of the channel response information of the N RF transmission links included in the link combination in the subcarrier; it is used to calculate the channel frequency response difference of each link combination, and the channel frequency response difference of a link combination It is the absolute value of the difference between the maximum value and the minimum value in the channel frequency response of the N subcarriers of the link combination; used to determine the weight of the channel correlation coefficient of each link combination in each subcarrier according to a preset rule .
  • the preset rule may include different relationships satisfied by the channel frequency response and the channel frequency response difference of the link combination on the subcarriers, and the weights corresponding to the different relationships.
  • the preset rules can be configured according to the actual needs of the user.
  • the preset rule may include: if the channel frequency response of the link combination on the subcarrier is less than the channel frequency response difference of the link combination multiplied by With the first parameter, the weight of the channel correlation coefficient of the link combination on the subcarrier is the first weight; if the channel frequency response of the link combination on the subcarrier is greater than the channel frequency response difference of the link combination multiplied by The second parameter, the weight of the channel correlation coefficient of the link combination on the subcarrier is the second weight; if the channel frequency response of the link combination on the subcarrier is greater than the channel frequency response difference of the link combination multiplied by the first A parameter, and the channel frequency response of the link combination on the subcarrier is less than the channel frequency response difference of the link combination multiplied by the second parameter, then the weight of the channel correlation coefficient of the link combination on the subcarrier is the third Weight.
  • the second parameter is greater than the first parameter.
  • the first parameter can be 0.2
  • the second parameter can be 0.8
  • the first weight can be 0.8
  • the second weight can be Is 0.2
  • the third weight can be 1.
  • the apparatus for controlling the RF link may further include a judging unit: the judging unit is configured to determine that the communication device is in a power-restricted scenario.
  • the determining unit may also be used for determining K link combinations among the M RF transmission links when the determining unit determines that the communication device is in a power-restricted scenario.
  • an embodiment of the present application provides a device for controlling an RF link.
  • the device for controlling an RF link may include: a processor and a memory; the processor and the memory are coupled, and the memory may be used to store computer executable instructions (computer programs). ), when the computer executable instruction (computer program) is controlled to execute the RF link, the control of the RF link is made to be the method for controlling the RF link described in the first aspect or any one of the possible implementations.
  • an embodiment of the present application provides a computer-readable storage medium, which may include: a computer program; when the computer program runs in a computer, the computer can execute the first aspect or the first aspect.
  • the method for controlling the RF link described in any one of the possible implementation manners.
  • the embodiments of the present application provide a computer program product, the computer program product includes a computer program; when the computer program product is run on a computer, the computer is caused to execute the first aspect of the claim or any possible The method for controlling the RF link described in any one of the implementation modes.
  • an embodiment of the present application provides a chip that includes an interface circuit and a processor; the interface circuit is used to receive code instructions and send the code instructions to the processor; when the processor executes the code instructions, the chip Perform the method for controlling an RF link according to the first aspect or any one of the possible implementation manners.
  • FIG. 1 is a schematic diagram of a process in which a WiFi device controls an RF transmission link provided by the prior art
  • Figure 2 is a schematic diagram of a wireless network transmission system provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a device for controlling an RF link provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a method for controlling an RF link provided by an embodiment of the application
  • FIG. 6 is a schematic flowchart of another method for controlling an RF link provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a device for controlling an RF link provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of another device for controlling an RF link provided by an embodiment of the application.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • A/B can mean A or B; the "and/or” in this application is only It is a kind of association relationship that describes the associated objects, which means that there can be three kinds of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B It can be singular or plural.
  • plural means two or more than two.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • At least one may also be described as one or more, and the multiple may be two, three, four or more, which is not limited in the present application.
  • Communication equipment can refer to equipment that communicates by receiving and sending wireless signals.
  • the communication device may be a WiFi device, a macro base station, a micro base station (also called a small station), a relay station, an access point, and other devices with wireless communication functions.
  • User equipment can refer to the equipment used by the user in communication.
  • the user device can be used to receive the downlink signal sent by the communication device and send the uplink signal to the communication device.
  • the user equipment may be a wireless transmission device such as a mobile phone, a computer, a notebook, or a TV.
  • a communication device may refer to a unit or module that can independently realize signal transmission.
  • the communication device may be part or all of the communication device.
  • the communication device when the communication device is a dual-band WiFi device, the communication device may be a signal transmission module of a frequency band in the communication device.
  • a dual-band WiFi device includes signal transmission modules in two frequency bands, and the signal transmission modules in the two frequency bands can be respectively used as a communication device.
  • the communication device is a single-frequency WiFi device
  • the communication device may be a WiFi device.
  • the transmitting link may refer to the path space for signal transmission from the transmitting antenna of the communication device to the receiving antenna of the user equipment when the communication device sends a signal.
  • the communication equipment controls the opening of the transmission link by controlling the radio frequency switch corresponding to the transmission link.
  • the receiving link may refer to the path space for signal transmission from the transmitting antenna of the user equipment to the receiving antenna of the communication device when the communication device receives signals.
  • the communication device controls the opening of the receiving link by controlling the radio frequency switch corresponding to the receiving link.
  • Orthogonal frequency division multiplexing (OFDM) technology is a multi-carrier transmission technology. Specifically, the high-speed serial data is converted into several low-speed data streams, and each low-speed data stream is modulated corresponding to a carrier to form a parallel transmission system with simultaneous modulation of multiple carriers to realize multi-carrier transmission of signals. Specifically, the OFDM technology can multiplex the signal onto N subcarriers, each of which has a different center frequency, so as to increase the signal transmission bandwidth.
  • the channel transmission environment may refer to information used to estimate the channel characteristics of a communication link.
  • the channel transmission environment may include channel quality, multipath delay, Doppler frequency offset, channel rank, and beamforming vector.
  • the channel correlation coefficient can refer to a parameter variable used to reflect the channel transmission environment.
  • the channel correlation coefficient of the present application is used to reflect the channel transmission environment corresponding to all opened RF transmission links in the link combination.
  • the channel correlation coefficient of the first link combination in the first subcarrier is used to reflect that when the communication device opens the RF transmission link in the first link combination and closes other RF transmission links, the communication device and one or more The channel transmission environment of the first subcarrier is used between user equipments.
  • the initial channel correlation coefficient can be used to reflect the channel transmission environment of every two RF transmission links in a link combination on the same carrier.
  • a power supply limited scenario may refer to a scenario where the maximum power consumption of the entire communication device is greater than the maximum power supply capability of the non-DC power supply device that supplies power to it.
  • the WiFi device When the WiFi device is in a power supply limited scenario, the WiFi device can reduce power consumption by opening part of the RF transmission link to adapt to the maximum power supply capacity of the power supply device, and realize signal transmission.
  • FIG. 1 illustrates a process in which a WiFi device controls an RF transmission link to reduce power consumption and realize signal transmission.
  • the process of controlling the RF transmission link includes S101 and S102.
  • the WiFi device determines the number of opened RF transmission links according to the current network transmission environment.
  • the network transmission environment of the WiFi device may include: power supply specifications, frequency specifications, protocol specifications, and transmission rates supported by the current network environment.
  • the WiFi device obtains the current network transmission environment, judges the size between the power supply corresponding to the power supply mode and the maximum power consumption of the WiFi device according to the power supply specifications, and confirms that the WiFi device is in a power-restricted scenario. Then, the WiFi device calls the power control table and searches the power control table for the maximum number of RF links (number spatial streams (NSS)) that can be supported that meets the current network transmission environment, as the number of open RF transmission links . Wherein, the number of opened RF transmission links is less than or equal to the total number of transmission links in the WiFi device.
  • NSS number spatial streams
  • NSS may include: the number of RF transmission links.
  • Table 1 illustrates a power control table
  • 5G is the frequency specification
  • 802.11a is the protocol specification
  • AT is the power supply specification.
  • the maximum transmission rate supported by the WiFi device in the current transmission environment is different, and the number of corresponding spatial streams and the power consumed are also different.
  • the current network transmission environment of a WiFi device is: 5G frequency, 802.11a protocol, AT power supply, and a maximum supported transmission rate of 18 megabits per second (Mbps).
  • the NSS obtained is 3*4; at this time, the power consumed by the link is 16W.
  • NSS is 3*4, which means: the number of RF transmitting links is 3, and the number of RF receiving links is 4.
  • the WiFi device determines the number of open RF transmission links.
  • the WiFi device configures the transmission link in the WiFi device for signal transmission according to the determined number of opened RF transmission links.
  • the default RF transmission link combination corresponding to different NSSs can be pre-configured in the WiFi device.
  • the WiFi device can turn on the RF transmission link set in accordance with the NSS (number of open RF links) determined in S101.
  • the default RF transmission link combination corresponding to the number of links turn off other RF transmission links to transmit signals.
  • the default RF transmission link combinations corresponding to different NSSs can be pre-configured by the administrator based on engineering experience or other data, and this application does not uniquely limit the configuration process.
  • each column of Table 2 represents the number of opened RF links and the default RF transmission link combination corresponding to the number of opened RF links.
  • the number of open RF links determined in S101 when the number of open RF links determined in S101 is 2, configure RF transmission link 1 and RF transmission link 2 in the WiFi device for signal transmission; when the number of open RF links determined in S101 is 3, Configure RF transmission link 1, RF transmission link 2, and RF transmission link 3 in the WiFi device for signal transmission.
  • the WiFi device transmits the signal according to the default RF transmission link combination configuration corresponding to the number of opened RF transmission links determined in S101, and is fixed.
  • the open RF transmission link is no longer the best RF transmission link to provide services to the terminal, resulting in The transmission efficiency (throughput) of the WiFi device is reduced, and the communication quality is poor.
  • an embodiment of the present application provides a method for controlling an RF link.
  • select the RF transmission link combination whose channel correlation coefficients meet the preset conditions and control the communication device according to The selected RF transmission link combination to transmit the signal.
  • the RF transmission link that conforms to the latest network environment can be selected in real time to send signals, which improves the transmission efficiency and communication quality of communication equipment .
  • the wireless network transmission system 20 may include a power supply device 201, a communication device 202, and a user equipment 203.
  • the power supply device 201 can be used to supply power to the communication device 202.
  • the power supply device 201 may be a DC power supply device, or a POE power supply device, or a USB power supply device, etc.
  • the embodiment of the present application does not uniquely limit the actual product form of the power supply device 201.
  • the communication device 202 is used to provide communication services to the user equipment 203.
  • the communication device 202 can send a downlink signal to the user equipment 203, and the communication device 202 can receive an uplink signal sent by the user equipment 203.
  • the communication device 202 may include, but is not limited to, a WiFi device, a macro base station, a micro base station (also referred to as a small station), a relay station, an access point, and other devices with wireless communication functions.
  • the user equipment 203 may include, but is not limited to: mobile phones, tablet computers, notebook computers, Ultra-mobile Personal Computers (UMPC), netbooks, televisions, and other devices with wireless communication functions.
  • UMPC Ultra-mobile Personal Computers
  • FIG. 3 illustrates a communication device 202 provided in an embodiment of the present application.
  • the communication device 202 may include a main control processing chip 2021, a 2.4 giga (giga, G) WiFi chip 2022, a 5G WiFi chip 2023, a power module one 2024, a power module two 2025, and a power module three 2026.
  • RFFEM radio frequency front end module
  • the main control processing chip 2021 may be used to process data of the Ethernet port, process part of the WiFi baseband (low frequency) signal, and process related control signals.
  • the 2.4G WiFi chip 2022, 5G WiFi chip 2023 can be used to process the conversion of the baseband signal and the radio frequency corresponding to the 2.4G WiFi chip 2022, 5G WiFi chip 2023.
  • the power module 2024 is used to supply power to the main control processing chip 2021.
  • the second power module 2025 is used to supply power to the 2.4G WiFi chip 2022 and the 5G WiFi chip 2023.
  • the power module three 2026 is used to supply power to multiple radio frequency front-end modules 2027.
  • RFFEM2027 can include a transmitting path and a receiving path.
  • the transmitting path may include a power amplifier, a radio frequency switch, a filter, and a radio frequency receiving link, etc.
  • the receiving path may include an amplifier, a filter, a radio frequency switch, a frequency converter, and a radio frequency transmitting link, etc. It can be used to switch between receiving and transmitting, frequency band selection, filtering of receiving and transmitting radio frequency signals, etc.
  • the antenna 2028 can be used to transmit and receive wireless signals.
  • an embodiment of the present application provides a device for controlling an RF link, which is used to implement the method for controlling an RF link provided by the present application.
  • the device for controlling the RF link is used to control the communication device, and the communication device supports a maximum of M (M ⁇ 3) RF transmission links.
  • the device for controlling the RF link can be deployed in the communication device or separately deployed separately from the communication device .
  • the device for controlling the RF link and the communication device controlled by it may be deployed in the communication device 202 as part or all of the communication device 202.
