WO2021161671A1 - 情報処理方法、情報処理システム及び情報処理装置 - Google Patents

情報処理方法、情報処理システム及び情報処理装置 Download PDF

Info

Publication number
WO2021161671A1
WO2021161671A1 PCT/JP2020/048205 JP2020048205W WO2021161671A1 WO 2021161671 A1 WO2021161671 A1 WO 2021161671A1 JP 2020048205 W JP2020048205 W JP 2020048205W WO 2021161671 A1 WO2021161671 A1 WO 2021161671A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing result
preprocessing
processing
result
autonomous
Prior art date
Application number
PCT/JP2020/048205
Other languages
English (en)
French (fr)
Inventor
元嗣 穴吹
本田 義雅
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022500254A priority Critical patent/JPWO2021161671A1/ja
Priority to CN202080031968.4A priority patent/CN113785340A/zh
Priority to EP20918381.3A priority patent/EP4105907A4/en
Publication of WO2021161671A1 publication Critical patent/WO2021161671A1/ja
Priority to US17/510,957 priority patent/US11866065B2/en
Priority to US18/517,234 priority patent/US20240092383A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • G05D1/0282Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal generated in a local control room
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Definitions

  • This disclosure relates to an information processing method, an information processing system, and an information processing device related to the autonomous movement of an autonomous mobile body.
  • Patent Documents 1 and 2 propose a method for improving safety by multiplexing systems such as a power supply, a detection function, and a control function in an autonomous driving vehicle.
  • the present disclosure provides an information processing method and the like that can improve the performance of autonomous movement.
  • the information processing method is an information processing method to be executed by a computer, the first processing result which is the result of the first preprocessing which is the preprocessing of the traveling control processing in the autonomous movement processing of the autonomous moving body, and the above-mentioned.
  • the sensing data acquired by the autonomous moving body is acquired from the autonomous moving body, and based on the sensing data, the second preprocessing, which is a preprocessing higher than the first preprocessing, is executed to acquire the second processing result.
  • the difference between the first processing result and the second processing result is determined, and a change instruction for changing the first processing result to the third processing result is output to the autonomous moving body according to the determined difference.
  • the third processing result is obtained based on at least one of the first processing result and the second processing result.
  • a recording medium such as a system, method, integrated circuit, computer program or computer-readable CD-ROM, and the system, method, integrated circuit, computer program. And any combination of recording media may be realized.
  • the performance of autonomous movement can be improved.
  • FIG. 1 is a block diagram showing an example of an autonomous driving vehicle and a remote autonomous driving server according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of the information processing method according to the first embodiment.
  • FIG. 3 is a flowchart showing another example of the information processing method according to the first embodiment.
  • FIG. 4 is a block diagram showing an example of an autonomous driving vehicle, a remote automatic driving server, and a remote processing management server according to a modified example of the first embodiment.
  • FIG. 5 is a flowchart showing an example of an information processing method according to a modified example of the first embodiment.
  • FIG. 6 is a block diagram showing an example of the autonomous driving vehicle and the remote autonomous driving server according to the second embodiment.
  • FIG. 7 is a flowchart showing an example of the operation of the autonomous driving vehicle according to the second embodiment.
  • FIG. 8 is a block diagram showing an example of an autonomous driving vehicle, a remote automatic driving server, and a remote processing management server according to a modified example of the second embodiment.
  • FIG. 9 is a flowchart showing an example of the operation of the autonomous driving vehicle according to the modified example of the second embodiment.
  • FIG. 10 is a flowchart showing an example of an information processing method according to a modification common to each embodiment.
  • the information processing method is an information processing method to be executed by a computer, and is a first process which is a result of a first preprocess which is a preprocess of a travel control process in the autonomous movement process of an autonomous moving body.
  • the result and the sensing data acquired by the autonomous moving body are acquired from the autonomous moving body, and the second preprocessing, which is a preprocessing higher than the first preprocessing, is executed based on the sensing data to perform the second processing.
  • the second preprocessing which is more advanced than the first preprocessing, is executed on the server or the like, and the difference between the first processing result, which is the result of the first preprocessing, and the second processing result, which is the result of the second preprocessing, is determined. NS. Then, according to the difference, the first processing result, which is the result of the first preprocessing, which is the preprocessing of the traveling control processing of the autonomous moving body, is based on the second processing result, which is the result of the advanced second preprocessing.
  • a change instruction to be changed to the processing result is output to the autonomous mobile body.
  • a change instruction for changing the first processing result to a third processing result obtained by correcting or restricting the first processing result is output to the autonomous moving body according to the difference.
  • the third processing result which is higher than the first processing result, is used for the traveling control processing of the autonomous moving body, so that the performance of the autonomous movement can be improved.
  • the first pre-processing is executed using the first resource
  • the second pre-processing is executed using the second resource
  • the first resource and the second resource are different resources. May be good.
  • the second preprocessing which is more advanced than the first preprocessing, may be executed using a second resource different from the first resource used for executing the first preprocessing. Therefore, the second preprocessing can be processed with higher accuracy, higher speed, or lower delay than the first preprocessing.
  • the first preprocessing is executed by using the first algorithm
  • the second preprocessing is executed by using the second algorithm
  • the first algorithm and the second algorithm are different algorithms. May be good.
  • the second preprocessing which is more advanced than the first preprocessing, may be executed by using a second algorithm different from the first algorithm used for executing the first preprocessing. Therefore, the second preprocessing enables higher accuracy, higher speed, lower delay, or more multifunctional processing than the first preprocessing.
  • first pre-processing and the second pre-processing may include a recognition process for recognizing the environment in which the autonomous mobile body is placed.
  • each pre-processing may include the recognition processing, and the result of the recognition processing may be used for the traveling control processing of the autonomous moving body. Therefore, the safety or comfort of the autonomous mobile body can be improved.
  • first pre-processing and the second pre-processing may include a traveling determination process of the autonomous moving body.
  • each pre-processing may include the traveling determination processing of the autonomous moving body, and the result of the traveling determination processing of the autonomous moving body may be used for the traveling control processing of the autonomous moving body. Therefore, the safety or comfort of the autonomous mobile body can be improved.
  • the third processing result may be the second processing result.
  • the second processing result which is the result of the second preprocessing, which is more advanced than the first preprocessing, is used for the traveling control processing of the autonomous moving body, the performance of the autonomous movement can be improved.
  • the third processing result may be obtained by correcting the first processing result based on the difference.
  • the third processing result obtained by correcting the first processing result based on the difference between the second processing result and the first processing result, which is the result of the second preprocessing which is more advanced than the first preprocessing. Is used to control the running of an autonomous moving body, so that the performance of autonomous moving can be improved.
  • the second pre-processing is executed to acquire the second processing result, and the change instruction is given autonomously as a response to the request. It may be output to a moving body.
  • the second preprocessing can be executed at the timing when the autonomous mobile body requests the execution of the advanced second preprocessing.
  • the request may include information that specifies a specific process of the second preprocess, execute the specific process, and acquire the result of the second process.
  • the request when the request is received, it is determined whether or not to execute the second preprocessing, and when it is determined that the second preprocessing is not executed, the request may be rejected or ignored.
  • the determination of whether or not to execute the second preprocessing is determined by at least the resource possessed by the autonomous mobile body, the moving state of the autonomous mobile body, the external environment of the autonomous mobile body, the time, and the response time to the request. It may be done based on one.
  • the second preprocessing is executed depending on the resources of the autonomous mobile, the moving state of the autonomous mobile, the external environment of the autonomous mobile, the time, or the response time to the request.
  • the second preprocessing is executed and the result of the third processing is used to perform the autonomous mobile. Even if the travel control process is performed, the performance of autonomous movement may not be improved. In such cases, the request can be rejected or ignored.
  • the information processing system is an information processing system capable of communicating with an autonomous moving body, and is the result of a first preprocessing which is a preprocessing of traveling control processing in the autonomous movement of the autonomous moving body.
  • the first processing result and the sensing data acquired by the autonomous moving body are acquired from the autonomous moving body, and the second preprocessing, which is a higher preprocessing than the first preprocessing, is executed based on the sensing data.
  • a change instruction is given to acquire the second processing result, determine the difference between the first processing result and the second processing result, and change the first processing result to the third processing result according to the determined difference. It is output to the autonomous moving body, and the third processing result is obtained based on at least one of the first processing result and the second processing result.
  • the information processing device is an information processing device mounted on an autonomous moving body, and executes a first preprocessing which is a preprocessing of traveling control processing in the autonomous operation of the autonomous moving body.
  • the first processing result is acquired, the sensing data acquired by the autonomous moving body is output to an external device, and the second preprocessing, which is a higher preprocessing than the first preprocessing, is executed based on the sensing data.
  • the second processing result obtained is obtained from the external device, the difference between the first processing result and the second processing result is determined, and the first processing result is obtained according to the determined difference. It is changed to 3 processing results, and the 3rd processing result is obtained based on at least one of the 1st processing result and the 2nd processing result.
  • the second preprocessing which is more advanced than the first preprocessing, is executed by an external device such as a server with less power consumption, and the second processing result, which is the result of the second preprocessing, is transmitted to the autonomous driving vehicle, and the first preprocessing
  • the first processing result which is the result of the first preprocessing, which is the preprocessing of the traveling control processing of the autonomous moving body, is based on the second processing result, which is the result of the advanced second preprocessing. 3 It is changed to the processing result.
  • the first processing result is changed to the third processing result obtained by correcting or restricting the first processing result.
  • the third processing result which is higher than the first processing result, is used for the traveling control processing of the autonomous moving body, so that the performance of the autonomous movement can be improved.
  • the request for execution of the second preprocessing may be output to the external device, and the result of the second processing may be acquired as a response to the request.
  • the external device can execute the second preprocessing.
  • the request is made to the outside based on at least one of the resources of the autonomous mobile, the moving state of the autonomous mobile, the external environment of the autonomous mobile, the time, and the response time to an inquiry to the external device. It may be output to the device of.
  • the second preprocessing may be executed to improve the performance of autonomous movement.
  • a request can be output when the situation is such that the performance of autonomous movement can be improved.
  • the request includes information for designating a specific process of the second preprocess
  • the second process result may be a result obtained by executing the specific process
  • a specific process desired by the autonomous mobile body can be specified from the second pre-process, and an external device can selectively execute the specific process.
  • the second processing result is acquired after a predetermined time or more has elapsed from the output of the sensing data or the output of the request, (A) the determination of the difference is not executed, or (B) the first processing result.
  • the difference between a part of the processing results and the processing result corresponding to the part of the second processing result is determined, and according to the determined difference, the first processing result
  • the processing result of the part of the above may be changed to the third processing result.
  • the processing load of the information processing apparatus can be reduced by not executing the difference determination or by executing the difference determination only for some processing results that are not affected by the delay. Can be done.
  • FIG. 1 is a block diagram showing an example of an autonomous driving vehicle (specifically, an information processing device 20 mounted on the autonomous driving vehicle) and a remote automatic driving server 10 according to the first embodiment.
  • an autonomous driving vehicle specifically, an information processing device 20 mounted on the autonomous driving vehicle
  • a remote automatic driving server 10 according to the first embodiment.
  • An autonomous vehicle is, for example, a vehicle that can be driven automatically without a human being performing a driving operation.
  • Self-driving cars are equipped with sensors such as cameras, thermography, radar, LiDAR (Light Detection and Ringing), sonar, GPS (Global Positioning System) or IMU (Inertial Measurement Unit), and recognize the surrounding environment, etc. It can run autonomously.
  • the self-driving car is an example of an autonomous mobile body.
  • the autonomous mobile body may be a mobile robot, a flying object such as a drone, or a ship.
  • the remote automatic driving server 10 can wirelessly communicate with the automatic driving vehicle and remotely control the automatic driving of the automatic driving vehicle.
  • Autonomous driving is an example of autonomous movement.
  • the self-driving car is equipped with an information processing device 20.
  • the information processing device 20 is a computer including a processor, a memory, a communication interface, and the like.
  • the memory is a ROM (Read Only Memory), a RAM (Random Access Memory), or the like, and can store a program executed by the processor.
  • the information processing device 20 includes a sensing data acquisition unit 21, a sensing data transmission unit 22, a vehicle automatic driving system 23, a first processing result transmission unit 24, a processing result change unit 25, a communication confirmation unit 26, and a travel restriction unit 27.
  • the sensing data acquisition unit 21, the sensing data transmission unit 22, the vehicle automatic driving system 23, the first processing result transmission unit 24, the processing result change unit 25, the communication confirmation unit 26, and the travel restriction unit 27 use the programs stored in the memory. It is realized by the processor that executes it.
  • the sensing data acquisition unit 21 acquires sensing data from sensors such as a camera, thermography, radar, LiDAR, sonar, GPS, or IMU provided in the autonomous driving vehicle.
  • the sensing data acquisition unit 21 may acquire sensing data from a sensor installed in another vehicle, a traffic light, or the like.
  • the sensing data transmission unit 22 transmits the sensing data acquired by the sensing data acquisition unit 21 to the remote automatic operation server 10.
  • the sensing data transmission unit 22 transmits the sensing data to the remote automatic operation server 10 via, for example, a communication interface included in the information processing device 20.
  • the sensing data transmission unit 22 can transmit sensing data with low delay by using, for example, a data compression technology and a high-speed transmission technology such as 5G.
  • the vehicle automatic driving system 23 executes the first preprocessing, which is the preprocessing of the traveling control processing in the automatic driving processing of the autonomous driving vehicle, and the first processing result.
  • the first processing result is the result of the first preprocessing.
  • the pre-processing includes a recognition process or a driving determination process of an autonomous vehicle.
  • the recognition process includes a process of recognizing the environment in which the autonomous vehicle is placed.
  • the environment includes self-position, surrounding objects, road surface conditions, weather, or road conditions.
  • the pre-processing includes self-position estimation processing of the autonomous driving vehicle, detection processing of objects around the autonomous driving vehicle, movement prediction processing of objects around the autonomous driving vehicle, traveling judgment processing of the autonomous driving vehicle, or driving judgment processing of the autonomous driving vehicle.
  • routes planning processing for autonomous vehicles includes a recognition result or a driving determination result of an autonomous vehicle.
  • the processing results include the estimation result of the self-position of the self-driving car, the detection result of the object around the self-driving car, the movement prediction result of the object around the self-driving car, the driving judgment result of the self-driving car, or the driving judgment result of the self-driving car.
  • route planning results for autonomous vehicles includes route planning results for autonomous vehicles.
  • the first processing result transmission unit 24 transmits the first processing result, which is the result of the first preprocessing executed by the vehicle automatic driving system 23, to the remote automatic driving server 10.
  • the first processing result transmission unit 24 transmits the first processing result to the remote automatic operation server 10 via, for example, a communication interface included in the information processing device 20.
  • the sensing data transmission unit 22 may transmit only the sensing data used when the vehicle automatic driving system 23 executes the first preprocessing, or the vehicle automatic driving system 23 executes the first preprocessing. In addition to the sensing data used at that time, sensing data not used when executing the first preprocessing (for example, high-resolution sensing data that cannot be handled by the vehicle automatic driving system 23) may be transmitted.
  • the processing result changing unit 25 changes the first processing result to the third processing result based on the change instruction received from the remote automatic operation server 10. That is, the processing result changing unit 25 changes the first processing result to the third processing result, so that the third processing result is replaced with the first processing result that should have been originally used for the traveling control of the autonomous driving vehicle. Will be used.
  • the communication confirmation unit 26 confirms the communication status of wireless communication between the autonomous driving vehicle and the remote autonomous driving server 10. For example, the communication confirmation unit 26 transmits an inquiry to the remote automatic operation server 10 via a communication interface or the like provided in the information processing device 20, and confirms the communication status according to a response to the inquiry. Specifically, the communication confirmation unit 26 can determine that the communication is not connected when there is no response to the inquiry, and can determine that the communication delay has occurred when there is a delay in the response to the inquiry. When the communication confirmation unit 26 determines that the communication connection is not established or that a communication delay has occurred, the communication confirmation unit 26 notifies the travel restriction unit 27 of a travel restriction instruction for restricting the travel.
  • the travel restriction unit 27 restricts the travel of the autonomous vehicle based on the travel restriction instruction. Specifically, the traveling restriction unit 27 decelerates or stops the self-driving car and expands the avoidance margin. As a result, even if the communication between the autonomous driving vehicle and the remote autonomous driving server 10 is interrupted, the safety of the autonomous driving vehicle can be ensured.
  • the remote automatic operation server 10 is a computer including a processor, a memory, a communication interface, and the like.
  • the remote automatic driving server 10 is an example of an information processing system capable of wireless communication with an automatic driving vehicle.
  • the memory is a ROM, RAM, or the like, and can store a program executed by the processor.
  • the remote automatic operation server 10 includes a sensing data acquisition unit 11, a pseudo automatic operation system 12, a first processing result acquisition unit 13, a difference determination unit 14, and a change instruction output unit 15.
  • the sensing data acquisition unit 11, the pseudo-automatic operation system 12, the first processing result acquisition unit 13, the difference determination unit 14, and the change instruction output unit 15 are realized by a processor or the like that executes a program stored in the memory.
  • the components constituting the remote automatic operation server 10 may be distributed and arranged in a plurality of servers.
  • the sensing data acquisition unit 11 acquires the sensing data acquired by the autonomous driving vehicle from the autonomous driving vehicle.
  • the sensing data acquisition unit 11 acquires the sensing data transmitted from the autonomous driving vehicle and received via the communication interface or the like provided in the remote autonomous driving server 10.
  • the pseudo-autonomous driving system 12 executes the second pre-processing, which is the pre-processing of the traveling control processing in the automatic driving of the autonomous driving vehicle, based on the sensing data acquired by the sensing data acquisition unit 11, and acquires the second processing result. do.
  • the second pretreatment is a higher pretreatment than the first pretreatment.
  • the pseudo-autonomous driving system 12 may perform the second preprocessing using the learning model.
  • the second processing result is the result of the second preprocessing.
  • the resources used in the vehicle automatic driving system 23 are reduced, and the algorithm is reduced in calculation amount.
  • the resource is the processing amount or processing speed of the processor, the memory capacity, the electric power, or the like.
  • the remote automatic operation server 10 has few restrictions on cost, power consumption, space, and the like. Therefore, it is possible to increase the resources used in the pseudo-autonomous driving system 12 and increase the amount of calculation of the algorithm. Therefore, the second pre-processing executed by the remote automatic driving server 10 can be made more advanced than the first pre-processing executed by the information processing device 20 mounted on the autonomous driving vehicle.
  • the first preprocessing is executed using the first resource (for example, a small resource in the autonomous driving vehicle), and the second preprocessing is the second resource different from the first resource (for example, a large resource in the remote autonomous driving server 10).
  • the second preprocessing can be made a higher preprocessing than the first preprocessing. That is, the second resource is more abundant than the first resource.
  • the first preprocessing is executed by using the first algorithm (for example, an algorithm that can handle a small amount of calculation in an autonomous vehicle), and the second preprocessing is a second algorithm (for example, an algorithm different from the first algorithm).
  • the second pre-processing can be made more advanced than the first pre-processing by being executed by using (for example, an algorithm having a large amount of calculation that can be handled by the remote automatic driving server 10). That is, the second algorithm is more sophisticated than the first algorithm.
  • the first preprocessing may be executed using both the first resource and the first algorithm, and the second preprocessing may be executed using both the second resource and the second algorithm.
  • the first processing result acquisition unit 13 acquires the first processing result from the autonomous driving vehicle.
  • the first processing result acquisition unit 13 acquires the first processing result transmitted from the autonomous driving vehicle and received via the communication interface or the like provided in the remote autonomous driving server 10.
  • the difference determination unit 14 determines the difference between the first processing result acquired by the first processing result acquisition unit 13 and the second processing result acquired by the pseudo-automatic operation system 12. The details of the operation of the difference determination unit 14 will be described later.
  • the change instruction output unit 15 outputs a change instruction for changing the first processing result to the third processing result to the autonomous driving vehicle according to the difference determined by the difference determination unit 14. That is, the change instruction output unit 15 instructs the autonomous driving vehicle to change the first processing result to the third processing result, so that the first processing vehicle should have been originally used for the traveling control of the autonomous driving vehicle.
  • the third processing result will be used instead of the processing result. A specific example of the third processing result will be described later.
  • FIG. 2 is a flowchart showing an example of the information processing method according to the first embodiment.
