WO2021164214A1 - 光感测元及使用其的光学生物特征感测器 - Google Patents

光感测元及使用其的光学生物特征感测器 Download PDF

Info

Publication number
WO2021164214A1
WO2021164214A1 PCT/CN2020/108600 CN2020108600W WO2021164214A1 WO 2021164214 A1 WO2021164214 A1 WO 2021164214A1 CN 2020108600 W CN2020108600 W CN 2020108600W WO 2021164214 A1 WO2021164214 A1 WO 2021164214A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
area
receiving
sensing
biometric sensor
Prior art date
Application number
PCT/CN2020/108600
Other languages
English (en)
French (fr)
Inventor
周正三
黄振昌
范成至
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Priority to US17/792,036 priority Critical patent/US20230063838A1/en
Publication of WO2021164214A1 publication Critical patent/WO2021164214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers

Definitions

  • the present invention relates to a light sensing element and an optical biometric sensor using it, and particularly relates to a light sensing element and an optical biometric sensor using it, which use a light-receiving structure to The area of the light sensor element is reduced to achieve the effect of reducing the junction capacitance and increasing the sensing voltage signal.
  • Today's mobile electronic devices are usually equipped with user biometric systems, including different technologies such as fingerprints, face shapes, irises, etc., to protect personal data security, such as mobile phones Or smart watches and other portable devices, which also have the function of mobile payment, for the user's biometric identification has become a standard function, and the development of mobile phones and other portable devices is towards full screen (or ultra-narrow bezel) ), the traditional capacitive fingerprint buttons can no longer be used, and new miniaturized optical imaging devices (some are very similar to traditional camera modules, with complementary metal-oxide semiconductor (Complementary Metal-Oxide Semiconductor (CMOS) Image Sensor (CIS for short) sensing components and optical lens modules).
  • CMOS Complementary Metal-Oxide Semiconductor
  • the miniaturized optical imaging device is placed at the bottom of the screen (can be called under the screen), through the screen part of the light (especially organic light emitting diode (Organic Light Emitting Diode, OLED) screen), can capture the object pressed on the top of the screen
  • OLED Organic Light Emitting Diode
  • FOD fingerprint on display
  • the light-receiving area of the light sensor element can be increased, but when the area of the light sensor element increases, it will cause the junction of the sensor element ( Junction capacitance also increases proportionally, so using active pixel sensing (Active Pixel Sensing) cannot effectively increase the output voltage signal. Therefore, how to effectively increase the sensing voltage signal is actually a problem to be solved by this disclosure.
  • an object of the present invention is to provide a light sensor and an optical biometric sensor using it, which uses a light-collecting structure to reduce the area of the light sensor to reduce the junction capacitance and increase the sensing voltage. The effect of the signal.
  • the present invention provides a light sensor element that converts light energy into electrical energy, which at least includes: one or more main light receiving areas; and a connection area directly connected to the one or more main light receiving areas Area to form a light-receiving area with reduced area, and the light-receiving area with reduced area has one or more area reduction portions to reduce junction capacitance and increase sensing voltage signals.
  • the present invention also provides an optical biometric sensor, which includes at least: a sensing substrate with a plurality of light sensing elements; and a light transmission layer with a plurality of light collection structures and located on the sensing substrate Or above, the multiple light-receiving structures respectively transmit light from an object to the multiple light-sensing elements, wherein each light-receiving structure includes at least one light hole, and each light-sensing element includes at least one or more main elements.
  • the light-receiving area receives light through a plurality of the above-mentioned light holes; and a connecting area is directly connected to the one or more main light-receiving areas to form a light-receiving area with reduced area.
  • the light receiving area has one or more area reduction parts to reduce the junction capacitance and increase the sensing voltage signal.
  • the light-receiving structure can be used to reduce the area of the light-receiving element, and the shape of the light-sensing element can be changed to match the light-receiving structure , To achieve the effect of reducing the junction capacitance and increasing the sensing voltage signal.
  • FIG. 1A and 1B show schematic partial cross-sectional views of two examples of optical biometric sensors according to preferred embodiments of the present invention.
  • FIG. 2A shows a three-dimensional schematic diagram of a sensing substrate and a light hole above it.
  • Figure 2B shows a schematic diagram of the light sensor element.
  • Figure 2C shows a sensing circuit diagram of the light sensor element.
  • Fig. 3 shows a top view of a preliminary embodiment of the light sensor element.
  • Figures 4 to 6 show top views of three examples of preferred embodiments of the light sensing element.
  • FIG. 7A and FIG. 7B show schematic diagrams of two variation examples of the light sensor element of FIG. 5.
  • FIGS 8 and 9 show schematic diagrams of two examples in which the optical biometric sensor is applied to the display.
  • V G ,V PD ,V DD voltage
  • V SIG voltage signal
  • the optical biometric sensor 100 of this embodiment at least includes a sensing substrate 10 and a light transmission layer 20.
  • the sensing substrate 10 has a plurality of light sensing elements 90.
