WO2021161660A1 - Method for producing biomass fuel - Google Patents

Method for producing biomass fuel Download PDF

Info

Publication number
WO2021161660A1
WO2021161660A1 PCT/JP2020/047739 JP2020047739W WO2021161660A1 WO 2021161660 A1 WO2021161660 A1 WO 2021161660A1 JP 2020047739 W JP2020047739 W JP 2020047739W WO 2021161660 A1 WO2021161660 A1 WO 2021161660A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
semi
aqueous solution
formic acid
acetic acid
Prior art date
Application number
PCT/JP2020/047739
Other languages
French (fr)
Japanese (ja)
Inventor
志保 池田
吉田 拓也
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020152537A external-priority patent/JP7410000B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2021161660A1 publication Critical patent/WO2021161660A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method for producing biomass fuel from biomass.
  • Biomass is an organic substance of biological origin that can be used as a raw material and fuel. For example, wood, dried vegetation, agricultural waste, livestock waste, food / beverage waste, initial sludge in biological wastewater treatment facilities and sewage treatment plants, organic sludge such as surplus sludge, and its dehydrated sludge. Corresponds to.
  • Patent Document 1 Recently, in order to reduce CO 2 emissions, attempts have been made to co-fire biomass in coal-fired power plants (Patent Document 1).
  • biomass especially plant-derived biomass can effectively utilize carbon resources converted from carbon dioxide by photosynthesis during the plant growth process, so even if it is burned as fuel, carbon dioxide in the atmosphere can be seen in terms of the overall carbon dioxide balance. Will not be increased (carbon neutral).
  • biomass compared to coal, biomass has features such as high water content, low density, low calorific value, low pulverizability, high hydrophilicity, high biodegradability, and high alkali content, making it difficult to use directly, and it is also difficult to transport and transport. There are also problems with storage and handling.
  • One of the conventional techniques for solving these problems is semi-carbonization treatment and consolidation molding as biomass pretreatment methods.
  • Semi-carbonization treatment can be expected to have effects such as imparting hydrophobicity, lowering water content, lowering biodegradability, and improving pulverizability, in addition to improving the energy density per mass of biomass.
  • by improving the crushability it is possible that the use of existing crushers in coal-fired power plants and a high co-firing rate can be achieved at the same time.
  • the upper limit is a co-firing rate of 2 to 3 cal%, but wood semi-carbonized pellets (wood chips).
  • there is a report that a co-firing rate of 10 to 30 cal% is possible Non-Patent Document 1.
  • Patent Document 2 In order to improve the moldability and obtain the required strength, a binder is required at the time of molding, which is a factor of increasing the cost.
  • Non-Patent Document 3 and Non-Patent Document 4 As the binder of this biomass semi-carbide, castor bean cake (CAS) (Non-Patent Document 3 and Non-Patent Document 4) and the like are known. Further, regarding the method of adding the binder, the solid binder is heated. Treatments such as dissolving (Non-Patent Documents 5 and 6) and dissolving in water (Non-Patent Document 7) are required. Further, in order to sufficiently mix the biomass sample and the binder, stirring for 15 minutes is performed every 12 hours. It may be necessary to carry out the mixing treatment at least 6 times (Non-Patent Document 5), or to allow the mixture to stand in an environment of 4 ° C. for 24 hours after stirring for 20 minutes (Non-Patent Document 8).
  • Patent Document 1 Although the biomass carbide is examined, the unreacted biomass and the semi-carbide are not examined.
  • the difference between biomass carbide, semi-carbonized biomass, and unreacted biomass is that unreacted biomass (woody) is composed of cellulose (fiber), hemicellulose, and lignin, and is semi-carbonized biomass (carbonized at ⁇ 280 ° C.). Hemicellulose and lignin are decomposed, but cellulose (fiber) remains.
  • carbides generally, biomass that has been carbonized at 400 ° C or higher
  • the fiber structure in the biomass is broken by the carbonization reaction and becomes more carbonic. It is unclear whether similar treatments with biomass and unreacted biomass will yield similar results.
  • the present invention has been made by paying attention to the above-mentioned problems, and an object of the present invention is to provide a method for efficiently obtaining high-strength biomass fuel from semi-carbonized biomass or unreacted biomass at low cost. It is to be.
  • the method for producing a biomass fuel includes a step of hot pressure molding a biomass semi-carbohydrate or unreacted biomass, and before the step of hot pressure molding, an aqueous formatic acid solution and acetic acid. It is characterized in that at least one of the aqueous solutions is added to the semi-carbohydrate or the unreacted biomass.
  • FIG. 1 is a graph showing the crush strength ratio of each Example and Comparative Example in Test Example 1.
  • FIG. 2 is a graph showing the crush strength ratio of each Example and Comparative Example in Test Example 3.
  • FIG. 3 is a graph showing the crush strength ratio of each Example and Comparative Example in Test Example 4.
  • FIG. 4 is a graph showing the relationship between the molding temperature and the crushing strength ratio of the biomass semi-carbide in Test Example 4.
  • FIG. 5 is a graph showing the relationship between the molding temperature and the crushing strength ratio of unreacted biomass in Test Example 4.
  • FIG. 6 is a graph showing the crush strength ratio of each Example and Comparative Example in Test Example 5.
  • the method for producing a biomass fuel of the present embodiment includes a step of hot pressure molding a biomass semi-carbohydrate or unreacted biomass, and prior to the step of hot pressure molding, an aqueous formatic acid solution and acetic acid. It is characterized in that at least one of the aqueous solutions is added to the semi-carbohydrate or the unreacted biomass.
  • the strength of the obtained biomass fuel can be greatly improved as compared with the conventional case. Since the formic acid aqueous solution and the acetic acid aqueous solution are liquids, they can be directly added to semi-carbide or unreacted biomass, and complicated mixing treatment such as when using a solid binder such as CAS or glycerol which has been used in the prior art is required. It is efficient because it is not.
  • high-strength biomass fuel can be obtained by adding formic acid and / or acetic acid.
  • formic acid and acetic acid are constituents of biomass during pressure molding at about 150 ° C. ⁇ It is considered that it acts on lignin) and the binding structure becomes stronger.
  • the addition of acid causes relaxation of the cellulose fiber structure in the semi-carbide or unreacted biomass, and relaxation of the bond between cellulose, hemicellulose, and lignin, and by pressure-molding this, the fibers are closer to each other. It is considered that this is because a high-strength structure can be obtained.
  • biomass raw material The biomass used in this embodiment is not particularly limited, but is preferably plant-derived biomass.
  • Plant-derived biomass refers to plant-derived organic resources, including wood, dried vegetation, agricultural or forestry waste.
  • the biomass typically contains cellulose, hemicellulose and lignin as the main components.
  • EFB Empty Fruit Bunch
  • waste vegetables due to overproduction, vegetable waste, etc.
  • cut vegetables, fruits, shavings, straw, rice straw, and paddy husks are preferable to use woody biomass, EFB, etc. from the viewpoint of abundant resources.
  • unreacted biomass or biomass semi-carbide may be used for the hot pressure molding step described later.
  • the “unreacted biomass” refers to biomass in a state where no chemical reaction due to carbonization or semi-carbonization has occurred.
  • crushed biomass or treated such as evaporating water content (adjustment of water content, etc.) is included in the "unreacted biomass" of the present embodiment.
  • the unreacted biomass When used, it is directly subjected to the hot pressure molding step described later, or if necessary, it is crushed to an appropriate size by a crushing means, and / or the water is evaporated appropriately. After that, it may be subjected to the hot pressure molding step described later.
  • the step of semi-carbonizing the biomass raw material is performed first.
  • the semi-carbonization treatment of the present embodiment is not particularly limited, and may be dry semi-carbonization or wet semi-carbonization.
  • the biomass raw material may be subjected to semi-carbonization treatment as it is, but if necessary, it may be used after being crushed to an appropriate size by a crushing means.
  • the semi-carbonization method conventionally used for the production of biomass can be used without particular limitation.
  • semi-carbonization may be carried out in an inert atmosphere in a temperature range of 200 to 300 ° C. for about 10 to 60 minutes.
  • the inert atmosphere here refers to a gas that does not react with the biomass raw material, such as nitrogen or carbon dioxide.
  • superheated steam may be used in order to raise the temperature rapidly to the carbonization temperature.
  • the method of addition is not particularly limited, but since the formic acid aqueous solution and the acetic acid aqueous solution are liquids, they can be added directly to the semicarbide or unreacted biomass.
  • the addition amount (addition rate) of at least one of formic acid and acetic acid is preferably about 1 to 26 wt% / db (dry base) with respect to the semi-carbide.
  • it when it contains water, it may be referred to as a wet base (wb) as opposed to a dry base (db) of a dry base, but the methods described in Examples described later are used for each calculation method.
  • the amount added is less than 1 wt% / db, the strength improvement rate of the molded product is small, and the required strength (for example, strength that can withstand transportation) may not be obtained.
  • the required strength for example, strength that can withstand transportation
