JPH07267700A - Two-pack grout composition - Google Patents

Two-pack grout composition

Info

Publication number
JPH07267700A
JPH07267700A JP6251494A JP6251494A JPH07267700A JP H07267700 A JPH07267700 A JP H07267700A JP 6251494 A JP6251494 A JP 6251494A JP 6251494 A JP6251494 A JP 6251494A JP H07267700 A JPH07267700 A JP H07267700A
Authority
JP
Japan
Prior art keywords
cement
sio
grout
weight
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6251494A
Other languages
Japanese (ja)
Other versions
JP2850280B2 (en
Inventor
Hiroshi Harada
宏 原田
Yukio Mizukami
幸男 水上
Takakiyo Kamata
隆清 鎌田
Mitsuo Tanaka
光男 田中
Saburo Ishii
三郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TACHIBANA MATERIAL KK
Chichibu Onoda Cement Corp
Tachibana Material Co Ltd
Original Assignee
TACHIBANA MATERIAL KK
Chichibu Onoda Cement Corp
Tachibana Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TACHIBANA MATERIAL KK, Chichibu Onoda Cement Corp, Tachibana Material Co Ltd filed Critical TACHIBANA MATERIAL KK
Priority to JP6251494A priority Critical patent/JP2850280B2/en
Publication of JPH07267700A publication Critical patent/JPH07267700A/en
Application granted granted Critical
Publication of JP2850280B2 publication Critical patent/JP2850280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Abstract

PURPOSE:To obtain a two-pack grout composition excellent in resistance to seawater. CONSTITUTION:This two-pack grout composition is made up of water-glass and a cement-contg. suspension. The cement components include 3CaO.SiO2, 2CaO.SiO2, 3CaO.Al2O3, 4CaO.Al2O3.Fe2O3, and gypsum, and the weight ratio of SiO2/Al2O3 in this cement is 8--15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建設構造物と地盤土と
の間に生じる空隙に注入される二液性グラウト組成物に
関するものである。特に、シールドトンネル工事におい
て地盤沈下や漏水防止などを目的とする地山とセグメン
ト間の空洞に注入充填される裏込め材、あるいは軟弱層
に構造物が建設され、軟弱層の沈下によって構造物と地
盤土との間に空洞が発生した際に、構造物の安定性を確
保する目的で充填される注入材、又は臨海部の地盤改良
に用いる地盤注入材として用いられる二液性グラウト組
成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-part grout composition which is injected into a void formed between a construction structure and ground soil. In particular, in the shield tunnel construction, a backfill material that is injected and filled into the cavity between the ground and the segment for the purpose of preventing ground subsidence and water leakage, or a structure is built in the soft layer, and the structure is constructed by the subsidence of the soft layer. Regarding a two-component grout composition used as an injecting material filled for the purpose of ensuring the stability of a structure when a void is generated between the soil and the ground, or as a ground injecting material used for improving the ground at the seaside It is a thing.

【0002】[0002]

【発明の背景】従来から、シールド工法によるトンネル
工事においては、シールド機の掘削面、すなわち地山と
覆工材料であるセグメントとの間にテールボイドと呼ば
れる空洞が発生する。この為、周辺地盤の変状防止、ト
ンネルの止水性の向上、覆工の安定性の確保などを目的
として裏込め注入が行われて来た。
2. Description of the Related Art Conventionally, in tunnel construction by the shield construction method, a cavity called a tail void is generated between the excavated surface of the shield machine, that is, the ground and the segment which is the lining material. For this reason, backfilling injection has been carried out for the purpose of preventing deformation of the surrounding ground, improving the waterproofness of the tunnel, and ensuring the stability of the lining.

【0003】現在、裏込め注入においては、裏込めグラ
ウトの要求性能である充填性、限定注入性(外部への逸
走防止)、早期強度発現性に優れるものとして二液性の
可塑状グラウトが主流となっている。二液性グラウト
は、セメントに代表される固化材成分を含む注入主材と
してのA液と、水ガラスに代表されるゲル化剤および可
塑剤としてのB液とを混合することによって得られる。
At present, in backfilling injection, a two-component plastic grout is mainly used because it is excellent in backfilling grout's required performance such as filling property, limited injection property (prevention of escape to the outside) and early strength development. Has become. The two-component grout is obtained by mixing a liquid A as a main injection material containing a solidifying material component typified by cement and a liquid B as a gelling agent and a plasticizer typified by water glass.

【0004】尚、これら二液性グラウトの技術は、特公
昭62−24474号公報、特公平2−4634号公
報、特公平2−43790号公報などに開示されてい
る。ところで、二液性グラウトの硬化体は、海水の侵食
を受ける環境にあると、水ガラス成分が溶脱したり、海
水成分と固化材成分との反応によって水酸化マグネシウ
ムやフリーデル氏塩が生成し、亀裂が発生・拡大する
為、長期耐久性に難点があるとされている。尚、本発明
者が行った実験においても、すなわち裏込め材用固化材
に数多く使用されているスラグ混合系セメントとして高
炉セメントB種を用いた二液性グラウトの人工海水中養
生による海水抵抗性試験を行った処、海水抵抗性に著し
く劣る結果が確かめられた。
The technique of these two-component grouts is disclosed in Japanese Patent Publication No. 62-24474, Japanese Patent Publication No. 2-4634, Japanese Patent Publication No. 2-43790. By the way, the hardened body of the two-component grout, in an environment where seawater is eroded, causes the water glass component to be leached out, and magnesium hydroxide and Friedel's salt are generated by the reaction between the seawater component and the solidifying material component. However, it is said that there is a problem in long-term durability because cracks occur and expand. In addition, in the experiment conducted by the present inventor, that is, seawater resistance by artificial seawater curing of a two-component grout using blast furnace cement type B as a slag mixed system cement, which is often used in a solidifying material for backfill material. As a result of the test, it was confirmed that the seawater resistance was extremely poor.

【0005】しかるに、近年、臨海部で大規模な土木・
建築プロジェクトが数多く計画、着工される傾向が有
り、海水の環境下にあるシールドトンネル工事用として
耐海水性に優れるグラウト組成物が望まれている。
However, in recent years, large-scale civil engineering
There is a tendency for many construction projects to be planned and started, and a grout composition having excellent seawater resistance is desired for shield tunnel construction under seawater environment.

【0006】[0006]

【発明の開示】本発明の目的は、耐海水性に優れたグラ
ウト組成物を提供することである。この本発明の目的
は、セメントを含む懸濁液と水ガラスとの混合物よりな
る二液性グラウト組成物であって、前記セメントの成分
として3CaO・SiO2 ,2CaO・SiO2 ,3C
aO・Al2 3 ,4CaO・Al2 3 ・Fe2 3
及び石膏を含み、しかもこのセメントにおけるSiO2
/Al2 3 (重量比)が8〜15であることを特徴と
する二液性グラウト組成物によって達成される。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a glass having excellent seawater resistance.
It is to provide a eu composition. The purpose of this invention
Consists of a mixture of cement-containing suspension and water glass.
A two-part grout composition comprising:
As 3CaO ・ SiO2, 2CaO / SiO2, 3C
aO ・ Al2O3, 4CaO / Al2O3・ Fe2O 3
And gypsum, and the SiO in this cement2
/ Al2O3(Weight ratio) is 8 to 15
And a two-part grout composition.