  • the device for controlling the RF link and the communication device controlled by it are deployed independently, or, in the communication device 202, the device for controlling the RF link is deployed inside the communication device it controls.
  • the device that controls the RF link is an electronic device or chip system with related data processing and storage capabilities.
  • FIG. 4 illustrates a device 40 for controlling an RF link provided by an embodiment of the present application.
  • the apparatus 40 for controlling the RF link may include a processor 401, a memory 402, and a transceiver 403.
  • the memory 402 may be a volatile memory (volatile memory), such as a random-access memory (random-access memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory, ROM), flash memory (flash memory), hard disk (HDD) or solid-state drive (SSD); or a combination of the above types of memory, used to store the program code that can implement the method of this application , Configuration files, data information or other content.
  • volatile memory such as a random-access memory (random-access memory, RAM
  • non-volatile memory such as a read-only memory (read-only memory, ROM), flash memory (flash memory), hard disk (HDD) or solid-state drive (SSD); or a combination of the above types of memory, used to store the program code that can implement the method of this application , Configuration files, data information or other content.
  • the processor 401 may be the control center of the device 40 that controls the RF link.
  • the processor 401 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • Circuits for example: one or more microprocessors (digital singnal processors, DSP), or one or more field programmable gate arrays (FPGA).
  • the transceiver 403 is used to control the information exchange between the RF link device 40 and other devices.
  • the device 40 for controlling the RF link may be used to control the RF link of the communication device.
  • the communication device supports a maximum of M (M ⁇ 3) RF transmission links.
  • the processor 401 can execute the following functions by running or executing software programs and/or modules stored in the memory 402:
  • each link combination includes at most (M-1) RF transmission links, and the RF transmission links included in different link combinations are at least not exactly the same; respectively;
  • the communication device and one or more user equipment use the channel transmission environment of the first subcarrier.
  • the first link combination is any one of the K link combinations, and the first subcarrier is N subcarriers. Any sub-carrier in the carrier; control the communication device to open the RF transmission link in the second link combination and close other RF transmission links, the second link combination is the channel correlation coefficient in the K link combinations that meets the preset conditions Link combination.
  • an embodiment of the present application provides a method for controlling an RF link.
  • the method is used to control an RF link of a communication device.
  • the communication device supports a maximum of M (M ⁇ 3) RF transmission links.
  • the communication device may be part or all of the communication device 202. If a communication device includes multiple communication devices (for example, the communication device is a dual-band router, the 2.4G WiFi chip and its corresponding link are used as one communication device, and the 5G WiFi chip and its corresponding link are used as another communication device) At this time, the method for controlling the RF link of the present application can be executed separately for each communication device.
  • an embodiment of the present application provides a method for controlling an RF link, and the method may be executed by, for example, an apparatus for controlling an RF link. It should be noted that the apparatus for controlling an RF link may periodically execute the method for controlling an RF link provided in the embodiment of the present application.
  • the following method takes the communication device 202 as an example of the device for controlling the RF link, and the method may include:
  • the communication device determines K link combinations among the M RF transmission links.
  • the communication equipment supports a maximum of M (M ⁇ 3) RF transmission links.
  • the communication device determines that each link combination includes at most (M-1) RF transmission links, and the RF transmission links included in different link combinations are at least not completely the same; K is greater than 1.
  • S501 can be implemented through the following scheme 1 or scheme 2 or scheme 3.
  • X links can be selected from M RF transmission links to determine all possible permutations and combinations
  • X is the number of RF transmission links that are determined to be opened, and X is less than M.
  • the number of RF transmission links opened for each of the K link combinations is X.
  • the value of X can be preset or dynamically determined.
  • the number X of opened RF transmission links may be determined according to the method in S101. For specific implementation, refer to S101, which will not be repeated one by one. In another possible implementation manner, the number X of opened RF transmission links can be determined based on user experience.
  • the communication device controlled by the communication device supports a maximum of 4 RF transmission links, namely, the RF transmission link 1, the RF transmission link 2, the RF transmission link 3, and the RF transmission link 4. That is, M is equal to 4. It is determined in S101 that under the current network transmission environment, the number of open RF transmission links is 3, that is, X is equal to 3.
  • the number of types of link combinations K determined according to the method of scheme 1 is That is, K is equal to 4, and the link combination mode can be as shown in Table 3.
  • RF transmission link included 1 RF transmission link 1, RF transmission link 2, RF transmission link 3 2 RF transmission link 1, RF transmission link 2, RF transmission link 4 3 RF transmission link 1, RF transmission link 3, RF transmission link 4 4 RF transmission link 2, RF transmission link 3, RF transmission link 4
  • Table 3 is only an example to illustrate the link combination mode under Scheme 1. In actual application scenarios, other values of M and X can be set as needed.
  • Scheme 2 The communication equipment can determine the type of link combination
  • E is the maximum number of RF transmission links that are allowed to be opened, E can be a predetermined value after pre-configuration or dynamic configuration, and E is less than or equal to (M-1).
  • E is determined, the upper limit of the number of RF transmission links in each link combination is determined according to E, and the corresponding link combination situation when the number of RF transmission links is 2 to E is determined respectively.
  • the number of determined link combinations is less than or equal to E and greater than or equal to 2.
  • the maximum number of RF transmission links that can be opened in K link combinations is E, that is, the maximum number of RF transmission links included in K link combinations is E.
  • the number of RF transmission links that can be opened can be any value from 2 to E.
  • a communication device controlled by a communication device supports a maximum of 4 RF transmission links, namely, RF transmission link 1, RF transmission link 2, RF transmission link 3, and RF transmission link 4, that is, M is equal to 4.
  • the maximum number of RF transmission links that can be opened is 3, that is, E is equal to 3.
  • Link combination method RF transmission link included 1 RF transmission link 1, RF transmission link 2, RF transmission link 3 2 RF transmission link 1, RF transmission link 2, RF transmission link 4 3 RF transmission link 1, RF transmission link 3, RF transmission link 4 4 RF transmission link 2, RF transmission link 3, RF transmission link 4 5 RF transmission link 1, RF transmission link 2 6 RF transmission link 1, RF transmission link 3 7 RF transmission link 1, RF transmission link 4
  • Table 4 is only an example to illustrate the link combination mode under Scheme 2. In actual application scenarios, other values of M and E can be set as needed.
  • Solution 3 Communication equipment can determine the type of link combination
  • the number of RF transmission links allowed to be opened in the K link combinations can be any value from b to E.
  • determine the number range of RF transmission links in each link combination ie [b, E]) according to E and b, and determine the number of RF transmission links from b to E respectively, The respective link combinations.
  • the number of determined link combinations is less than or equal to E and greater than or equal to b.
  • a communication device controlled by a communication device supports a maximum of 7 RF transmission links, the maximum number of RF transmission links allowed to be opened is 6, and the minimum number of RF transmission links allowed to be opened is 3.
  • the number of RF transmission links that can be opened can be 3 to 6, to determine the type of link combination
  • the above situation is an example of determining the number of link combinations as continuity values based on E and b.
  • any or designated multiple values in the range of [b, E] are also determined according to E and b as the link combination.
  • the number of RF transmission links the multiple values may be discrete.
  • a communication device controlled by a communication device supports a maximum of 7 RF transmission links, the maximum number of RF transmission links allowed to be opened is 6, and the minimum number of RF transmission links allowed to be opened is 3. According to actual needs, determine the number of RF transmission links that can be opened in the K link combinations can be 3, 4, 6, and the type of link combination determined according to plan 3.
  • the maximum turn-on value and/or minimum turn-on value of the RF transmission link may not be specified, but directly pre-configured or dynamically determined corresponding to the discrete number of transmission links that need to be turned on. Link combination.
  • the communication device separately obtains channel correlation coefficients of each link combination on the N subcarriers.
  • the channel correlation coefficient of the first link combination on the first sub-carrier is used to reflect the use between the communication device and one or more user equipment when the communication device opens the RF transmission link in the first link combination and closes other RF transmission links.
  • the first link combination is any link combination in the K link combinations
  • the first subcarrier is any subcarrier among the N subcarriers.
  • N is the length of the OFDM symbol, that is, the signal is multiplexed onto N subcarriers for transmission through the OFDM technology.
  • the communication device to obtain the channel correlation coefficient of the third link combination on the second subcarrier as an example, how the communication device obtains the channel correlation coefficient of a link combination on one subcarrier is described.
  • the method is the same, and the details are not repeated one by one.
  • the second subcarrier is any subcarrier among the N subcarriers; and the third link combination is any link combination among K link combinations.
  • the process for the communication device to obtain the channel correlation coefficient of the third link combination on the second subcarrier may include but is not limited to the following S5021-S5023.
  • the communication device performs channel estimation on the uplink signal received by the communication device on the second subcarrier to obtain a channel matrix of the second subcarrier.
  • the channel matrix of the second subcarrier includes: channel responses of M RF transmission links on the second subcarrier.
  • the communication device supports a maximum of 4 RF transmission links, that is, the communication device includes 4 antennas; currently there are 4 user equipments that perform data transmission with the communication device antenna.
  • the channel matrix of the second subcarrier can be expressed as:
  • Hi (n) includes the channel response of the 4 RF transmission links on the second subcarrier.
  • H i (n) in the i-th column vector h i (n) [h 1i (n) h 2i (n) h 3i (n) h 4i (n)] T, denotes the i th transmit antenna (Antenna of the communication device) Channel response to all receiving antennas (antennas of the user equipment) on the second subcarrier (at frequency point n).
  • the communication device separately calculates the initial channel correlation coefficients of each two RF transmission links in the second subcarrier in the third link combination.
  • the communication device calculates the initial channel correlation coefficients on the second subcarrier of every two RF transmission links in the third link combination according to a preset formula.
  • the preset formula may satisfy the expression of the following formula (1), and formula (1) is used to calculate the initial channel correlation coefficient r of the RF transmission link i and the RF transmission link j on the subcarrier n.
  • cov(.) is the covariance operation
  • d(.) is the variance operation
  • h i (n) is the channel response information of the RF transmission link i on subcarrier n
  • h j (n) is the RF transmission link j
  • RF transmission link i is any RF transmission link in the third link combination
  • RF transmission link j is any RF transmission link i in the third link combination.
  • An RF transmission link; n is greater than or equal to 0 and less than or equal to N.
  • the communication device substitutes the channel response of every two RF transmission links in the second subcarrier in the third link combination into formula (1), and calculates that every two RF transmission links in the third link combination are in the first subcarrier.
  • the initial channel correlation coefficient of the two subcarriers are used to calculate every two RF transmission links in the third link combination.
  • the communication device performs a first calculation on the initial channel correlation coefficients of every two RF transmission links in the second subcarrier in the third link combination as the channel correlation coefficient R of the third link combination in the second subcarrier.
  • the first calculation may include summation, average value, or weighted average value.
  • the first calculation may include calculating an average value, or calculating a weighted average value.
  • the number of RF transmission links in the third link combination is 2, directly correlate the two RF transmission links in the third link combination of S5022 on the initial channel of the second subcarrier The coefficient is used as the channel correlation coefficient of the third link combination on the second subcarrier.
  • the number of RF transmission links in the third link combination is greater than 2, correlate every two RF transmission links in the third link combination of S5022 on the initial channel of the second subcarrier The coefficient, through the above-mentioned first calculation, the channel correlation coefficient of the third link combination on the second subcarrier is obtained.
  • the third link combination includes: RF transmission link 1, RF transmission link 2, and RF transmission link 3.
  • the initial channel correlation coefficient r12 of RF transmission link 1 and RF transmission link 2 of the third link combination on the second subcarrier is obtained.
  • the channel responses of RF transmission link 1 and RF transmission link 3, and the channel responses of RF transmission link 2 and RF transmission link 3 are respectively entered into formula (1) to obtain the RF of the third link combination
  • the communication device may separately obtain the channel correlation coefficients of each link combination in the N subcarriers, which may be calculated by other devices communicating with the communication device and transmitted to the communication device.
  • the communication device controls the communication device to open the RF transmission link in the second link combination and close other RF transmission links.
  • the second link combination is a link combination in which channel correlation coefficients satisfy a preset condition among the K link combinations.
  • the communication device first selects the second link combination, and the selection process may include, but is not limited to, any one of Implementation 1 to Implementation 3 below.
  • the communication device uses the link combination with the smallest average value of the channel correlation coefficient as the second link combination.
  • the communication device obtains the N channel correlation coefficients of each link combination on the N subcarriers through S502, the communication device calculates the average value of the N channel correlation coefficients of each link combination on the N subcarriers, and then Select the second link combination.
  • the communication device obtains the N channel correlation coefficients R1, R2,..., Rn of the third link combination on the N subcarriers through S502, and the communication device calculates the N channel correlation coefficients of the third link combination on the N subcarriers average value
  • the communication device can obtain the average value I1, I2,..., IK of the N channel correlation coefficients of each link combination in the N subcarriers in each of the K link combinations, and select I1, I2,... ..., the smallest IK link combination is used as the second link combination.