  • it exceeds 26 wt% / db Since the liquid content of the semi-carbide or unreacted biomass increases too much, the strength tends to decrease, which is not preferable.
  • the lower limit of the more preferable addition amount is 4 wt% / db, and the more preferable upper limit is 22 wt% / db.
  • concentrations are not particularly limited as long as the addition rate of formic acid and / or acetic acid is within the above range.
  • concentration of formic acid may be about 30 to 70% by weight
  • concentration of acetic acid may be about 30 to 70% by weight.
  • Either one of the formic acid aqueous solution and the acetic acid aqueous solution may be used alone, or both may be used in combination.
  • the stirring method is not particularly limited, and any means may be used as long as at least one of the formic acid aqueous solution and the acetic acid aqueous solution is uniformly mixed with the semicarbide or unreacted biomass.
  • the aqueous solution is mixed instead of the solid binder, it is not necessary to stir for a long time as in the conventional method. For example, the sample in the beaker is stirred for an appropriate time using a spatula. That's enough.
  • the production method of the present embodiment preferably includes a step of pulverizing at least one of the semicarbide and the unreacted biomass before adding at least one of the formic acid aqueous solution and the acetic acid aqueous solution.
  • a step of pulverizing at least one of the semicarbide and the unreacted biomass before adding at least one of the formic acid aqueous solution and the acetic acid aqueous solution.
  • This pulverization step may be performed on at least one of the semi-carbide and the unreacted biomass, for example, on the unreacted biomass or the biomass semi-carbide, or before semi-carbide.
  • the biomass raw material may be crushed in advance.
  • the method for crushing unreacted biomass or semi-carbide is not particularly limited, and for example, it can be crushed using a blender, a mortar, a cutter mill, a ball mill, or the like.
  • the size of the obtained crushed product is also not particularly limited, but from the viewpoint that the strength of the molded product is improved when the particle size is smaller, it is preferable to crush the crushed product to a extent that the major axis is about 1 mm or less, for example.
  • the semi-carbide obtained in the semi-carbonization step is preferably added after cooling to about 100 ° C. or lower before adding at least one of the formic acid aqueous solution and the acetic acid aqueous solution.
  • the formic acid aqueous solution and / or the acetic acid aqueous solution to be added to the semi-carbohydrate is the formic acid aqueous solution and / or the formic acid aqueous solution contained in the volatile matter generated in the reaction in the semi-carbohydrate step.
  • an aqueous acetic acid solution can be used.
  • the formic acid aqueous solution and / or the acetic acid aqueous solution is extracted from the furnace performing the semi-carbonization treatment, and the formic acid aqueous solution and / or the acetic acid aqueous solution and other main components contained in the volatile matter are used.
  • the formic acid aqueous solution and / or the acetic acid aqueous solution can be recovered by utilizing the difference in boiling point from (phenols).
  • the pulverizing means, the size after pulverization, and the like are not particularly limited, and may be appropriately adjusted depending on the desired granulated product or molded product.
  • the hot pressure molding of this embodiment is preferably performed in a temperature range of more than 100 ° C. and 200 ° C. or lower. If the temperature is 100 ° C. or lower, sufficient strength may not be obtained. On the other hand, the upper limit is not particularly limited, but if the temperature exceeds 200 ° C., the temperature becomes higher than necessary, resulting in wasteful energy consumption. It is preferably °C or less. The lower limit of the more preferable temperature range is 120 ° C., and the upper limit of the more preferable temperature range is 180 ° C.
  • unreacted biomass When unreacted biomass is used, it is preferable to perform hot pressure molding at a temperature of 130 to 200 ° C., more preferably 135 ° C. or higher and 170 ° C. or lower.
  • a biomass semi-carbide When a biomass semi-carbide is used, it is more preferable to perform hot pressure molding at a temperature of 125 to 200 ° C., and more preferably 130 ° C. or higher and 170 ° C. or lower.
  • the temperature of the hot pressure molding described above means the temperature of the mold used for molding.
  • the temperature of the mold can be obtained by directly attaching the thermocouple to the mold and measuring, or the set temperature (target temperature) of the constant temperature bath containing the mold is set and the mold temperature is set in relation to the heating time. It can be adjusted by doing so.
  • the method described in the examples described later can be used.
  • the molding means or molding conditions in the hot pressure molding step of the present embodiment can be appropriately selected depending on the desired molded product, with the known methods and conditions as they are or modified.
  • the shape and size of the molded product may be appropriately adjusted to a desired size.
  • biomass fuel obtained by the method of this embodiment can be used as a fuel in various situations.
  • the biomass fuel obtained by the production method of the present embodiment has extremely high strength and excellent moldability as compared with the conventional biomass solid fuel, and is therefore extremely useful in industry.
  • the method for producing a biomass fuel includes a step of hot pressure molding a biomass semi-carbohydrate or unreacted biomass, and before the step of hot pressure molding, an aqueous formatic acid solution and acetic acid. It is characterized in that at least one of the aqueous solutions is added to the semi-carbohydrate or the unreacted biomass.
  • the production method it is preferable to include a step of pulverizing at least one of the semicarbide and the unreacted biomass before adding at least one of the formic acid aqueous solution and the acetic acid aqueous solution.
  • the amount of at least one of formic acid and acetic acid added is 1 to 26 wt% / db with respect to the semicarbide or the unreacted biomass.
  • the hot pressure molding it is preferable to perform the hot pressure molding at a temperature of more than 100 and 200 ° C. or less. Further, when unreacted biomass is used, the unreacted biomass is hot-press molded at a temperature of 130 to 200 ° C., or when a semi-carbide is used, the biomass semi-carbide is heated at a temperature of 125 to 200 ° C. It is preferable to perform hot pressure molding at.
  • a biomass semi-carbide when used in the above-mentioned production method, it is preferable to further include a step of semi-carbonizing the biomass raw material before the hot pressure molding step. In that case, it is preferable to use formic acid and acetic acid obtained from volatile substances generated during the semi-carbonization step as the formic acid and acetic acid.
  • a small dry distillation furnace high frequency dielectric heating device IMC-ASH-103 type, IMEX Co., Ltd.
  • quartz containers inner size ⁇ 47.7 mm, height 140 mm, internal volume 200 ml
  • samples of about 120 g-wb each, placed in a graphite crucible, and set in a small carbonization furnace.
  • the nitrogen flow rate during the test was 2 L / min.
  • Temperature condition The temperature was raised to the target temperature (about 260 ° C.) at a heating rate of 5 ° C./min, and then held for 30 to 60 minutes to obtain a semi-carbide of woody biomass. The measurement of the holding time was started when the sample temperature reached the target temperature of ⁇ 10 ° C.
  • Molding and crushing strength test For the mold, the above 3. After preparing the samples of each of the Examples and Comparative Examples adjusted in 1 and heating in that state, the pressure molding machine (mold: custom order, hydraulic pump: RIKEN Seiki P-8, cylinder:) under the conditions shown in Table 1 below. Molding was performed using RIKEN Seiki SC3.6-30).
  • the pre-molding heating temperature in this test means the set temperature of the constant temperature bath when the pressure molding machine (mold) in which the sample is charged is heated in the constant temperature bath before pressure molding.
  • the time until the sample temperature in the mold reaches the target temperature is measured at the constant temperature bath set temperature (target temperature), and the pre-molding heating time is set according to the desired temperature.
  • the heating temperature before molding was adjusted according to the above. The relationship between each target temperature and the heating time when the pressure molding machine is used is shown in Table 2 below.
  • the pressure molding test was conducted outside the constant temperature bath.
  • the above-mentioned preheating molding temperature is regarded as the hot pressure molding temperature (mold temperature).
  • the crush strength ratio was calculated with the crush strength at the time of pure addition as 1.
  • the sample before pressure molding and the heating temperature before molding were changed to 130 to 170 ° C. as shown in Table 5, but the molding was performed in the same manner as in Test Example 1.
  • a crush strength test was conducted. The results are shown in Table 5.
  • the formic acid addition rate is a calculated value
  • Test Example 3 Next, after adding the formic acid aqueous solution to the semi-carbide, in order to confirm whether the standing time is necessary for sufficient permeation, after adding the formic acid aqueous solution and stirring, (1) the mixture was allowed to stand in a sealed container for 1 day or more. The crushing strength was compared between the case where the molding test was carried out later and the case where the molding test was carried out immediately (2). The manufacturing method and the test method other than the presence or absence of the standing time were manufactured and evaluated in the same manner as in Test Example 1 above.
  • the present invention has a wide range of industrial applicability in the technical field related to the energy industry such as biomass.