  • the sensing substrate 10 at least includes a glass substrate 13 or other insulating substrates, and the plurality of light sensing elements 90 are formed on the glass substrate 13.
  • the sensing substrate 10 includes at least one semiconductor substrate 15, and the light sensing element 90 is formed on the semiconductor substrate 15.
  • the light transmission layer 20 has a plurality of light collection structures 30, and is located on or above the sensing substrate 10, and can be directly formed by bonding or using a semiconductor process.
  • the plurality of light-receiving structures 30 respectively transmit light from an object F located on or above a display 50 to the plurality of light-sensing elements 90, wherein each light-receiving structure 30 includes at least one light hole 31.
  • the optical biometric sensor 100 is described with a fingerprint sensor disposed under the display 50 as an example, the present invention is not limited to this because it can also sense blood vessel images and blood oxygen concentration images of the finger. And other biological characteristics, or biological characteristics such as face shape and iris.
  • each light receiving structure 30 is an optical collimating structure without microlenses, and includes at least a light hole 31.
  • the light transmission layer 20 includes a plurality of light holes 31 and a plurality of microlenses 32. That is, each light receiving structure 30 further includes a micro lens 32 located above the light hole 31, and the plurality of micro lenses 32 respectively focus light on the plurality of light sensing elements 90 through the plurality of light holes 31.
  • the light transmission layer 20 at least includes a support layer 21, a light blocking layer 22 and an optical layer 23.
  • the light blocking layer 22 is located on the support layer 21 and has the above-mentioned multiple light holes 31.
  • the optical layer 23 is located on the light blocking layer 22, and may have a light filtering structure, and performs light filtering processing, such as filtering out sunlight of a specific wavelength, or allowing only infrared rays to pass through.
  • the above-mentioned plurality of microlenses 32 are disposed on the optical layer 23.
  • the supporting layer 21 may be an adhesive layer or an insulating layer or the like. Both of the two optical collimators (collimator) provided in FIG. 1A and FIG. 1B can be used to cooperate with the plurality of light sensing elements 90 to achieve the purpose of optical image capturing.
  • FIG. 2A shows a three-dimensional schematic diagram of the sensing substrate 10 and the light hole 31 above it.
  • Figure 2B shows a schematic diagram of the light sensor element.
  • the photo sensor element 90 is implemented as a photo diode.
  • the area A of the light sensor element 90 will be enlarged according to the pixel size, so that this area A can correspond to the most light holes 31 (collimation holes) to get the most Into the light energy.
  • FIG. 2C shows the sensing circuit diagram of the light sensing element, which is the most commonly used pixel circuit structure when the sensing substrate 10 is made of glass or insulating material.
  • is the dielectric constant of the medium 99 between the first electrode plate 97 and the second electrode plate 98
  • W is the distance between the first electrode plate 97 and the second electrode plate 98.
  • FIG. 2C shows the sensing circuit diagram of the light sensing element, which is the most commonly used pixel circuit structure when the sensing substrate 10 is made of glass or insulating material.
  • 3T-APS Transistor-Active Pixel Sensor
  • V SIG (Q light /C)
  • Q light represents the number of photoelectrons (its value is proportional to the light-receiving area A of the light sensor element 90)
  • Fig. 3 shows a top view of a preliminary embodiment of the light sensor element.
  • the range of the light-receiving area that should extend to the entire light sensor element 90 is reduced to the light-receiving area 93 of reduced area. This is because each light sensing element 90 cooperates with the light receiving range of the light hole 31 to have a main light receiving area 91, beyond which light cannot be received, or a very small amount of light is received. Filling the light-receiving area of the light-sensing element 90 to the entire light-sensing element 90 will not have the advantage of increasing the amount of light, but will have the disadvantage of increasing the junction capacitance and reducing the sensing voltage signal. Therefore, the distribution area of the light sensing element 90 that is not located under the light hole 31 and cannot receive light is cut off, so as to reduce the junction capacitance without affecting the amount of light entering.
  • FIGS. 4 to 6 show top views of three examples of preferred embodiments of the light sensor element.
  • the left and right light sensor elements 90 have the same structure but have different marking features.
  • the light sensor element 90 of the present disclosure can be further improved, so that each light sensor element 90 includes at least a plurality of main light receiving areas 91 and a connection District 92.
  • the plurality of main light receiving areas 91 receive light through a plurality of the plurality of light holes 31.
  • Each main light receiving area 91 has a circular shape.
  • the 9 main light receiving areas 91 are arranged in a 3 ⁇ 3 array, and light is received through the 9 light holes 31.
  • the connecting area 92 directly connects the above-mentioned multiple main light receiving areas 91 together to form a reduced area light receiving area 93.
  • the reduced area light receiving area 93 has one or more area reduction parts ARP (for example, one or more The indented concave contour is one or more concave corners or one or more truncated portions (Truncated Portion) to reduce the junction capacitance of the photo sensor element 90 and increase the sensing voltage signal.