  • the communication device uses the link combination with the smallest weighted average of the channel correlation coefficients as the second link combination.
  • the communication device obtains the N channel correlation coefficients of each link combination in the N subcarriers in the K link combinations, and the communication device separately calculates the weight corresponding to each link combination in each subcarrier. Then calculate the weighted average of the N channel correlation coefficients of each link combination on the N subcarriers, and then select the second link combination.
  • the communication device can obtain the N channel correlation coefficients R1, R2,..., Rn of the third link combination on N subcarriers, and the communication device calculates the weight Q1 corresponding to each subcarrier of the third link combination , Q2,ising, Qn.
  • the communication device can calculate the weighted average of the N channel correlation coefficients of the third link combination on the N subcarriers
  • the communication device separately obtains the weighted average J1, J2,..., JK of the N channel correlation coefficients of each link combination in the N subcarriers in the K link combinations, and selects J1, J2,... .... The smallest link combination of JK is used as the second link combination.
  • the communication device uses the link combination with the smallest weighted sum of channel correlation coefficients as the second link combination.
  • the communication device can obtain the N channel correlation coefficients of each link combination in N subcarriers through S502, the communication device calculates the weight corresponding to each link combination in each subcarrier, and the communication device calculates each link Combine the weighted sum of the N channel correlation coefficients of the N subcarriers, and then select the second link combination.
  • the communication device obtains the N channel correlation coefficients R1, R2,..., Rn of the third link combination on the N subcarriers through S502, and the communication device respectively calculates the weights Q1, Q2,..., corresponding to each subcarrier.
  • the communication device separately obtains the weighted sums of the N channel correlation coefficients L1, L2, ..., LK of each link combination in the N subcarriers in the K link combinations, and selects L1, L2, ... , The smallest link combination in LK is used as the second link combination.
  • weights described in Implementation 2 and Implementation 3 may be pre-configured, or may also be dynamically acquired.
  • the communication device may control the communication device to open the RF transmission link in the second link combination and close other RF transmission links.
  • the communication device supports a maximum of 4 RF transmission links, namely, the RF transmission link 1, the RF transmission link 2, the RF transmission link 3, and the RF transmission link 4.
  • the second link combination determined by the communication device in S5031 is the RF transmission link 1, the RF transmission link 2, and the RF transmission link 3.
  • the communication device controls the communication device to turn on the RF transmission link 1, the RF transmission link 2, and the RF transmission link 3, and close the RF transmission link 4.
  • the embodiment of the application provides a method for controlling the RF link.
  • the RF transmission link combination that meets the preset conditions is selected, and the communication device is controlled according to the selected RF transmission chain Ways to combine to send signals.
  • the RF transmission link that conforms to the latest network environment can be selected in real time to send signals, which improves the transmission efficiency and communication quality of communication equipment .
  • the method for controlling the RF link provided by the embodiment of the present application may further include S504 to S506, which are used to obtain when the second link combination is selected through implementation 2 or implementation 3 in S503. Weight.
  • S504 to S506 can be executed before S503. Specifically, S504 to S506 may be executed after S502, or may be executed before S502, or may be executed simultaneously with S502, which is not uniquely limited by this application.
  • the communication device separately calculates the channel frequency response of each link combination on the N subcarriers.
  • the channel frequency response of a link combination on a subcarrier is the sum of the channel response information of the N RF transmission links included in the link combination on the subcarrier.
  • the calculation method of the channel frequency response of each link combination on each subcarrier is the same, and will not be repeated one by one.
  • the channel matrix of the second subcarrier is:
  • Hi (n) includes the channel response of the 4 RF transmission links on the second subcarrier.
  • the third link combination is: RF transmission link 1, RF transmission link 2, and RF transmission link 3.
  • the communication device separately calculates the channel frequency responses Y1, Y2,..., YN of the third link combination on the N subcarriers.
  • the communication equipment separately calculates the channel frequency response of each link combination on the N subcarriers as:
  • Y ij represents the channel frequency response of the link combination i on the j subcarrier.
  • S505 The communication device separately calculates the channel frequency response difference of each link combination.
  • the channel frequency response difference of a link combination is the absolute value of the difference between the maximum value and the minimum value of the channel frequency response of the link combination in the N subcarriers.
  • the calculation method of the channel frequency response difference of each link combination is the same, and will not be repeated one by one.
  • the frequency response of the third link combination is Y1, Y2, ..., YN.
  • the communication device separately calculates the channel frequency response differences C1, C2, ..., CK of the K link combinations.
  • the communication device determines the weight of the channel correlation coefficient of each link combination in each subcarrier according to a preset rule.
  • the preset rule includes multiple different relationships that the channel frequency response and the channel frequency response difference of the link combination on the subcarriers satisfy, and the weights corresponding to the multiple different relationships.
  • the preset rule can be configured according to the actual needs of the user, which is not uniquely limited by itself.
  • the preset rules include:
  • the weight of the channel correlation coefficient of the link combination on the subcarrier is the first weight.
  • the weight of the channel correlation coefficient of the link combination on the subcarrier is the second weight.
  • the second parameter is greater than the first parameter.
  • the weight of the channel correlation coefficient of the link combination on the subcarrier is the third weight.
  • the first parameter, the second parameter, the first weight, the second weight, and the third weight can be configured according to actual conditions.
  • the first parameter can be 0.2
  • the second parameter can be 0.8
  • the first weight can be 0.8
  • the second weight can be 0.2
  • the third weight can be 1.
  • the process of determining the weight Q can be expressed by formula (2):
  • Y(n) is the channel frequency response of the link combination obtained in S504 on the nth subcarrier
  • C is the frequency response difference of the link combination obtained in S505.
  • the method for controlling an RF link provided in the embodiment of the present application may further include S507.
  • the communication device determines that the communication device is in a scenario where power supply is limited.
  • the communication device detects the relevant pins of the power supply chip on the communication device, obtains the power supply mode of the communication device, and obtains the maximum power supply under the power supply mode; Power consumption: If the current maximum power supply is less than the maximum power consumption of the communication device of the communication device, the communication device is considered to be in a power-restricted scenario.
  • the communication device controls the communication device to open all RF transmission links.
  • S501 to S507 may be re-executed after a preset period.
  • the preset period can be configured according to the actual needs of the user, which is not particularly limited in this application.
  • the following takes a scenario where the WiFi device is in a power supply limited scenario as an example to describe in detail the process of controlling the RF link provided in the embodiment of the present application.
  • the WiFi device detects the power supply chip, obtains the power supply to the WiFi device, and the power supply is less than the maximum power consumption of the WiFi device, and determines that the WiFi device is in a power-restricted scenario.
  • the WiFi device supports a maximum of 4 RF transmission links.
  • the WiFi device can obtain the number of spatial streams that meet the current transmission environment by looking up the power control table as 3*4, that is, the number of RF transmission links is 3.
  • the link combination determined by the WiFi device includes: the first link combination (RF transmission link 1, RF transmission link 2, RF transmission link 3), and the second link combination (RF transmission link 1, RF transmission link 2. RF transmission link 4), the third link combination (RF transmission link 1, RF transmission link 3, RF transmission link 4), the fourth link combination (RF transmission link 2, RF transmission link 3. RF transmission link 4).
  • the average values I1, I2, I3, and I4 of the N channel correlation coefficients of the channel correlation coefficients of each link combination are respectively calculated by the method of the present application.
  • I2 is the smallest
  • the WiFi device controls the WiFi chip to turn on the corresponding RF transmission link 1, RF transmission link 2, and RF transmission link 4 in the second link combination, and at the same time closes the RF transmission link 3 to realize signal transmission.
  • the foregoing mainly introduces the solution provided in the embodiment of the present application from the perspective of the working principle of the device for controlling the RF link.
  • the above-mentioned device for controlling the RF link includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application can divide the function module of the device for controlling the RF link according to the above method example.
  • each function module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 7 shows a possible structural schematic diagram of the RF link control device 70 involved in the above-mentioned embodiment.
  • the device for controlling an RF link is used to control a communication device, and the communication device supports a maximum of M (M ⁇ 3) RF transmission links.
  • the device for controlling the RF link and the communication device controlled by it can be deployed in a communication device as part or all of the communication device.
  • the device for controlling the RF link may be a communication device, a functional module or a chip in the communication device, or a device matched with the communication device.
  • the apparatus 70 for controlling the RF link may include: a determining unit 701, a first acquiring unit 702, and a processing unit 703.
  • the determining unit 701 is configured to execute the process S501 in FIG. 5 or FIG. 6; the first obtaining unit 702 is configured to execute the process S502 in FIG. 5 or FIG. 6; the processing unit 703 is configured to execute the process S503 in FIG. 5 or FIG. 6.
  • all relevant content of the steps involved in the above method embodiments can be cited in the functional description of the corresponding functional module, which will not be repeated here.
  • the apparatus 70 for controlling the RF link may further include a second obtaining unit 704.
  • the second acquiring unit 704 is configured to execute the procedures S504, S505, and S506 in FIG. 6.
  • FIG. 8 shows a possible structural schematic diagram of the RF link control device 80 involved in the foregoing embodiment.
  • the device for controlling an RF link is used to control a communication device, and the communication device supports a maximum of M (M ⁇ 3) RF transmission links.
  • the device for controlling the RF link and the communication device controlled by it can be deployed in a communication device as part or all of the communication device.
  • the device for controlling the RF link may be a communication device, a functional module or a chip in the communication device, or a device matched with the communication device.
  • the device 80 for controlling the RF link may include: a processing module 801 and a communication module 802.
  • the processing module 801 is used to control and manage the actions of the device 80 that controls the RF link.
  • the processing module 801 is configured to execute S501 to S503 in FIG. 5 or FIG. 6, or execute the processes S501 to S507 in FIG. 6.
  • the communication module 802 is used for supporting the device 80 for controlling the RF link to communicate with other units.
  • the device 80 for controlling the RF link may further include a storage module 803 for storing program codes and data of the device 80 for controlling the RF link.
  • the processing module 801 may be the processor 401 in the physical structure of the apparatus 40 for controlling the RF link shown in FIG. 4, and may be a processor or a controller. For example, it may be a CPU, a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processing module 801 may also be a combination for realizing calculation functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 802 may be the transceiver 403 in the physical structure of the device 40 for controlling the RF link shown in FIG.
  • the above-mentioned communication interface may realize communication with other devices through the above-mentioned element having a transceiving function.
  • the above-mentioned elements with transceiving functions can be implemented by antennas and/or radio frequency devices.
  • the storage module 803 may be the memory 402 in the physical structure of the device 40 for controlling the RF link shown in FIG. 4.
  • the device 80 for controlling the RF link involved in FIG. 8 of the embodiment of the present application may be the device for controlling the RF link shown in FIG. 4 ⁇ 40 ⁇ Device 40.
  • the apparatus 70 for controlling an RF link or the apparatus 80 for controlling an RF link provided in the embodiments of the present application can be used to implement the functions in the image recognition apparatus in the methods implemented by the various embodiments of the present application.
  • the apparatus 70 for controlling an RF link or the apparatus 80 for controlling an RF link can be used to implement the functions in the image recognition apparatus in the methods implemented by the various embodiments of the present application.
  • only The parts related to the embodiments of the present application are shown. For specific technical details that are not disclosed, please refer to the various embodiments of the present application.
  • the computer-readable storage medium may include a computer program.
  • the computer program runs on a computer, the computer executes the implementation shown in FIG. 5 or FIG. Each step in the example.
  • the computer product includes a computer program.
  • the computer program product runs on a computer, the computer executes the steps in the embodiment shown in FIG. 5 or FIG. 6.
  • the chip includes an interface circuit and a processor; the interface circuit is used to receive code instructions and send the code instructions to the processor; when the processor executes the code instructions, the chip executes the steps in the embodiment shown in FIG. 5 or FIG. 6 .