  • the information processing method according to the first embodiment is a method executed by a computer (specifically, a processor) included in the remote automatic driving server 10. Therefore, FIG. 2 is also a flowchart showing the operation of the remote automatic operation server 10.
  • the remote automatic driving server 10 uses the first processing result, which is the result of the first preprocessing, which is the preprocessing of the traveling control processing in the automatic driving process of the autonomous driving vehicle, and the sensing data acquired by the autonomous driving vehicle. Obtained from (step S11). For example, the remote autonomous driving server 10 acquires the detection process by the autonomous driving vehicle performing detection processing of obstacles around the autonomous driving vehicle (for example, detection of the number of obstacles or detection of the position of obstacles) from sensing data. Get the result. Further, for example, the remote autonomous driving server 10 acquires the estimation processing result acquired by the autonomous driving vehicle performing the estimation processing of the position of the autonomous driving vehicle from the sensing data. Further, for example, the remote autonomous driving server 10 acquires the driving judgment processing result acquired by the autonomous driving vehicle performing the driving judgment processing (for example, determining whether to continue or stop) from the sensing data. do.
  • the remote autonomous driving server 10 acquires the detection process by the autonomous driving vehicle performing detection processing of obstacles around the autonomous driving vehicle (for example, detection of the number of obstacles or detection of the position
  • the remote automatic operation server 10 executes the second preprocessing, which is a preprocessing higher than the first preprocessing, based on the sensing data, and acquires the second processing result (step S12).
  • the remote automatic driving server 10 performs detection processing of obstacles around the autonomous driving vehicle (for example, detection of the number of obstacles or detection of the position of obstacles) from the sensing data, and acquires the detection processing result.
  • the remote automatic driving server 10 performs estimation processing of the position of the automatic driving vehicle from the sensing data and acquires the estimation processing result.
  • the remote automatic driving server 10 performs a traveling determination process (for example, determination of whether to continue or stop the traveling) of the autonomous driving vehicle from the sensing data, and acquires the traveling determination processing result.
  • the remote automatic operation server 10 determines whether or not there is a processing delay in the second preprocessing (step S13). For example, in the remote automatic operation server 10, the resource occupancy rate for the second preprocessing may be high and a processing delay may occur in the second preprocessing.
  • the remote automatic driving server 10 When there is a processing delay in the second preprocessing (Yes in step S13), the remote automatic driving server 10 outputs an instruction for restricting the traveling of the autonomous driving vehicle (step S14). For example, it is preferable that the driving control of the autonomous driving vehicle is performed without delay as much as possible from the timing when the sensing data is acquired. If it takes time to perform driving control using the result of preprocessing after the sensing data is acquired, the autonomous vehicle will move significantly from the point where the sensing data was acquired, and it will be executed based on the sensing data. This is because the result of the preprocessing to be performed may not be valid at the current position of the autonomous driving vehicle deviated from the point where the sensing data was acquired.
  • the remote automatic driving server 10 outputs an instruction for restricting the traveling of the automatic driving vehicle to the automatic driving vehicle.
  • the instruction for restricting the traveling of the self-driving car is, for example, an instruction for decelerating or stopping the self-driving car or increasing the avoidance margin.
  • the remote autonomous driving server 10 may notify the autonomous driving vehicle of an alert when there is a processing delay in the second preprocessing.
  • the remote automatic operation server 10 determines the difference between the first processing result and the second processing result when there is no processing delay in the second preprocessing (No in step S13) (step S15). For example, the remote automatic operation server 10 determines the difference between the number of obstacles indicated by the first processing result and the number of obstacles indicated by the second processing result. Further, for example, in the remote automatic operation server 10, the difference between the position of the obstacle indicated by the first processing result and the position of the obstacle indicated by the second processing result (for example, the position of the obstacle indicated by the second processing result is correct). The RMS (Root Mean Square) error value of the position of the obstacle indicated by the first processing result) is determined.
  • RMS Room Mean Square
  • the difference between the position of the autonomous driving vehicle indicated by the first processing result and the position of the autonomous driving vehicle indicated by the second processing result (for example, the position of the autonomous driving vehicle indicated by the second processing result).
  • the RMS error value of the position of the self-driving car indicated by the first processing result when is correct) is determined.
  • the difference between the traveling determination processing result of the autonomous driving vehicle indicated by the first processing result and the traveling determination processing result of the autonomous driving vehicle indicated by the second processing result (for example, the first in a certain period of time).
  • the number of times that the travel determination processing result indicated by the processing result and the travel determination processing result indicated by the second processing result are different from each other) is determined. It should be noted that these are merely exemplified as an example of determining the difference, and are not limited to these.
  • the remote automatic operation server 10 determines whether or not the determined difference satisfies a predetermined condition (step S16).
  • the predetermined condition is, for example, a condition relating to the magnitude of the determined difference.
  • the remote automatic operation server 10 determines whether or not the number of obstacles indicated by the first processing result and the number of obstacles indicated by the second processing result are different. Further, for example, the remote automatic operation server 10 determines whether or not the RMS error value is equal to or greater than a predetermined threshold value. Further, for example, in the remote automatic driving server 10, the number of times that the travel judgment processing result indicated by the first processing result and the traveling determination processing result indicated by the second processing result are different in a certain period is equal to or more than a predetermined threshold value. Judge whether or not. It should be noted that these are merely exemplified as an example of predetermined conditions, and are not limited to these.
  • the remote automatic driving server 10 When the determined difference satisfies a predetermined condition (Yes in step S16), the remote automatic driving server 10 outputs a change instruction for changing the first processing result to the third processing result to the automatic driving vehicle (step S17). ..
  • a predetermined condition for example, when the number of obstacles indicated by the first processing result and the number of obstacles indicated by the second processing result are different, the RMS error value is equal to or greater than the predetermined threshold value. In this case, the number of times that the travel determination processing result indicated by the first processing result and the travel determination processing result indicated by the second processing result are different from each other in a certain period is equal to or greater than a predetermined threshold value.
  • the third processing result is obtained based on at least one of the first processing result and the second processing result. Since the second processing result is the result of the advanced second preprocessing, the third processing result, which is the result of the processing based on the second processing result, is the advanced processing result.
  • the third processing result may be the second processing result.
  • the first processing result is not used for the driving control of the autonomous driving vehicle
  • the second processing result which is the result of the advanced second preprocessing
  • the third processing result may be obtained by correcting the first processing result based on the determined difference.
  • the first processing result is not used for the traveling control of the autonomous driving vehicle, and the first processing result is corrected based on the difference between the second processing result and the first processing result, which are the results of the advanced second preprocessing.
  • the result (that is, the corrected first processing result) is used for the traveling control of the autonomous driving vehicle, and the performance of the autonomous driving can be improved.
  • the remote autonomous driving server 10 may output an instruction for restricting the traveling of the autonomous driving vehicle when the determined difference satisfies a predetermined condition (Yes in step S16). Further, in this case, the remote automatic driving server 10 may notify the remote observer or the occupant of the automatic driving vehicle of the abnormality.
  • the remote automatic driving server 10 does not output the above change instruction to the automatic driving vehicle when the determined difference does not satisfy the predetermined condition (No in step S16) (step S18).
  • the determined difference does not satisfy the predetermined condition
  • the predetermined condition for example, when the number of obstacles indicated by the first processing result and the number of obstacles indicated by the second processing result are the same, the RMS error value is less than the predetermined threshold value.
  • the number of times that the travel determination processing result indicated by the first processing result and the travel determination processing result indicated by the second processing result are different in a certain period is less than a predetermined threshold value.
  • the first processing result is not inferior to the second processing result, and the autonomous driving vehicle uses the first processing result which is not inferior to the second processing result without receiving the change instruction.
  • the first processing result is automatically operated. It can be used for driving control of a car.
  • the autonomous vehicle may ignore the received change instruction and restrict the running of the autonomous vehicle.
  • the autonomous driving vehicle cannot effectively utilize the third processing result even if the first processing result is changed to the third processing result, and the autonomous driving vehicle cannot be effectively used. This is because there is a risk of a dangerous situation.
  • the sensing data acquired by the autonomous driving vehicle is easily affected by the weather, and even if the vehicle automatic driving system 23 executes the first preprocessing using the sensing data affected by the weather, the correct first processing result is obtained. It may not be obtained. For example, when the weather is rainy or cloudy and the visibility around the self-driving car is poor, there is a possibility that obstacles existing around the self-driving car cannot be recognized correctly. Therefore, it may be determined whether or not the weather is suitable for automatic driving by the vehicle automatic driving system 23. This will be described with reference to FIG.
  • FIG. 3 is a flowchart showing another example of the information processing method according to the first embodiment.
  • step S19 is added.
  • Other points that is, steps S11 to S18 are the same as those shown in FIG. 2, and thus the description thereof will be omitted.
  • the remote automatic driving server 10 determines whether or not the weather is suitable for automatic driving by the vehicle automatic driving system 23 when there is no processing delay in the second preprocessing (No in step S13) (step S19). For example, when the weather is fine, it is determined that the weather is suitable for automatic driving by the vehicle automatic driving system 23, and when the weather is rainy or cloudy, it is determined that the weather is not suitable for automatic driving by the vehicle automatic driving system 23. Will be done.
  • the remote automatic driving server 10 determines the difference between the first processing result and the second processing result in step S15, and the like.
  • the change instruction is output without performing (step S17). This is because if the weather is not suitable for automatic driving by the vehicle automatic driving system 23, it is assumed that the first processing result will be inferior to the second processing result even if the difference is not determined. ..
  • the remote automatic driving server 10 When the weather is suitable for automatic driving by the vehicle automatic driving system 23 (Yes in step S19), the remote automatic driving server 10 performs the processes after step S15 as described in FIG. If the weather is suitable for automatic driving by the vehicle automatic driving system 23, the first processing result may not be inferior to the second processing result, and a difference is determined and a change instruction is output. This is because it is better to decide whether or not to do it.
  • the first executed in the autonomous driving vehicle (specifically, the information processing device 20 mounted on the autonomous driving vehicle) in which the computers that can be installed are limited from the viewpoints of cost, power consumption, space, and the like.
  • the remote automatic driving server 10 with less restrictions on cost, power consumption, space, etc. executes the second pre-processing, which is more advanced than the first pre-processing, and is the result of the first pre-processing. The difference between the processing result and the second processing result, which is the result of the second preprocessing, is determined.
  • the first processing result which is the result of the first preprocessing, which is the preprocessing of the traveling control processing of the autonomous driving vehicle
  • the second processing result which is the result of the advanced second preprocessing.
  • a change instruction to be changed to the processing result is output to the autonomous driving vehicle.
  • a change instruction for changing the first processing result to a third processing result obtained by correcting or restricting the first processing result is output to the autonomous driving vehicle according to the difference.
  • the third processing result which is more advanced than the first processing result, is used for the traveling control processing of the autonomous driving vehicle, so that the performance of the automatic driving can be improved. For example, by improving the performance of autonomous driving, it is possible to expand the travelable area of the autonomous driving vehicle.
  • FIG. 4 is a block showing an example of an autonomous driving vehicle (specifically, an information processing device 20a mounted on the autonomous driving vehicle), a remote automatic driving server 10a, and a remote processing management server 30 according to a modified example of the first embodiment. It is a figure.
  • the information processing device 20a further includes a remote processing requesting unit 28, and instead of the sensing data acquisition unit 21, the sensing data transmission unit 22, and the first processing result transmission unit 24, the sensing data acquisition unit 21a, the sensing data transmission unit 22a, and the first It is different from the information processing apparatus 20 in the first embodiment in that one processing result transmission unit 24a is provided. Since the other points are the same as those in the information processing apparatus 20, the description thereof will be omitted.
  • the remote processing request unit 28 is realized by a processor or the like that executes a program stored in the memory like other components.
  • the remote processing request unit 28 outputs a request for execution of the second preprocessing to the remote automatic operation server 10a via the remote processing management server 30.
  • the remote processing management unit 31 of the remote processing management server 30 receives the above request and receives a plurality of remote automatic operation servers. Inquires 10a whether or not the second preprocessing can be executed, and selects the remote automatic operation server 10a capable of executing the second preprocessing from a plurality of remote automatic operation servers 10a according to the result of the inquiry. do.
  • the remote processing management unit 31 notifies the automatic driving vehicle of the selected remote automatic driving server 10a.
  • the remote processing request unit 28 instructs the sensing data acquisition unit 21a to acquire the sensing data, and instructs the sensing data transmission unit 22a to transmit the sensing data to the selected remote automatic operation server 10a. 1 Instructs the processing result transmission unit 24a to transmit the first processing result to the selected remote automatic operation server 10a.
  • the sensing data acquisition unit 21a acquires the sensing data by the sensor provided in the autonomous driving vehicle by receiving an instruction from the remote processing request unit 28. Other points regarding the sensing data acquisition unit 21a are the same as those of the sensing data acquisition unit 21, and thus the description thereof will be omitted.
  • the sensing data transmission unit 22a transmits the sensing data acquired by the sensing data acquisition unit 21a to the selected remote automatic operation server 10a. Other points regarding the sensing data transmission unit 22a are the same as those of the sensing data transmission unit 22, and thus the description thereof will be omitted.
  • the first processing result transmission unit 24a transmits the first processing result, which is the result of the first preprocessing executed by the vehicle automatic driving system 23a, to the selected remote automatic driving server 10a.
  • the other points regarding the first processing result transmitting unit 24a are the same as those of the first processing result transmitting unit 24, and thus the description thereof will be omitted.
  • the remote automatic operation server 10a further includes a request acquisition unit 16 and a second preprocessing execution determination unit 17, and instead of the sensing data acquisition unit 11 and the pseudo automatic operation system 12, the sensing data acquisition unit 11a and the pseudo automatic operation system 12a are used. It is different from the remote automatic operation server 10 in the first embodiment in that it is provided. Since the other points are the same as those in the remote automatic operation server 10, the description thereof will be omitted.
  • the request acquisition unit 16 and the second preprocessing execution determination unit 17 are realized by a processor or the like that executes a program stored in the memory in the same manner as other components.
  • the request acquisition unit 16 acquires a request for execution of the second preprocessing from the autonomous driving vehicle. For example, the request acquisition unit 16 acquires a request for execution of the second preprocessing from the autonomous driving vehicle via the remote processing management server 30.
  • the second pre-processing execution determination unit 17 determines whether or not to execute the second pre-processing when receiving a request. For example, the second pre-processing execution determination unit 17 may determine whether or not to execute the second pre-processing based on the task status or the resource status of the remote automatic operation server 10a. For example, when many tasks are executed or resources are low in the remote automatic operation server 10a, it is determined that the second preprocessing is not executed. Further, for example, the second pre-processing execution determination unit 17 determines whether or not to execute the second pre-processing, the resources possessed by the self-driving car, the moving state of the self-driving car, the external environment of the self-driving car, and the time.
  • the moving state is the moving speed, acceleration, deceleration, moving direction (steering angle), etc. of the autonomous driving vehicle. For example, if the resources of the autonomous driving vehicle are insufficient, or if the autonomous driving vehicle is moving at a high vehicle speed, a large acceleration, or a large steering angle, the external environment of the autonomous driving vehicle is impaired. An environment where objects are close to each other, an environment where there are many or moving objects, an environment where the self-driving car is located in a place with heavy traffic (for example, an intersection), an environment where the surrounding light is dark, and the weather.
  • the second preprocessing is executed. Further, for example, when the resources of the autonomous driving vehicle are sufficient, when the moving state of the autonomous driving vehicle is, for example, a state where the vehicle speed is slow, a state where the acceleration is small, or a state where the steering angle is small, the external environment of the autonomous driving vehicle is changed.
  • the second preprocessing is executed depending on the resources of the self-driving car, the moving state of the self-driving car, the external environment of the self-driving car, the time or the response time to the request.
  • the second pre-processing is executed and the third processing result is used to use the self-driving car.
  • the remote automatic operation server 10a can reject or ignore the request.
  • the sensing data acquisition unit 11a acquires the sensing data when it is determined that the second preprocessing is to be executed when the request is received from the autonomous driving vehicle. Other points regarding the sensing data acquisition unit 11a are the same as those of the sensing data acquisition unit 11, and thus the description thereof will be omitted.
  • the pseudo-autonomous driving system 12a executes the second pre-processing based on the sensing data acquired by the sensing data acquisition unit 11a when it is determined to execute the second pre-processing when requested by the autonomous driving vehicle. And the second processing result is acquired.
  • Other points regarding the pseudo-automatic operation system 12a are the same as those of the pseudo-automatic operation system 12, and thus the description thereof will be omitted.
  • FIG. 5 is a flowchart showing an example of an information processing method in a modified example of the first embodiment.
  • the information processing method according to the modified example of the first embodiment is a method executed by a computer (specifically, a processor) included in the remote automatic operation server 10a. Therefore, FIG. 5 is also a flowchart showing the operation of the remote automatic operation server 10a.
  • the flowchart shown in FIG. 5 is different from the flowchart shown in FIG. 2 in that steps S21, S22 and S23 are added. Other points (that is, steps S11 to S18) are the same as those shown in FIG. 2, and thus the description thereof will be omitted.
  • the remote automatic driving server 10a determines whether or not a request for execution of the second preprocessing has been received from the automatic driving vehicle (step S21).
  • the remote automatic driving server 10a If the remote automatic driving server 10a has not received a request for execution of the second preprocessing from the automatic driving vehicle (No in step S21), the remote automatic driving server 10a repeats the processing in step S21 until the request is received.
  • the remote automatic driving server 10a determines whether or not to execute the second preprocessing (step S22).
  • the remote automatic operation server 10a determines that the second preprocessing is not executed (No in step S22)
  • the remote automatic operation server 10a rejects or ignores the request (step S23).
  • the remote processing management server 30 does not select the remote automatic operation server 10a that rejects or ignores the request as the server that executes the second preprocessing, and the second preprocessing from another remote automatic operation server 10a. Select the server on which you want to run. If all the remote autonomous driving servers 10a reject or ignore the request, the remote processing management server 30 may instruct the autonomous driving vehicle to restrict the traveling.
  • step S22 When the remote automatic operation server 10a determines that the second preprocessing is to be executed (Yes in step S22), the processing after step S11 is performed as described in FIG.
  • the request from the self-driving car may include information that specifies a specific process in the second pre-process.
  • the remote automatic operation server 10a executes a specific process in step S12 and acquires the second process result. This is because, depending on the moving state of the autonomous vehicle, the external environment, etc., it may be sufficient to determine the difference only for a specific process (for example, obstacle detection process only, driving determination process only, etc.).
  • the remote autonomous driving server 10a can selectively execute a specific process desired by, for example, an autonomous vehicle, which is designated from the second preprocess.
  • the area where obstacle detection is performed may be limited. For example, when an autonomous vehicle changes lanes, obstacle detection may be performed for the lane to which the lane is changed.
  • the remote processing management server 30 When the remote processing management server 30 receives a request from a plurality of autonomous vehicles, the remote processing management server 30 responds to the resources of each autonomous vehicle, the moving state of each autonomous vehicle, the external environment of each autonomous vehicle, the time, and the request. Self-driving cars that preferentially accept requests based on at least one response time may be selected.
  • the execution of the second preprocessing on the remote automatic driving server 10a may be started when there is a request from the automatic driving vehicle.
  • the remote automatic driving server 10a can execute the second preprocessing at the timing when the autonomous driving vehicle requests the execution of the advanced second preprocessing.
  • FIG. 6 is a block diagram showing an example of an autonomous driving vehicle (specifically, an information processing device 200 mounted on the autonomous driving vehicle) and a remote automatic driving server 100 according to the second embodiment.
  • an autonomous driving vehicle specifically, an information processing device 200 mounted on the autonomous driving vehicle
  • a remote automatic driving server 100 according to the second embodiment.
  • the remote automatic driving server 100 performs wireless communication with the automatic driving vehicle.
  • the self-driving car is equipped with an information processing device 200.
  • the information processing device 200 is a computer including a processor, a memory, a communication interface, and the like.
  • the memory is a ROM, RAM, or the like, and can store a program executed by the processor.
  • the information processing device 200 includes a sensing data acquisition unit 201, a sensing data transmission unit 202, a vehicle automatic driving system 203, a second processing result acquisition unit 204, a difference determination unit 205, a processing result change unit 206, a communication confirmation unit 207, and a travel restriction.
  • a unit 208 is provided.
