WO2021161553A1 - Sub-chamber spark ignition engine - Google Patents

Sub-chamber spark ignition engine Download PDF

Info

Publication number
WO2021161553A1
WO2021161553A1 PCT/JP2020/025900 JP2020025900W WO2021161553A1 WO 2021161553 A1 WO2021161553 A1 WO 2021161553A1 JP 2020025900 W JP2020025900 W JP 2020025900W WO 2021161553 A1 WO2021161553 A1 WO 2021161553A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sub
fuel
main
end side
Prior art date
Application number
PCT/JP2020/025900
Other languages
French (fr)
Japanese (ja)
Inventor
山田 敏之
欣也 井上
貴之 城田
一成 野中
晃弘 津田
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2022500215A priority Critical patent/JP7226639B2/en
Publication of WO2021161553A1 publication Critical patent/WO2021161553A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/08Engines characterised by precombustion chambers the chamber being of air-swirl type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/10Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a sub-chamber type spark ignition engine provided with a system for igniting the air-fuel mixture in the main chamber by ejecting a flame formed by igniting the air-fuel mixture in the sub-chamber into the main chamber.
  • a sub-combustion chamber (also called a sub-chamber) separated from the main combustion chamber (also called a main chamber) by a partition is provided, and a communication passage connecting these main chamber and the sub-chamber to each other is formed in the partition. Then, the air-fuel mixture in the sub-chamber is ignited, and the flame formed in the sub-chamber at this time is ejected into the main room through the communication passage to ignite the air-fuel mixture in the main room (also called a jet ignition system).
  • a sub-chamber spark ignition engine is known (see, for example, Patent Document 1).
  • the fuel supply form of the jet ignition system as described above includes a passive system in which fuel is supplied to the sub-chamber via the main chamber and an active system in which fuel is directly supplied to the sub-chamber.
  • FIG. 7 the configuration shown in FIG. 7 was considered as a sub-chamber spark ignition engine equipped with a passive jet ignition system. That is, as shown in FIG. 7, a partition wall 123 for partitioning the sub chamber 122 is arranged inside in the region including the bore central axis of the upper portion of the main chamber 121 (ceiling wall portion on the cylinder head 103 side), and the main chamber is provided.
  • the injector 117 is arranged on the side wall portion 111a of 121.
  • a plurality of communication passages 124 communicating the main chamber 121 and the sub chamber 122 are formed in the partition wall 123, and one of the communication passages 124 is used as a fuel supply passage 124a.
  • the injector 117 is arranged so that the fuel injection direction is toward the fuel supply path 124a.
  • This case was created by paying attention to such issues, and enables stable ignition in the sub-chamber in a sub-chamber spark ignition engine equipped with a passive jet ignition system. That is one of the purposes. Not limited to this purpose, it is also an action and effect derived by each configuration shown in the embodiment for carrying out the invention described later, and it is also for another purpose of this case to exert an action and effect that cannot be obtained by the conventional technique. be.
  • the sub-chamber spark ignition engine of the present invention includes a main chamber, a sub-chamber partitioned by the main chamber and a partition wall, a plurality of passages provided in the partition wall and communicating the main chamber and the sub-chamber, and the above-mentioned
  • a spark plug provided in the central axis of the sub-chamber or in the vicinity of the central axis to ignite the air-fuel mixture in the sub-chamber is provided, and a flame formed in the sub-chamber by ignition of the air-fuel mixture in the sub-chamber is provided.
  • a sub-chamber type spark ignition engine that is ejected into the main chamber through the continuous passage to ignite the air-fuel mixture in the main chamber, and the continuous passage is directed toward the central axis of the sub-chamber.
  • a swirl flow generation passage that is formed at an inclined angle with respect to the main chamber and generates a swirl flow in the sub chamber by compressed air from the main chamber, and the swirl flow generation in a direction toward the central axis of the sub chamber. It is characterized in that it is formed at an angle different from that of the communication passage, and includes a fuel inflow communication passage for supplying fuel from the main chamber side to the sub chamber.
  • the swirl flow generation passage and the fuel inflow passage are formed on one end side of the sub chamber, and the spark plug is formed on the other end side of the sub chamber, and the swirl flow generation passage and the fuel inflow passage are formed.
  • the passage is formed so as to be inclined from one end side toward the other end side as it goes from the main chamber to the sub chamber, and an extension line of the fuel inflow communication passage is a surface of the partition wall on the sub chamber side.
  • the position to reach the wall surface of the sub-chamber is preferably the other end side of the position where the extension line of the swirl flow generation communication passage reaches the wall surface of the sub-chamber.
  • the other end side of the sub-chamber wall surface is a cylindrical inner wall surface formed in a cylindrical shape, and the extension line of the fuel inflow communication passage reaches the cylindrical inner wall surface.
  • the one end side of the sub-chamber wall surface is formed with a reduced diameter inner wall surface whose cross-sectional area gradually decreases from the other end side toward the one end side.
  • the one end side recess is formed on the surface of the partition wall on the main chamber side, and the fuel inflow communication passage is formed in the recess.
  • the main chamber is provided with a fuel injection valve for injecting fuel
  • the recess is provided with a receiving surface on which the direct injection fuel from the fuel injection valve collides.
  • the fuel injected into the main chamber can concentrate the rich mixture of fuel around the spark plug in the sub chamber by the swirl flow generated in the sub chamber. As a result, stable ignition can be realized, and the amount of fuel supplied to the sub-chamber can be suppressed.
  • FIGS. 1A and 1B are views showing the configuration of a combustion chamber of one cylinder of the subchamber type spark ignition engine according to the embodiment
  • FIG. 1A is a vertical sectional view thereof
  • FIG. 1B is a top view thereof
  • 2A and 2B are views for explaining the characteristics of the communication passage formed in the partition wall of the sub-chamber type spark ignition engine shown in FIGS. 1A and 1B
  • FIG. 2A is a main part of the sub-chamber showing the orientation of the communication passage.
  • 2B is a schematic cross-sectional view of the above
  • FIG. 2B is a vertical cross-sectional view of the sub chamber.
  • FIGS. 1A and 1B are perspective views showing the shape of a modified example of the concave portion of the sub chamber of the subchamber type spark ignition engine shown in FIGS. 1A and 1B.
  • FIG. 3A shows the first modified example
  • FIG. 3B shows the first modified example.
  • a second modification is shown.
  • 4A and 4B are schematic perspective views for explaining the state of gas flow in the sub-chamber of the sub-chamber type spark ignition engine shown in FIGS. 1A and 1B
  • FIG. 4A shows the protrusion of the recess into the sub-chamber.
  • FIG. 4B shows a case where the protrusion of the recess into the sub-chamber is taken into consideration.
  • FIGS. 5A to 5C are vertical cross-sectional views of the combustion chamber showing the fuel injection modes of the sub-chamber spark ignition engine shown in FIGS. 1A and 1B in the order of strokes in FIGS. 5A to 5C.
  • FIG. 6 is a diagram showing a modified example of the sub chamber of the sub chamber type spark ignition engine shown in FIGS. 1A and 1B.
  • FIG. 7 is a vertical cross-sectional view of the combustion chamber for explaining the problem of this case.
  • the sub-chamber type spark ignition engine (which is a spark ignition type internal combustion engine and includes a gasoline engine; hereinafter, also simply referred to as “engine”) 1 according to the present embodiment is a multi-cylinder engine, and each cylinder is shown in FIG.
  • FIG. 1A the cylinder 11 formed in the cylinder block 2, the piston 12 reciprocating in the cylinder 11, the intake port 13 and the exhaust port 14 formed in the cylinder head 3, and the intake port 13 are equipped.
  • the intake valve 15 and the exhaust valve 16 provided in the exhaust port 14 are provided.
  • two intake ports 13 (15 intake valves) and two exhaust ports 14 (exhaust valves 16) are provided, but the number of intake ports (number of intake valves).
  • the number of exhaust ports (the number of exhaust valves) are not limited to this.
  • the combustion chamber 20 is partitioned by the inner wall of the cylinder 11, the top surface 12a of the piston 12, and the cylinder head 2.
  • An intake port 13 opened and closed by an intake valve 15 and an exhaust port 14 opened and closed by an exhaust valve 16 are connected to the combustion chamber 20 so as to communicate with each other.
  • the top of the combustion chamber 20 is formed in a pent roof shape having an intake slope provided with the intake valve 15 and an exhaust slope provided with the exhaust valve 16.
  • a fuel injection valve 17 is provided on the peripheral wall 11a at the top of the cylinder 11 (upper part in FIG. 1A). It is configured as a direct injection engine). In the present embodiment, only the fuel injection valve 17 that injects fuel directly into the cylinder 11 is provided, but in addition to this, a fuel injection valve for port injection that injects fuel into the intake port 13 may be added. ..
  • the engine according to the present embodiment is a spark ignition type engine, and is a spark-ignition engine in the combustion chamber 20 at the top of the combustion chamber 20 (here, the top of the pent roof shape) 20a, in the vicinity of the bore central axis or the bore central axis.
  • the ignition plug 18 is equipped with the 18a exposed.
  • the top 20a of the combustion chamber 20 is provided with a partition wall 23 that divides the internal space of the combustion chamber 20 into a main chamber (main combustion chamber) 21 and a sub chamber (sub combustion chamber) 22.
  • the partition 23 is arranged so as to cover the space where the spark discharge portion 18a of the spark plug 18 is exposed, and the internal space (the space including the spark discharge portion 18a) covered by the partition 23 in the combustion chamber 20 is the sub chamber 22.
  • the external space of the partition wall 23 in the combustion chamber 20 is the main chamber 21.
  • the sub chamber 22 is formed in a rotating body shape except for a part.
  • the partition wall 23 is formed with a plurality of (six in this embodiment) communication passages (also referred to as “nozzles”) 24 that communicate the main chamber 21 and the sub chamber 22.
  • a plurality of (six in this embodiment) communication passages 24 are used to allow the inflow of the air-fuel mixture from the main chamber 21 side to the sub-chamber 22 and the outflow of flame from the sub-chamber 22 side to the main chamber 21 side. It is provided.
  • a part (here, one) of the plurality of communication passages 24 functions as a fuel inflow communication passage 24a for introducing the fuel injected into the main chamber 21 from the fuel injection valve 17 into the sub chamber 22, and the other passages 24.
  • the communication passage 24 functions as an air inflow communication passage for introducing the air in the main chamber 21 (strictly speaking, an air-fuel mixture leaning fuel) into the sub chamber 22.
  • the fuel injection valve 17 includes an injection port for supplying fuel into the sub chamber 22.
  • the fuel (air-fuel mixture containing a large amount of fuel) introduced through the fuel inflow passage 24a is ignited by the ignition plug 18 at a predetermined timing in the compression stroke, and the sub-chamber 22 is ignited by this ignition.
  • the flame formed inside is jetted into the main chamber 21 through a plurality of communication passages 24 to ignite the air-fuel mixture in the main chamber 21 and promote combustion.
  • Such an ignition system also called a jet ignition system, is effective in igniting a dilute mixture and promoting combustion, and can be applied to lean burn in the main chamber 21 or a large amount of EGR, thereby improving fuel efficiency. Become.
  • the direct injection fuel from the fuel injection valve 17 collides with the outer surface of the sub chamber 22 (that is, the outer surface of the partition wall 23) around the opening 24b where the fuel inflow communication passage 24a opens.
  • a recess 30 having a receiving surface 30a is formed.
  • the recess 30 of the present embodiment is formed in the shape of a mortar formed by a smooth curved surface.
  • the opening 24b is arranged at or near the bottom of the mortar-shaped recess 30.
  • the shape of the recess 30 is not limited to this, and it is sufficient that the diameter of the recess 30 is gradually reduced from the outside to the inside of the sub chamber 22, for example, a funnel (funnel) using a conical surface such as a conical surface. ) May be in shape. That is, it may be formed by using a conical surface like the concave portion 30A shown as a modified example in FIG. 3A, or may be formed by using a pyramidal surface like the concave portion 30B shown as a modified example in FIG. 3B. In the example shown in FIG. 3B, a quadrangular pyramid surface is used, but other pyramid surfaces can also be applied.
  • the wide side B (corresponding to the opening of the concave portion 30) and the narrow side T (corresponding to the bottom surface portion of the concave portion 30) of the conical surface are circular. And regular polygons, but may be ellipses and other polygons. Further, as shown in the recesses 30A and 30B shown in FIGS. 3A and 3B, the lines (L1 and L2 in FIG. 3) connecting the center of the wide side B of the conical surface and the center of the narrow side T of the conical surface are the lines of the frustum.