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种控制射频(RF)链路的方法及装置,可应用于通信领域RF发射链路的控制,提高了WiFi设备的传输效率与通信质量。具体方案为:通信装置最大支持M(M≥3)个RF发射链路,确定M个RF发射链路中K种链路组合,每种链路组合包括至多(M-1)个RF发射链路,不同种链路组合包括的RF发射链路至少不完全相同;分别获取每种链路组合在N个子载波的信道相关系数;控制通信装置开启第二链路组合中的RF发射链路并关闭其他RF发射链路,第二链路组合为K种链路组合中信道相关系数满足预设条件的链路组合。

Description

一种控制RF链路的方法及装置
本申请要求于2020年02月21日提交国家知识产权局、申请号为202010109152.0、发明名称为“一种控制RF链路的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种控制射频(radio frequency,RF)链路的方法及装置。
背景技术
随着无线保真(wireless fidelity,WiFi)技术的发展,高速吞吐适配的数字端口和处理器的不断升级,使得WiFi设备的传输速率不断增大,WiFi设备的整机功耗不断增加。
对WiFi设备的供电有直流供电、以太网供电(Power over Ethernet,POE)和通用串行总线(Universal Serial Bus,USB)供电等。直流供电由于其供电能力充足,WiFi设备可以按照其硬件最大能力发射信号,以发挥出产品的最大竞争力。
非直流供电(POE或USB或其他)的最大供电能力固定,例如,POE供电设备的最大供电能力为电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.3bt标准下90瓦特(watts,W)、IEEE 802.3at标准下30W,可能出现WiFi设备的整机最大功耗大于向其供电的非直流供电设备的最大供电能力,此时,WiFi设备需具备功耗调整能力,以适配供电设备的最大供电能力。
当前,WiFi设备可以通过开启部分RF发射链路,以降低功耗适配供电设备的最大供电能力。例如,可以在WiFi设备中写入功率控制表格,上电时若确定整机最大功耗大于向其供电的非直流供电设备的最大供电能力,则在功率控制表格中选择满足非直流供电设备的最大供电能力的RF链路数量,WiFi设备按照选择的RF链路数量开启默认的RF发射链路组合来发射信号。
但是,当前WiFi设备降低功耗的方式,开启的RF发射链路确定后则固定不变,当由于接入WiFi设备的终端位置发生变化等原因导致网络传输环境或运行状态发生变化时,可能出现开启的RF发射链路已不是向终端提供服务的最佳RF发射链路,导致WiFi设备的传输效率(吞吐量)降低,通信质量不佳。
发明内容
本申请提供一种控制RF链路的方法及装置,提高了通信设备的传输效率与通信质量。
为了达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种控制RF链路的方法,该方法用于控制通信装置,通信装置最大支持M(M≥3)个RF发射链路,该方法可以包括:确定M个RF发射链路中的K种链路组合,每种链路组合包括至多(M-1)个RF发射链路,不同种链路组合包括的RF发射链路至少不完全相同;分别获取每种链路组合在N个子载波的信 道相关系数,其中,第一链路组合在第一子载波的信道相关系数用于反映通信装置开启第一链路组合中的RF发射链路且关闭其他RF发射链路时,通信装置与一个或多个用户设备间使用第一子载波的信道传输环境,第一链路组合为K种链路组合中任一链路组合,第一子载波为N个子载波中任一子载波;控制通信装置开启第二链路组合中的RF发射链路并关闭其他RF发射链路,第二链路组合为K种链路组合中信道相关系数满足预设条件的链路组合。
通过本申请提供的控制RF链路的方法,获取不同RF发射链路组合的信道相关系数,选择出信道相关系数满足预设条件的RF发射链路组合,控制通信装置按照选择的RF发射链路组合来发送信号。这样一来,通过合理的配置预设条件,当网络传输环境或网络运行状态发生变化时,可以实时选择出符合最新网络环境的RF发射链路发送信号,提高了通信设备的传输效率与通信质量。
其中,预设条件可以根据用户的需求进行配置,并且配置后也可根据实际需求进行调整,本申请对此不做唯一限定。
结合第一方面,在一种可能的实现方式中,如果通信装置最大支持M个RF发射链路,可以确定该M个RF发射链路中的K种链路组合,每种链路组合包括至多(M-1)个RF发射链路,具体可以采用多种方式确定K种链路组合。
在一种可能的情形中,确定链路组合的种类
Figure PCTCN2020128418-appb-000001
其中,
Figure PCTCN2020128418-appb-000002
表示从M个RF发射链路中任选X个发射链路进行组合,X为确定开启的RF发射链路的个数,X小于M。在此种情形中,K种链路组合中的每一种开启的RF发射链路的个数均为X。
在另一种可能的情形中,确定链路组合的种类
Figure PCTCN2020128418-appb-000003
E为每种链路组合中允许开启的RF发射链路的最大个数,E小于或等于(M-1)。在此种情形中,根据设置的允许开启的RF发射链路的最大个数为E,分别按照开启的RF发射链路的个数为2至E个,分别确定相应开启个数的发射链路组合,以得到最终的K种链路组合。所述K种链路组合中的每一种中发射链路的个数可以为2至E中任一数值。
在另一种可能的情形中,确定链路组合的种类
Figure PCTCN2020128418-appb-000004
E为允许开启的RF发射链路的最大个数,E小于或等于(M-1);b为允许开启的RF发射链路的最小个数,b大于或等于2。在此种情形中,根据设置的允许开启的RF发射链路的个数范围(该范围可以是离散的,也可以是连续的),确定最终的K种链路组合。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,预设条件可以包括:在每个子载波的信道相关系数的平均值最小;或者,在每个子载波的信道相关系数的加权平均值最小;或者,在每个子载波的信道相关系数的加权和最小。在这种可能的实现方式中,筛选出平均值最小或者加权平均值最小或者加权和最小的信道相关系数对应的链路组合,采用筛选后的链路组合发送信号,提高了通信设备的传输效率与通信质量。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,针对第二子载波、第三链路组合,第二子载波为N个子载波中任一子载波,第三链路组合为K种链路组合中任一链路组合,分别获取每种链路组合在N个子载波的信道相关系数,包括:将通信装置在第二子载波接收的上行信号经过信道估计,得到第二子载波的信道矩阵,信道矩阵包括M个RF发射链路中每个RF发射链路在第二子载波的信道响 应;分别计算第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数;将第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数进行第一计算,作为第三链路组合在第二子载波的信道相关系数。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,分别计算第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数,可以包括:利用公式(1)计算RF发射链路i与RF发射链路j在子载波n的初始信道相关系数r。
Figure PCTCN2020128418-appb-000005
其中,cov(.)为协方差运算,d(.)为方差运算;h i(n)为RF发射链路i在子载波n的信道响应信息,h j(n)为RF发射链路j在子载波n的信道响应信息,RF发射链路i为第三链路组合中任一RF发射链路,RF发射链路j为第三链路组合中除RF发射链路i之外的任一RF发射链路;n大于或等于0,小于或等于N。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,第一计算可以包括:求和,或者,求平均值,或者,求加权平均值。在这种可能的实现方式中可以计算出精准度较高的信道相关系数,然后再根据预设条件筛选出符合最新网络环境的RF发射链路发送信号,有利于提高通信设备的传输效率与通信质量。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,当预设条件包括在每个子载波的信道相关系数的加权平均值最小,或者,在每个子载波的信道相关系数的加权和最小时,该方法还可以包括:分别计算每种链路组合在N个子载波的信道频率响应,一个链路组合在一个子载波的信道频率响应为该链路组合包括的N个RF发射链路在该子载波的信道响应信息之和;分别计算每种链路组合的信道频率响应差,一个链路组合的信道频率响应差为该链路组合在N个子载波的信道频率响应中的最大值与最小值差值的绝对值;根据预设规则,确定每种链路组合在每个子载波的信道相关系数的权值。
其中,预设规则可以包括链路组合在子载波的信道频率响应与信道频率响应差满足的不同关系,以及不同关系对应的权值。具体的,预设规则可以根据用户的实际需求进行配置。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中预设规则可以包括:若链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以第一参数,则该链路组合在该子载波的信道相关系数的权值为第一权值;若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以第二参数,则该链路组合在该子载波的信道相关系数的权值为第二权值;若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以第一参数,且该链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以第二参数,则该链路组合在该子载波的信道相关系数的权值为第三权值。
其中,第二参数大于第一参数。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,第一参数可以为0.2,第二参数可以为0.8,第一权值可以为0.8,第二权值可以为0.2,第三权值可以为1。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,该方法还可以包括:确定通信设备处于供电受限场景。可选的,当确定通信设备处于供电受限场景后,再执行确定M个RF发射链路中的K种链路组合。
第二方面,提供一种控制RF链路的装置,该控制RF链路的装置可以为通信设备部分或者全部。或者,该控制RF链路的装置也可以为与该通信装置进行数据传输的其他电子设备或者芯片系统。该控制RF链路的装置,可以实现上述各方面或者各可能的实现方式中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。控制RF链路的装置用于控制通信装置,该通信装置最大支持M(M≥3)个RF发射链路,该控制RF链路的装置可以包括:确定单元、第一获取单元和处理单元。
其中,确定单元,用于确定M个RF发射链路中的K种链路组合,每种链路组合包括至多(M-1)个RF发射链路,不同种链路组合包括的RF发射链路至少不完全相同。
第一获取单元,用于分别获取每种链路组合在N个子载波的信道相关系数。其中,第一链路组合在第一子载波的信道相关系数用于反映通信装置开启第一链路组合中的RF发射链路且关闭其他RF发射链路时,通信装置与一个或多个用户设备间使用第一子载波的信道传输环境,第一链路组合为K种链路组合中任一链路组合,第一子载波为N个子载波中任一子载波。
处理单元,用于控制通信装置开启第二链路组合中的RF发射链路并关闭其他RF发射链路。第二链路组合为K种链路组合中信道相关系数满足预设条件的链路组合。
通过本申请提供的控制RF链路的装置,获取不同RF发射链路组合的信道相关系数,选择出信道相关系数满足预设条件的RF发射链路组合,控制通信装置按照选择的RF发射链路组合来发送信号。这样一来,通过合理的配置预设条件,当网络传输环境或网络运行状态发生变化时,可以实时选择出符合最新网络环境的RF发射链路发送信号,提高了通信设备的传输效率与通信质量。
结合第二方面,在一种可能的实现方式中,对于通信装置最大支持M个RF发射链路,确定单元具体用于确定该M个RF发射链路中的K种链路组合,每种链路组合包括至多(M-1)个RF发射链路。具体的,确定单元可以采用多种方式确定K种链路组合。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,预设条件可以包括:在每个子载波的信道相关系数的平均值最小;或者,在每个子载波的信道相关系数的加权平均值最小;或者,在每个子载波的信道相关系数的加权和最小。在这种可能的实现方式中,筛选出平均值最小或者加权平均值最小或者加权和最小的信道相关系数对应的链路组合,采用筛选后的链路组合发送信号,提高了通信设备的传输效率与通信质量。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,针对第二子载波、第三链路组合,第二子载波为N个子载波中任一子载波,第三链路组合为K种链路组合中任一链路组合,获取单元具体可以具体用于:将通信装置在第二子载波接收的上行信号经过信道估计,得到第二子载波的信道矩阵,信道矩阵包括M个 RF发射链路中每个RF发射链路在第二子载波的信道响应;分别计算第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数;将第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数进行第一计算,作为第三链路组合在第二子载波的信道相关系数。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,获取单元可以具体用于:利用公式(1)计算RF发射链路i与RF发射链路j在子载波n的初始信道相关系数r。
Figure PCTCN2020128418-appb-000006
其中,cov(.)为协方差运算,d(.)为方差运算;h i(n)为RF发射链路i在子载波n的信道响应信息,h j(n)为RF发射链路j在子载波n的信道响应信息,RF发射链路i为第三链路组合中任一RF发射链路,RF发射链路j为第三链路组合中除RF发射链路i之外的任一RF发射链路;n大于或等于0,小于或等于N。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,第一计算可以包括:求和,或者,求平均值,或者,求加权平均值。在这种可能的实现方式中可以计算出精准度较高的信道相关系数,然后再根据预设条件筛选出符合最新网络环境的RF发射链路发送信号,有利于提高通信设备的传输效率与通信质量。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,当预设条件包括在每个子载波的信道相关系数的加权平均值最小,或者,在每个子载波的信道相关系数的加权和最小时,该控制RF链路的装置还包括第二获取单元:用于分别计算每种链路组合在N个子载波的信道频率响应,一个链路组合在一个子载波的信道频率响应为该链路组合包括的N个RF发射链路在该子载波的信道响应信息之和;用于分别计算每种链路组合的信道频率响应差,一个链路组合的信道频率响应差为该链路组合在N个子载波的信道频率响应中的最大值与最小值差值的绝对值;用于根据预设规则,确定每种链路组合在每个子载波的信道相关系数的权值。