【0007】尚、この本発明になる二液性グラウト組成
物においては、(Fe2 3 )/(3CaO・SiO2
+2CaO・SiO2 +3CaO・Al2 3 +4Ca
O・Al2 3 ・Fe2 3 +石膏)が2〜4重量%の
セメントが用いられてなることが好ましい。又、(3C
aO・SiO2 )/(3CaO・SiO2 +2CaO・
SiO2 +3CaO・Al2 3 +4CaO・Al2
3 ・Fe2 3 +石膏)が20〜40重量%、(2Ca
O・SiO2 )/(3CaO・SiO2 +2CaO・S
iO 2 +3CaO・Al2 3 +4CaO・Al2 3
・Fe2 3 +石膏)が40〜65重量%のセメントが
用いられてなることが好ましい。
The two-part grout composition of the present invention
In the thing, (Fe2O3) / (3CaO ・ SiO2
+ 2CaO / SiO2+ 3CaO / Al2O3+ 4Ca
O ・ Al2O3・ Fe2O32-4% by weight of gypsum)
It is preferable that cement is used. Also, (3C
aO ・ SiO2) / (3CaO ・ SiO2+ 2CaO ・
SiO2+ 3CaO / Al2O3+ 4CaO / Al2O
3・ Fe2O3+ 40% by weight of gypsum), (2Ca
O / SiO2) / (3CaO ・ SiO2+ 2CaO ・ S
iO 2+ 3CaO / Al2O3+ 4CaO / Al2O3
・ Fe2O3+ Gypsum) is 40-65% by weight of cement
It is preferably used.

【0008】又、(高炉スラグ)/(3CaO・SiO
2 +2CaO・SiO2 +3CaO・Al2 3 +4C
aO・Al2 3 ・Fe2 3 +石膏+高炉スラグ)が
5〜50重量%となるよう高炉スラグの添加されたセメ
ントが用いられてなることが好ましい。又、石膏がセメ
ント中のSO3 換算で0.5〜4.5重量%となるよう
添加されたセメントが用いられてなることが好ましい。
[Blast furnace slag] / (3CaO.SiO)
2 + 2CaO · SiO 2 + 3CaO · Al 2 O 3 + 4C
aO · Al 2 O 3 · Fe 2 O 3 + gypsum + blast furnace slag) is preferably made used is added, the cement blast furnace slag to be 5 to 50 wt%. Further, it is preferable to use cement added with gypsum in an amount of 0.5 to 4.5% by weight in terms of SO 3 in the cement.

【0009】又、用いられる水ガラスとしてはSiO2
/Na2 O(モル比)が3. 3〜4. 0の水ガラスであ
ることが好ましい。以下、本発明について詳細に説明す
る。本発明者は、耐海水性を有する二液性グラウトの開
発指針を得ることを目的として、普通ポルトランドセメ
ント(以下、Nセメント)及びNセメントに高炉スラグ
を約45重量%混合した高炉セメントB種(以下、BB
セメント)を固化材として用いた二液性グラウトの硬化
体について、海水に対する抵抗性を調べた。
The water glass used is SiO 2
/ Na 2 O (molar ratio) is preferably water glass of 3.3 to 4.0. Hereinafter, the present invention will be described in detail. The present inventor aims to obtain a guideline for developing a two-component grout having seawater resistance, and ordinary Portland cement (hereinafter referred to as N cement) and blast furnace cement B type in which N cement is mixed with about 45% by weight of blast furnace slag. (Hereafter, BB
The resistance to seawater was investigated for a hardened body of two-liquid grout using (cement) as a solidifying material.

【0010】その結果、BBセメントの場合には、人工
海水による養生を開始してから僅か材齢7日と言う短期
間で硬化体に亀裂が発生し、材齢3ケ月で崩壊に至っ
た。尚、硬化体の劣化は、亀裂の発生と拡大、及び海水
に接する部分の軟化と脱落によって進行した。これに対
して、Nセメントの場合には、材齢2ケ月で亀裂が発生
し、材齢1年で崩壊に至り、BBセメントよりも耐海水
性にやや優れていた。尚、硬化体の劣化は、主に、亀裂
の発生と拡大によって進行し、BBセメントの場合に見
られた硬化体の軟化現象はそれほど生じないという相違
点が認められた。
As a result, in the case of BB cement, cracks were generated in the hardened body within a short period of only 7 days after the start of curing with artificial seawater, and it was disintegrated at the age of 3 months. The deterioration of the cured product proceeded due to the occurrence and expansion of cracks, and the softening and falling off of the portion in contact with seawater. On the other hand, in the case of N cement, a crack was generated at the age of 2 months and it collapsed at the age of 1 year, and was slightly superior in seawater resistance to BB cement. It was noted that the deterioration of the hardened body progressed mainly due to the generation and expansion of cracks, and the softening phenomenon of the hardened body seen in the case of BB cement did not occur so much.

【0011】ところで、海水による二液性グラウト硬化
体の侵食は、海水中に含まれる塩素イオン(Cl- )や
硫酸イオン(SO4 2- )が硬化体に侵入し、フリーデル
氏塩(C3 A・CaCl2 ・10H2 O)やエトリンガ
イト(C3 A・3CaSO4・32H2 O)等の水和物
が新たに生成する為、硬化体組織が変質および膨張する
ことによると考えられる。前記のNセメントおよびBB
セメントを用いた硬化体に生じた亀裂の発生と拡大はこ
れに相当すると理解される。
By the way, in the erosion of the two-component cured grout by seawater, chlorine ions (Cl ) and sulfate ions (SO 4 2− ) contained in seawater enter the cured body, and Friedel's salt (C It is considered that hydrates such as 3 A · CaCl 2 · 10H 2 O) and ettringite (C 3 A · 3CaSO 4 · 32H 2 O) are newly generated, so that the structure of the hardened body is deteriorated and expanded. N cement and BB as described above
It is understood that the initiation and expansion of cracks generated in the cement-based hardened body correspond to this.

【0012】この海水による侵食機構は、一般のセメン
ト・コンクリートにおいて周知であり、フリーデル氏塩
やエトリンガイトの構成成分であるセメント中のAl2
3成分を少なくすれば、耐海水性が向上することにな
る。しかしながら、二液性グラウトはNa2 O・nSi
2 からなる水ガラスをゲル化剤として用いる為、強ア
ルカリであるNa2 O成分の作用によって、海水との間
に一般のセメント・コンクリートとは異なる反応を生じ
ることが想定される。前記のBBセメントを用いた硬化
体に生じた海水に接する部分の軟化現象もこれに該当す
ると考えられた。
The mechanism of erosion by seawater is well known in general cement and concrete, and Al 2 in cement, which is a constituent of Friedel's salt and ettringite, is well known.
If the O 3 component is reduced, the seawater resistance will be improved. However, the two-part grout is Na 2 O.nSi
Since water glass composed of O 2 is used as a gelling agent, it is expected that a reaction different from general cement / concrete will occur with seawater due to the action of the Na 2 O component which is a strong alkali. It was considered that the softening phenomenon of the portion in contact with seawater, which occurred in the hardened body using the BB cement, also corresponds to this.

【0013】従って、耐海水性を有する二液性グラウト
硬化体を得る為には、水ガラスを使用するという特殊な
条件における検討を十分に行う必要が有る。この目的の
為に、化学組成を種々に変化させたポルトランドセメン
トを固化材成分に用いた二液性グラウト硬化体について
海水抵抗性試験を行った処、セメントの化学組成におい
てSiO2 とAl2 3 との重量比(SiO2 /Al2
3)を高くすれば、より耐海水性に優れる二液性グラ
ウトが得られる傾向を見出した。
Therefore, in order to obtain a two-component cured grout having seawater resistance, it is necessary to thoroughly study under the special condition that water glass is used. For this purpose, a seawater resistance test was conducted on a two-part cured grout using Portland cement with various chemical compositions as a solidifying material component. As a result, the chemical composition of the cement was SiO 2 and Al 2 O. Weight ratio with 3 (SiO 2 / Al 2
It has been found that when O 3 ) is increased, a two-component grout having more excellent seawater resistance can be obtained.