  • FIGS. 3A and 3B An inner surface shape of a frustum inclined with respect to the bottom surface B or the top surface T (that is, a frustum in which the top surface T is laterally displaced with respect to the bottom surface B) may be applied.
  • the recesses 30A and 30B are shown obliquely downward in correspondence with FIGS. 1A and 1B.
  • the opening 24b of the fuel inflow passage 24a is arranged at the deepest part (bottom) of the recesses 30A and 30B, but the arrangement of the opening 24b is limited to this. No. Further, the number of openings 24b (the number of fuel inflow communication passages 24a) is not limited to one. A plurality (here, two) openings 24b may be provided as in the recess 30B shown in FIG. 3B. In this case, the direction in which the openings 24b are lined up may be either the first direction D1 or the second direction D2.
  • the upper part of the partition wall 23 [the upper part in FIG. 2B (that is, the spark plug 18 side)] is formed in a cylindrical shape, and the lower part of the partition wall 23 [the lower part in FIG. 2B (that is, the piston 12 side) goes downward. It is formed in a shape whose diameter is reduced accordingly (here, a substantially hemispherical shape). Further, the partition wall 23 is formed in a rotating body shape centered on the position of the spark discharge portion 18a of the spark plug 18 (that is, the position near the sub chamber central axis CL or the sub chamber central axis CL), except for a part. Has been done. However, the shape of the partition wall 23 is not limited to this.
  • the upper portion preferably has a cylindrical shape centered on the spark discharge portion 18a of the spark plug 18, but the lower portion may have a shape that is continuous with the cylindrical shape of the upper portion and whose diameter decreases as it goes downward and the cross-sectional area gradually decreases. ..
  • each of the communication passages 24 is arranged in a portion (diameter-reduced portion) having a shape in which the cross-sectional area gradually decreases in the lower part of the sub chamber 22.
  • the direction of the auxiliary chamber central axis CL and the direction of the bore central axis do not necessarily have to be the same, and the auxiliary chamber central axis CL may be provided so as to be inclined with respect to the bore central axis.
  • the inner wall surface of the sub chamber 22 (the sub chamber wall surface 22W) has a cylindrical inner wall surface 22W1 and a lower portion (that is, the ignition plug 18 side) formed in a cylindrical shape at the upper portion (that is, the ignition plug 18 side). That is, it is provided with a diameter-reduced inner wall surface 22W2 formed in a shape in which the diameter is reduced toward the bottom on the piston 12 side).
  • Each of the communication passages 24 is formed on the reduced diameter inner wall surface 22W2 at the lower part of the sub chamber 22.
  • the recess 30 is also formed in the reduced diameter inner wall surface 22W2 at the lower part of the sub chamber 22, and as shown in FIG. 4B, the portion where the recess 30 is formed in the inner wall surface of the sub chamber 22 is formed in the sub chamber 22. It is a convex inner wall portion 22W3 formed in a convex shape toward the surface.
  • the fuel inflow passage 24a is in the direction toward the central axis CL of the sub chamber 22 and upward (that is, on the spark plug 18 side) when viewed from the axial direction (direction in which the central axis of the bore extends). ) Is oriented toward. As a result, the fuel introduced from the outside to the inside of the sub chamber 22 tends to approach the spark discharge portion 18a of the spark plug 18.
  • each of the communication passages 24c is oriented in a direction in which the passages 24c are inclined to the left at the same angle in a plan view with respect to the direction toward the center of the sub chamber 22.
  • these communication passages 24c function as swirl flow generation communication passages.
  • the inclination direction of the plurality of swirl flow generation passages 24c may be to the right with respect to the direction of the central axis of the sub chamber 22, and the inclination angles of the swirl flow generation passages 24c do not necessarily have to be the same. good.
  • the fuel inflow communication passage 24a and the swirl flow generation communication passage 24c are any of them. Is also oriented in an inclined direction from one end side [lower piston 12 side in FIG. 2B] to the other end side [upper spark plug 18 side in FIG. 2B] of the sub chamber 22.
  • the extension line of the fuel inflow passage 24a to the sub chamber wall surface 22W is arranged so as to reach the cylindrical inner wall surface (cylindrical inner wall surface) 22W1 in the upper part of the sub chamber 22.
  • the recess 30 is formed on a slope portion deviated from the auxiliary chamber central axis CL in a substantially hemispherical portion (a shape in which the diameter is reduced toward the lower side and the cross-sectional area is gradually reduced) in the lower part of the partition wall 23. Therefore, the lower portion of the partition wall 23 is formed in a substantially hemispherical shape except for the portion where the recess 30 is formed. Further, in the present embodiment, a recess 30 is formed in a part of the lower portion of the partition wall 23 while maintaining a substantially uniform thickness, and the recess 30 is formed on the outer surface of the partition wall 23 and on the inner surface of the partition wall 23. A convex portion 31 corresponding to the concave portion 30 is formed.
  • the recess 30 may have a shape in which the outer surface of the sub chamber 22 (outer surface of the partition wall 23) is cut out.
  • the recess 30 is formed in the outer surface of the partition wall 23 while maintaining a substantially hemispherical shape on the inner surface of the partition wall 23. May be formed. In this case, the thickness of the portion where the recess 30 is formed decreases.
  • the receiving surface 30a is formed at the center of the fuel injection range from the fuel injection valve 17, and the opening 24b is arranged at a position deviated from the center of the fuel injection range from the fuel injection valve 17.
  • the center of the fuel injection range is the face center (center of the front view) of the recess 30 in the front view
  • the opening 24b is arranged at a position deviated from the center of the front view.
  • the center of the fuel injection range is slightly shifted downward in FIG. 2B (that is, the piston 12 side), and the opening 24b is upward (that is, the cylinder head) in FIG. 2B. There is a slight shift to the 3rd side).
  • the direction in which the opening 24b deviates from the center of the fuel injection range is not limited to this.
  • the fuel inflow passage 24a is closer to the axis in the sub chamber 22 (near the sub chamber central axis CL or the sub chamber central axis CL) from the opening 24b toward the inside of the sub chamber 22, and is upward in FIG. 2B. It is inclined toward (that is, the cylinder head 3 side).
  • the fuel inflow direction in the fuel inflow passage 24a is a direction approaching the spark discharge portion 18a of the upper spark plug 18 in the sub chamber 22.
  • fuel is injected from the fuel injection valve 17 into the main chamber 21 at the beginning of the intake stroke [see FIG. 5A], and at the end of the subsequent compression stroke, the fuel injection valve 17 enters the sub chamber 22 via the main chamber 21.
  • Fuel is injected into (see FIG. 5B).
  • port injection port injection is adopted, port injection is performed in the exhaust stroke, and fuel is supplied into the main chamber 21 together with the intake air in the intake stroke.
  • the air-fuel mixture formed in the sub chamber 22 by the spark plug 18 is ignited, and the flame formed in the sub chamber 22 by this ignition is transmitted to the main chamber through the plurality of communication passages 24.
  • a jet is ejected into the main chamber 21 to ignite the air-fuel mixture in the main chamber 21 and burn it [see FIG. 5C].
  • the pressurized air (fuel-lean air-fuel mixture) in the main chamber 21 enters the sub-chamber 22 through the communication passage 24 in the compression stroke. .. Then, the air entering the sub-chamber 22 through the swirl flow generation communication passage 24c generates a swirl flow in the sub-chamber 22 as shown in FIGS. 2A and 2B. As shown in FIGS. 4A and 4B, this swirl flow rises toward the spark plug 18 while developing in the sub-chamber 22.
  • fuel is injected from the fuel injection valve 17 into the sub chamber 22 via the main chamber 21, and is introduced into the sub chamber 22 from the opening 24b via the fuel inflow communication passage 24a.
  • the swirl flow generated in the sub-chamber 22 collects fuel in the vicinity of the spark discharge portion 18a of the spark plug 18 near the center of the swirl because the swirling flow velocity is slow, and the air of the fuel because the swirling flow velocity is fast near the outside of the swirl. Mixing with is promoted.
  • the air-fuel mixture having a high fuel concentration near the spark discharge portion 18a of the spark plug 18 will be ignited, and the ignition will be performed reliably. be able to.
  • a flame can be surely formed in the sub chamber 22, and the flame is jetted into the main chamber 21 through the plurality of passages 24 to ignite and burn the air-fuel mixture in the main chamber 21. be able to.
  • the air-fuel mixture having a high fuel concentration is generated only in the vicinity of the spark discharge portion 18a, it is possible to reduce the amount of direct injection fuel.
  • a convex inner wall surface 22W3 corresponding to the recess 30 is formed on the inner surface of the partition wall 23 (inner wall surface of the sub chamber 22), and the air entering the sub chamber 22 through the swirl flow generation communication passage 24c is convex.
  • a turbulent flow is generated to promote mixing of the fuel with air, and then, while rising, along the cylindrical inner wall surface (cylindrical inner wall surface) in the upper part of the sub chamber 22. It is rectified and develops into a high-speed swirl flow. Therefore, the convex inner wall portion 22W3 corresponding to the concave portion 30 contributes to the uniformization of the equivalent ratio in the sub chamber 22.
  • the fuel (fuel-rich air-fuel mixture) introduced into the sub chamber 22 through the fuel inflow passage 24a is a cylinder close to the spark discharge portion 18a of the spark plug 18 from the reduced diameter inner wall surface 22W2 in the sub chamber 22.
  • the fuel fuel-rich air-fuel mixture
  • the convex inner wall portion 22W3 is formed on the reduced diameter inner wall surface 22W2, so that the air entering the sub chamber 22 is convex as shown in FIG.
  • the fuel injected from the fuel injection valve 17 first collides with the receiving surface 30a of the recess 30. Therefore, the direct-injection fuel is promoted to split and vaporize while staying in the recess 30 and its vicinity, and is introduced into the sub-chamber 22 from the opening 24b via the fuel inflow communication passage 24a.
  • the splitting and vaporization in the recess 30 contributes to the subsequent promotion of mixing with air in the sub chamber 22.
  • the direct-injection fuel is caught in the recess 30 and proceeds from the opening 24b to the fuel inflow passage 24a, so that a part of the fuel injected from the injector 17 does not enter the sub-chamber 22 and the partition wall. Passing along the outer surface of 23 (the wall portion of the sub chamber 22) is suppressed, and reaching the opposite side of the injector 17 to form a rich air-fuel mixture is avoided or suppressed. Therefore, it is possible to avoid or suppress the generation of a large amount of NOx due to the rich air-fuel mixture.
  • the opening 24b of the fuel inflow passage 24a is arranged at the bottom of the recess 30 or near the bottom, the fuel that collides with the receiving surface 30a and is promoted to split or vaporize is along the wall surface of the recess 30. The fuel smoothly flows into the sub chamber 22 from the opening 24b through the fuel inflow passage 24a.
  • the fuel inflow communication passage 24a Since the fuel inflow communication passage 24a is inclined in a direction approaching the spark discharge portion 18a of the spark plug 18, the fuel passing through the fuel inflow communication passage 24a goes toward the spark discharge portion 18a in the upper part of the sub chamber 22 and is directed to the spark discharge portion 18a. A rich fuel mixture is concentrated in the vicinity of 18a. Therefore, the ignition by the spark plug 18 and the flame formed in the sub chamber 22 after that can be strengthened, and a strong jet is ejected into the main chamber 21 through the plurality of communication passages 24 to mix in the main chamber 21. It can ignite the qi and promote combustion.
  • the configuration of the sub-chamber spark ignition engine described above is an example.
  • the arrangement of the sub chamber 22, that is, the partition wall 23 for partitioning the sub chamber 22 is not necessarily limited to the bore central axis of the top 20a of the combustion chamber 20 or the vicinity of the bore central axis, and also the top 20a of the combustion chamber 20. Not limited.
  • only one fuel inflow communication passage 24a is provided, but a plurality of fuel inflow communication passages 24a may be provided in the recess 30.
  • the fuel injection valve 17 may be provided with an injection port for supplying fuel into the main chamber 21 in addition to the injection port for supplying fuel into the sub chamber 22.
  • the recess 30 is formed, but this is not essential, and the shape of the sub chamber 22, that is, the partition wall 23 for partitioning the sub chamber 22, is shown in the fuel inflow chain as shown in FIG. It may have a perfect rotating body shape except for the passage 24a.
  • the recess 30 has a funnel shape using a mortar-shaped or conical surface formed by a smooth curved surface, but the shape of the recess 30 is not limited to this.
  • the opening 24b is arranged at the bottom of the recess 30 or near the bottom, but if the inner surface shape of the recess 30 is a shape that can guide the fuel received by the receiving portion 30a to the opening 24b. , The opening 24b may be arranged at the bottom of the recess 30 or near the bottom.

Abstract

This sub-chamber spark ignition engine comprises a main chamber (21), a sub-chamber (22) sectioned by the main chamber (21) and a dividing wall (23), a plurality of communication paths (24) provided to the dividing wall (23), a fuel injection valve furnished in a wall section of the main chamber (21), and a spark plug (18) that ignites an air-fuel mixture in the sub-chamber (22), the flames formed in the sub-chamber (22) by the ignition of the air-fuel mixture in the sub-chamber (22) being emitted into the main chamber (21) via the communication paths (24) to ignite the air-fuel mixture in the main chamber (21), wherein the communication paths (24) include swirl-flow-generating communication paths (24c) that are formed at an angle inclined relative to the center direction of the sub-chamber (22) and that generate a swirl flow in the sub-chamber (22) through compressed air from the main chamber (21), and a fuel inflow communication path (24a) that is formed at a different angle than the swirl-flow-generating communication paths (24c) in relation to the center direction of the sub-chamber (22) and that supplies fuel into the sub-chamber (22) from the main chamber (21) side.

Description

副室式火花点火エンジンSub-chamber spark ignition engine
 本発明は、副室内で混合気が発火することで形成される火炎を主室内に噴出させて主室内の混合気に点火するシステムを備えた、副室式火花点火エンジンに関するものである。 The present invention relates to a sub-chamber type spark ignition engine provided with a system for igniting the air-fuel mixture in the main chamber by ejecting a flame formed by igniting the air-fuel mixture in the sub-chamber into the main chamber.
 火花点火エンジンにおいて、隔壁により主燃焼室(主室ともいう)から分離された副燃焼室(副室ともいう)を設け、これらの主室と副室とを互いに連通する連通路を隔壁に形成し、副室内の混合気を発火させて、このとき副室内に形成される火炎が連通路を介し主室内に噴出するようにして主室内の混合気に点火するシステム(ジェット点火システムともいう)を備えた、副室式火花点火エンジンが知られている(例えば、特許文献1参照)。 In the spark ignition engine, a sub-combustion chamber (also called a sub-chamber) separated from the main combustion chamber (also called a main chamber) by a partition is provided, and a communication passage connecting these main chamber and the sub-chamber to each other is formed in the partition. Then, the air-fuel mixture in the sub-chamber is ignited, and the flame formed in the sub-chamber at this time is ejected into the main room through the communication passage to ignite the air-fuel mixture in the main room (also called a jet ignition system). A sub-chamber spark ignition engine is known (see, for example, Patent Document 1).
特開2004-204835号公報Japanese Unexamined Patent Publication No. 2004-204835
 ところで、上記のようなジェット点火システムの燃料供給形態には、主室を介して副室内に燃料を供給するパッシブ方式のものと、副室内に直接燃料を供給するアクティブ方式のものとがある。 By the way, the fuel supply form of the jet ignition system as described above includes a passive system in which fuel is supplied to the sub-chamber via the main chamber and an active system in which fuel is directly supplied to the sub-chamber.
 本件の案出過程で、パッシブ方式のジェット点火システムを備えた副室式火花点火エンジンとして、図7に示す構成が考えられた。つまり、図7に示すように、主室121の上部(シリンダヘッド103側の天井壁部)のボア中心軸を含む領域に、内部に副室122を区画形成する隔壁123を配置し、主室121の側壁部111aにインジェクタ117を配置する。隔壁123には、主室121と副室122とを連通する複数の連通路124を形成し、連通路124の一つを燃料供給路124aとする。インジェクタ117は、燃料噴射方向がこの燃料供給路124aに向かうように配置する。 In the process of devising this case, the configuration shown in FIG. 7 was considered as a sub-chamber spark ignition engine equipped with a passive jet ignition system. That is, as shown in FIG. 7, a partition wall 123 for partitioning the sub chamber 122 is arranged inside in the region including the bore central axis of the upper portion of the main chamber 121 (ceiling wall portion on the cylinder head 103 side), and the main chamber is provided. The injector 117 is arranged on the side wall portion 111a of 121. A plurality of communication passages 124 communicating the main chamber 121 and the sub chamber 122 are formed in the partition wall 123, and one of the communication passages 124 is used as a fuel supply passage 124a. The injector 117 is arranged so that the fuel injection direction is toward the fuel supply path 124a.
 このようなパッシブ方式の場合、圧縮行程のタイミングで燃料噴射をすることで副室内に燃料を供給し易くすることができる。しかし、副室122内への燃料供給と点火時期との時間間隔が短いため、図7に模式的に示すように、副室122内の当量比に濃淡が生じ、点火が不安定になることがあり、課題となっている。 In the case of such a passive method, it is possible to easily supply fuel to the sub-chamber by injecting fuel at the timing of the compression stroke. However, since the time interval between the fuel supply into the sub chamber 122 and the ignition timing is short, as schematically shown in FIG. 7, the equivalent ratio in the sub chamber 122 becomes light and shade, and the ignition becomes unstable. There is a problem.
 本件は、このような課題に着目して創案されたもので、パッシブ方式のジェット点火システムを備えた副室式火花点火エンジンにおいて、副室内での点火を安定して行うことができるようにすることを目的の一つとしている。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。 This case was created by paying attention to such issues, and enables stable ignition in the sub-chamber in a sub-chamber spark ignition engine equipped with a passive jet ignition system. That is one of the purposes. Not limited to this purpose, it is also an action and effect derived by each configuration shown in the embodiment for carrying out the invention described later, and it is also for another purpose of this case to exert an action and effect that cannot be obtained by the conventional technique. be.
 本件の副室式火花点火エンジンは、主室と、前記主室と隔壁により区画された副室と、前記隔壁に設けられ前記主室と前記副室とを連通する複数の連通路と、前記副室の中心軸又は前記中心軸の近傍に設けられて前記副室内の混合気に点火を行う点火プラグと、を備え、前記副室内の混合気の着火により前記副室内に形成される火炎を、前記連通路を介して前記主室内に噴出させて前記主室内の混合気に着火する、副室式火花点火エンジンであって、前記連通路は、前記副室の前記中心軸に向かう方向に対して傾斜した角度で形成され、前記主室からの圧縮空気によって前記副室内にスワール流を生成するスワール流生成連通路と、前記副室の前記中心軸に向かう方向に対して前記スワール流生成連通路とは異なる角度で形成され、前記主室側から前記副室内に燃料を供給する燃料流入連通路と、を含んでいることを特徴としている。 The sub-chamber spark ignition engine of the present invention includes a main chamber, a sub-chamber partitioned by the main chamber and a partition wall, a plurality of passages provided in the partition wall and communicating the main chamber and the sub-chamber, and the above-mentioned A spark plug provided in the central axis of the sub-chamber or in the vicinity of the central axis to ignite the air-fuel mixture in the sub-chamber is provided, and a flame formed in the sub-chamber by ignition of the air-fuel mixture in the sub-chamber is provided. , A sub-chamber type spark ignition engine that is ejected into the main chamber through the continuous passage to ignite the air-fuel mixture in the main chamber, and the continuous passage is directed toward the central axis of the sub-chamber. A swirl flow generation passage that is formed at an inclined angle with respect to the main chamber and generates a swirl flow in the sub chamber by compressed air from the main chamber, and the swirl flow generation in a direction toward the central axis of the sub chamber. It is characterized in that it is formed at an angle different from that of the communication passage, and includes a fuel inflow communication passage for supplying fuel from the main chamber side to the sub chamber.
 前記スワール流生成連通路及び前記燃料流入連通路は、前記副室の一端側に形成され、前記点火プラグは前記副室の他端側に形成され、前記スワール流生成連通路及び前記燃料流入連通路は、前記主室から前記副室に向かうにつれて、前記一端側から前記他端側に向かうように傾斜して形成され、前記燃料流入連通路の延長線が前記隔壁の前記副室側の面である副室内壁面に到達する位置は、前記スワール流生成連通路の延長線が前記副室内壁面に到達する位置よりも、前記他端側であることが好ましい。
 前記副室内壁面の前記他端側は、円筒形状に形成された円筒状内壁面であって、前記燃料流入連通路の延長線は、前記円筒状内壁面に到達することが好ましい。
 前記副室内壁面の前記円筒状内壁面よりも前記一端側には、前記他端側から前記一端側に向かうにつれて次第に断面積が小さくなる縮径内壁面が形成されていることが好ましい。
 前記隔壁の前記主室側の面には前記一端側凹部が形成され、前記燃料流入連通路は前記凹部に形成されることが好ましい。
 前記主室内に燃料を噴射する燃料噴射弁を備え、前記凹部は、前記燃料噴射弁からの直噴燃料が衝突する受面を備えていることが好ましい。
The swirl flow generation passage and the fuel inflow passage are formed on one end side of the sub chamber, and the spark plug is formed on the other end side of the sub chamber, and the swirl flow generation passage and the fuel inflow passage are formed. The passage is formed so as to be inclined from one end side toward the other end side as it goes from the main chamber to the sub chamber, and an extension line of the fuel inflow communication passage is a surface of the partition wall on the sub chamber side. The position to reach the wall surface of the sub-chamber is preferably the other end side of the position where the extension line of the swirl flow generation communication passage reaches the wall surface of the sub-chamber.
It is preferable that the other end side of the sub-chamber wall surface is a cylindrical inner wall surface formed in a cylindrical shape, and the extension line of the fuel inflow communication passage reaches the cylindrical inner wall surface.
It is preferable that the one end side of the sub-chamber wall surface is formed with a reduced diameter inner wall surface whose cross-sectional area gradually decreases from the other end side toward the one end side.
It is preferable that the one end side recess is formed on the surface of the partition wall on the main chamber side, and the fuel inflow communication passage is formed in the recess.
It is preferable that the main chamber is provided with a fuel injection valve for injecting fuel, and the recess is provided with a receiving surface on which the direct injection fuel from the fuel injection valve collides.
 本件によれば、主室内に噴射された燃料が、副室内に生成されたスワール流によって副室の点火プラグの周りに燃料の濃い混合気を集中させることができる。これにより、安定した着火を実現でき、副室内への供給燃料量を抑えることもできる。 According to this case, the fuel injected into the main chamber can concentrate the rich mixture of fuel around the spark plug in the sub chamber by the swirl flow generated in the sub chamber. As a result, stable ignition can be realized, and the amount of fuel supplied to the sub-chamber can be suppressed.
図1A,図1Bは実施形態に係る副室式火花点火エンジンの1つの気筒の燃焼室の構成を示す図であり、図1Aはその縦断面図、図1Bはその頂面図である。1A and 1B are views showing the configuration of a combustion chamber of one cylinder of the subchamber type spark ignition engine according to the embodiment, FIG. 1A is a vertical sectional view thereof, and FIG. 1B is a top view thereof. 図2A,図2Bは図1A,図1Bに示す副室式火花点火エンジンの隔壁に形成される連通路の特徴を説明する図であり、図2Aは連通路の配向を示す副室の要部の模式的な横断面図であり、図2Bは副室の縦断面図である。2A and 2B are views for explaining the characteristics of the communication passage formed in the partition wall of the sub-chamber type spark ignition engine shown in FIGS. 1A and 1B, and FIG. 2A is a main part of the sub-chamber showing the orientation of the communication passage. 2B is a schematic cross-sectional view of the above, and FIG. 2B is a vertical cross-sectional view of the sub chamber. 図3A,図3Bは図1A,図1Bに示す副室式火花点火エンジンの副室の凹部の変形例の形状を示す斜視図であって、図3Aは第1変形例を示し、図3Bは第2変形例を示す。3A and 3B are perspective views showing the shape of a modified example of the concave portion of the sub chamber of the subchamber type spark ignition engine shown in FIGS. 1A and 1B. FIG. 3A shows the first modified example, and FIG. 3B shows the first modified example. A second modification is shown. 図4A,図4Bは図1A,図1Bに示す副室式火花点火エンジンの副室内での気体の流れる状態を説明する模式的斜視図であって、図4Aは凹部の副室内への突出を考慮しない場合を示し、図4Bは凹部の副室内への突出を考慮した場合を示す。4A and 4B are schematic perspective views for explaining the state of gas flow in the sub-chamber of the sub-chamber type spark ignition engine shown in FIGS. 1A and 1B, and FIG. 4A shows the protrusion of the recess into the sub-chamber. A case where no consideration is given is shown, and FIG. 4B shows a case where the protrusion of the recess into the sub-chamber is taken into consideration. 図5A~図5Cは図1A,図1Bに示す副室式火花点火エンジンの燃料噴射態様を、図5A~図5Cに行程順で示す燃焼室の縦断面図である。5A to 5C are vertical cross-sectional views of the combustion chamber showing the fuel injection modes of the sub-chamber spark ignition engine shown in FIGS. 1A and 1B in the order of strokes in FIGS. 5A to 5C. 図6は図1A,図1Bに示す副室式火花点火エンジンの副室の変形例を示す図である。FIG. 6 is a diagram showing a modified example of the sub chamber of the sub chamber type spark ignition engine shown in FIGS. 1A and 1B. 図7は本件の課題を説明する燃焼室の縦断面図である。FIG. 7 is a vertical cross-sectional view of the combustion chamber for explaining the problem of this case.
 以下、図面を参照して、実施形態としての副室式火花点火エンジンについて説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 Hereinafter, the sub-chamber type spark ignition engine as an embodiment will be described with reference to the drawings. The embodiments shown below are merely examples, and there is no intention of excluding the application of various modifications and techniques not specified in the following embodiments. Each configuration of the present embodiment can be variously modified and implemented without departing from the gist thereof. In addition, it can be selected as needed, or can be combined as appropriate.
 [全体構成]
 本実施形態に係る副室式火花点火エンジン(火花点火式の内燃機関であって、ガソリンエンジンを含む。以下、単に「エンジン」ともいう)1は、多気筒エンジンであり、各気筒は、図1Aに示すように、シリンダブロック2に形成されたシリンダ11と、シリンダ11内を往復動するピストン12と、シリンダヘッド3に形成された吸気ポート13及び排気ポート14と、吸気ポート13に装備された吸気弁15及び排気ポート14に装備された排気弁16を備えている。
 なお、本実施形態では、図1Bに示すように、吸気ポート13(吸気弁15)及び排気ポート14(排気弁16)はいずれも2つずつ装備されているが、吸気ポート数(吸気弁数)及び排気ポート数(排気弁数)はこれに限定されるものではない。
[overall structure]
The sub-chamber type spark ignition engine (which is a spark ignition type internal combustion engine and includes a gasoline engine; hereinafter, also simply referred to as “engine”) 1 according to the present embodiment is a multi-cylinder engine, and each cylinder is shown in FIG. As shown in 1A, the cylinder 11 formed in the cylinder block 2, the piston 12 reciprocating in the cylinder 11, the intake port 13 and the exhaust port 14 formed in the cylinder head 3, and the intake port 13 are equipped. The intake valve 15 and the exhaust valve 16 provided in the exhaust port 14 are provided.
In the present embodiment, as shown in FIG. 1B, two intake ports 13 (15 intake valves) and two exhaust ports 14 (exhaust valves 16) are provided, but the number of intake ports (number of intake valves). ) And the number of exhaust ports (the number of exhaust valves) are not limited to this.
 シリンダ11内のシリンダヘッド2側(図1A中上部)には、シリンダ11の内壁とピストン12の頂面12aと、シリンダヘッド2とによって、燃焼室20が区画形成されている。燃焼室20には、吸気弁15で開閉される吸気ポート13及び排気弁16で開閉される排気ポート14が連通可能に接続されている。なお、ここでは、燃焼室20の頂部は、吸気弁15が設けられた吸気斜面と排気弁16が設けられた排気斜面とを有するペントルーフ形状に形成されている。 On the cylinder head 2 side (upper middle of FIG. 1A) in the cylinder 11, the combustion chamber 20 is partitioned by the inner wall of the cylinder 11, the top surface 12a of the piston 12, and the cylinder head 2. An intake port 13 opened and closed by an intake valve 15 and an exhaust port 14 opened and closed by an exhaust valve 16 are connected to the combustion chamber 20 so as to communicate with each other. Here, the top of the combustion chamber 20 is formed in a pent roof shape having an intake slope provided with the intake valve 15 and an exhaust slope provided with the exhaust valve 16.
 シリンダ11内の頂部(図1A中の上部)の周壁11aには、燃料噴射弁17が装備されており、本実施形態のエンジンは1、シリンダ11内に直接燃料を噴射する筒内噴射エンジン(直噴エンジン)として構成されている。本実施形態では、シリンダ11内に直接燃料噴射する燃料噴射弁17のみを備えているが、これに加えて、吸気ポート13に燃料を噴射するポート噴射用の燃料噴射弁を追加してもよい。 A fuel injection valve 17 is provided on the peripheral wall 11a at the top of the cylinder 11 (upper part in FIG. 1A). It is configured as a direct injection engine). In the present embodiment, only the fuel injection valve 17 that injects fuel directly into the cylinder 11 is provided, but in addition to this, a fuel injection valve for port injection that injects fuel into the intake port 13 may be added. ..
 本実施形態に係るエンジンは、火花点火式エンジンであり、燃焼室20の頂部(ここでは、ペントルーフ形状の頂部)20aにおいて、ボア中心軸又はボア中心軸の近傍に、燃焼室20に火花放電部18aを露出させて点火プラグ18が装備されている。 The engine according to the present embodiment is a spark ignition type engine, and is a spark-ignition engine in the combustion chamber 20 at the top of the combustion chamber 20 (here, the top of the pent roof shape) 20a, in the vicinity of the bore central axis or the bore central axis. The ignition plug 18 is equipped with the 18a exposed.
 [主室及び副室の構成]
 燃焼室20の頂部20aには、燃焼室20の内部空間を、主室(主燃焼室)21と、副室(副燃焼室)22とに区画する隔壁23が装備されている。この隔壁23は、点火プラグ18の火花放電部18aが露出する空間を覆うように配置され、燃焼室20内の隔壁23で覆われる内部空間(火花放電部18aを含む空間)が副室22となっており、燃焼室20内の隔壁23の外部空間が主室21となっている。副室22は、一部を除いて、回転体形状に形成されている。
[Composition of main room and sub room]
The top 20a of the combustion chamber 20 is provided with a partition wall 23 that divides the internal space of the combustion chamber 20 into a main chamber (main combustion chamber) 21 and a sub chamber (sub combustion chamber) 22. The partition 23 is arranged so as to cover the space where the spark discharge portion 18a of the spark plug 18 is exposed, and the internal space (the space including the spark discharge portion 18a) covered by the partition 23 in the combustion chamber 20 is the sub chamber 22. The external space of the partition wall 23 in the combustion chamber 20 is the main chamber 21. The sub chamber 22 is formed in a rotating body shape except for a part.
 図2A,図2Bに示すように、隔壁23には、主室21と副室22とを連通する複数(本実施形態では6個)の連通路(「ノズル」ともいう)24が形成されている。複数(本実施形態では6個)の連通路24は、主室21側から副室22への混合気の流入と、副室22側から主室21側への火炎の流出とを行うために設けられている。
 複数の連通路24の一部(ここでは1つ)は、燃料噴射弁17から主室21内に噴射された燃料を副室22に導入するための燃料流入連通路24aとして機能し、他の連通路24は、主室21内の空気(厳密には、燃料が希薄な混合気)を副室22に導入するための空気流入連通路として機能する。
 燃料噴射弁17は、副室22内に燃料供給するための噴射口を備えている。
As shown in FIGS. 2A and 2B, the partition wall 23 is formed with a plurality of (six in this embodiment) communication passages (also referred to as “nozzles”) 24 that communicate the main chamber 21 and the sub chamber 22. There is. A plurality of (six in this embodiment) communication passages 24 are used to allow the inflow of the air-fuel mixture from the main chamber 21 side to the sub-chamber 22 and the outflow of flame from the sub-chamber 22 side to the main chamber 21 side. It is provided.
A part (here, one) of the plurality of communication passages 24 functions as a fuel inflow communication passage 24a for introducing the fuel injected into the main chamber 21 from the fuel injection valve 17 into the sub chamber 22, and the other passages 24. The communication passage 24 functions as an air inflow communication passage for introducing the air in the main chamber 21 (strictly speaking, an air-fuel mixture leaning fuel) into the sub chamber 22.
The fuel injection valve 17 includes an injection port for supplying fuel into the sub chamber 22.
 副室22内では、圧縮行程において、燃料流入連通路24aを通じて導入された燃料(燃料を多く含んだ混合気)に、所定のタイミングで点火プラグ18を用いて着火し、この着火により副室22内に形成される火炎を、複数の連通路24を介して主室21内にジェット噴出させて主室21内の混合気に点火し、燃焼を促進する。このような点火システムは、ジェット点火システムとも呼ばれ、希薄混合気への点火及び燃焼促進に有効であり、主室21内のリーンバーンや大量EGR時に適用でき、これにより、燃費向上が可能になる。 In the sub-chamber 22, the fuel (air-fuel mixture containing a large amount of fuel) introduced through the fuel inflow passage 24a is ignited by the ignition plug 18 at a predetermined timing in the compression stroke, and the sub-chamber 22 is ignited by this ignition. The flame formed inside is jetted into the main chamber 21 through a plurality of communication passages 24 to ignite the air-fuel mixture in the main chamber 21 and promote combustion. Such an ignition system, also called a jet ignition system, is effective in igniting a dilute mixture and promoting combustion, and can be applied to lean burn in the main chamber 21 or a large amount of EGR, thereby improving fuel efficiency. Become.
 また、本実施形態では、副室22の外側面(即ち、隔壁23の外面)において、燃料流入連通路24aが開口する開口部24bの周囲には、燃料噴射弁17からの直噴燃料が衝突する受面30aを持つ凹部30が形成されている。本実施形態の凹部30は、滑らかな曲面で形成されたすり鉢形状に形成されている。開口部24bは、すり鉢形状の凹部30の底部又は底部近傍に配置されている。 Further, in the present embodiment, the direct injection fuel from the fuel injection valve 17 collides with the outer surface of the sub chamber 22 (that is, the outer surface of the partition wall 23) around the opening 24b where the fuel inflow communication passage 24a opens. A recess 30 having a receiving surface 30a is formed. The recess 30 of the present embodiment is formed in the shape of a mortar formed by a smooth curved surface. The opening 24b is arranged at or near the bottom of the mortar-shaped recess 30.
 ただし、凹部30の形状はこれに限定されるものではなく、少なくとも副室22の外部から内部に向かって次第に縮径していればよく、例えば、円錐面等の錐面を用いたファンネル(漏斗)形状であってもよい。つまり、図3Aに変形例として示す凹部30Aのように、円錐面を用いて形成してもよく、図3Bに変形例として示す凹部30Bのように、角錐面を用いて形成してもよい。図3Bに示す例は、四角錐面を用いたであるが、これ以外の角錐面も適用できる。 However, the shape of the recess 30 is not limited to this, and it is sufficient that the diameter of the recess 30 is gradually reduced from the outside to the inside of the sub chamber 22, for example, a funnel (funnel) using a conical surface such as a conical surface. ) May be in shape. That is, it may be formed by using a conical surface like the concave portion 30A shown as a modified example in FIG. 3A, or may be formed by using a pyramidal surface like the concave portion 30B shown as a modified example in FIG. 3B. In the example shown in FIG. 3B, a quadrangular pyramid surface is used, but other pyramid surfaces can also be applied.
 また、凹部30の壁面形状に錐面を用いる場合も、錐面の幅広側B(凹部30の開口に相当する)や錐面の幅狭側T(凹部30の底面部に相当する)は円や正多角形に限らず、楕円やその他の多角形であってもよい。
 さらに、図3A,図3Bに示す凹部30A,30Bのように、錐面の幅広側Bの中心と幅狭側Tの中心とを結ぶ線(図3中のL1,L2)が、錐台の底面Bや頂面Tに対して傾斜した錐台(即ち、底面Bに対して頂面Tが横ズレした錐台)の内面形状を適用してもよい。図3A,図3Bでは、図1A,図1Bに対応させて、凹部30A,30Bを斜め下向きに記載している。
Further, even when a conical surface is used for the wall surface shape of the concave portion 30, the wide side B (corresponding to the opening of the concave portion 30) and the narrow side T (corresponding to the bottom surface portion of the concave portion 30) of the conical surface are circular. And regular polygons, but may be ellipses and other polygons.
Further, as shown in the recesses 30A and 30B shown in FIGS. 3A and 3B, the lines (L1 and L2 in FIG. 3) connecting the center of the wide side B of the conical surface and the center of the narrow side T of the conical surface are the lines of the frustum. An inner surface shape of a frustum inclined with respect to the bottom surface B or the top surface T (that is, a frustum in which the top surface T is laterally displaced with respect to the bottom surface B) may be applied. In FIGS. 3A and 3B, the recesses 30A and 30B are shown obliquely downward in correspondence with FIGS. 1A and 1B.
 なお、図3A,図3Bに示す変形例では、凹部30A,30Bの最深部(底部)に、燃料流入連通路24aの開口部24bが配置されているが、開口部24bの配置はこれに限らない。また、開口部24bの数(燃料流入連通路24aの数)も1つだけに限定されない。図3Bに示す凹部30Bのように、開口部24bを複数(ここでは2つ)設けてもよい。この場合の、開口部24bの並ぶ方向は、第1方向D1でも第2方向D2でもよい。 In the modified examples shown in FIGS. 3A and 3B, the opening 24b of the fuel inflow passage 24a is arranged at the deepest part (bottom) of the recesses 30A and 30B, but the arrangement of the opening 24b is limited to this. No. Further, the number of openings 24b (the number of fuel inflow communication passages 24a) is not limited to one. A plurality (here, two) openings 24b may be provided as in the recess 30B shown in FIG. 3B. In this case, the direction in which the openings 24b are lined up may be either the first direction D1 or the second direction D2.
 本実施形態では、隔壁23の上部〔図2Bにおける上部(即ち、点火プラグ18側)〕は円筒形状に形成され、隔壁23の下部〔図2Bにおける下部(即ち、ピストン12側)は下方に行くにしたがって径が縮小した形状(ここでは、略半球形状)に形成されている。また、隔壁23は、一部を除いて、点火プラグ18の火花放電部18aの位置(即ち、副室中心軸CL又は副室中心軸CLの近傍の位置)を中心とする回転体形状に形成されている。ただし、隔壁23の形状はこれに限定されない。上部は点火プラグ18の火花放電部18aを中心とした円筒形状が好ましいが、下部は上部の円筒形状と連続し、下方に行くにしたがって縮径して次第に横断面積が小さくなる形状であればよい。
 なお、何れの連通路24も、副室22の下部の次第に横断面積が小さくなる形状の部分(縮径部)に配置されている。また、副室中心軸CLの方向とボア中心軸の方向とは、必ずしも一致している必要はなく、ボア中心軸に対して副室中心軸CLが傾斜するように設けられていてもよい。
In the present embodiment, the upper part of the partition wall 23 [the upper part in FIG. 2B (that is, the spark plug 18 side)] is formed in a cylindrical shape, and the lower part of the partition wall 23 [the lower part in FIG. 2B (that is, the piston 12 side) goes downward. It is formed in a shape whose diameter is reduced accordingly (here, a substantially hemispherical shape). Further, the partition wall 23 is formed in a rotating body shape centered on the position of the spark discharge portion 18a of the spark plug 18 (that is, the position near the sub chamber central axis CL or the sub chamber central axis CL), except for a part. Has been done. However, the shape of the partition wall 23 is not limited to this. The upper portion preferably has a cylindrical shape centered on the spark discharge portion 18a of the spark plug 18, but the lower portion may have a shape that is continuous with the cylindrical shape of the upper portion and whose diameter decreases as it goes downward and the cross-sectional area gradually decreases. ..
In addition, each of the communication passages 24 is arranged in a portion (diameter-reduced portion) having a shape in which the cross-sectional area gradually decreases in the lower part of the sub chamber 22. Further, the direction of the auxiliary chamber central axis CL and the direction of the bore central axis do not necessarily have to be the same, and the auxiliary chamber central axis CL may be provided so as to be inclined with respect to the bore central axis.
 したがって、副室22の内壁面(副室内壁面22W)は、図4A,図4Bに示すように、上部(即ち、点火プラグ18側)において円筒形状に形成された円筒状内壁面22W1、下部(即ち、ピストン12側)において下方に行くにしたがって径が縮小した形状に形成された縮径内壁面22W2と、を備えている。何れの連通路24も、副室22の下部の縮径内壁面22W2に形成されている。また、凹部30も副室22の下部の縮径内壁面22W2に形成されており、図4Bに示すように、副室22の内壁面の凹部30が形成される部分は、副室22内に向かって凸状に形成された凸状内壁部22W3となっている。 Therefore, as shown in FIGS. 4A and 4B, the inner wall surface of the sub chamber 22 (the sub chamber wall surface 22W) has a cylindrical inner wall surface 22W1 and a lower portion (that is, the ignition plug 18 side) formed in a cylindrical shape at the upper portion (that is, the ignition plug 18 side). That is, it is provided with a diameter-reduced inner wall surface 22W2 formed in a shape in which the diameter is reduced toward the bottom on the piston 12 side). Each of the communication passages 24 is formed on the reduced diameter inner wall surface 22W2 at the lower part of the sub chamber 22. Further, the recess 30 is also formed in the reduced diameter inner wall surface 22W2 at the lower part of the sub chamber 22, and as shown in FIG. 4B, the portion where the recess 30 is formed in the inner wall surface of the sub chamber 22 is formed in the sub chamber 22. It is a convex inner wall portion 22W3 formed in a convex shape toward the surface.
 ところで、圧縮行程において、主として燃料流入連通路24aを通じて副室22内に燃料が導入されると共に、主として他の連通路24を通じて副室22内に空気が導入される。
 燃料流入連通路24aは、図2Aに示すように、軸方向(ボア中心軸の延在する方向)から見て、副室22の中心軸CLに向かう方向で且つ上方(即ち、点火プラグ18側)に向かうように配向されている。これにより、副室22の外部から内部に導入される燃料は、点火プラグ18の火花放電部18aに接近する方向に向かう。
By the way, in the compression stroke, fuel is mainly introduced into the sub-chamber 22 through the fuel inflow communication passage 24a, and air is mainly introduced into the sub-chamber 22 through the other communication passage 24.
As shown in FIG. 2A, the fuel inflow passage 24a is in the direction toward the central axis CL of the sub chamber 22 and upward (that is, on the spark plug 18 side) when viewed from the axial direction (direction in which the central axis of the bore extends). ) Is oriented toward. As a result, the fuel introduced from the outside to the inside of the sub chamber 22 tends to approach the spark discharge portion 18a of the spark plug 18.
 これに対して、空気流入連通路として機能する連通路24のうち、副室22の中心(ここでは、ボア中心軸と一致)に位置する1つを除いた連通路24cは、何れも、図2Bに示すように、軸方向(ボア中心軸の延在する方向)から見て、副室22の中心軸CLに向かう方向(中心方向)に対して傾斜する方向で且つ上方(即ち、点火プラグ18側)に向かうように配向されている。
 本実施形態では、何れの連通路24cも、副室22の中心に向かう方向に対して平面視で左方向に同一角度で傾斜する方向に配向されている。これにより、複数の連通路24cを通じて、副室22の外部から内部に導入される空気は、副室22内で図2A,図2Bに矢印で示すように、スワール流を生成する。したがって、これらの連通路24cは、スワール流生成連通路として機能する。なお、複数のスワール流生成連通路24cの傾斜方向は、副室22の中心軸の方向に対して右方向でもよく、また、各スワール流生成連通路24cの傾斜角度は必ずしも同一でなくてもよい。
On the other hand, among the communication passages 24 that function as the air inflow communication passages, all of the communication passages 24c except for one located at the center of the sub chamber 22 (here, coincident with the bore central axis) are shown in the figure. As shown in 2B, when viewed from the axial direction (the direction in which the central axis of the bore extends), the direction is inclined with respect to the direction (central direction) toward the central axis CL of the sub chamber 22 and upward (that is, the spark plug). It is oriented toward (18 side).
In the present embodiment, each of the communication passages 24c is oriented in a direction in which the passages 24c are inclined to the left at the same angle in a plan view with respect to the direction toward the center of the sub chamber 22. As a result, the air introduced from the outside to the inside of the sub chamber 22 through the plurality of communication passages 24c generates a swirl flow in the sub chamber 22 as shown by arrows in FIGS. 2A and 2B. Therefore, these communication passages 24c function as swirl flow generation communication passages. The inclination direction of the plurality of swirl flow generation passages 24c may be to the right with respect to the direction of the central axis of the sub chamber 22, and the inclination angles of the swirl flow generation passages 24c do not necessarily have to be the same. good.
 また、図2Bに一点鎖線の矢印で示すように、側面視において(副室22の中心軸に対して直角な方向から見て)、燃料流入連通路24a及びスワール流生成連通路24cは、何れも副室22の一端側〔図2B中、下方のピストン12側〕から他端側〔図2B中、上方の点火プラグ18側〕に向けて傾斜した方向に配向されている。
 そして、燃料流入通路24aの副室22内への延長線が隔壁23の副室22側の面(隔壁23の内面)である副室内壁面22Wに到達する位置P1は、スワール流生成連通路24bの副室22内への延長線が副室内壁面22Wに到達する位置P2よりも、他端側〔図2(b)中、上方の点火プラグ18側〕の円筒状内壁面22W1内に位置している。
 また、燃料流入通路24aの副室内壁面22Wへの延長線は、副室22内上部の円筒形状の内壁面(円筒状内壁面)22W1に到達するように配置されている。
Further, as shown by the arrow of the alternate long and short dash line in FIG. 2B, in the side view (viewed from the direction perpendicular to the central axis of the sub chamber 22), the fuel inflow communication passage 24a and the swirl flow generation communication passage 24c are any of them. Is also oriented in an inclined direction from one end side [lower piston 12 side in FIG. 2B] to the other end side [upper spark plug 18 side in FIG. 2B] of the sub chamber 22.
The position P1 at which the extension line of the fuel inflow passage 24a into the sub chamber 22 reaches the sub chamber wall surface 22W, which is the surface of the partition wall 23 on the sub chamber 22 side (inner surface of the partition wall 23), is the swirl flow generation continuous passage 24b. Is located in the cylindrical inner wall surface 22W1 on the other end side [the upper ignition plug 18 side in FIG. 2 (b)] from the position P2 where the extension line into the sub chamber 22 reaches the sub chamber wall surface 22W. ing.
Further, the extension line of the fuel inflow passage 24a to the sub chamber wall surface 22W is arranged so as to reach the cylindrical inner wall surface (cylindrical inner wall surface) 22W1 in the upper part of the sub chamber 22.
 凹部30は、隔壁23の下部の略半球形状(下方に行くにしたがって縮径して次第に横断面積が小さくなる形状)の部分における副室中心軸CLからずれた斜面部に形成されている。したがって、凹部30が形成される部分を除いて、隔壁23の下部は略半球形状に形成されている。
 また、本実施形態では、隔壁23の下部の一部を、厚みをほぼ均一に保ちながら凹部30を形成しており、隔壁23の外面に凹部30が形成されると共に、隔壁23の内面には凹部30と対応した凸部31が形成されている。ただし、凹部30は、副室22の外側面(隔壁23の外面)を切り欠いた形状であればよく、例えば、隔壁23の内面は略半球形状を保ったまま、隔壁23の外面に凹部30を形成してもよい。この場合、凹部30を形成する箇所は厚みが減少する。
The recess 30 is formed on a slope portion deviated from the auxiliary chamber central axis CL in a substantially hemispherical portion (a shape in which the diameter is reduced toward the lower side and the cross-sectional area is gradually reduced) in the lower part of the partition wall 23. Therefore, the lower portion of the partition wall 23 is formed in a substantially hemispherical shape except for the portion where the recess 30 is formed.
Further, in the present embodiment, a recess 30 is formed in a part of the lower portion of the partition wall 23 while maintaining a substantially uniform thickness, and the recess 30 is formed on the outer surface of the partition wall 23 and on the inner surface of the partition wall 23. A convex portion 31 corresponding to the concave portion 30 is formed. However, the recess 30 may have a shape in which the outer surface of the sub chamber 22 (outer surface of the partition wall 23) is cut out. For example, the recess 30 is formed in the outer surface of the partition wall 23 while maintaining a substantially hemispherical shape on the inner surface of the partition wall 23. May be formed. In this case, the thickness of the portion where the recess 30 is formed decreases.
 燃料噴射弁17からの燃料噴射範囲の中心に受面30aが形成されており、開口部24bは、燃料噴射弁17からの燃料噴射範囲の中心からずれた位置に配置されている。燃料噴射範囲の中心が、凹部30の正面視における面心(正面視中心)にある場合は、開口部24bはこの正面視中心からずれた位置に配置される。本実施形態では、燃料噴射範囲の中心は、図2(b)における下方(即ち、ピストン12側)にややシフトしており、開口部24bは、図2(b)における上方(即ち、シリンダヘッド3側)にややシフトしている。燃料噴射範囲の中心に対して開口部24bがずれる方向はこの限りではない。 The receiving surface 30a is formed at the center of the fuel injection range from the fuel injection valve 17, and the opening 24b is arranged at a position deviated from the center of the fuel injection range from the fuel injection valve 17. When the center of the fuel injection range is the face center (center of the front view) of the recess 30 in the front view, the opening 24b is arranged at a position deviated from the center of the front view. In the present embodiment, the center of the fuel injection range is slightly shifted downward in FIG. 2B (that is, the piston 12 side), and the opening 24b is upward (that is, the cylinder head) in FIG. 2B. There is a slight shift to the 3rd side). The direction in which the opening 24b deviates from the center of the fuel injection range is not limited to this.
 また、燃料流入連通路24aは、開口部24bから副室22内に向けて副室22内の軸心(副室中心軸CL又は副室中心軸CLの近傍)に近づくほど、図2Bにおける上方(即ち、シリンダヘッド3側)に向かうように傾斜している。この燃料流入連通路24aにおける燃料の流入方向は、副室22内の上部の点火プラグ18の火花放電部18aに近づく方向である。 Further, the fuel inflow passage 24a is closer to the axis in the sub chamber 22 (near the sub chamber central axis CL or the sub chamber central axis CL) from the opening 24b toward the inside of the sub chamber 22, and is upward in FIG. 2B. It is inclined toward (that is, the cylinder head 3 side). The fuel inflow direction in the fuel inflow passage 24a is a direction approaching the spark discharge portion 18a of the upper spark plug 18 in the sub chamber 22.
 [燃料噴射及び燃焼]
 本実施形態では、吸気行程初期に燃料噴射弁17から主室21内に燃料が噴射され〔図5A参照〕、その後の圧縮行程終期に燃料噴射弁17から主室21を介して副室22内に燃料が噴射される〔図5B参照〕。なお、ポート噴射を採用する場合は、排気行程においてポート噴射を実施し、吸気行程において吸気と共に燃料を主室21内に供給する。そして、圧縮行程末期に、点火プラグ18によって副室22内に形成された混合気に着火して、この着火により副室22内に形成される火炎を、複数の連通路24を介して主室21内にジェット噴出させて主室21内の混合気に点火し、燃焼させる〔図5C参照〕。
[Fuel injection and combustion]
In the present embodiment, fuel is injected from the fuel injection valve 17 into the main chamber 21 at the beginning of the intake stroke [see FIG. 5A], and at the end of the subsequent compression stroke, the fuel injection valve 17 enters the sub chamber 22 via the main chamber 21. Fuel is injected into (see FIG. 5B). When port injection is adopted, port injection is performed in the exhaust stroke, and fuel is supplied into the main chamber 21 together with the intake air in the intake stroke. Then, at the end of the compression stroke, the air-fuel mixture formed in the sub chamber 22 by the spark plug 18 is ignited, and the flame formed in the sub chamber 22 by this ignition is transmitted to the main chamber through the plurality of communication passages 24. A jet is ejected into the main chamber 21 to ignite the air-fuel mixture in the main chamber 21 and burn it [see FIG. 5C].
 [作用及び効果]
 本実施形態に係る副室式火花点火エンジンによれば、圧縮行程には、主室21内の加圧された空気(燃料が希薄な混合気)が連通路24を通じて副室22内に進入する。そして、スワール流生成連通路24cを通じて副室22内に進入する空気は、図2A,図2Bに示すように、副室22内でスワール流を生成する。このスワール流は、図4A,図4Bに示すように、副室22内で発達しながら点火プラグ18側に上昇する。