  • the sensing data acquisition unit 201, the sensing data transmission unit 202, the vehicle automatic driving system 203, the second processing result acquisition unit 204, the difference determination unit 205, the processing result change unit 206, the communication confirmation unit 207, and the travel restriction unit 208 are stored in the memory. It is realized by a processor or the like that executes the stored program.
  • the functions of the sensing data acquisition unit 201, the sensing data transmission unit 202, the vehicle automatic driving system 203, the communication confirmation unit 207, and the travel restriction unit 208 are the sensing data acquisition unit 21, the sensing data transmission unit 22, and the vehicle automatic in the first embodiment. Since the functions of the operation system 23, the communication confirmation unit 26, and the travel restriction unit 27 are basically the same, the description thereof will be omitted.
  • the second processing result acquisition unit 204 acquires the second processing result obtained by executing the second preprocessing, which is a preprocessing higher than the first preprocessing, from the remote automatic operation server 100 based on the sensing data. For example, the second processing result acquisition unit 204 acquires the second processing result transmitted from the remote automatic driving server 100 and received via the communication interface or the like provided in the automatic driving vehicle.
  • the difference determination unit 205 determines the difference between the first processing result acquired by the vehicle automatic driving system 203 and the second processing result acquired by the second processing result acquisition unit 204.
  • the difference determination unit 205 in the second embodiment and the difference determination unit 14 in the first embodiment differ only in whether they are provided in the information processing device 200 or the remote automatic operation server 10. Is basically the same. Therefore, a detailed description of the difference determination unit 205 will be omitted.
  • the processing result changing unit 206 changes the first processing result to the third processing result according to the determined difference.
  • the processing result changing unit 25 has described an example in which the first processing result is changed to the third processing result in response to the change instruction from the remote automatic operation server 10.
  • the processing is performed.
  • the result changing unit 206 changes the first processing result to the third processing result according to the difference determined by the autonomous driving vehicle itself.
  • the remote automatic operation server 100 is a computer including a processor, a memory, a communication interface, and the like.
  • the remote automatic operation server 100 is an example of an external device of the information processing device 200.
  • the memory is a ROM, RAM, or the like, and can store a program executed by the processor.
  • the remote automatic operation server 100 includes a sensing data acquisition unit 101, a pseudo automatic operation system 102, and a second processing result transmission unit 103.
  • the sensing data acquisition unit 101, the pseudo-automatic operation system 102, and the second processing result transmission unit 103 are realized by a processor or the like that executes a program stored in the memory.
  • the components constituting the remote automatic operation server 100 may be distributed and arranged in a plurality of servers.
  • the functions of the sensing data acquisition unit 101 and the pseudo-automatic driving system 102 are basically the same as the functions of the sensing data acquisition unit 11 and the pseudo-automatic driving system 12 in the first embodiment, the description thereof will be omitted.
  • the second processing result transmission unit 103 transmits the second processing result, which is the result of the second preprocessing executed by the pseudo-autonomous driving system 102, to the autonomous driving vehicle.
  • the second processing result transmission unit 103 transmits the second processing result to the autonomous driving vehicle via the communication interface or the like provided in the remote autonomous driving server 100.
  • the second processing result is transmitted from the remote automatic driving server 100 to the automatic driving vehicle, and the difference between the first processing result and the second processing result is not determined by the remote automatic driving server 100, and the automatic driving is performed. It is done in the car.
  • FIG. 7 is a flowchart showing an example of the operation of the autonomous driving vehicle (specifically, the information processing device 200) according to the second embodiment.
  • the autonomous driving vehicle determines whether or not the autonomous driving vehicle is connected to the remote automatic driving server 100 by communication (step S41).
  • the autonomous driving vehicle restricts the traveling of the autonomous driving vehicle when the autonomous driving vehicle is not connected to the remote automatic driving server 100 by communication (No in step S41) (step S42).
  • the autonomous driving vehicle cannot acquire the second processing result, that is, cannot determine the difference between the first processing result and the second processing result.
  • the first processing result cannot be changed to the third processing result. Therefore, if the autonomous driving vehicle is not connected to the remote autonomous driving server 100 by communication, the autonomous driving vehicle may be in a dangerous state, so that the traveling of the autonomous driving vehicle is restricted. Therefore, even if the communication between the autonomous driving vehicle and the remote autonomous driving server 10 is interrupted, the safety can be ensured in the autonomous driving vehicle.
  • the autonomous driving vehicle is a preprocessing of the traveling control process in the automatic driving of the autonomous driving vehicle based on the sensing data. 1 Preprocessing is executed and the first processing result is acquired (step S43).
  • the autonomous driving vehicle performs detection processing of obstacles around the autonomous driving vehicle (for example, detection of the number of obstacles or detection of the position of obstacles) from the sensing data, and acquires the detection processing result.
  • the autonomous driving vehicle performs estimation processing of the position of the autonomous driving vehicle from the sensing data, and acquires the estimation processing result.
  • the autonomous driving vehicle performs a traveling determination process (for example, determination of whether to continue or stop the traveling) from the sensing data and acquires the traveling determination processing result.
  • the autonomous driving vehicle outputs the sensing data acquired by the autonomous driving vehicle to the remote automatic driving server 100 (step S44).
  • the remote automatic operation server 100 that has received the sensing data executes the second preprocessing, which is a preprocessing higher than the first preprocessing, based on the sensing data, and acquires the second processing result. Then, the remote automatic driving server 100 transmits the acquired second processing result to the automatic driving vehicle.
  • the autonomous driving vehicle determines whether or not the second processing result transmitted from the remote autonomous driving server 100 has been acquired without delay (step S45). For example, when the autonomous driving vehicle acquires the second processing result after a lapse of a predetermined time or more from the output of the sensing data or the output of the request, it determines that the second processing result could not be acquired without delay. When a communication delay occurs between the autonomous driving vehicle and the remote autonomous driving server 100, the second processing result may not be acquired without delay.
  • step S45 the self-driving car does not execute the difference determination and limits the running of the self-driving car (step S42).
  • the autonomous driving vehicle can effectively utilize the third processing result even if the first processing result is changed to the third processing result. This is because the self-driving car may be in a dangerous state.
  • step S45 determines the difference between the first processing result and the second processing result (step S46), and the determined difference is predetermined. It is determined whether or not the condition is satisfied (step S47).
  • the processing in steps S46 and S47 is the same as the processing in steps S15 and S16 described with reference to FIG. 2 except that the processing is performed by the autonomous vehicle, and thus the description thereof will be omitted.
  • the self-driving car executes a process of changing the first processing result to the third processing result (step S48). Then, the travel control process is executed using the third process result.
  • the first processing result is not used for the driving control processing of the autonomous driving vehicle, and the third processing result based on the second processing result, which is the result of the advanced second preprocessing, is used for the driving control of the autonomous driving vehicle. Therefore, the performance of automatic driving can be improved.
  • the self-driving car may restrict the running of the self-driving car when the determined difference satisfies a predetermined condition (Yes in step S47). Further, in this case, the self-driving car may notify the remote observer or the occupant of the self-driving car of the abnormality.
  • the self-driving car does not execute the above-mentioned changing process when the determined difference does not satisfy the predetermined condition (No in step S47).
  • the first processing result is not inferior to the second processing result
  • the autonomous driving vehicle does not have to change the first processing result to the third processing result
  • the second processing result is not inferior to the second processing result. It is possible to control the running of the autonomous driving vehicle by using the first processing result which is not inferior.
  • step S50 the self-driving car determines whether or not it has arrived at the destination (step S50), and if it has not arrived at the destination (No in step S50), from step S41 to step S49 until it arrives at the destination.
  • the self-driving car is stopped and the process ends.
  • the second preprocessing which is more advanced than the first preprocessing, is executed in a small number of external devices (for example, the remote automatic driving server 100), and the second processing result, which is the result of the second preprocessing, is transmitted to the autonomous driving vehicle, and the second preprocessing is performed.
  • the difference between the first processing result, which is the result of the first preprocessing, and the second processing result, which is the result of the second preprocessing, is determined in the autonomous driving vehicle.
  • the first processing result which is the result of the first preprocessing, which is the preprocessing of the traveling control processing of the autonomous driving vehicle, is based on the second processing result, which is the result of the advanced second preprocessing. 3 It is changed to the processing result.
  • the first processing result is changed to the third processing result obtained by correcting or restricting the first processing result.
  • the third processing result which is more advanced than the first processing result, is used for the traveling control processing of the autonomous driving vehicle, so that the performance of the automatic driving can be improved. For example, by improving the performance of autonomous driving, it is possible to expand the travelable area of the autonomous driving vehicle.
  • FIG. 8 is a block showing an example of an autonomous driving vehicle (specifically, an information processing device 200a mounted on the autonomous driving vehicle), a remote automatic driving server 100a, and a remote processing management server 30 according to a modified example of the second embodiment. It is a figure.
  • the second embodiment of the second embodiment is that the information processing device 200a further includes a remote processing requesting unit 210, and includes a sensing data acquisition unit 201a and a sensing data transmission unit 202a instead of the sensing data acquisition unit 201 and the sensing data transmission unit 202. It is different from the information processing device 200. Since the other points are the same as those in the information processing apparatus 200, the description thereof will be omitted.
  • the remote processing request unit 210 is realized by a processor or the like that executes a program stored in the memory in the same manner as other components.
  • the remote processing request unit 210 outputs a request for execution of the second preprocessing to the remote automatic operation server 100a via the remote processing management server 30. Since the remote processing management server 30 has basically the same functions as those in the modified example of the first embodiment, the description thereof will be omitted.
  • the remote processing requesting unit 210 is based on at least one of the resources of the autonomous vehicle, the moving state of the autonomous vehicle, the external environment of the autonomous vehicle, the time, and the response time to the inquiry to the remote autonomous driving server 100a.
  • the request may be output to the remote automatic operation server 100a.
  • the external environment of the autonomous driving vehicle is impaired. Environments where objects are close to each other, environments where there are many or moving objects, environments where self-driving cars are located in places with heavy traffic (for example, intersections), environments where the surrounding brightness is dark, weather If is a rainy or cloudy environment, the time is night time, the response time to the request is short, etc., the request is output.
  • the moving state of the autonomous driving vehicle is, for example, a state where the vehicle speed is slow, a state where the acceleration is small, or a state where the steering angle is small
  • the external environment of the autonomous driving vehicle is changed.
  • the request is not output when the environment is present, the time is daytime, or the response time to the request is long.
  • the second preprocessing is executed depending on the resources of the self-driving car, the moving state of the self-driving car, the external environment of the self-driving car, the time or the response time to the request.
  • the second pre-processing is executed and the third processing result is used to use the self-driving car.
  • the self-driving car can prevent the request from being output.
  • the second preprocessing may be executed to improve the performance of the automatic operation.
  • the self-driving car can output a request when the situation is such that the performance of the self-driving car can be improved.
  • the remote processing request unit 210 instructs the sensing data acquisition unit 201a to acquire the sensing data, and transmits the sensing data to the sensing data transmission unit 202a to the remote automatic operation server 100a selected by the remote processing management unit 31. Instruct.
  • the sensing data acquisition unit 201a acquires the sensing data by the sensor provided in the autonomous driving vehicle in response to the instruction from the remote processing request unit 210.
  • Other points regarding the sensing data acquisition unit 201a are the same as those of the sensing data acquisition unit 201, and thus the description thereof will be omitted.
  • the sensing data transmission unit 202a transmits the sensing data acquired by the sensing data acquisition unit 201a to the selected remote automatic operation server 100a. Other points regarding the sensing data transmission unit 202a are the same as those of the sensing data transmission unit 202, and thus the description thereof will be omitted.
  • the remote automatic operation server 100a further includes a request acquisition unit 104 and a second preprocessing execution determination unit 105, and replaces the sensing data acquisition unit 101 and the pseudo automatic operation system 102 with the sensing data acquisition unit 101a and the pseudo automatic operation system 102a. It is different from the remote automatic operation server 100 in the second embodiment in that it is provided. Since the other points are the same as those in the remote automatic operation server 100, the description thereof will be omitted.
  • the request acquisition unit 104 and the second preprocessing execution determination unit 105 are realized by a processor or the like that executes a program stored in the memory in the same manner as other components.
  • the request acquisition unit 104 is basically the same as the request acquisition unit 16 in the modified example of the first embodiment, the description thereof will be omitted.
  • the second pre-processing execution determination unit 105 is basically the same as the second pre-processing execution determination unit 17 in the modified example of the first embodiment, the description thereof will be omitted.
  • the sensing data acquisition unit 101a acquires the sensing data when it is determined that the second preprocessing is to be executed when the request is received from the autonomous driving vehicle. Other points regarding the sensing data acquisition unit 101a are the same as those of the sensing data acquisition unit 101, and thus the description thereof will be omitted.
  • the pseudo-autonomous driving system 102a executes the second pre-processing based on the sensing data acquired by the sensing data acquisition unit 101a when it is determined to execute the second pre-processing when requested by the autonomous driving vehicle. And the second processing result is acquired.
  • Other points regarding the pseudo-automatic operation system 102a are the same as those of the pseudo-automatic operation system 102, and thus the description thereof will be omitted.
  • step S51 is added instead of step S41.
  • Other points that is, steps S42 to S50 are the same as those shown in FIG. 7, and thus the description thereof will be omitted.
  • the autonomous vehicle outputs a request for execution of the second preprocessing to the remote autonomous driving server 100a (step S51). For example, after outputting the request, the autonomous driving vehicle receives a notification from the remote processing management server 30 indicating to which remote automatic driving server 100a the sensing data should be output as a server capable of executing the second preprocessing. Then, as a response to the request, the second processing result is acquired in step S45. If the self-driving car does not respond to the request after outputting the request, it may determine that the communication connection with the remote processing management server 30 or the like is not established and restrict the running of the self-driving car. good.
  • the request for execution of the second preprocessing may include information that specifies a specific process of the second preprocessing. This is because, depending on the moving state of the autonomous vehicle, the external environment, etc., it may be sufficient to determine the difference only for a specific process (for example, obstacle detection process only, driving determination process only, etc.).
  • the autonomous driving vehicle can specify, for example, a specific processing desired by the autonomous driving vehicle from the second preprocessing, and cause the remote automatic driving server 100a to selectively execute the specific processing.
  • the autonomous driving vehicle acquires the second processing result, which is the result obtained by executing the specific processing in steps S45 and S46, and determines the difference only in the specific processing.
  • the self-driving car proceeds to step S46 even when the second processing result is acquired after a lapse of a predetermined time or more from the output of the sensing data or the output of the request (that is, even if No in step S45).
  • the difference between the processing result of a part of the first processing result and the processing result corresponding to the part of the processing result of the second processing result may be determined.
  • the processing result of the part is a part that is not easily affected by the delay.
  • the part of the processing result is the result of the peripheral recognition processing, and the result of the peripheral recognition processing is not easily affected by the delay.
  • the result of the self-position estimation process is easily affected by the delay, it is not necessary to execute the difference determination for the process result.
  • the self-driving car may change the processing result of the part of the first processing result to the third processing result according to the determined difference.
  • the second processing result is acquired after a predetermined time or more has elapsed from the output of the sensing data or the output of the request, there is a possibility that a communication delay with the remote automatic operation server 100a has occurred.
  • the autonomous vehicle specifically, information processing
  • the processing load of the device 200a can be reduced.
  • the execution of the second preprocessing on the remote automatic driving server may be started by outputting the request from the automatic driving vehicle.
  • the second pre-processing can be executed at the timing when the autonomous driving vehicle requests the execution of the advanced second pre-processing.
  • the change instruction or change control of the preprocessing result and the traveling restriction instruction or the traveling restriction are applied to the ODD (Operating Design Domain) according to the delay and the difference. Therefore, it may be done.
  • the ODD is set with, for example, a time zone, a region, a running state (speed, acceleration, steering angle, etc.), and an environment (weather, illuminance, etc.) as elements.
  • FIG. 10 is a flowchart showing an example of an information processing method according to a modification common to each embodiment. The description of the processing substantially the same as that of each of the above embodiments will be omitted.
  • the server determines whether or not the delay correction processing is possible (step S60). Specifically, if there is a communication delay between the server and the autonomous vehicle, or if there is a processing delay as described above, can the server correct (suppress, reduce) the time lag in the processing result due to the delay? Judge whether or not. For example, it is determined whether or not the delay amount is equal to or less than the threshold value.
  • step S61 the server executes the correction process (step S61). Specifically, when the delay amount is equal to or less than the threshold value, the server executes the correction process for the second preprocessing result.
  • step S60 If there is no delay in the second pre-processing (No in step S60), or after executing the correction processing, the processing proceeds to steps S15 and S16.
  • the server determines whether or not the first ODD is satisfied (step S62).
  • the first ODD is an ODD set for automatic driving in an autonomous driving vehicle.
  • the speed is 20 km / h or less and the weather is sunny except for the intersection.
  • the server does not output the change instruction (step S18).
  • the traveling control process in the automatic driving is performed using the result of the first preprocessing executed in the autonomous driving vehicle.
  • the server determines whether or not the second ODD is satisfied (step S63).
  • the second ODD is an ODD different from the first ODD set for automatic driving in the autonomous driving vehicle.
  • the speed is 15 km / h or less, and the weather is sunny or rainy.
  • the second ODD is at least partially relaxed as compared to the first ODD.
  • communication is used, so that the item affected by the delay in the second ODD is the same as the first ODD or more severe than the first ODD.
  • step S17 the server outputs a change instruction (step S17).
  • the travel control process in the automatic operation is performed using the result of the second preprocess executed on the server or the corrected result of the first preprocess.
  • step S64 determines whether or not the second ODD is satisfied. This process is substantially the same as the process in step S63.
  • the server does not output the change instruction (step S18).
  • the reason for using the second ODD when the above difference does not satisfy the predetermined condition is that the difference between the preprocessing result in the server and the preprocessing result in the autonomous driving vehicle does not satisfy the predetermined condition. This is because of the fact. In other words, the result of preprocessing in the autonomous vehicle can be treated in the same way as the result of preprocessing in the server.
  • the server If the first ODD is not satisfied (No in step S62) or the second ODD is not satisfied (No in step S63 or S64), the server outputs a travel restriction instruction (step S14).
  • FIG. 10 shows an example in which the server determines whether or not the delay correction processing is possible, and determines the preprocessing result change instruction and the travel restriction instruction according to the ODD according to the delay and the difference.
  • the autonomous driving vehicle may determine whether or not the correction processing for the delay is possible, and execute the change control of the preprocessing result and the traveling restriction according to the ODD according to the delay and the difference.
  • the change instruction or change control of the preprocessing result may be performed depending on whether or not there is a communication failure related to the second preprocessing.
  • the communication failure is a communication data loss.
  • change instruction or change control of the preprocessing result may be performed depending on whether or not the packet loss rate is equal to or higher than the threshold value.
  • the communication failure may include the above-mentioned communication delay.
  • a change instruction or change control of the preprocessing result may be performed depending on whether or not the correction processing for the communication failure is possible. Specifically, change instruction or change control of the preprocessing result is performed depending on whether or not the data lost due to the communication data loss can be complemented. For example, change instruction or change control of the preprocessing result is performed according to the ratio at which the lost packet can be complemented.
  • the present disclosure can be realized as a program for causing a processor to execute a step included in an information processing method. Further, the present disclosure can be realized as a non-temporary computer-readable recording medium such as a CD-ROM on which the program is recorded.
  • each step is executed by executing the program using hardware resources such as a computer CPU, memory, and input / output circuit. .. That is, each step is executed when the CPU acquires data from the memory or the input / output circuit or the like and performs an operation, or outputs the calculation result to the memory or the input / output circuit or the like.
  • hardware resources such as a computer CPU, memory, and input / output circuit. .. That is, each step is executed when the CPU acquires data from the memory or the input / output circuit or the like and performs an operation, or outputs the calculation result to the memory or the input / output circuit or the like.
  • each component included in the information processing system and the information processing device is composed of dedicated hardware or is realized by executing a software program suitable for each component. good.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • LSI is an integrated circuit. These may be individually integrated into one chip, or may be integrated into one chip so as to include a part or all of them. Further, the integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • This disclosure can be applied to a remote control system for autonomous vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

コンピュータに実行させる情報処理方法であって、自律移動体の自律移動処理における走行制御処理の第1前処理の結果である第1処理結果及び自律移動体が取得したセンシングデータを自律移動体から取得し(ステップS11)、センシングデータに基づいて第1前処理よりも高度な前処理である第2前処理を実行して第2処理結果を取得し(ステップS12)、第1処理結果と第2処理結果との差異を判定し(ステップS15)、判定された差異にしたがって、第1処理結果を第3処理結果に変更させる変更指示を自律移動体に出力し(ステップS17)、第3処理結果は第1処理結果又は第2処理結果の少なくとも一方に基づいて得られる。

Description

情報処理方法、情報処理システム及び情報処理装置
 本開示は、自律移動体の自律移動に関する情報処理方法、情報処理システム及び情報処理装置に関する。
 自動運転車の自動運転システムについて、安全性向上のためにハードウェア又はソフトウェアの多重化を行うことが望まれている。例えば、特許文献1及び2では、自動運転車において、電源、検知機能及び制御機能等の系統を多重化することで安全性を向上させる手法が提案されている。
国際公開第2018/154860号 特許第3881197号公報
 しかしながら、コスト、消費電力、及び空間等の観点から自動運転車等の自律移動体に搭載できるコンピュータには制限があり、自律移動体に搭載される自律移動システムの性能が低い場合がある。このため、上記特許文献1及び2に開示された手法では、自律移動体に搭載されたハードウェア又はソフトウェアの多重化により、自律移動の安全性は向上できても、自律移動の性能面では不十分となる場合がある。
 そこで、本開示は、自律移動の性能を向上できる情報処理方法等を提供する。
 本開示に係る情報処理方法は、コンピュータに実行させる情報処理方法であって、自律移動体の自律移動処理における走行制御処理の前処理である第1前処理の結果である第1処理結果及び前記自律移動体が取得したセンシングデータを前記自律移動体から取得し、前記センシングデータに基づいて前記第1前処理よりも高度な前処理である第2前処理を実行して第2処理結果を取得し、前記第1処理結果と前記第2処理結果との差異を判定し、判定された前記差異にしたがって、前記第1処理結果を第3処理結果に変更させる変更指示を前記自律移動体に出力し、前記第3処理結果は前記第1処理結果又は前記第2処理結果の少なくとも一方に基づいて得られる。
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様に係る情報処理方法等によれば、自律移動の性能を向上できる。
図1は、実施の形態1に係る自動運転車及び遠隔自動運転サーバの一例を示すブロック図である。 図2は、実施の形態1に係る情報処理方法の一例を示すフローチャートである。 図3は、実施の形態1に係る情報処理方法の他の一例を示すフローチャートである。 図4は、実施の形態1の変形例に係る自動運転車、遠隔自動運転サーバ及び遠隔処理マネジメントサーバの一例を示すブロック図である。 図5は、実施の形態1の変形例に係る情報処理方法の一例を示すフローチャートである。 図6は、実施の形態2に係る自動運転車及び遠隔自動運転サーバの一例を示すブロック図である。 図7は、実施の形態2に係る自動運転車の動作の一例を示すフローチャートである。 図8は、実施の形態2の変形例に係る自動運転車、遠隔自動運転サーバ及び遠隔処理マネジメントサーバの一例を示すブロック図である。 図9は、実施の形態2の変形例に係る自動運転車の動作の一例を示すフローチャートである。 図10は、各実施の形態に共通する変形例に係る情報処理方法の一例を示すフローチャートである。
 本開示の一態様に係る情報処理方法は、コンピュータに実行させる情報処理方法であって、自律移動体の自律移動処理における走行制御処理の前処理である第1前処理の結果である第1処理結果及び前記自律移動体が取得したセンシングデータを前記自律移動体から取得し、前記センシングデータに基づいて前記第1前処理よりも高度な前処理である第2前処理を実行して第2処理結果を取得し、前記第1処理結果と前記第2処理結果との差異を判定し、判定された前記差異にしたがって、前記第1処理結果を第3処理結果に変更させる変更指示を前記自律移動体に出力し、前記第3処理結果は前記第1処理結果又は前記第2処理結果の少なくとも一方に基づいて得られる。
 コスト、消費電力、及び空間等の観点から搭載できるコンピュータに制限がある自動運転車等の自律移動体において実行された第1前処理とは別に、コスト、消費電力、及び空間等について制限が少ないサーバ等で第1前処理よりも高度な第2前処理が実行され、第1前処理の結果である第1処理結果と第2前処理の結果である第2処理結果との差異が判定される。そして、当該差異にしたがって、自律移動体の走行制御処理の前処理である第1前処理の結果である第1処理結果を上記高度な第2前処理の結果である第2処理結果に基づく第3処理結果に変更させる変更指示が自律移動体に出力される。或いは、当該差異にしたがって、第1処理結果を、第1処理結果を補正又は制約を付ける等して得られる第3処理結果に変更させる変更指示が自律移動体に出力される。これにより、第1処理結果よりも高度な第3処理結果が自律移動体の走行制御処理に用いられるため、自律移動の性能を向上できる。
 また、前記第1前処理は、第1リソースを用いて実行され、前記第2前処理は、第2リソースを用いて実行され、前記第1リソースと前記第2リソースとは異なるリソースであってもよい。
 このように、第1前処理よりも高度な第2前処理は、第1前処理の実行に用いられる第1リソースとは異なる第2リソースを用いて実行してもよい。そのため、第2前処理は、第1前処理よりも高精度、高速又は低遅延で処理することができる。
 また、前記第1前処理は、第1アルゴリズムを用いて実行され、前記第2前処理は、第2アルゴリズムを用いて実行され、前記第1アルゴリズムと前記第2アルゴリズムとは異なるアルゴリズムであってもよい。
 このように、第1前処理よりも高度な第2前処理は、第1前処理の実行に用いられる第1アルゴリズムとは異なる第2アルゴリズムを用いて実行してもよい。そのため、第2前処理は、第1前処理よりも高精度、高速、低遅延又は多機能な処理が可能となる。
 また、前記第1前処理及び前記第2前処理は、前記自律移動体がおかれる環境を認識する認識処理を含んでいてもよい。
 このように、各前処理は、認識処理を含んでいてもよく、自律移動体の走行制御処理に認識処理の結果が用いられてもよい。そのため、自律移動体の安全性又は快適性を向上できる。
 また、前記第1前処理及び前記第2前処理は、前記自律移動体の走行判断処理を含んでいてもよい。
 このように、各前処理は、自律移動体の走行判断処理を含んでいてもよく、自律移動体の走行制御処理に自律移動体の走行判断処理の結果が用いられてもよい。そのため、自律移動体の安全性又は快適性を向上できる。
 また、前記第3処理結果は、前記第2処理結果であってもよい。
 これによれば、第1前処理よりも高度な第2前処理の結果である第2処理結果が自律移動体の走行制御処理に用いられるため、自律移動の性能を向上できる。
 また、前記第3処理結果は、前記差異に基づいて前記第1処理結果を補正して得られてもよい。
 これによれば、第1前処理よりも高度な第2前処理の結果である第2処理結果と第1処理結果との差異に基づいて第1処理結果を補正して得られる第3処理結果が自律移動体の走行制御に用いられるため、自律移動の性能を向上できる。
 また、前記自律移動体から前記第2前処理の実行の要請を受けた場合に、前記第2前処理を実行して第2処理結果を取得し、前記要請に対する応答として前記変更指示を前記自律移動体に出力してもよい。
 これによれば、例えば、自律移動体が高度な第2前処理の実行を要望するタイミングに、第2前処理を実行することができる。
 また、前記要請は、前記第2前処理のうちの特定の処理を指定する情報を含み、前記特定の処理を実行して前記第2処理結果を取得してもよい。
 これによれば、第2前処理の中から指定された例えば自律移動体が希望する特定の処理を選択的に実行することができる。
 また、前記要請を受けた場合に、前記第2前処理を実行するか否か判定し、前記第2前処理を実行しないと判定した場合、前記要請を拒否又は無視してもよい。例えば、前記第2前処理を実行するか否かの判定を、前記自律移動体が有するリソース、前記自律移動体の移動状態、前記自律移動体の外部環境、時刻及び前記要請に対する応答時間の少なくとも1つに基づいて行ってもよい。
 要請を受けたときに、状況によっては第2前処理を実行しても自律移動の性能を向上させられない場合もある。例えば、自律移動体が有するリソース、自律移動体の移動状態、自律移動体の外部環境、時刻又は要請に対する応答時間によっては、第2前処理を実行し第3処理結果を用いて自律移動体の走行制御処理を行っても自律移動の性能を向上させられない場合がある。このような場合に、要請を拒否又は無視することができる。
 本開示の一態様に係る情報処理システムは、自律移動体と通信可能な情報処理システムであって、前記自律移動体の自律移動における走行制御処理の前処理である第1前処理の結果である第1処理結果及び前記自律移動体が取得したセンシングデータを前記自律移動体から取得し、前記センシングデータに基づいて前記第1前処理よりも高度な前処理である第2前処理を実行して第2処理結果を取得し、前記第1処理結果と前記第2処理結果との差異を判定し、判定された前記差異にしたがって、前記第1処理結果を第3処理結果に変更させる変更指示を前記自律移動体に出力し、前記第3処理結果は前記第1処理結果又は前記第2処理結果の少なくとも一方に基づいて得られる。
 これによれば、自律移動の性能を向上できる情報処理システムを提供できる。
 本開示の一態様に係る情報処理装置は、自律移動体に搭載される情報処理装置であって、前記自律移動体の自律運転における走行制御処理の前処理である第1前処理を実行して第1処理結果を取得し、前記自律移動体が取得したセンシングデータを外部の装置に出力し、前記センシングデータに基づいて前記第1前処理よりも高度な前処理である第2前処理を実行して得られる第2処理結果を前記外部の装置から取得し、前記第1処理結果と前記第2処理結果との差異を判定し、判定された前記差異にしたがって、前記第1処理結果を第3処理結果に変更し、前記第3処理結果は前記第1処理結果又は前記第2処理結果の少なくとも一方に基づいて得られる。
 例えば、コスト、消費電力、及び空間等の観点から搭載できるコンピュータに制限がある自動運転車等の自律移動体において実行された第1前処理とは別に、コスト、消費電力、及び空間等について制限が少ないサーバ等の外部の装置で第1前処理よりも高度な第2前処理が実行されて第2前処理の結果である第2処理結果が自動運転車に送信され、第1前処理の結果である第1処理結果と第2前処理の結果である第2処理結果との差異が自動運転車において判定される。そして、当該差異にしたがって、自律移動体の走行制御処理の前処理である第1前処理の結果である第1処理結果が上記高度な第2前処理の結果である第2処理結果に基づく第3処理結果に変更される。或いは、当該差異にしたがって、第1処理結果が、第1処理結果を補正又は制約を付ける等して得られる第3処理結果に変更される。これにより、第1処理結果よりも高度な第3処理結果が自律移動体の走行制御処理に用いられるため、自律移動の性能を向上できる。
 また、前記第2前処理の実行の要請を前記外部の装置に出力し、前記要請に対する応答として前記第2処理結果を取得してもよい。
 これによれば、例えば自律移動体が高度な第2前処理の実行を要望するタイミングに、外部の装置に第2前処理を実行させることができる。
 また、前記自律移動体が有するリソース、前記自律移動体の移動状態、前記自律移動体の外部環境、時刻及び前記外部の装置への問合せに対する応答時間の少なくとも1つに基づいて前記要請を前記外部の装置に出力してもよい。
 状況によっては第2前処理を実行しても自律移動の性能を向上させられない場合もある。例えば、自律移動体が有するリソース、自律移動体の移動状態、自律移動体の外部環境、時刻又は要請に対する応答時間によっては、第2前処理が実行され第3処理結果を用いて自律移動体の走行制御処理を行っても自律移動の性能を向上させられない場合がある。このような場合に、要請を出力しないようにすることができる。また、言い換えると、状況によっては第2前処理を実行して自律移動の性能を向上させられる場合がある。このような自律移動の性能を向上させられる状況になったときには要請を出力することができる。
 また、前記要請は、前記第2前処理のうちの特定の処理を指定する情報を含み、前記第2処理結果は、前記特定の処理を実行して得られる結果であってもよい。
 これによれば、第2前処理の中から例えば自律移動体が希望する特定の処理を指定して、外部の装置に特定の処理を選択的に実行させることができる。
 また、前記センシングデータの出力又は前記要請の出力から所定の時間以上経過後に前記第2処理結果を取得した場合、(A)前記差異の判定を実行しない、又は、(B)前記第1処理結果のうちの一部の処理結果と前記第2処理結果のうちの当該一部の処理結果に対応する処理結果との差異を判定し、判定された当該差異にしたがって、前記第1処理結果のうちの当該一部の処理結果を前記第3処理結果に変更してもよい。
 これによれば、センシングデータの出力又は要請の出力から所定の時間以上経過後に第2処理結果を取得した場合、外部の装置との通信遅延が発生している可能性がある。このようなときに、差異の判定を実行しないか、又は、遅延の影響を受けないような一部の処理結果についてのみ差異の判定を実行することで、情報処理装置の処理負荷を軽減することができる。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。
 (実施の形態1)
 図1から図3を用いて実施の形態1について説明する。
 図1は、実施の形態1に係る自動運転車(具体的には自動運転車に搭載された情報処理装置20)及び遠隔自動運転サーバ10の一例を示すブロック図である。
 自動運転車は、例えば、人間が運転操作を行わなくても自動で走行できる車両である。自動運転車は、カメラ、サーモグラフィ、レーダ、LiDAR(Light Detection and Ranging)、ソナー、GPS(Global Positioning System)又はIMU(Inertial Measurement Unit)等のセンサを備え、これらで周囲の環境等を認識して自律的に走行することができる。なお、自動運転車は、自律移動体の一例である。自律移動体は、移動ロボット、ドローンのような飛行体、又は船舶であってもよい。
 遠隔自動運転サーバ10は、自動運転車と無線通信を行い、自動運転車の自動運転について遠隔で制御することができる。なお、自動運転は、自律移動の一例である。
 自動運転車は、情報処理装置20を搭載している。情報処理装置20は、プロセッサ、メモリ及び通信インタフェース等を含むコンピュータである。メモリは、ROM(Read Only Memory)及びRAM(Random Access Memory)等であり、プロセッサにより実行されるプログラムを記憶することができる。情報処理装置20は、センシングデータ取得部21、センシングデータ送信部22、車両自動運転システム23、第1処理結果送信部24、処理結果変更部25、通信確認部26及び走行制限部27を備える。センシングデータ取得部21、センシングデータ送信部22、車両自動運転システム23、第1処理結果送信部24、処理結果変更部25、通信確認部26及び走行制限部27は、メモリに格納されたプログラムを実行するプロセッサ等によって実現される。
 センシングデータ取得部21は、自動運転車が備えるカメラ、サーモグラフィ、レーダ、LiDAR、ソナー、GPS又はIMU等のセンサによるセンシングデータを取得する。なお、センシングデータ取得部21は、他の車両又は信号機等に設置されたセンサによるセンシングデータを取得してもよい。
 センシングデータ送信部22は、センシングデータ取得部21によって取得されたセンシングデータを遠隔自動運転サーバ10へ送信する。センシングデータ送信部22は、例えば、情報処理装置20が備える通信インタフェース等を介してセンシングデータを遠隔自動運転サーバ10へ送信する。センシングデータ送信部22は、例えば、データ圧縮技術及び5G等の高速伝送技術を利用することで、センシングデータを低遅延で送信することが可能である。
 車両自動運転システム23は、センシングデータ取得部21によって取得されたセンシングデータに基づいて、自動運転車の自動運転処理における走行制御処理の前処理である第1前処理を実行して第1処理結果を取得する。第1処理結果は、第1前処理の結果である。例えば、前処理は、認識処理又は自動運転車の走行判断処理を含む。認識処理は、自動運転車がおかれる環境を認識する処理を含む。当該環境は、自己位置、周辺の物体、路面状態、天候、又は道路状況などを含む。具体的には、前処理は、自動運転車の自己位置の推定処理、自動運転車の周囲の物体の検出処理、自動運転車の周囲の物体の移動予測処理、自動運転車の走行判断処理又は自動運転車の経路計画処理等を含む。例えば、車両自動運転システム23は、学習モデルを用いてこれらの処理を行ってもよい。例えば、処理結果は、認識結果又は自動運転車の走行判断結果を含む。具体的には、処理結果は、自動運転車の自己位置の推定結果、自動運転車の周囲の物体の検出結果、自動運転車の周囲の物体の移動予測結果、自動運転車の走行判断結果又は自動運転車の経路計画結果等を含む。
 第1処理結果送信部24は、車両自動運転システム23によって実行された第1前処理の結果である第1処理結果を遠隔自動運転サーバ10へ送信する。第1処理結果送信部24は、例えば、情報処理装置20が備える通信インタフェース等を介して第1処理結果を遠隔自動運転サーバ10へ送信する。
 なお、センシングデータ送信部22は、車両自動運転システム23が第1前処理を実行する際に用いたセンシングデータのみを送信してもよいし、車両自動運転システム23が第1前処理を実行する際に用いたセンシングデータだけでなく、第1前処理を実行する際に用いなかったセンシングデータ(例えば車両自動運転システム23では扱いきれなかった解像度の高いセンシングデータ等)も送信してもよい。
 処理結果変更部25は、遠隔自動運転サーバ10から受信した変更指示に基づいて、第1処理結果を第3処理結果に変更する。つまり、処理結果変更部25によって、第1処理結果が第3処理結果に変更されることで、自動運転車の走行制御に本来用いられるはずだった第1処理結果の代わりに第3処理結果が用いられるようになる。
 通信確認部26は、自動運転車と遠隔自動運転サーバ10との無線通信の通信状態を確認する。例えば、通信確認部26は、情報処理装置20が備える通信インタフェース等を介して問合せを遠隔自動運転サーバ10へ送信し、当該問合せに対する応答に応じて通信状態を確認する。具体的には、通信確認部26は、問合せに対する応答がない場合、通信接続されていないと判断でき、問合せに対する応答に遅延がある場合、通信遅延が発生していると判断できる。通信確認部26は、通信接続されていないと判断した場合、又は、通信遅延が発生していると判断した場合、走行を制限する走行制限指示を走行制限部27へ通知する。
 走行制限部27は、走行制限指示に基づいて自動運転車の走行を制限する。具体的には、走行制限部27は、自動運転車を減速させたり、停止させたり、回避マージンを拡大させたりする。これにより、自動運転車と遠隔自動運転サーバ10との通信が途切れた場合でも、自動運転車において安全を担保できる。
 遠隔自動運転サーバ10は、プロセッサ、メモリ及び通信インタフェース等を含むコンピュータである。遠隔自動運転サーバ10は、自動運転車と無線通信可能な情報処理システムの一例である。メモリは、ROM及びRAM等であり、プロセッサにより実行されるプログラムを記憶することができる。遠隔自動運転サーバ10は、センシングデータ取得部11、疑似自動運転システム12、第1処理結果取得部13、差異判定部14及び変更指示出力部15を備える。センシングデータ取得部11、疑似自動運転システム12、第1処理結果取得部13、差異判定部14及び変更指示出力部15は、メモリに格納されたプログラムを実行するプロセッサ等によって実現される。なお、遠隔自動運転サーバ10を構成する構成要素は、複数のサーバに分散して配置されてもよい。
 センシングデータ取得部11は、自動運転車から自動運転車が取得したセンシングデータを取得する。例えば、センシングデータ取得部11は、自動運転車から送信され、遠隔自動運転サーバ10が備える通信インタフェース等を介して受信されたセンシングデータを取得する。
 疑似自動運転システム12は、センシングデータ取得部11によって取得されたセンシングデータに基づいて自動運転車の自動運転における走行制御処理の前処理である第2前処理を実行して第2処理結果を取得する。第2前処理は、第1前処理よりも高度な前処理である。例えば、疑似自動運転システム12は、学習モデルを用いて第2前処理を行ってもよい。第2処理結果は、第2前処理の結果である。
 例えば、コスト、消費電力、及び空間等の観点から自動運転車に搭載できるコンピュータに制限がある。このため、車両自動運転システム23で使用されるリソースが減らされたりアルゴリズムが低計算量化されたりしている。ここで、リソースは、プロセッサの処理量若しくは処理速度、メモリ容量、又は電力等である。一方で、遠隔自動運転サーバ10は、コスト、消費電力、及び空間等について制限が少ない。このため、疑似自動運転システム12で使用されるリソースを増やしたりアルゴリズムを高計算量化したりすることができる。したがって、遠隔自動運転サーバ10で実行される第2前処理を、自動運転車に搭載された情報処理装置20で実行される第1前処理よりも高度なものとすることができる。例えば、第1前処理は、第1リソース(例えば自動運転車における小さなリソース)を用いて実行され、第2前処理は、第1リソースと異なる第2リソース(例えば遠隔自動運転サーバ10における大きなリソース)を用いて実行されることで、第2前処理を第1前処理よりも高度な前処理とすることができる。すなわち、第2リソースは第1リソースよりも豊富である。また、例えば、第1前処理は、第1アルゴリズム(例えば自動運転車において扱うことができる計算量が少ないアルゴリズム)を用いて実行され、第2前処理は、第1アルゴリズムと異なる第2アルゴリズム(例えば遠隔自動運転サーバ10において扱うことができる計算量が多いアルゴリズム)を用いて実行されることで、第2前処理を第1前処理よりも高度な前処理とすることができる。すなわち、第2アルゴリズムは第1アルゴリズムよりも高度である。なお、第1前処理は、第1リソース及び第1アルゴリズムの両方を用いて実行され、第2前処理は、第2リソース及び第2アルゴリズムの両方を用いて実行されてもよい。
 第1処理結果取得部13は、自動運転車から第1処理結果を取得する。例えば、第1処理結果取得部13は、自動運転車から送信され、遠隔自動運転サーバ10が備える通信インタフェース等を介して受信された第1処理結果を取得する。
 差異判定部14は、第1処理結果取得部13によって取得された第1処理結果と疑似自動運転システム12によって取得された第2処理結果との差異を判定する。差異判定部14の動作の詳細については後述する。
 変更指示出力部15は、差異判定部14によって判定された差異にしたがって、第1処理結果を第3処理結果に変更させる変更指示を自動運転車に出力する。つまり、変更指示出力部15によって、第1処理結果を第3処理結果に変更するように自動運転車に対して指示されることで、自動運転車の走行制御に本来用いられるはずだった第1処理結果の代わりに第3処理結果が用いられるようになる。第3処理結果の具体例については後述する。
 次に、遠隔自動運転サーバ10の動作について、図2を用いて説明する。
 図2は、実施の形態1に係る情報処理方法の一例を示すフローチャートである。例えば、実施の形態1に係る情報処理方法は、遠隔自動運転サーバ10が備えるコンピュータ(具体的にはプロセッサ)により実行される方法である。このため、図2は、遠隔自動運転サーバ10の動作を示すフローチャートでもある。
 まず、遠隔自動運転サーバ10は、自動運転車の自動運転処理における走行制御処理の前処理である第1前処理の結果である第1処理結果及び自動運転車が取得したセンシングデータを自動運転車から取得する(ステップS11)。例えば、遠隔自動運転サーバ10は、自動運転車がセンシングデータから自動運転車の周囲の障害物の検出処理(例えば障害物数の検出又は障害物位置の検出等)を行って取得した当該検出処理結果を取得する。また、例えば、遠隔自動運転サーバ10は、自動運転車がセンシングデータから自動運転車の位置の推定処理を行って取得した当該推定処理結果を取得する。また、例えば、遠隔自動運転サーバ10は、自動運転車がセンシングデータから自動運転車の走行判断処理(例えば走行を続けるか停止するか等の判断)を行って取得した当該走行判断処理結果を取得する。
 次に、遠隔自動運転サーバ10は、センシングデータに基づいて第1前処理よりも高度な前処理である第2前処理を実行して第2処理結果を取得する(ステップS12)。例えば、遠隔自動運転サーバ10は、センシングデータから自動運転車の周囲の障害物の検出処理(例えば障害物数の検出又は障害物位置の検出等)を行って当該検出処理結果を取得する。また、例えば、遠隔自動運転サーバ10は、センシングデータから自動運転車の位置の推定処理を行って、当該推定処理結果を取得する。また、例えば、遠隔自動運転サーバ10は、センシングデータから自動運転車の走行判断処理(例えば走行を続けるか停止するか等の判断)を行って当該走行判断処理結果を取得する。
 次に、遠隔自動運転サーバ10は、第2前処理に処理遅延があるか否かを判定する(ステップS13)。例えば、遠隔自動運転サーバ10において第2前処理のためのリソースの占有率が高く第2前処理に処理遅延が発生していることがある。
 遠隔自動運転サーバ10は、第2前処理に処理遅延がある場合(ステップS13でYes)、自動運転車の走行を制限する指示を出力する(ステップS14)。例えば、自動運転車の走行制御はセンシングデータが取得されたタイミングからなるべく遅延なく行われるとよい。センシングデータが取得された後、前処理の結果を用いて走行制御を行うまでに時間がかかると、センシングデータが取得された地点から自動運転車が大きく移動してしまい、センシングデータに基づいて実行される前処理の結果が、センシングデータが取得された地点からずれた自動運転車の現在位置では有効ではなくなってしまう場合があるためである。したがって、第2前処理に処理遅延がある場合には、自動運転車は、遠隔自動運転サーバ10による高度な第2前処理の結果を有効に活用できず、自動運転車が危険な状態になるおそれがあるため、遠隔自動運転サーバ10は、自動運転車の走行を制限する指示を自動運転車に出力する。自動運転車の走行を制限する指示は、例えば、自動運転車を減速させたり、停止させたり、回避マージンを拡大させたりする指示である。なお、遠隔自動運転サーバ10は、第2前処理に処理遅延がある場合に、自動運転車へアラートを通知してもよい。
 遠隔自動運転サーバ10は、第2前処理に処理遅延がない場合(ステップS13でNo)、第1処理結果と第2処理結果との差異を判定する(ステップS15)。例えば、遠隔自動運転サーバ10は、第1処理結果が示す障害物数と第2処理結果が示す障害物数との差異を判定する。また、例えば、遠隔自動運転サーバ10は、第1処理結果が示す障害物の位置と第2処理結果が示す障害物の位置との差異(例えば第2処理結果が示す障害物の位置が正しいとしたときの第1処理結果が示す障害物の位置のRMS(Root Mean Square)誤差値)を判定する。また、例えば、遠隔自動運転サーバ10は、第1処理結果が示す自動運転車の位置と第2処理結果が示す自動運転車の位置との差異(例えば第2処理結果が示す自動運転車の位置が正しいとしたときの第1処理結果が示す自動運転車の位置のRMS誤差値)を判定する。また、例えば、遠隔自動運転サーバ10は、第1処理結果が示す自動運転車の走行判断処理結果と第2処理結果が示す自動運転車の走行判断処理結果との差異(例えば一定期間において第1処理結果が示す走行判断処理結果と第2処理結果が示す走行判断処理結果とが異なる結果となった回数)を判定する。なお、これらは、差異の判定の一例として例示しているだけであり、これらに限定されるものではない。
 次に、遠隔自動運転サーバ10は、判定された差異が所定の条件を満たすか否かを判定する(ステップS16)。所定の条件は、例えば、判定された差異の大きさに関する条件である。例えば、遠隔自動運転サーバ10は、第1処理結果が示す障害物数と第2処理結果が示す障害物数とが異なっているか否かを判定する。また、例えば、遠隔自動運転サーバ10は、RMS誤差値が所定の閾値以上であるか否かを判定する。また、例えば、遠隔自動運転サーバ10は、一定期間において第1処理結果が示す走行判断処理結果と第2処理結果が示す走行判断処理結果とが異なる結果となった回数が所定の閾値以上であるか否かを判定する。なお、これらは、所定の条件の一例として例示しているだけであり、これらに限定されるものではない。
 遠隔自動運転サーバ10は、判定された差異が所定の条件を満たす場合(ステップS16でYes)、第1処理結果を第3処理結果に変更させる変更指示を自動運転車に出力する(ステップS17)。判定された差異が所定の条件を満たす場合とは、例えば、第1処理結果が示す障害物数と第2処理結果が示す障害物数とが異なっている場合、RMS誤差値が所定の閾値以上である場合、一定期間において第1処理結果が示す走行判断処理結果と第2処理結果が示す走行判断処理結果とが異なる結果となった回数が所定の閾値以上である場合等である。
 第3処理結果は、第1処理結果又は第2処理結果の少なくとも一方に基づいて得られる。第2処理結果は、高度な第2前処理の結果であることから、第2処理結果に基づく処理の結果である第3処理結果は高度な処理結果となる。例えば、第3処理結果は、第2処理結果であってもよい。これにより、第1処理結果が自動運転車の走行制御に用いられず、高度な第2前処理の結果である第2処理結果が自動運転車の走行制御に用いられることになり、自動運転の性能を向上できる。また、例えば、第3処理結果は、判定された差異に基づいて第1処理結果を補正して得られてもよい。例えば、第2処理結果と第1処理結果との差異に基づいて第1処理結果のうちの必要な範囲だけ、又は、処理可能な範囲だけが補正される。これにより、第1処理結果が自動運転車の走行制御に用いられず、高度な第2前処理の結果である第2処理結果と第1処理結果との差異に基づいて第1処理結果を補正したもの(つまり補正後の第1処理結果)が自動運転車の走行制御に用いられることになり、自動運転の性能を向上できる。
 なお、遠隔自動運転サーバ10は、判定された差異が所定の条件を満たす場合に(ステップS16でYes)、自動運転車の走行を制限する指示を出力してもよい。また、遠隔自動運転サーバ10は、この場合に、自動運転車の遠隔監視者又は乗員等へ異常を通知してもよい。
 遠隔自動運転サーバ10は、判定された差異が所定の条件を満たさない場合(ステップS16でNo)、上記変更指示を自動運転車に出力しない(ステップS18)。判定された差異が所定の条件を満たさない場合とは、例えば、第1処理結果が示す障害物数と第2処理結果が示す障害物数とが同じ場合、RMS誤差値が所定の閾値未満である場合、一定期間において第1処理結果が示す走行判断処理結果と第2処理結果が示す走行判断処理結果とが異なる結果となった回数が所定の閾値未満である場合等である。この場合、例えば第1処理結果が第2処理結果に対して劣っておらず、自動運転車は、変更指示を受信せずに、第2処理結果に対して劣っていない第1処理結果を用いて自動運転車の走行制御を行うことができる。言い換えると、第1処理結果が第2処理結果に劣っていない又は第1処理結果の第2処理結果に対する劣化度が許容範囲内であることが確認された上で、第1処理結果を自動運転車の走行制御に用いることができる。
 なお、自動運転車は、通信遅延により変更指示の受信が遅れた場合、受信した変更指示を無視して自動運転車の走行を制限してもよい。上述した第2前処理に処理遅延がある場合と同じように、自動運転車は、第1処理結果を第3処理結果に変更しても第3処理結果を有効に活用できず、自動運転車が危険な状態になるおそれがあるためである。
 なお、自動運転車が取得するセンシングデータは天候の影響を受けやすく、天候の影響を受けたセンシングデータを用いて車両自動運転システム23が第1前処理を実行しても正しい第1処理結果を得られない場合がある。例えば、天候が雨又は曇り等であり、自動運転車の周囲の視界が悪い場合には、自動運転車の周囲に存在する障害物の認識を正しく行うことができないおそれがある。そこで、天候が車両自動運転システム23による自動運転に適しているか否かが判断されてもよい。これについて、図3を用いて説明する。
 図3は、実施の形態1に係る情報処理方法の他の一例を示すフローチャートである。
 図3に示されるフローチャートは、図2に示されるフローチャートと比べてステップS19が追加されている点が異なる。その他の点(つまりステップS11からステップS18)は、図2に示されるものと同じであるため説明は省略する。
 遠隔自動運転サーバ10は、第2前処理に処理遅延がない場合(ステップS13でNo)、天候が車両自動運転システム23による自動運転に適しているか否かを判定する(ステップS19)。例えば、天候が晴れの場合には天候が車両自動運転システム23による自動運転に適していると判定され、天候が雨又は曇りの場合には車両自動運転システム23による自動運転に適していないと判定される。
 遠隔自動運転サーバ10は、天候が車両自動運転システム23による自動運転に適していない場合(ステップS19でNo)、ステップS15での第1処理結果と第2処理結果との差異の判定処理等を行わずに、変更指示を出力する(ステップS17)。天候が車両自動運転システム23による自動運転に適していない場合、わざわざ差異の判定を行わずとも、第1処理結果が第2処理結果に対して劣った結果となることが想定されるためである。
 遠隔自動運転サーバ10は、天候が車両自動運転システム23による自動運転に適している場合(ステップS19でYes)、図2での説明と同じようにステップS15以降の処理が行われる。天候が車両自動運転システム23による自動運転に適している場合には、第1処理結果が第2処理結果に対して劣った結果とならない可能性があり、差異の判定を行って変更指示を出力するか否かを判断したほうがよいためである。
 このように、天候が車両自動運転システム23による自動運転に適しているか否かが判断されてもよい。
 以上説明したように、コスト、消費電力、及び空間等の観点から搭載できるコンピュータに制限がある自動運転車(具体的には自動運転車に搭載された情報処理装置20)において実行された第1前処理とは別に、コスト、消費電力、及び空間等について制限が少ない遠隔自動運転サーバ10で第1前処理よりも高度な第2前処理が実行され、第1前処理の結果である第1処理結果と第2前処理の結果である第2処理結果との差異が判定される。そして、当該差異にしたがって、自動運転車の走行制御処理の前処理である第1前処理の結果である第1処理結果を上記高度な第2前処理の結果である第2処理結果に基づく第3処理結果に変更させる変更指示が自動運転車に出力される。或いは、当該差異にしたがって、第1処理結果を、第1処理結果を補正又は制約を付ける等して得られる第3処理結果に変更させる変更指示が自動運転車に出力される。これにより、第1処理結果よりも高度な第3処理結果が自動運転車の走行制御処理に用いられるため、自動運転の性能を向上できる。例えば、自動運転の性能が向上されることで、自動運転車の走行可能エリアを拡大することができる。
 (実施の形態1の変形例)
 例えば、遠隔自動運転サーバでの第2前処理の実行等が自動運転車からの要請があったときに開始されてもよい。これについて、実施の形態1の変形例として、図4及び図5を用いて説明する。
 図4は、実施の形態1の変形例に係る自動運転車(具体的には自動運転車に搭載された情報処理装置20a)、遠隔自動運転サーバ10a及び遠隔処理マネジメントサーバ30の一例を示すブロック図である。
