WO2021161637A1 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
WO2021161637A1
WO2021161637A1 PCT/JP2020/045773 JP2020045773W WO2021161637A1 WO 2021161637 A1 WO2021161637 A1 WO 2021161637A1 JP 2020045773 W JP2020045773 W JP 2020045773W WO 2021161637 A1 WO2021161637 A1 WO 2021161637A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
less
ground improvement
component
particle size
Prior art date
Application number
PCT/JP2020/045773
Other languages
French (fr)
Japanese (ja)
Inventor
聡之 島田
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2021161637A1 publication Critical patent/WO2021161637A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/04Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only applied in a physical form other than a solution or a grout, e.g. as granules or gases
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/08Aluminium compounds, e.g. aluminium hydroxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Definitions

  • the present invention relates to a ground improvement method, an additive composition for ground improvement, and a ground improvement body.
  • a ground improvement method in which a concrete or steel pipe ground improvement column is driven into the ground, or a cement-based solidifying material such as cement milk is injected while excavating the ground.
  • a ground improvement method is known in which a column-shaped ground improvement body formed by mixing excavated soil and the cement milk is directly formed in the ground.
  • ground improvement which modifies the ground by adding and mixing cement-based solidifying material with soil
  • appropriate solidifying material, compounding ratio, additives, etc. are taken into consideration, such as the nature of the soil to be mixed and the type of construction method for ground improvement. It is desirable to select.
  • the soil to be mixed is acidic soil containing a large amount of organic matter such as humic acid
  • the desired strength can be obtained even if a cement solidifying material is used because the hydration reaction of the cement is hindered by the adsorption of the organic matter on the cement surface.
  • Japanese Patent Application Laid-Open No. 2003-49165 describes that 1 to 20% by weight of volcanic ash having a particle size of 0.06 mm or less and silica sand sufficient to form an aqueous colloidal solution are formed on mud containing calcium ions in terms of the total amount of solid matter.
  • a method for solidifying mud soil which comprises mixing 0.02 to 1% by weight of special fine particles, and 1 to 20% by weight of volcanic ash having a particle size of 0.06 mm or less in terms of the total amount of solid matter in mud soil containing calcium ions.
  • a method for solidifying mud is disclosed, which comprises mixing 0.02 to 1% by weight of a special kira of fine particles made of silica sand sufficient for forming an aqueous colloidal solution.
  • the present invention provides a ground improvement method capable of increasing the compressive strength of soil cement even when using acidic soil containing organic substances such as humic acid, fulvic acid, humin, and bitumen.
  • the present invention relates to a ground improvement method having the following steps 1 to 3.
  • Step 2> In the step of injecting the slurry obtained in step 1 into the ground and mixing the slurry and soil to obtain a mixture, the mixing amount of the slurry per 1 m 3 of soil is 150 kg or more and 800 kg or less, and water in the mixture. Step where the mass ratio of hard powder / soil is 0.01 or more and 0.6 or less ⁇ Step 3> Step of solidifying the mixture of slurry and soil obtained in step 2
  • the present invention also relates to a ground improvement additive composition containing the component (A).
  • the present invention is a ground improvement body containing soil, water-hard powder, water, and the above-mentioned component (A), and is a mass ratio of the content of water-hard powder to the content of soil (water-hard powder). It relates to a ground improvement body having a body / soil) of 0.01 or more and 0.6 or less.
  • a ground improvement method capable of increasing the compressive strength of soil cement even when using acidic soil containing organic substances such as humic acid, fulvic acid, humin, and bitumen.
  • Step 1 is a step of preparing a slurry by mixing water, a hydraulic powder, and the component (A).
  • the hydraulic powder used in the present invention is a powder having physical properties that hardens by a hydration reaction, and examples thereof include cement.
  • cements such as Portland cement such as ordinary Portland cement, belite cement, moderate heat cement, early-strength cement, ultra-fast-strength cement, and sulfate-resistant cement.
  • Fly ash cement, silica fume cement and the like may be used.
  • a cement-based solidifying material may be used.
  • the hydraulic powder is preferably one or more selected from ordinary Portland cement, blast furnace slag cement, and steelmaking slag cement.
  • the amount of the hydraulic powder is the amount of the powder having physical properties to be cured by the hydration reaction, but the hydraulic powder is a powder having a pozolan action or a powder having latent hydraulic property.
  • powders selected from body and stone powder (calcium carbonate powder) are contained, in the present invention, those amounts are also included in the amount of hydraulic powder.
  • the component (A) of the present invention is a particle group, and when the particle size of all the contained particles is measured by a dynamic light scattering method and the cumulative number frequency with respect to the particle size is plotted, the cumulative number frequency becomes 10%. It is a group of particles having a particle size of 30 nm or less at the time of becoming, a particle size of 70 nm or less at the time of 50%, and a particle size of 100 nm or less at the time of 90%.
  • the particle size (D10) when the cumulative number frequency of the component (A) is 10%, the particle size (D50) when the cumulative number frequency is 50%, and the particle size (D90) when the cumulative number frequency is 90% are included in the particle group.
  • the particle size of all the particles is measured by the dynamic light scattering method using a laser particle analysis system (for example, manufactured by Otsuka Electronics Co., Ltd., trade name: ELSZ-1000), and the cumulative number frequency with respect to the particle size is plotted. Then, it is calculated by the Cumulant method analysis. More specifically, it is calculated by the method described in Examples.
  • a laser particle analysis system for example, manufactured by Otsuka Electronics Co., Ltd., trade name: ELSZ-1000
  • the particle size (D10) when the cumulative number frequency of the particle group of the component (A) is 10% is 30 nm or less, preferably 25 nm or less, more preferably 20 nm or less, still more preferably, from the viewpoint of improving the strength of the soil cement. Is 15 nm or less, more preferably 12 nm or less, and preferably 0.1 nm or more, more preferably 0.5 nm or more, still more preferably 1.0 nm or more.
  • the particle size (D50) when the cumulative number frequency of the particle group of the component (A) is 50% is 70 nm or less, preferably 60 nm or less, more preferably 50 nm or less, still more preferably, from the viewpoint of improving the strength of the soil cement.
  • the particle size (D90) when the cumulative number frequency of the particle group of the component (A) is 90% is 100 nm or less, preferably 90 nm or less, more preferably 80 nm or less, still more preferably, from the viewpoint of improving the strength of the soil cement.
  • Examples of the particle group of the component (A) of the present invention include one or more particle groups selected from silicon oxide, aluminum oxide, silicon nitride, titanium oxide, and iron oxide, which improve the strength of soil cement containing acidic soil. From the viewpoint, one or more kinds of particle groups selected from silicon oxide and aluminum oxide are preferable.
  • the component (B) is further selected from calcium chloride salt or aluminum chloride salt having a solubility in water at 20 ° C. of 20 g / 100 ml or more. It is preferable to mix one or more compounds.
  • the component (B) is preferably one or more selected from calcium chloride and aluminum chloride from the viewpoint of improving the strength of soil cement containing acidic soil.
  • step 1 from the viewpoint of improving the strength of soil cement containing acidic soil, it is preferable to further mix one or more compounds selected from calcium sulfate, sodium sulfate, and sodium thiosulfate as the component (C).
  • a cement dispersant may be further mixed from the viewpoint of improving the fluidity of the cement slurry.
  • a polycarboxylic acid-based dispersant or a naphthalene sulfonic acid formaldehyde condensate-based dispersant is preferable.
  • the mass ratio of water / water-hard powder is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass. % Or more, preferably 150% by mass or less, more preferably 120% by mass or less, still more preferably 100% by mass or less. This mass ratio is calculated by (amount of water / amount of hydraulic powder) ⁇ 100.
  • either fresh water or seawater can be used as the water used for preparing the slurry. At least part of the water in the slurry may be seawater.
  • the component (A) is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the water-hard powder. More preferably 1% by mass or more, still more preferably 2% by mass or more, still more preferably 3% by mass or more, still more preferably 4% by mass or more, and preferably 10% by mass or less, more preferably 8% by mass.
  • the mixture is more preferably 6% by mass or less.
  • the component (B) is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on the water-hard powder, from the viewpoint of improving the strength of the soil cement containing acidic soil. Is 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, still more preferably 3% by mass or more, still more preferably 4% by mass or more, and preferably 10% by mass.
  • the mixture is more preferably 8% by mass or less, still more preferably 5% by mass or less.
  • the mass ratio of the component (A) and the component (B) to the component (A) and the component (B) (from the viewpoint of improving the strength of the soil cement containing acidic soil) A) / (B) is preferably 0.1 or more, more preferably 0.5 or more, further preferably 1 or more, and preferably 10 or less, more preferably 5 or less, still more preferably 3 or less. Mix in.
  • the component (C) is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on the water-hard powder, from the viewpoint of improving the strength of the soil cement containing acidic soil. Is 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, still more preferably 3% by mass or more, still more preferably 4% by mass or more, and preferably 20% by mass.
  • the mixture is more preferably 10% by mass or less, further preferably 8% by mass or less, still more preferably 6% by mass or less.
  • the mass ratio of the component (A) to the component (C) and the component (A) to the component (C) is increased from the viewpoint of improving the strength of the soil cement.
  • (A) / (C) is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more, still more preferably 0.5 or more, and preferably 2 or less, more preferably. Is 1.5 or less, more preferably 1 or less.
  • Alkali metal carbonate may be further mixed in step 1, but the mixing amount of alkali metal carbonate is limited from the viewpoint of improving the strength of soil cement.
  • the alkali metal carbonate include one or more selected from sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate.
  • the mixing amount of the alkali metal carbonate is preferably 1% by mass or less, more preferably 0, with respect to the water-hard powder from the viewpoint of improving the strength of the soil cement. .1% by mass or less, more preferably 0.01% by mass or less. Further, in step 1, it is preferable not to mix the alkali metal carbonate.
  • the reason why the mixing amount is limited is not necessarily clear, but it is presumed as follows.
  • C3A contained in the water-hard powder reacts with carbonate ions to generate carbonic acid-based hydrates (monocarbonate, hemicarbonate), and ettringite from C3A.
  • the strength is reduced due to the inhibition of the production of carbonic acid.
  • the strength development of soil cement using acidic soil containing organic substances such as humic acid, fulvic acid, humin, and bitumen is due to the formation of ettrin guides from C3A contained in the water-hard powder. It will be extremely important.
  • the specific method for preparing the slurry in step 1 may be based on a known method for preparing a hydraulic composition such as cement milk.
  • Step 2 is a step of injecting the slurry obtained in step 1 into the ground and mixing the slurry and soil to obtain a mixture, wherein the mixing amount of the slurry per 1 m 3 of soil is 150 kg or more and 800 kg or less. This is a step in which the mass ratio of the water-hard powder / soil in the mixture is 0.01 or more and 0.6 or less.
  • the ground improvement method of the present invention can be applied to grounds having various soils.
  • the soil is soil in which the organic content required by the ignition loss method is 30% or more, and the soil suspension is measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009. The effect is exhibited even in soil where the pH of the liquid is 6 or less.