【0014】すなわち、セメントの成分として3CaO
・SiO2 (以下、C3 S),2CaO・SiO2 (以
下、C2 S),3CaO・Al2 3 (以下、C
3 A),4CaO・Al2 3 ・Fe2 3 (以下、C
4 AF)及び石膏を含み、しかもこのセメントにおける
SiO2 /Al2 3 (重量比)が8〜15であるもの
を固化材として用い、これを含む懸濁液と水ガラスとの
混合物よりなる二液性グラウト硬化体は耐海水性に優れ
た特長を奏することが見出されたのである。
That is, 3CaO is used as a component of cement.
・ SiO 2 (hereinafter, C 3 S), 2CaO ・ SiO 2 (hereinafter, C 2 S), 3CaO ・ Al 2 O 3 (hereinafter, C
3 A), 4CaO · Al 2 O 3 · Fe 2 O 3 ( hereinafter, C
4 AF) and gypsum, and the cement having a SiO 2 / Al 2 O 3 (weight ratio) of 8 to 15 is used as a solidifying material, and is composed of a mixture of a suspension containing this and water glass. It was found that the two-component cured grout has excellent seawater resistance.

【0015】つまり、SiO2 /Al2 3 が8未満の
小さな値のセメントを用いた二液性グラウト硬化体は、
耐海水性に劣るものであった。尚、SiO2 /Al2
3 が15を越える大きな値のセメントは、セメント製造
に際して、セメントクリンカーの焼成時に液相を形成す
るAl2 3 成分が過少となる為、クリンカーが塊状に
ならず、粒細や粉状となってしまい、ロータリーキルン
やクリンカークーラの連続安定運転が出来ず、セメント
の製造に支障を来たし、現実的ではなかった。
That is, a two-component cured grout using a cement having a small value of SiO 2 / Al 2 O 3 of less than 8 is:
It was inferior in seawater resistance. In addition, SiO 2 / Al 2 O
Cement having a large value of 3 exceeding 15 has a small amount of Al 2 O 3 component forming a liquid phase at the time of firing the cement clinker during cement production, so that the clinker does not become agglomerate but becomes fine or powdery. It was not realistic because the rotary kiln and clinker cooler could not be operated continuously and stably, which hindered cement production.

【0016】尚、SiO2 /Al2 3 はセメント製造
の分野で活動係数と呼ばれている。そして、この活動係
数の実際的な限界値は経験的に2. 5〜6. 0とされて
おり、現在実用化されているセメントの活動係数も〔表
1〕に示す程度のものである。
SiO 2 / Al 2 O 3 is called an activity coefficient in the field of cement production. The practical limit value of this activity coefficient is empirically set to be 2.5 to 6.0, and the activity coefficient of the cement currently in practical use is as shown in [Table 1].

【0017】[0017]

【表1】 [Table 1]

【0018】ここで、耐海水性に優れた特長が奏される
理由は次のように考えられた。先ず、SiO2 /Al2
3 の値を従来のセメントよりも高くすることによっ
て、セメント中のカルシウムシリケート(C3 SとC3
Sの総称)に対するAl 2 3 成分の比率が小さくなる
為、海水成分との反応によってフリーデル氏塩やエトリ
ンガイトが生成しても、その量はグラウト硬化体を健全
に保つカルシウムシリケート水和物(C−S−H)に対
して少ないものであり、硬化体の変質あるいは膨張亀裂
の発生による劣化を防ぐことが出来ると理解された。
Here, the features of excellent seawater resistance are exhibited.
The reason was considered as follows. First, SiO2/ Al2
O3By increasing the value of
Calcium silicate (C3S and C3
Al for S) 2O3The ratio of components becomes smaller
Therefore, by reacting with seawater components, Friedel salt and
Even if ngite is generated, the amount of grouting hardened is healthy.
To keep calcium silicate hydrate (C-S-H)
The deterioration of the cured product or expansion cracks
It was understood that it is possible to prevent deterioration due to occurrence of.

【0019】又、カルシウムシリケートの水和生成物で
ある水酸化カルシウムCa(OH) 2 は、塩素イオンと
の反応によって溶解度の高い塩化カルシウムCaCl2
となり、その溶解によってグラウト硬化体が多孔化し、
劣化することが考えられる。しかしながら、本発明にお
いては、用いるセメントのSiO2 /Al2 3 は高
く、C3 Sに対するC2 Sの量が多くなっており、C2
SはC3 Sよりも水酸化カルシウムの生成量が少ない
為、劣化現象が生じ難いと理解された。
Also, a hydrated product of calcium silicate
Calcium hydroxide Ca (OH) 2With chloride ion
Highly soluble calcium chloride CaCl2
, And the dissolved grout becomes porous,
It may deteriorate. However, in the present invention
For the cement used, SiO2/ Al2O3Is high
C3C for S2The amount of S is increasing and C2
S is C3Less calcium hydroxide is produced than S
Therefore, it was understood that the deterioration phenomenon is unlikely to occur.

【0020】更には、C2 Sはセメント化合物の中で最
も化学抵抗性が大きい化合物であり、水ガラスの使用に
よって強アルカリであるNa2 Oの作用を受ける二液性
グラウト硬化体においても、安定した硬化体を形成でき
るように水和が進行するものと理解された。尚、セメン
トのSiO2 /Al2 3 (重量比)が好ましくは8〜
13、より好ましくは9〜12、もっと好ましくは9.
5〜11.5のものである。
Further, C 2 S is a compound having the highest chemical resistance among cement compounds, and even in a two-component grout hardened product which is affected by Na 2 O which is a strong alkali by using water glass, It was understood that hydration proceeded so that a stable hardened body could be formed. Incidentally, the SiO 2 / Al 2 O 3 (weight ratio) of the cement is preferably 8 to
13, more preferably 9-12, and even more preferably 9.
5 to 11.5.

【0021】又、さらなる研究の結果、SiO2 /Al
2 3 が8〜15と言うのみではなく、(Fe2 3
/(C3 S+C2 S+C3 A+C4 AF+石膏)が2〜
4重量%(より好ましくは2〜3重量%)のセメントが
用いられた場合に、二液性グラウト硬化体の海水抵抗性
が一層向上することも判って来た。すなわち、上記の比
が4重量%を越えた大きな値のセメントが用いられる
と、二液性グラウト硬化体の海水抵抗性が劣る傾向が認
められた。逆に、2重量%未満の小さな値のセメント
は、Al2 3 成分が少ない中でAl2 3 と共にクリ
ンカー焼成時に液相形成の役割をもつFe2 3 成分も
過少となる為、セメント化合物、特にC3 Sの生成反応
が悪化し、クリンカー中の未反応CaO量が多くなり、
良質なセメントを製造することが出来難かった。
As a result of further research, SiO 2 / Al
2 O 3 is not only said to be 8 to 15, but (Fe 2 O 3 )
/ (C 3 S + C 2 S + C 3 A + C 4 AF + gypsum) is 2
It has also been found that when 4% by weight (more preferably 2-3% by weight) of cement is used, the seawater resistance of the two-part cured grout is further improved. That is, when cement having a large value of the above ratio exceeding 4% by weight was used, it was recognized that the seawater resistance of the two-component cured grout was inferior. On the other hand, a cement with a small value of less than 2% by weight has a small amount of Al 2 O 3 component, but also has a small amount of Fe 2 O 3 component, which has a role of forming a liquid phase during clinker firing, together with Al 2 O 3 , so that the cement content is too small. The reaction of forming compounds, especially C 3 S, deteriorates and the amount of unreacted CaO in the clinker increases,
It was difficult to produce good quality cement.