其中,预设规则可以包括链路组合在子载波的信道频率响应与信道频率响应差满足的不同关系,以及不同关系对应的权值。具体的,预设规则可以根据用户的实际需求进行配置。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中预设规则可以包括:若链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以第一参数,则该链路组合在该子载波的信道相关系数的权值为第一权值;若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以第二参数,则该链路组合在该子载波的信道相关系数的权值为第二权值;若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以第一参数,且该链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以第二参数,则该链路组合在该子载波的信道相关系数的权值为第三权值。其中,第二参数大于第一参数。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,第一参数可以为0.2,第二参数可以为0.8,第一权值可以为0.8,第二权值可以为0.2,第三权值可以为1。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,该控制RF链路的装置还可以包括判断单元:判断单元用于确定通信设备处于供电受限场景。确定单元还可以用于,当判断单元确定通信设备处于供电受限场景时,执行确定M个RF发射链路中的K种链路组合。
第三方面,本申请实施例提供一种控制RF链路的装置,该控制RF链路的装置可以包括:处理器,存储器;处理器,存储器耦合,存储器可用于存储计算机可执行指令(计算机程序),当计算机可执行指令(计算机程序)被控制RF链路的执行时,使得控制RF链路的执行如第一方面或任一种可能的实现方式面所述控制RF链路的方法。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质可以包括:计算机程序;当计算机程序在计算机中运行时,使得该计算机执行如第一方面或第一方面的可能实现方式中任一项所述的控制RF链路的方法。
第五方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包含计算机程序;当该计算机程序产品在计算机上运行时,使得该计算机执行如权利要求第一方面或任一种可能的实现方式中任一项所述的控制RF链路的方法。
第六方面,本申请实施例提供一种芯片,该芯片包括接口电路和处理器;接口电路用于接收代码指令,并向处理器发送该代码指令;当处理器执行该代码指令时,使得芯片执行如第一方面或任一种可能的实现方式中任一项所述的控制RF链路的方法。
其中,需要说明的是,上述各个方面中的任意一个方面的各种可能的实现方式,在方案不矛盾的前提下,均可以进行组合。
上述第三方面至第六方面提供的方案,用于实现上述第一方面提供控制RF链路的方法,因此可以与第一方面达到相同的有益效果,此处不再进行赘述。
应当理解的是,本申请中对技术特征、技术方案、有益效果或类似语言的描述并不是暗示在任意的单个实施例中可以实现所有的特点和优点。相反,可以理解的是对于特征或有益效果的描述意味着在至少一个实施例中包括特定的技术特征、技术方案或有益效果。因此,本说明书中对于技术特征、技术方案或有益效果的描述并不一定是指相同的实施例。进而,还可以任何适当的方式组合本实施例中所描述的技术特征、技术方案和有益效果。本领域技术人员将会理解,无需特定实施例的一个或多个特定的技术特征、技术方案或有益效果即可实现实施例。在其他实施例中,还可在没有体现所有实施例的特定实施例中识别出额外的技术特征和有益效果。
附图说明
图1为现有技术提供的一种WiFi设备控制RF发射链路的过程示意图;
图2为本申请实施例提供的一种无线网络传输系统示意图;
图3为本申请实施例提供的一种通信设备的示意图;
图4为本申请实施例提供的一种控制RF链路的装置的结构示意图;
图5为本申请实施例提供的一种控制RF链路的方法流程示意图;
图6为本申请实施例提供的另一种控制RF链路的方法流程示意图;
图7为本申请实施例提供的一种控制RF链路的装置的结构示意图;
图8为本申请实施例提供的另一种控制RF链路的装置的结构示意图。
具体实施方式
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。
为了便于理解,先对本申请涉及的名词进行解释。
通信设备,可以指通过接收和发送无线信号进行通信的设备。例如,通信设备可以为WiFi设备、宏基站,微基站(也称为小站),中继站,接入点等具有无线通信功能的设备。
用户设备,可以指通信中用户使用的设备。用于设备可以用于接收通信设备发送的下行信号,并向通信设备发送上行信号。例如,用户设备可以为手机、电脑、笔记本、电视等无线传输设备。
通信装置,可以指能独立实现信号传输的单元或者模块。具体的,通信装置可以为通信设备的部分或全部。例如,通信设备为双频WiFi设备时,通信装置可以为通信设备中一个频段的信号传输模块。例如,双频WiFi设备包括两个频段的信号传输模块,两个频段的信号传输模块可以分别作为一个通信装置。通信设备为单频WiFi设备时,通信装置可以为WiFi设备。
发射链路,可以指通信设备在发送信号时,从通信设备的发射天线到用户设备的接收天线之间的信号传输的路径空间。通信设备通过控制发射链路对应的射频开关,控制发射链路的开启。
接收链路,可以指通信设备在接收信号时,从用户设备的发射天线到通信设备的接收天线之间的信号传输的路径空间。通信设备通过控制接收链路对应的射频开关,控制接收链路的开启。
正交频分复用(orthogonal frequency division multiplexing,OFDM)技术,是一种多载波传输技术。具体的,将高速率的串行数据转换为若干低速率数据流,每个低速数据流对应一个载波进行调制,组成一个多载波的同时调制的并行传输系统,实现信号 的多载波传输。具体的,OFDM技术可以将信号复用到N个子载波上,每个子载波的中心频率不同,以提高信号传输带宽。
信道传输环境,可以指用于估计通信链路的信道特性的信息。具体的,信道传输环境可以包括信道的质量、多径时延、多普勒频偏、信道的秩、波束形成向量。
信道相关系数,可以指用于反映信道传输环境的参数变量。其中,本申请的信道相关系数用于反映链路组合中的所有开启的RF发射链路对应的信道传输环境。示例性的,第一链路组合在第一子载波的信道相关系数用于反映通信装置开启第一链路组合中的RF发射链路且关闭其他RF发射链路时,通信装置与一个或多个用户设备间使用第一子载波的信道传输环境。
初始信道相关系数,可以用于反映一个链路组合中的每两个RF发射链路在同一个载波的信道传输环境。
供电受限场景,可以指通信设备的整机最大功耗大于向其供电的非直流供电设备的最大供电能力的场景。
当WiFi设备处于供电受限场景时,WiFi设备可以通过开启部分RF发射链路,以降低功耗适配供电设备的最大供电能力,实现信号的传输。
具体的,图1示意了一种WiFi设备控制RF发射链路的过程,以降低功耗实现信号传输。如图1所示,该控制RF发射链路的过程包括S101和S102。
S101、WiFi设备确定根据当前网络传输环境,确定开启的RF发射链路数量。
其中,WiFi设备的网络传输环境可以包括:供电规格、频率规格、协议规格和当前网络环境支持的传输速率。
具体的,WiFi设备获取当前的网络传输环境,根据供电规格判断该供电方式对应的供电功率与WiFi设备的整机最大功耗之间的大小,确认WiFi设备处于供电受限场景。然后,WiFi设备调用功率控制表格,在功率控制表格中查找满足当前网络传输环境的最大可以支持的RF链路数量(空间流数(number spatial streams,NSS)),作为开启的RF发射链路数量。其中,开启的RF发射链路数量小于或等于WiFi设备中发射链路的总数量。
其中,NSS可以包括:RF发射链路的数量。
例如,表1示意了一种功率控制表格。
表1
Figure PCTCN2020128418-appb-000007
表1中,5G为频率规格,802.11a为协议规格,AT为供电规格。其中,WiFi设备在当前传输环境下支持的最大传输速率不同,对应的空间流数与消耗的功率也不同。
例如,WiFi设备当前的网络传输环境为:5G频率、802.11a协议、AT供电、最大支持传输速率为18兆比特每秒(million bits per second,Mbps)。在表1中查找,得到的NSS为3*4;此时,链路消耗的功率为16W。其中,NSS为3*4表示:RF发射链路数量为3,RF接收链路数量为4。此时,WiFi设备确定开启的RF发射链路数量。
S102、WiFi设备按照确定的开启的RF发射链路数量,配置WiFi设备中的发射链路进行信号发射。
具体的,可以在WiFi设备中预先配置不同的NSS对应的默认RF发射链路组合,在S102中,WiFi设备可以按照S101中确定的NSS(开启的RF链路数量),开启与该开启的RF链路数量对应的默认RF发射链路组合,关闭其他RF发射链路来发射信号。
其中,不同的NSS对应的默认RF发射链路组合,可以为管理员根据工程经验或其他数据预先配置,本申请对于该配置过程不予唯一限定。
例如,管理员预先设置的不同的NSS对应的默认RF发射链路组合如表2所示。
其中,表2的每一列表示开启的RF链路数量,以及与该开启的RF链路数量对应的默认RF发射链路组合。
表2
Figure PCTCN2020128418-appb-000008
例如,S101中确定的开启的RF链路数量为2时,配置WiFi设备中的RF发射链路1、RF发射链路2进行信号发射;S101中确定的开启的RF链路数量为3时,配置WiFi设备中的RF发射链路1、RF发射链路2和RF发射链路3进行信号发射。
在S102之后,WiFi设备则按照S101中确定的开启的RF发射链路数量对应的默认RF发射链路组合配置发射链路传输信号,并且固定不变。当由于接入该WiFi设备的终端设备位置发生变化或其他原因,导致网络传输环境或运行状态发生变化时,出现开启的RF发射链路已不是向终端提供服务的最佳RF发射链路,导致WiFi设备的传输效率(吞吐量)降低,通信质量不佳。
基于此,本申请实施例提供一种控制RF链路的方法,通过获取不同RF发射链路组合的信道相关系数,选择出信道相关系数满足预设条件的RF发射链路组合,控制通信装置按照选择的RF发射链路组合来发送信号。这样一来,通过合理的配置预设条件,当网络传输环境或网络运行状态发生变化时,可以实时选择出符合最新网络环境的RF发射链路发送信号,提高了通信设备的传输效率与通信质量。
下面将结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供的控制RF链路的方法可以应用于图2所示的无线网络传输系统中。如图2所示,该无线网络传输系统20可以包括供电设备201、通信设备202和用户设备203。供电设备201可以用于向通信设备202供电。
可选的,供电设备201可以为直流供电设备,或者POE供电设备,或者USB供 电设备等,本申请实施例对于供电设备201的实际产品形态不予唯一限定。
通信设备202用于向用户设备203提供通信服务。通信设备202可以发送下行信号给用户设备203,并且,通信设备202可以接收用户设备203发送的上行信号。
通信设备202可以包括但不限于WiFi设备、宏基站,微基站(也称为小站),中继站,接入点等具有无线通信功能的设备。
用户设备203可以包括但不限于:手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、上网本、电视机等具有无线通信功能的设备。
以通信设备202为WiFi设备为例,图3示意了本申请实施例提供的一种通信设备202。如图3所示,通信设备202可以包括主控处理芯片2021、2.4千兆(giga,G)WiFi芯片2022、5G WiFi芯片2023、电源模块一2024、电源模块二2025、电源模块三2026、多个射频前端模块(radio frequency front end module,RFFEM)2027以及与多个RFFEM 2027一一对应的天线2028。
主控处理芯片2021可以用于处理以太网口的数据、处理部分WiFi基带(低频)信号,以及处理相关控制信号。
2.4G WiFi芯片2022、5G WiFi芯片2023可以用于处理基带信号与2.4G WiFi芯片2022、5G WiFi芯片2023对应的射频的转换。
电源模块一2024用于给主控处理芯片2021供电。
电源模块二2025用于给2.4G WiFi芯片2022和5G WiFi芯片2023供电。
电源模块三2026用于给多个射频前端模块2027供电。
RFFEM2027可以包括发射通路和接收通路。具体的,发射通路可以包括功率放大器、射频开关、滤波器和射频接收链路等;接收通路可以包括放大器,滤波器、射频开关、变频器以及射频发射链路等。可以用于实现接收和发射的切换、频段选择、接收和发射射频信号的滤波等。
天线2028可以用于发射和接收无线信号。
下面结合附图,对本申请的实施例提供的方案进行具体阐述。
一方面,本申请实施例提供一种控制RF链路的装置,用于执行本申请提供的控制RF链路的方法。该控制RF链路的装置用于控制通信装置,该通信装置最大支持M(M≥3)个RF发射链路,该控制RF链路的装置可以部署于通信装置中或者与通信装置分别独立部署。
例如,该控制RF链路的装置及其控制的通信装置可以部署于通信设备202中,作为通信设备202的部分或全部。在通信设备202中,该控制RF链路的装置及其控制的通信装置分别独立部署,或者,在通信设备202中,该控制RF链路的装置部署于其控制的通信装置内部。例如,控制RF链路的装置为具有相关数据处理与存储能力的电子设备或者芯片系统。
图4示意了本申请实施例提供的一种控制RF链路的装置40。如图4所示,控制RF链路的装置40可以包括处理器401、存储器402以及收发器403。
下面结合图4对控制RF链路的装置40的各个构成部件进行具体的介绍:
存储器402可以是易失性存储器(volatile memory),例如随机存取存储器 (random-access memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);或者上述种类的存储器的组合,用于存储可实现本申请方法的程序代码、配置文件、数据信息或者其他内容。
处理器401可以是控制RF链路的装置40的控制中心。例如,处理器401可以是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