  • the amount of organic matter obtained by the ignition loss method of soil is preferably 30% or more, more preferably 35% or more, still more preferably 40% or more, from the viewpoint of further improving the strength of the component (A) having a small particle size. , And preferably 90% or less, more preferably 80% or less.
  • the ignition loss method is a method specified in the Japanese engineering standard JIS A1226: 2009. Examples of the organic matter contained in the soil include one or more kinds of organic matter selected from humic acid, fulvic acid, humin, and bitumen.
  • the soil is acidic soil in which the pH of the soil suspension measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009 is preferably 6 or less, more preferably 5.5 or less, still more preferably 5.0 or less. May be.
  • the mixing amount of the slurry per 1 m 3 of soil is 150 kg or more, preferably 200 kg or more, more preferably 250 kg or more, further preferably 300 kg or more, and the construction of soil cement. From the viewpoint of sex, it is 800 kg or less, preferably 500 kg or less, and more preferably 400 kg or less.
  • step 2 from the viewpoint of the mixture of soil cement, the water-hard powder is added to the soil, and the mass ratio of the water-hard powder / soil is 0.01 or more, preferably 0.1 or more, more preferably 0. 2 or more, more preferably 0.25 or more, and from the viewpoint of workability of soil cement, 0.6 or less, preferably 0.5 or less, more preferably 0.45 or less, still more preferably 0.4 or less. Mix.
  • the specific method for injecting the slurry into the ground may be based on a known ground improvement method.
  • a method of injecting the slurry into the ground for example, an injection stirring method (one-phase flow method, two-phase flow method, three-phase flow method), a mechanical stirring method (CDM method, etc.), and an underground continuous wall method (SMW method, SMW method, etc.) TRD method, etc.).
  • an injection stirring method one-phase flow method, two-phase flow method, three-phase flow method
  • CDM method, etc. mechanical stirring method
  • SMW method, etc. underground continuous wall method
  • DJM Dry Jet Mixing
  • Step 3 is a step of solidifying the mixture of the slurry and soil obtained in Step 2.
  • the mixture of slurry and soil is solidified according to a known ground improvement method.
  • the ground improvement method of the present invention can be applied to a surface layer improvement method, a deep layer improvement method, a steel pipe pile method, a shield method, and the like.
  • the deep layer improvement method can be applied to the high pressure injection method, the TRD method, the SMW method, and the like.
  • the ground improvement additive composition of the present invention is a ground improvement additive composition containing the component (A).
  • the additive composition for ground improvement of the present invention can further contain the component (B) from the viewpoint of improving the strength. Further, the additive composition for ground improvement of the present invention can further contain the component (C) from the viewpoint of improving the strength.
  • the ground improvement additive composition of the present invention may consist of a component (A), a component (B) and a component (C).
  • Such a ground improvement additive composition is an additive composition used for a ground improvement material to be mixed with soil for ground improvement, for example, a hydraulic composition such as cement milk.
  • the amount of the additive composition for ground improvement of the present invention can be set in consideration of the type of ground improvement material, the type of soil (ground), etc., but the ground improvement method of the present invention and the ground improvement body of the present invention can be set. It is preferable that the amount is as described in.
  • the matters described in the ground improvement method of the present invention can be appropriately applied to the ground improvement additive composition of the present invention.
  • the ground improvement additive composition of the present invention may be for acidic soil.
  • the additive composition for ground improvement of the present invention is soil in which the organic content required by the ignition weight loss method is 30% or more, and the soil is measured by the method specified by the Japanese Geotechnical Society standard JGS0211-2009. It may be for soil where the pH of the suspension is 6 or less.
  • the ground improvement slurry of the present invention is a ground improvement slurry containing water, a hydraulic powder, and the component (A).
  • the slurry has a water / hydraulic powder mass ratio of preferably 40% by mass or more and 150% by mass or less.
  • the ground improvement slurry of the present invention may be a ground improvement slurry obtained by mixing water, a hydraulic powder, and the ground improvement additive composition of the present invention.
  • the ground improvement slurry of the present invention is preferably used in the ground improvement method of the present invention.
  • the ground improvement slurry of the present invention can contain one or more components selected from the component (B) and the component (C).
  • the matters described in the ground improvement method and the ground improvement additive composition of the present invention can be appropriately applied to the ground improvement slurry of the present invention.
  • the ground improvement slurry of the present invention may be for acidic soil.
  • the soil improvement slurry of the present invention is soil having an organic content of 30% or more required by the ignition loss method, and is a soil suspension measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009. May be for soils with a pH of 6 or less.
  • the ground improvement slurry of the present invention is a ground improvement slurry that is mixed with soil for ground improvement, for example, a hydraulic composition such as cement milk.
  • the amount of the ground improvement slurry used of the present invention can be set in consideration of the composition of the ground improvement slurry, the type of soil (ground), etc., but will be described in the ground improvement method of the present invention and the ground improvement body of the present invention. It is preferable that the amount is increased.
  • the soil improvement slurry of the present invention weighs 150 kg or more, preferably 200 kg or more, more preferably 250 kg or more, still more preferably 300 kg or more, and 800 kg or less, preferably 500 kg or less, more preferably 400 kg or less per 1 m 3 of soil. It is used in combination with.
  • the water-hard powder and soil in the slurry have a water-hard powder / soil mass ratio of 0.01 or more, preferably 0.1 or more, more preferably 0. It is used by mixing with soil in an amount of .2 or more, more preferably 0.25 or more, and 0.6 or less, preferably 0.5 or less, more preferably 0.45 or less, still more preferably 0.4 or less.
  • the ground improvement body of the present invention is a ground improvement body containing soil, water-hard powder, water, and component (A), and is a mass ratio (water) of the content of water-hard powder to the content of soil.
  • Hard powder / soil is a ground improvement body of 0.01 or more and 0.6 or less.
  • This ground improvement body may be a ground improvement body obtained by curing a slurry containing soil, water, hydraulic powder, and component (A).
  • the ground improvement body of the present invention may be a ground improvement body formed by mixing soil and the ground improvement slurry of the present invention.
  • the matters described in the ground improvement method of the present invention, the additive composition for ground improvement, and the slurry for ground improvement can be appropriately applied to the ground improvement body of the present invention.
  • the ground improvement body of the present invention can contain one or more components selected from the component (B) and the component (C). Specific examples of the water-hard powder, the component (A), the component (B), the component (C), the soil, etc. in the ground improvement body of the present invention, preferred embodiments, and quantitative specifications such as each mass ratio are also specified. , The same as the ground improvement method of the present invention, the ground improvement additive composition, and the ground improvement slurry.
  • the soil is acidic soil, preferably soil having an organic content of 30% or more determined by the ignition loss method, and is a soil suspension measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009.
  • the soil may have a pH of 6 or less.
  • Example ⁇ Ingredients> The components used in the following examples and comparative examples are shown below.
  • particle size (D90) when the cumulative number frequency is 90% silicon oxide (2) manufactured by Nikki Catalyst Kasei Co., Ltd .: silicon oxide (colloidal silica), particles when the cumulative number frequency is 10% Diameter (D10) 7 nm, particle size (D50) 10 nm when the cumulative number frequency is 50%, particle size (D90) 15 nm when the cumulative number frequency is 90%, silicon oxide manufactured by Nikki Catalyst Kasei Co., Ltd.
  • Aluminum oxide ⁇ -alumina, particle size (D10) 15 nm when the cumulative number frequency is 10%, cumulative number frequency is 50% Particle size (D50) of 23 nm, particle size (D90) of 31 nm when the cumulative number frequency is 90%, (A') component manufactured by Baikowski Japan (comparative component of (A) component) -Silicon oxide (4): Silicon oxide (coloidal silica), particle size (D10) 83 nm when the cumulative number frequency is 10%, particle size (D50) 100 nm when the cumulative number frequency is 50%, cumulative number Particle size (D90) 130 nm when the frequency reaches 90%, manufactured by JGC Catalysts and Chemicals Co., Ltd.
  • a laser particle analysis system manufactured by Otsuka Electronics Co., Ltd., trade name: ELSZ-1000
  • the particle size was measured by the method, and the cumulative number frequency with respect to the particle size was plotted and calculated by the Cumulant method analysis.
  • Hydraulic powder ⁇ Ordinary Portland cement: Taiheiyo Cement Co., Ltd. ⁇ Blast furnace slag cement: Nittetsu Blast Furnace Cement Co., Ltd.
  • the soil used was the peat shown in Table 1.
  • the organic content of peat was measured using the ignition loss method specified in Japanese Industrial Standard JIS A1226: 2009.
  • the pH of the peat soil suspension was measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009.
  • cement milk was prepared by the following procedure.
  • the component (A) or the component (A'), the component (B) and water are mixed to prepare an aqueous additive solution, and the aqueous additive solution is prepared in a 500 ml plastic cup (500 mL disposable cup, Nikko Hansen Co., Ltd.).
  • the water-hard powder and the component (C) were mixed and kneaded with a hand mixer for 1 minute to prepare cement milk.
  • Tap water was used as the water for preparing the additive aqueous solution.
  • the aqueous solution of the water-hard powder and the aqueous solution of the additive were used so that the mass ratio of the aqueous solution of the additive / the aqueous solution of the additive was 60% by mass.
  • the mass ratio of the additive aqueous solution / water-hard powder substantially corresponds to the water / water-hard powder ratio.
  • the component (A), the component (A'), the component (B), and the component (C) were used so that the amount added to the hydraulic powder was as shown in Table 2.
  • the soil is poured into another 500 ml plastic cup, and the cement milk is poured so as to have the injection amount shown in Table 2 (mass ratio (hydraulic powder / soil) is 0.38), and the hand.
  • Soil cement was prepared by stirring with a mixer for 3 minutes. After stirring, the upper surface was leveled by applying vibration, sealed with a wrap film, and allowed to stand at 22 ° C. for a predetermined time.
  • -Silicon oxide (5) Silicon oxide (coloidal silica), particle size (D10) 120 nm when the cumulative number frequency is 10%, particle size (D50) 160 nm when the cumulative number frequency is 50%, cumulative number Particle size (D90) 200 nm when the frequency reaches 90%, manufactured by JGC Catalysts and Chemicals Co., Ltd.
  • Preparation of cement paste Cement was prepared by the following procedure.
  • the additive aqueous solution is prepared by mixing the component (A) or the component (A') with water, and the additive aqueous solution and the water-hard powder (ordinary) are prepared in a 500 ml plastic cup (500 mL disposable cup, Nikko Hansen Co., Ltd.).
  • Portland cement manufactured by Taiheiyo Cement Co., Ltd.
  • the upper surface was leveled by applying vibration, sealed with a wrap film, and allowed to stand at 22 ° C. for a predetermined time.
  • Tap water was used as the water for preparing the additive aqueous solution.
  • the water-hard powder and the additive aqueous solution were used so that the water content / water-hard powder mass ratio in the additive aqueous solution was 60% by mass.
  • the component (A) or the component (A') was used so that the amount added to the hydraulic powder was as shown in Table 3.
  • the strength of the prepared cement paste was evaluated by the following method.