  • the connection area 92 does not receive light through the plurality of light holes 31, that is, the connection area 92 does not receive light through the plurality of light holes 31.
  • the 9 main light-receiving areas 91 are arranged in a 3 ⁇ 3 array as an example for illustration, the content of the disclosure is not limited to this.
  • the above-mentioned multiple main light-receiving areas 91 can also be arranged in a 2 ⁇ 2 array.
  • a square array of 4 ⁇ 4 or 5 ⁇ 5, etc., can also be arranged into a rectangular array. That is, the plurality of main light receiving areas 91 are arranged in an M ⁇ N array, where M and N are positive integers greater than or equal to 1.
  • the size of the light sensor element 90 is determined according to the size of a pixel of the sensor and the light receiving range of the light hole.
  • part of the light receiving area 93 can also be hollowed out without affecting the amount of light received.
  • a single main light receiving area and a single connection area can be used to form a light sensor element (for example, having a radial shape). Therefore, the light sensor element may have one or more main light-receiving areas and a connection area directly connected to the one or more main light-receiving areas. In this case, one or more main light-receiving areas pass through the multiple light One or more of the holes to receive light.
  • this example is similar to Fig. 4, the difference is that the reduced area of the light-receiving area 93 is radial, which can further reduce the junction capacitance.
  • this example is similar to Figure 4, the difference is that the reduced area of the light-receiving area 93 presents a pattern of intersections of multiple horizontal areas 94 and one vertical area 95, and the vertical area 95 is perpendicular or substantially perpendicular to the horizontal area 94 , This can also further reduce the junction capacitance.
  • the width W1 of a section 96 connecting two adjacent connecting areas 92 of the plurality of main light receiving areas 91 is smaller than the diameter D1 of the main light receiving area 91.
  • the radial structure formed by the main light receiving area 91 and the connecting area 92 may be one of the first electrode plate 97 and the second electrode plate 98 of FIG. 2B or Both.
  • the same mask can be used to form both.
  • the second electrode plate 98 may have a structure that does not reduce the area (having a shape different from the first electrode plate 97, such as a rectangular shape), and the existing technology is used.
  • the second electrode plate 98 may be designed to have the above-mentioned radial shape structure
  • the first electrode plate 97 may be designed to have a structure that does not reduce the area.
  • the aforementioned optical biometric sensor 100 may be an independent TFT sensor; or a complementary metal-oxide semiconductor (Complementary metal-oxide semiconductor, CMOS) sensor.
  • CMOS complementary metal-oxide semiconductor
  • it is an in-cell optical biometric sensor of a TFT liquid crystal display (Liquid Crystal Display, LCD) or TFT organic light emitting diode (Organic Light Emitting Diode, OLED).
  • FIG. 7A and FIG. 7B show schematic diagrams of two variation examples of the light sensor element of FIG. 5.
  • the central area of the connection area 92 has a circular shape, so that some acute-angle structures can be reduced in the connection area 92 to simplify the process and stabilize the structure of the connection area 92.
  • the central area of the connection area 92 has a rectangular shape, so that the connection area 92 can reduce some acute-angle structures, so as to simplify the process and stabilize the structure of the connection area 92.
  • the optical biometric sensor 100' which is similar to the optical biometric sensor 100 and is interspersed and integrated with display pixels (not shown), can be applied to OLED displays or LCDs or any application to TFT processes.
  • the glass substrate 13 is one of the two opposing light-transmitting substrates 51, 52 of the display 50 (in FIG. 8 it refers to the light-transmitting substrate 51 below, and it can also be said that the glass substrate 13 is a part of the light-transmitting substrate 51) .
  • the material layer between the two light-transmitting substrates 51 and 52 may be a material layer of an OLED or LCD.
  • optical biometric sensor 100 uses a partial optical biometric sensor 100' as an example for illustration, the content of the disclosure is not limited thereto.
  • the optical biometric sensor 100' can also be extended to cover the entire range of the entire display 50 to become a full-screen optical biometric sensor.
  • the optical biometric sensor 100 is an independent sensor, which may be a TFT or CMOS sensor, and is disposed under the transparent substrate 51.
  • the present disclosure also provides a light sensor 90 that converts light energy into electrical energy, and at least includes a plurality of main light receiving areas 91 and a connecting area 92, as described above.
  • the structure of the light sensor element 90 designed according to the above requirements is also different from the traditional structure and has its advantages.
  • the light-receiving structure can be used to reduce the area of the light-receiving element, and the shape of the light-sensing element can be changed to match the light-receiving structure
  • the present invention uses the "radial shape” to describe the structure and spirit of the invention, but it is not intended to limit the present invention to this shape and structure.
  • the area of the "junction capacitor" to achieve the purpose of the present invention is covered by the spirit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Human Computer Interaction (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Image Input (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种光感测元(90)及使用其的光学生物特征感测器(100),其中光感测元(90),将光能转换成电能,并且至少包括:一个或多个主收光区(91);以及一连接区(92),直接连接至该一个或多个主收光区(91),以形成一个削减面积的收光区(93),该收光区(93)具有一个或多个面积削减部分(ARP),以降低接面电容并增加感测电压信号。