【0022】又、(C3 S)/(C3 S+C2 S+C3
A+C4 AF+石膏)(以下、C3S割合)が20〜4
0重量%(望ましくは、23〜33重量%)、(C
2 S)/(C3 S+C2 S+C3 A+C4 AF+石膏)
(以下、C2 S割合)が40〜65重量%(望ましく
は、50〜65重量%)のセメントがシールドトンネル
工事の裏込め材(二液性グラウト硬化体)を構成する固
化材として好ましいのは、次のような理由に基づく。
Further, (C 3 S) / (C 3 S + C 2 S + C 3
A + C 4 AF + gypsum) (hereinafter, C 3 S ratio) is 20 to 4
0% by weight (desirably 23 to 33% by weight), (C
2 S) / (C 3 S + C 2 S + C 3 A + C 4 AF + gypsum)
Cement having a C 2 S ratio of 40 to 65% by weight (preferably 50 to 65% by weight) is preferable as a solidifying material constituting a backfill material (two-component cured grout) for shield tunnel construction. Is based on the following reasons.

【0023】シールドトンネル工事における裏込め注入
においては、グラウトのテールボイド外への流動、すな
わち切羽への漏洩や不必要な周辺地山への逸走がないこ
とが望まれ、この為に5〜20秒程度のゲル化時間が目
安とされている。又、テールボイドにグラウトが充填さ
れた後、次のシールド掘削までにグラウトが一定以上の
早期強度を発現し、出来るだけ速く地山相当以上の強度
となることが好ましい。この為に、1時間強度で0. 2
〜1kgf/cm2 程度の早期強度発現性が目安となっ
ている。尚、ゲル化時間とは、A液とB液を混合してか
らグラウトが流動性を失うまでの時間を言う。
In the backfilling injection in the shield tunnel construction, it is desired that the grout does not flow out of the tail void, that is, it does not leak to the face and unnecessarily escape to the surrounding ground. For this reason, it takes 5 to 20 seconds. The degree of gelation time is used as a guide. Further, after the tail void is filled with grout, it is preferable that the grout develops an early strength of a certain level or more until the next shield excavation, and the strength reaches a level equivalent to or higher than that of the natural ground as quickly as possible. For this reason, 0.2 hour intensity
The standard is early strength development of about 1 kgf / cm 2 . The gelation time means the time from the mixing of the liquids A and B until the grout loses its fluidity.

【0024】ここで、前記のような条件下で、固化材成
分として用いるセメント中のC3 SとC2 Sの量を変化
させて検討した結果、C3 S割合が20〜40重量%、
2S割合が40〜65重量%となるセメントを用いた
場合には、ゲル化時間が5〜20秒程度の要件や1時間
強度の要件を満足していた。尚、C3 S割合が40重量
%を越え、C2 S割合が40重量%未満であると、クリ
ンカー焼成時に液相成分が少ない中で反応速度の遅いC
3 Sの割合が過多となる為、未反応CaO量が多くな
り、良質なセメントを製造することが難しかった。又、
3 S割合が20重量%未満であり、C2 S割合が65
重量%を越えると、グラウトのゲル化時間が20秒を超
え、1時間強度が0. 2kgf/cm2を下回る場合が
多かった。
Under the above-mentioned conditions, the amount of C 3 S and C 2 S in the cement used as the solidifying material component was varied and examined. As a result, the C 3 S ratio was 20 to 40% by weight,
When the cement having a C 2 S ratio of 40 to 65% by weight was used, the requirements for gelation time of about 5 to 20 seconds and the requirement of 1-hour strength were satisfied. If the C 3 S ratio exceeds 40% by weight and the C 2 S ratio is less than 40% by weight, the C having a slow reaction rate in a small amount of liquid phase components during clinker firing.
Since the proportion of 3 S is excessive, the amount of unreacted CaO increases, making it difficult to produce high-quality cement. or,
The C 3 S ratio is less than 20% by weight and the C 2 S ratio is 65%.
When the content exceeds 10% by weight, the gelling time of grout exceeds 20 seconds and the strength for 1 hour often falls below 0.2 kgf / cm 2 .

【0025】そして、セメントと水ガラスとのゲル化反
応にはセメントからグラウト中に供給されるCa2+イオ
ンが寄与しているが、C2 SはC3 SよりもCa2+イオ
ンの供給量が少ない化合物である為、C3 S割合が20
重量%未満であり、C2 S割合が65重量%を越えるセ
メントを用いると、Ca2+イオンが不足し、ゲル化反応
の速度や量が小さくなる為、シールド工事に適合するゲ
ル化時間と早期強度が得られず、これに適合するにはセ
メント中のC3 S割合を20重量%以上にする必要があ
るものと理解された。
The Ca 2+ ion supplied from the cement into the grout contributes to the gelation reaction between the cement and water glass, but C 2 S supplies more Ca 2+ ion than C 3 S. Since the amount of this compound is small, the C 3 S ratio is 20.
If cement with a C 2 S ratio of less than 65% by weight and a C 2 S ratio of more than 65% by weight is used, Ca 2+ ions will be deficient, and the speed and amount of gelation reaction will decrease, so that a gelling time suitable for shield work and It was understood that early strength could not be obtained, and in order to comply with this, the proportion of C 3 S in cement must be 20% by weight or more.

【0026】次に、上記のセメントに高炉スラグを添加
した高炉セメントを固化材として用いた二液性グラウト
硬化体について海水抵抗性試験を行った処、高炉スラグ
の混合割合を内割表示で5〜50重量%にすると、海水
中養生によって更に高い強度発現性を示すと共に、耐海
水性も良好になった。尚、高炉スラグの混合割合が特に
好ましくは15〜45重量%の場合である。
Next, a seawater resistance test was conducted on a two-component hardened grout using blast furnace slag obtained by adding blast furnace slag to the above-mentioned cement as a solidifying agent. When it was set to -50% by weight, higher strength development was exhibited by curing in seawater, and seawater resistance was also improved. The mixing ratio of the blast furnace slag is particularly preferably 15 to 45% by weight.

【0027】このような高強度発現性の二液性グラウト
は、例えば高強度コンクリート構造物と地盤土との空洞
に充填される注入材や、改良した後の地盤により高い強
度が要求される場合等に活用される。尚、高炉スラグの
混合割合が50重量%を越えると、海水中養生において
硬化体に亀裂が発生し、硬化体の強度も低下し、耐海水
性に劣るものとなった。混合割合が5重量%未満では、
添加効果が大きくは認められなかった。
Such a high-strength-developing two-component grout can be used, for example, in a case where a high strength is required by the injection material filled in the cavities between the high-strength concrete structure and the ground soil or the ground after improvement. It is used for such purposes. If the mixing ratio of the blast furnace slag exceeds 50% by weight, cracks occur in the cured body during curing in seawater, the strength of the cured body also decreases, and the seawater resistance deteriorates. If the mixing ratio is less than 5% by weight,
The effect of addition was not significant.