  • the cement paste was filled in a mold (diameter 50 mm ⁇ height 100 mm). Filling was done with a table vibrator for 30 seconds in two layers. Two specimens were prepared. The strength of the cured product (ground improvement product) of the specimen obtained above in air at 20 ° C. for 7 days was measured by a uniaxial compression tester. Table 3 shows the average value of the intensities of the two specimens as the intensities for 7 days.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Provided is a ground improvement method capable of enhancing the compressive strength of soil cement even in the case where an acidic soil containing an organic substance such as a humic acid, a fulvic acid, a humin, or a bitumen is used. This ground improvement method comprises steps 1-3. <Step 1> A step for formulating a slurry by mixing water, a hydraulic powder, and a component (A). Component (A): A particle group having a particle size of 30 nm or less, 70 nm or less, and 100 nm or less when the respective cumulative number frequencies are 10%, 50%, and 90%, respectively, as determined by measuring the particle sizes of all contained particles by dynamic light scattering and plotting cumulative number frequencies with respect to particle size. <Step 2> A step for injecting the slurry obtained in step 1 into a ground to mix the slurry with a soil to obtain a mixture, wherein the mixed amount of the slurry per 1 m3 of the soil is 150-800 kg, and the mass ratio of the hydraulic powder and the soil in the mixture is 0.01-0.6. <Step 3> A step for solidifying the mixture of the slurry and the soil obtained in step 2.

Description

地盤の改良工法Ground improvement method
 本発明は、地盤の改良工法、地盤改良用添加剤組成物、及び地盤改良体に関する。 The present invention relates to a ground improvement method, an additive composition for ground improvement, and a ground improvement body.
背景技術
 建造物を建設する基礎を地盤改良する方法として、コンクリート製又は鋼管製の地盤改良コラムを地盤に打ち込む地盤改良工法や、地盤を掘削しながらセメントミルクなどのセメント系固化材を注入し、掘削土と前記セメントミルクとが混じり合って形成されるコラム状の地盤改良体を地盤中に直接形成する地盤改良工法が知られている。
Background technology As a method of improving the ground of the foundation for constructing a building, a ground improvement method in which a concrete or steel pipe ground improvement column is driven into the ground, or a cement-based solidifying material such as cement milk is injected while excavating the ground. A ground improvement method is known in which a column-shaped ground improvement body formed by mixing excavated soil and the cement milk is directly formed in the ground.
 セメント系固化材を土と添加混合により地盤の改質を行う地盤改良では、混合する土壌の性質、地盤改良を行う工法の種類などを考慮して、適切な固化材、配合比、添加剤などを選定することが望まれる。特に混合する土壌が腐植酸等の有機物を多く含む酸性土の場合、有機物がセメント表面に吸着することでセメントの水和反応が阻害されるためにセメント固化材を用いても望ましい強度が得られず、地盤改良が困難な場合がある。 In ground improvement, which modifies the ground by adding and mixing cement-based solidifying material with soil, appropriate solidifying material, compounding ratio, additives, etc. are taken into consideration, such as the nature of the soil to be mixed and the type of construction method for ground improvement. It is desirable to select. In particular, when the soil to be mixed is acidic soil containing a large amount of organic matter such as humic acid, the desired strength can be obtained even if a cement solidifying material is used because the hydration reaction of the cement is hindered by the adsorption of the organic matter on the cement surface. However, it may be difficult to improve the ground.
 特開2003-49165号公報には、カルシウムイオンを含む泥土に、全体量の固形物換算において、粒径0.06mm以下の火山灰を1~20重量%及び水性コロイド溶液を形成するに足る珪砂から成る微粒子の特殊キラを0.02~1重量%、混合することを特徴とする泥土の固化方法カルシウムイオンを含む泥土に、全体量の固形物換算において、粒径0.06mm以下の火山灰を1~20重量%及び水性コロイド溶液を形成するに足る珪砂から成る微粒子の特殊キラを0.02~1重量%、混合することを特徴とする泥土の固化方法が開示されている。 Japanese Patent Application Laid-Open No. 2003-49165 describes that 1 to 20% by weight of volcanic ash having a particle size of 0.06 mm or less and silica sand sufficient to form an aqueous colloidal solution are formed on mud containing calcium ions in terms of the total amount of solid matter. A method for solidifying mud soil, which comprises mixing 0.02 to 1% by weight of special fine particles, and 1 to 20% by weight of volcanic ash having a particle size of 0.06 mm or less in terms of the total amount of solid matter in mud soil containing calcium ions. And a method for solidifying mud is disclosed, which comprises mixing 0.02 to 1% by weight of a special kira of fine particles made of silica sand sufficient for forming an aqueous colloidal solution.
発明の概要
 本発明は、フミン酸、フルボ酸、ヒューミン、ビチューメンなどの有機物を含む酸性土の土壌を用いた場合でもソイルセメントの圧縮強度を高めることができる、地盤の改良工法を提供する。
Outline of the Invention The present invention provides a ground improvement method capable of increasing the compressive strength of soil cement even when using acidic soil containing organic substances such as humic acid, fulvic acid, humin, and bitumen.
 本発明は、下記の工程1~3を有する地盤の改良工法に関する。
<工程1>
 水と、水硬性粉体と、下記(A)成分とを混合してスラリーを調製する工程
(A)成分:粒子群であって、含まれる全粒子を動的光散乱法によって粒子径を測定し、粒子径に対する累積個数頻度をプロットしたとき、累積個数頻度が10%になる時の粒子径が30nm以下であり、50%になるときの粒子径が70nm以下であり、90%になる時の粒子径が100nm以下である粒子群
<工程2>
 工程1で得られたスラリーを地盤に注入してスラリーと土壌とを混合して混合物を得る工程であって、土壌1mあたりのスラリーの混合量が150kg以上800kg以下であり、混合物中の水硬性粉体/土壌の質量比が0.01以上0.6以下である工程
<工程3>
 工程2で得られたスラリーと土壌の混合物を固化させる工程
The present invention relates to a ground improvement method having the following steps 1 to 3.
<Step 1>
Step of preparing a slurry by mixing water, a water-hard powder, and the following component (A) Component (A): A particle group whose particle size is measured by a dynamic light scattering method. When the cumulative number frequency with respect to the particle size is plotted, the particle size is 30 nm or less when the cumulative number frequency is 10%, and the particle size is 70 nm or less when the cumulative number frequency is 50%, and 90%. Particle group having a particle size of 100 nm or less <Step 2>
In the step of injecting the slurry obtained in step 1 into the ground and mixing the slurry and soil to obtain a mixture, the mixing amount of the slurry per 1 m 3 of soil is 150 kg or more and 800 kg or less, and water in the mixture. Step where the mass ratio of hard powder / soil is 0.01 or more and 0.6 or less <Step 3>
Step of solidifying the mixture of slurry and soil obtained in step 2
 また本発明は、前記(A)成分を含有する、地盤改良用添加剤組成物に関する。 The present invention also relates to a ground improvement additive composition containing the component (A).
 また本発明は、土壌、水硬性粉体、水、及び前記(A)成分を含有する地盤改良体であって、水硬性粉体の含有量と土壌の含有量との質量比(水硬性粉体/土壌)が0.01以上0.6以下である地盤改良体に関する。 Further, the present invention is a ground improvement body containing soil, water-hard powder, water, and the above-mentioned component (A), and is a mass ratio of the content of water-hard powder to the content of soil (water-hard powder). It relates to a ground improvement body having a body / soil) of 0.01 or more and 0.6 or less.
 本発明によれば、フミン酸、フルボ酸、ヒューミン、ビチューメンなどの有機物を含む酸性土の土壌を用いた場合でもソイルセメントの圧縮強度を高めることができる、地盤の改良工法が提供される。 According to the present invention, there is provided a ground improvement method capable of increasing the compressive strength of soil cement even when using acidic soil containing organic substances such as humic acid, fulvic acid, humin, and bitumen.
発明を実施するための形態
〔地盤の改良工法〕
<工程1>
 工程1は、水と、水硬性粉体と、前記(A)成分とを混合してスラリーを調製する工程である。
Form for carrying out the invention [ground improvement method]
<Step 1>
Step 1 is a step of preparing a slurry by mixing water, a hydraulic powder, and the component (A).
 本発明に用いられる水硬性粉体は、水和反応により硬化する物性を有する粉体のことであり、セメント等が挙げられる。好ましくはセメント、例えば、普通ポルトランドセメント等のポルトランドセメント、ビーライトセメント、中庸熱セメント、早強セメント、超早強セメント、耐硫酸塩セメント等のセメントである。また、セメント等に高炉スラグ、製鋼スラグ、フライアッシュ、シリカフュームなどのポゾラン作用及び/又は潜在水硬性を有する粉体や、石粉(炭酸カルシウム粉末)等が添加された高炉スラグセメント、製鋼スラグセメント、フライアッシュセメント、シリカフュームセメント等でもよい。また、セメント系固化材でもよい。
 水硬性粉体は、経済性の観点から、普通ポルトランドセメント、高炉スラグセメント、及び製鋼スラグセメントから選ばれる1種以上が好ましい。
The hydraulic powder used in the present invention is a powder having physical properties that hardens by a hydration reaction, and examples thereof include cement. Preferred are cements such as Portland cement such as ordinary Portland cement, belite cement, moderate heat cement, early-strength cement, ultra-fast-strength cement, and sulfate-resistant cement. In addition, blast furnace slag cement, steel slag cement, blast furnace slag cement, steel slag cement, etc. Fly ash cement, silica fume cement and the like may be used. Further, a cement-based solidifying material may be used.
From the viewpoint of economy, the hydraulic powder is preferably one or more selected from ordinary Portland cement, blast furnace slag cement, and steelmaking slag cement.
 なお、本発明では、水硬性粉体の量は、水和反応により硬化する物性を有する粉体の量であるが、水硬性粉体が、ポゾラン作用を有する粉体、潜在水硬性を有する粉体、及び石粉(炭酸カルシウム粉末)から選ばれる粉体を含む場合、本発明では、それらの量も水硬性粉体の量に算入する。 In the present invention, the amount of the hydraulic powder is the amount of the powder having physical properties to be cured by the hydration reaction, but the hydraulic powder is a powder having a pozolan action or a powder having latent hydraulic property. When powders selected from body and stone powder (calcium carbonate powder) are contained, in the present invention, those amounts are also included in the amount of hydraulic powder.
 本発明の(A)成分は、粒子群であって、含まれる全粒子を動的光散乱法によって粒子径を測定し、粒子径に対する累積個数頻度をプロットしたとき、累積個数頻度が10%になる時の粒子径が30nm以下であり、50%になるときの粒子径が70nm以下であり、90%になる時の粒子径が100nm以下である粒子群である。
 (A)成分の累積個数頻度が10%になる時の粒子径(D10)、50%になるときの粒子径(D50)、90%になる時の粒子径(D90)は、粒子群に含まれる全粒子を、レーザー粒子解析システム(例えば、大塚電子株式会社製、商品名:ELSZ-1000)を用いて、動的光散乱法により粒子径を測定し、粒子径に対する累積個数頻度をプロットして、キュムラント法解析により算出する。より詳細には実施例に記載の方法で算出する。
The component (A) of the present invention is a particle group, and when the particle size of all the contained particles is measured by a dynamic light scattering method and the cumulative number frequency with respect to the particle size is plotted, the cumulative number frequency becomes 10%. It is a group of particles having a particle size of 30 nm or less at the time of becoming, a particle size of 70 nm or less at the time of 50%, and a particle size of 100 nm or less at the time of 90%.
