JP7255673B2 - pre-chamber internal combustion engine - Google Patents

pre-chamber internal combustion engine Download PDF

Info

Publication number
JP7255673B2
JP7255673B2 JP2021509277A JP2021509277A JP7255673B2 JP 7255673 B2 JP7255673 B2 JP 7255673B2 JP 2021509277 A JP2021509277 A JP 2021509277A JP 2021509277 A JP2021509277 A JP 2021509277A JP 7255673 B2 JP7255673 B2 JP 7255673B2
Authority
JP
Japan
Prior art keywords
chamber
fuel
injection
main chamber
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021509277A
Other languages
Japanese (ja)
Other versions
JPWO2020196204A1 (en
Inventor
欣也 井上
大 田中
貴之 城田
一成 野中
遼太 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Publication of JPWO2020196204A1 publication Critical patent/JPWO2020196204A1/ja
Application granted granted Critical
Publication of JP7255673B2 publication Critical patent/JP7255673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • F02B19/18Transfer passages between chamber and cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本開示は、副室式内燃機関に関する。 The present disclosure relates to pre-chamber internal combustion engines.

従来から、主室(主燃焼室)およびその主室に連通路を介して連結された副室(副燃焼室)を備えた副室式内燃機関が提案されている(例えば、日本国特許第4561522号公報参照)。このような副室式内燃機関では、主室に噴射された燃料から混合気が形成される。形成された混合気は、圧縮時に連通路を介して副室内に供給され、副室内で点火プラグによって点火される。これにより、火炎が形成される。副室内で形成された火炎は、連通路を介して主室に噴射され、主室の混合気を着火する。このように、副室で形成された火炎を主室に噴射することによって、主室の燃焼速度が高まる。これによって、より希薄な空燃比での運転が可能となり、燃費が向上する。 Conventionally, there has been proposed a pre-combustion engine having a main chamber (main combustion chamber) and a sub-combustion chamber connected to the main chamber via a communication passage (for example, Japanese Patent No. 4561522). In such a pre-chamber internal combustion engine, an air-fuel mixture is formed from fuel injected into the main chamber. The formed air-fuel mixture is supplied into the pre-chamber through the communication passage during compression and is ignited by the spark plug in the pre-chamber. This creates a flame. The flame formed in the auxiliary chamber is jetted into the main chamber through the communication passage and ignites the air-fuel mixture in the main chamber. By injecting the flame formed in the pre-chamber into the main chamber in this way, the combustion speed in the main chamber increases. This allows operation at leaner air-fuel ratios and improves fuel efficiency.

日本国特許第4561522号公報に記載された副室式内燃機関は、主室内に燃料を直接噴射する直噴式の副室式内燃機関である。この副室式内燃機関では、燃料噴射弁から噴射された燃料がピストンの冠面に当たり、噴霧された燃料の微粒化が促進される。こののち、副室に混合気が供給される。 The pre-chamber internal combustion engine described in Japanese Patent No. 4561522 is a direct-injection pre-chamber internal combustion engine that directly injects fuel into the main chamber. In this pre-chamber internal combustion engine, the fuel injected from the fuel injection valve hits the crown surface of the piston, promoting the atomization of the sprayed fuel. After that, the air-fuel mixture is supplied to the pre-chamber.

主室に直接燃料を噴射する直噴式の内燃機関は、気化した燃料を効率的に副室に供給することによって副室内の点火安定性を向上させるメリットを有する。しかし、その点火安定性の実現が難しく、理想的な空燃比よりも燃料が濃い状態(リッチ)でも薄い状態(リーン)でも安定して点火することは難しい。 A direct-injection internal combustion engine that directly injects fuel into the main chamber has the advantage of improving ignition stability in the pre-chamber by efficiently supplying vaporized fuel to the pre-chamber. However, it is difficult to realize the ignition stability, and it is difficult to stably ignite even when the fuel is rich (rich) or lean (lean) than the ideal air-fuel ratio.

本開示の実施形態は、副室内の点火安定性が向上した副室式内燃機関に関する。 Embodiments of the present disclosure relate to a pre-chamber internal combustion engine with improved ignition stability in the pre-chamber.

本開示の実施形態によれば、副室式内燃機関は、主室と、副室と、連通路と、噴射部と、を備える。主室は、シリンダと、シリンダヘッドと、ピストンと、で画定される。副室は、シリンダヘッドから主室に向けて突出し、主室と隔てて設けられる。連通路は、主室と副室とを連通する。噴射部は、主室に燃料を噴射する複数の第1噴射口を有する。連通路は、副室内で生じた火炎を主室に噴射する第2噴射口を有する。第2噴射口は、噴射部の隣り合う2つの第1噴射口からそれぞれ噴射される噴霧の間に位置する。 According to an embodiment of the present disclosure, a pre-chamber internal combustion engine includes a main chamber, a pre-chamber, a communication passage, and an injection section. A main chamber is defined by the cylinder, the cylinder head, and the piston. The auxiliary chamber protrudes from the cylinder head toward the main chamber and is separated from the main chamber. The communication passage communicates the main chamber and the sub chamber. The injection part has a plurality of first injection ports that inject fuel into the main chamber. The communication passage has a second injection port for injecting the flame generated in the auxiliary chamber into the main chamber. The second injection port is positioned between sprays respectively injected from two adjacent first injection ports of the injection part.

この副室式内燃機関では、噴射部に対向する連通路の第2噴射口は、噴射部の間隔をもって配置された隣り合う2つの第1噴射口からそれぞれ噴射される噴霧の間に位置する。これによって、噴射部から副室に向かって噴射される噴霧は、連通路の第2噴射口には直接当たりにくくなる。このため、噴霧に含まれる大きな燃料液滴が連通路を介して副室に入ることが防止される。また、この連通路の第2噴射口は、噴霧の間の領域に位置する。噴霧の間の領域は、噴霧本体に比べて燃料の貫徹力が弱く、大きな燃料液滴が含まれにくく、燃料の微粒化が進んでいる。この微粒化が進んだ燃料が、連通路を介して副室に供給される。さらに、噴射部から副室に向かって噴射される噴霧は、副室の隔壁の外周に沿って流れる。噴射後の噴霧は、コアンダ効果によって、周りの流体、すなわち連通路を介して副室内の空気を引き込みながら噴射部とは反対方向の下流へと流れる。そして、噴霧本体よりも貫徹力が弱い噴霧間の混合気であって、燃料の微粒化が進んでいる混合気が、連通路を介して副室内に新たに導入される。これによって、副室内の混合気が均質になる。このため、副室に向けた燃料噴射による燃料供給が効率化される。また、副室内の安定した点火および火炎噴射が実現される。この結果、副室内の点火安定性が向上する。 In this pre-chamber type internal combustion engine, the second injection port of the communication passage facing the injection portion is positioned between the sprays injected from the two adjacent first injection ports arranged with an interval of the injection portion. This makes it difficult for the spray that is injected from the injection part toward the pre-chamber to hit the second injection port of the communication passage directly. Therefore, large fuel droplets contained in the spray are prevented from entering the pre-chamber through the communication passage. Also, the second injection port of this communication passage is located in the region between the sprays. In the area between the sprays, the fuel penetration is weaker than that of the main part of the spray, and large fuel droplets are less likely to be included, and the fuel atomization is advanced. The atomized fuel is supplied to the pre-chamber through the communication passage. Further, the spray injected from the injection part toward the pre-chamber flows along the outer periphery of the partition wall of the pre-chamber. After the injection, the spray flows downstream in the direction opposite to the injection part while drawing in the surrounding fluid, that is, the air in the pre-chamber through the communication passage, due to the Coanda effect. Then, an air-fuel mixture between the sprays having a weaker penetration force than the main part of the spray and in which the fuel atomization has progressed is newly introduced into the pre-chamber through the communication passage. This makes the air-fuel mixture in the pre-chamber homogeneous. Therefore, the efficiency of fuel supply by fuel injection toward the pre-chamber is improved. Also, stable ignition and flame injection in the pre-chamber are realized. As a result, ignition stability in the pre-chamber is improved.