[Action and effect]
According to the sub-chamber type spark ignition engine according to the present embodiment, the pressurized air (fuel-lean air-fuel mixture) in the main chamber 21 enters the sub-chamber 22 through the communication passage 24 in the compression stroke. .. Then, the air entering the sub-chamber 22 through the swirl flow generation communication passage 24c generates a swirl flow in the sub-chamber 22 as shown in FIGS. 2A and 2B. As shown in FIGS. 4A and 4B, this swirl flow rises toward the spark plug 18 while developing in the sub-chamber 22.
 一方、圧縮行程終期には、燃料噴射弁17から主室21を介して副室22内に燃料が噴射され、開口部24bから燃料流入連通路24aを経て副室22内へ導入される。
 副室22内で生成されるスワール流は、旋回中心寄りの点火プラグ18の火花放電部18aの付近では、旋回流速が遅いため燃料が溜り、旋回外側寄りでは、旋回流速が速いため燃料の空気との混合が促進される。
On the other hand, at the end of the compression stroke, fuel is injected from the fuel injection valve 17 into the sub chamber 22 via the main chamber 21, and is introduced into the sub chamber 22 from the opening 24b via the fuel inflow communication passage 24a.
The swirl flow generated in the sub-chamber 22 collects fuel in the vicinity of the spark discharge portion 18a of the spark plug 18 near the center of the swirl because the swirling flow velocity is slow, and the air of the fuel because the swirling flow velocity is fast near the outside of the swirl. Mixing with is promoted.
 したがって、室22内への燃料供給と点火時期との時間間隔が短くても、点火プラグ18の火花放電部18aの付近の燃料濃度の高い混合気に着火することになり、着火を確実に行うことができる。この着火により副室22内に確実に火炎を形成することができ、複数の連通路24を介して火炎を主室21内にジェット噴出させて主室21内の混合気に点火し、燃焼させることができる。
 また、火花放電部18aの付近にのみ燃料濃度の高い混合気を生成するので、直噴燃料量を減らすことが可能になる。
Therefore, even if the time interval between the fuel supply into the chamber 22 and the ignition timing is short, the air-fuel mixture having a high fuel concentration near the spark discharge portion 18a of the spark plug 18 will be ignited, and the ignition will be performed reliably. be able to. By this ignition, a flame can be surely formed in the sub chamber 22, and the flame is jetted into the main chamber 21 through the plurality of passages 24 to ignite and burn the air-fuel mixture in the main chamber 21. be able to.
Further, since the air-fuel mixture having a high fuel concentration is generated only in the vicinity of the spark discharge portion 18a, it is possible to reduce the amount of direct injection fuel.
 なお、隔壁23の内面(副室22の内壁面)には凹部30と対応した凸状内壁面22W3が形成されており、スワール流生成連通路24cを通じて副室22内に進入する空気は、凸状内壁部22W3に衝突することで乱流を発生し、燃料の空気との混合が促進され、その後、上昇しながら、副室22内上部の円筒形状の内壁面(円筒状内壁面)に沿って整流され高速なスワール流に発達する。
 したがって、凹部30と対応した凸状内壁部22W3は副室22内の当量比の均一化に寄与する。
A convex inner wall surface 22W3 corresponding to the recess 30 is formed on the inner surface of the partition wall 23 (inner wall surface of the sub chamber 22), and the air entering the sub chamber 22 through the swirl flow generation communication passage 24c is convex. By colliding with the shaped inner wall portion 22W3, a turbulent flow is generated to promote mixing of the fuel with air, and then, while rising, along the cylindrical inner wall surface (cylindrical inner wall surface) in the upper part of the sub chamber 22. It is rectified and develops into a high-speed swirl flow.
Therefore, the convex inner wall portion 22W3 corresponding to the concave portion 30 contributes to the uniformization of the equivalent ratio in the sub chamber 22.
 また、燃料流入連通路24aを通じて副室22内に導入される燃料(燃料を多く含んだ混合気)は、副室22内の縮径内壁面22W2から点火プラグ18の火花放電部18aに近い円筒状内壁面22W1上の位置P1に向かうことで、火花放電部18aの付近に濃い混合気を生成しやすくなる。
 しかし、図4Aに示すように、縮径内壁面22W2においてスワール流が生成されると、スワール流が燃料の上記進行を妨げてしまうおそれがある。この点、本実施形態では、上記のように、縮径内壁面22W2に凸状内壁部22W3が形成されているので、図4Bに示すように、副室22内に進入する空気は、凸状内壁部22W3に衝突することで乱流を発生するため、縮径内壁面22W2ではスワール流は生成されにくい。このため、燃料の進行が妨げられにくくなり、火花放電部18aの付近に濃い混合気を生成しやすくなる。
Further, the fuel (fuel-rich air-fuel mixture) introduced into the sub chamber 22 through the fuel inflow passage 24a is a cylinder close to the spark discharge portion 18a of the spark plug 18 from the reduced diameter inner wall surface 22W2 in the sub chamber 22. By moving toward the position P1 on the inner wall surface 22W1, it becomes easier to generate a rich air-fuel mixture in the vicinity of the spark discharge portion 18a.
However, as shown in FIG. 4A, when a swirl flow is generated on the reduced diameter inner wall surface 22W2, the swirl flow may hinder the progress of the fuel. In this respect, in the present embodiment, as described above, the convex inner wall portion 22W3 is formed on the reduced diameter inner wall surface 22W2, so that the air entering the sub chamber 22 is convex as shown in FIG. 4B. Since turbulence is generated by colliding with the inner wall portion 22W3, it is difficult to generate a swirl flow on the reduced diameter inner wall surface 22W2. Therefore, the progress of the fuel is less likely to be hindered, and a rich air-fuel mixture is likely to be generated in the vicinity of the spark discharge portion 18a.
 ただし、縮径内壁面22W2においてスワール流が生成されてもこの段階ではスワール流は強くはないので、位置P1に向かう燃料の速度が高ければ、凸状内壁部22W3が形成されていない場合でも、火花放電部18aの付近に支障なく濃い混合気を生成しうる状況も考えられる。 However, even if a swirl flow is generated on the reduced diameter inner wall surface 22W2, the swirl flow is not strong at this stage. Therefore, if the fuel velocity toward the position P1 is high, even if the convex inner wall portion 22W3 is not formed, the swirl flow is not formed. It is also conceivable that a rich air-fuel mixture can be generated in the vicinity of the spark discharge unit 18a without any trouble.
 また、本実施形態では、燃料噴射弁17から噴射された燃料は、まず、凹部30の受面30aに衝突する。このため、直噴燃料は、凹部30内及びその近傍で滞留しながら分裂や気化を促進され、開口部24bから燃料流入連通路24aを経て副室22内へ導入される。この凹部30内での分裂や気化は、その後の副室22での空気との混合促進に寄与する。 Further, in the present embodiment, the fuel injected from the fuel injection valve 17 first collides with the receiving surface 30a of the recess 30. Therefore, the direct-injection fuel is promoted to split and vaporize while staying in the recess 30 and its vicinity, and is introduced into the sub-chamber 22 from the opening 24b via the fuel inflow communication passage 24a. The splitting and vaporization in the recess 30 contributes to the subsequent promotion of mixing with air in the sub chamber 22.
 このように、直噴燃料は、凹部30内にキャッチされて開口部24bから燃料流入連通路24aに進むため、インジェクタ17から噴射された燃料の一部が副室22内に進入しないで、隔壁23(副室22の壁部)の外面に沿って通過してしまうことが抑制され、インジェクタ17と反対側に到達し濃い混合気を形成することが回避又は抑制される。したがって、濃い混合気によりNOxを多く生成してしまうことが回避又は抑制される。 In this way, the direct-injection fuel is caught in the recess 30 and proceeds from the opening 24b to the fuel inflow passage 24a, so that a part of the fuel injected from the injector 17 does not enter the sub-chamber 22 and the partition wall. Passing along the outer surface of 23 (the wall portion of the sub chamber 22) is suppressed, and reaching the opposite side of the injector 17 to form a rich air-fuel mixture is avoided or suppressed. Therefore, it is possible to avoid or suppress the generation of a large amount of NOx due to the rich air-fuel mixture.
 また、燃料流入連通路24aの開口部24bは、凹部30の底部又は底部近傍に配置されているため、受面30aに衝突して分裂や気化を促進された燃料は、凹部30の壁面に沿って開口部24bから燃料流入連通路24aを経て副室22内に滑らかに流入する。 Further, since the opening 24b of the fuel inflow passage 24a is arranged at the bottom of the recess 30 or near the bottom, the fuel that collides with the receiving surface 30a and is promoted to split or vaporize is along the wall surface of the recess 30. The fuel smoothly flows into the sub chamber 22 from the opening 24b through the fuel inflow passage 24a.
 燃料流入連通路24aは、点火プラグ18の火花放電部18aに近づく方向に傾斜しているので、燃料流入連通路24aを経た燃料は、副室22上部の火花放電部18aに向かい、火花放電部18aに近傍に集中的に燃料の濃い混合気を形成する。このため、点火プラグ18による点火及びその後副室22内に形成される火炎を強化することができ、複数の連通路24を介して主室21内に強いジェット噴出させて主室21内の混合気へ点火し、燃焼を促進させることができる。 Since the fuel inflow communication passage 24a is inclined in a direction approaching the spark discharge portion 18a of the spark plug 18, the fuel passing through the fuel inflow communication passage 24a goes toward the spark discharge portion 18a in the upper part of the sub chamber 22 and is directed to the spark discharge portion 18a. A rich fuel mixture is concentrated in the vicinity of 18a. Therefore, the ignition by the spark plug 18 and the flame formed in the sub chamber 22 after that can be strengthened, and a strong jet is ejected into the main chamber 21 through the plurality of communication passages 24 to mix in the main chamber 21. It can ignite the qi and promote combustion.
 [その他]
 上述した副室式火花点火エンジンの構成は一例である。例えば、副室22、即ち、副室22を区画する隔壁23の配置は、必ずしも燃焼室20の頂部20aのボア中心軸又はボア中心軸の近傍に限定されず、燃焼室20の頂部20aにも限定されない。
 また、上記実施形態では、燃料流入連通路24aを1本のみ設けているが、凹部30内に燃料流入連通路24aを複数設けてもよい。
 また、燃料噴射弁17は、副室22内に燃料供給するための噴射口の他に、主室21内に燃料供給するための噴射口を備えていても良い。
[others]
The configuration of the sub-chamber spark ignition engine described above is an example. For example, the arrangement of the sub chamber 22, that is, the partition wall 23 for partitioning the sub chamber 22, is not necessarily limited to the bore central axis of the top 20a of the combustion chamber 20 or the vicinity of the bore central axis, and also the top 20a of the combustion chamber 20. Not limited.
Further, in the above embodiment, only one fuel inflow communication passage 24a is provided, but a plurality of fuel inflow communication passages 24a may be provided in the recess 30.
Further, the fuel injection valve 17 may be provided with an injection port for supplying fuel into the main chamber 21 in addition to the injection port for supplying fuel into the sub chamber 22.
 また、上記実施形態では、凹部30を形成しているが、これは必須ではなく、副室22、即ち、副室22を区画する隔壁23の形状を、図6に示すように、燃料流入連通路24aのみを除いて完全な回転体形状にしてもよい。
 また、凹部30を設ける場合にも、凹部30を滑らかな曲面で形成されたすり鉢状或いは錐面を用いたファンネル(漏斗)形状としたが、凹部30の形状はこれに限定されない。
 さらに、上記実施形態では、開口部24bを凹部30の底部又は底部近傍に配置しているが、凹部30の内面形状が受部30aで受けた燃料を開口部24bに案内しうる形状であれば、開口部24bを凹部30の底部又は底部近傍以外に配置してもよい。
Further, in the above embodiment, the recess 30 is formed, but this is not essential, and the shape of the sub chamber 22, that is, the partition wall 23 for partitioning the sub chamber 22, is shown in the fuel inflow chain as shown in FIG. It may have a perfect rotating body shape except for the passage 24a.
Further, when the recess 30 is also provided, the recess 30 has a funnel shape using a mortar-shaped or conical surface formed by a smooth curved surface, but the shape of the recess 30 is not limited to this.
Further, in the above embodiment, the opening 24b is arranged at the bottom of the recess 30 or near the bottom, but if the inner surface shape of the recess 30 is a shape that can guide the fuel received by the receiving portion 30a to the opening 24b. , The opening 24b may be arranged at the bottom of the recess 30 or near the bottom.
 1 副室式火花点火エンジン(エンジン)
 2 シリンダブロック
 3 シリンダヘッド
 11 シリンダ
 12 ピストン
 13 吸気ポート
 14 排気ポート
 15 吸気弁
 16 排気弁
 17 燃料噴射弁
 18 点火プラグ
 18a 火花放電部
 20 燃焼室
 20a 燃焼室20の頂部
 CL 副室中心軸
 21 主室(主燃焼室)
 22 副室(副燃焼室)
 22W 副室内壁面
 22W1 円筒状内壁面
 22W2 縮径内壁面
 22W3 凸状内壁部
 23 隔壁
 24 連通路(ノズル)
 24a 燃料流入連通路(ノズル)
 24b 燃料流入連通路24aの開口部
 24c スワール流形成連通路(ノズル)
 30,30A,30B 凹部
 30a 受面
 31 凸部
1 Sub-chamber spark ignition engine (engine)
2 Cylinder block 3 Cylinder head 11 Cylinder 12 Piston 13 Intake port 14 Exhaust port 15 Intake valve 16 Exhaust valve 17 Fuel injection valve 18 Spark plug 18a Spark discharge part 20 Combustion chamber 20a Top of combustion chamber 20 CL Sub-chamber Central shaft 21 Main room (Main combustion chamber)
22 Sub-chamber (sub-combustion chamber)
22W Sub-indoor wall surface 22W1 Cylindrical inner wall surface 22W2 Reduced diameter inner wall surface 22W3 Convex inner wall part 23 Partition wall 24 consecutive passages (nozzles)
24a Fuel inflow passage (nozzle)
24b Opening of fuel inflow passage 24a 24c Swirl flow formation passage (nozzle)
30, 30A, 30B Recessed surface 30a Receiving surface 31 Convex part