The particle size (D10) when the cumulative number frequency of the component (A) is 10%, the particle size (D50) when the cumulative number frequency is 50%, and the particle size (D90) when the cumulative number frequency is 90% are included in the particle group. The particle size of all the particles is measured by the dynamic light scattering method using a laser particle analysis system (for example, manufactured by Otsuka Electronics Co., Ltd., trade name: ELSZ-1000), and the cumulative number frequency with respect to the particle size is plotted. Then, it is calculated by the Cumulant method analysis. More specifically, it is calculated by the method described in Examples.
 (A)成分の粒子群の累積個数頻度が10%になる時の粒子径(D10)は、ソイルセメントの強度向上の観点から、30nm以下、好ましくは25nm以下、より好ましくは20nm以下、更に好ましくは15nm以下、より更に好ましくは12nm以下、そして、好ましくは0.1nm以上、より好ましくは0.5nm以上、更に好ましくは1.0nm以上である。
 (A)成分の粒子群の累積個数頻度が50%になるときの粒子径(D50)は、ソイルセメントの強度向上の観点から、70nm以下、好ましくは60nm以下、より好ましくは50nm以下、更に好ましくは40nm以下、より更に好ましくは30nm以下、より更に好ましくは25nm以下、より更に好ましくは20nm以下、そして、好ましくは0.1nm以上、より好ましくは0.5nm以上、更に好ましくは1.0nm以上である。
 (A)成分の粒子群の累積個数頻度が90%になる時の粒子径(D90)は、ソイルセメントの強度向上の観点から、100nm以下、好ましくは90nm以下、より好ましくは80nm以下、更に好ましくは70nm以下、より更に好ましくは60nm以下、より更に好ましくは50nm以下、より更に好ましくは40nm以下、より更に好ましくは30nm以下、そして、好ましくは0.1nm以上、より好ましくは0.5nm以上、更に好ましくは1.0nm以上である。
The particle size (D10) when the cumulative number frequency of the particle group of the component (A) is 10% is 30 nm or less, preferably 25 nm or less, more preferably 20 nm or less, still more preferably, from the viewpoint of improving the strength of the soil cement. Is 15 nm or less, more preferably 12 nm or less, and preferably 0.1 nm or more, more preferably 0.5 nm or more, still more preferably 1.0 nm or more.
The particle size (D50) when the cumulative number frequency of the particle group of the component (A) is 50% is 70 nm or less, preferably 60 nm or less, more preferably 50 nm or less, still more preferably, from the viewpoint of improving the strength of the soil cement. Is 40 nm or less, more preferably 30 nm or less, still more preferably 25 nm or less, still more preferably 20 nm or less, and preferably 0.1 nm or more, more preferably 0.5 nm or more, still more preferably 1.0 nm or more. be.
The particle size (D90) when the cumulative number frequency of the particle group of the component (A) is 90% is 100 nm or less, preferably 90 nm or less, more preferably 80 nm or less, still more preferably, from the viewpoint of improving the strength of the soil cement. Is 70 nm or less, more preferably 60 nm or less, still more preferably 50 nm or less, still more preferably 40 nm or less, still more preferably 30 nm or less, and preferably 0.1 nm or more, more preferably 0.5 nm or more, further. It is preferably 1.0 nm or more.
 本発明の(A)成分の粒子群としては、酸化ケイ素、酸化アルミニウム、窒化ケイ素、酸化チタン、酸化鉄から選ばれる1種以上の粒子群が挙げられ、酸性土を含むソイルセメントの強度向上の観点から、酸化ケイ素、及び酸化アルミニウムから選ばれる1種以上の粒子群が好ましい。 Examples of the particle group of the component (A) of the present invention include one or more particle groups selected from silicon oxide, aluminum oxide, silicon nitride, titanium oxide, and iron oxide, which improve the strength of soil cement containing acidic soil. From the viewpoint, one or more kinds of particle groups selected from silicon oxide and aluminum oxide are preferable.
 工程1では、酸性土を含むソイルセメントの強度向上の観点から、更に(B)成分として、20℃における水への溶解度が20g/100ml以上であるカルシウム塩化物塩もしくはアルミニウム塩化物塩から選ばれる1種以上の化合物を混合することが好ましい。 In step 1, from the viewpoint of improving the strength of soil cement containing acidic soil, the component (B) is further selected from calcium chloride salt or aluminum chloride salt having a solubility in water at 20 ° C. of 20 g / 100 ml or more. It is preferable to mix one or more compounds.
 (B)成分は、酸性土を含むソイルセメントの強度向上の観点から、好ましくは塩化カルシウム及び塩化アルミニウムから選ばれる1種以上である。 The component (B) is preferably one or more selected from calcium chloride and aluminum chloride from the viewpoint of improving the strength of soil cement containing acidic soil.
 工程1では、酸性土を含むソイルセメントの強度向上の観点から、更に(C)成分として、硫酸カルシウム、硫酸ナトリウム、チオ硫酸ナトリウムから選ばれる1種以上の化合物を混合することが好ましい。 In step 1, from the viewpoint of improving the strength of soil cement containing acidic soil, it is preferable to further mix one or more compounds selected from calcium sulfate, sodium sulfate, and sodium thiosulfate as the component (C).
 工程1では、セメントスラリーの流動性向上の観点から、更にセメント分散剤を混合してもよい。セメント分散剤は、ポリカルボン酸系分散剤又はナフタレンスルホン酸ホルムアルデヒド縮合物系分散剤が好ましい。 In step 1, a cement dispersant may be further mixed from the viewpoint of improving the fluidity of the cement slurry. As the cement dispersant, a polycarboxylic acid-based dispersant or a naphthalene sulfonic acid formaldehyde condensate-based dispersant is preferable.
 工程1では、施工性の観点から、水硬性粉体と水とを、水/水硬性粉体の質量比が、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上、そして、好ましくは150質量%以下、より好ましくは120質量%以下、更に好ましくは100質量%以下で混合する。この質量比は、(水の量/水硬性粉体の量)×100で算出される。
工程1では、スラリーの調製に用いる水は、真水、海水の何れも用いることが出来る。スラリーの水の少なくとも一部が海水であってもよい。
In step 1, from the viewpoint of workability, the mass ratio of water / water-hard powder is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass. % Or more, preferably 150% by mass or less, more preferably 120% by mass or less, still more preferably 100% by mass or less. This mass ratio is calculated by (amount of water / amount of hydraulic powder) × 100.
In step 1, either fresh water or seawater can be used as the water used for preparing the slurry. At least part of the water in the slurry may be seawater.
 工程1では、酸性土を含むソイルセメントの強度向上の観点から、(A)成分を、水硬性粉体に対して、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは1質量%以上、より更に好ましくは2質量%以上、より更に好ましくは3質量%以上、より更に好ましくは4質量%以上、そして、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは6質量%以下で混合する。 In step 1, from the viewpoint of improving the strength of the soil cement containing acidic soil, the component (A) is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the water-hard powder. More preferably 1% by mass or more, still more preferably 2% by mass or more, still more preferably 3% by mass or more, still more preferably 4% by mass or more, and preferably 10% by mass or less, more preferably 8% by mass. Hereinafter, the mixture is more preferably 6% by mass or less.
 工程1では、(B)成分を用いる場合、酸性土を含むソイルセメントの強度向上の観点から、(B)成分を、水硬性粉体に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、より更に好ましくは2質量%以上、より更に好ましくは3質量%以上、より更に好ましくは4質量%以上、そして、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下で混合する。 In step 1, when the component (B) is used, the component (B) is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on the water-hard powder, from the viewpoint of improving the strength of the soil cement containing acidic soil. Is 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, still more preferably 3% by mass or more, still more preferably 4% by mass or more, and preferably 10% by mass. Hereinafter, the mixture is more preferably 8% by mass or less, still more preferably 5% by mass or less.
 工程1では、(B)成分を用いる場合、酸性土を含むソイルセメントの強度向上の観点から、(A)成分と(B)成分を、(A)成分と(B)成分との質量比(A)/(B)が、好ましくは0.1以上、より好ましくは0.5以上、更に好ましくは1以上、そして、好ましくは10以下、より好ましくは5以下、更に好ましくは3以下となるように混合する。 In step 1, when the component (B) is used, the mass ratio of the component (A) and the component (B) to the component (A) and the component (B) (from the viewpoint of improving the strength of the soil cement containing acidic soil) A) / (B) is preferably 0.1 or more, more preferably 0.5 or more, further preferably 1 or more, and preferably 10 or less, more preferably 5 or less, still more preferably 3 or less. Mix in.
 工程1では、(C)成分を用いる場合、酸性土を含むソイルセメントの強度向上の観点から、(C)成分を、水硬性粉体に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、より更に好ましくは2質量%以上、より更に好ましくは3質量%以上、より更に好ましくは4質量%以上、そして、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下、より更に好ましくは6質量%以下で混合する。 In step 1, when the component (C) is used, the component (C) is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on the water-hard powder, from the viewpoint of improving the strength of the soil cement containing acidic soil. Is 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, still more preferably 3% by mass or more, still more preferably 4% by mass or more, and preferably 20% by mass. Hereinafter, the mixture is more preferably 10% by mass or less, further preferably 8% by mass or less, still more preferably 6% by mass or less.
 本発明の地盤の改良工法では、(C)成分を用いる場合、ソイルセメントの強度向上の観点から、(A)成分と(C)成分を、(A)成分と(C)成分との質量比(A)/(C)が、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上、より更に好ましくは0.5以上、そして、好ましくは2以下、より好ましくは1.5以下、更に好ましくは1以下となるように混合する。 In the ground improvement method of the present invention, when the component (C) is used, the mass ratio of the component (A) to the component (C) and the component (A) to the component (C) is increased from the viewpoint of improving the strength of the soil cement. (A) / (C) is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more, still more preferably 0.5 or more, and preferably 2 or less, more preferably. Is 1.5 or less, more preferably 1 or less.
 工程1で、更にアルカリ金属炭酸塩を混合してもよいが、ソイルセメントの強度向上の観点から、アルカリ金属炭酸塩の混合量は制限される。アルカリ金属炭酸塩としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、及び炭酸水素カリウムから選ばれる1種以上が挙げられる。 Alkali metal carbonate may be further mixed in step 1, but the mixing amount of alkali metal carbonate is limited from the viewpoint of improving the strength of soil cement. Examples of the alkali metal carbonate include one or more selected from sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate.
 工程1で、アルカリ金属炭酸塩を混合する場合、アルカリ金属炭酸塩の混合量は、ソイルセメントの強度向上の観点から、水硬性粉体に対して、好ましくは1質量%以下、より好ましくは0.1質量%以下、更に好ましくは0.01質量%以下である。また工程1では、アルカリ金属炭酸塩を混合しないことが好ましい。 When the alkali metal carbonate is mixed in step 1, the mixing amount of the alkali metal carbonate is preferably 1% by mass or less, more preferably 0, with respect to the water-hard powder from the viewpoint of improving the strength of the soil cement. .1% by mass or less, more preferably 0.01% by mass or less. Further, in step 1, it is preferable not to mix the alkali metal carbonate.