Abstract

One aspect of the present invention pertains to a method for producing a biomass fuel from a biomass, the method for producing a biomass fuel including a step for hot-pressure-forming a semi-carbonized biomass or an unreacted biomass, and being such that a formic acid aqueous solution and/or acetic acid aqueous solution is added to the semi-carbonized product or the unreacted biomass prior to the hot-pressure-forming step.

Description

バイオマス燃料の製造方法Biomass fuel manufacturing method
 本発明は、バイオマスからバイオマス燃料を製造する方法に関する。 The present invention relates to a method for producing biomass fuel from biomass.
 バイオマスは、原料、燃料として利用できる生物起源の有機物である。例えば、木材、乾燥草木、農産廃棄物、畜産廃棄物、食品・飲料廃棄物、生物学的廃水処理設備や下水処理場における初沈汚泥、余剰汚泥などの有機性汚泥やその脱水汚泥などがこれに該当する。 Biomass is an organic substance of biological origin that can be used as a raw material and fuel. For example, wood, dried vegetation, agricultural waste, livestock waste, food / beverage waste, initial sludge in biological wastewater treatment facilities and sewage treatment plants, organic sludge such as surplus sludge, and its dehydrated sludge. Corresponds to.
 最近では、CO排出削減のため、石炭火力発電所におけるバイオマス混焼の試みが進められている(特許文献1)。バイオマスの中でも特に植物由来のバイオマスは、植物の成長過程で光合成により二酸化炭素から変換された炭素資源を有効利用できるため、燃料として燃焼させても全体の二酸化炭素収支で見れば大気中の二酸化炭素を増加させていないことになる(カーボンニュートラル)。 Recently, in order to reduce CO 2 emissions, attempts have been made to co-fire biomass in coal-fired power plants (Patent Document 1). Among biomass, especially plant-derived biomass can effectively utilize carbon resources converted from carbon dioxide by photosynthesis during the plant growth process, so even if it is burned as fuel, carbon dioxide in the atmosphere can be seen in terms of the overall carbon dioxide balance. Will not be increased (carbon neutral).
 しかし、バイオマスは石炭に比べて高含水率、低密度、低発熱量、低粉砕性、高親水性、高生分解性、高アルカリ含有などの特徴を持つことにより、直接利用が難しく、また輸送・貯蔵・ハンドリングにおいても問題がある。それらの問題を解決するための従来技術のひとつに、バイオマスの前処理法として半炭化処理と圧密成型がある。 However, compared to coal, biomass has features such as high water content, low density, low calorific value, low pulverizability, high hydrophilicity, high biodegradability, and high alkali content, making it difficult to use directly, and it is also difficult to transport and transport. There are also problems with storage and handling. One of the conventional techniques for solving these problems is semi-carbonization treatment and consolidation molding as biomass pretreatment methods.
 半炭化処理はバイオマスの質量当たりのエネルギー密度向上に加え、疎水性付与、含水率低下、生分解性低下、粉砕性向上等の効果も期待できる。特に粉砕性が向上することで、石炭火力発電所の既設粉砕機の利用と高混焼率を同時に達成できる可能性がある。具体的には、木質チップ(木質バイオマスを破砕したもの)を既設の石炭用粉砕機で石炭と一緒に粉砕する場合、混焼率2~3cal%が上限となるが、木質半炭化ペレット(木質チップを半炭化させ、圧密成形したもの)の場合は、混焼率10~30cal%が可能となるという報告がある(非特許文献1)。 Semi-carbonization treatment can be expected to have effects such as imparting hydrophobicity, lowering water content, lowering biodegradability, and improving pulverizability, in addition to improving the energy density per mass of biomass. In particular, by improving the crushability, it is possible that the use of existing crushers in coal-fired power plants and a high co-firing rate can be achieved at the same time. Specifically, when wood chips (crushed wood biomass) are crushed together with coal with an existing coal crusher, the upper limit is a co-firing rate of 2 to 3 cal%, but wood semi-carbonized pellets (wood chips). In the case of semi-carbonized and compacted), there is a report that a co-firing rate of 10 to 30 cal% is possible (Non-Patent Document 1).
 また、圧密成型は、バイオマスの体積当たりのエネルギー密度を向上させることができる。バイオマスの成型に影響を与える因子に関しては、様々な報告がある(非特許文献2)。 In addition, consolidation molding can improve the energy density per volume of biomass. There are various reports on factors that influence the molding of biomass (Non-Patent Document 2).
 上述したような半炭化処理と圧密成型により、バイオマスの燃料としての性状を向上させることができる。 By the semi-carbonization treatment and consolidation molding as described above, the properties of biomass as a fuel can be improved.
 さらに、バイオマスの炭化物を粉砕し、粉砕された前記炭化物に凝集剤を混合して粒子を凝集させることで凝集物を形成し、前記凝集物を圧密成形することで炭化物固化体を得ることを特徴とする炭化物固化体の製造方法もこれまでに報告されている(特許文献1)。 Further, it is characterized in that a carbide of biomass is crushed, a flocculant is mixed with the pulverized carbide to agglomerate the particles to form an agglomerate, and the agglomerate is compactly molded to obtain a solidified carbide. A method for producing a solidified carbide product has also been reported so far (Patent Document 1).
 しかしながら、半炭化処理はバイオマスの成型性に強く影響し、特に乾式半炭化処理により得られるバイオマス半炭化物は成型性が低く、ハンドリング時の粉塵爆発の危険性等の問題につながるおそれがある(非特許文献2)。成型性を向上させて必要強度を得るためには成型時にバインダーが必要となり、コストアップ要因となる。 However, the semi-carbonization treatment strongly affects the moldability of biomass, and in particular, the biomass semi-carbonization obtained by the dry semi-carbonization treatment has low moldability, which may lead to problems such as a risk of dust explosion during handling (non-carbonization). Patent Document 2). In order to improve the moldability and obtain the required strength, a binder is required at the time of molding, which is a factor of increasing the cost.
 このバイオマス半炭化物のバインダーとしては、castor bean cake(CAS)(非特許文献3、グリセロール(非特許文献4)などが知られている。また、バインダーの添加方法に関して、固体バインダーは、加熱して溶かす(非特許文献5、6)、水に溶かす(非特許文献7)等といった処理が必要となる。さらに、バイオマス試料とバインダーを十分に混合するために、15分間の撹拌を12時間ごとに少なくとも6回行うことや(非特許文献5)、20分間の撹拌後に24時間4℃環境で静置(非特許文献8)、という混合処理も必要となる場合がある。 As the binder of this biomass semi-carbide, castor bean cake (CAS) (Non-Patent Document 3 and Non-Patent Document 4) and the like are known. Further, regarding the method of adding the binder, the solid binder is heated. Treatments such as dissolving (Non-Patent Documents 5 and 6) and dissolving in water (Non-Patent Document 7) are required. Further, in order to sufficiently mix the biomass sample and the binder, stirring for 15 minutes is performed every 12 hours. It may be necessary to carry out the mixing treatment at least 6 times (Non-Patent Document 5), or to allow the mixture to stand in an environment of 4 ° C. for 24 hours after stirring for 20 minutes (Non-Patent Document 8).
 また、特許文献1では、バイオマス炭化物についての検討はなされているが、未反応バイオマス及び半炭化物についての検討はされていない。ここで、バイオマス炭化物、半炭化バイオマス、未反応バイオマスの違いとして、未反応バイオマス(木質)はセルロース(繊維)、ヘミセルロース、及びリグニンを含んで構成され、半炭化バイオマス(~280℃で炭化処理)は、ヘミセルロース、及びリグニンは分解されるが、セルロース(繊維)が残存している。一方で、炭化物(一般的に、400℃以上の炭化処理を行ったバイオマス)では、バイオマス中の繊維構造は炭化反応により壊れ、より炭素質になっているという違いがあり、炭化物と、半炭化バイオマス及び未反応バイオマスとを同じような処理で同様の結果が得られるかどうかは不明である。 Further, in Patent Document 1, although the biomass carbide is examined, the unreacted biomass and the semi-carbide are not examined. Here, the difference between biomass carbide, semi-carbonized biomass, and unreacted biomass is that unreacted biomass (woody) is composed of cellulose (fiber), hemicellulose, and lignin, and is semi-carbonized biomass (carbonized at ~ 280 ° C.). Hemicellulose and lignin are decomposed, but cellulose (fiber) remains. On the other hand, in the case of carbides (generally, biomass that has been carbonized at 400 ° C or higher), the fiber structure in the biomass is broken by the carbonization reaction and becomes more carbonic. It is unclear whether similar treatments with biomass and unreacted biomass will yield similar results.
 本発明は、上記の様な問題点に着目してなされたものであって、その目的は、半炭化バイオマス又は未反応バイオマスから、効率良く低コストで、高強度のバイオマス燃料を得る方法を提供することである。 The present invention has been made by paying attention to the above-mentioned problems, and an object of the present invention is to provide a method for efficiently obtaining high-strength biomass fuel from semi-carbonized biomass or unreacted biomass at low cost. It is to be.
特開2019-59880号公報Japanese Unexamined Patent Publication No. 2019-59880
 本発明者らは鋭意検討を重ね、下記構成によって上記課題が解決できることを見出した。 The present inventors have made extensive studies and found that the above problems can be solved by the following configuration.
 すなわち、本発明の一局面に係るバイオマス燃料の製造方法は、バイオマス半炭化物又は未反応バイオマスを熱間加圧成形する工程を含み、前記熱間加圧成形する工程の前に、ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を前記半炭化物又は前記未反応バイオマスに添加することを特徴とする。 That is, the method for producing a biomass fuel according to one aspect of the present invention includes a step of hot pressure molding a biomass semi-carbohydrate or unreacted biomass, and before the step of hot pressure molding, an aqueous formatic acid solution and acetic acid. It is characterized in that at least one of the aqueous solutions is added to the semi-carbohydrate or the unreacted biomass.
図1は、試験例1における各実施例及び比較例の圧壊強度比を示すグラフである。FIG. 1 is a graph showing the crush strength ratio of each Example and Comparative Example in Test Example 1. 図2は、試験例3における各実施例及び比較例の圧壊強度比を示すグラフである。FIG. 2 is a graph showing the crush strength ratio of each Example and Comparative Example in Test Example 3. 図3は、試験例4における各実施例及び比較例の圧壊強度比を示すグラフである。FIG. 3 is a graph showing the crush strength ratio of each Example and Comparative Example in Test Example 4. 図4は、試験例4における成型温度とバイオマス半炭化物の圧壊強度比との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the molding temperature and the crushing strength ratio of the biomass semi-carbide in Test Example 4. 図5は、試験例4における成型温度と未反応バイオマスの圧壊強度比との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the molding temperature and the crushing strength ratio of unreacted biomass in Test Example 4. 図6は、試験例5における各実施例及び比較例の圧壊強度比を示すグラフである。FIG. 6 is a graph showing the crush strength ratio of each Example and Comparative Example in Test Example 5.
 上述したように、本実施形態のバイオマス燃料の製造方法は、バイオマス半炭化物又は未反応バイオマスを熱間加圧成形する工程を含み、前記熱間加圧成形する工程の前に、ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を前記半炭化物又は前記未反応バイオマスに添加することを特徴とする。 As described above, the method for producing a biomass fuel of the present embodiment includes a step of hot pressure molding a biomass semi-carbohydrate or unreacted biomass, and prior to the step of hot pressure molding, an aqueous formatic acid solution and acetic acid. It is characterized in that at least one of the aqueous solutions is added to the semi-carbohydrate or the unreacted biomass.