Description

光感测元及使用其的光学生物特征感测器
优先权声明
本申请要求2020年2月20日递交的、申请号为62/978,950、发明名称为“Structure to enhance the sensitivity of Photo Diode”的美国临时申请的优先权,该申请的所有内容在此全部引入。
技术领域
本发明是有关于一种光感测元及使用其的光学生物特征感测器,且特别是有关于一种光感测元及使用其的光学生物特征感测器,利用配合收光结构来削减光感测元的面积来达成降低接面电容以及增加感测电压信号的效果。
背景技术
现今的移动电子装置(例如手机、平板电脑、笔记本电脑等)通常配备有使用者生物识别系统,包括了例如指纹、脸型、虹膜等等不同技术,用以保护个人数据安全,其中例如应用于手机或智能手表等携带型装置,也兼具有移动支付的功能,对于使用者生物识别更是变成一种标准的功能,而手机等携带型装置的发展更是朝向全屏幕(或超窄边框)的趋势,使得传统电容式指纹按键无法再被继续使用,进而演进出新的微小化光学成像装置(有些非常类似传统的相机模组,具有互补式金属氧化物半导体(Complementary Metal-Oxide Semiconductor(CMOS)Image Sensor(简称CIS))感测元件及光学镜头模组)。将微小化光学成像装置设置于屏幕下方(可称为屏下),通过屏幕部分透光(特别是有机发光二极管(Organic Light Emitting Diode,OLED)屏幕),可以撷取按压于屏幕上方的物体的图像,特别是指纹图像,可以称为屏幕下指纹感测(Fingerprint On Display,FOD)。
传统上都是在半导体基板(例如硅(Si)基板)上制作光感测器,然而由于价格问题及需要大感测面积需求(例如可以同时感测两只手指),使得利用玻璃或绝缘材料作为基板制作的TFT光学感测器变得很重要。
然而,在TFT光学指纹感测器中,为了提高感测电压信号,可以增加光感测元的收光面积,但是当光感测元的面积增加时,却会造成感测元的接面(Junction)电容也等比提高,因此利用主动像素感测(Active Pixel Sensing)并无法有效的提高输出的电压信号。因此,如何有效地增加感测电压信号,实为本揭露内容所欲解决的问题。
发明内容
因此,本发明的一个目的是提供一种光感测元及使用其的光学生物特征感测器,利用配合收光结构来削减光感测元的面积来达成降低接面电容以及增加感测电压信号的效果。
为达上述目的,本发明提供一种光感测元,将光能转换成电能,至少包括:一个或多个主收光区;以及一连接区,直接连接至该一个或多个主收光区,以形成一个削减面积的收光区,削减面积的收光区具有一个或多个面积削减部分,以降低接面电容并增加感测电压信号。
此外,本发明亦提供一种光学生物特征感测器,至少包括:一感测基板,具有多个光感测元;以及一光传递层,具有多个收光结构,并且位于感测基板上或上方,上述多个收光结构将来自一物体的光线分别传递至上述多个光感测元,其中各收光结构至少包含一光孔,各光感测元至少包括:一个或多个主收光区,通过上述多个光孔的其中多个来接收光线;以及一连接区,直接连接至所述一个或多个主收光区,以形成一个削减面积的收光区,削减面积的收光区具有一个或多个面积削减部分,以降低接面电容并增加感测电压信号。
藉由上述实施例的光感测元及使用其的光学生物特征感测器,由于光孔的收光范围取决于收光结构的准直器的准直特性或微透镜的聚光特性,故可在不影响光感测元的收光面积以及不增加额外工艺的情况下,利用配合收光结构来削减光感测元的面积,藉由改变光感测元的外型来配合收光结构,来达成降低接面电容以及增加感测电压信号的效果。
为让本发明的上述内容能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
图1A与图1B显示依据本发明较佳实施例的光学生物特征感测器的两个例子的局部剖面示意图。
图2A显示感测基板与其上方的光孔的立体示意图。
图2B显示光感测元的示意图。
图2C显示光感测元的感测电路图。
图3显示光感测元的初步实施例的俯视图。
图4至图6显示光感测元的较佳实施例的三个例子的俯视图。
图7A与图7B显示图5的光感测元的两个变化例子的示意图。
图8与图9显示光学生物特征感测器应用于显示器的两个例子的示意图。
附图标记:
A:面积
AMP,RESET,READ:晶体管
ARP:面积削减部分
D1:直径
F:物体
W:距离
W1:宽度
V G,V PD,V DD:电压
V SIG:电压信号
10:感测基板
13:玻璃基板
15:半导体基板
20:光传递层
21:支撑层
22:阻光层
23:光学层
30:收光结构
31:光孔
32:微透镜
50:显示器
51,52:透光基板
90:光感测元
91:主收光区