 工程1で、アルカリ金属炭酸塩を混合する場合、その混合量が制限される理由は必ずしも定かではないが、以下のように推定される。
 工程1で、アルカリ金属炭酸塩を混合した場合、水硬性粉体に含まれるC3Aが炭酸イオンと反応し、炭酸系水和物(モノカーボネート、ヘミカーボネート)を生成させてしまい、C3Aからのエトリンガイトの生成が阻害されることで強度が低下してしまう。ソイルセメント、特にフミン酸、フルボ酸、ヒューミン、ビチューメンなどの有機物を含む酸性土の土壌を用いたソイルセメントの強度発現性には、水硬性粉体が含有するC3Aからのエトリンガイドの生成が極めて重要となる。なぜならC-S-Hの生成は、土壌の種類による影響を強く受けるのに対して、エトリンガイドの生成は土壌の種類による影響を受けにくいためである。
したがってエトリンガイトの生成量を低下させないためにアルカリ金属炭酸塩の混合量を制限することが好ましい。
When the alkali metal carbonate is mixed in step 1, the reason why the mixing amount is limited is not necessarily clear, but it is presumed as follows.
When an alkali metal carbonate is mixed in step 1, C3A contained in the water-hard powder reacts with carbonate ions to generate carbonic acid-based hydrates (monocarbonate, hemicarbonate), and ettringite from C3A. The strength is reduced due to the inhibition of the production of carbonic acid. The strength development of soil cement using acidic soil containing organic substances such as humic acid, fulvic acid, humin, and bitumen is due to the formation of ettrin guides from C3A contained in the water-hard powder. It will be extremely important. This is because the formation of CSH is strongly influenced by the type of soil, whereas the formation of ettrin guide is not easily influenced by the type of soil.
Therefore, it is preferable to limit the mixing amount of the alkali metal carbonate so as not to reduce the amount of ettringite produced.
 工程1で、スラリーを調製する具体的な方法は、セメントミルクなどの水硬性組成物を調製する公知の方法に準じてよい。 The specific method for preparing the slurry in step 1 may be based on a known method for preparing a hydraulic composition such as cement milk.
<工程2>
 工程2は、工程1で得られたスラリーを地盤に注入してスラリーと土壌とを混合して混合物を得る工程であって、土壌1mあたりのスラリーの混合量が150kg以上800kg以下であり、混合物中の水硬性粉体/土壌の質量比が0.01以上0.6以下である工程である。
<Process 2>
Step 2 is a step of injecting the slurry obtained in step 1 into the ground and mixing the slurry and soil to obtain a mixture, wherein the mixing amount of the slurry per 1 m 3 of soil is 150 kg or more and 800 kg or less. This is a step in which the mass ratio of the water-hard powder / soil in the mixture is 0.01 or more and 0.6 or less.
 本発明の地盤の改良工法は、土壌が種々の地盤を対象とすることができる。
 本発明の地盤の改良工法は、土壌が、強熱減量法によって求められる有機質分量が30%以上である土壌であり、地盤工学会基準JGS0211-2009で規定される方法によって測定される土懸濁液のpHが6以下である土壌であっても効果が発現する。
The ground improvement method of the present invention can be applied to grounds having various soils.
In the ground improvement method of the present invention, the soil is soil in which the organic content required by the ignition loss method is 30% or more, and the soil suspension is measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009. The effect is exhibited even in soil where the pH of the liquid is 6 or less.
 土壌は、強熱減量法によって求められる有機質分量が、小粒径の(A)成分でより強度を向上させる観点から、好ましくは30%以上、より好ましくは35%以上、更に好ましくは40%以上、そして、好ましくは90%以下、より好ましくは80%以下であるものである。ここで、強熱減量法とは日本工学規格JISA1226:2009で規定される方法である。
 また土壌に含まれる有機質としては、フミン酸、フルボ酸、ヒューミン、ビチューメンから選ばれる1種以上の有機物が挙げられる。
The amount of organic matter obtained by the ignition loss method of soil is preferably 30% or more, more preferably 35% or more, still more preferably 40% or more, from the viewpoint of further improving the strength of the component (A) having a small particle size. , And preferably 90% or less, more preferably 80% or less. Here, the ignition loss method is a method specified in the Japanese engineering standard JIS A1226: 2009.
Examples of the organic matter contained in the soil include one or more kinds of organic matter selected from humic acid, fulvic acid, humin, and bitumen.
 土壌は、地盤工学会基準JGS0211-2009で規定される方法によって測定される土懸濁液のpHが、好ましくは6以下、より好ましくは5.5以下、更に好ましくは5.0以下の酸性土であってよい。 The soil is acidic soil in which the pH of the soil suspension measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009 is preferably 6 or less, more preferably 5.5 or less, still more preferably 5.0 or less. May be.
 工程2では、ソイルセメントの混合性の観点から、土壌1mあたりのスラリーの混合量が、150kg以上、好ましくは200kg以上、より好ましくは250kg以上、更に好ましくは300kg以上、そして、ソイルセメントの施工性の観点から、800kg以下、好ましくは500kg以下、より好ましくは400kg以下である。 In step 2, from the viewpoint of the mixture of soil cement, the mixing amount of the slurry per 1 m 3 of soil is 150 kg or more, preferably 200 kg or more, more preferably 250 kg or more, further preferably 300 kg or more, and the construction of soil cement. From the viewpoint of sex, it is 800 kg or less, preferably 500 kg or less, and more preferably 400 kg or less.
 工程2では、ソイルセメントの混合性の観点から、土壌に、水硬性粉体を、水硬性粉体/土壌の質量比が、0.01以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上、そして、ソイルセメントの施工性の観点から、0.6以下、好ましくは0.5以下、より好ましくは0.45以下、更に好ましくは0.4以下で混合する。 In step 2, from the viewpoint of the mixture of soil cement, the water-hard powder is added to the soil, and the mass ratio of the water-hard powder / soil is 0.01 or more, preferably 0.1 or more, more preferably 0. 2 or more, more preferably 0.25 or more, and from the viewpoint of workability of soil cement, 0.6 or less, preferably 0.5 or less, more preferably 0.45 or less, still more preferably 0.4 or less. Mix.
 スラリーを地盤に注入する具体的な方法は、公知の地盤改良工法に準じてよい。
 スラリーを地盤に注入する方法として、例えば、噴射撹拌工法(一相流方式、二相流方式、三相流方式)や機械撹拌工法(CDM工法など)、さらに地中連続壁工法(SMW工法、TRD工法など)などが挙げられる。さらに水硬性粉体に(A)成分と任意に(B)成分とをドライブレンドした系では、粉体混合方式のDJM(Dry Jet Mixing)工法やスタビライザなどを使用した浅層改良などにも使用できる。
The specific method for injecting the slurry into the ground may be based on a known ground improvement method.
As a method of injecting the slurry into the ground, for example, an injection stirring method (one-phase flow method, two-phase flow method, three-phase flow method), a mechanical stirring method (CDM method, etc.), and an underground continuous wall method (SMW method, SMW method, etc.) TRD method, etc.). Furthermore, in a system in which the component (A) and the component (B) are optionally dry-blended into a hydraulic powder, it is also used for the DJM (Dry Jet Mixing) method of powder mixing method and shallow layer improvement using a stabilizer or the like. can.
<工程3>
 工程3は、工程2で得られたスラリーと土壌の混合物を固化させる工程である。スラリーと土壌の混合物は、公知の地盤改良工法に準じて固化させる。
<Step 3>
Step 3 is a step of solidifying the mixture of the slurry and soil obtained in Step 2. The mixture of slurry and soil is solidified according to a known ground improvement method.
 本発明の地盤の改良工法は、表層改良工法、深層改良工法、鋼管杭工法、シールド工法などの工法に適用できる。例えば、深層改良工法では、高圧噴射工法、TRD工法、SMW工法などに適用できる。 The ground improvement method of the present invention can be applied to a surface layer improvement method, a deep layer improvement method, a steel pipe pile method, a shield method, and the like. For example, the deep layer improvement method can be applied to the high pressure injection method, the TRD method, the SMW method, and the like.
〔地盤改良用添加剤組成物〕
 本発明の地盤改良用添加剤組成物は、(A)成分を含有する、地盤改良用添加剤組成物である。本発明の地盤改良用添加剤組成物は、強度向上の観点から、更に(B)成分を含有することができる。また本発明の地盤改良用添加剤組成物は、強度向上の観点から、更に(C)成分を含有することができる。本発明の地盤改良用添加剤組成物は、(A)成分、(B)成分及び(C)成分からなるものであってもよい。
[Additive composition for ground improvement]
The ground improvement additive composition of the present invention is a ground improvement additive composition containing the component (A). The additive composition for ground improvement of the present invention can further contain the component (B) from the viewpoint of improving the strength. Further, the additive composition for ground improvement of the present invention can further contain the component (C) from the viewpoint of improving the strength. The ground improvement additive composition of the present invention may consist of a component (A), a component (B) and a component (C).
 かかる地盤改良用添加剤組成物は、地盤改良のために土壌と混合される地盤改良材、例えばセメントミルクなどの水硬性組成物に用いられる添加剤組成物である。
 本発明の地盤改良用添加剤組成物の使用量は、地盤改良材の種類、土壌(地盤)の種類などを考慮して設定できるが、本発明の地盤の改良工法や本発明の地盤改良体で述べた量となることが好ましい。本発明の地盤の改良工法で述べた事項は、適宜、本発明の地盤改良用添加剤組成物に適用することができる。
 本発明の地盤改良用添加剤組成物は、酸性土用であってよい。また、本発明の地盤改良用添加剤組成物は、強熱減量法によって求められる有機質分量が30%以上である土壌であり、地盤工学会基準JGS0211-2009で規定される方法によって測定される土懸濁液のpHが6以下である土壌用であってよい。
Such a ground improvement additive composition is an additive composition used for a ground improvement material to be mixed with soil for ground improvement, for example, a hydraulic composition such as cement milk.
The amount of the additive composition for ground improvement of the present invention can be set in consideration of the type of ground improvement material, the type of soil (ground), etc., but the ground improvement method of the present invention and the ground improvement body of the present invention can be set. It is preferable that the amount is as described in. The matters described in the ground improvement method of the present invention can be appropriately applied to the ground improvement additive composition of the present invention.
The ground improvement additive composition of the present invention may be for acidic soil. Further, the additive composition for ground improvement of the present invention is soil in which the organic content required by the ignition weight loss method is 30% or more, and the soil is measured by the method specified by the Japanese Geotechnical Society standard JGS0211-2009. It may be for soil where the pH of the suspension is 6 or less.
〔地盤改良用スラリー〕
 本発明の地盤改良用スラリーは、水と、水硬性粉体と、(A)成分とを含有する、地盤改良用スラリーである。当該スラリーは、水/水硬性粉体の質量比が好ましくは40質量%以上150質量%以下である。本発明の地盤改良用スラリーは、水と、水硬性粉体と、本発明の地盤改良用添加剤組成物とを混合してなる地盤改良用スラリーであってよい。本発明の地盤改良用スラリーは、本発明の地盤の改良工法に好ましく用いられる。また、本発明の地盤改良用スラリーは、(B)成分、及び(C)成分から選ばれる成分を1つ以上含有することができる。本発明の地盤の改良工法、地盤改良用添加剤組成物で述べた事項は、適宜、本発明の地盤改良用スラリーに適用することができる。本発明の地盤改良用スラリーは、酸性土用であってよい。また、本発明の地盤改良用スラリーは、強熱減量法によって求められる有機質分量が30%以上である土壌であり、地盤工学会基準JGS0211-2009で規定される方法によって測定される土懸濁液のpHが6以下である土壌用であってよい。
[Slurry for ground improvement]
The ground improvement slurry of the present invention is a ground improvement slurry containing water, a hydraulic powder, and the component (A). The slurry has a water / hydraulic powder mass ratio of preferably 40% by mass or more and 150% by mass or less. The ground improvement slurry of the present invention may be a ground improvement slurry obtained by mixing water, a hydraulic powder, and the ground improvement additive composition of the present invention. The ground improvement slurry of the present invention is preferably used in the ground improvement method of the present invention. In addition, the ground improvement slurry of the present invention can contain one or more components selected from the component (B) and the component (C). The matters described in the ground improvement method and the ground improvement additive composition of the present invention can be appropriately applied to the ground improvement slurry of the present invention. The ground improvement slurry of the present invention may be for acidic soil. The soil improvement slurry of the present invention is soil having an organic content of 30% or more required by the ignition loss method, and is a soil suspension measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009. May be for soils with a pH of 6 or less.
 本発明の地盤改良用スラリーは、地盤改良のために土壌と混合される地盤改良用のスラリー、例えばセメントミルクなどの水硬性組成物である。
 本発明の地盤改良用スラリーの使用量は、地盤改良用スラリーの組成、土壌(地盤)の種類などを考慮して設定できるが、本発明の地盤の改良工法や本発明の地盤改良体で述べた量となることが好ましい。
 本発明の地盤改良用スラリーは、土壌1mあたり150kg以上、好ましくは200kg以上、より好ましくは250kg以上、更に好ましくは300kg以上、そして、800kg以下、好ましくは500kg以下、より好ましくは400kg以下で土壌と混合して用いられる。また、本発明の地盤改良用スラリーは、該スラリー中の水硬性粉体と土壌とが、水硬性粉体/土壌の質量比が0.01以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上、そして、0.6以下、好ましくは0.5以下、より好ましくは0.45以下、更に好ましくは0.4以下で土壌と混合して用いられる。
The ground improvement slurry of the present invention is a ground improvement slurry that is mixed with soil for ground improvement, for example, a hydraulic composition such as cement milk.
The amount of the ground improvement slurry used of the present invention can be set in consideration of the composition of the ground improvement slurry, the type of soil (ground), etc., but will be described in the ground improvement method of the present invention and the ground improvement body of the present invention. It is preferable that the amount is increased.
The soil improvement slurry of the present invention weighs 150 kg or more, preferably 200 kg or more, more preferably 250 kg or more, still more preferably 300 kg or more, and 800 kg or less, preferably 500 kg or less, more preferably 400 kg or less per 1 m 3 of soil. It is used in combination with. Further, in the ground improvement slurry of the present invention, the water-hard powder and soil in the slurry have a water-hard powder / soil mass ratio of 0.01 or more, preferably 0.1 or more, more preferably 0. It is used by mixing with soil in an amount of .2 or more, more preferably 0.25 or more, and 0.6 or less, preferably 0.5 or less, more preferably 0.45 or less, still more preferably 0.4 or less.
〔地盤改良体〕
 本発明の地盤改良体は、土壌、水硬性粉体、水、及び(A)成分を含有する地盤改良体であって、水硬性粉体の含有量と土壌の含有量との質量比(水硬性粉体/土壌)が0.01以上0.6以下である地盤改良体である。この地盤改良体は、土壌と、水と、水硬性粉体と、(A)成分とを含有するスラリーを硬化させてなる地盤改良体であってよい。
 本発明の地盤改良体は、土壌と、本発明の地盤改良用スラリーとを混合してなる、地盤改良体であってよい。
[Ground improvement body]
The ground improvement body of the present invention is a ground improvement body containing soil, water-hard powder, water, and component (A), and is a mass ratio (water) of the content of water-hard powder to the content of soil. Hard powder / soil) is a ground improvement body of 0.01 or more and 0.6 or less. This ground improvement body may be a ground improvement body obtained by curing a slurry containing soil, water, hydraulic powder, and component (A).
The ground improvement body of the present invention may be a ground improvement body formed by mixing soil and the ground improvement slurry of the present invention.
 本発明の地盤の改良工法、地盤改良用添加剤組成物、地盤改良用スラリーで述べた事項は、本発明の地盤改良体に適宜適用することができる。本発明の地盤改良体は、(B)成分、及び(C)成分から選ばれる成分を1つ以上含有することができる。
 本発明の地盤改良体における、水硬性粉体、(A)成分、(B)成分、(C)成分、土壌などの具体例、好ましい態様や、各質量比などの量的な規定も、それぞれ、本発明の地盤の改良工法、地盤改良用添加剤組成物、地盤改良用スラリーと同じである。例えば、土壌は、酸性土、好ましくは強熱減量法によって求められる有機質分量が30%以上である土壌であり、地盤工学会基準JGS0211-2009で規定される方法によって測定される土懸濁液のpHが6以下である土壌であってよい。
The matters described in the ground improvement method of the present invention, the additive composition for ground improvement, and the slurry for ground improvement can be appropriately applied to the ground improvement body of the present invention. The ground improvement body of the present invention can contain one or more components selected from the component (B) and the component (C).
Specific examples of the water-hard powder, the component (A), the component (B), the component (C), the soil, etc. in the ground improvement body of the present invention, preferred embodiments, and quantitative specifications such as each mass ratio are also specified. , The same as the ground improvement method of the present invention, the ground improvement additive composition, and the ground improvement slurry. For example, the soil is acidic soil, preferably soil having an organic content of 30% or more determined by the ignition loss method, and is a soil suspension measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009. The soil may have a pH of 6 or less.
実施例
<配合成分>
 以下の実施例、比較例で用いた成分を以下に示す。
(A)成分
・酸化ケイ素(1):酸化ケイ素(コロイダルシリカ)、累積個数頻度が10%になる時の粒子径(D10)5nm、累積個数頻度が50%になる時の粒子径(D50)8nm、累積個数頻度が90%になる時の粒子径(D90)10nm、日揮触媒化成株式会社製
・酸化ケイ素(2):酸化ケイ素(コロイダルシリカ)、累積個数頻度が10%になる時の粒子径(D10)7nm、累積個数頻度が50%になる時の粒子径(D50)10nm、累積個数頻度が90%になる時の粒子径(D90)15nm、日揮触媒化成株式会社製
・酸化ケイ素(3):酸化ケイ素(コロイダルシリカ)、累積個数頻度が10%になる時の粒子径(D10)10nm、累積個数頻度が50%になる時の粒子径(D50)14nm、累積個数頻度が90%になる時の粒子径(D90)27nm、日揮触媒化成株式会社製
・酸化アルミニウム:γ―アルミナ、累積個数頻度が10%になる時の粒子径(D10)15nm、累積個数頻度が50%になる時の粒子径(D50)23nm、累積個数頻度が90%になる時の粒子径(D90)31nm、バイコウスキージャパン製
(A’)成分((A)成分の比較成分)
・酸化ケイ素(4):酸化ケイ素(コロイダルシリカ)、累積個数頻度が10%になる時の粒子径(D10)83nm、累積個数頻度が50%になる時の粒子径(D50)100nm、累積個数頻度が90%になる時の粒子径(D90)130nm、日揮触媒化成株式会社製
Example <Ingredients>
The components used in the following examples and comparative examples are shown below.
(A) Component-Silicon oxide (1): Silicon oxide (coloidal silica), particle size (D10) 5 nm when the cumulative number frequency is 10%, particle size (D50) when the cumulative number frequency is 50%. 8 nm, particle size (D90) when the cumulative number frequency is 90%, silicon oxide (2) manufactured by Nikki Catalyst Kasei Co., Ltd .: silicon oxide (colloidal silica), particles when the cumulative number frequency is 10% Diameter (D10) 7 nm, particle size (D50) 10 nm when the cumulative number frequency is 50%, particle size (D90) 15 nm when the cumulative number frequency is 90%, silicon oxide manufactured by Nikki Catalyst Kasei Co., Ltd. 3): Silicon oxide (coloidal silica), particle size (D10) 10 nm when the cumulative number frequency is 10%, particle size (D50) 14 nm when the cumulative number frequency is 50%, cumulative number frequency 90% Particle size (D90) 27 nm, manufactured by Nikki Catalyst Kasei Co., Ltd. Aluminum oxide: γ-alumina, particle size (D10) 15 nm when the cumulative number frequency is 10%, cumulative number frequency is 50% Particle size (D50) of 23 nm, particle size (D90) of 31 nm when the cumulative number frequency is 90%, (A') component manufactured by Baikowski Japan (comparative component of (A) component)
-Silicon oxide (4): Silicon oxide (coloidal silica), particle size (D10) 83 nm when the cumulative number frequency is 10%, particle size (D50) 100 nm when the cumulative number frequency is 50%, cumulative number Particle size (D90) 130 nm when the frequency reaches 90%, manufactured by JGC Catalysts and Chemicals Co., Ltd.
 (A)成分、(A’)成分の累積個数頻度が10%になる時の粒子径(D10)、50%になるときの粒子径(D50)、90%になる時の粒子径(D90)は、(A)成分、(A’)成分の粒子群に含まれる全粒子をレーザー粒子解析システム(大塚電子株式会社製、商品名:ELSZ-1000)を用いて、下記条件で動的光散乱法により粒子径を測定し、粒子径に対する累積個数頻度をプロットして、キュムラント法解析により算出した。
[測定条件]
・測定サンプル:測定サンプルをスクリュー管に計量し、固形分濃度が0.4質量%となるように分散溶媒として水を加えて調製
・温度:23.6℃
・入射光と検出器との角度:90°
・積算回数:50回
・分散溶媒としての水の屈折率:1.333                                               
The particle size (D10) when the cumulative number frequency of the component (A) and the component (A') is 10%, the particle size (D50) when the frequency is 50%, and the particle size (D90) when the cumulative number frequency is 90%. Uses a laser particle analysis system (manufactured by Otsuka Electronics Co., Ltd., trade name: ELSZ-1000) to dynamically scatter all particles contained in the particle group of component (A) and component (A') under the following conditions. The particle size was measured by the method, and the cumulative number frequency with respect to the particle size was plotted and calculated by the Cumulant method analysis.
[Measurement condition]
-Measurement sample: Weigh the measurement sample into a screw tube and add water as a dispersion solvent so that the solid content concentration becomes 0.4% by mass.-Temperature: 23.6 ° C.