 このような構成により、得られるバイオマス燃料の強度を従来より大きく向上させることができる。ギ酸水溶液及び酢酸水溶液は、液体であるため半炭化物又は未反応バイオマスへの直接添加が可能で、従来技術使用されていたCAS又はグリセロールといった固形バインダーを使用する場合のような煩雑な混合処理は必要ではないため、効率的である。 With such a configuration, the strength of the obtained biomass fuel can be greatly improved as compared with the conventional case. Since the formic acid aqueous solution and the acetic acid aqueous solution are liquids, they can be directly added to semi-carbide or unreacted biomass, and complicated mixing treatment such as when using a solid binder such as CAS or glycerol which has been used in the prior art is required. It is efficient because it is not.
 ギ酸及び/又は酢酸添加によって高強度のバイオマス燃料が得られる理由としては、150℃程度での加圧成型時に、ギ酸及び酢酸がバイオマスの構成成分(植物由来のバイオマスの場合、主にセルロース・ヘミセルロース・リグニン)に作用し、結合構造がより強固なものとなっていることが考えられる。具体的には、酸添加により、半炭化物中又は未反応バイオマス中のセルロース繊維構造の緩和、セルロース、ヘミセルロース、リグニン間の結合緩和が生じ、これを加圧成型することで、より繊維同士が近接した高強度の構造が得られるためと考えられる。 The reason why high-strength biomass fuel can be obtained by adding formic acid and / or acetic acid is that formic acid and acetic acid are constituents of biomass during pressure molding at about 150 ° C.・ It is considered that it acts on lignin) and the binding structure becomes stronger. Specifically, the addition of acid causes relaxation of the cellulose fiber structure in the semi-carbide or unreacted biomass, and relaxation of the bond between cellulose, hemicellulose, and lignin, and by pressure-molding this, the fibers are closer to each other. It is considered that this is because a high-strength structure can be obtained.
 以下、本発明の実施の形態についてより具体的に説明するが、本発明は、これらに限定されるものではない。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。 Hereinafter, embodiments of the present invention will be described in more detail, but the present invention is not limited thereto. Unless otherwise specified in the present specification, "A to B" representing a numerical range means "A or more and B or less".
 (バイオマス原料)
 本実施形態で使用するバイオマスについては、特に限定はされないが、植物由来のバイオマスであることが好ましい。植物由来のバイオマスとは、植物由来の有機物資源をいい、木材、乾燥草木、農業系又は林業系の廃棄物が含まれる。当該バイオマスは典型的にはセルロース、ヘミセルロース及びリグニンを主成分とする。
(Biomass raw material)
The biomass used in this embodiment is not particularly limited, but is preferably plant-derived biomass. Plant-derived biomass refers to plant-derived organic resources, including wood, dried vegetation, agricultural or forestry waste. The biomass typically contains cellulose, hemicellulose and lignin as the main components.
 具体的には、例えば、間伐材、剪定枝、廃材、樹皮チップ、その他の木材、竹、草、やし殻、パームオイル残渣(EFB:Empty Fruit Bunch)、過剰生産による廃棄野菜、野菜クズ、カット野菜、果実、おが屑、麦わら、稲わら、及び籾殻等を挙げることができる。これらの植物由来バイオマスの中でも、資源量が豊富であるという観点から、木質系バイオマス、EFB等を用いることが好ましい。 Specifically, for example, thinned wood, pruned branches, waste wood, bark chips, other wood, bamboo, grass, palm husks, palm oil residue (EFB: Empty Fruit Bunch), waste vegetables due to overproduction, vegetable waste, etc. Examples thereof include cut vegetables, fruits, shavings, straw, rice straw, and paddy husks. Among these plant-derived biomasses, it is preferable to use woody biomass, EFB, etc. from the viewpoint of abundant resources.
 本実施形態において後述する熱間加圧成型工程に供するのは、未反応バイオマスでもバイオマス半炭化物であってもよい。本明細書において、「未反応バイオマス」とは、炭化又は半炭化等による化学反応が起こっていない状態のバイオマスを指す。ただし、例えば、バイオマスを粉砕したもの、又は、水分を蒸発させるなどの処理(含水率の調整等)を行ったものは本実施形態の「未反応バイオマス」に包含される。 In this embodiment, unreacted biomass or biomass semi-carbide may be used for the hot pressure molding step described later. In the present specification, the “unreacted biomass” refers to biomass in a state where no chemical reaction due to carbonization or semi-carbonization has occurred. However, for example, crushed biomass or treated such as evaporating water content (adjustment of water content, etc.) is included in the "unreacted biomass" of the present embodiment.
 前記未反応バイオマスを用いる場合、そのまま後述の熱間加圧成型工程に供するか、あるいは、必要に応じて、破砕手段で適度な大きさに破砕してから、及び/又は、適度に水分を蒸発させてから、後述の熱間加圧成型工程に供すればよい。一方で、半炭化物を用いる場合、まずバイオマス原料を半炭化させる工程を行う。 When the unreacted biomass is used, it is directly subjected to the hot pressure molding step described later, or if necessary, it is crushed to an appropriate size by a crushing means, and / or the water is evaporated appropriately. After that, it may be subjected to the hot pressure molding step described later. On the other hand, when a semi-carbide is used, the step of semi-carbonizing the biomass raw material is performed first.
 (半炭化工程)
 本工程では、上述したようなバイオマス原料を半炭化処理に供する。本実施形態の半炭化処理は特に限定されず、乾式半炭化であっても湿式半炭化であってもよい。特に乾式半炭化物で造粒性が低い炭化物に、本実施形態が有効であるという観点から、乾式半炭化を行うことが望ましい。湿式半炭化物の成型品は、バインダー無しでも必要強度(輸送に耐えうる強度)が得られることが知られているため、本実施形態では乾式半炭化を主な対象とする。
(Semi-carbonization process)
In this step, the above-mentioned biomass raw material is subjected to semi-carbonization treatment. The semi-carbonization treatment of the present embodiment is not particularly limited, and may be dry semi-carbonization or wet semi-carbonization. In particular, it is desirable to carry out dry semi-carbide from the viewpoint that this embodiment is effective for carbides that are dry semi-carbides and have low granulation properties. Since it is known that a molded product of a wet semi-carbide can obtain the required strength (strength that can withstand transportation) without a binder, the present embodiment mainly targets dry semi-carbonization.
 バイオマス原料はそのまま半炭化処理に供してもよいが、必要に応じて、破砕手段で適度な大きさに破砕してから用いてもよい。 The biomass raw material may be subjected to semi-carbonization treatment as it is, but if necessary, it may be used after being crushed to an appropriate size by a crushing means.
 半炭化処理としては従来バイオマスの製造のために使用されている半炭化方法を特に限定なく使用することができる。具体的には、乾式半炭化処理の場合の一例を挙げると、不活性雰囲気下で、200~300℃の温度域で10~60分間程度、半炭化を行ってもよい。ここでいう不活性雰囲気とは、窒素、又は二酸化炭素など、バイオマス原料と反応しない気体をさす。また、炭化温度まで迅速に昇温するため、過熱水蒸気を用いてもよい。 As the semi-carbonization treatment, the semi-carbonization method conventionally used for the production of biomass can be used without particular limitation. Specifically, to give an example of the dry semi-carbonization treatment, semi-carbonization may be carried out in an inert atmosphere in a temperature range of 200 to 300 ° C. for about 10 to 60 minutes. The inert atmosphere here refers to a gas that does not react with the biomass raw material, such as nitrogen or carbon dioxide. Moreover, superheated steam may be used in order to raise the temperature rapidly to the carbonization temperature.
 (ギ酸水溶液及び/又は酢酸水溶液の添加)
 次いで、上記で得られたバイオマスの半炭化物又は未反応バイオマスに、ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を添加する。
(Addition of formic acid aqueous solution and / or acetic acid aqueous solution)
Then, at least one of a formic acid aqueous solution and an acetic acid aqueous solution is added to the semi-carbide or unreacted biomass of the biomass obtained above.
 添加の方法は特に限定されないが、ギ酸水溶液及び酢酸水溶液は液体であるため、前記半炭化物又は未反応バイオマスに直接添加することができる。ギ酸及び酢酸のうち少なくとも一方の添加量(添加率)は、前記半炭化物に対し、1~26wt%/db(ドライベース)程度であることが好ましい。なお、含水している場合、乾燥ベースのドライベース(db)に対して、ウェットベース(wb)と称することもあるが、それぞれの計算方法は後述の実施例に記載の方法を用いる。添加量が1wt%/db未満となると、成型品の強度向上率が小さく、必要強度(例えば、輸送に耐え得る強度)が得られないおそれがあり、一方で、26wt%/dbを超えると、半炭化物中又は未反応バイオマスの液体分が増加しすぎるため強度が下がる傾向があり好ましくない。より好ましい添加量の下限値は、4wt%/dbであり、より好ましい上限値は22wt%/dbである。 The method of addition is not particularly limited, but since the formic acid aqueous solution and the acetic acid aqueous solution are liquids, they can be added directly to the semicarbide or unreacted biomass. The addition amount (addition rate) of at least one of formic acid and acetic acid is preferably about 1 to 26 wt% / db (dry base) with respect to the semi-carbide. In addition, when it contains water, it may be referred to as a wet base (wb) as opposed to a dry base (db) of a dry base, but the methods described in Examples described later are used for each calculation method. If the amount added is less than 1 wt% / db, the strength improvement rate of the molded product is small, and the required strength (for example, strength that can withstand transportation) may not be obtained. On the other hand, if it exceeds 26 wt% / db, Since the liquid content of the semi-carbide or unreacted biomass increases too much, the strength tends to decrease, which is not preferable. The lower limit of the more preferable addition amount is 4 wt% / db, and the more preferable upper limit is 22 wt% / db.
 ギ酸水溶液又は酢酸水溶液を使用する場合、それらの濃度は、ギ酸及び/又は酢酸の添加率が上記範囲となる濃度であれば特に限定はない。例えば、ギ酸水溶液を使用する場合、そのギ酸濃度は、30~70重量%程度であり、また、酢酸水溶液を使用する場合、その酢酸濃度は、30~70重量%程度であってもよい。 When an aqueous solution of formic acid or an aqueous solution of acetic acid is used, their concentrations are not particularly limited as long as the addition rate of formic acid and / or acetic acid is within the above range. For example, when an aqueous solution of formic acid is used, the concentration of formic acid may be about 30 to 70% by weight, and when an aqueous solution of acetic acid is used, the concentration of acetic acid may be about 30 to 70% by weight.
 ギ酸水溶液及び酢酸水溶液はいずれか一方を単独で使用してもよいし、両方を組み合わせて使用することもできる。 Either one of the formic acid aqueous solution and the acetic acid aqueous solution may be used alone, or both may be used in combination.
 ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を添加した後、バイオマス半炭化物又は未反応バイオマスと混合するため、攪拌を行うことが好ましい。攪拌方法には特に限定はなく、ギ酸水溶液及び酢酸水溶液のうち少なくとも一方と、半炭化物又は未反応バイオマスとが均一に混合される手段であればよい。本実施形態の方法では、固形バインダーではなく水溶液を混合するため、従来法のような長時間の攪拌などは不必要であり、例えば、ビーカーの中のサンプルを、スパチュラを用いて適切な時間攪拌すれば十分である。 After adding at least one of the formic acid aqueous solution and the acetic acid aqueous solution, it is preferable to stir because it is mixed with the biomass semi-carbide or unreacted biomass. The stirring method is not particularly limited, and any means may be used as long as at least one of the formic acid aqueous solution and the acetic acid aqueous solution is uniformly mixed with the semicarbide or unreacted biomass. In the method of the present embodiment, since the aqueous solution is mixed instead of the solid binder, it is not necessary to stir for a long time as in the conventional method. For example, the sample in the beaker is stirred for an appropriate time using a spatula. That's enough.