92:连接区
93:收光区
94:横向区域
95:纵向区域
96:区段
97:第一极板
98:第二极板
99:介质
100,100':光学生物特征感测器
具体实施方式
图1A与图1B显示依据本发明较佳实施例的光学生物特征感测器100的两个例子的局部剖面示意图。如图1A与图1B所示,本实施例的光学生物特征感测器100至少包括一感测基板10以及一光传递层20。
感测基板10具有多个光感测元90。感测基板10至少包括一玻璃基板13或其他绝缘基板,上述多个光感测元90形成于玻璃基板13上。或者,感测基板10至少包括一个半导体基板15,光感测元90形成于半导体基板15上。
光传递层20具有多个收光结构30,并且位于感测基板10上或上方,可以贴合的方式或是利用半导体工艺直接形成。上述多个收光结构30将来自位于一显示器50上或上方的一物体F的光线分别传递至上述多个光感测元90,其中各收光结构30至少包含一光孔31。虽然光学生物特征感测器100是以设置于显示器50下方的指纹感测器作为例子来说明,但是并未将本发明限制于此,因为其也可以感测手指的血管图像、血氧浓度图像等生物特征、或脸型、虹膜等生物特征。
在图1A中,各收光结构30为不具有微透镜的光学准直结构,至少包括光孔31。在图1B中,光传递层20包含有多个光孔31及多个微透镜32。亦即,各收光结构30更包括微透镜32,位于光孔31上方,上述多个微透镜32分别将光线通过上述多个光孔31聚焦于上述多个光感测元90上。另一方面,光传递层20至少包括一支撑层21、一阻光层22及一光学层23。阻光层22位于支撑层21上,并具有上述多个光孔31。光学层23位于阻光层22上,且可能具有滤光结构,执行光线过滤处理,譬如滤除特定波长的太阳光,或只让红外线通过。上述多个微透镜32设置于光学层23上。支撑层21可以是黏胶层或绝缘层等。图1A与图1B提供的两种光学准直结构(collimator)都可以用来配合上述多个光感测元90达成光学取像的目的。
图2A显示感测基板10与其上方的光孔31的立体示意图。图2B显示光感测元的示意图。如图2A与图2B所示,于本实施例中,光感测元90是以光电二极管(Photo  diode)来实施。为使光感测元90能获得最多的入射光线,光感测元90的面积A会依像素尺寸放大,使此面积A可以对应到最多的光孔31(准直孔),以得到最多的进光能量。虽然光感测元90的面积加大可以增加进光量,但本身的接面(Junction)电容C同时也会与面积A成正比地增加,其表示式为C=ε×(A/W),其中ε为第一极板97及第二极板98之间的介质99的介电常数,W为第一极板97及第二极板98之间的距离。图2C显示光感测元的感测电路图,其为感测基板10为玻璃或绝缘材料时,最常使用的像素电路架构。如图2C所示,使用三个晶体管式主动像素感测器(3 Transistor-Active Pixel Sensor,3T-APS)架构中,采用三个晶体管RESET、AMP及READ,如图所示地连接到电压V G,V PD,V DD,譬如是光电二极管的光感测元90被照光后产生光电子,此光电子会累积在光电二极管的接面电容上并转换成电压信号。以晶体管AMP的节点的电压信号V SIG来说,V SIG=(Q light/C),其中Q light代表光电子的数量(其值正比于光感测元90的收光的面积A),而C代表像素的接面电容(其值正比于光感测元90的面积A)。因此由上面公式V SIG=(Q light/C)看来,单纯的加大光感测元90的面积A,根本无法有效的增加V SIG
图3显示光感测元的初步实施例的俯视图。为解决上述问题,将原本应该延伸到整个光感测元90的收光面积的范围削减成削减面积的收光区93。这是因为每个光感测元90配合光孔31的收光范围具有一个主收光区91,超过此主收光区91就已经收不到光,或者说收到非常少量的光,若将光感测元90的收光面积填满整个光感测元90,则不会有提高进光量的优点,反而会有增加接面电容而降低感测电压信号的缺点。因此,将不位于光孔31下方且收不到光线的光感测元90的分布面积削掉,以在不影响进光量的前提下降低接面电容。