-Angle between incident light and detector: 90 °
-Number of integrations: 50-Refractive index of water as a dispersion solvent: 1.333
(B)成分
・塩化カルシウム:富士フィルム和光純薬株式会社製
・塩化アルミニウム:富士フィルム和光純薬株式会社製
(C)成分
・硫酸カルシウム:富士フィルム和光純薬株式会社製
・硫酸ナトリウム:富士フィルム和光純薬株式会社製
・チオ硫酸ナトリウム:富士フィルム和光純薬株式会社製
(B) Ingredients-Calcium chloride: Fuji Film Wako Pure Chemical Industries, Ltd.-Aluminum chloride: Fuji Film Wako Pure Chemical Industries, Ltd. (C) Ingredients-Calcium sulfate: Fuji Film Wako Pure Chemical Industries, Ltd.-Sodium sulfate: Fuji Film Wako Pure Chemical Industries, Ltd. ・ Sodium thiosulfate: Fuji Film Wako Pure Chemical Industries, Ltd.
水硬性粉体
・普通ポルトランドセメント:太平洋セメント株式会社製
・高炉スラグセメント:日鉄高炉セメント株式会社製
Hydraulic powder ・ Ordinary Portland cement: Taiheiyo Cement Co., Ltd. ・ Blast furnace slag cement: Nittetsu Blast Furnace Cement Co., Ltd.
 土壌は、表1に示す泥炭を用いた。泥炭の有機質分量は、日本工学規格JIS A1226:2009で規定される強熱減量法を用いて測定した。また泥炭の土懸濁液のpHは、地盤工学会基準JGS0211-2009で規定される方法によって測定した。 The soil used was the peat shown in Table 1. The organic content of peat was measured using the ignition loss method specified in Japanese Industrial Standard JIS A1226: 2009. The pH of the peat soil suspension was measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例、及び比較例>
 表1の土壌を用いてソイルセメントを調製し、ソイルセメントに対する評価を以下のように行った。結果を表2に示す。
<Examples and comparative examples>
Soil cement was prepared using the soil shown in Table 1, and the soil cement was evaluated as follows. The results are shown in Table 2.
(1)ソイルセメントの調製
 まず、セメントミルクを次の手順で調製した。(A)成分又は(A’)成分と、(B)成分と水とを混合して添加剤水溶液を調製し、500mlプラスチックカップ(500mLディスポカップ、ニッコー・ハンセン株式会社)内で添加剤水溶液と水硬性粉体と(C)成分を混合し、ハンドミキサーにて1分間混練してセメントミルクを調製した。
 添加剤水溶液を調製するための水は上水道水を用いた。水硬性粉体と添加剤水溶液は、添加剤水溶液/水硬性粉体の質量比が60質量%となるように用いた。添加剤水溶液/水硬性粉体の質量比は、実質的に水/水硬性粉体比に相当する。
 (A)成分又は(A’)成分、(B)成分、(C)成分は、水硬性粉体に対する添加量が表2の通りとなるように用いた。
 その後、別の500mlプラスチックカップ内に、土壌を投入し、セメントミルクを、表2に記載の注入量となるように投入し(質量比(水硬性粉体/土壌)は0.38)、ハンドミキサーにて3分間撹拌してソイルセメントを調製した。攪拌後、振動を与えて上面を均し、ラップフィルムで封をして所定時間まで22℃で静置した。
(1) Preparation of soil cement First, cement milk was prepared by the following procedure. The component (A) or the component (A'), the component (B) and water are mixed to prepare an aqueous additive solution, and the aqueous additive solution is prepared in a 500 ml plastic cup (500 mL disposable cup, Nikko Hansen Co., Ltd.). The water-hard powder and the component (C) were mixed and kneaded with a hand mixer for 1 minute to prepare cement milk.
Tap water was used as the water for preparing the additive aqueous solution. The aqueous solution of the water-hard powder and the aqueous solution of the additive were used so that the mass ratio of the aqueous solution of the additive / the aqueous solution of the additive was 60% by mass. The mass ratio of the additive aqueous solution / water-hard powder substantially corresponds to the water / water-hard powder ratio.
The component (A), the component (A'), the component (B), and the component (C) were used so that the amount added to the hydraulic powder was as shown in Table 2.
Then, the soil is poured into another 500 ml plastic cup, and the cement milk is poured so as to have the injection amount shown in Table 2 (mass ratio (hydraulic powder / soil) is 0.38), and the hand. Soil cement was prepared by stirring with a mixer for 3 minutes. After stirring, the upper surface was leveled by applying vibration, sealed with a wrap film, and allowed to stand at 22 ° C. for a predetermined time.
(2)評価
 調製したソイルセメントを用いて得た地盤改良体の強度を次の方法で評価した。ソイルセメントを、型枠(直径50mm×高さ100mm)に充填した。充填は、テーブルバイブレータで30秒の2層詰めとした。供試体は2本作製した。前記で得た供試体の硬化体(地盤改良体)の20℃気中7日強度を、一軸圧縮試験機により測定した。表2には、2本の供試体の強度の平均値を7日強度として示した。
(2) Evaluation The strength of the ground improvement body obtained by using the prepared soil cement was evaluated by the following method. Soil cement was filled in a mold (diameter 50 mm × height 100 mm). Filling was done with a table vibrator for 30 seconds in two layers. Two specimens were prepared. The strength of the cured product (ground improvement product) of the specimen obtained above in air at 20 ° C. for 7 days was measured by a uniaxial compression tester. Table 2 shows the average value of the intensities of the two specimens as the intensities for 7 days.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中、7日強度が0と表記されている比較例は、ソイルセメントが硬化しないことにより型枠から脱型できなかったため、強度を測定しなかった。 In Table 2, in the comparative example in which the 7-day strength was described as 0, the strength was not measured because the soil cement could not be removed from the mold because it did not harden.
<参考例>
 上記の(A)成分に加えて、参考例で用いた(A’)成分を以下に示す。
・酸化ケイ素(5):酸化ケイ素(コロイダルシリカ)、累積個数頻度が10%になる時の粒子径(D10)120nm、累積個数頻度が50%になる時の粒子径(D50)160nm、累積個数頻度が90%になる時の粒子径(D90)200nm、日揮触媒化成株式会社製
<Reference example>
In addition to the above component (A), the component (A') used in the reference example is shown below.
-Silicon oxide (5): Silicon oxide (coloidal silica), particle size (D10) 120 nm when the cumulative number frequency is 10%, particle size (D50) 160 nm when the cumulative number frequency is 50%, cumulative number Particle size (D90) 200 nm when the frequency reaches 90%, manufactured by JGC Catalysts and Chemicals Co., Ltd.
(3)セメントペーストの調製
 セメントを次の手順で調製した。(A)成分又は(A’)成分と水とを混合して添加剤水溶液を調製し、500mlプラスチックカップ(500mLディスポカップ、ニッコー・ハンセン株式会社)内で添加剤水溶液と水硬性粉体(普通ポルトランドセメント(太平洋セメント(株)製))を混合し、ハンドミキサーにて1分間混練してセメントペーストを調製した。攪拌後、振動を与えて上面を均し、ラップフィルムで封をして所定時間まで22℃で静置した。
 添加剤水溶液を調製するための水は上水道水を用いた。水硬性粉体と添加剤水溶液は添加剤水溶液中の水分量/水硬性粉体の質量比が60質量%となるように用いた。
 (A)成分又は(A’)成分は、水硬性粉体に対する添加量が表3の通りとなるように用いた。
(3) Preparation of cement paste Cement was prepared by the following procedure. The additive aqueous solution is prepared by mixing the component (A) or the component (A') with water, and the additive aqueous solution and the water-hard powder (ordinary) are prepared in a 500 ml plastic cup (500 mL disposable cup, Nikko Hansen Co., Ltd.). Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) was mixed and kneaded with a hand mixer for 1 minute to prepare a cement paste. After stirring, the upper surface was leveled by applying vibration, sealed with a wrap film, and allowed to stand at 22 ° C. for a predetermined time.
Tap water was used as the water for preparing the additive aqueous solution. The water-hard powder and the additive aqueous solution were used so that the water content / water-hard powder mass ratio in the additive aqueous solution was 60% by mass.
The component (A) or the component (A') was used so that the amount added to the hydraulic powder was as shown in Table 3.
(4)評価
 調製したセメントペーストの強度を次の方法で評価した。セメントペーストを、型枠(直径50mm×高さ100mm)に充填した。充填は、テーブルバイブレータで30秒の2層詰めとした。供試体は2本作製した。前記で得た供試体の硬化体(地盤改良体)の20℃気中7日強度を、一軸圧縮試験機により測定した。表3には、2本の供試体の強度の平均値を7日強度として示した。
(4) Evaluation The strength of the prepared cement paste was evaluated by the following method. The cement paste was filled in a mold (diameter 50 mm × height 100 mm). Filling was done with a table vibrator for 30 seconds in two layers. Two specimens were prepared. The strength of the cured product (ground improvement product) of the specimen obtained above in air at 20 ° C. for 7 days was measured by a uniaxial compression tester. Table 3 shows the average value of the intensities of the two specimens as the intensities for 7 days.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2中、泥炭である土壌に、水硬性粉体のみで(A)成分を混合しない比較例1、水硬性粉体と本発明の条件を満たさない粒子群を混合した比較例2では、ソイルセメントを硬化させることができないが、土壌に、水硬性粉体と(A)成分である特定の粒子群を混合した本発明の実施例1~12では、ソイルセメントを硬化させることが出来ることが分かる。
 一方、表3の結果の通り、土壌を含まないセメントペーストに粒子群を添加した場合、本発明の条件を満たさない粒子群を添加した場合でも7日強度を向上させることができることが分かる。このように、本発明は、土壌と水硬性粉体を含むソイルセメントに対して、特定の条件を満たす粒子群を添加することで、ソイルセメントの硬化強度が向上できることを見出した発明であることが分かる。
In Table 2, in Comparative Example 1 in which the component (A) is not mixed only with the water-hard powder in the soil which is peat, and in Comparative Example 2 in which the water-hard powder and the particle group not satisfying the conditions of the present invention are mixed, the soil is used. Although the cement cannot be hardened, in Examples 1 to 12 of the present invention in which the water-hard powder and the specific particle group which is the component (A) are mixed in the soil, the soil cement can be hardened. I understand.
On the other hand, as shown in the results of Table 3, it can be seen that when the particle group is added to the cement paste containing no soil, the strength can be improved for 7 days even when the particle group that does not satisfy the conditions of the present invention is added. As described above, the present invention has been found that the curing strength of soil cement can be improved by adding a particle group satisfying a specific condition to soil cement containing soil and hydraulic powder. I understand.

Claims (14)

  1.  下記の工程1~3を有する地盤の改良工法。
    <工程1>
     水と、水硬性粉体と、下記(A)成分とを混合してスラリーを調製する工程
    (A)成分:粒子群であって、含まれる全粒子を動的光散乱法によって粒子径を測定し、粒子径に対する累積個数頻度をプロットしたとき、累積個数頻度が10%になる時の粒子径が30nm以下であり、50%になるときの粒子径が70nm以下であり、90%になる時の粒子径が100nm以下である粒子群
    <工程2>
     工程1で得られたスラリーを地盤に注入してスラリーと土壌とを混合して混合物を得る工程であって、土壌1mあたりのスラリーの混合量が150kg以上800kg以下であり、混合物中の水硬性粉体/土壌の質量比が0.01以上0.6以下である工程
    <工程3>
     工程2で得られたスラリーと土壌の混合物を固化させる工程
    A ground improvement method having the following steps 1 to 3.
    <Step 1>
    Step of preparing a slurry by mixing water, a water-hard powder, and the following component (A) Component (A): A particle group whose particle size is measured by a dynamic light scattering method. When the cumulative number frequency with respect to the particle size is plotted, the particle size is 30 nm or less when the cumulative number frequency is 10%, and the particle size is 70 nm or less when the cumulative number frequency is 50%, and 90%. Particle group having a particle size of 100 nm or less <Step 2>
    In the step of injecting the slurry obtained in step 1 into the ground and mixing the slurry and soil to obtain a mixture, the mixing amount of the slurry per 1 m 3 of soil is 150 kg or more and 800 kg or less, and water in the mixture. Step where the mass ratio of hard powder / soil is 0.01 or more and 0.6 or less <Step 3>
    Step of solidifying the mixture of slurry and soil obtained in step 2
  2.  前記土壌が、強熱減量法によって求められる有機質分量が30%以上である土壌であり、地盤工学会基準JGS0211-2009で規定される方法によって測定される土懸濁液のpHが6以下である土壌である、請求項1に記載の地盤の改良工法。 The soil is a soil in which the organic content required by the ignition loss method is 30% or more, and the pH of the soil suspension measured by the method specified by the Japanese Geotechnical Society standard JGS0211-2009 is 6 or less. The ground improvement method according to claim 1, which is soil.
  3.  (A)成分が、酸化ケイ素、及び酸化アルミニウムから選ばれる1種以上の粒子群である、請求項1又は2に記載の地盤の改良工法。 The ground improvement method according to claim 1 or 2, wherein the component (A) is one or more particle groups selected from silicon oxide and aluminum oxide.
  4.  工程1で、(A)成分を、水硬性粉体に対して、0.1質量%以上10質量%以下で混合する、請求項1~3の何れか1項に記載の地盤の改良工法。 The ground improvement method according to any one of claims 1 to 3, wherein in step 1, the component (A) is mixed with the hydraulic powder in an amount of 0.1% by mass or more and 10% by mass or less.
  5.  前記水硬性粉体が、普通ポルトランドセメント、高炉スラグセメント、及び製鋼スラグセメントから選ばれる1種以上である、請求項1~4の何れか1項に記載の地盤の改良工法。 The ground improvement method according to any one of claims 1 to 4, wherein the hydraulic powder is one or more selected from ordinary Portland cement, blast furnace slag cement, and steelmaking slag cement.
  6.  工程1で、更に下記の(B)成分を混合する、請求項1~5の何れか1項に記載の地盤の改良工法。
    (B)成分:20℃における水への溶解度が20g/1000ml以上であるカルシウム塩化物塩もしくはアルミニウム塩化物塩から選ばれる1種以上の化合物
    The ground improvement method according to any one of claims 1 to 5, wherein the following component (B) is further mixed in step 1.
    (B) Ingredient: One or more compounds selected from calcium chloride salt or aluminum chloride salt having a solubility in water at 20 ° C. of 20 g / 1000 ml or more.
  7.  (B)成分が塩化カルシウム及び塩化アルミニウムから選ばれる1種以上である、請求項6に記載の地盤の改良工法。 The ground improvement method according to claim 6, wherein the component (B) is at least one selected from calcium chloride and aluminum chloride.
  8.  工程1で、(B)成分を、水硬性粉体に対して、0.1質量%以上10質量%以下で混合する、請求項6又は7に記載の地盤の改良工法。 The ground improvement method according to claim 6 or 7, wherein in step 1, the component (B) is mixed with the hydraulic powder in an amount of 0.1% by mass or more and 10% by mass or less.
  9.  工程1で、更に(C)硫酸カルシウム、硫酸ナトリウム、チオ硫酸ナトリウムから選ばれる1種以上の化合物(以下、(C)成分という)を混合する、請求項1~8の何れか1項に記載の地盤の改良工法。 The present invention according to any one of claims 1 to 8, wherein in step 1, one or more compounds (hereinafter referred to as (C) component) selected from (C) calcium sulfate, sodium sulfate, and sodium thiosulfate are further mixed. Ground improvement method.
  10.  工程1で、(C)成分を、水硬性粉体に対して、0.1質量%以上10質量%以下で混合する、請求項9に記載の地盤の改良工法。 The ground improvement method according to claim 9, wherein in step 1, the component (C) is mixed with the hydraulic powder in an amount of 0.1% by mass or more and 10% by mass or less.
  11.  工程1で、アルカリ金属炭酸塩の混合量が、水硬性粉体に対して、1質量%以下である、請求項1~10の何れか1項に記載の地盤の改良工法。 The ground improvement method according to any one of claims 1 to 10, wherein in step 1, the mixed amount of the alkali metal carbonate is 1% by mass or less with respect to the water-hard powder.
  12.  下記(A)成分を含有する、地盤改良用添加剤組成物。
    (A)成分:粒子群であって、含まれる全粒子を動的光散乱法によって粒子径を測定し、粒子径に対する累積個数頻度をプロットしたとき、累積個数頻度が10%になる時の粒子径が30nm以下であり、50%になるときの粒子径が70nm以下であり、90%になる時の粒子径が100nm以下である粒子群
    An additive composition for ground improvement containing the following component (A).
    (A) Component: A particle group, in which the particle size of all contained particles is measured by a dynamic light scattering method and the cumulative number frequency with respect to the particle size is plotted, and the particles when the cumulative number frequency becomes 10%. A group of particles having a diameter of 30 nm or less, a particle size of 70 nm or less when it reaches 50%, and a particle size of 100 nm or less when it reaches 90%.
  13.  更に(B)20℃における水への溶解度が20g/1000ml以上であるカルシウム塩化物塩もしくはアルミニウム塩化物塩から選ばれる1種以上の化合物を含有する、請求項12に記載の地盤改良用添加剤組成物。 (B) The additive for ground improvement according to claim 12, further comprising (B) one or more compounds selected from calcium chloride salt or aluminum chloride salt having a solubility in water at 20 ° C. of 20 g / 1000 ml or more. Composition.
  14.  土壌、水硬性粉体、水、及び下記(A)成分を含有する地盤改良体であって、水硬性粉体の含有量と土壌の含有量との質量比(水硬性粉体/土壌)が0.01以上0.6以下である地盤改良体。
    (A)成分:粒子群であって、含まれる全粒子を動的光散乱法によって粒子径を測定し、粒子径に対する累積個数頻度をプロットしたとき、累積個数頻度が10%になる時の粒子径が30nm以下であり、50%になるときの粒子径が70nm以下であり、90%になる時の粒子径が100nm以下である粒子群
    It is a ground improvement body containing soil, water-hard powder, water, and the following component (A), and the mass ratio (water-hard powder / soil) between the content of water-hard powder and the content of soil is Ground improvement body of 0.01 or more and 0.6 or less.
    (A) Component: A particle group, in which the particle size of all contained particles is measured by a dynamic light scattering method and the cumulative number frequency with respect to the particle size is plotted, and the particles when the cumulative number frequency becomes 10%. A group of particles having a diameter of 30 nm or less, a particle size of 70 nm or less when it reaches 50%, and a particle size of 100 nm or less when it reaches 90%.
PCT/JP2020/045773 2020-02-14 2020-12-09 Ground improvement method WO2021161637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020023004 2020-02-14
JP2020-023004 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021161637A1 true WO2021161637A1 (en) 2021-08-19

Family

ID=77291518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045773 WO2021161637A1 (en) 2020-02-14 2020-12-09 Ground improvement method

Country Status (2)

Country Link
JP (1) JP7299869B2 (en)
WO (1) WO2021161637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381642B2 (en) 2022-03-28 2023-11-15 太平洋セメント株式会社 Solidification treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003047A (en) * 1999-06-21 2001-01-09 Kyokado Eng Co Ltd Grouting consolidation material
JP2006241316A (en) * 2005-03-03 2006-09-14 Taiheiyo Material Kk Grouting material
JP2012126787A (en) * 2010-12-14 2012-07-05 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous gel composition
JP2019011473A (en) * 2017-06-30 2019-01-24 富士化学株式会社 Consolidating material for grouting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102058A (en) * 1996-10-01 1998-04-21 Toko Kensetsu Kk Grout
JP4505063B2 (en) * 1998-02-16 2010-07-14 三井化学株式会社 Suspension grout and its ground improvement method
JP3721289B2 (en) 1999-09-29 2005-11-30 強化土エンジニヤリング株式会社 Ground consolidation material
US7163358B2 (en) 2002-08-22 2007-01-16 Akzo Nobel N.V. Injection grouting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003047A (en) * 1999-06-21 2001-01-09 Kyokado Eng Co Ltd Grouting consolidation material
JP2006241316A (en) * 2005-03-03 2006-09-14 Taiheiyo Material Kk Grouting material
JP2012126787A (en) * 2010-12-14 2012-07-05 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous gel composition
JP2019011473A (en) * 2017-06-30 2019-01-24 富士化学株式会社 Consolidating material for grouting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381642B2 (en) 2022-03-28 2023-11-15 太平洋セメント株式会社 Solidification treatment method

Also Published As

Publication number Publication date
JP2021127446A (en) 2021-09-02
JP7299869B2 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
CN105906226B (en) A kind of preparation method of cement mixing pile compound additive, curing materials and compound additive
JP2008037891A (en) Method for preparing soil cement slurry
JP2007137745A (en) Quick hardening material and high-penetrating grout
CN105753422A (en) Phosphogypsum-based grouting material for filling solution cavity of mine
JP4090772B2 (en) Cement composition
JP6529821B2 (en) Powder stabilization agent for ground stabilization, ground stabilization material, and ground stabilization method using the same
JP7299869B2 (en) Ground improvement method
JP2802972B2 (en) Rapid hardening material for ultra soft soil
JP6487133B1 (en) Ground improvement method
JP2007137744A (en) Quick hardening material and grout
JP6498716B2 (en) Ground improvement method
JP7265498B2 (en) Ground improvement method
JP2010155758A (en) Cement admixture and cement composition
JP7326384B2 (en) Ground improvement method
JP6578316B2 (en) Ground improvement method
JPH0483064A (en) Mortar filling into concrete gap in concrete reverse placing construction
JP2007217255A (en) Method of preparing soil cement slurry
JPH1161125A (en) Grouting material
JP6776391B2 (en) Ground improvement materials, cement milk, and ground improvement methods
JP2021130581A (en) Method of producing blast furnace cement
WO2019138319A2 (en) Method for the production of underground foundations
JP6755828B2 (en) Ground improvement method
JPH07267700A (en) Two-pack grout composition
KR102619818B1 (en) Self-compacting concrete composition comprising mono-fluid type admixture composition
JP7282459B2 (en) filler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919201

Country of ref document: EP

Kind code of ref document: A1