 さらに、本実施形態の製造方法では、ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を添加する前に、前記半炭化物及び前記未反応バイオマスのうち少なくともいずれか1つを粉砕する工程を含むことが好ましい。それにより、ギ酸水溶液及び酢酸水溶液のうち少なくとも一方と前記バイオマス半炭化物又は未反応バイオマスとを混合する際に、より均一に混合することができると考えられる。 Further, the production method of the present embodiment preferably includes a step of pulverizing at least one of the semicarbide and the unreacted biomass before adding at least one of the formic acid aqueous solution and the acetic acid aqueous solution. Thereby, it is considered that at least one of the formic acid aqueous solution and the acetic acid aqueous solution can be mixed more uniformly when the biomass semi-carbide or unreacted biomass is mixed.
 この粉砕工程は、前記半炭化物及び前記未反応バイオマスのうち少なくともいずれか1つに対して行えばよく、例えば、未反応バイオマス又はバイオマス半炭化物に対して行ってもよいし、半炭化する前のバイオマス原料を予め粉砕しておいてもよい。 This pulverization step may be performed on at least one of the semi-carbide and the unreacted biomass, for example, on the unreacted biomass or the biomass semi-carbide, or before semi-carbide. The biomass raw material may be crushed in advance.
 未反応バイオマス又は半炭化物を粉砕する方法については特に限定はなく、例えば、ブレンダー、乳鉢、カッターミル、ボールミル等を用いて、粉砕することができる。 The method for crushing unreacted biomass or semi-carbide is not particularly limited, and for example, it can be crushed using a blender, a mortar, a cutter mill, a ball mill, or the like.
 得られる粉砕物のサイズについても特に限定はないが、より小粒径の方が成型品の強度は向上するという観点から、例えば、長径が1mm程度以下となる程度まで粉砕することが好ましい。 The size of the obtained crushed product is also not particularly limited, but from the viewpoint that the strength of the molded product is improved when the particle size is smaller, it is preferable to crush the crushed product to a extent that the major axis is about 1 mm or less, for example.
 なお、上記半炭化工程で得られた半炭化物は、ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を添加する前に、100℃程度以下となるように冷却してから添加することが好ましい。 The semi-carbide obtained in the semi-carbonization step is preferably added after cooling to about 100 ° C. or lower before adding at least one of the formic acid aqueous solution and the acetic acid aqueous solution.
 さらに、本実施形態の製造方法が前記半炭化工程を含む場合、前記半炭化物に添加するギ酸水溶液及び/又は酢酸水溶液として、前記半炭化工程における反応で発生した揮発物に含まれるギ酸水溶液及び/又は酢酸水溶液を使用することもできる。それにより、新たなバインダー(ギ酸水溶液及び/又は酢酸水溶液)を添加する必要がなくなるため、製造コストの大幅な削減が期待できる。 Further, when the production method of the present embodiment includes the semi-carbohydrate step, the formic acid aqueous solution and / or the acetic acid aqueous solution to be added to the semi-carbohydrate is the formic acid aqueous solution and / or the formic acid aqueous solution contained in the volatile matter generated in the reaction in the semi-carbohydrate step. Alternatively, an aqueous acetic acid solution can be used. As a result, it is not necessary to add a new binder (formic acid aqueous solution and / or acetic acid aqueous solution), so that a significant reduction in manufacturing cost can be expected.
 揮発物からのギ酸水溶液及び/又は酢酸水溶液を使用する方法については、例えば、半炭化処理を行う炉から揮発物を抜き出し、ギ酸水溶液及び/又は酢酸水溶液と、揮発物に含まれるその他の主成分(フェノール類)との沸点の違いを利用して、ギ酸水溶液及び/又は酢酸水溶液を回収することができる。 Regarding the method of using the formic acid aqueous solution and / or the acetic acid aqueous solution from the volatile matter, for example, the formic acid aqueous solution and / or the acetic acid aqueous solution is extracted from the furnace performing the semi-carbonization treatment, and the formic acid aqueous solution and / or the acetic acid aqueous solution and other main components contained in the volatile matter are used. The formic acid aqueous solution and / or the acetic acid aqueous solution can be recovered by utilizing the difference in boiling point from (phenols).
 (熱間加圧成型工程) (Hot pressure molding process)
 上述したギ酸水溶液及び/又は酢酸水溶液の添加工程の後、熱間加圧成型を行うが、成型を行う前に、必要に応じて、得られた半炭化物を粉砕などによってさらに細かくしてから成型してもよい。それによって、半炭化物の造粒物をち密な構造にし、より強度の高い造粒物を得ることができるといった利点がある。粉砕手段及び粉砕後の大きさ等は特に限定はなく、所望する造粒物又は成型物によって適宜調整すればよい。 After the above-mentioned step of adding the formic acid aqueous solution and / or the acetic acid aqueous solution, hot pressure molding is performed. You may. As a result, there is an advantage that the semi-carbide granulated product can be made into a dense structure and a stronger granulated product can be obtained. The pulverizing means, the size after pulverization, and the like are not particularly limited, and may be appropriately adjusted depending on the desired granulated product or molded product.
 本実施形態の熱間加圧成型は、100℃超200℃以下の温度範囲で行うことが好ましい。前記温度が100℃以下となると、十分な強度が得られないおそれがあり、一方で、上限は特に限定はないが、200℃を超えると必要以上の温度となり、無駄なエネルギー消費となるため200℃以下であることが好ましい。より好ましい温度範囲の下限値は120℃であり、また、より好ましい温度範囲の上限値は180℃である。 The hot pressure molding of this embodiment is preferably performed in a temperature range of more than 100 ° C. and 200 ° C. or lower. If the temperature is 100 ° C. or lower, sufficient strength may not be obtained. On the other hand, the upper limit is not particularly limited, but if the temperature exceeds 200 ° C., the temperature becomes higher than necessary, resulting in wasteful energy consumption. It is preferably ℃ or less. The lower limit of the more preferable temperature range is 120 ° C., and the upper limit of the more preferable temperature range is 180 ° C.
 未反応バイオマスを用いる場合、好ましくは、130~200℃の温度で熱間加圧成型を行うこと、より好ましくは、135℃以上、170℃以下で行うことが望ましい。また、バイオマス半炭化物を用いる場合、より好ましくは、125~200℃の温度で熱間加圧成型を行うこと、より好ましくは、130℃以上、170℃以下で行うことが望ましい。 When unreacted biomass is used, it is preferable to perform hot pressure molding at a temperature of 130 to 200 ° C., more preferably 135 ° C. or higher and 170 ° C. or lower. When a biomass semi-carbide is used, it is more preferable to perform hot pressure molding at a temperature of 125 to 200 ° C., and more preferably 130 ° C. or higher and 170 ° C. or lower.
 本実施形態において、上述した熱間加圧成型の温度とは、成型に用いる金型の温度を意味する。金型の温度は、熱電対を金型に直接つけて測定することにより求めたり、金型を入れた恒温槽設定温度(目標温度)を設定し、加熱時間との関係で金型温度を設定したりすることによって、調整することができる。具体的な方法としては、例えば、後述の実施例で行った方法を用いることができる。 In the present embodiment, the temperature of the hot pressure molding described above means the temperature of the mold used for molding. The temperature of the mold can be obtained by directly attaching the thermocouple to the mold and measuring, or the set temperature (target temperature) of the constant temperature bath containing the mold is set and the mold temperature is set in relation to the heating time. It can be adjusted by doing so. As a specific method, for example, the method described in the examples described later can be used.
 本実施形態の熱間加圧成型工程における成型手段又は成型条件などは、所望する成型物によって、公知の方法及び条件をそのまま、又は改変して、適宜選択することができる。成型物の形状及び大きさも所望するサイズに適宜調整すればよい。 The molding means or molding conditions in the hot pressure molding step of the present embodiment can be appropriately selected depending on the desired molded product, with the known methods and conditions as they are or modified. The shape and size of the molded product may be appropriately adjusted to a desired size.
 例えば、リングダイもしくはフラットダイ型のペレタイザを用いた押出成型、又はロール成型機を用いたブリケット成型をすることによって、バイオマス燃料を造粒又は成型することが可能である。 For example, it is possible to granulate or mold biomass fuel by extrusion molding using a ring die or flat die type pelletizer, or briquette molding using a roll molding machine.
 本実施形態によれば、前記成型工程後の成型品の強度が優れているため、燃料として輸送及び利用する際に非常にハンドリングしやすいという利点がある。 According to this embodiment, since the strength of the molded product after the molding process is excellent, there is an advantage that it is very easy to handle when transporting and using it as fuel.
 (バイオマス燃料)
 本実施形態の方法で得られるバイオマス燃料は、様々な場面で燃料として使用できる。本実施形態の製造方法によって得られるバイオマス燃料は、従来のバイオマス固形燃料と比べても非常に強度が高く、成型性にも優れるため、産業上極めて有用である。
(Biomass fuel)
The biomass fuel obtained by the method of this embodiment can be used as a fuel in various situations. The biomass fuel obtained by the production method of the present embodiment has extremely high strength and excellent moldability as compared with the conventional biomass solid fuel, and is therefore extremely useful in industry.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 すなわち、本発明の一局面に係るバイオマス燃料の製造方法は、バイオマス半炭化物又は未反応バイオマスを熱間加圧成形する工程を含み、前記熱間加圧成形する工程の前に、ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を前記半炭化物又は前記未反応バイオマスに添加することを特徴とする。 That is, the method for producing a biomass fuel according to one aspect of the present invention includes a step of hot pressure molding a biomass semi-carbohydrate or unreacted biomass, and before the step of hot pressure molding, an aqueous formatic acid solution and acetic acid. It is characterized in that at least one of the aqueous solutions is added to the semi-carbohydrate or the unreacted biomass.
 このような構成によれば、半炭化バイオマス又は未反応バイオマスから、効率良く低コストで、高強度のバイオマス燃料を得る方法を提供することができる。 According to such a configuration, it is possible to provide a method for efficiently obtaining high-strength biomass fuel from semi-carbonized biomass or unreacted biomass at low cost.
 また、前記製造方法において、前記ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を添加する前に、前記半炭化物及び前記未反応バイオマスのうち少なくともいずれか1つを粉砕する工程を含むことが好ましい。 Further, in the production method, it is preferable to include a step of pulverizing at least one of the semicarbide and the unreacted biomass before adding at least one of the formic acid aqueous solution and the acetic acid aqueous solution.
 さらに、ギ酸及び酢酸のうち少なくとも一方の添加量が、前記半炭化物又は前記未反応バイオマスに対し、1~26wt%/dbであることが好ましい。 Further, it is preferable that the amount of at least one of formic acid and acetic acid added is 1 to 26 wt% / db with respect to the semicarbide or the unreacted biomass.
 また、前記製造方法において、前記熱間加圧成形を100超200℃以下の温度で行うことが好ましい。さらに、未反応バイオマスを用いる場合は、前記未反応バイオマスを130~200℃の温度で熱間加圧成形すること、もしくは、半炭化物を用いる場合は、前記バイオマス半炭化物を125~200℃の温度で熱間加圧成形することが好ましい。 Further, in the production method, it is preferable to perform the hot pressure molding at a temperature of more than 100 and 200 ° C. or less. Further, when unreacted biomass is used, the unreacted biomass is hot-press molded at a temperature of 130 to 200 ° C., or when a semi-carbide is used, the biomass semi-carbide is heated at a temperature of 125 to 200 ° C. It is preferable to perform hot pressure molding at.
 また、前記製造方法において、バイオマス半炭化物を用いる場合、さらに、熱間加圧成形工程前にバイオマス原料を半炭化させる工程を含むことが好ましい。その場合には、前記ギ酸及び酢酸として、半炭化工程中に発生する揮発物から得られるギ酸及び酢酸を使用することが好ましい。 Further, when a biomass semi-carbide is used in the above-mentioned production method, it is preferable to further include a step of semi-carbonizing the biomass raw material before the hot pressure molding step. In that case, it is preferable to use formic acid and acetic acid obtained from volatile substances generated during the semi-carbonization step as the formic acid and acetic acid.
 以下では、本発明を、実施例を用いてさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
 (試験例1)
 〔半炭化物からのバイオマス燃料の製造〕
 1.半炭化処理
 バイオマス原料として、木質バイオマスペレット(含水率約10%-db)を用いて、
以下の条件の半炭化処理を行った(なお、含水している場合、乾燥ベースのドライベース(db)に対して、ウェットベース(wb)と称する)。
なお、それぞれの計算は以下の通りである。
・wb(wet base;%)=(サンプル重量-サンプル絶乾重量)/サンプル重量×100
・db(dry base;%)=(サンプル重量-サンプル絶乾重量)/サンプル絶乾重量×100
(Test Example 1)
[Manufacturing of biomass fuel from semi-carbide]
1. 1. Semi-carbonized treatment Using woody biomass pellets (moisture content of about 10% -db) as a raw material for biomass,
Semi-carbonization treatment under the following conditions was carried out (when water is contained, it is referred to as a wet base (wb) as opposed to a dry base (db) of a dry base).
Each calculation is as follows.
-Wb (wet base;%) = (sample weight-sample absolute dry weight) / sample weight x 100
DB (dry base;%) = (sample weight-sample absolute dry weight) / sample absolute dry weight x 100
 装置としては、小型乾留炉(高周波誘電加熱装置 IMC-ASH-103型,アイメックス株式会社)を使用した。 As the device, a small dry distillation furnace (high frequency dielectric heating device IMC-ASH-103 type, IMEX Co., Ltd.) was used.
 石英容器(内寸φ47.7mm、高さ140mm、内容積200ml)4本に、サンプルを約120g-wbずつ充填し、それらを黒鉛製るつぼに設置して、小型乾留炉にセットした。試験時窒素流量は2L/minとした。 Four quartz containers (inner size φ47.7 mm, height 140 mm, internal volume 200 ml) were filled with samples of about 120 g-wb each, placed in a graphite crucible, and set in a small carbonization furnace. The nitrogen flow rate during the test was 2 L / min.
 温度条件:昇温速度5℃/minで目標温度(260℃程度)まで昇温し、その後30~60分保持し、木質バイオマスの半炭化物を得た。なお、サンプル温度が目標温度の-10℃に達した時点から、保持時間の計測を開始した。 Temperature condition: The temperature was raised to the target temperature (about 260 ° C.) at a heating rate of 5 ° C./min, and then held for 30 to 60 minutes to obtain a semi-carbide of woody biomass. The measurement of the holding time was started when the sample temperature reached the target temperature of −10 ° C.
 2.半炭化物の粉砕
 上記で得られた半炭化物をブレンダーで粉砕し、1mmふるい下の粉砕物を得た。
2. Milling of semi-carbide The semi-carbide obtained above was pulverized with a blender to obtain a pulverized product under a 1 mm sieve.
 3.ギ酸/酢酸水溶液の添加
 半炭化物(粉砕品)約50g-dbに、後述の表3及び表4に示す添加率で、純水又はギ酸・酢酸水溶液を滴下又は噴霧し、まんべんなく混ざるように攪拌した。ギ酸・酢酸水溶液添加無し(純水のみを添加)の試験例を比較例とし、実施例として、ギ酸・酢酸水溶液を添加(ギ酸・酢酸添加率0~25wt%-db)した半炭化物を準備し、下記の成型試験に使用した。
3. 3. Addition of formic acid / acetic acid aqueous solution Pure water or formic acid / acetic acid aqueous solution was added dropwise or sprayed to about 50 g-db of a semi-carbide (crushed product) at the addition rates shown in Tables 3 and 4 described later, and the mixture was stirred so as to be evenly mixed. .. Using a test example without the addition of an aqueous solution of formic acid and acetic acid (adding only pure water) as a comparative example, a semicarbide to which an aqueous solution of formic acid and acetic acid was added (formic acid and acetic acid addition rate 0 to 25 wt% -db) was prepared. , Used for the following molding test.
 4.成型及び圧壊強度試験
 金型に、上記3.で調整した各実施例及び比較例の試料を仕込み、その状態で加熱した後、下記表1に示す条件で、加圧成型器(金型:特注、油圧ポンプ:理研精機 P-8、シリンダ:理研精機 SC3.6-30)を使用して成型を行った。
4. Molding and crushing strength test For the mold, the above 3. After preparing the samples of each of the Examples and Comparative Examples adjusted in 1 and heating in that state, the pressure molding machine (mold: custom order, hydraulic pump: RIKEN Seiki P-8, cylinder:) under the conditions shown in Table 1 below. Molding was performed using RIKEN Seiki SC3.6-30).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、本試験における成型前加熱温度とは、試料を仕込んだ加圧成形器(金型)を、加圧成型をする前に恒温槽で加熱した時の、恒温槽の設定温度を意味する。本試験条件では、恒温槽設定温度(目標温度)で、金型内の試料温度がその目標温度に到達するまでの時間を測定し、成型前加熱時間を所望する温度に応じてそれぞれ設定することによって、前記成型前加熱温度を調整した。
 前記加圧成型器を用いた場合の各目標温度と加熱時間の関係を、下記表2に示す。
The pre-molding heating temperature in this test means the set temperature of the constant temperature bath when the pressure molding machine (mold) in which the sample is charged is heated in the constant temperature bath before pressure molding. In this test condition, the time until the sample temperature in the mold reaches the target temperature is measured at the constant temperature bath set temperature (target temperature), and the pre-molding heating time is set according to the desired temperature. The heating temperature before molding was adjusted according to the above.
The relationship between each target temperature and the heating time when the pressure molding machine is used is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
(*170℃において、2種類の加熱時間となっているのは、n数が複数ある場合、n=1の場合は70分を要したが、n=2の場合は金型に温度履歴が残っていたため40分で目標温度に到達したためである。)
Figure JPOXMLDOC01-appb-T000002
(* At 170 ° C, the two types of heating time are 70 minutes when there are multiple n numbers and n = 1, but when n = 2, the temperature history is recorded in the mold. This is because the target temperature was reached in 40 minutes because it remained.)
 本試験では、恒温槽内の加圧成型器が恒温槽の設定温度に到達した後、恒温槽外で加圧成型試験を実施した。上述した加熱前成型温度を本試験では、熱間加圧成型温度(金型温度)とみなす。 In this test, after the pressure molding machine inside the constant temperature bath reached the set temperature of the constant temperature bath, the pressure molding test was conducted outside the constant temperature bath. In this test, the above-mentioned preheating molding temperature is regarded as the hot pressure molding temperature (mold temperature).
 次に、得られた成型物につき、圧壊試験機(古河大塚鉄工製、「LXA-500」)、動ひずみ測定器(共和電業製、「DPM-711B」)を使用して強度を測定した。圧壊強度値(測定値)は、n=5の平均値である。また、圧壊強度比は、純粋添加時の圧壊強度を1として計算した。 Next, the strength of the obtained molded product was measured using a crush tester (manufactured by Furukawa Otsuka Iron Works, "LXA-500") and a dynamic strain measuring instrument (manufactured by Kyowa Electric Co., Ltd., "DPM-711B"). .. The crush strength value (measured value) is an average value of n = 5. The crush strength ratio was calculated with the crush strength at the time of pure addition as 1.
 結果を表3及び表4にまとめる。なお、表における各試料のギ酸/酢酸添加率、含水率、水溶液添加率はいずれも計算値である。さらに、図1にギ酸/酢酸添加率に対する圧壊強度比をまとめた。 The results are summarized in Tables 3 and 4. The formic acid / acetic acid addition rate, water content, and aqueous solution addition rate of each sample in the table are all calculated values. Furthermore, Fig. 1 summarizes the crushing strength ratio to the formic acid / acetic acid addition rate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (考察)
 表3~4及び図1に示されるように、ギ酸又は酢酸を添加することにより、得られるバイオマス成型物の圧壊強度が向上することが確認できた。また、表4の結果から、含水率及び水溶液添加率を一定にした場合でも、ギ酸による圧壊強度向上の効果があることが確認された。
(Discussion)
As shown in Tables 3 to 4 and FIG. 1, it was confirmed that the crushing strength of the obtained biomass molded product was improved by adding formic acid or acetic acid. In addition, from the results in Table 4, it was confirmed that formic acid has the effect of improving the crushing strength even when the water content and the aqueous solution addition rate are kept constant.
 (試験例2)
 次に、熱間加圧成型工程における温度範囲の検証を行った。
(Test Example 2)
Next, the temperature range in the hot pressure molding process was verified.
 具体的には、加圧成型前の試料と、成型前加熱温度(金型温度)を、表5に示すように130~170℃に変更した以外は、試験例1と同様にして、成型・圧壊強度試験を行った。結果を表5に示す。表中、ギ酸添加率は計算値であり、圧壊強度値は測定値(n=5の平均値)である。 Specifically, the sample before pressure molding and the heating temperature before molding (mold temperature) were changed to 130 to 170 ° C. as shown in Table 5, but the molding was performed in the same manner as in Test Example 1. A crush strength test was conducted. The results are shown in Table 5. In the table, the formic acid addition rate is a calculated value, and the crushing strength value is a measured value (an average value of n = 5).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (考察)
 表5から明らかなように、特に、熱間加圧成型時の温度が150~170℃の範囲であれば、ギ酸水溶液を添加することによって、優れた強度が得られることが確認された。
(Discussion)
As is clear from Table 5, it was confirmed that excellent strength can be obtained by adding the formic acid aqueous solution, especially when the temperature at the time of hot pressure molding is in the range of 150 to 170 ° C.
 (試験例3)
 次に、半炭化物にギ酸水溶液を添加後、十分に浸透させるために静置時間が必要かどうかを確かめるため、ギ酸水溶液添加・撹拌後に、(1)1日以上密封容器内で静置させた後に成型試験を実施した場合と、(2)すぐに成型試験を実施した場合の2通りで圧壊強度の比較を行った。静置時間の有無以外の製造方法、試験方法は上記試験例1と同様にして製造・評価した。
(Test Example 3)
Next, after adding the formic acid aqueous solution to the semi-carbide, in order to confirm whether the standing time is necessary for sufficient permeation, after adding the formic acid aqueous solution and stirring, (1) the mixture was allowed to stand in a sealed container for 1 day or more. The crushing strength was compared between the case where the molding test was carried out later and the case where the molding test was carried out immediately (2). The manufacturing method and the test method other than the presence or absence of the standing time were manufactured and evaluated in the same manner as in Test Example 1 above.