【0028】一方、比較例として、Nセメントに高炉ス
ラグを混合した高炉セメントを固化材として用いた二液
性グラウト硬化体は、海水中養生において短期間で亀裂
が発生して崩壊に至り、Nセメントを単独で用いた場合
よりも耐海水性が却って悪化した。そして、前者の劣化
は、亀裂の発生と拡大だけでなく、海水に接する部分の
軟化と脱落によって進行した。これは次のように理解さ
れた。高炉スラグにはNセメントよりも多くのAl2
3 成分が含まれている。水ガラスを用いる二液性グラウ
ト硬化体は強アルカリであるNa2 Oの作用を受ける
為、セメントや高炉スラグの水和反応が促進され、元来
NセメントのAl2 3 成分含有量が多いこともあり、
硬化体液相中のAl3+イオン濃度が非常に高くなると考
えられる。そして、海水成分の侵入によって硬化体組織
が変化しつつある中で、多量のAl 3+イオンは硬化体中
に安定な水和物として固定されることなく、例えば結合
力の弱い水酸化アルミニウムゲルとなり、軟化現象を起
すことが想定される。
On the other hand, as a comparative example, N cement was used as a blast furnace powder.
Two liquids using blast furnace cement mixed with lag as solidifying material
Cured grout will crack in a short period of time during seawater curing.
When N cement is used alone by
Seawater resistance worsened rather than. And the former deterioration
Not only the occurrence and expansion of cracks, but also the contact with seawater.
Progressed by softening and falling. This is understood as
It was Blast furnace slag has more Al than N cement2O
3Contains ingredients. Two-component grout with water glass
The cured product is a strong alkali Na2Under the action of O
Therefore, the hydration reaction of cement and blast furnace slag is accelerated,
N cement Al2O3Sometimes the content of ingredients is high,
Al in hardened liquid phase3+I think that the ion concentration will be extremely high
available. Then, due to the intrusion of seawater components, the hardened tissue
The amount of Al 3+Ions in the cured body
Without being fixed as a stable hydrate to, for example, binding
It becomes a weak aluminum hydroxide gel, causing a softening phenomenon.
Is expected.

【0029】これに対して、本発明の基材に用いるセメ
ントはAl2 3 成分含有量が少ない為、高炉スラグを
混合しても液相中のAl3+イオン濃度はそれほど高くな
らず、Al3+イオンは硬化体中に水和物として固定され
るものと考えられた。そして、高炉スラグの水和によっ
てカルシウムシリケートの水和物である水酸化カルシウ
ムが消費され、硬化体の耐海水性が優れたものになると
理解された。
On the other hand, since the cement used as the base material of the present invention has a small content of Al 2 O 3 component, the Al 3+ ion concentration in the liquid phase does not become so high even if blast furnace slag is mixed, Al 3+ ions were considered to be fixed as a hydrate in the cured product. It was understood that the hydration of blast furnace slag consumes calcium hydroxide, which is a hydrate of calcium silicate, and the cured product has excellent seawater resistance.

【0030】尚、本発明の二液性グラウト組成物に用い
るセメントは、クリンカー、高炉スラグおよび適量の石
膏を別々に、または適宜に組み合わせて粉砕した後、そ
れらを混合して製造しても良く、あるいはクリンカーと
高炉スラグに適量の石膏を加え、混合粉砕して製造して
も良い。本発明において、石膏の添加量をセメント中の
SO3 換算で0. 5〜4. 5重量%としたのは次の理由
による。
The cement used in the two-component grout composition of the present invention may be produced by crushing clinker, blast furnace slag and a suitable amount of gypsum separately or after appropriately combining them and then mixing them. Alternatively, an appropriate amount of gypsum may be added to the clinker and the blast furnace slag, and the mixture may be crushed and manufactured. In the present invention, the amount of gypsum added is set to 0.5 to 4.5% by weight in terms of SO 3 in cement for the following reason.

【0031】石膏は、セメントの凝結、硬化を正常なも
のとする為に不可欠なものであり、通常、セメント中の
SO3 換算で0. 5〜2. 5重量%となる量が添加され
ている。そして、クリンカーに元来0. 5〜1. 0重量
%のSO3 分が含まれている為、セメント中のSO3
は1. 5〜3. 5重量%程度となっている。従って、本
発明においても、石膏添加量の下限値をセメント中のS
3 換算で0. 5重量%とした。
Gypsum is indispensable for normalizing the setting and hardening of cement. Usually, gypsum is added in an amount of 0.5 to 2.5% by weight in terms of SO 3 in cement. There is. Then, since it contains originally clinker from 0.5 to 1.0 wt% of SO 3 minutes, SO 3 content in the cement 1. has about 5 to 3.5 wt%. Therefore, also in the present invention, the lower limit of the amount of gypsum added is the S in cement.
It was set to 0.5% by weight in terms of O 3 .

【0032】これに対して、一般的なセメント硬化体の
耐海水性は、セメント中のSO3 量、すなわち石膏添加
量がある程度多い方が良いことが知られている。本発明
においては、セメント中のSO3 量が2重量%程度であ
っても、それを用いた二液性グラウトは十分良好な耐海
水性を示すが、セメント中のSO3 量が増加すれば、二
液性グラウトの耐海水性が更に向上することが予想され
る。しかしながら、日本工業規格におけるセメント中の
SO3 量の上限値は多いものでも4. 5重量%であるこ
とから、上限値として4. 5重量%を選定した。
On the other hand, it is known that the seawater resistance of a general cement hardened product is better when the amount of SO 3 in cement, that is, the amount of gypsum added, is large to some extent. In the present invention, even if the amount of SO 3 in the cement is about 2% by weight, the two-component grout using the same shows sufficiently good seawater resistance, but if the amount of SO 3 in the cement increases, It is expected that the seawater resistance of the two-pack grout will be further improved. However, even if the maximum amount of SO 3 in cement according to Japanese Industrial Standard is large, it is 4.5% by weight, so 4.5% by weight was selected as the upper limit.

【0033】又、さらに検討を行った結果、二液性グラ
ウトに用いる水ガラスに、SiO2とNa2 Oとのモル
比(SiO2 /Na2 Oモル比)が3. 3〜4. 0のも
のを用いると、SiO2 /Na2 Oモル比が3. 0のも
のを用いた場合よりもゲル化時間が短くなり、早期強度
が向上すると共に、耐海水性も良好であることが明らか
になった。
Further, as a result of further study, the water glass used for the two-component grout has a molar ratio of SiO 2 and Na 2 O (SiO 2 / Na 2 O molar ratio) of 3.3 to 4.0. It was found that the gelation time is shorter than that in the case where the SiO 2 / Na 2 O molar ratio is 3.0, the early strength is improved, and the seawater resistance is good. Became.

【0034】尚、SiO2 /Na2 Oモル比が3. 3未
満であると、上記の性能改善効果が小さい。以下、本発
明について具体的な実施例を挙げて説明する。
If the SiO 2 / Na 2 O molar ratio is less than 3.3, the above performance improving effect is small. Hereinafter, the present invention will be described with reference to specific examples.

【0035】[0035]

【実施例】セメント工場の製造設備によって得られた
〔表2〕に示す化学成分と化合物組成(ボーグ式によ
る)をもつ粉末度3250〜3450cm2 /gのポル
トランドセメントを固化材成分に用いた二液性グラウト
硬化体について、海水抵抗性試験を行った。
EXAMPLE Portland cement having a chemical composition and a compound composition (according to the Borg formula) shown in [Table 2] obtained by a manufacturing facility of a cement factory and having a fineness of 3250 to 3450 cm 2 / g was used as a solidifying material component. A seawater resistance test was performed on the liquid grout cured product.