 情報処理装置20aは、遠隔処理要請部28をさらに備え、センシングデータ取得部21、センシングデータ送信部22及び第1処理結果送信部24の代わりにセンシングデータ取得部21a、センシングデータ送信部22a及び第1処理結果送信部24aを備える点が、実施の形態1における情報処理装置20と異なる。その他の点は、情報処理装置20におけるものと同じであるため説明は省略する。なお、遠隔処理要請部28は、他の構成要素と同じようにメモリに格納されたプログラムを実行するプロセッサ等によって実現される。
 遠隔処理要請部28は、第2前処理の実行の要請を、遠隔処理マネジメントサーバ30を介して遠隔自動運転サーバ10aに出力する。例えば、第2前処理を実行する機能を有する遠隔自動運転サーバ10aが複数存在する場合、遠隔処理マネジメントサーバ30の遠隔処理マネジメント部31は、上記要請を受けたときに、複数の遠隔自動運転サーバ10aに対して第2前処理の実行が可能か否かを問合せ、問合せの結果に応じて複数の遠隔自動運転サーバ10aの中から第2前処理の実行が可能な遠隔自動運転サーバ10aを選択する。遠隔処理マネジメント部31は、選択した遠隔自動運転サーバ10aを自動運転車に通知する。遠隔処理要請部28は、センシングデータ取得部21aにセンシングデータを取得するように指示し、センシングデータ送信部22aに、選択された遠隔自動運転サーバ10aへセンシングデータを送信するように指示し、第1処理結果送信部24aに、選択された遠隔自動運転サーバ10aへ第1処理結果を送信するように指示する。
 センシングデータ取得部21aは、遠隔処理要請部28からの指示を受けることで自動運転車が備えるセンサによるセンシングデータを取得する。センシングデータ取得部21aに関するその他の点については、センシングデータ取得部21と同じであるため説明は省略する。
 センシングデータ送信部22aは、センシングデータ取得部21aによって取得されたセンシングデータを選択された遠隔自動運転サーバ10aへ送信する。センシングデータ送信部22aに関するその他の点については、センシングデータ送信部22と同じであるため説明は省略する。
 第1処理結果送信部24aは、車両自動運転システム23aによって実行された第1前処理の結果である第1処理結果を選択された遠隔自動運転サーバ10aへ送信する。第1処理結果送信部24aに関するその他の点については、第1処理結果送信部24と同じであるため説明は省略する。
 遠隔自動運転サーバ10aは、要請取得部16及び第2前処理実行判定部17をさらに備え、センシングデータ取得部11及び疑似自動運転システム12の代わりにセンシングデータ取得部11a及び疑似自動運転システム12aを備える点が、実施の形態1における遠隔自動運転サーバ10と異なる。その他の点は、遠隔自動運転サーバ10におけるものと同じであるため説明は省略する。なお、要請取得部16及び第2前処理実行判定部17は、他の構成要素と同じようにメモリに格納されたプログラムを実行するプロセッサ等によって実現される。
 要請取得部16は、自動運転車から第2前処理の実行の要請を取得する。例えば、要請取得部16は、自動運転車から第2前処理の実行の要請を、遠隔処理マネジメントサーバ30を介して取得する。
 第2前処理実行判定部17は、要請を受けた場合に、第2前処理を実行するか否か判定する。例えば、第2前処理実行判定部17は、遠隔自動運転サーバ10aのタスク状況又はリソース状況に基づいて第2前処理を実行するか否か判定してもよい。例えば、遠隔自動運転サーバ10aにおいて多くのタスクが実行されていたり、リソースが少なくなっていたりする場合には、第2前処理を実行しないと判定する。また、例えば、第2前処理実行判定部17は、第2前処理を実行するか否かの判定を、自動運転車が有するリソース、自動運転車の移動状態、自動運転車の外部環境、時刻及び要請に対する応答時間の少なくとも1つに基づいて行ってもよい。移動状態は、自動運転車の移動速度、加速度、減速度、移動方向(舵角)等である。例えば、自動運転車が有するリソースが不十分な場合、自動運転車の移動状態が例えば車速が早い状態、加速度が大きい状態若しくはステア角が大きい状態等である場合、自動運転車の外部環境が障害物の位置が近い環境、数が多い環境若しくは種類が移動体である環境、自動運転車の位置が交通量の多い場所(例えば交差点等)となっている環境、周辺の明度が暗い環境、天候が雨若しくは曇りの環境等である場合、時刻が夜の時刻である場合、要請に対する応答時間が短い場合等には、第2前処理を実行すると判定する。また、例えば、自動運転車が有するリソースが十分な場合、自動運転車の移動状態が例えば車速が遅い状態、加速度が小さい状態若しくはステア角が小さい状態等である場合、自動運転車の外部環境が障害物の位置が遠い環境、数が少ない環境若しくは種類が移動しない物体である環境、自動運転車の位置が交通量の少ない場所となっている環境、周辺の明度が明るい環境、天候が晴れている環境等である場合、時刻が昼の時刻である場合、要請に対する応答時間が長い場合等には、第2前処理を実行しないと判定する。
 このように、要請を受けたときに、状況によっては第2前処理を実行しても自動運転の性能を向上させられない場合もある。例えば、自動運転車が有するリソース、自動運転車の移動状態、自動運転車の外部環境、時刻又は要請に対する応答時間によっては、第2前処理を実行し第3処理結果を用いて自動運転車の走行制御を行っても自動運転の性能を向上させられない場合がある。このような場合に、遠隔自動運転サーバ10aは、要請を拒否又は無視することができる。
 センシングデータ取得部11aは、自動運転車から要請を受けた場合に、第2前処理を実行すると判定されたときにセンシングデータを取得する。センシングデータ取得部11aに関するその他の点については、センシングデータ取得部11と同じであるため説明は省略する。
 疑似自動運転システム12aは、自動運転車から要請を受けた場合に、第2前処理を実行すると判定されたときにセンシングデータ取得部11aによって取得されたセンシングデータに基づいて第2前処理を実行して第2処理結果を取得する。疑似自動運転システム12aに関するその他の点については、疑似自動運転システム12と同じであるため説明は省略する。
 次に、遠隔自動運転サーバ10aの動作について、図5を用いて説明する。
 図5は、実施の形態1の変形例に情報処理方法の一例を示すフローチャートである。例えば、実施の形態1の変形例に係る情報処理方法は、遠隔自動運転サーバ10aが備えるコンピュータ(具体的にはプロセッサ)により実行される方法である。このため、図5は、遠隔自動運転サーバ10aの動作を示すフローチャートでもある。
 図5に示されるフローチャートは、図2に示されるフローチャートと比べてステップS21、ステップS22及びステップS23が追加されている点が異なる。その他の点(つまりステップS11からステップS18)は、図2に示されるものと同じであるため説明は省略する。
 遠隔自動運転サーバ10aは、自動運転車から第2前処理の実行の要請を受けたか否かを判定する(ステップS21)。
 遠隔自動運転サーバ10aは、自動運転車から第2前処理の実行の要請を受けていない場合(ステップS21でNo)、要請を受けるまでステップS21の処理を繰り返す。
 遠隔自動運転サーバ10aは、自動運転車から第2前処理の実行の要請を受けた場合(ステップS21でYes)、第2前処理を実行するか否か判定する(ステップS22)。
 遠隔自動運転サーバ10aは、第2前処理を実行しないと判定した場合(ステップS22でNo)、要請を拒否又は無視する(ステップS23)。これにより、例えば、遠隔処理マネジメントサーバ30は、要請を拒否又は無視した遠隔自動運転サーバ10aを、第2前処理を実行させるサーバとして選択せず、別の遠隔自動運転サーバ10aから第2前処理を実行させるサーバを選択する。なお、全ての遠隔自動運転サーバ10aが要請を拒否又は無視した場合、遠隔処理マネジメントサーバ30は、自動運転車に対して走行を制限するように指示してもよい。
 遠隔自動運転サーバ10aは、第2前処理を実行すると判定した場合(ステップS22でYes)、図2での説明と同じようにステップS11以降の処理が行われる。
 なお、自動運転車からの要請は、第2前処理のうちの特定の処理を指定する情報を含んでいてもよい。この場合、遠隔自動運転サーバ10aは、ステップS12において特定の処理を実行して第2処理結果を取得する。自動運転車の移動状態又は外部環境等によっては、特定の処理のみ(例えば障害物検出処理のみ、走行判断処理のみ等)について、差異の判定を行えばよい場合があるためである。これにより、遠隔自動運転サーバ10aは、第2前処理の中から指定された例えば自動運転車が希望する特定の処理を選択的に実行することができる。なお、障害物検出のみが行われる場合、障害物検出が行われるエリアが限定されてもよい。例えば、自動運転車が車線変更をする場合、車線変更先のレーンについて障害物検出が行われてもよい。
 なお、遠隔処理マネジメントサーバ30は、複数の自動運転車から要請を受けた場合に、各自動運転車が有するリソース、各自動運転車の移動状態、各自動運転車の外部環境、時刻及び要請に対する応答時間の少なくとも1つに基づいて優先的に要請を受け付ける自動運転車を選択してもよい。
 以上説明したように、遠隔自動運転サーバ10aでの第2前処理の実行等が自動運転車からの要請があったときに開始されてもよい。これにより、遠隔自動運転サーバ10aは、自動運転車が高度な第2前処理の実行を要望するタイミングに、第2前処理を実行することができる。
 (実施の形態2)
 実施の形態1では、第1処理結果と第2処理結果との差異の判定が遠隔自動運転サーバ10で行われる例について説明したが、当該判定は自動運転車に搭載された情報処理装置で行われてもよい。これについて、実施の形態2として、図6及び図7を用いて説明する。
 図6は、実施の形態2に係る自動運転車(具体的には自動運転車に搭載された情報処理装置200)及び遠隔自動運転サーバ100の一例を示すブロック図である。
 遠隔自動運転サーバ100は、自動運転車と無線通信を行う。
 自動運転車は、情報処理装置200を搭載している。情報処理装置200は、プロセッサ、メモリ及び通信インタフェース等を含むコンピュータである。メモリは、ROM及びRAM等であり、プロセッサにより実行されるプログラムを記憶することができる。情報処理装置200は、センシングデータ取得部201、センシングデータ送信部202、車両自動運転システム203、第2処理結果取得部204、差異判定部205、処理結果変更部206、通信確認部207及び走行制限部208を備える。センシングデータ取得部201、センシングデータ送信部202、車両自動運転システム203、第2処理結果取得部204、差異判定部205、処理結果変更部206、通信確認部207及び走行制限部208は、メモリに格納されたプログラムを実行するプロセッサ等によって実現される。
 センシングデータ取得部201、センシングデータ送信部202、車両自動運転システム203、通信確認部207及び走行制限部208の機能は、実施の形態1におけるセンシングデータ取得部21、センシングデータ送信部22、車両自動運転システム23、通信確認部26及び走行制限部27の機能と基本的には同じであるため説明は省略する。
 第2処理結果取得部204は、センシングデータに基づいて第1前処理よりも高度な前処理である第2前処理を実行して得られる第2処理結果を遠隔自動運転サーバ100から取得する。例えば、第2処理結果取得部204は、遠隔自動運転サーバ100から送信され、自動運転車が備える通信インタフェース等を介して受信された第2処理結果を取得する。
 差異判定部205は、車両自動運転システム203によって取得された第1処理結果と第2処理結果取得部204によって取得された第2処理結果との差異を判定する。実施の形態2における差異判定部205と実施の形態1における差異判定部14とは、情報処理装置200に備えられているか、遠隔自動運転サーバ10に備えられているかが違うだけで、これらの機能は基本的に同じである。このため、差異判定部205の詳細な説明は省略する。
 処理結果変更部206は、判定された差異にしたがって、第1処理結果を第3処理結果に変更する。実施の形態1では、処理結果変更部25は、遠隔自動運転サーバ10からの変更指示に応じて第1処理結果を第3処理結果に変更する例について説明したが、実施の形態2では、処理結果変更部206は、自動運転車自身が判定した差異にしたがって、第1処理結果を第3処理結果に変更する。
 遠隔自動運転サーバ100は、プロセッサ、メモリ及び通信インタフェース等を含むコンピュータである。遠隔自動運転サーバ100は、情報処理装置200の外部の装置の一例である。メモリは、ROM及びRAM等であり、プロセッサにより実行されるプログラムを記憶することができる。遠隔自動運転サーバ100は、センシングデータ取得部101、疑似自動運転システム102及び第2処理結果送信部103を備える。センシングデータ取得部101、疑似自動運転システム102、第2処理結果送信部103は、メモリに格納されたプログラムを実行するプロセッサ等によって実現される。なお、遠隔自動運転サーバ100を構成する構成要素は、複数のサーバに分散して配置されてもよい。
 センシングデータ取得部101及び疑似自動運転システム102の機能は、実施の形態1におけるセンシングデータ取得部11及び疑似自動運転システム12の機能と基本的には同じであるため説明は省略する。
 第2処理結果送信部103は、疑似自動運転システム102によって実行された第2前処理の結果である第2処理結果を自動運転車へ送信する。第2処理結果送信部103は、遠隔自動運転サーバ100が備える通信インタフェース等を介して第2処理結果を自動運転車へ送信する。
 実施の形態2では、第2処理結果が遠隔自動運転サーバ100から自動運転車へ送信され、第1処理結果と第2処理結果との差異の判定が遠隔自動運転サーバ100で行われず、自動運転車において行われる。
 次に、自動運転車の動作について、図7を用いて説明する。
 図7は、実施の形態2に係る自動運転車(具体的には情報処理装置200)の動作の一例を示すフローチャートである。
 まず、自動運転車は、自動運転車が遠隔自動運転サーバ100と通信接続されているか否かを判定する(ステップS41)。
 自動運転車は、自動運転車が遠隔自動運転サーバ100と通信接続されていない場合(ステップS41でNo)、自動運転車の走行を制限する(ステップS42)。自動運転車が遠隔自動運転サーバ100と通信接続されていない場合、自動運転車は、第2処理結果を取得できず、すなわち、第1処理結果と第2処理結果との差異を判定できず、第1処理結果を第3処理結果に変更できない。このため、自動運転車が遠隔自動運転サーバ100と通信接続されていない場合、自動運転車が危険な状態になるおそれがあることから、自動運転車の走行が制限される。したがって、自動運転車と遠隔自動運転サーバ10との通信が途切れた場合でも、自動運転車において安全を担保できる。
 自動運転車は、自動運転車が遠隔自動運転サーバ100と通信接続されている場合(ステップS41でYes)、センシングデータに基づいて、自動運転車の自動運転における走行制御処理の前処理である第1前処理を実行して第1処理結果を取得する(ステップS43)。例えば、自動運転車は、センシングデータから自動運転車の周囲の障害物の検出処理(例えば障害物数の検出又は障害物位置の検出等)を行って当該検出処理結果を取得する。また、例えば、自動運転車は、センシングデータから自動運転車の位置の推定処理を行って、当該推定処理結果を取得する。また、例えば、自動運転車は、センシングデータから自動運転車の走行判断処理(例えば走行を続けるか停止するか等の判断)を行って当該走行判断処理結果を取得する。
 次に、自動運転車は、自動運転車が取得したセンシングデータを遠隔自動運転サーバ100に出力する(ステップS44)。センシングデータを受信した遠隔自動運転サーバ100は、センシングデータに基づいて第1前処理よりも高度な前処理である第2前処理を実行して第2処理結果を取得する。そして、遠隔自動運転サーバ100は、取得した第2処理結果を自動運転車に送信する。
 次に、自動運転車は、遠隔自動運転サーバ100から送信された第2処理結果を遅延なく取得したか否かを判定する(ステップS45)。例えば、自動運転車は、センシングデータの出力又は要請の出力から所定の時間以上経過後に第2処理結果を取得した場合に、第2処理結果を遅延なく取得できなかったと判定する。自動運転車と遠隔自動運転サーバ100との間で通信遅延が発生している場合、第2処理結果を遅延なく取得できない場合がある。
 自動運転車は、第2処理結果を遅延なく取得できなかった場合(ステップS45でNo)、差異の判定を実行せず、自動運転車の走行を制限する(ステップS42)。実施の形態1で説明した第2前処理に処理遅延がある場合と同じように、自動運転車は、第1処理結果を第3処理結果に変更しても第3処理結果を有効に活用できず、自動運転車が危険な状態になるおそれがあるためである。
 自動運転車は、第2処理結果を遅延なく取得できた場合(ステップS45でYes)、第1処理結果と第2処理結果との差異を判定し(ステップS46)、判定された差異が所定の条件を満たすか否かを判定する(ステップS47)。ステップS46及びステップS47での処理は、自動運転車によって行われる点以外は、図2で説明したステップS15及びステップS16での処理と同じであるため説明は省略する。
 自動運転車は、判定された差異が所定の条件を満たす場合(ステップS47でYes)、第1処理結果を第3処理結果に変更する処理を実行する(ステップS48)。そして、第3処理結果を用いて走行制御処理が実行される。このように、第1処理結果が自動運転車の走行制御処理に用いられず、高度な第2前処理の結果である第2処理結果に基づく第3処理結果が自動運転車の走行制御に用いられることになり、自動運転の性能を向上できる。
 なお、自動運転車は、判定された差異が所定の条件を満たす場合に(ステップS47でYes)、自動運転車の走行を制限してもよい。また、自動運転車は、この場合に、自動運転車の遠隔監視者又は乗員等へ異常を通知してもよい。
 自動運転車は、判定された差異が所定の条件を満たさない場合(ステップS47でNo)、上記変更する処理を実行しない(ステップS49)。この場合、例えば第1処理結果が第2処理結果に対して劣っておらず、自動運転車は、第1処理結果を第3処理結果に変更しなくてもよく、第2処理結果に対して劣っていない第1処理結果を用いて自動運転車の走行制御を行うことができる。