Claims (6)

  1.  主室と、前記主室と隔壁により区画された副室と、前記隔壁に設けられ前記主室と前記副室とを連通する複数の連通路と、前記副室の中心軸又は前記中心軸の近傍に設けられて前記副室内の混合気に点火を行う点火プラグと、を備え、前記副室内の混合気の着火により前記副室内に形成される火炎を、前記連通路を介して前記主室内に噴出させて前記主室内の混合気に着火する、副室式火花点火エンジンであって、
     前記連通路は、
     前記副室の前記中心軸に向かう方向に対して傾斜した角度で形成され、前記主室からの圧縮空気によって前記副室内にスワール流を生成するスワール流生成連通路と、
     前記副室の前記中心軸に向かう方向に対して前記スワール流生成連通路とは異なる角度で形成され、前記主室側から前記副室内に燃料を供給する燃料流入連通路と、を含んでいる
    ことを特徴とする、副室式火花点火エンジン。
    A main room, a sub-chamber partitioned by the main room and a partition wall, a plurality of communication passages provided in the partition wall and communicating the main room and the sub-chamber, and a central axis of the sub-chamber or the central axis of the sub-chamber. An ignition plug provided in the vicinity for igniting the air-fuel mixture in the sub-chamber is provided, and a flame formed in the sub-chamber by ignition of the air-fuel mixture in the sub-chamber is transmitted to the main chamber via the communication passage. It is a sub-chamber type spark ignition engine that ignites the air-fuel mixture in the main chamber.
    The passageway
    A swirl flow generation communication passage formed at an angle inclined with respect to the central axis of the sub chamber and generating a swirl flow in the sub chamber by compressed air from the main chamber.
    A fuel inflow passage that is formed at an angle different from that of the swirl flow generation passage with respect to the direction toward the central axis of the sub chamber and supplies fuel from the main chamber side to the sub chamber is included. A sub-chamber spark ignition engine that features this.
  2.  前記スワール流生成連通路及び前記燃料流入連通路は、前記副室の一端側に形成され、前記点火プラグは前記副室の他端側に形成され、
     前記スワール流生成連通路及び前記燃料流入連通路は、前記主室から前記副室に向かうにつれて、前記一端側から前記他端側に向かうように傾斜して形成され、前記燃料流入連通路の延長線が前記隔壁の前記副室側の面である副室内壁面に到達する位置は、前記スワール流生成連通路の延長線が前記副室内壁面に到達する位置よりも、前記他端側である
    ことを特徴とする、請求項1に記載された副室式火花点火エンジン。
    The swirl flow generation passage and the fuel inflow passage are formed on one end side of the sub chamber, and the spark plug is formed on the other end side of the sub chamber.
    The swirl flow generation communication passage and the fuel inflow communication passage are formed so as to be inclined from one end side toward the other end side as the main chamber toward the sub chamber, and the fuel inflow communication passage is extended. The position where the line reaches the sub-chamber wall surface, which is the surface of the partition wall on the sub-chamber side, is on the other end side of the position where the extension line of the swirl flow generation continuous passage reaches the sub-chamber wall surface. The sub-chamber spark ignition engine according to claim 1.
  3.  前記副室内壁面の前記他端側は、円筒形状に形成された円筒状内壁面であって、
     前記燃料流入連通路の延長線は、前記円筒状内壁面に到達する
    ことを特徴とする、請求項2に記載された副室式火花点火エンジン。
    The other end side of the sub-chamber wall surface is a cylindrical inner wall surface formed in a cylindrical shape.
    The sub-chamber spark ignition engine according to claim 2, wherein the extension line of the fuel inflow passage reaches the cylindrical inner wall surface.
  4.  前記副室内壁面の前記円筒状内壁面よりも前記一端側には、前記他端側から前記一端側に向かうにつれて次第に断面積が小さくなる縮径内壁面が形成されている
    ことを特徴とする、請求項3に記載された副室式火花点火エンジン。
    A reduced-diameter inner wall surface is formed on one end side of the sub-chamber wall surface with respect to the cylindrical inner wall surface so that the cross-sectional area gradually decreases from the other end side toward the one end side. The sub-chamber spark ignition engine according to claim 3.
  5.  前記隔壁の前記主室側の面には前記一端側に凹部が形成され、前記燃料流入連通路は前記凹部に形成される
    ことを特徴とする、請求項2~4のいずれか1項に記載の副室式火花点火エンジン。
    The aspect according to any one of claims 2 to 4, wherein a recess is formed on one end side of the surface of the partition wall on the main chamber side, and the fuel inflow passage is formed in the recess. Sub-chamber spark ignition engine.
  6.  前記主室内に燃料を噴射する燃料噴射弁を備え、
     前記凹部は、前記燃料噴射弁からの直噴燃料が衝突する受面を備えている
    ことを特徴とする、請求項5に記載の副室式火花点火エンジン。
    A fuel injection valve for injecting fuel into the main chamber is provided.
    The sub-chamber spark ignition engine according to claim 5, wherein the recess is provided with a receiving surface on which direct-injection fuel from the fuel injection valve collides.
PCT/JP2020/025900 2020-02-10 2020-07-01 Sub-chamber spark ignition engine WO2021161553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022500215A JP7226639B2 (en) 2020-02-10 2020-07-01 Pre-chamber spark ignition engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-020843 2020-02-10
JP2020020843 2020-02-10