【0036】[0036]

【表2】 [Table 2]

【0037】二液性グラウトは、〔表3〕の配合に基づ
いて調製した。
The two-part grout was prepared based on the formulation shown in Table 3.

【0038】[0038]

【表3】 [Table 3]

【0039】A液の懸濁液は、仕上り量が5Lとなるよ
うに、先ず、水の中に助材を分散させ、その後に遅延剤
を溶解し、最後にセメントを投入混合して作製した。助
材には200メッシュ篩分残渣6. 5%の群馬県産ベン
トナイトを、遅延剤にはポリヒドロキシカプロン酸ナト
リウム33W/V%水溶液を、水には水道水を用いた。
The suspension of the liquid A was prepared by first dispersing the auxiliary material in water, dissolving the retarder, and finally adding and mixing cement so that the finished amount was 5 L. . A 200 mesh sieve residue 6.5% bentonite produced in Gunma prefecture was used as an auxiliary material, a sodium polyhydroxycaproate 33 W / V% aqueous solution was used as a retarder, and tap water was used as water.

【0040】又、B液にはSiO2 量が22. 4%、N
2 O量が7. 7%で、SiO2 /Na2 Oモル比が
3. 0の水ガラスを用いた。試験用のグラウト硬化体
は、A液とB液とを両者の合量が1400mLとなるよ
うに別の容器に計量し、両者の混合を素早く繰り返し、
あらかじめ測定したゲル化時間の2〜3秒前にJIS
R 5201「セメントの物理試験方法」の強さ試験用
の型枠(供試体寸法;4×4×16cm)に流し込んで
作製した。型枠に入れたグラウトは、直ちにポリ塩化ビ
ニリデンフィルムで密封し、1時間後の上削りを経て、
材齢1日で脱型して供試体とし、人工海水中養生および
比較としての水中養生を開始した。供試体の作製と養生
は20℃の恒温室で実施した。
Further, the liquid B contains 22.4% of SiO 2 and N
A water glass having an a 2 O amount of 7.7% and a SiO 2 / Na 2 O molar ratio of 3.0 was used. For the grout cured product for testing, the liquid A and the liquid B were weighed in separate containers so that the total amount of both was 1400 mL, and the mixing of both was quickly repeated.
JIS 2 to 3 seconds before the gelation time measured in advance
It was prepared by pouring it into a mold for strength test of R 5201 “Physical test method for cement” (specimen size: 4 × 4 × 16 cm). The grout placed in the mold was immediately sealed with a polyvinylidene chloride film, and after 1 hour of sharpening,
The specimens were demolded at a material age of 1 day, and artificial seawater curing and underwater curing for comparison were started. The preparation and curing of the specimen were carried out in a thermostatic chamber at 20 ° C.

【0041】養生用の人工海水には〔表4〕に示すKa
lleの処方で調製したものを、水には水道水を用い
た。尚、各々の養生水は、材齢3ケ月までは2週間ごと
に、その後は1ケ月ごとに新しいものと交換した。所定
材齢における供試体の一軸圧縮強度試験結果を〔表5〕
に示す。表中には、供試体の亀裂発生の状況を△あるい
は×印で示し、供試体の自形が無くなり、抜水すると崩
れてしまったものを「崩壊」と表示している。
For the artificial seawater for curing, the Ka shown in [Table 4] is used.
The tap water was used as the water prepared by the formulation of lle. Each curing water was replaced with new one every 2 weeks until the age of 3 months and thereafter every 1 month. The results of the uniaxial compressive strength test of the specimen at the specified age [Table 5]
Shown in. In the table, the state of crack generation of the test piece is indicated by Δ or ×, and when the test piece loses its automorphism and collapses when water is drawn, it is indicated as “collapse”.

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】これによれば、実施例1および実施例2の
セメントを固化材に用いた二液性グラウト硬化体は、人
工海水中養生によって水中養生の場合よりも圧縮強度値
そのものはやや低目となるが、材齢1年まで強度増進が
続き、優れた耐海水性を示した。尚、二液性グラウトの
長期材齢における必要圧縮強度は、例えばシールドトン
ネル工事用の裏込め材で一般的に約30kgf/cm2
以上とされており、実施例1および実施例2の強度は、
海水中養生においてもこの値を十分に上回っている。
According to this, the two-part hardened grout using the cement of Examples 1 and 2 as the solidifying material has a slightly lower compressive strength value by artificial seawater curing than in the case of underwater curing. However, the strength continued to increase up to 1 year old, and it showed excellent seawater resistance. The required compressive strength of the two-component grout for a long period of time is, for example, about 30 kgf / cm 2 for a backfill material for shield tunnel construction.
As described above, the strengths of Example 1 and Example 2 are
Even in seawater curing, it is well above this value.

【0045】これに対し、比較例1のNセメントを固化
材に用いた硬化体は、人工海水中養生材齢2ケ月で亀裂
が発生し、その後亀裂の拡大と強度低下が続き、材齢1
年で崩壊に至り、耐海水性に劣るものであった。又、比
較例2の耐硫酸塩ポルトランドセメント(SRCセメン
ト)の場合も材齢3ケ月で亀裂が発生し、それ以降強度
低下を示し、耐海水性に劣るものであった。
On the other hand, the hardened body using the N cement of Comparative Example 1 as the solidifying material cracked at the age of 2 months in the artificial seawater, and thereafter the crack expanded and the strength decreased, and the age of 1
It had collapsed over the years, and had poor seawater resistance. Also, in the case of the sulfate-resistant Portland cement (SRC cement) of Comparative Example 2, cracking occurred at the age of 3 months, the strength decreased thereafter, and the seawater resistance was poor.

【0046】次に、セメント工場の製造設備によって得
られた化合物組成(ボーグ式による)の異なる4種類の
セメントの内訳を〔表6〕に、それらを固化材として用
いた二液性グラウトのゲル化時間と早期一軸圧縮強度を
〔表7〕に実施例3〜実施例6として示す。尚、セメン
トの粉末度は3250〜3450cm2 /gであり、二
液性グラウトに用いるセメントを除く材料、グラウトの
配合と調製方法、及び硬化体の作製方法は実施例1と同
様にした。
Next, a breakdown of the four types of cements having different compound compositions (according to the Borg formula) obtained by the manufacturing equipment of the cement factory is shown in [Table 6], and the two-component grout gel using them as a solidifying material is shown. The aging time and the early uniaxial compressive strength are shown in Table 7 as Examples 3 to 6. The fineness of the cement was 3250 to 3450 cm 2 / g, and the materials used for the two-component grout except the cement, the compounding and preparing method of the grout, and the manufacturing method of the cured product were the same as in Example 1.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【表7】 [Table 7]

【0049】これによれば、セメント中のC3 S量が多
いほど、すなわちC2 S量が少ないほどゲル化時間が短
くなり、1時間および3時間の早期強度が増加する。シ
ールドトンネル工事用の裏込め材に適合するグラウトの
性能は、前記のようにゲル化時間が5〜20秒程度、1
時間強度が0. 2〜1kgf/cm2 程度とされてお
り、セメント中のC3 S量が20〜40重量%、C2
量が40〜65重量%であればこれを満足することが判
る。
According to this, the larger the amount of C 3 S in the cement, that is, the smaller the amount of C 2 S, the shorter the gelation time and the early strength of 1 hour and 3 hours increases. The performance of the grout that is suitable for the backfill material for shield tunnel construction is that the gelling time is about 5 to 20 seconds, as described above.
The time strength is about 0.2 to 1 kgf / cm 2, and the amount of C 3 S in the cement is 20 to 40% by weight and C 2 S.
It can be seen that if the amount is 40 to 65% by weight, this is satisfied.