图4至图6显示光感测元的较佳实施例的三个例子的俯视图,其中左右两个光感测元90具有相同结构,但有不同的标示特征。如图4所示,基于图3的实施例的发现,本揭露内容的光感测元90可以作更进一步的改良,使得各光感测元90至少包括多个主收光区91以及一连接区92。上述多个主收光区91通过上述多个光孔31的其中多个来接收光线。各主收光区91呈现圆形的形状。譬如,在图4中,9个主收光区91排列成3×3的阵列,并且通过9个光孔31接收光线。连接区92将上述多个主收光区91直接连接在一起,以形成一个削减面积的收光区93,削减面积的收光区93具有一个或多个面积削减部分ARP(譬如是一个或多个内缩的凹状轮廓、是一个或多个凹角或一个或多个截头部分(Truncated Portion)),以降低光感测元90的接面电容并增 加感测电压信号。于本实施例,连接区92不通过上述多个光孔31接收光线,亦即,连接区92通过上述多个光孔31接收不到光线。虽然以9个主收光区91排列成3×3的阵列作为例子来说明,但是并未将本揭露内容限制于此,上述多个主收光区91也可以排列成一个2×2阵列、4×4或5×5的正方形阵列等,亦可排列成一个长方形阵列。亦即,上述多个主收光区91排列成一个M×N阵列,其中M与N为大于或等于1的正整数。于此情况下,是依据感测器的一个像素尺寸以及光孔的收光范围来决定光感测元90的尺寸。值得注意的是,亦可将不影响收进光量的情况下挖空收光区93的局部部分。或者,依据不同的定义或配置,可以使用单一主收光区配合单一连接区而形成光感测元(譬如具有放射形状)即可。因此,光感测元可具有一个或多个主收光区以及直接连接至所述一个或多个主收光区的连接区,此时,一个或多个主收光区通过上述多个光孔的其中一个或多个来接收光线。
如图5所示,本例子类似于图4,差异在于削减面积的收光区93呈现放射状,如此可以更进一步降低接面电容。如图6所示,本例子类似于图4,差异在于削减面积的收光区93呈现多个横向区域94与一个纵向区域95的相交型态,纵向区域95垂直于或大致垂直于横向区域94,如此也可更进一步降低接面电容。在图5与图6中,连接上述多个主收光区91的相邻的两个的连接区92的一区段96的宽度W1小于主收光区91的直径D1。值得注意的是,于各光感测元90中,主收光区91与连接区92所形成的放射形状结构可以是图2B的第一极板97与第二极板98的其中一者或两者。当第一极板97与第二极板98具有相同的放射形状结构时,可以采用同一道光罩来形成两者。当第一极板97具有上述放射形状结构时,第二极板98可以具有不削减面积的构造(具有不同于第一极板97的形状,譬如是矩形),沿用现有的工艺。或者,亦可将第二极板98设计成具有上述放射形状结构,而将第一极板97设计成具有不削减面积的构造。
上述的光学生物特征感测器100可以是独立的TFT感测器;或互补式金属氧化物半导体(Complementary metal-oxide semiconductor,CMOS)感测器。譬如是TFT液晶显示器(Liquid Crystal Display,LCD)或TFT有机发光二极管(Organic Light Emitting Diode,OLED)的内嵌式(in-cell)光学生物特征感测器。
图7A与图7B显示图5的光感测元的两个变化例子的示意图。如图7A所示,连接区92的中心区域具有圆形的形状,如此可以让连接区92减少一些锐角结构,以简化工艺及稳定连接区92的结构。如图7B所示,连接区92的中心区域具有矩形的形 状,如此可以让连接区92减少一些锐角结构,以简化工艺及稳定连接区92的结构。
如图8所示,类似于光学生物特征感测器100且与显示像素(未显示)穿插整合的光学生物特征感测器100'可以应用于OLED显示器或LCD或任何有应用到TFT工艺来制作TFT感测器的其他显示器中,为一种内嵌式(in-cell)感测器。因此,玻璃基板13为显示器50的两个相对的透光基板51,52的其中一个(于图8中是指下方的透光基板51,也可以说玻璃基板13是透光基板51的一部分)。两透光基板51与52之间的材料层可以是OLED或LCD所具有的材料层。虽然图6是以局部范围的光学生物特征感测器100'作为例子来说明,但是并未将本揭露内容限制于此。光学生物特征感测器100'也可以延伸到涵盖整个显示器50的所有范围,而成为一种全屏式的光学生物特征感测器。如图9所示,光学生物特征感测器100是一种独立的感测器,可以是TFT或CMOS感测器,设置透光基板51的下方。
本揭露内容亦提供一种光感测元90,将光能转换成电能,至少包括多个主收光区91及一连接区92,如上所述。依据上述需求所设计出来的光感测元90的结构亦与传统的结构不同,且具有其优势。
藉由上述实施例的光感测元及使用其的光学生物特征感测器,由于光孔的收光范围取决于收光结构的准直器的准直特性或微透镜的聚光特性,故可在不影响光感测元的收光面积以及不增加额外工艺的情况下,利用配合收光结构来削减光感测元的面积,藉由改变光感测元的外型来配合收光结构,来达成降低接面电容以及增加感测电压信号的效果,当然本发明利用了"放射状"来描述发明的结构及精神,但是并不是要限缩本发明于该形状及结构,凡是藉由削减”接面电容”面积来达到本发明目的者,皆是被本发明精神所包覆的。
在较佳实施例的详细说明中所提出的具体实施例仅用以方便说明本发明的技术内容,而非将本发明狭义地限制于上述实施例,在不超出本发明的精神及申请专利范围的情况下,所做的种种变化实施,皆属于本发明的范围。