 そして、自動運転車は、目的地に到着したか否かを判定し(ステップS50)、目的地に到着していない場合(ステップS50でNo)、目的地に到着するまでステップS41からステップS49までの処理を繰り返し、目的地に到着した場合(ステップS50でYes)、自動運転車を停止させ処理を終了する。
 以上説明したように、コスト、消費電力、及び空間等の観点から搭載できるコンピュータに制限がある自動運転車において実行された第1前処理とは別に、コスト、消費電力、及び空間等について制限が少ない外部の装置(例えば遠隔自動運転サーバ100)において第1前処理よりも高度な第2前処理が実行されて第2前処理の結果である第2処理結果が自動運転車に送信され、第1前処理の結果である第1処理結果と第2前処理の結果である第2処理結果との差異が自動運転車において判定される。そして、当該差異にしたがって、自動運転車の走行制御処理の前処理である第1前処理の結果である第1処理結果が上記高度な第2前処理の結果である第2処理結果に基づく第3処理結果に変更される。或いは、当該差異にしたがって、第1処理結果が、第1処理結果を補正又は制約を付ける等して得られる第3処理結果に変更される。これにより、第1処理結果よりも高度な第3処理結果が自動運転車の走行制御処理に用いられるため、自動運転の性能を向上できる。例えば、自動運転の性能が向上されることで、自動運転車の走行可能エリアを拡大することができる。
 (実施の形態2の変形例)
 例えば、遠隔自動運転サーバでの第2前処理の実行等が自動運転車からの要請があったときに開始されてもよい。これについて、実施の形態2の変形例として、図8及び図9を用いて説明する。
 図8は、実施の形態2の変形例に係る自動運転車(具体的には自動運転車に搭載された情報処理装置200a)、遠隔自動運転サーバ100a及び遠隔処理マネジメントサーバ30の一例を示すブロック図である。
 情報処理装置200aは、遠隔処理要請部210をさらに備え、センシングデータ取得部201及びセンシングデータ送信部202の代わりにセンシングデータ取得部201a及びセンシングデータ送信部202aを備える点が、実施の形態2における情報処理装置200と異なる。その他の点は、情報処理装置200におけるものと同じであるため説明は省略する。なお、遠隔処理要請部210は、他の構成要素と同じようにメモリに格納されたプログラムを実行するプロセッサ等によって実現される。
 遠隔処理要請部210は、遠隔処理マネジメントサーバ30を介して第2前処理の実行の要請を遠隔自動運転サーバ100aに出力する。遠隔処理マネジメントサーバ30は、実施の形態1の変形例におけるものと基本的には同じ機能を有するため説明は省略する。例えば、遠隔処理要請部210は、自動運転車が有するリソース、自動運転車の移動状態、自動運転車の外部環境、時刻及び遠隔自動運転サーバ100aへの問合せに対する応答時間の少なくとも1つに基づいて要請を遠隔自動運転サーバ100aに出力してもよい。例えば、自動運転車が有するリソースが不十分な場合、自動運転車の移動状態が例えば車速が早い状態、加速度が大きい状態若しくはステア角が大きい状態等である場合、自動運転車の外部環境が障害物の位置が近い環境、数が多い環境若しくは種類が移動体である環境、自動運転車の位置が交通量の多い場所(例えば交差点等)となっている環境、周辺の明度が暗い環境、天候が雨若しくは曇りの環境等である場合、時刻が夜の時刻である場合、要請に対する応答時間が短い場合等には、要請を出力する。また、例えば、自動運転車が有するリソースが十分な場合、自動運転車の移動状態が例えば車速が遅い状態、加速度が小さい状態若しくはステア角が小さい状態等である場合、自動運転車の外部環境が障害物の位置が遠い環境、数が少ない環境若しくは種類が移動しない物体である環境、自動運転車の位置が交通量の少ない場所となっている環境、周辺の明度が明るい環境、天候が晴れている環境等である場合、時刻が昼の時刻である場合、要請に対する応答時間が長い場合等には、要請を出力しない。
 このように、状況によっては第2前処理を実行しても自動運転の性能を向上させられない場合もある。例えば、自動運転車が有するリソース、自動運転車の移動状態、自動運転車の外部環境、時刻又は要請に対する応答時間によっては、第2前処理が実行され第3処理結果を用いて自動運転車の走行制御を行っても自動運転の性能を向上させられない場合がある。このような場合に、自動運転車は、要請を出力しないようにすることができる。また、言い換えると、状況によっては第2前処理を実行して自動運転の性能を向上させられる場合がある。自動運転車は、このような自動運転の性能を向上させられる状況になったときには要請を出力することができる。
 遠隔処理要請部210は、センシングデータ取得部201aにセンシングデータを取得するように指示し、センシングデータ送信部202aに、遠隔処理マネジメント部31によって選択された遠隔自動運転サーバ100aへセンシングデータを送信するように指示する。
 センシングデータ取得部201aは、遠隔処理要請部210からの指示に応じて自動運転車が備えるセンサによるセンシングデータを取得する。センシングデータ取得部201aに関するその他の点については、センシングデータ取得部201と同じであるため説明は省略する。
 センシングデータ送信部202aは、センシングデータ取得部201aによって取得されたセンシングデータを選択された遠隔自動運転サーバ100aへ送信する。センシングデータ送信部202aに関するその他の点については、センシングデータ送信部202と同じであるため説明は省略する。
 遠隔自動運転サーバ100aは、要請取得部104及び第2前処理実行判定部105をさらに備え、センシングデータ取得部101及び疑似自動運転システム102の代わりにセンシングデータ取得部101a及び疑似自動運転システム102aを備える点が、実施の形態2における遠隔自動運転サーバ100と異なる。その他の点は、遠隔自動運転サーバ100におけるものと同じであるため説明は省略する。なお、要請取得部104及び第2前処理実行判定部105は、他の構成要素と同じようにメモリに格納されたプログラムを実行するプロセッサ等によって実現される。
 要請取得部104は、基本的には実施の形態1の変形例における要請取得部16と同じであるため説明は省略する。
 第2前処理実行判定部105は、基本的には実施の形態1の変形例における第2前処理実行判定部17と同じであるため説明は省略する。
 センシングデータ取得部101aは、自動運転車から要請を受けた場合に、第2前処理を実行すると判定されたときにセンシングデータを取得する。センシングデータ取得部101aに関するその他の点については、センシングデータ取得部101と同じであるため説明は省略する。
 疑似自動運転システム102aは、自動運転車から要請を受けた場合に、第2前処理を実行すると判定されたときにセンシングデータ取得部101aによって取得されたセンシングデータに基づいて第2前処理を実行して第2処理結果を取得する。疑似自動運転システム102aに関するその他の点については、疑似自動運転システム102と同じであるため説明は省略する。
 次に、自動運転車の動作について、図9を用いて説明する。
 図9に示されるフローチャートは、図7に示されるフローチャートと比べてステップS41の代わりにステップS51が追加されている点が異なる。その他の点(つまりステップS42からステップS50)は、図7に示されるものと同じであるため説明は省略する。
 自動運転車は、第2前処理の実行の要請を遠隔自動運転サーバ100aへ出力する(ステップS51)。例えば、自動運転車は、要請を出力後、遠隔処理マネジメントサーバ30から第2前処理を実行可能なサーバとしてどの遠隔自動運転サーバ100aへセンシングデータを出力すればよいかを示す通知を受ける。そして、要請に対する応答として、ステップS45で第2処理結果を取得する。なお、自動運転車は、要請を出力した後、当該要請に対する応答がなかった場合、遠隔処理マネジメントサーバ30等との通信接続がされていないと判断して自動運転車の走行を制限してもよい。
 なお、第2前処理の実行の要請は、第2前処理のうちの特定の処理を指定する情報を含んでいてもよい。自動運転車の移動状態又は外部環境等によっては、特定の処理のみ(例えば障害物検出処理のみ、走行判断処理のみ等)について、差異の判定を行えばよい場合があるためである。これにより、自動運転車は、第2前処理の中から例えば自動運転車が希望する特定の処理を指定して、遠隔自動運転サーバ100aに特定の処理を選択的に実行させることができる。この場合、自動運転車は、ステップS45及びステップS46において特定の処理を実行して得られる結果である第2処理結果を取得し、特定の処理のみについて、差異の判定を行う。
 なお、自動運転車は、センシングデータの出力又は要請の出力から所定の時間以上経過後に第2処理結果を取得した場合であっても(つまりステップS45でNoであっても)、ステップS46に進み、第1処理結果のうちの一部の処理結果と第2処理結果のうちの当該一部の処理結果に対応する処理結果との差異を判定してもよい。例えば、当該一部の処理結果は、遅延の影響を受けにくい部分である。例えば、当該一部の処理結果は、周辺認識処理の結果であり、周辺認識処理の結果は遅延の影響を受けにくい。例えば、自己位置推定処理の結果は、遅延の影響を受けやすいため当該処理結果については差異の判定を実行しなくてもよい。そして、自動運転車は、判定された当該差異にしたがって、第1処理結果のうちの当該一部の処理結果を第3処理結果に変更してもよい。このように、センシングデータの出力又は要請の出力から所定の時間以上経過後に第2処理結果を取得した場合、遠隔自動運転サーバ100aとの通信遅延が発生している可能性がある。このようなときに、差異の判定を実行しないか、又は、遅延の影響を受けないような一部の処理結果についてのみ差異の判定を実行することで、自動運転車(具体的には情報処理装置200a)の処理負荷を軽減することができる。
 以上説明したように、自動運転車から要請を出力することで遠隔自動運転サーバでの第2前処理の実行等が開始されてもよい。これにより、自動運転車が高度な第2前処理の実行を要望するタイミングに、第2前処理を実行することができる。
 (各実施の形態に共通する変形例)
 上記各実施の形態では、前処理結果の変更指示又は変更制御が、第2前処理に関する遅延があるか否かに応じて行われるとしたが、遅延がある場合に遅延に対する補正処理が可能か否かに応じて行われてもよい。
 また、前処理結果の変更指示又は変更制御及び走行制限指示又は走行制限は、第1処理結果と第2処理結果との差異に加えて、上記遅延及び差異に応じたODD(Operational Design Domain)にしたがって行われてもよい。ODDは、例えば、時間帯、地域、走行状態(速度、加速度、操舵角など)、環境(天候、照度など)を要素として設定される。
 上記処理について図10を参照して説明する。図10は、各実施の形態に共通する変形例に係る情報処理方法の一例を示すフローチャートである。なお、上記各実施の形態と実質的に同一の処理については説明を省略する。
 サーバ(例えば遠隔自動運転サーバ)は、第2前処理に遅延がある場合(ステップS13でYes)、遅延に対する補正処理が可能であるか否かを判定する(ステップS60)。具体的には、サーバは、サーバと自動運転車との間で通信遅延がある場合又は上述したような処理遅延がある場合、遅延による処理結果における時間ずれの補正(抑制、低減)が可能か否かを判定する。例えば、遅延量が閾値以下であるか否かが判定される。
 遅延に対する補正処理が可能である場合(ステップS60でYes)、サーバは、補正処理を実行する(ステップS61)。具体的には、サーバは、遅延量が閾値以下である場合、第2前処理結果に対する補正処理を実行する。
 第2前処理に遅延がない場合(ステップS60でNo)、又は補正処理の実行後、処理がステップS15、S16に進む。
 遅延に対する補正処理が可能でない場合(ステップS60でNo)、サーバは、第1ODDを満たすか否かを判定する(ステップS62)。具体的には、第1ODDは、自動運転車における自動運転について設定されるODDである。例えば、第1ODDは、地域が交差点以外、速度が20km/h以下、天候が晴れである。
 第1ODDを満たす場合、サーバは、変更指示を出力しない(ステップS18)。この場合、自動運転車において実行された第1前処理の結果を用いて自動運転における走行制御処理が行われる。
 第1前処理と第2前処理との差異が所定の条件を満たす場合(ステップS16でYes)、サーバは、第2ODDを満たすか否かを判定する(ステップS63)。具体的には、第2ODDは、自動運転車における自動運転について設定される第1ODDと異なるODDである。例えば、第2ODDは、地域が全域、速度が15km/h以下、天候が晴れ又は雨である。このように、第2ODDは、第1ODDよりも少なくとも一部が緩和される。他方で、第2処理結果を用いる場合は通信が用いられるため、第2ODDのうち遅延に影響される項目は、第1ODDと同一か又は第1ODDよりも厳しくなる。
 上記差異が所定の条件を満たし第2ODDを満たす場合(ステップS63でYes)、サーバは、変更指示を出力する(ステップS17)。この場合、サーバにおいて実行された第2前処理の結果又は補正された第1前処理の結果を用いて自動運転における走行制御処理が行われる。
 第1前処理と第2前処理との差異が所定の条件を満たさない場合(ステップS16でNo)、サーバは、第2ODDを満たすか否かを判定する(ステップS64)。本処理は、ステップS63の処理と実質的に同一である。
 上記差異が所定の条件を満たさず第2ODDを満たす場合(ステップS64でYes)、サーバは、変更指示を出力しない(ステップS18)。このように上記差異が所定の条件を満たさない場合において第2ODDを用いる理由は、サーバにおける前処理の結果と自動運転車における前処理の結果との間の差異が所定の条件を満たすほどではなかったためである。言い換えると、自動運転車における前処理の結果をサーバにおける前処理の結果と同等の扱いができるためである。
 第1ODDを満たさない場合(ステップS62でNo)、又は第2ODDを満たさない場合(ステップS63又はS64でNo)、サーバは、走行制限指示を出力する(ステップS14)。
 なお、図10では、サーバが、遅延に対する補正処理が可能か否かを判定し、遅延及び差異に応じたODDにしたがって前処理結果の変更指示及び走行制限指示を決定する例を示した。しかし、自動運転車が、遅延に対する補正処理が可能か否かを判定し、遅延及び差異に応じたODDにしたがって前処理結果の変更制御及び走行制限を実行してもよい。
 また、前処理結果の変更指示又は変更制御は、第2前処理に関する通信障害があるか否かに応じて行われてもよい。具体的には、通信障害は、通信データロスである。例えば、パケットロス率が閾値以上であるか否かに応じて、前処理結果の変更指示又は変更制御が行われてもよい。なお、通信障害に上述の通信遅延が含まれてもよい。
 また、通信障害がある場合に通信障害に対する補正処理が可能か否かに応じて、前処理結果の変更指示又は変更制御が行われてもよい。具体的には、通信データロスにより欠落したデータを補完可能か否かに応じて、前処理結果の変更指示又は変更制御が行われる。例えば、ロスしたパケットを補完可能な割合に応じて、前処理結果の変更指示又は変更制御が行われる。
 (その他の実施の形態)
 以上、本開示の一つ又は複数の態様に係る情報処理方法、情報処理システム(例えば遠隔自動運転サーバ)及び情報処理装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を各実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の一つ又は複数の態様の範囲内に含まれてもよい。
 例えば、本開示は、情報処理方法に含まれるステップを、プロセッサに実行させるためのプログラムとして実現できる。さらに、本開示は、そのプログラムを記録したCD-ROM等である非一時的なコンピュータ読み取り可能な記録媒体として実現できる。
 例えば、本開示が、プログラム(ソフトウェア)で実現される場合には、コンピュータのCPU、メモリ及び入出力回路等のハードウェア資源を利用してプログラムが実行されることによって、各ステップが実行される。つまり、CPUがデータをメモリ又は入出力回路等から取得して演算したり、演算結果をメモリ又は入出力回路等に出力したりすることによって、各ステップが実行される。
 なお、上記実施の形態において、情報処理システム及び情報処理装置に含まれる各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 上記実施の形態に係る情報処理システム及び情報処理装置の機能の一部又は全ては典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらに、本開示の主旨を逸脱しない限り、本開示の各実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本開示に含まれる。
 本開示は、自動運転車の遠隔制御システムに適用できる。
 10、10a、100、100a 遠隔自動運転サーバ
 11、11a、21、21a、101、101a、201、201a センシングデータ取得部
 12、12a、102、102a 疑似自動運転システム
 13 第1処理結果取得部
 14、205 差異判定部
 15 変更指示出力部
 16、104 要請取得部
 17、105 第2前処理実行判定部
 20、20a、200、200a 情報処理装置
 22、22a、202、202a センシングデータ送信部
 23、203 車両自動運転システム
 24、24a 第1処理結果送信部
 25、206 処理結果変更部
 26、207 通信確認部
 27、208 走行制限部
 28、210 遠隔処理要請部
 30 遠隔処理マネジメントサーバ
 31 遠隔処理マネジメント部
 103 第2処理結果送信部
 204 第2処理結果取得部

Claims (17)

  1.  コンピュータに実行させる情報処理方法であって、
     自律移動体の自律移動処理における走行制御処理の前処理である第1前処理の結果である第1処理結果及び前記自律移動体が取得したセンシングデータを前記自律移動体から取得し、
     前記センシングデータに基づいて前記第1前処理よりも高度な前処理である第2前処理を実行して第2処理結果を取得し、
     前記第1処理結果と前記第2処理結果との差異を判定し、
     判定された前記差異にしたがって、前記第1処理結果を第3処理結果に変更させる変更指示を前記自律移動体に出力し、前記第3処理結果は前記第1処理結果又は前記第2処理結果の少なくとも一方に基づいて得られる
     情報処理方法。
  2.  前記第1前処理は、第1リソースを用いて実行され、
     前記第2前処理は、第2リソースを用いて実行され、
     前記第1リソースと前記第2リソースとは異なるリソースである
     請求項1に記載の情報処理方法。
  3.  前記第1前処理は、第1アルゴリズムを用いて実行され、
     前記第2前処理は、第2アルゴリズムを用いて実行され、
     前記第1アルゴリズムと前記第2アルゴリズムとは異なるアルゴリズムである
     請求項1又は2に記載の情報処理方法。
  4.  前記第1前処理及び前記第2前処理は、前記自律移動体がおかれる環境を認識する認識処理を含む
     請求項1~3のいずれか1項に記載の情報処理方法。
  5.  前記第1前処理及び前記第2前処理は、前記自律移動体の走行判断処理を含む
     請求項1~4のいずれか1項に記載の情報処理方法。
  6.  前記第3処理結果は、前記第2処理結果である
     請求項1~5のいずれか1項に記載の情報処理方法。
  7.  前記第3処理結果は、前記差異に基づいて前記第1処理結果を補正して得られる
     請求項1~5のいずれか1項に記載の情報処理方法。
  8.  前記自律移動体から前記第2前処理の実行の要請を受けた場合に、前記第2前処理を実行して第2処理結果を取得し、
     前記要請に対する応答として前記変更指示を前記自律移動体に出力する
     請求項1~7のいずれか1項に記載の情報処理方法。
  9.  前記要請は、前記第2前処理のうちの特定の処理を指定する情報を含み、
     前記特定の処理を実行して前記第2処理結果を取得する
     請求項8に記載の情報処理方法。
  10.  前記要請を受けた場合に、前記第2前処理を実行するか否か判定し、
     前記第2前処理を実行しないと判定した場合、前記要請を拒否又は無視する
     請求項8又は9に記載の情報処理方法。
  11.  前記第2前処理を実行するか否かの判定を、前記自律移動体が有するリソース、前記自律移動体の移動状態、前記自律移動体の外部環境、時刻及び前記要請に対する応答時間の少なくとも1つに基づいて行う
     請求項10に記載の情報処理方法。
  12.  自律移動体と通信可能な情報処理システムであって、
     前記自律移動体の自律移動における走行制御処理の前処理である第1前処理の結果である第1処理結果及び前記自律移動体が取得したセンシングデータを前記自律移動体から取得し、
     前記センシングデータに基づいて前記第1前処理よりも高度な前処理である第2前処理を実行して第2処理結果を取得し、
     前記第1処理結果と前記第2処理結果との差異を判定し、
     判定された前記差異にしたがって、前記第1処理結果を第3処理結果に変更させる変更指示を前記自律移動体に出力し、前記第3処理結果は前記第1処理結果又は前記第2処理結果の少なくとも一方に基づいて得られる
     情報処理システム。
  13.  自律移動体に搭載される情報処理装置であって、
     前記自律移動体の自律運転における走行制御処理の前処理である第1前処理を実行して第1処理結果を取得し、
     前記自律移動体が取得したセンシングデータを外部の装置に出力し、
     前記センシングデータに基づいて前記第1前処理よりも高度な前処理である第2前処理を実行して得られる第2処理結果を前記外部の装置から取得し、
     前記第1処理結果と前記第2処理結果との差異を判定し、
     判定された前記差異にしたがって、前記第1処理結果を第3処理結果に変更し、前記第3処理結果は前記第1処理結果又は前記第2処理結果の少なくとも一方に基づいて得られる
     情報処理装置。
  14.  前記第2前処理の実行の要請を前記外部の装置に出力し、
     前記要請に対する応答として前記第2処理結果を取得する
     請求項13に記載の情報処理装置。
  15.  前記自律移動体が有するリソース、前記自律移動体の移動状態、前記自律移動体の外部環境、時刻及び前記外部の装置への問合せに対する応答時間の少なくとも1つに基づいて前記要請を前記外部の装置に出力する
     請求項14に記載の情報処理装置。
  16.  前記要請は、前記第2前処理のうちの特定の処理を指定する情報を含み、
     前記第2処理結果は、前記特定の処理を実行して得られる結果である
     請求項14又は15に記載の情報処理装置。
  17.  前記センシングデータの出力又は前記要請の出力から所定の時間以上経過後に前記第2処理結果を取得した場合、
     (A)前記差異の判定を実行しない、又は、
     (B)前記第1処理結果のうちの一部の処理結果と前記第2処理結果のうちの当該一部の処理結果に対応する処理結果との差異を判定し、判定された当該差異にしたがって、前記第1処理結果のうちの当該一部の処理結果を前記第3処理結果に変更する
     請求項14~16のいずれか1項に記載の情報処理装置。
PCT/JP2020/048205 2020-02-14 2020-12-23 情報処理方法、情報処理システム及び情報処理装置 WO2021161671A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022500254A JPWO2021161671A1 (ja) 2020-02-14 2020-12-23
CN202080031968.4A CN113785340A (zh) 2020-02-14 2020-12-23 信息处理方法、信息处理系统以及信息处理装置
EP20918381.3A EP4105907A4 (en) 2020-02-14 2020-12-23 INFORMATION PROCESSING METHOD, INFORMATION PROCESSING SYSTEM AND INFORMATION PROCESSING DEVICE
US17/510,957 US11866065B2 (en) 2020-02-14 2021-10-26 Information processing method, information processing system, and information processing device
US18/517,234 US20240092383A1 (en) 2020-02-14 2023-11-22 Information processing method, information processing system, and information processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-023199 2020-02-14
JP2020023199 2020-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/510,957 Continuation US11866065B2 (en) 2020-02-14 2021-10-26 Information processing method, information processing system, and information processing device

Publications (1)

Publication Number Publication Date
WO2021161671A1 true WO2021161671A1 (ja) 2021-08-19

Family

ID=77291529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048205 WO2021161671A1 (ja) 2020-02-14 2020-12-23 情報処理方法、情報処理システム及び情報処理装置

Country Status (5)

Country Link
US (2) US11866065B2 (ja)
EP (1) EP4105907A4 (ja)
JP (1) JPWO2021161671A1 (ja)
CN (1) CN113785340A (ja)
WO (1) WO2021161671A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499334B1 (ko) * 2021-06-28 2023-02-14 (주)뷰런테크놀로지 라이다 센서를 이용하여 차선을 검출하는 방법 및 상기 방법을 수행하는 차선 검출 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881197B2 (ja) 2001-06-27 2007-02-14 株式会社デンソー 車両の自動運転システム
WO2017057053A1 (ja) * 2015-09-30 2017-04-06 ソニー株式会社 情報処理装置、情報処理方法
JP2017081425A (ja) * 2015-10-28 2017-05-18 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
US20180209802A1 (en) * 2017-01-26 2018-07-26 Samsung Electronics Co., Ltd. Vehicle path guiding apparatus and method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291067B1 (ko) * 2009-11-26 2013-08-07 한국전자통신연구원 차량 제어 장치 및 그 자율 주행 방법, 지역 서버 장치 및 그 자율 주행 서비스 방법, 전역 서버 장치 및 그 자율 주행 서비스 방법
JP6408382B2 (ja) * 2012-02-13 2018-10-17 アクセンチュア グローバル サービスィズ リミテッド 電気自動車の分散型インテリジェンス
US10279488B2 (en) * 2014-01-17 2019-05-07 Knightscope, Inc. Autonomous data machines and systems
JP6889241B2 (ja) 2017-02-23 2021-06-18 本田技研工業株式会社 車両用制御システム
US10410115B2 (en) * 2017-04-28 2019-09-10 Intel Corporation Autonomous machines through cloud, error corrections, and predictions
JP6971069B2 (ja) 2017-07-05 2021-11-24 ヤフー株式会社 監視プログラム、監視方法、及び監視装置
EP3732932A4 (en) * 2017-12-30 2022-05-11 INTEL Corporation WIRELESS COMMUNICATION METHODS AND DEVICES
JP6986685B2 (ja) * 2018-03-12 2021-12-22 パナソニックIpマネジメント株式会社 情報処理装置
US11209887B1 (en) * 2018-03-20 2021-12-28 Amazon Technologies, Inc. Dynamic allocation of power from multiple sources in an autonomous mobile device
US10331128B1 (en) * 2018-04-20 2019-06-25 Lyft, Inc. Control redundancy
US11260849B2 (en) * 2018-05-23 2022-03-01 Baidu Usa Llc Method for determining lane changing trajectories for autonomous driving vehicles
DE102019200924A1 (de) * 2018-12-21 2020-06-25 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines dezentralen Rechennetzwerks, insbesondere eines Edge-Cloud-Computers des dezentralen Rechennetzwerks
US10887169B2 (en) * 2018-12-21 2021-01-05 Here Global B.V. Method and apparatus for regulating resource consumption by one or more sensors of a sensor array
CN109814554A (zh) * 2019-01-17 2019-05-28 深兰科技(上海)有限公司 一种自动驾驶公交车
CN109703568B (zh) * 2019-02-19 2020-08-18 百度在线网络技术(北京)有限公司 自动驾驶车辆行驶策略实时学习的方法、装置和服务器
US11176818B2 (en) * 2019-05-02 2021-11-16 International Business Machines Corporation Cluster-based management of vehicle power consumption
JP7230705B2 (ja) * 2019-06-21 2023-03-01 株式会社デンソー 配車管理方法、配車管理プログラム及び配車管理装置
JP7269160B2 (ja) * 2019-11-29 2023-05-08 日立Astemo株式会社 ブレーキ制御装置
JP7367723B2 (ja) * 2021-03-30 2023-10-24 トヨタ自動車株式会社 自動運転装置、自動運転方法、及びプログラム
US20220318162A1 (en) * 2021-03-30 2022-10-06 Micron Technology, Inc. Interpolation acceleration in a processor memory interface
US11993287B2 (en) * 2021-04-29 2024-05-28 Gm Cruise Holdings Llc Fleet-level AV simulation system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881197B2 (ja) 2001-06-27 2007-02-14 株式会社デンソー 車両の自動運転システム
WO2017057053A1 (ja) * 2015-09-30 2017-04-06 ソニー株式会社 情報処理装置、情報処理方法
JP2017081425A (ja) * 2015-10-28 2017-05-18 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
US20180209802A1 (en) * 2017-01-26 2018-07-26 Samsung Electronics Co., Ltd. Vehicle path guiding apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4105907A4

Also Published As

Publication number Publication date
US20240092383A1 (en) 2024-03-21
EP4105907A4 (en) 2023-07-19
US11866065B2 (en) 2024-01-09
US20220041179A1 (en) 2022-02-10
EP4105907A1 (en) 2022-12-21
CN113785340A (zh) 2021-12-10
JPWO2021161671A1 (ja) 2021-08-19

Similar Documents

Publication Publication Date Title
US10983520B2 (en) Teleassistance data prioritization for self-driving vehicles
CN109866778B (zh) 具有自动辅助的自主车辆操作
US10518770B2 (en) Hierarchical motion planning for autonomous vehicles
EP3690711A1 (en) Method and device for performing multiple agent sensor fusion in cooperative driving based on reinforcement learning
US10202126B2 (en) Teleassistance data encoding for self-driving vehicles
US20190155292A1 (en) Using discomfort for speed planning in autonomous vehicles
WO2017205822A1 (en) Facilitating rider pick-up for a self-driving vehicle
CN111833597B (zh) 具有规划控制的交通情形中的自主决策
CN110568852A (zh) 一种自动驾驶系统及其控制方法
CN112540592A (zh) 用于确保安全的具有双自主驾驶系统的自主驾驶车辆
KR20220121824A (ko) 협력적 차량 헤드라이트 지향
WO2020132067A1 (en) Adaptive multi-network vehicle architecture
CN115701295A (zh) 用于车辆路径规划的方法和系统
WO2021200004A1 (ja) 情報処理装置及び情報処理方法
JP2021062780A (ja) 車両制御システム
WO2021161671A1 (ja) 情報処理方法、情報処理システム及び情報処理装置
CN110789515B (zh) 机动车辆中用于硬件验证的系统和方法
US20210078596A1 (en) Safe trajectory tracking in uncertain environments
KR20220081380A (ko) 자율주행 차량을 위한 신호등 검출 및 분류
US11884296B2 (en) Allocating processing resources to concurrently-executing neural networks
WO2023043305A1 (en) An autonomous vehicle and a method of operation thereof
US20190226857A1 (en) Management system and control system
KR20220010407A (ko) Mrm 지원을 위한 자율 주행 시스템
AU2020202490A1 (en) Method of assisting with the driving of vehicles, computer program and associated system
JP2024095946A (ja) 車両操作を通じてデッドロックを回避するシステム及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020918381

Country of ref document: EP

Effective date: 20220914