【0050】又、実施例1のポルトランドセメントに市
販の粉末度4520cm2 /g、SO3 量2. 0%の高
炉スラグ粉末を内割で20重量%および40重量%混合
して作製した高炉セメントを固化材に用いた二液性グラ
ウト硬化体の海水抵抗性試験結果を〔表8〕に実施例
7、実施例8として示す。比較の為、秩父セメント
(株)製のNセメントに同上のスラグを混合して作製し
た高炉セメントの場合の試験結果を比較例3、比較例4
として示す。二液性グラウトに用いるセメントを除く材
料、グラウトの配合と調製方法、硬化体の作製方法、及
び人工海水による養生方法は実施例1と同様にした。
Further, blast furnace cement prepared by mixing Portland cement of Example 1 with commercially available blast furnace slag powder having a fineness of 4,520 cm 2 / g and an SO 3 amount of 2.0% by weight of 20% and 40% by weight. [Table 8] shows the results of the seawater resistance test of the two-component cured grouts using as a solidifying agent, as Examples 7 and 8. For comparison, the test results in the case of a blast furnace cement prepared by mixing N cement manufactured by Chichibu Cement Co., Ltd. with the slag described above are Comparative Example 3 and Comparative Example 4.
Show as. Materials other than the cement used for the two-component grout, the compounding and preparing method of the grout, the manufacturing method of the cured product, and the curing method with artificial seawater were the same as in Example 1.

【0051】[0051]

【表8】 [Table 8]

【0052】これによれば、Nセメントに高炉スラグを
混合した場合には、スラグの混合割合が20重量%であ
っても、40重量%であっても、人工海水中養生の供試
体は、材齢1ケ月で既に亀裂が発生し、材齢3ケ月で崩
壊に至り、耐海水性に劣るものであった。これに対し
て、実施例7および実施例8に示す本発明品は、海水中
養生によっても強度増進が続き、又、強度値そのものも
高炉スラグ無添加の実施例1の結果も併せれば、高炉ス
ラグの添加量の増加に従って増大することが明確であ
る。すなわち、耐海水性に優れ、かつ、高強度発現が可
能な二液性グラウトを製造することができる。
According to this, when N cement is mixed with blast furnace slag, no matter whether the mixing ratio of slag is 20% by weight or 40% by weight, the specimen for artificial seawater curing is: Cracks had already occurred at the age of 1 month and collapsed at the age of 3 months, resulting in poor seawater resistance. On the other hand, in the products of the present invention shown in Examples 7 and 8, the strength continued to be enhanced even by curing in seawater, and the strength value itself was also the result of Example 1 in which the blast furnace slag was not added. It is clear that it increases as the amount of blast furnace slag added increases. That is, it is possible to produce a two-component grout having excellent seawater resistance and capable of exhibiting high strength.

【0053】次に、実施例1と同一の配合で、SiO2
/Na2 Oモル比が3. 7の水ガラスを用いた場合の二
液性グラウトのゲル化時間と早期一軸圧縮強度を調べた
処、実施例2のセメントを用いた場合には、ゲル化時間
が11秒、一軸圧縮強度(1時間)が0.5kgf/c
2 、一軸圧縮強度(3時間)が2.8kgf/cm 2
であり、又、実施例8のセメントを用いた場合には、ゲ
ル化時間が13秒、一軸圧縮強度(1時間)が0.4k
gf/cm2 、一軸圧縮強度(3時間)が3.2kgf
/cm2 であるのに対して、SiO2 /Na2 Oモル比
が3. 0の水ガラスを用いた場合の二液性グラウトのゲ
ル化時間は実施例2のセメントを用いた場合には、ゲル
化時間が26秒となり、SiO2 /Na2 Oモル比が
3. 3〜4. 0の水ガラスを用いた場合には、ゲル化時
間が短く、早期強度が高まることが判る。
Next, with the same composition as in Example 1, SiO2
/ Na2When using water glass with an O molar ratio of 3.7,
Investigation of gelation time and early uniaxial compressive strength of liquid grout
In the case of using the cement of Example 2, gelation time
Is 11 seconds, uniaxial compressive strength (1 hour) is 0.5 kgf / c
m2, Uniaxial compressive strength (3 hours) is 2.8kgf / cm 2
In addition, when the cement of Example 8 is used,
13 seconds, uniaxial compression strength (1 hour) 0.4k
gf / cm2, Uniaxial compressive strength (3 hours) is 3.2kgf
/ Cm2On the other hand, SiO2/ Na2O molar ratio
Of two-part grout with water glass of 3.0
When the cement of Example 2 was used, the gelling time was
The conversion time is 26 seconds and SiO2/ Na2O molar ratio is
When water glass of 3.3 to 4.0 is used, during gelation
It can be seen that the time is short and the early strength increases.

【0054】[0054]

【効果】本発明の二液性グラウト組成物を用いれば、海
水の侵食に対して優れた抵抗性を有する裏込め材や注入
材などを得ることが出来、海底シールドトンネル工事用
裏込め材への利用を始めとし、海水の影響を受ける地域
の開発に大きく貢献できる。
[Effect] By using the two-component grout composition of the present invention, it is possible to obtain a backfilling material or an injecting material having excellent resistance to erosion of seawater. It can contribute greatly to the development of areas affected by seawater, including the use of water.