Publications (1)

Publication Number Publication Date
WO2021161553A1 true WO2021161553A1 (en) 2021-08-19

Family

ID=77291474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025900 WO2021161553A1 (en) 2020-02-10 2020-07-01 Sub-chamber spark ignition engine

Country Status (2)

Country Link
JP (1) JP7226639B2 (en)
WO (1) WO2021161553A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181393A1 (en) * 2022-03-25 2023-09-28 三菱自動車工業株式会社 Engine
WO2023181398A1 (en) * 2022-03-25 2023-09-28 三菱自動車工業株式会社 Engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173524A (en) * 1981-01-17 1982-10-25 Bosch Gmbh Robert Internal combustion engine ignited from outside
JP2004204835A (en) * 2002-10-28 2004-07-22 Toyota Motor Corp Spark ignition type internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144648A (en) 2004-11-18 2006-06-08 Nissan Motor Co Ltd Precombustion chamber spark ignition internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173524A (en) * 1981-01-17 1982-10-25 Bosch Gmbh Robert Internal combustion engine ignited from outside
JP2004204835A (en) * 2002-10-28 2004-07-22 Toyota Motor Corp Spark ignition type internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181393A1 (en) * 2022-03-25 2023-09-28 三菱自動車工業株式会社 Engine
WO2023181398A1 (en) * 2022-03-25 2023-09-28 三菱自動車工業株式会社 Engine

Also Published As

Publication number Publication date
JP7226639B2 (en) 2023-02-21
JPWO2021161553A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US9797296B2 (en) Pre-chamber for internal combustion engine
EP1953361B1 (en) Cylinder-injection spark-ignition internal combustion engine
JP2002201946A (en) Cylinder direct fuel injection spark ignition engine
JP2005195001A (en) Direct injection engine
CN108026880B (en) Engine
JP2009197704A (en) Sub-chamber type gas engine
WO2021161553A1 (en) Sub-chamber spark ignition engine
JP2004502088A (en) Fuel injection system
JP2001003753A (en) Auxiliary chamber system of gas engine
JP4306710B2 (en) Fuel injection nozzle
WO2021161552A1 (en) Auxiliary chamber engine
JP2005155624A (en) Fuel injection system
EP2192287B1 (en) Direct injection internal combustion engine
JP5006905B2 (en) In-cylinder injection spark ignition internal combustion engine
WO2021161554A1 (en) Auxiliary chamber-type engine
JP5146248B2 (en) In-cylinder direct injection internal combustion engine
JP2564396Y2 (en) Combustion chamber of subchamber internal combustion engine
JP2022081705A (en) Auxiliary chamber type internal combustion engine
WO2020196682A1 (en) Auxiliary chamber-type internal combustion engine
JP6694684B2 (en) engine
US20070261664A1 (en) Internal combustion engine with direct fuel injection
WO2023181398A1 (en) Engine
JP7255673B2 (en) pre-chamber internal combustion engine
JPH0630433U (en) Gas engine torch ignition device
WO2020196683A1 (en) Auxiliary chamber-type internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918193

Country of ref document: EP

Kind code of ref document: A1