 下記表6に、静置時間の有無、各試料のギ酸添加率(計算値)、圧壊強度値(測定値、n=5の平均値)及びその標準偏差、図2(エラーバーは2σ)にそれぞれの圧壊強度値を示す。 Table 6 below shows the presence or absence of standing time, the formic acid addition rate (calculated value) of each sample, the crushing strength value (measured value, average value of n = 5) and its standard deviation, and Fig. 2 (error bar is 2σ). Each crush strength value is shown.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (考察)
 表6及び図2の結果から明らかなように、静置時間の有無にかかわらず、ギ酸水溶液の添加によって成型物の強度が向上することが確認できた。つまり、本発明の製造方法において、ギ酸水溶液を添加した後の静置時間は不要であり、簡便・迅速にバイオマス燃料を製造できることがわかった。
(Discussion)
As is clear from the results of Table 6 and FIG. 2, it was confirmed that the strength of the molded product was improved by the addition of the formic acid aqueous solution regardless of the presence or absence of the standing time. That is, it was found that in the production method of the present invention, the standing time after the addition of the formic acid aqueous solution is unnecessary, and the biomass fuel can be produced easily and quickly.
 (試験例4)
 〔未反応バイオマスからのバイオマス燃料の製造〕
 1.未反応バイオマスの粉砕
 バイオマス原料として、木質バイオマスペレット(含水率約10%-db)をブレンダーで粉砕し、1mmふるい下の粉砕物を得た。
(Test Example 4)
[Manufacturing of biomass fuel from unreacted biomass]
1. 1. Crushing of unreacted biomass As a raw material for biomass, woody biomass pellets (moisture content of about 10% -db) were crushed with a blender to obtain a crushed product under a 1 mm sieve.
 2.ギ酸/酢酸水溶液の添加
 未反応バイオマス(粉砕品)約50g-dbに、後述の表9に示す添加率で、純水又はギ酸・酢酸水溶液を滴下又は噴霧し、まんべんなく混ざるように攪拌した。ギ酸・酢酸水溶液添加無し(純水のみを添加)の試験例を比較例とし、実施例として、ギ酸・酢酸水溶液を添加した未反応バイオマスを準備し、下記の成型試験に使用した。
2. Addition of formic acid / acetic acid aqueous solution Pure water or formic acid / acetic acid aqueous solution was added dropwise or sprayed to about 50 g-db of unreacted biomass (crushed product) at the addition rate shown in Table 9 described later, and the mixture was stirred so as to be evenly mixed. A test example in which no formic acid / acetic acid aqueous solution was added (only pure water was added) was used as a comparative example, and as an example, unreacted biomass to which a formic acid / acetic acid aqueous solution was added was prepared and used in the following molding test.
 3.成型及び圧壊強度試験
 金型に、上記2.で調整した各実施例及び比較例の試料を仕込み、その状態で加熱した後、下記表7(条件A:下記評価試験Aで使用)又は表8(条件B:下記評価試験Bで使用)に示す条件で、成型を行った。なお、表7(条件A)における成型前加熱温度とは、前記試験例1の成型前加熱温度と同じ意味である。また、表8における金型温度とは、金型に設置した熱電対温度である。表8の条件Bでは、試料を仕込んだ加圧成型器を恒温槽内に設置した状態で、加圧成型試験を実施した。
 表7の成型前加熱温度及び表8の金型温度のいずれも熱間加圧成型温度とみなす。
3. 3. Molding and crushing strength test For the mold, the above 2. After preparing the samples of each Example and Comparative Example adjusted in the above and heating in that state, the following Table 7 (Condition A: Used in the following evaluation test A) or Table 8 (Condition B: Used in the following evaluation test B) Molding was performed under the conditions shown. The pre-molding heating temperature in Table 7 (Condition A) has the same meaning as the pre-molding heating temperature of Test Example 1. The mold temperature in Table 8 is the thermocouple temperature installed in the mold. Under the condition B of Table 8, the pressure molding test was carried out in a state where the pressure molding machine in which the sample was charged was installed in the constant temperature bath.
Both the pre-molding heating temperature in Table 7 and the mold temperature in Table 8 are regarded as hot pressure molding temperatures.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (評価試験A)
 前記条件Aで得られた成型物につき、圧壊試験機(古河大塚鉄工製、「LXA-500」)、動ひずみ測定器(共和電業製、「DPM-711B」)を使用して強度を測定した。圧壊強度値(測定値)は、n=5の平均値である。また、圧壊強度比は、純粋添加時の圧壊強度を1として計算した。
(Evaluation test A)
The strength of the molded product obtained under the above condition A is measured using a crush tester (manufactured by Furukawa Otsuka Iron Works, "LXA-500") and a dynamic strain measuring instrument (manufactured by Kyowa Electric Co., Ltd., "DPM-711B"). bottom. The crush strength value (measured value) is an average value of n = 5. The crush strength ratio was calculated with the crush strength at the time of pure addition as 1.
 結果を表9にまとめる。なお、表における各試料のギ酸/酢酸添加率、含水率、水溶液添加率はいずれも計算値である。さらに、図3にギ酸/酢酸添加率に対する圧壊強度比をまとめた。 The results are summarized in Table 9. The formic acid / acetic acid addition rate, water content, and aqueous solution addition rate of each sample in the table are all calculated values. Furthermore, Fig. 3 summarizes the crushing strength ratio to the formic acid / acetic acid addition rate.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (考察)
 表9及び図3に示されるように、ギ酸又は酢酸を添加することにより、未反応バイオマスから得られるバイオマス成型物の圧壊強度が向上することが確認できた。
(Discussion)
As shown in Table 9 and FIG. 3, it was confirmed that the crushing strength of the biomass molded product obtained from the unreacted biomass was improved by adding formic acid or acetic acid.
 (評価試験B)
 次に、熱間加圧成型工程における温度範囲の検証を行った。具体的には、半炭化バイオマス及び未反応バイオマスの試料におけるギ酸添加率、及び、熱間加圧成型に用いる金型の温度を、表10に示すように100~140℃に変更して、上記条件Bで得られた成型物につき、圧壊強度試験を行った。結果を表10及び図4~5(エラーバーは2σ)に示す。表中、ギ酸添加率は計算値であり、圧壊強度値は測定値(n=3の平均値)である。なお、半炭化物としては試験例1と同様にして得た粉砕物を、未反応バイオマスとしては試験例4と同様にして得た粉砕物を使用した。
(Evaluation test B)
Next, the temperature range in the hot pressure molding process was verified. Specifically, the formic acid addition rate in the samples of semi-carbonized biomass and unreacted biomass and the temperature of the mold used for hot pressure molding are changed to 100 to 140 ° C. as shown in Table 10 to obtain the above. The molded product obtained under Condition B was subjected to a crushing strength test. The results are shown in Table 10 and FIGS. 4 to 5 (error bars are 2σ). In the table, the formic acid addition rate is a calculated value, and the crushing strength value is a measured value (an average value of n = 3). As the semi-carbide, the pulverized product obtained in the same manner as in Test Example 1 was used, and as the unreacted biomass, the pulverized product obtained in the same manner as in Test Example 4 was used.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (考察)
 表10及び図4~5に示されるように、バイオマス半炭化物では125℃以上、未反応バイオマスでは130℃以上の温度の熱間成型で、ギ酸添加による成型強度がより向上することがわかった。一方、バイオマス半炭化物においても、未反応バイオマスにおいても、100℃以下の温度では、十分な強度が得られず、成型ができなかった。
(Discussion)
As shown in Table 10 and FIGS. 4 to 5, it was found that hot molding at a temperature of 125 ° C. or higher for biomass semi-carbide and 130 ° C. or higher for unreacted biomass further improved the molding strength by adding formic acid. On the other hand, neither the biomass semi-carbide nor the unreacted biomass could be molded at a temperature of 100 ° C. or lower because sufficient strength could not be obtained.
 (試験例5)
 〔未反応バイオマスからのバイオマス燃料の製造2〕
 1.原料
 バイオマス原料として、セルロース粉末を用いた。
(Test Example 5)
[Manufacturing of biomass fuel from unreacted biomass 2]
1. 1. Raw material Cellulose powder was used as the biomass raw material.
 2.ギ酸/酢酸水溶液の添加
 セルロース粉末約50g-dbに、後述の表11に示す添加率で、純水又はギ酸水溶液を滴下又は噴霧し、まんべんなく混ざるように攪拌した。ギ酸水溶液添加無し(純水のみを添加)の試験例を比較例とし、実施例として、ギ酸52%水溶液及び72%水溶液を添加した未反応バイオマス(生セルロース)を準備し、下記の成型試験に使用した。
2. Addition of formic acid / acetic acid aqueous solution Pure water or formic acid aqueous solution was added dropwise or sprayed to about 50 g-db of cellulose powder at the addition rate shown in Table 11 described later, and the mixture was stirred so as to be evenly mixed. Using a test example without the addition of an aqueous formic acid solution (adding only pure water) as a comparative example, unreacted biomass (raw cellulose) to which a 52% aqueous solution of formic acid and a 72% aqueous solution of formic acid were added was prepared and subjected to the following molding test. used.
 3.成型及び圧壊強度試験
 金型に、上記2.で調整した各実施例及び比較例の試料を仕込み、その状態で加熱した後、前記表7(条件A)に示す条件で、成型を行った。
3. 3. Molding and crushing strength test For the mold, the above 2. The samples of each Example and Comparative Example adjusted in 1 above were charged, heated in that state, and then molded under the conditions shown in Table 7 (Condition A).
 表11に各試料のギ酸添加率、含水率、水溶液添加率、圧壊強度値(n=5の平均値)、圧壊強度比(純水添加時の圧壊強度を1とする)をまとめる。さらに、図6にギ酸添加率に対する圧壊強度比をまとめた。 Table 11 summarizes the formic acid addition rate, water content, aqueous solution addition rate, crush strength value (average value of n = 5), and crush strength ratio (the crush strength when pure water is added is 1) of each sample. Furthermore, FIG. 6 summarizes the crushing strength ratio to the formic acid addition rate.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 (考察)
 表11及び図6に示されるように、ギ酸を添加することにより、未反応バイオマス(生セルロース)から得られるバイオマス成型物の圧壊強度が向上することが確認できた。
(Discussion)
As shown in Table 11 and FIG. 6, it was confirmed that the addition of formic acid improved the crushing strength of the biomass molded product obtained from unreacted biomass (raw cellulose).
 この出願は、2020年2月13日に出願された日本国特許出願特願2020-022112及び2020年9月11日に出願された日本国特許出願特願2020-152537を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application Patent Application No. 2020-022112 filed on February 13, 2020 and Japanese Patent Application Japanese Patent Application No. 2020-152537 filed on September 11, 2020. , The content thereof is included in the present application.
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and sufficiently described through the embodiments with reference to specific examples and the like, but those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modified or improved form implemented by a person skilled in the art is at a level that deviates from the scope of rights of the claims stated in the claims, the modified form or the improved form is the scope of rights of the claims. It is interpreted as being comprehensively included in.
 本発明は、バイオマス等のエネルギー産業に関する技術分野において、広範な産業上の利用可能性を有する。
 