Claims (19)

  1. [根据细则91更正 13.08.2020]
    一种光感测元(90),将光能转换成电能,其特征在于,该光感测元(90)至少包括:
    一个或多个主收光区(91);以及
    一连接区(92),直接连接至该一个或多个主收光区(91),以形成一个削减面积的收光区(93),该削减面积的收光区(93)具有一个或多个面积削减部分(ARP),以降低接面电容并增加感测电压信号。
  2. 如权利要求1所述的光感测元(90),其特征在于,各该主收光区(91)呈现圆形的形状。
  3. 如权利要求1所述的光感测元(90),其特征在于,所述多个主收光区(91)排列成一个M×N阵列,其中M与N为大于或等于1的正整数。
  4. 如权利要求1所述的光感测元(90),其特征在于,该光感测元(90)的一第一极板(97)具有该削减面积的收光区(93),该光感测元(90)的一第二极板(98)的形状不同于该第一极板(97)。
  5. 如权利要求1所述的光感测元(90),其特征在于,该削减面积的收光区(93)呈现多个横向区域(94)与一个纵向区域(95)的相交型态。
  6. 如权利要求1所述的光感测元(90),其特征在于,连接所述多个主收光区(91)的相邻的两个的该连接区(92)的一区段(96)的宽度(W1)小于该主收光区(91)的直径(D1)。
  7. 一种光学生物特征感测器(100),其特征在于,至少包括:
    一感测基板(10),具有多个光感测元(90);以及
    一光传递层(20),具有多个收光结构(30),并且位于该感测基板(10)上或上方,所述多个收光结构(30)将来自一物体(F)的光线分别传递至所述多个光感测元(90),其中各该收光结构(30)至少包含一光孔(31),各该光感测元(90)至少包括:
    一个或多个主收光区(91),通过所述多个光孔(31)的其中一个或多个来接收该光线;以及
    一连接区(92),直接连接至该一个或多个主收光区(91),以形成一个削减面积的收光区(93),该削减面积的收光区(93)具有一个或多个面积削减部分(ARP),以降低接面电容并增加感测电压信号。
  8. 如权利要求7所述的光学生物特征感测器(100),其特征在于,该连接区(92)不通过所述多个光孔(31)接收光线。
  9. 如权利要求7所述的光学生物特征感测器(100),其特征在于,各该主收光区(91)呈现圆形的形状。
  10. 如权利要求7所述的光学生物特征感测器(100),其特征在于,所述多个主收光区(91)排列成一个M×N阵列,其中M与N为大于或等于1的正整数。
  11. 如权利要求7所述的光学生物特征感测器(100),其特征在于,该光感测元(90)的一第一极板(97)具有该削减面积的收光区(93),该光感测元(90)的一第二极板(98)的形状不同于该第一极板(97)。
  12. 如权利要求7所述的光学生物特征感测器(100),其特征在于,该削减面积的收光区(93)呈现多个横向区域(94)与一个纵向区域(95)的相交型态。
  13. 如权利要求7所述的光学生物特征感测器(100),其特征在于,连接所述多个主收光区(91)的相邻的两个的该连接区(92)的一区段(96)的宽度(W1)小于该主收光区(91)的直径(D1)。
  14. 如权利要求7所述的光学生物特征感测器(100),其特征在于,各该收光结构(30)更包括:一微透镜(32),位于该光孔(31)上方,所述多个微透镜(32)分别将该光线通过所述多个光孔(31)聚焦于所述多个光感测元(90)上。
  15. 如权利要求14所述的光学生物特征感测器(100),其特征在于,该光传递层(20)包括:一支撑层(21);一阻光层(22),位于该支撑层(21)上,并具有所述多个光孔(31);以及一光学层(23),位于该阻光层(22)上,其中所述多个微透镜(32)设置于该光学层(23)上。
  16. 如权利要求7所述的光学生物特征感测器(100),其特征在于,各该收光结构(30)为不具有微透镜的光学准直结构。
  17. 如权利要求7所述的光学生物特征感测器(100),其特征在于,该感测基板(10)至少包括一玻璃基板(13),所述多个光感测元(90)形成于该玻璃基板(13)上。
  18. 如权利要求17所述的光学生物特征感测器(100),其特征在于,该玻璃基板(13)为一显示器(50)的两个相对的透光基板(51,52)的其中一个。
  19. 如权利要求7所述的光学生物特征感测器(100),其特征在于,该感测基板(10)至少包括一个半导体基板(15),该光感测元(90)形成于该半导体基板(15)上。
PCT/CN2020/108600 2020-02-20 2020-08-12 光感测元及使用其的光学生物特征感测器 WO2021164214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/792,036 US20230063838A1 (en) 2020-02-20 2021-08-12 Light-receiving cell and optical biometrics sensor using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062978950P 2020-02-20 2020-02-20
US62/978,950 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021164214A1 true WO2021164214A1 (zh) 2021-08-26

Family

ID=72859011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108600 WO2021164214A1 (zh) 2020-02-20 2020-08-12 光感测元及使用其的光学生物特征感测器

Country Status (4)