收发器403用于控制RF链路的装置40与其他设备的信息交互。
具体的,控制RF链路的装置40可以用于对通信装置的RF链路进行控制。该通信装置最大支持M(M≥3)个RF发射链路,此时,处理器401可以通过运行或执行存储在存储器402内的软件程序和/或模块,执行如下功能:
确定M个RF发射链路中的K种链路组合,每种链路组合包括至多(M-1)个RF发射链路,不同种链路组合包括的RF发射链路至少不完全相同;分别获取每种链路组合在N个子载波的信道相关系数,其中,第一链路组合在第一子载波的信道相关系数用于反映通信装置开启第一链路组合中的RF发射链路且关闭其他RF发射链路时,通信装置与一个或多个用户设备间使用第一子载波的信道传输环境,第一链路组合为K种链路组合中任一链路组合,第一子载波为N个子载波中任一子载波;控制通信装置开启第二链路组合中的RF发射链路并关闭其他RF发射链路,第二链路组合为K种链路组合中信道相关系数满足预设条件的链路组合。
另一方面,本申请实施例提供一种控制RF链路的方法,该方法用于控制通信装置的RF链路,该通信装置最大支持M(M≥3)个RF发射链路。其中,该通信装置可以为通信设备202的部分或者全部。若一个通信设备中包括多个通信装置(例如,通信设备为双频路由器,将2.4GWiFi芯片及其对应的链路作为一个通信装置,将5GWiFi芯片及其对应的链路作为另一个通信装置)时,可以对每个通信装置分别执行本申请的控制RF链路的方法。
具体的,如图5所示,本申请实施例提供了一种控制RF链路的方法,该方法例如可以由控制RF链路的装置执行。需要说明的是,该控制RF链路的装置可以周期性的执行本申请实施例提供的控制RF链路的方法。以下方法以控制RF链路的装置为通信设备202为例,该方法可以包括:
S501、通信设备确定M个RF发射链路中的K种链路组合。
通信设备最大支持M(M≥3)个RF发射链路。通信设备确定每种链路组合包括至多(M-1)个RF发射链路,不同种链路组合包括的RF发射链路至少不完全相同;K大于1。
具体的,S501可以通过下述方案1或方案2或方案3实现。
方案1、通信设备可以确定链路组合的种类
Figure PCTCN2020128418-appb-000009
其中,
Figure PCTCN2020128418-appb-000010
表示从M个RF发射链路中任选X个链路以确定所有可能的排列组合,X为确定开启的RF发射链路的个数,X小于M。在方案1中,K种链路组合中的每 一种开启的RF发射链路的个数均为X。
X的值可以为预先设置的,也可以为动态确定的。一种可能的实现方式中,可以根据S101中的方法确定开启的RF发射链路的数量X。具体实现参考S101,不再一一赘述。另一种可能的实现方式中,可以根据用户根据经验确定开启的RF发射链路的数量X。
例如,假设通信设备控制的通信装置最大支持4个RF发射链路,分别是RF发射链路1、RF发射链路2、RF发射链路3、RF发射链路4。即M等于4,S101中确定当前的网络传输环境下,开启的RF发射链路的数量为3,即X等于3,根据方案1的方式确定的链路组合的种类数量K为
Figure PCTCN2020128418-appb-000011
即K等于4,该链路组合方式可以为表3所示。
表3
链路组合方式 包括的RF发射链路
1 RF发射链路1、RF发射链路2、RF发射链路3
2 RF发射链路1、RF发射链路2、RF发射链路4
3 RF发射链路1、RF发射链路3、RF发射链路4
4 RF发射链路2、RF发射链路3、RF发射链路4
需要说明的是,表3只是通过举例的方式对方案1下的链路组合方式进行说明,实际应用场景中,可以根据需要设置其他M和X的值。
方案2、通信设备可以确定链路组合的种类
Figure PCTCN2020128418-appb-000012
E为允许开启的RF发射链路的最大个数,E可以是预先配置或动态配置后的确定值,E小于或等于(M-1)。在确定E后,根据E确定各个链路组合中的RF发射链路的个数上限,并分别确定RF发射链路个数为2至E时,各自对应的链路组合情况。确定的各个链路组合的个数的小于或等于E且大于或等于2。
在方案2中,K种链路组合中允许开启的RF发射链路的最大个数为E个,即K种链路组合中包括的RF发射链路的最大个数为E个。允许开启的RF发射链路的个数可以为2至E中任一数值。
例如,假设通信设备控制的通信装置最大支持4个RF发射链路,分别是RF发射链路1、RF发射链路2、RF发射链路3、RF发射链路4,即M等于4。允许开启的RF发射链路的最大个数为3,即E等于3。根据方案2的方式确定的链路组合的种类数量
Figure PCTCN2020128418-appb-000013
即K等于10,该链路组合方式可以如表4所示。
表4
链路组合方式 包括的RF发射链路
1 RF发射链路1、RF发射链路2、RF发射链路3
2 RF发射链路1、RF发射链路2、RF发射链路4
3 RF发射链路1、RF发射链路3、RF发射链路4
4 RF发射链路2、RF发射链路3、RF发射链路4
5 RF发射链路1、RF发射链路2
6 RF发射链路1、RF发射链路3
7 RF发射链路1、RF发射链路4
8 RF发射链路2、RF发射链路3
9 RF发射链路2、RF发射链路4
10 RF发射链路3、RF发射链路4
需要说明的是,表4只是通过举例的方式对方案2下的链路组合方式进行说明,实际应用场景中,可以根据需要设置其他M和E的值。
方案3、通信设备可以确定链路组合的种类
Figure PCTCN2020128418-appb-000014
b为允许开启的RF发射链路的最小个数,b大于或等于2。可选的,K种链路组合中允许开启的RF发射链路的个数可以为b至E中任一数值。在确定E和b后,根据E和b确定各个链路组合中的RF发射链路的个数范围(即[b,E]),并分别确定RF发射链路个数为b至E时,各自对应的链路组合情况。确定的各个链路组合的个数的小于或等于E且大于或等于b。例如,通信设备控制的通信装置最大支持7个RF发射链路,允许开启的RF发射链路的最大个数为6个,允许开启的RF发射链路的最小个数为3个。允许开启的RF发射链路的个数可以为3至6,确定链路组合的种类
Figure PCTCN2020128418-appb-000015
上述情形是根据E和b确定链路组合中的个数为连续性取值的示例。作为上述方案3的另一种可能的情形,在确定E和b后,还根据E和b确定[b,E]区间范围内的任意多个或指定多个取值,作为链路组合内的RF发射链路个数,所述多个取值可以是离散的。
例如,通信设备控制的通信装置最大支持7个RF发射链路,允许开启的RF发射链路的最大个数为6个,允许开启的RF发射链路的最小个数为3个。根据实际需求确定K种链路组合中允许开启的RF发射链路的个数可以为3、4、6,根据方案3确定的链路组合的种类
Figure PCTCN2020128418-appb-000016
在另一种可能的情形中,也可以不指定RF发射链路的最大开启值和/或最小开启值,而是直接预先配置或动态确定需要开启的若干离散个数的发射链路各自对应的链路组合。
S502、通信设备分别获取每种链路组合在N个子载波的信道相关系数。
第一链路组合在第一子载波的信道相关系数用于反映通信装置开启第一链路组合中的RF发射链路关闭其他RF发射链路时,通信装置与一个或多个用户设备间使用第一子载波的信道传输环境。第一链路组合为K种链路组合中任一链路组合,第一子载波为N个子载波中任一子载波。N为OFDM符号的长度,即通过OFDM技术将信号复用到N个子载波上传输。
以通信设备获取第三链路组合在第二子载波的信道相关系数为例,说明通信设备如何获取一种链路组合在一个子载波的信道相关系数。通信设备分别获取每种链路组合在N个子载波的信道相关系数时,方法相同,不再一一赘述。其中,第二子载波为N个子载波中任一子载波;第三链路组合为K种链路组合中任一链路组合。
具体的,通信设备获取第三链路组合在第二子载波的信道相关系数的过程可以包括但不限于下述S5021-S5023。
S5021、通信设备将通信装置在第二子载波接收到的上行信号经过信道估计,得到第二子载波的信道矩阵。
其中,第二子载波的信道矩阵包括:M个RF发射链路在第二子载波的信道响应。
示例性的,假设第二子载波对应的中心频点为n,通信设备最大支持4个RF发射链路,即通信设备包括4个天线;当前与该通信设备进行数据传输的用户设备共有4个天线。第二子载波的信道矩阵可以表示为:
Figure PCTCN2020128418-appb-000017
其中,H i(n)包括了4个RF发射链路在第二子载波的信道响应。
具体的,H i(n)中的第i列向量h i(n)=[h 1i(n) h 2i(n) h 3i(n) h 4i(n)] T,表示第i个发射天线(通信设备的天线)在第二子载波上(频点n处)到所有接收天线(用户设备的天线)的信道响应。
S5022、通信设备分别计算第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数。
具体的,通信设备根据预设公式计算第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数。
示例性的,预设公式可以满足下述公式(1)的表达式,利用公式(1)计算RF发射链路i与RF发射链路j在子载波n的初始信道相关系数r。
Figure PCTCN2020128418-appb-000018
其中,cov(.)为协方差运算,d(.)为方差运算;h i(n)为RF发射链路i在子载波n的信道响应信息,h j(n)为RF发射链路j在子载波n的信道响应信息,RF发射链路i为第三链路组合中任一RF发射链路,RF发射链路j为第三链路组合中除RF发射链路i之外的任一RF发射链路;n大于或等于0,小于或等于N。
具体的,通信设备将第三链路组合中每两个RF发射链路在第二子载波的信道响应代入公式(1),计算得到第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数。
示例性的,现对计算第三链路组合中的RF发射链路i与RF发射链路j在第二子载波(频点n处)的初始信道相关系数r的过程进行说明。
将S5021中的RF发射链路i在子载波n的信道响应h i(n),以及RF发射链路j在子载波n的信道响应h j(n),代入公式(1);计算得到第三链路组合中的RF发射链路i与RF发射链路j在第二子载波(频点n处)的初始信道相关系数r。
S5023、通信设备将第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数进行第一计算,作为第三链路组合在第二子载波的信道相关系数R。
其中,针对S501中的方案1,第一计算可以包括求和,求平均值,或者,求加权平均值。
针对S501中的方案2或者方案3,第一计算可以包括求平均值,或者,求加权平均值。
一种可能的实现方式中,若第三链路组合中的RF发射链路数为2,直接将S5022的第三链路组合中该2个RF发射链路在第二子载波的初始信道相关系数作为第三链路组合在第二子载波的信道相关系数。
另一种可能的实现方式中,若第三链路组合中的RF发射链路数大于2,将S5022的第三链路组合中每两个RF发射链路在第二子载波的初始信道相关系数,通过上述第一计算,得到第三链路组合在第二子载波的信道相关系数。
例如,假设第三链路组合包括:RF发射链路1、RF发射链路2、RF发射链路3。将RF发射链路1、RF发射链路2的频道响应代入公式(1),得到第三链路组合的RF发射链路1与RF发射链路2在第二子载波的初始信道相关系数r12;同样的,将RF发射链路1和RF发射链路3的频道响应,RF发射链路2和RF发射链路3的频道响应分别待入公式(1),得到第三链路组合的RF发射链路1与RF发射链路3在第二子载波的初始信道相关系数r13,以及第三链路组合的RF发射链路2、RF发射链路3在第二子载波的初始信道相关系数r23。
然后,计算3个信道初始信道相关系数的平均值
Figure PCTCN2020128418-appb-000019
作为第三链路组合在第二子载波的信道相关系数R。
可选的,S502中通信设备可以分别获取每种链路组合在N个子载波的信道相关系数,可以由与通信设备通信的其他装置计算后,传输给通信设备。
S503、通信设备控制通信装置开启第二链路组合中的RF发射链路关闭其他RF发射链路。
其中,第二链路组合为K种链路组合中信道相关系数满足预设条件的链路组合。
具体的,S503中通信设备先选取第二链路组合,该选取过程可以包括但不限于下述实现1至实现3中的任一种。
实现1、通信设备将信道相关系数的平均值最小的链路组合作为第二链路组合。
具体的,通信设备通过S502,分别获取每个链路组合在N个子载波的N个信道相关系数,通信设备分别计算每个链路组合在N个子载波的N个信道相关系数的平均值,然后选取第二链路组合。
例如,通信设备通过S502获取第三链路组合在N个子载波的N个信道相关系数R1,R2,……,Rn,通信设备计算第三链路组合在N个子载波的N个信道相关系数的平均值
Figure PCTCN2020128418-appb-000020
用同样的方法,通信设备可以分别获取K个链路组合中每个链路组合在N各子载波的N个信道相关系数的平均值I1、I2、……、IK,选取I1、I2、……、IK种最小的链路组合作为第二链路组合。
实现2、通信设备将信道相关系数的加权平均值最小的链路组合作为第二链路组合。
具体的,通过S502,通信设备获取了K个链路组合中每个链路组合在N个子载波的N个信道相关系数,通信设备分别计算每个链路组合在每个子载波对应的权值,然后计算每个链路组合在N个子载波的N个信道相关系数的加权平均值,然后选取第二链路组合。
例如,通过S502,通信设备可以获取第三链路组合在N个子载波的N个信道相关系数R1,R2,……,Rn,通信设备计算第三链路组合在每个子载波对应的权值Q1、Q2、……、Qn。通信设备可以计算第三链路组合在N个子载波的N个信道相关系数的加权平均值
Figure PCTCN2020128418-appb-000021
用同样的方法,通信设备分别获取K个链路组合中每个链路组合在N各子载波的N个信道相关系数的加权平均值J1、J2、……、JK,选取J1、J2、……、JK种最小的链路组合作为第二链路组合。
实现3、通信设备将信道相关系数的加权和最小的链路组合作为第二链路组合。
具体的,通信设备通过S502,可以获取每个链路组合在N个子载波的N个信道相关系数,通信设备分别计算每个链路组合在每个子载波对应的权值,通信设备计算每个链路组合在N个子载波的N个信道相关系数的加权和,然后选取第二链路组合。
例如,通信设备通过S502,获取第三链路组合在N个子载波的N个信道相关系数R1,R2,……,Rn,通信设备分别计算每个子载波对应的权值Q1、Q2、……、Qn,通信设备计算第三链路组合在N个子载波的N个信道相关系数的加权和L=Q1×R1+Q2×R2+......+Qn×Rn。
用同样的方法,通信设备分别获取K个链路组合中每个链路组合在N各子载波的N个信道相关系数的加权和L1、L2、……、LK,选取L1、L2、……、LK中最小的链路组合作为第二链路组合。
需要说明的是,实现2、实现3中描述的权值可以为预先配置,或者也可以为动态获取,具体获取过程详见下述S504到S506。
进一步的,在选取第二链路组合之后,在S503中,通信设备可以控制通信装置开启第二链路组合中的RF发射链路并关闭其他RF发射链路。
示例性的,假设通信装置最大支持4个RF发射链路,分别是RF发射链路1、RF发射链路2、RF发射链路3、RF发射链路4。其中,S5031中通信设备确定的第二链路组合为RF发射链路1、RF发射链路2、RF发射链路3。
通信设备控制通信装置开启RF发射链路1、RF发射链路2、RF发射链路3,并关闭RF发射链路4。
通过本申请实施例提供一种控制RF链路的方法,通过获取不同RF发射链路组合的信道相关系数,选择出满足预设条件的RF发射链路组合,控制通信装置按照选择的RF发射链路组合来发送信号。这样一来,通过合理的配置预设条件,当网络传输环境或网络运行状态发生变化时,可以实时选择出符合最新网络环境的RF发射链路发送信号,提高了通信设备的传输效率与通信质量。
进一步的,如图6所示,在S503之前,本申请实施例提供的控制RF链路的方法还可以包括S504至S506,用于S503中通过实现2或者实现3选取第二链路组合时获取权值。
需要说明的是,S504至S506可以在S503之前执行。具体的,S504至S506可以在S502之后执行,或者也可以在S502之前执行,或者也可以与S502同时执行,本申请对此不予唯一限定。
S504、通信设备分别计算每种链路组合在N个子载波的信道频率响应。
一个链路组合在一个子载波的信道频率响应为该链路组合包括的N个RF发射链路在该子载波的信道响应信息之和。
以第三链路组合在第二子载波的信道频率响应为例进行说明,每个链路组合在每个子载波的信道频率响应的计算方法相同,不再一一赘述。
假设第二子载波对应的频点为n,第二子载波的信道矩阵为:
Figure PCTCN2020128418-appb-000022
其中,H i(n)包括了4个RF发射链路在第二子载波的信道响应。
假如第三链路组合为:RF发射链路1、RF发射链路2、RF发射链路3。则第三链路组合在第二子载波的信道频率响应为Y=h 1(n)+h 2(n)+h 3(n)。
同样的,通信设备分别计算第三链路组合在N个子载波的信道频率响应Y1、Y2、……、YN。
通信设备分别计算每个链路组合在N个子载波的信道频率响应为:
Figure PCTCN2020128418-appb-000023
其中,Y ij表示链路组合i在j子载波的信道频率响应。
S505、通信设备分别计算每种链路组合的信道频率响应差。
一个链路组合的信道频率响应差为该链路组合在N个子载波的信道频率响应中的最大值与最小值差值的绝对值。
以第三链路组合的信道频率响应差为例进行说明,每个链路组合的信道频率响应差的计算方法相同,不再一一赘述。
示例性的,假设第三链路组合的频率响应为Y1、Y2、……、YN。通信设备比较得到信道频率响应中的最大值Ymax和最小值Ymin,则第三链路组合的频率响应差为C=Ymax-Ymin。
同样的,通信设备分别计算出K种链路组合的信道频率响应差C1、C2、……、CK。
S506、通信设备根据预设规则,确定每种链路组合在每个子载波的信道相关系数的权值。
所述预设规则包括链路组合在子载波的信道频率响应与信道频率响应差满足的多种不同关系,以及所述多种不同关系分别对应的权值。
具体的,预设规则可以根据用户的实际需求进行配置,本身对此不予唯一限定。
一种可能的实现方式中,预设规则包括:
若链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以第一参数,则该链路组合在该子载波的信道相关系数的权值为第一权值。
若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以第二参数,则该链路组合在该子载波的信道相关系数的权值为第二权值。其中,第二参数大于第一参数。
若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以第一参数,且该链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以第二参数,则该链路组合在该子载波的信道相关系数的权值为第三权值。
其中,第一参数、第二参数、第一权值、第二权值、第三权值可以根据实际进行配置。
例如,第一参数可以为0.2,第二参数可以为0.8,第一权值可以为0.8,第二权值可以为0.2,第三权值可以为1。具体的,确定权值Q的过程可以用公式(2)表示:
Figure PCTCN2020128418-appb-000024
其中,Y(n)为S504中得到的链路组合在第n子载波的信道频率响应,C为S505中得到链路组合的频率响应差。
可选的,在S501之前,本申请实施例提供的控制RF链路的方法还可以包括S507。
S507、通信设备确定通信设备处于供电受限场景。
具体的,通信设备检测通信设备上的供电芯片的相关管脚,获取通信设备的供电方式,得到该供电方式下的最大供电功率;通信设备查找通信设备的相关说明,获取通信设备的整机最大功耗;若当前的最大供电功率小于通信设备的通信设备的整机最大功耗,则认为通信设备处于供电受限场景。
可选的,若S507中确定通信设备处于供电受限场景,执行S501及其他相应操作。
若通信设备处于非供电受限场景,通信设备控制通信装置开启所有RF发射链路。
需要说明的是,可以在预设周期后,重新执行S501至S507中的部分或全部。
其中,预设周期可以根据用户的实际需求进行配置,本申请对此不予特别限定。
下面以WiFi设备处于供电受限场景为例,对本申请实施例提供的控制RF链路的过程进行详细说明。
WiFi设备检测供电芯片,获取供给至WiFi设备的供电功率,该供电功率小于WiFi设备的最大消耗功率,确定该WiFi设备处于供电受限场景。该WiFi设备最大支持4个RF发射链路。WiFi设备可以通过查找功率控制表格,获取到满足当前传输环境的空间流数为3*4,即RF发射链路的数量为3。
WiFi设备确定的链路组合包括:第1链路组合(RF发射链路1、RF发射链路2、RF发射链路3),第2链路组合(RF发射链路1、RF发射链路2、RF发射链路4),第3链路组合(RF发射链路1、RF发射链路3、RF发射链路4),第4链路组合(RF发射链路2、RF发射链路3、RF发射链路4)。
通过本申请的方法分别计算每个链路组合的信道相关系数的N个信道相关系数的平均值I1、I2、I3、I4。其中,I2最小,WiFi设备控制WiFi芯片开启第2链路组合中对应的RF发射链路1、RF发射链路2、RF发射链路4,同时关闭RF发射链路3,实现信号的发送。
上述主要从控制RF链路的装置工作原理的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述控制RF链路的装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对控制RF链路的装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图7示出了上述实施例中所涉及的控制RF链路的装置70的一种可能的结构示意图。该控制RF链路的装置用于控制通信装置,该通信装置最大支持M(M≥3)个RF发射链路。该控制RF链路的装置及其控制的通信装置可以部署于通信设备中,作为通信设备的部分或全部。该控制RF链路的装置可以为通信设备,也可以为通信设备中的功能模块或者芯片,也可以为与通信设备匹配使用的装置。如图7所示,控制RF链路的装置70可以包括:确定单元701、第一获取单元702和处理单元703。确定单元701用于执行图5或图6中的过程S501;第一获取单元702用于执行图5或图6中的过程S502;处理单元703用于执行图5或图6中的过程S503。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
进一步的,如图7所示,控制RF链路的装置70还可以包括第二获取单元704。其中,第二获取单元704用于执行图6中的过程S504、S505、S506。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的控制RF链路的装置80的一种可能的结构示意图。该控制RF链路的装置用于控制通信装置,该通信装置最大支持M(M≥3)个RF发射链路。该控制RF链路的装置及其控制的通信装置可以部署于通信设备中,作为通信设备的部分或全部。该控制RF链路的装置可以为通信设备,也可以为通信设备中的功能模块或者芯片,也可以为与通信设备匹配使用的装置。如图8所示,控制RF链路的装置80可以包括:处理模块801、通信模块802。处理模块801用于对控制RF链路的装置80的动作进行控制管理。例如,处理模块801用于执行图5或图6中的S501至S503,或者,执行图6中的过程S501至S507。通信模块802用于支持控制RF链路的装置80与其他单元通信。控制RF链路的装置80还可以包括存储模块803,用于存储控制RF链路的装置80的程序代码和数据。
处理模块801可以为图4所示的控制RF链路的装置40的实体结构中的处理器401,可以是处理器或控制器。例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理模块801 也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块802可以为图4所示的控制RF链路的装置40的实体结构中的收发器403,通信模块802可以是通信端口,或者可以是收发器、收发电路或通信接口等。或者,上述通信接口可以通过上述具有收发功能的元件,实现与其他设备的通信。上述具有收发功能的元件可以由天线和/或射频装置实现。存储模块803可以是图4所示的控制RF链路的装置40的实体结构中的存储器402。
当处理模块801为处理器,通信模块802为收发器,存储模块803为存储器时,本申请实施例图8所涉及的控制RF链路的装置80可以为图4所示的控制RF链路的装置40。
如前述,本申请实施例提供的控制RF链路的装置70或控制RF链路的装置80可以用于实施上述本申请各实施例实现的方法中图像识别装置中的功能,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请各实施例。
本申请另一些实施例还提供一种计算机可读存储介质,该计算机可读存储介质可包括计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行上述图5或图6所示实施例中各个步骤。
本申请另一些实施例还提供一种计算机程序产品,该计算机产品包含计算机程序,当该计算机程序产品在计算机上运行时,使得该计算机执行上述图5或图6所示实施例中各个步骤。
本申请另一些实施例还提供一种芯片。芯片包括接口电路和处理器;接口电路用于接收代码指令,并向处理器发送该代码指令;当处理器执行该代码指令时,芯片执行如上述图5或图6所示实施例中各个步骤。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种控制射频RF链路的方法,其特征在于,所述方法用于控制通信装置,所述通信装置最大支持M(M≥3)个RF发射链路,所述方法包括:
    确定所述M个RF发射链路中的K种链路组合,每种所述链路组合包括至多(M-1)个RF发射链路,不同种所述链路组合包括的RF发射链路至少不完全相同;
    分别获取每种所述链路组合在N个子载波的信道相关系数,其中,第一链路组合在第一子载波的信道相关系数用于反映所述通信装置开启所述第一链路组合中的RF发射链路且关闭其他RF发射链路时,所述通信装置与一个或多个用户设备间使用所述第一子载波的信道传输环境,所述第一链路组合为所述K种链路组合中任一链路组合,所述第一子载波为所述N个子载波中任一子载波;
    控制所述通信装置开启第二链路组合中的RF发射链路并关闭其他RF发射链路,所述第二链路组合为所述K种链路组合中信道相关系数满足预设条件的链路组合。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述M个RF发射链路中的K种链路组合,包括:
    所述
    Figure PCTCN2020128418-appb-100001
    其中,
    Figure PCTCN2020128418-appb-100002
    表示从M个RF发射链路中任选X个链路进行组合,所述X为确定的开启RF发射链路的个数,所述X小于所述M。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预设条件包括:
    在每个子载波的信道相关系数的平均值最小;或者,
    在每个子载波的信道相关系数的加权平均值最小;或者,
    在每个子载波的信道相关系数的加权和最小。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,针对第二子载波、第三链路组合,所述第二子载波为所述N个子载波中任一子载波,所述第三链路组合为所述K种链路组合中任一链路组合,所述分别获取每种所述链路组合在N个子载波的信道相关系数,包括:
    将所述通信装置在所述第二子载波接收的上行信号经过信道估计,得到所述第二子载波的信道矩阵,所述信道矩阵包括所述M个RF发射链路中每个RF发射链路在所述第二子载波的信道响应;
    分别计算所述第三链路组合中每两个RF发射链路在所述第二子载波的初始信道相关系数;
    将所述第三链路组合中每两个RF发射链路在所述第二子载波的初始信道相关系数进行第一计算,作为所述第三链路组合在所述第二子载波的信道相关系数。
  5. 根据权利要求4所述的方法,其特征在于,所述分别计算所述第三链路组合中每两个RF发射链路在所述第二子载波的初始信道相关系数,包括:利用公式(1)计算RF发射链路i与RF发射链路j在子载波n的初始信道相关系数r;
    Figure PCTCN2020128418-appb-100003
    其中,所述cov(.)为协方差运算,所述d(.)为方差运算;所述h i(n)为所述RF发射链路i在子载波n的信道响应信息,所述h j(n)为所述RF发射链路j在所述子载波n的 信道响应信息,所述RF发射链路i为所述第三链路组合中任一RF发射链路,所述RF发射链路j为所述第三链路组合中除所述RF发射链路i之外的任一RF发射链路;所述n大于或等于0,小于或等于所述N。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一计算包括:
    求和,或者,求平均值,或者,求加权平均值。
  7. 根据权利要求3所述的方法,其特征在于,所述预设条件包括在每个子载波的信道相关系数的加权平均值最小,或者,在每个子载波的信道相关系数的加权和最小,所述方法还包括:
    分别计算每种所述链路组合在N个子载波的信道频率响应,一个链路组合在一个子载波的信道频率响应为该链路组合包括的N个RF发射链路在该子载波的信道响应信息之和;
    分别计算每种所述链路组合的信道频率响应差,一个链路组合的信道频率响应差为该链路组合在N个子载波的信道频率响应中的最大值与最小值差值的绝对值;
    根据预设规则,确定每种所述链路组合在每个子载波的信道相关系数的权值;其中,所述预设规则包括链路组合在子载波的信道频率响应与信道频率响应差满足的不同关系,以及所述不同关系对应的权值。
  8. 根据权利要求7所述的方法,其特征在于,所述预设规则包括:
    若链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以第一参数,则该链路组合在该子载波的信道相关系数的权值为第一权值;
    若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以第二参数,则该链路组合在该子载波的信道相关系数的权值为第二权值;其中,所述第二参数大于所述第一参数;
    若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以所述第一参数,且该链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以所述第二参数,则该链路组合在该子载波的信道相关系数的权值为第三权值。
  9. 根据权利要求8所述的方法,其特征在于,所述第一参数为0.2,所述第二参数为0.8,所述第一权值为0.8,所述第二权值为0.2,所述第三权值为1。
  10. 一种控制射频RF链路的装置,其特征在于,所述控制RF链路的装置用于控制通信装置,所述通信装置最大支持M(M≥3)个RF发射链路,所述控制RF链路的装置包括:
    确定单元,用于确定所述M个RF发射链路中的K种链路组合,每种所述链路组合包括至多(M-1)个RF发射链路,不同种所述链路组合包括的RF发射链路至少不完全相同;
    第一获取单元,用于分别获取每种所述链路组合在N个子载波的信道相关系数,其中,第一链路组合在第一子载波的信道相关系数用于反映所述通信装置开启所述第一链路组合中的RF发射链路且关闭其他RF发射链路时,所述通信装置与一个或多个用户设备间使用所述第一子载波的信道传输环境,所述第一链路组合为所述K种链路组合中任一链路组合,所述第一子载波为所述N个子载波中任一子载波;
    处理单元,用于控制所述通信装置开启第二链路组合中的RF发射链路并关闭其 他RF发射链路,所述第二链路组合为所述K种链路组合中信道相关系数满足预设条件的链路组合。
  11. 根据权利要求10所述的控制RF链路的装置,其特征在于,所述确定单元具体用于:
    确定所述
    Figure PCTCN2020128418-appb-100004
    其中,
    Figure PCTCN2020128418-appb-100005
    表示从M个RF发射链路中任选X个链路进行组合,所述X为确定的开启RF发射链路的个数,所述X小于所述M。
  12. 根据权利要求10或11所述的控制RF链路的装置,其特征在于,所述预设条件包括:
    在每个子载波的信道相关系数的平均值最小;或者,
    在每个子载波的信道相关系数的加权平均值最小;或者,
    在每个子载波的信道相关系数的加权和最小。
  13. 根据权利要求10-12任一项所述的控制RF链路的装置,其特征在于,针对第二子载波、第三链路组合,所述第二子载波为所述N个子载波中任一子载波,所述第三链路组合为所述K种链路组合中任一链路组合,所述获取单元具体用于:
    将所述通信装置在所述第二子载波接收的上行信号经过信道估计,得到所述第二子载波的信道矩阵,所述信道矩阵包括所述M个RF发射链路中每个RF发射链路在所述第二子载波的信道响应;
    分别计算所述第三链路组合中每两个RF发射链路在所述第二子载波的初始信道相关系数;
    将所述第三链路组合中每两个RF发射链路在所述第二子载波的初始信道相关系数进行第一计算,作为所述第三链路组合在所述第二子载波的信道相关系数。
  14. 根据权利要求13所述的控制RF链路的装置,其特征在于,所述获取单元具体用于:
    利用公式(1)计算RF发射链路i与RF发射链路j在子载波n的初始信道相关系数r;
    Figure PCTCN2020128418-appb-100006
    其中,所述cov(.)为协方差运算,所述d(.)为方差运算;所述h i(n)为所述RF发射链路i在子载波n的信道响应信息,所述h j(n)为所述RF发射链路j在所述子载波n的信道响应信息,所述RF发射链路i为所述第三链路组合中任一RF发射链路,所述RF发射链路j为所述第三链路组合中除所述RF发射链路i之外的任一RF发射链路;所述n大于或等于0,小于或等于所述N。
  15. 根据权利要求13或14所述的控制RF链路的装置,其特征在于,所述第一计算包括:
    求和,或者,求平均值,或者,求加权平均值。
  16. 根据权利要求12所述的控制RF链路的装置,其特征在于,所述预设条件包括在每个子载波的信道相关系数的加权平均值最小,或者,在每个子载波的信道相关系数的加权和最小,所述控制RF链路的装置还包括第二获取单元,
    用于分别计算每种所述链路组合在N个子载波的信道频率响应,一个链路组合在 一个子载波的信道频率响应为该链路组合包括的N个RF发射链路在该子载波的信道响应信息之和;
    用于分别计算每种所述链路组合的信道频率响应差,一个链路组合的信道频率响应差为该链路组合在N个子载波的信道频率响应中的最大值与最小值差值的绝对值;
    用于根据预设规则,确定每种所述链路组合在每个子载波的信道相关系数的权值;其中,所述预设规则包括链路组合在子载波的信道频率响应与信道频率响应差满足的不同关系,以及所述不同关系对应的权值。
  17. 根据权利要求16所述的控制RF链路的装置,其特征在于,所述预设规则包括:
    若链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以第一参数,则该链路组合在该子载波的信道相关系数的权值为第一权值;
    若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以第二参数,则该链路组合在该子载波的信道相关系数的权值为第二权值;其中,所述第二参数大于所述第一参数;
    若链路组合在子载波的信道频率响应大于该链路组合的信道频率响应差乘以所述第一参数,且该链路组合在子载波的信道频率响应小于该链路组合的信道频率响应差乘以所述第二参数,则该链路组合在该子载波的信道相关系数的权值为第三权值。
  18. 根据权利要求17所述的控制RF链路的装置,其特征在于,所述第一参数为0.2,所述第二参数为0.8,所述第一权值为0.8,所述第二权值为0.2,所述第三权值为1。
  19. 一种控制射频RF链路的装置,其特征在于,所述控制RF链路的装置包括:处理器和存储器;
    所述存储器与所述处理器连接,所述存储器用于存储计算机程序,当所述处理器执行所述计算机程序时,所述控制RF链路的装置执行如权利要求1-9中任意一项所述的控制RF链路的方法。
  20. 一种计算机可读存储介质,其特征在于,包括计算机程序,当其在计算机上运行时,使得计算机执行权利要求1-9任一项所述的控制RF链路的方法。
  21. 一种计算机程序产品,其特征在于,包含计算机程序,当其在计算机上运行时,使得计算机执行权利要求1-9任一项所述的控制RF链路的方法。
PCT/CN2020/128418 2020-02-21 2020-11-12 一种控制rf链路的方法及装置 WO2021164338A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010109152.0 2020-02-21
CN202010109152.0A CN113301614A (zh) 2020-02-21 2020-02-21 一种控制rf链路的方法及装置

Publications (1)

Publication Number Publication Date
WO2021164338A1 true WO2021164338A1 (zh) 2021-08-26

Family

ID=77317587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128418 WO2021164338A1 (zh) 2020-02-21 2020-11-12 一种控制rf链路的方法及装置

Country Status (2)

Country Link
CN (1) CN113301614A (zh)
WO (1) WO2021164338A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254458A (zh) * 1997-05-02 2000-05-24 艾利森公司 有功率管理特征的手持式蜂窝电话机
CN103715731A (zh) * 2012-09-28 2014-04-09 美国博通公司 具有设备发现和功率转移能力的功率接收设备
US20160113044A1 (en) * 2014-10-17 2016-04-21 Redline Communications Inc. System and method for wireless mobility protocol for highly directional antennas with network topology awareness
CN108882311A (zh) * 2018-07-04 2018-11-23 深圳鲲鹏无限科技有限公司 一种多射频链路的无线接入点及其频宽信道数自适应方法
CN110087297A (zh) * 2018-01-26 2019-08-02 华北电力大学 能量收集大规模天线阵列系统的天线选择和功率分配方案

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708923B2 (en) * 2017-08-31 2020-07-07 Qualcomm Incorporated Method and/or system for reducing uplink interference
CN109995405A (zh) * 2017-12-29 2019-07-09 索尼公司 用于无线通信系统的电子设备、方法、装置和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254458A (zh) * 1997-05-02 2000-05-24 艾利森公司 有功率管理特征的手持式蜂窝电话机
CN103715731A (zh) * 2012-09-28 2014-04-09 美国博通公司 具有设备发现和功率转移能力的功率接收设备
US20160113044A1 (en) * 2014-10-17 2016-04-21 Redline Communications Inc. System and method for wireless mobility protocol for highly directional antennas with network topology awareness
CN110087297A (zh) * 2018-01-26 2019-08-02 华北电力大学 能量收集大规模天线阵列系统的天线选择和功率分配方案
CN108882311A (zh) * 2018-07-04 2018-11-23 深圳鲲鹏无限科技有限公司 一种多射频链路的无线接入点及其频宽信道数自适应方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Discussion on output power requirement for MR BS", 3GPP DRAFT; R4-121524 [MR BS CLASS] DISCUSSION ON OUTPUT POWER FOR MR BS, vol. RAN WG4, 19 March 2012 (2012-03-19), Jeju, Korea, pages 1 - 2, XP050612930 *

Also Published As

Publication number Publication date
CN113301614A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2020063923A1 (zh) 信号传输方法、相关设备及系统
US10194441B2 (en) Bandwidth reduction with beamforming and data compression
JP5240634B2 (ja) 無線通信システムにおけるデュアル基地局
US10749659B2 (en) Methods and apparatus for transmitting/receiving HE-LTF
US9793966B2 (en) Link adaptation method and apparatus in wireless LAN system
US9634821B2 (en) Method and apparatus for channel access in WLAN system
WO2019233208A1 (zh) 一种天线配置的指示方法、基站、终端及计算机存储介质
WO2020037447A1 (zh) 一种功率控制方法及装置、终端
WO2011072567A1 (zh) 一种资源配置方法和设备
TWI805977B (zh) 通訊裝置、通訊方法、及通訊控制程式
US11743775B2 (en) Switch and backhaul capacity-based radio resource management
WO2021228014A1 (zh) 资源复用方法及装置
CN111742604A (zh) 分布网中的动态空间重用
CN116195229A (zh) 无线通信系统中用于前传传输的设备和方法
WO2021164338A1 (zh) 一种控制rf链路的方法及装置
KR20110119520A (ko) 무선랜 시스템에서 간섭 회피 방법 및 장치
WO2011136473A2 (en) Method for avoiding interference in wireless communication system and apparatus for the same
TWI835077B (zh) 無線通訊裝置與資料傳輸速率的決定方法
WO2019100808A1 (zh) 捆绑大小确定方法、用户终端和网络侧设备
WO2022218198A1 (zh) 一种通信方法及通信装置
WO2024138613A1 (zh) 无线通信的方法和装置
KR101511471B1 (ko) 통신 방법 및 이를 이용한 무선 기기
US20240107578A1 (en) Flexible multi-link operation architecture
US20220312314A1 (en) Communication apparatus, communication method, and storage medium
TWI762715B (zh) 一種通道跳頻的確定方法及裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919482

Country of ref document: EP

Kind code of ref document: A1