連通路の第2噴射口は、噴射部の第1噴射口から噴射される噴霧の中心軸線と離間してもよい。 The second injection port of the communication passage may be separated from the central axis of the spray injected from the first injection port of the injection section.

この構成によれば、連通路の第2噴射口は噴射される噴霧の中心軸線と離間しているので、貫徹力の強い噴霧が連通路に向かうことがない。この結果、副室内への微粒化された燃料の供給が促進され、副室内の混合気の均質化が促進される。 According to this configuration, since the second injection port of the communication passage is spaced from the central axis of the injected spray, the spray with strong penetrating force does not go toward the communication passage. As a result, the supply of atomized fuel into the pre-chamber is promoted, and the homogenization of the air-fuel mixture in the pre-chamber is promoted.

副室は、隔壁に画定されることで主燃焼室と隔てられてもよく、隔壁は、噴射部の第1噴射口から噴射される噴霧が通る位置に、内側に凹んだ凹部を有してもよい。 The auxiliary chamber may be separated from the main combustion chamber by being defined by a partition wall, and the partition wall has an inwardly recessed recess at a position through which the spray injected from the first injection port of the injection unit passes. good too.

この構成によれば、噴射された噴霧が副室に直接当たらないので、よりコアンダ効果が期待される。この結果、副室内への微粒化された燃料の供給が促進され、副室内の混合気の均質化が促進される。 According to this configuration, since the injected spray does not directly hit the pre-chamber, a better Coanda effect can be expected. As a result, the supply of atomized fuel into the pre-chamber is promoted, and the homogenization of the air-fuel mixture in the pre-chamber is promoted.

本開示の一実施形態による副室式内燃機関の概略構成を示す縦断面図。1 is a longitudinal sectional view showing a schematic configuration of a pre-chamber internal combustion engine according to an embodiment of the present disclosure; FIG. 図1の副室式内燃機関の副室と燃料噴射弁から噴射される噴霧との関係を示す横断面図。FIG. 2 is a cross-sectional view showing the relationship between the pre-chamber of the pre-chamber internal combustion engine of FIG. 1 and the spray injected from the fuel injection valve; 図1の副室式内燃機関の副室と燃料噴射弁から噴射される噴霧との関係を示す、クランク軸方向に垂直な縦断面図。FIG. 2 is a longitudinal sectional view perpendicular to the direction of the crankshaft, showing the relationship between the pre-chamber of the pre-chamber internal combustion engine of FIG. 1 and the spray injected from the fuel injection valve; 図1の副室式内燃機関の副室と燃料噴射弁から噴射される噴霧との関係を示す、左右方向に垂直な縦断面図。FIG. 2 is a longitudinal cross-sectional view perpendicular to the left-right direction, showing the relationship between the pre-chamber of the pre-chamber internal combustion engine of FIG. 1 and the spray injected from the fuel injection valve; 本開示の他の実施形態の副室式内燃機関の副室と燃料噴射弁から噴射される噴霧との関係を示す横断面図。FIG. 4 is a transverse cross-sectional view showing the relationship between a pre-chamber of a pre-chamber internal combustion engine of another embodiment of the present disclosure and spray injected from a fuel injection valve; 図4Aの副室式内燃機関の副室と燃料噴射弁から噴射される噴霧との関係を示す、クランク軸方向に垂直な縦断面図。FIG. 4B is a vertical cross-sectional view perpendicular to the crankshaft direction, showing the relationship between the pre-chamber of the pre-chamber internal combustion engine of FIG. 4A and the spray injected from the fuel injection valve; 本開示の他の実施形態の副室式内燃機関の副室と燃料噴射弁から噴射される噴霧との関係を示す、左右方向に垂直な縦断面図。FIG. 10 is a longitudinal cross-sectional view perpendicular to the left-right direction, showing the relationship between the pre-chamber of the pre-chamber internal combustion engine of another embodiment of the present disclosure and the spray injected from the fuel injection valve;

以下、本開示の実施形態について、図面を参照しながら説明する。なお、以下明細書において、シリンダ軸方向Qとは、シリンダに沿ってピストンが摺動する方向を示す。上下方向と記す場合とは、シリンダ軸方向Qを示し、シリンダヘッド側を「上」、ピストン側を「下」とする。また、左右方向Rとは、シリンダ軸方向Qに直交し、吸気ポートおよび排気ポートが配置される方向を示す。また、クランク軸方向Pとは、シリンダ軸方向Qに直交し、気筒が配置される方向を示す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following specification, the cylinder axial direction Q indicates the direction in which the piston slides along the cylinder. The vertical direction refers to the cylinder axial direction Q, with the cylinder head side being "up" and the piston side being "down". The left-right direction R is orthogonal to the cylinder axial direction Q and indicates the direction in which the intake port and the exhaust port are arranged. The crankshaft direction P is perpendicular to the cylinder shaft direction Q and indicates the direction in which the cylinders are arranged.

図1に示すように、副室式内燃機関1は、主室4と、主室4と隣接する副室6と、主室4と副室6とを連通する複数の連通路8と、点火プラグ10と、燃料噴射弁(噴射部の一例)12と、を備える。本実施形態では、副室式内燃機関1は、主室4および副室6を含む気筒Nが、直列に複数配列された直列型内燃機関である。すなわち、主室4、副室6、複数の連通路8、点火プラグ10、および、燃料噴射弁12は、各気筒Nに備えられる。しかし、気筒Nの配列についてはこれに限定されず、V型であっても水平対向型であってもよい。 As shown in FIG. 1, a pre-chamber internal combustion engine 1 includes a main chamber 4, a sub-chamber 6 adjacent to the main chamber 4, a plurality of communication passages 8 communicating between the main chamber 4 and the sub-chamber 6, an ignition A plug 10 and a fuel injection valve (an example of an injection portion) 12 are provided. In this embodiment, the sub-chamber internal combustion engine 1 is an in-line internal combustion engine in which a plurality of cylinders N including the main chamber 4 and the sub chamber 6 are arranged in series. That is, each cylinder N is provided with a main chamber 4 , a sub chamber 6 , a plurality of communication passages 8 , a spark plug 10 , and a fuel injection valve 12 . However, the arrangement of the cylinders N is not limited to this, and may be V-shaped or horizontally opposed.