Country Link
US (1) US20230063838A1 (zh)
CN (2) CN212391803U (zh)
TW (2) TWI739546B (zh)
WO (1) WO2021164214A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739546B (zh) * 2020-02-20 2021-09-11 神盾股份有限公司 光感測元及使用其的光學生物特徵感測器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107133556A (zh) * 2016-02-26 2017-09-05 台湾积体电路制造股份有限公司 制造半导体装置的方法和半导体装置
CN108810339A (zh) * 2017-05-06 2018-11-13 南昌欧菲光电技术有限公司 摄像模组及其感光组件
US20190011567A1 (en) * 2017-07-05 2019-01-10 Ouster, Inc. Light ranging device with mems scanned emitter array and synchronized electronically scanned sensor array
CN109246370A (zh) * 2018-11-19 2019-01-18 德淮半导体有限公司 图像传感器、其制作方法和操作方法以及成像装置
US20190123082A1 (en) * 2017-10-19 2019-04-25 Samsung Electro-Mechanics Co., Ltd. Fan-out sensor package and optical-type fingerprint sensor module including the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001255172A1 (en) * 2000-03-10 2001-09-24 Ethentica, Inc. Biometric sensor
KR100628231B1 (ko) * 2004-12-30 2006-09-26 동부일렉트로닉스 주식회사 사각 마이크로렌즈를 갖는 이미지 센서 및 그 제조방법
TW200743843A (en) * 2006-05-25 2007-12-01 Wintek Corp Light detecting display apparatus and display panel thereof
KR20110114319A (ko) * 2010-04-13 2011-10-19 삼성테크윈 주식회사 마이크로 렌즈를 구비하는 이미지 센서
TWI646677B (zh) * 2015-12-29 2019-01-01 財團法人工業技術研究院 影像感測器及其製造方法
US10417473B2 (en) * 2016-09-07 2019-09-17 Mei-Yen Lee Optical imaging system with variable light field for biometrics application
CN108288013B (zh) * 2017-01-09 2020-04-28 上海箩箕技术有限公司 成像传感器和成像模组
US10656764B2 (en) * 2017-02-23 2020-05-19 Boe Technology Group Co., Ltd. Touch device and display device
US10643051B2 (en) * 2017-07-13 2020-05-05 Samsung Electronics Co., Ltd. Optics-based fingerprint sensor, electric device including optics-based fingerprint sensor, and operation method of electric device
KR102400840B1 (ko) * 2017-10-13 2022-05-24 삼성전자주식회사 디스플레이를 광원으로 이용하여 생체 정보를 획득하기 위한 방법 및 그 전자 장치
CN109801947B (zh) * 2019-01-31 2021-08-10 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
TWI739546B (zh) * 2020-02-20 2021-09-11 神盾股份有限公司 光感測元及使用其的光學生物特徵感測器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107133556A (zh) * 2016-02-26 2017-09-05 台湾积体电路制造股份有限公司 制造半导体装置的方法和半导体装置
CN108810339A (zh) * 2017-05-06 2018-11-13 南昌欧菲光电技术有限公司 摄像模组及其感光组件
US20190011567A1 (en) * 2017-07-05 2019-01-10 Ouster, Inc. Light ranging device with mems scanned emitter array and synchronized electronically scanned sensor array
US20190123082A1 (en) * 2017-10-19 2019-04-25 Samsung Electro-Mechanics Co., Ltd. Fan-out sensor package and optical-type fingerprint sensor module including the same
CN109246370A (zh) * 2018-11-19 2019-01-18 德淮半导体有限公司 图像传感器、其制作方法和操作方法以及成像装置

Also Published As

Publication number Publication date
TWM607385U (zh) 2021-02-11
CN212391803U (zh) 2021-01-22
TWI739546B (zh) 2021-09-11
US20230063838A1 (en) 2023-03-02
CN111814748A (zh) 2020-10-23
TW202133409A (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2018126644A1 (zh) 指纹识别装置及电子设备
WO2020172876A1 (zh) 光学图像采集单元、光学图像采集系统和电子设备
WO2020147018A1 (zh) 光学图像采集系统和电子设备
CN212061202U (zh) 指纹感测模块与电子装置
WO2021017194A1 (zh) 显示面板及显示装置
TWI753571B (zh) 屏內光學生物特徵感測裝置
CN111414899A (zh) 指纹感测模块及电子装置
WO2022068129A1 (zh) 感测手指生物特征的光学感测装置及使用其的电子装置
WO2021012117A1 (zh) 屏下光学指纹识别装置及系统、扩散膜和液晶显示屏
WO2021051710A1 (zh) 指纹感测模块与电子装置
WO2021143036A1 (zh) 指纹感测模块
WO2021164214A1 (zh) 光感测元及使用其的光学生物特征感测器
WO2021035583A1 (zh) 指纹检测的装置和电子设备
CN212135461U (zh) 具有交错收光结构的光学生物特征感测器
WO2010097984A1 (ja) 光センサおよびこれを備えた表示装置
CN212783451U (zh) 具有抗杂光干扰结构的光学生物特征感测器
CN114019707B (zh) 一种显示基板、显示面板及显示装置
TWI753603B (zh) 指紋感測裝置
CN113972253A (zh) 显示面板及电子装置
WO2024040492A1 (zh) 一种光学传感器件及显示装置
WO2022226826A1 (zh) 平板探测器及显示装置
WO2022188161A1 (zh) 显示面板及显示装置
TW548451B (en) Integrated high resolution image sensor and display on an active matrix array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920086

Country of ref document: EP

Kind code of ref document: A1