The present invention has a wide range of industrial applicability in the technical field related to the energy industry such as biomass.

Claims (8)

  1.  バイオマスからバイオマス燃料を製造する方法であって、
     バイオマス半炭化物又は未反応バイオマスを熱間加圧成形する工程を含み、
     前記熱間加圧成形する工程の前に、ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を前記半炭化物又は前記未反応バイオマスに添加する、バイオマス燃料の製造方法。
    A method of producing biomass fuel from biomass,
    Biomass Including the step of hot pressure molding of semi-carbide or unreacted biomass
    A method for producing a biomass fuel, in which at least one of an aqueous solution of formic acid and an aqueous solution of acetic acid is added to the semi-carbohydrate or the unreacted biomass before the step of hot pressure molding.
  2.  前記ギ酸水溶液及び酢酸水溶液のうち少なくとも一方を添加する前に、前記半炭化物及び前記未反応バイオマスのうち少なくともいずれか1つを粉砕する工程を含む、請求項1に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to claim 1, further comprising a step of crushing at least one of the semicarbide and the unreacted biomass before adding at least one of the formic acid aqueous solution and the acetic acid aqueous solution.
  3.  ギ酸及び酢酸のうち少なくとも一方の添加量が、前記半炭化物又は前記未反応バイオマスに対し、1~26wt%/dbである、請求項1又は2に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to claim 1 or 2, wherein the addition amount of at least one of formic acid and acetic acid is 1 to 26 wt% / db with respect to the semicarbide or the unreacted biomass.
  4.  前記熱間加圧成形を100℃超200℃以下の温度で行う、請求項1に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to claim 1, wherein the hot pressure molding is performed at a temperature of more than 100 ° C. and 200 ° C. or lower.
  5.  前記未反応バイオマスを130~200℃の温度で熱間加圧成形する、請求項4に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to claim 4, wherein the unreacted biomass is hot-press molded at a temperature of 130 to 200 ° C.
  6.  前記バイオマス半炭化物を125~200℃の温度で熱間加圧成形する、請求項4に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to claim 4, wherein the biomass semi-carbide is hot pressure molded at a temperature of 125 to 200 ° C.
  7.  バイオマス半炭化物を用いる場合、さらに、熱間加圧成形工程前にバイオマス原料を半炭化させる工程を含む、請求項1に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to claim 1, further comprising a step of semi-carbonizing the biomass raw material before the hot pressure molding step when using the biomass semi-carbohydrate.
  8.  前記ギ酸及び酢酸として、前記半炭化工程中に発生する揮発物から得られるギ酸及び酢酸を使用する、請求項7に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to claim 7, wherein formic acid and acetic acid obtained from the volatile matter generated during the semi-carbonization step are used as the formic acid and acetic acid.
PCT/JP2020/047739 2020-02-13 2020-12-21 Method for producing biomass fuel WO2021161660A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020022112 2020-02-13
JP2020-022112 2020-02-13
JP2020-152537 2020-09-11
JP2020152537A JP7410000B2 (en) 2020-02-13 2020-09-11 Biomass fuel production method

Publications (1)

Publication Number Publication Date
WO2021161660A1 true WO2021161660A1 (en) 2021-08-19

Family

ID=77291509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047739 WO2021161660A1 (en) 2020-02-13 2020-12-21 Method for producing biomass fuel

Country Status (1)

Country Link
WO (1) WO2021161660A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647713A (en) * 1992-06-19 1994-02-22 Iida Kogyo Kk Forming method of lignocellulose or of material containing lignocellulose
JP2002361611A (en) * 2001-06-08 2002-12-18 Koyo Sangyo Co Ltd Easily degradable lignocellulose board and its production method
JP2011153257A (en) * 2010-01-28 2011-08-11 Creative Co Ltd Solid fuel
JP2013203872A (en) * 2012-03-28 2013-10-07 Jfe Engineering Corp Apparatus and method for producing molded carbide from biomass
JP2015229751A (en) * 2014-06-06 2015-12-21 住友商事株式会社 Plant-based biomass solid fuel and production method thereof
JP2018145252A (en) * 2017-03-02 2018-09-20 三菱マテリアル株式会社 Fuel pellet, and method of producing fuel pellet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647713A (en) * 1992-06-19 1994-02-22 Iida Kogyo Kk Forming method of lignocellulose or of material containing lignocellulose
JP2002361611A (en) * 2001-06-08 2002-12-18 Koyo Sangyo Co Ltd Easily degradable lignocellulose board and its production method
JP2011153257A (en) * 2010-01-28 2011-08-11 Creative Co Ltd Solid fuel
JP2013203872A (en) * 2012-03-28 2013-10-07 Jfe Engineering Corp Apparatus and method for producing molded carbide from biomass
JP2015229751A (en) * 2014-06-06 2015-12-21 住友商事株式会社 Plant-based biomass solid fuel and production method thereof
JP2018145252A (en) * 2017-03-02 2018-09-20 三菱マテリアル株式会社 Fuel pellet, and method of producing fuel pellet

Similar Documents

Publication Publication Date Title
JP6255325B2 (en) Pellet or briquette manufacturing method
AU2011264855B2 (en) Methods for the manufacture of fuel pellets and other products from lignocellulosic biomass
JP6684298B2 (en) Solid fuel manufacturing method and solid fuel
KR102125536B1 (en) Method of producing carbon-enriched biomass material
CA2836840C (en) Method for producing bio-coke
MX2012010137A (en) Pyrolysis of biomass.
JP6606845B2 (en) Method for producing solid fuel and solid fuel
JP7410000B2 (en) Biomass fuel production method
JP7449162B2 (en) Method for producing composite solid fuel
WO2021161660A1 (en) Method for producing biomass fuel
JP6639075B2 (en) Method for producing solid fuel and solid fuel
JP2020183494A (en) Method for producing biomass solid fuel
JPS59168096A (en) Wood fuel in pellets and its preparation
WO2019220808A1 (en) Method for producing brown coal-containing coke
JP2020045373A (en) Method for producing biomass fuel
CN110923035A (en) High-calorific-value biomass fuel and preparation method thereof
JP2017171938A (en) Method of producing solid fuel and solid fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919328

Country of ref document: EP

Kind code of ref document: A1