主室4は、シリンダブロック101のシリンダ101a、シリンダヘッド102、およびピストン103で画定された空間である。本実施形態では、主室4は、ペントルーフ形状であり、シリンダヘッド102の吸気ポート105側および排気ポート110側に向けて2つの斜面を有する。主室4は、吸気カム(図示せず)によって駆動される吸気バルブ104を介して吸気ポート105に接続される。吸気ポート105は、図示しない吸気通路、スロットルバルブ、および、エアクリーナに接続される。また、主室4は、排気カム(図示せず)によって駆動される排気バルブ109を介して、排気ポート110、排気通路(図示せず)、および、気浄化触媒(図示せず)に接続される。なお、副室式内燃機関1は、図示しないクランク軸によって動力をトランスミッションなどの動力伝達装置に伝達する。ピストン103は、図示しないコンロッドを介してクランク軸を駆動する。 The main chamber 4 is a space defined by the cylinders 101 a of the cylinder block 101 , the cylinder head 102 and the pistons 103 . In this embodiment, the main chamber 4 has a pent roof shape and has two slopes toward the intake port 105 side and the exhaust port 110 side of the cylinder head 102 . The main chamber 4 is connected to an intake port 105 via an intake valve 104 driven by an intake cam (not shown). The intake port 105 is connected to an intake passage (not shown), a throttle valve, and an air cleaner. The main chamber 4 is also connected to an exhaust port 110, an exhaust passage (not shown), and an air purification catalyst (not shown) via an exhaust valve 109 driven by an exhaust cam (not shown). be. The auxiliary chamber internal combustion engine 1 transmits power to a power transmission device such as a transmission through a crankshaft (not shown). Piston 103 drives the crankshaft via a connecting rod (not shown).

副室6は、主室4のペントルーフ形状の頂上部に設けられ、主室4と隣接する。副室6は、副室壁(隔壁)61で画定された空間である。副室6は、シリンダヘッド102から主室4に向かって突出し、副室壁61によって画定されることで主室4と隔てられる。本実施形態では、副室6は、主室4のペントルーフ形状の2つの斜面の交線(稜線)の略中央に設けられる。本実施形態では、副室6は主室4と同じ中心X1を有する。しかし、副室6は、主室4の略中央からオフセットして設けられてもよい。副室壁61は、断面が円形に形成される側壁部と、主室4に臨む底部61aとを含む。底部61aは、例えば、半球状に形成される。しかし、底部61aの形状は半球状に限定されない。底部61aには、連通路8が設けられる。 The auxiliary chamber 6 is provided at the top of the pent roof shape of the main chamber 4 and adjoins the main chamber 4 . The sub-chamber 6 is a space defined by a sub-chamber wall (partition wall) 61 . The sub chamber 6 protrudes from the cylinder head 102 toward the main chamber 4 and is separated from the main chamber 4 by being defined by a sub chamber wall 61 . In this embodiment, the auxiliary chamber 6 is provided substantially at the center of the line of intersection (ridge line) of the two slopes of the pent roof shape of the main chamber 4 . In this embodiment, the subchamber 6 has the same center X1 as the main chamber 4 . However, the auxiliary chamber 6 may be provided offset from the approximate center of the main chamber 4 . The auxiliary chamber wall 61 includes a side wall portion having a circular cross section and a bottom portion 61 a facing the main chamber 4 . The bottom portion 61a is formed, for example, in a hemispherical shape. However, the shape of the bottom portion 61a is not limited to a hemispherical shape. A communicating passage 8 is provided in the bottom portion 61a.

図2Aに示すように、複数の連通路8は、副室壁61の底部61a(図2B参照)に放射状に設けられる。連通路8は、主室4と副室6とを連通し、主室4の混合気を副室6に導く。また、連通路8は、副室6内で点火された火炎を主室4に送り出す。図3に拡大して示すように、連通路8は、主室4に臨む噴射口(第2噴射口)8aと、副室6に臨む導入口8bとを有する。本実施形態では、連通路8は、図2Aに示すように、例えば、6個設けられる。 As shown in FIG. 2A, the plurality of communicating passages 8 are radially provided in the bottom portion 61a (see FIG. 2B) of the auxiliary chamber wall 61. As shown in FIG. The communication passage 8 communicates the main chamber 4 and the sub chamber 6 and guides the air-fuel mixture in the main chamber 4 to the sub chamber 6 . Also, the communication passage 8 sends out the flame ignited in the auxiliary chamber 6 to the main chamber 4 . As shown enlarged in FIG. 3, the communication passage 8 has an injection port (second injection port) 8a facing the main chamber 4 and an introduction port 8b facing the auxiliary chamber 6. As shown in FIG. In this embodiment, for example, six communication paths 8 are provided as shown in FIG. 2A.

図3に示すように、連通路8のうち、燃料噴射弁12に対向して配置された2個の連通路8(吸気側に配置される連通路8)の噴射口8aは、燃料噴射弁12のクランク軸方向Pに間隔をもって配置された隣り合う2つの噴射口(第1噴射口)12aからそれぞれ噴射される噴霧(噴霧本体)Sの間に位置する。より具体的には、本実施形態では、燃料噴射弁12の8つの噴射口12aのうち、上下方向において一番上にあり、クランク軸方向Pに隣り合う2つの噴射口12aから噴射される噴霧Sの間に、連通路8の噴射口8aが位置する。これによって、噴射口8aに噴霧Sが直接当たらないようになり、燃料噴射弁12から噴射された燃料が連通路8を通って副室6内に直接入りにくくなる。なお、複数の連通路8うち、少なくとも一つの連通路8の噴射口8aが、燃料噴射弁12のクランク軸方向Pにおいて隣り合う2つの噴射口12aからそれぞれ噴射される噴霧Sの間に位置していればよい。この構成によれば、噴霧S間の領域にある、燃料の貫徹力が弱く、微粒化された燃料が連通路8を介して副室6に導入される。 As shown in FIG. 3, of the communicating passages 8, two communicating passages 8 arranged opposite to the fuel injection valve 12 (the communicating passage 8 arranged on the intake side) have injection openings 8a connected to the fuel injection valves. It is positioned between sprays (spray bodies) S respectively injected from two adjacent injection openings (first injection openings) 12a arranged at intervals in the crankshaft direction P of 12. More specifically, in the present embodiment, of the eight injection ports 12a of the fuel injection valve 12, the spray is injected from two injection ports 12a that are located at the top in the vertical direction and are adjacent to each other in the crankshaft direction P. Between S, the injection port 8a of the communication passage 8 is positioned. As a result, the spray S does not directly hit the injection port 8a, and the fuel injected from the fuel injection valve 12 is less likely to enter directly into the pre-chamber 6 through the communication passage 8. - 特許庁Note that the injection port 8a of at least one communication passage 8 among the plurality of communication passages 8 is positioned between the sprays S respectively injected from two injection ports 12a adjacent to each other in the crankshaft direction P of the fuel injection valve 12. It is good if there is According to this configuration, the atomized fuel with weak fuel penetration force in the region between the sprays S is introduced into the pre-chamber 6 via the communication passage 8 .

また、図2Aおよび図3に示すように、燃料噴射弁12から噴射される噴霧Sは、噴霧中心軸線Csに沿って噴射される。そして、副室壁61は、クランク軸方向Pからみて、燃料噴射弁12の上下方向において一番上の噴射口12aから噴射される噴霧Sの噴霧中心軸線Csの間に位置する。すなわち、燃料噴射弁12に対向する連通路8の噴射口8aは、燃料噴射弁12の一番上の噴射口12aから噴射される噴霧Sの噴霧中心軸線Csと離間するように配設される。この構成によれば、燃料噴射弁12に対向する配置の連通路8の噴射口8aと噴霧Sとの距離が確保されるので、大きい燃料液滴がより副室6内に入りにくくなる。さらに、噴射された噴霧Sは、副室壁61の底部61aの外周を回り込みながら流れる。このとき、噴霧Sは、コアンダ効果によって、クランク軸方向Pに配置される連通路8、および、排気側に配置される連通路8から、副室6内の混合気を引き込む。これによって、貫徹力が弱く、微粒化の進んだ燃料が、吸気側の連通路8から副室6へ引き込まれやすい。この結果、さらに副室6内の点火が安定する。 Further, as shown in FIGS. 2A and 3, the spray S injected from the fuel injection valve 12 is injected along the spray center axis Cs. The auxiliary chamber wall 61 is located between the spray center axis Cs of the spray S injected from the uppermost injection port 12a in the vertical direction of the fuel injection valve 12 when viewed from the crankshaft direction P. That is, the injection port 8a of the communication passage 8 facing the fuel injection valve 12 is arranged so as to be separated from the spray center axis Cs of the spray S injected from the uppermost injection port 12a of the fuel injection valve 12. . According to this configuration, the distance between the injection port 8a of the communication passage 8 arranged facing the fuel injection valve 12 and the spray S is ensured, so that large fuel droplets are less likely to enter the pre-chamber 6. Further, the injected spray S flows around the outer circumference of the bottom portion 61 a of the auxiliary chamber wall 61 . At this time, the spray S draws in the air-fuel mixture in the pre-chamber 6 from the communication passage 8 arranged in the crankshaft direction P and the communication passage 8 arranged on the exhaust side due to the Coanda effect. As a result, the fuel, which has a weak penetration force and is highly atomized, is easily drawn into the pre-chamber 6 from the communication passage 8 on the intake side. As a result, ignition in the pre-chamber 6 is further stabilized.

図1、図2Aおよび図2Bに示すように、点火プラグ10は、副室6の略中央に配置される。点火プラグ10は、副室6の混合気に点火する。 As shown in FIGS. 1, 2A and 2B, the spark plug 10 is arranged substantially in the center of the pre-chamber 6. As shown in FIG. A spark plug 10 ignites the air-fuel mixture in the pre-chamber 6 .

副室6の容積は、主室4よりも小さく、点火プラグ10で点火された混合気の火炎が、副室6内に素早く伝播する。副室6は、副室6で発生した火炎を、連通路8を介して主室4に噴射する。主室4に噴射された火炎は、主室4の混合気を着火し、燃焼させる。 The volume of the pre-chamber 6 is smaller than that of the main chamber 4 , and the flame of the air-fuel mixture ignited by the spark plug 10 quickly propagates into the pre-chamber 6 . The auxiliary chamber 6 injects the flame generated in the auxiliary chamber 6 into the main chamber 4 through the communication passage 8. - 特許庁The flame injected into the main chamber 4 ignites and burns the air-fuel mixture in the main chamber 4 .

図1、図2A及び図2Bに示すように、燃料噴射弁12は、主室4に向けて設けられる。また、燃料噴射弁12は、副室6の外に設けられる。本実施形態では、図3に拡大して示すように、燃料噴射弁12は、例えば、8つの噴射口12aを有する。また、燃料噴射弁12は、クランク軸方向Pにおいて、副室壁61の両側に向けて燃料を噴射する。8つの噴射口12aは4個で2組とされ、2組の噴射口12aは燃料噴射弁12の中心を中心とする円に沿って設けられる。2組の噴射口12aは、クランク軸方向Pに間隔をもって配置される。本実施形態では、噴射口12aは、主室4に燃料を直接噴射する。すなわち、副室式内燃機関1は、直噴型の内燃機関である。燃料噴射弁12は、図示しない制御部によって、噴射量と噴射時期が制御される。また、燃料噴射弁12は、図示しない燃料噴射ポンプ、および、燃料タンクに接続される。本実施形態では、燃料噴射弁12は、シリンダヘッド102の吸気バルブ104側に配置される。燃料噴射弁12は、燃料を噴霧状にして供給することで、主室4に混合気を形成する。また、燃料噴射弁12は、主室4に燃料を噴射することで、連通路8を介して副室6に燃料を供給する。 As shown in FIGS. 1, 2A and 2B, the fuel injection valve 12 is provided toward the main chamber 4. As shown in FIG. Also, the fuel injection valve 12 is provided outside the auxiliary chamber 6 . In this embodiment, as enlarged in FIG. 3, the fuel injection valve 12 has, for example, eight injection ports 12a. Further, the fuel injection valve 12 injects fuel toward both sides of the auxiliary chamber wall 61 in the crankshaft direction P. As shown in FIG. Two sets of four injection ports 12a are provided, and the two sets of injection ports 12a are provided along a circle having the center of the fuel injection valve 12 as a center. The two sets of injection ports 12a are spaced apart in the crankshaft direction P. As shown in FIG. In this embodiment, the injection port 12 a injects fuel directly into the main chamber 4 . That is, the auxiliary chamber internal combustion engine 1 is a direct injection internal combustion engine. The injection amount and injection timing of the fuel injection valve 12 are controlled by a control unit (not shown). The fuel injection valve 12 is also connected to a fuel injection pump (not shown) and a fuel tank. In this embodiment, the fuel injection valve 12 is arranged on the intake valve 104 side of the cylinder head 102 . The fuel injection valve 12 forms an air-fuel mixture in the main chamber 4 by supplying fuel in the form of atomization. Further, the fuel injection valve 12 supplies fuel to the auxiliary chamber 6 via the communication passage 8 by injecting fuel into the main chamber 4 .

図2Bに示すように、連通路8の噴射口8aは、左右方向Rにおいて噴霧Sの噴霧中心軸線Csと離間してもよい。より具体的には、連通路8の中心軸線Cと噴霧Sの噴霧中心軸線Csがなす角度が、燃料噴射弁12から離れるほど大きくなるように設定されてもよい。この構成によれば、大きい燃料液滴が副室6内により入りにくくなる。この結果、さらに副室6内の点火が安定する。 As shown in FIG. 2B, the injection port 8a of the communication passage 8 may be separated from the spray center axis Cs of the spray S in the left-right direction R. As shown in FIG. More specifically, the angle between the central axis C of the communication passage 8 and the central axis Cs of the spray S may be set to increase as the distance from the fuel injection valve 12 increases. This configuration makes it more difficult for large fuel droplets to enter the pre-chamber 6 . As a result, ignition in the pre-chamber 6 is further stabilized.

このように構成された副室式内燃機関1では、吸気行程では、吸気バルブ104が開弁するとともに、ピストン103が下降し、吸気が主室4および副室6に流入する。本実施形態では、吸気は、図示しない過給機によって加圧される。主室4および副室6の圧力は、吸気の圧力と同じになる。吸気行程では、主として主室4に燃料を供給するための第1噴射を行うように、燃料噴射弁12が制御される。第1噴射によって噴射された燃料は、主室4内で吸気と混じり混合気を形成する。ピストン103が下がるとともに、混合気が主室4全体に供給される。本実施形態では、目標空燃比は、理論空燃比よりもリーンな値に設定される。すなわち、副室式内燃機関1は、希薄燃焼で運転される。これによって、燃費性能が向上する。 In the pre-chamber internal combustion engine 1 configured as described above, the intake valve 104 is opened and the piston 103 is lowered to allow intake air to flow into the main chamber 4 and the pre-chamber 6 during the intake stroke. In this embodiment, intake air is pressurized by a supercharger (not shown). The pressures in the main chamber 4 and the sub chamber 6 will be the same as the intake pressure. In the intake stroke, the fuel injection valve 12 is controlled so as to perform the first injection for supplying fuel mainly to the main chamber 4 . The fuel injected by the first injection mixes with intake air in the main chamber 4 to form an air-fuel mixture. As the piston 103 descends, the air-fuel mixture is supplied to the entire main chamber 4 . In this embodiment, the target air-fuel ratio is set to a value leaner than the stoichiometric air-fuel ratio. That is, the pre-chamber internal combustion engine 1 is operated with lean combustion. This improves fuel efficiency.

圧縮行程では、吸気バルブ104が閉弁するとともにピストン103が上昇し、主室4の混合気が圧縮される。このとき、主室4の圧力は上昇する。また、連通路8を介して副室6に流入する混合気は、連通路8で絞られて圧力損失が生じる。これによって、副室6の圧力は、主室4に対して遅れて上昇する。すなわち、副室6の圧力は、主室4の圧力よりも低くなる。 In the compression stroke, the intake valve 104 is closed, the piston 103 is raised, and the air-fuel mixture in the main chamber 4 is compressed. At this time, the pressure in the main chamber 4 rises. Further, the air-fuel mixture flowing into the pre-chamber 6 through the communication passage 8 is throttled by the communication passage 8 and pressure loss occurs. As a result, the pressure in the auxiliary chamber 6 rises with a delay with respect to the pressure in the main chamber 4 . That is, the pressure in the auxiliary chamber 6 becomes lower than the pressure in the main chamber 4 .

副室6の圧力が主室4の圧力よりも低くなった際に、第2噴射を行うように燃料噴射弁12が制御される。第2噴射は、連通路8を介して副室6に燃料を供給するために行われる。 When the pressure in the auxiliary chamber 6 becomes lower than the pressure in the main chamber 4, the fuel injection valve 12 is controlled to perform the second injection. The second injection is performed to supply fuel to the pre-chamber 6 via the communication passage 8 .

圧縮行程で、ピストン103が上昇すると、混合気が、主室4から連通路8を介して副室6に導入される。このとき、混合気は、連通路8によって副室6に導入される。 During the compression stroke, when the piston 103 rises, the air-fuel mixture is introduced from the main chamber 4 into the auxiliary chamber 6 via the communication passage 8 . At this time, the air-fuel mixture is introduced into the auxiliary chamber 6 through the communication passage 8 .

本実施形態では、副室6と燃料噴射弁12とが上述した配置関係にある。すなわち、燃料噴射弁12から副室6に向かって第2噴射される噴霧Sが、副室壁61に当たらないが傍に届く場合、この噴霧Sは燃料を含んだ粘性流体であるため、噴射後の噴霧Sは、コアンダ効果によって副室壁61に引き寄せられる。そして、噴霧Sは、噴霧中心軸線Csに沿った方向から副室壁61の底部61aに沿って流れる。このとき、噴霧Sは、周りの流体、すなわちクランク軸方向Pに配置される連通路8、および、排気側に配置される連通路8を介して副室6内の空気を引き込みながら下流(中心X1を挟んで燃料噴射弁12とは反対側)へと流れる。そして、噴霧Sに比べて燃料の貫徹力が弱く、大きな燃料液滴が含まれにくい噴霧S間の領域の混合気であって、燃料の微粒化が進んだ混合気が、新たに吸気側の連通路8(燃料噴射弁12と対向する連通路8)を介して副室6内へと引き込まれる。この結果、副室6内の混合気が均質になる。このように、第2噴射によって、微粒化された燃料が、連通路8を介して副室6に供給される。これによって、大きな燃料液滴が副室6内に入り、副室6内の点火が不安定になることが防止される。さらに、副室6に向けた第2噴射において、副室6内に微粒化された燃料が供給されることで、副室6内の混合気が安定して点火される。これにより、火炎が噴射口8aから確実に噴射されるとともに、燃料供給が効率化される。また、第1噴射においても、燃料の一部は、連通路8を介して副室6に導入されるため、第2噴射と同様の効果がある。 In this embodiment, the pre-chamber 6 and the fuel injection valve 12 have the arrangement relationship described above. That is, when the spray S that is secondly injected from the fuel injection valve 12 toward the pre-chamber 6 does not hit the pre-chamber wall 61 but reaches the side, the spray S is a viscous fluid containing fuel. The later spray S is attracted to the pre-chamber wall 61 by the Coanda effect. Then, the spray S flows along the bottom portion 61a of the auxiliary chamber wall 61 from the direction along the central spray axis Cs. At this time, the spray S draws in the surrounding fluid, that is, the air in the pre-chamber 6 via the communication passage 8 arranged in the crankshaft direction P and the communication passage 8 arranged on the exhaust side, and flows downstream (center). X1 on the opposite side of the fuel injection valve 12). Then, the air-fuel mixture in the region between the sprays S, in which the fuel penetration is weaker than that of the sprays S and in which large fuel droplets are less likely to be included, and in which the fuel atomization has progressed, is newly added to the intake side. It is drawn into the auxiliary chamber 6 via the communicating passage 8 (the communicating passage 8 facing the fuel injection valve 12). As a result, the air-fuel mixture in the pre-chamber 6 becomes homogeneous. Thus, the atomized fuel is supplied to the auxiliary chamber 6 through the communication passage 8 by the second injection. This prevents large droplets of fuel from entering the pre-chamber 6 and destabilizing the ignition in the pre-chamber 6 . Furthermore, in the second injection directed to the pre-chamber 6, the atomized fuel is supplied into the pre-chamber 6, so that the air-fuel mixture in the pre-chamber 6 is stably ignited. As a result, the flame is reliably injected from the injection port 8a, and fuel supply is made more efficient. Also, in the first injection, part of the fuel is introduced into the pre-chamber 6 via the communication passage 8, so that the same effect as in the second injection is obtained.

ピストン103が上昇し、さらに圧縮が進むと、点火プラグ10によって副室6の混合気が着火する。副室6内の燃焼に伴い、火炎が、連通路8を介して主室4内に噴射される。そして、主室4の混合気が燃焼し、燃焼によって発生する燃焼ガスで圧力が上昇する。これにより、ピストン103が押し下げられ、膨張行程に進む。 When the piston 103 rises and compression further progresses, the spark plug 10 ignites the air-fuel mixture in the pre-chamber 6 . With combustion in the sub chamber 6 , flame is injected into the main chamber 4 through the communication passage 8 . Then, the air-fuel mixture in the main chamber 4 is combusted, and the combustion gas generated by the combustion increases the pressure. This causes the piston 103 to be pushed down and proceed to the expansion stroke.

排気行程では、排気バルブ109が開弁するとともに、ピストン103が下死点から上昇し、シリンダ内の燃焼ガス(排気)が排気ポート110に排出される。そして、ピストン103が上死点に達すると、再び吸気行程が始まる。このようにピストン103が2往復すると4つの行程が完了する。 In the exhaust stroke, the exhaust valve 109 opens, the piston 103 rises from the bottom dead center, and combustion gas (exhaust gas) in the cylinder is discharged to the exhaust port 110 . Then, when the piston 103 reaches the top dead center, the intake stroke begins again. Thus, when the piston 103 reciprocates twice, four strokes are completed.

以上説明した通り、本実施形態の副室式内燃機関1では、燃料噴射弁12に対向する連通路8の噴射口8aは、燃料噴射弁12のクランク軸方向Pに隣り合う2つの噴射口12aからそれぞれ噴射される噴霧Sの間に位置する。これによって、燃料噴射弁12から副室6に向かって噴射される噴霧Sは、連通路8の噴射口8aには直接当たらないので、噴霧Sに含まれる大きな燃料液滴が連通路8を介して副室6に入ることが防止される。また、噴霧S間の領域は、噴霧Sに比べて燃料の貫徹力が弱く、大きな燃料液滴が含まれにくく、燃料の微粒化が進んでいる。連通路8の噴射口8aは、この噴霧S間の領域に位置するので、微粒化された燃料が、連通路8を介して副室6に供給される。さらに、燃料噴射弁12から副室6に向かって噴射される噴霧Sは、噴射後、コアンダ効果によって近くにある副室壁61に沿って流れる。噴射後の噴霧Sは、周りの流体、すなわち連通路8を介して副室6内の空気を引き込みながら燃料噴射弁12とは反対方向の下流へと流れる。そして、噴霧Sよりも貫徹力が弱い噴霧S間の混合気であって、燃料の微粒化が進んでいる混合気が、連通路8を介して副室6内に新たに導入される。この結果、副室6内の混合気が均質になる。これによって、副室6内の混合気が安定に点火される。 As described above, in the auxiliary chamber type internal combustion engine 1 of the present embodiment, the injection port 8a of the communication passage 8 facing the fuel injection valve 12 is two injection ports 12a adjacent to each other in the crankshaft direction P of the fuel injection valve 12. are positioned between the sprays S respectively injected from . As a result, the spray S injected from the fuel injection valve 12 toward the pre-chamber 6 does not directly hit the injection port 8a of the communication passage 8, so that large fuel droplets contained in the spray S are dispersed through the communication passage 8. entry into the auxiliary chamber 6 is prevented. Further, in the region between the sprays S, the fuel penetration is weaker than that of the sprays S, and large fuel droplets are less likely to be contained therein, and the fuel atomization is progressing. Since the injection port 8 a of the communication passage 8 is located in the region between the sprays S, the atomized fuel is supplied to the auxiliary chamber 6 through the communication passage 8 . Further, the spray S injected from the fuel injection valve 12 toward the pre-chamber 6 flows along the nearby pre-chamber wall 61 due to the Coanda effect after being injected. After the injection, the spray S flows downstream in the direction opposite to the fuel injection valve 12 while drawing in surrounding fluid, that is, air in the pre-chamber 6 via the communication passage 8 . Then, an air-fuel mixture between the sprays S having a weaker penetration force than the sprays S and having advanced fuel atomization is newly introduced into the pre-chamber 6 via the communication passage 8 . As a result, the air-fuel mixture in the pre-chamber 6 becomes homogeneous. As a result, the air-fuel mixture in the pre-chamber 6 is stably ignited.

<他の実施形態>
以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
<Other embodiments>
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various modifications are possible without departing from the gist of the invention. In particular, multiple modifications described herein can be arbitrarily combined as required.

上記実施形態では、副室式内燃機関1は、直噴型の内燃機関であるが、本開示はこれに限定されるものではない。例えば、吸気ポート105に設けられる吸気ポートインジェクタと、主室4内に設けられる直噴インジェクタを備える副室式内燃機関であってもよい。上述の第2噴射が直噴インジェクタによって行われるならば本開示の効果は得られる。 In the above embodiment, the auxiliary chamber type internal combustion engine 1 is a direct injection internal combustion engine, but the present disclosure is not limited to this. For example, it may be a pre-chamber internal combustion engine that includes an intake port injector provided in the intake port 105 and a direct injection injector provided in the main chamber 4 . The effects of the present disclosure can be obtained if the second injection described above is performed by a direct injector.

図4A、図4Bおよび図5に示すように、他の実施形態の副室式内燃機関201では、副室106の底部161aは、半球状の一部が円弧状に切り欠かれた形状に形成される。すなわち、副室壁161の底部161aは、円弧状の切欠き部(凹部)161bを有する。切欠き部161bは、底部161aが半球状である場合に、燃料噴射弁12から主室4に噴射される噴霧Sが通る領域を含む形状である。図4Aおよび図4Bに示すように、底部161aは、上下方向(シリンダ軸方向Qのピストン103側)からみて、円形のクランク軸方向Pの両側に切欠き部161bを有する。また、図4Bに示すように、底部161aは、クランク軸方向Pからみて、半円の下部を排気ポート110側まで貫通する切欠き部161bを有する。また、図5に示すように、底部161aは、左右方向Rの吸気ポート105側からみると、半円形の中心X1を挟んで両側に切欠き部161bを有する。なお、切欠き部161bは、左右方向Rの吸気ポート105側からみて手前側だけに設けられてもよい。すなわち、副室壁161に噴霧Sが直接当たらないよう、底部161a(切欠き部161b)が形成されればよい。 As shown in FIGS. 4A, 4B, and 5, in a pre-chamber internal combustion engine 201 of another embodiment, a bottom portion 161a of a pre-chamber 106 is formed into a shape in which a portion of a hemispherical shape is cut into an arc shape. be done. That is, the bottom portion 161a of the auxiliary chamber wall 161 has an arcuate notch portion (recess) 161b. The cutout portion 161b has a shape including a region through which the spray S injected from the fuel injection valve 12 into the main chamber 4 passes when the bottom portion 161a is hemispherical. As shown in FIGS. 4A and 4B, the bottom portion 161a has notches 161b on both sides in the circular crankshaft direction P when viewed in the vertical direction (the piston 103 side in the cylinder axial direction Q). Further, as shown in FIG. 4B, the bottom portion 161a has a notch portion 161b penetrating the semicircular lower portion to the exhaust port 110 side when viewed from the crankshaft direction P. As shown in FIG. As shown in FIG. 5, the bottom portion 161a has notches 161b on both sides of the semicircular center X1 when viewed from the side of the intake port 105 in the left-right direction R. As shown in FIG. Note that the cutout portion 161b may be provided only on the front side when viewed from the side of the intake port 105 in the left-right direction R. That is, the bottom portion 161a (notch portion 161b) should be formed so that the spray S does not directly hit the sub chamber wall 161 .

また、副室106と燃料噴射弁12とは、燃料噴射弁12がクランク軸方向Pにおいて副室壁161の両側に向けて燃料を噴射する場合に、クランク軸方向Pにおいて隣り合う2つの噴射口12aからそれぞれ噴射される噴霧Sの間に副室6の底部161aが位置する配置関係にある。この関係が成立するように副室106の底部161a(切欠き部161b)が設けられ、燃料噴射弁12の各噴射口の噴射方向(すなわち、噴霧Sの噴霧中心軸線Cs)が設定されればよい。 In addition, when the fuel injection valve 12 injects fuel toward both sides of the auxiliary chamber wall 161 in the crankshaft direction P, the auxiliary chamber 106 and the fuel injection valve 12 are two injection ports adjacent to each other in the crankshaft direction P. The layout relationship is such that the bottom 161a of the sub chamber 6 is positioned between the sprays S ejected from the respective nozzles 12a. If the bottom 161a (notch 161b) of the pre-chamber 106 is provided so that this relationship is established, and the injection direction of each injection port of the fuel injection valve 12 (that is, the spray center axis Cs of the spray S) is set, good.

他の実施形態では、副室6に噴霧Sが直接当たらないよう底部161a(切欠き部161b)の形状と、燃料噴射弁12の各噴射方向(すなわち、噴霧Sの噴霧中心軸線Cs)とが設定されたが、本開示はこれに限定されるものではない。副室壁161がどのような形状であっても、燃料噴射弁12のクランク軸方向Pにおいて隣り合う2つの噴射口12aからそれぞれ噴射される噴霧Sの間に副室6が位置するように、各噴射方向(すなわち、噴霧Sの噴霧中心軸線Cs)が設けられていればよい。この構成によれば、燃料噴射弁12に対向する連通路8の噴射口8aと噴霧Sとの距離が確保されるので、大きい燃料液滴がより副室6内に入りにくくなる。また、燃料の貫徹力が弱く、燃料の微粒化が進んだ領域に副室6が配置される。この結果、さらに副室6内の点火が安定する。 In another embodiment, the shape of the bottom portion 161a (notch portion 161b) and each injection direction of the fuel injection valve 12 (that is, the spray center axis Cs of the spray S) are adjusted so that the spray S does not directly hit the pre-chamber 6. set, the disclosure is not so limited. Regardless of the shape of the pre-chamber wall 161, the pre-chamber 6 is located between the sprays S injected from the two injection ports 12a adjacent to each other in the crankshaft direction P of the fuel injection valve 12. Each injection direction (that is, the spray central axis Cs of the spray S) may be provided. According to this configuration, the distance between the injection port 8a of the communication passage 8 facing the fuel injection valve 12 and the spray S is ensured, so that large fuel droplets are less likely to enter the pre-chamber 6. Further, the pre-chamber 6 is arranged in a region where the fuel penetration is weak and the fuel is highly atomized. As a result, ignition in the pre-chamber 6 is further stabilized.

本実施形態および他の実施形態では、複数の連通路8,108が放射状に配置されたが、本開示はこれに限定されない。連通路8,108が副室6,106の直径方向に対して傾斜して配置されてもよい。このように連通路8,108が配置されることで、副室6に旋回流が発生する。 Although the plurality of communication paths 8, 108 are arranged radially in this embodiment and other embodiments, the present disclosure is not limited to this. The communication passages 8, 108 may be arranged obliquely with respect to the diametrical direction of the sub chambers 6, 106. By arranging the communication passages 8 and 108 in this manner, a swirling flow is generated in the auxiliary chamber 6 .

上記実施形態および他の実施形態では、燃料噴射弁12がクランク軸方向Pにおいて副室壁61,161の両側に向けて燃料を噴射するが、本開示はこれに限定されない。例えば、燃料噴射弁12が左右方向Rにおいて副室壁61,161の両側に向けて燃料を噴射する場合に、左右方向Rにおいて隣り合う2つの噴射口12aからそれぞれ噴射される噴霧Sの間に位置するように噴射口8aが設けられてもよい。すなわち、隣り合う2つの噴射口12aは、いずれか一方向に間隔をもって配設されればよい。 In the above embodiment and other embodiments, the fuel injection valve 12 injects fuel toward both sides of the auxiliary chamber walls 61 and 161 in the crankshaft direction P, but the present disclosure is not limited to this. For example, when the fuel injection valve 12 injects fuel toward both sides of the sub chamber walls 61 and 161 in the left-right direction R, between the two injection ports 12a adjacent in the left-right direction R The injection port 8a may be provided so as to be positioned. In other words, two adjacent injection ports 12a may be spaced apart in one direction.

上記実施形態および他の実施形態では、副室の形状はシリンダ軸方向に垂直な面による断面が円形となる形状(半球や円筒形状など)を例にしている。しかしながら、副室の形状はこれに限られない。断面が楕円や正多角形となる形状であってもよい。火炎伝播の観点からは、対称性のある形状が好ましいが、これに限られない。なお、本開示における「直径方向」「径方向」「接線」などの幾何学的表現は、断面が円形以外の場合であっても、当業者であれば適宜理解することができるであろう。つまり、副室の断面が円形以外になる実施態様であっても、当業者であれば本開示と同様の効果が奏されるように本開示の特徴を適宜適用できるであろう。 In the above embodiment and other embodiments, the shape of the pre-chamber is exemplified by a circular cross-section (hemispherical, cylindrical, etc.) taken along a plane perpendicular to the axial direction of the cylinder. However, the shape of the sub chamber is not limited to this. The shape may be an ellipse or a regular polygon in cross section. A symmetrical shape is preferable from the viewpoint of flame propagation, but it is not limited to this. Geometric expressions such as “diameter direction”, “radial direction”, and “tangent line” in the present disclosure can be appropriately understood by those skilled in the art even if the cross section is not circular. In other words, those skilled in the art will be able to appropriately apply the features of the present disclosure to achieve the same effects as the present disclosure even in embodiments in which the cross section of the pre-chamber is other than circular.

上記実施形態および他の実施形態では、副室に設けられた点火プラグで混合気が点火される火花点火内燃機関を例にしている。本開示の内燃機関では燃料としてガソリンが使用されるが、当然これに限定されず、アルコールなどの他の燃料であってもよい。また、本開示の特徴は、火花点火内燃機関に限られず、ディーゼルエンジンなどの圧縮着火内燃機関にも適用可能である。つまり、副室内に点火プラグ等の火花発生手段を設けることは必須ではなく、内燃機関の1燃焼サイクル(4ストロークエンジンであれば吸入、圧縮、燃焼、排気からなるサイクル)の中で最初の正常燃焼(予備燃焼)が副室内で生じるように設計された内燃機関であれば同様の作用効果が期待される。なお、圧縮着火内燃機関であっても、インジェクタから副室内に燃料を直接噴射させることや圧縮比を適宜設定することで、副室内で予備燃焼を発生させられることは従来周知である。また、圧縮着火内燃機関であっても、燃料は特に軽油に限定されず、ガソリンやアルコール等であってもよい。 In the above embodiment and other embodiments, a spark ignition internal combustion engine in which an air-fuel mixture is ignited by a spark plug provided in the pre-chamber is taken as an example. Gasoline is used as the fuel in the internal combustion engine of the present disclosure, but it is of course not limited to this, and other fuels such as alcohol may be used. Also, the features of the present disclosure are not limited to spark ignition internal combustion engines, but are also applicable to compression ignition internal combustion engines such as diesel engines. In other words, it is not essential to provide a spark generating means such as a spark plug in the pre-chamber. A similar effect is expected for an internal combustion engine designed so that combustion (pre-combustion) occurs in the pre-chamber. It is well known that even in a compression ignition internal combustion engine, preliminary combustion can be generated in the pre-chamber by directly injecting fuel from an injector into the pre-chamber or by appropriately setting the compression ratio. Moreover, even in a compression ignition internal combustion engine, the fuel is not particularly limited to light oil, and may be gasoline, alcohol, or the like.

本開示の実施形態によれば、副室式内燃機関(1)は、シリンダ(101a)と、シリンダヘッド(102)と、ピストン(103)と、で画定された主室(4)と、
前記シリンダヘッド(102)から前記主室(4)に向けて突出し、前記主室(4)と隔てて設けられる副室(6)と、
前記主室(4)と前記副室(6)とを連通する連通路(8)と、
前記主室(4)に燃料を噴射する複数の第1噴射口(12a)を有する噴射部(12)と、
を備え、
前記連通路(8)は、前記副室(6)内で生じた火炎を前記主室(4)に噴射する第2噴射口(8a)を有し、
前記第2噴射口(8a)は、前記噴射部(12)の隣り合う2つの前記第1噴射口(12a)からそれぞれ噴射される噴霧の間に位置する。
According to an embodiment of the present disclosure, a pre-chamber internal combustion engine (1) comprises a main chamber (4) defined by a cylinder (101a), a cylinder head (102) and a piston (103);
a sub-chamber (6) projecting from the cylinder head (102) toward the main chamber (4) and separated from the main chamber (4);
a communicating passage (8) communicating between the main chamber (4) and the sub chamber (6);
an injection part (12) having a plurality of first injection holes (12a) for injecting fuel into the main chamber (4);
with
The communication passage (8) has a second injection port (8a) for injecting the flame generated in the auxiliary chamber (6) into the main chamber (4),
The second injection port (8a) is located between the sprays respectively injected from the two adjacent first injection ports (12a) of the injection part (12).

前記第2噴射口(8a)は、前記第1噴射口(12a)から噴射される噴霧の中心軸線Csと離間してもよい。 The second injection port (8a) may be separated from the central axis Cs of the spray injected from the first injection port (12a).

前記副室(106)は、隔壁(161)により画定されることで前記主室(4)と隔てられ、
前記隔壁(161)は、前記第1噴射口(12a)から噴射される噴霧が通る位置に、内側に凹んだ凹部(161b)を有してもよい。
the sub-chamber (106) is separated from the main chamber (4) by being defined by a partition wall (161);
The partition wall (161) may have an inward recess (161b) at a position through which the spray injected from the first injection port (12a) passes.

本出願は、2019年3月27日出願の日本特許出願特願2019-061133に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2019-061133 filed on March 27, 2019, the contents of which are incorporated herein by reference.

1 201:副室式内燃機関
4:主室
6 106:副室
8 108:連通路
8a:噴射口(第2噴射口)
12:燃料噴射弁(噴射部)
12a:噴射口(第1噴射口)
61 161:副室壁(隔壁)
61a 161a:底部
161b:切欠き部(凹部)
101a:シリンダ
102:シリンダヘッド
103:ピストン
X1:中心
S:噴霧
1 201: Pre-chamber internal combustion engine 4: Main chamber 6 106: Pre-chamber 8 108: Communication passage 8a: Injection port (second injection port)
12: Fuel injection valve (injection part)
12a: injection port (first injection port)
61 161: pre-chamber wall (partition wall)
61a 161a: Bottom 161b: Notch (recess)
101a: Cylinder 102: Cylinder head 103: Piston X1: Center S: Spray

Claims (3)

シリンダと、シリンダヘッドと、ピストンと、で画定された主室と、
前記シリンダヘッドから前記主室に向けて突出し、前記主室と隔てて設けられる副室と、
前記主室と前記副室とを連通する連通路と、
前記主室の吸気側に設けられ、前記主室に燃料を噴射する複数の第1噴射口を有する噴射部と、
を備え、
前記副室は前記主室の中心と同じ中心を有し
前記連通路は、前記副室内で生じた火炎を前記主室に噴射する第2噴射口を有し、
前記第2噴射口はクランク軸方向に沿う方向と、前記噴射部と反対方向となる排気側と、に配置され、前記噴射部の隣り合う2つの前記第1噴射口からそれぞれ噴射される噴霧の間に位置する、副室式内燃機関。
a main chamber defined by a cylinder, a cylinder head, and a piston;
a sub-chamber protruding from the cylinder head toward the main chamber and separated from the main chamber;
a communicating passage communicating between the main chamber and the sub chamber;
an injection unit provided on the intake side of the main chamber and having a plurality of first injection ports for injecting fuel into the main chamber;
with
said subchamber having the same center as the center of said main chamber;
The communicating passage has a second injection port for injecting the flame generated in the auxiliary chamber into the main chamber,
The second injection ports are arranged in a direction along the crankshaft direction and on an exhaust side opposite to the injection section, and the spray is injected from each of the two adjacent first injection ports of the injection section. A sub-chamber internal combustion engine located between
前記第2噴射口は、前記第1噴射口から噴射される噴霧の中心軸線と離間している、請求項1に記載の副室式内燃機関。 2. The pre-chamber internal combustion engine according to claim 1, wherein said second injection port is spaced apart from the center axis of the spray injected from said first injection port. 前記副室は、隔壁により画定されることで前記主室と隔てられ、
前記隔壁は、前記第1噴射口から噴射される噴霧が通る位置に、内側に凹んだ凹部を有し、前記凹部に前記第2噴射口が位置する、請求項1又は請求項2に記載の副室式内燃機関。
The auxiliary chamber is separated from the main chamber by being defined by a partition wall,
3. The partition wall according to claim 1, wherein the partition wall has an inwardly recessed recess at a position through which the spray injected from the first injection port passes , and the second injection port is located in the recess. Pre-chamber internal combustion engine.
JP2021509277A 2019-03-27 2020-03-18 pre-chamber internal combustion engine Active JP7255673B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019061133 2019-03-27
JP2019061133 2019-03-27
PCT/JP2020/012154 WO2020196204A1 (en) 2019-03-27 2020-03-18 Auxiliary-chamber-type internal combustion engine

Publications (2)

Publication Number Publication Date
JPWO2020196204A1 JPWO2020196204A1 (en) 2020-10-01
JP7255673B2 true JP7255673B2 (en) 2023-04-11

Family

ID=72611910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021509277A Active JP7255673B2 (en) 2019-03-27 2020-03-18 pre-chamber internal combustion engine

Country Status (2)

Country Link
JP (1) JP7255673B2 (en)
WO (1) WO2020196204A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138780A (en) 2005-11-16 2007-06-07 Nissan Motor Co Ltd Auxiliary chamber type internal combustion engine
JP2018172974A (en) 2017-03-31 2018-11-08 本田技研工業株式会社 Internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746733Y2 (en) * 1989-04-11 1995-10-25 三菱自動車工業株式会社 Spark assist type alcohol engine
JP4561522B2 (en) * 2005-08-03 2010-10-13 日産自動車株式会社 Sub-chamber internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138780A (en) 2005-11-16 2007-06-07 Nissan Motor Co Ltd Auxiliary chamber type internal combustion engine
JP2018172974A (en) 2017-03-31 2018-11-08 本田技研工業株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JPWO2020196204A1 (en) 2020-10-01
WO2020196204A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US9890690B2 (en) Passive prechamber direct injection combustion
US7143738B2 (en) Direct-injection spark-ignition internal combustion engine
EP3359788B1 (en) Passive prechamber direct injection combustion
WO2020105351A1 (en) Pre-chamber type diesel engine
JP7226639B2 (en) Pre-chamber spark ignition engine
WO2020196210A1 (en) Auxiliary chamber type internal combustion engine
AU2016217589B2 (en) Injection system for two-stroke engines
JP7255673B2 (en) pre-chamber internal combustion engine
JP7143934B2 (en) pre-chamber internal combustion engine
JP7156505B2 (en) pre-chamber internal combustion engine
KR100306600B1 (en) Piston for direct injection type gasoline engine
WO2021161552A1 (en) Auxiliary chamber engine
WO2020196207A1 (en) Pre-chamber type internal combustion engine
JP6025873B2 (en) In particular, internal combustion engines for automobiles and methods for operating such internal combustion engines
JP2007321619A (en) Cylinder injection type spark ignition internal combustion engine
JP7327466B2 (en) pre-chamber internal combustion engine
JP7147962B2 (en) pre-chamber internal combustion engine
JP5146248B2 (en) In-cylinder direct injection internal combustion engine
WO2020196683A1 (en) Auxiliary chamber-type internal combustion engine
JP7238970B2 (en) Fuel injection control system for pre-chamber internal combustion engine
WO2020196682A1 (en) Auxiliary chamber-type internal combustion engine
RU2200869C2 (en) Fuel injection nozzle with prechamber
US20180094570A1 (en) Piston with Flame Guiding Passageways
JPH04153521A (en) Internal combustion engine

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20210813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R151 Written notification of patent or utility model registration

Ref document number: 7255673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151