【0055】尚、耐海水性に優れると言うことは、硫酸
イオンや塩素イオンの侵食に対する抵抗性を有すること
であり、本発明の二液性グラウト組成物は耐硫酸塩グラ
ウトや耐塩化物グラウトとしての適用も出来る。
It should be noted that having excellent seawater resistance means having resistance to erosion of sulfate ions and chlorine ions, and the two-component grout composition of the present invention is used as a sulfate salt grout or chloride resistance grout. Can also be applied.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C04B 28/26 (C04B 28/26 18:14 14:10 Z 24:04 28:26 28:14) 103:20 111:70 C09K 103:00 (72)発明者 鎌田 隆清 東京都文京区本郷一丁目28番10号 秩父セ メント株式会社関連製品本部内 (72)発明者 田中 光男 埼玉県熊谷市月見町二丁目1番1号 秩父 セメント株式会社中央研究所内 (72)発明者 石井 三郎 東京都足立区保木間一丁目6番15号 株式 会社立花マテリアル東京支店内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C04B 28/26 (C04B 28/26 18:14 14:10 Z 24:04 28:26 28 : 14) 103: 20 111: 70 C09K 103: 00 (72) Inventor Takasei Kamata 1-28-10 Hongo, Bunkyo-ku, Tokyo Chichibu Cement Co., Ltd. Related Products Division (72) Inventor Mitsuo Tanaka Saitama Prefecture 2-1-1 Tsukimi-cho, Kumagaya-shi Chichibu Cement Co., Ltd. Central Research Laboratory (72) Inventor Saburo Ishii 1-6-15 Hokima Hokima, Adachi-ku, Tokyo Within Tachibana Material Tokyo Branch Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 セメントを含む懸濁液と水ガラスとの混
合物よりなる二液性グラウト組成物であって、前記セメ
ントの成分として3CaO・SiO2 ,2CaO・Si
2 ,3CaO・Al2 3 ,4CaO・Al2 3
Fe2 3 及び石膏を含み、しかもこのセメントにおけ
るSiO2 /Al2 3 (重量比)が8〜15であるこ
とを特徴とする二液性グラウト組成物。
1. A two-component grout composition comprising a mixture of a suspension containing cement and water glass, wherein 3CaO.SiO 2 , 2CaO.Si is contained as a component of the cement.
O 2, 3CaO · Al 2 O 3, 4CaO · Al 2 O 3 ·
A two-part grout composition containing Fe 2 O 3 and gypsum, and having a SiO 2 / Al 2 O 3 (weight ratio) of 8 to 15 in this cement.
【請求項2】 (Fe2 3 )/(3CaO・SiO2
+2CaO・SiO 2 +3CaO・Al2 3 +4Ca
O・Al2 3 ・Fe2 3 +石膏)が2〜4重量%の
セメントが用いられてなることを特徴とする請求項1の
二液性グラウト組成物。
2. (Fe2O3) / (3CaO ・ SiO2
+ 2CaO / SiO 2+ 3CaO / Al2O3+ 4Ca
O ・ Al2O3・ Fe2O32-4% by weight of gypsum)
The cement according to claim 1, wherein the cement is used.
Two-part grout composition.
【請求項3】 (3CaO・SiO2 )/(3CaO・
SiO2 +2CaO・SiO2 +3CaO・Al2 3
+4CaO・Al2 3 ・Fe2 3 +石膏)が20〜
40重量%、(2CaO・SiO2 )/(3CaO・S
iO2 +2CaO・SiO2 +3CaO・Al2 3
4CaO・Al2 3 ・Fe2 3 +石膏)が40〜6
5重量%のセメントが用いられてなることを特徴とする
請求項1または請求項2の二液性グラウト組成物。
3. (3CaO.SiO 2 ) / (3CaO.)
SiO 2 + 2CaO · SiO 2 + 3CaO · Al 2 O 3
+ 4CaO ・ Al 2 O 3・ Fe 2 O 3 + gypsum) is 20 ~
40% by weight, (2CaO · SiO 2 ) / (3CaO · S
iO 2 + 2CaO · SiO 2 + 3CaO · Al 2 O 3 +
4CaO ・ Al 2 O 3・ Fe 2 O 3 + gypsum) 40-6
The two-part grout composition according to claim 1 or 2, wherein 5% by weight of cement is used.
【請求項4】 (高炉スラグ)/(3CaO・SiO2
+2CaO・SiO 2 +3CaO・Al2 3 +4Ca
O・Al2 3 ・Fe2 3 +石膏+高炉スラグ)が5
〜50重量%となるよう高炉スラグの添加されたセメン
トが用いられてなることを特徴とする請求項1、請求項
2または請求項3の二液性グラウト組成物。
4. (Blast furnace slag) / (3CaO.SiO)2
+ 2CaO / SiO 2+ 3CaO / Al2O3+ 4Ca
O ・ Al2O3・ Fe2O3+ Gypsum + blast furnace slag) is 5
Cement added with blast furnace slag so as to be up to 50% by weight
Claim 1, characterized in that
The two-part grout composition of claim 2 or claim 3.
【請求項5】 石膏がセメント中のSO3 換算で0.5
〜4.5重量%となるよう添加されたセメントが用いら
れてなることを特徴とする請求項1、請求項2、請求項
3または請求項4の二液性グラウト組成物。
5. Gypsum is 0.5 in terms of SO 3 in cement.
The two-part grout composition according to claim 1, claim 2, claim 3 or claim 4, wherein the cement is used in an amount of ˜4.5% by weight.
【請求項6】 SiO2 /Na2 O(モル比)が3. 3
〜4. 0の水ガラスが用いられてなることを特徴とする
請求項1の二液性グラウト組成物。
6. The SiO 2 / Na 2 O (molar ratio) is 3.3.
2. The two-part grout composition according to claim 1, wherein water glass of 4.0 is used.
JP6251494A 1994-03-31 1994-03-31 Two-part grout composition Expired - Fee Related JP2850280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6251494A JP2850280B2 (en) 1994-03-31 1994-03-31 Two-part grout composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6251494A JP2850280B2 (en) 1994-03-31 1994-03-31 Two-part grout composition

Publications (2)

Publication Number Publication Date
JPH07267700A true JPH07267700A (en) 1995-10-17
JP2850280B2 JP2850280B2 (en) 1999-01-27

Family

ID=13202370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6251494A Expired - Fee Related JP2850280B2 (en) 1994-03-31 1994-03-31 Two-part grout composition

Country Status (1)

Country Link
JP (1) JP2850280B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137113A (en) * 2002-10-18 2004-05-13 Taiheiyo Cement Corp Hydraulic composition and concrete
CN100360457C (en) * 2005-06-08 2008-01-09 张振秋 Cement-base dual-liquid slip-casting material
JP2012224766A (en) * 2011-04-20 2012-11-15 Mitsubishi Rayon Co Ltd Method for producing suspension grout
CN103821539A (en) * 2013-10-15 2014-05-28 中铁工程装备集团有限公司 Shield tunneling machine shield tail synchronous embedded-type double-liquid grouting device
WO2020107862A1 (en) * 2018-11-29 2020-06-04 长安大学 Economical high-strength fast-cured grouting material and grouting reinforcement method for soft rock tunnel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137113A (en) * 2002-10-18 2004-05-13 Taiheiyo Cement Corp Hydraulic composition and concrete
JP4493903B2 (en) * 2002-10-18 2010-06-30 太平洋セメント株式会社 Hydraulic composition and concrete
CN100360457C (en) * 2005-06-08 2008-01-09 张振秋 Cement-base dual-liquid slip-casting material
JP2012224766A (en) * 2011-04-20 2012-11-15 Mitsubishi Rayon Co Ltd Method for producing suspension grout
CN103821539A (en) * 2013-10-15 2014-05-28 中铁工程装备集团有限公司 Shield tunneling machine shield tail synchronous embedded-type double-liquid grouting device
WO2020107862A1 (en) * 2018-11-29 2020-06-04 长安大学 Economical high-strength fast-cured grouting material and grouting reinforcement method for soft rock tunnel

Also Published As

Publication number Publication date
JP2850280B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
KR101056474B1 (en) High Durability Grout Material Composition for Geotechnical Order and Reinforcement Using Geopolymer Type Fastener
CN110105031A (en) A kind of selfreparing grouting material and preparation method thereof
JP3566359B2 (en) Backfill injection material
JPH07267700A (en) Two-pack grout composition
JP6498716B2 (en) Ground improvement method
CN109095802A (en) Expansive agent for concrete, concrete and preparation method thereof
JPH0672747A (en) Injecting cement admixture and injecting material using the admixture
JP2004210557A (en) Grout composition
EP3762348B1 (en) A setting and hardening accelerator for a cement, mortar or concrete composition, optionally comprising supplementary cementitious materials, and use of this accelerator
JP2856345B2 (en) Filling material and filling method
JP3916326B2 (en) Grout
JP3916325B2 (en) Grout material
KR100859776B1 (en) Compositions of accelerating agent for making shotcrete
JP2005162949A (en) Grouting material
KR20030010976A (en) Environment-friendly inorganic soil-stabilizer with outstanding durability
JP4689072B2 (en) Cement concrete, quick setting cement concrete, and preparation method
KR101564382B1 (en) Eco-friendly mortar composition for compaction grouting
JPH0256296B2 (en)
JP2928312B2 (en) Cement composition for cast-in-place lining method and tunnel construction method using the same
JP7282459B2 (en) filler
JP7333019B2 (en) Cement composition and method for producing hardened cement
JP5383045B2 (en) Cement composition for grout and grout material using the same
JP6797028B2 (en) Hexavalent chromium elution reducing agent and a method for reducing hexavalent chromium elution using it.
JP6755828B2 (en) Ground improvement method
JPS6141949B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees