WO2020196210A1 - Auxiliary chamber type internal combustion engine - Google Patents

Auxiliary chamber type internal combustion engine Download PDF

Info

Publication number
WO2020196210A1
WO2020196210A1 PCT/JP2020/012160 JP2020012160W WO2020196210A1 WO 2020196210 A1 WO2020196210 A1 WO 2020196210A1 JP 2020012160 W JP2020012160 W JP 2020012160W WO 2020196210 A1 WO2020196210 A1 WO 2020196210A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sub
main chamber
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2020/012160
Other languages
French (fr)
Japanese (ja)
Inventor
欣也 井上
田中 大
貴之 城田
一成 野中
晃弘 津田
遼太 朝倉
捷 飯塚
佳博 菅田
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2021509283A priority Critical patent/JP7143935B2/en
Publication of WO2020196210A1 publication Critical patent/WO2020196210A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/08Engines characterised by precombustion chambers the chamber being of air-swirl type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • F02B19/18Transfer passages between chamber and cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This disclosure relates to a sub-chamber internal combustion engine.
  • a sub-chamber type internal combustion engine having a main chamber and a sub-chamber provided adjacent to the main chamber has been proposed (see, for example, Japanese Patent No. 4561522).
  • an air-fuel mixture is formed from the fuel injected into the main chamber.
  • the formed air-fuel mixture is supplied to the sub-chamber via the communication passage, and is ignited by the spark plug in the sub-chamber.
  • a flame is formed.
  • the flame formed in the sub-chamber is jetted into the main chamber through the continuous passage and ignites the air-fuel mixture in the main chamber.
  • the combustion speed of the main chamber is increased. This enables operation with a leaner air-fuel ratio and improves fuel efficiency.
  • the central axis of the first injection port is inside the cylinder without colliding with the piston crown surface when the piston is near the compression top dead center. Orient the wall. Further, the central axis of the second injection port points to the outer peripheral portion of the bottom surface of the cavity on the crown surface of the piston when the piston is near the compression top dead center.
  • the injection port faces the inner wall surface of the cylinder. Therefore, the flame collides with the inner wall surface of the cylinder, and the heat of the flame is taken to the inner wall surface of the cylinder. As a result, a cooling loss occurs and the combustion speed of the main chamber becomes slow.
  • the embodiment of the present disclosure relates to a sub-chamber type internal combustion engine in which the flame injected from the sub-chamber toward the main chamber is suppressed from colliding with the cylinder and the occurrence of cooling loss is reduced.
  • the sub-chamber internal combustion engine includes a main chamber, a sub-chamber, and a continuous passage.
  • the main chamber is defined by a cylinder head, a cylinder, and a piston.
  • the sub chamber projects from the cylinder head toward the main chamber and is separated from the main chamber.
  • the communication passage has an injection port that connects the main room and the sub-chamber and injects the flame generated in the sub-chamber into the main room.
  • the injection port is configured to guide the flame in the direction opposite to the direction of rotation of the swirling flow generated in the main chamber.
  • the injection port of the communication passage is configured to guide the flame in the direction opposite to the rotation direction of the swirling flow.
  • the injection direction of the flame injected from the injection port into the main chamber faces the rotation direction of the swirling flow.
  • the flame injected from the injection port into the main chamber is disturbed and diffused by the swirling flow.
  • the flame is prevented from colliding with the cylinder, and the heat of the flame is reduced. Therefore, the occurrence of cooling loss is reduced.
  • the injection port may extend toward the main chamber in the direction opposite to the direction of rotation of the swirling flow.
  • the flame injected from the injection port into the main chamber is easily diffused by the swirling flow.
  • the inner diameter of the injection port may be increased as it approaches the main chamber.
  • the communication passage may have an inner wall surface formed along the tangent line of the inner wall of the sub chamber when viewed in the direction of the rotation axis of the swirling flow.
  • the air-fuel mixture introduced into the sub-chamber from the connecting passage is guided to the inner circumference of the wall.
  • the air-fuel mixture tends to form a vortex in the sub-chamber. Therefore, unevenness of the air-fuel mixture in the sub-chamber and variation in the flow of the air-fuel mixture are prevented.
  • the air-fuel mixture in the sub-chamber is easily ignited.
  • the diameter of the inner circumference of the wall may increase from the main chamber toward the cylinder head.
  • the flow velocity of the air-fuel mixture introduced into the sub-chamber from the communication passage decreases toward the cylinder head. That is, the flow velocity of the vortex of the air-fuel mixture weakens. This prevents misfire due to the flow velocity of the air-fuel mixture being too high.
  • the vertical sectional view which shows the schematic structure of the auxiliary chamber type internal combustion engine by one Embodiment of this disclosure.
  • the cross-sectional view which shows the formation part of the communication passage of the auxiliary chamber type internal combustion engine of FIG.
  • the vertical sectional view which shows the formation part of the communication passage of the auxiliary chamber type internal combustion engine of FIG.
  • the vertical sectional view which shows the schematic structure of the auxiliary chamber by another embodiment of this disclosure.
  • the cylinder axial direction Q indicates the sliding direction of the piston along the cylinder.
  • the cylinder axial direction Q is indicated, and the cylinder head side is "up” and the piston side is "down".
  • the left-right direction L indicates a direction orthogonal to the cylinder axial direction Q and where the intake port and the exhaust port are arranged.
  • the crankshaft direction P indicates a direction in which the cylinders are arranged, orthogonal to the cylinder shaft direction Q.
  • the sub-chamber internal combustion engine 1 has a main chamber 4, a sub-chamber 6, a plurality of communication passages 8 communicating the main chamber 4 and the sub-chamber 6, and ignition provided in the sub-chamber 6. It includes a plug 10, a fuel injection valve 12, and a swirling flow generating unit 14.
  • the sub-chamber internal combustion engine 1 is an in-line internal combustion engine in which a plurality of cylinders N including a main chamber 4 and a sub chamber 6 are arranged in series. That is, the main chamber 4, the sub chamber 6, the plurality of communication passages 8, the spark plug 10, and the fuel injection valve 12 are provided in each cylinder N.
  • the arrangement of the cylinders N is not limited to this, and may be a V type or a horizontally opposed type.
  • the main chamber 4 is a space defined by the cylinder 101a of the cylinder block 101, the cylinder head 102, and the piston 103.
  • the main chamber 4 has a pent roof shape and has two slopes toward the intake port 105 side and the exhaust port 110 side of the cylinder head 102.
  • the main chamber 4 is connected to the intake port 105 via two intake valves 104a and an intake valve 104b driven by an intake cam (not shown).
  • the intake port 105 is connected to an intake passage, a throttle valve, and an air cleaner (not shown).
  • the main chamber 4 has an exhaust port 110, an exhaust passage (not shown), and an exhaust purification catalyst (not shown) via two exhaust valves 109a and 109b driven by an exhaust cam (not shown). (Not shown) is connected.
  • the sub-chamber internal combustion engine 1 outputs power by a crankshaft (not shown) provided in the arrangement direction of the cylinders N.
  • the piston 103 drives the crankshaft via a connecting rod (not shown).
  • the sub chamber 6 is provided at the top of the pent roof shape and is adjacent to the main chamber 4.
  • the sub-chamber 6 is a space defined by the sub-chamber wall 61.
  • the sub chamber 6 projects from the cylinder head 102 toward the main chamber 4 and is separated from the main chamber 4 via the sub chamber wall 61.
  • the sub chamber 6 is provided substantially at the center of the line of intersection (ridge line) of the two slopes of the main chamber 4 having a pent roof shape.
  • the sub chamber 6 may be provided offset from the substantially center of the main chamber 4.
  • the sub chamber 6 has the same center X1 as the main chamber 4.
  • the volume of the sub chamber 6 is smaller than that of the main chamber 4, and the flame of the air-fuel mixture ignited by the spark plug 10 quickly propagates into the sub chamber 6.
  • FIG. 2 is a view of the cross section of the sub chamber 6 in the forming portion of the communication passage 8 as viewed from the piston 103 side.
  • the auxiliary chamber wall 61 has a circular cross section centered on the center X1, and the bottom portion 61a is formed in a hemispherical shape.
  • FIG. 3 is a vertical cross-sectional view of the forming portion of the communication passage 8 perpendicular to the left-right direction L.
  • the diameter Dr of the inner circumference 61c of the sub chamber wall 61 increases from the main chamber 4 side toward the cylinder head 102 side. That is, the diameter Dr of the inner circumference 61c of the auxiliary chamber wall 61 increases from the lower side to the upper side in the vertical direction (same as the cylinder axial direction Q).
  • a plurality of communication passages 8 are provided at the bottom 61a of the sub chamber wall 61.
  • the communication passage 8 communicates the main chamber 4 and the sub chamber 6 and guides the air-fuel mixture of the main chamber 4 to the sub chamber 6.
  • the air-fuel mixture introduced into the sub chamber 6 ignites in the sub chamber 6 and precombusts.
  • the communication passage 8 has an injection port 8a for injecting a flame precombusted in the sub chamber 6 on the surface of the outer circumference 61b of the sub chamber wall 61.
  • the injection port 8a is formed along the surface of the outer circumference 61b of the sub chamber wall 61.
  • the communication passage 8 has an introduction port 8b for introducing the air-fuel mixture into the sub-chamber 6 on the surface of the inner circumference 61c of the sub-chamber wall 61.
  • the introduction port 8b is formed along the surface of the inner circumference 61c of the auxiliary chamber wall 61.
  • four communication passages 8 are provided.
  • the injection port 8a of the communication passage 8 guides the flame injected from the injection port 8a in the direction U opposite to the rotation direction F of the swirling flow SW generated in the main chamber 4 along the outer circumference 61b of the sub chamber wall 61.
  • the injection port 8a extends in the opposite direction U toward the main chamber 4.
  • the flame injected from the injection port 8a is injected along the center line C1 of the injection port 8a.
  • the swirling flow SW flows along the tangent line S1 at the intersection O1 between the center line C1 and the outer circumference 61b.
  • the center line C1 (including the extension line of the center line C1) is in the direction U opposite to the perpendicular line R1 at the intersection O1.
  • the angle formed by the tangent line S1 and the center line C1 is an obtuse angle A. It is sufficient that at least the injection port 8a extends in the opposite direction U, and the communication passage 8 may extend in the radial direction of the sub chamber 6, for example, except for the injection port 8a.
  • the communication passage 8 includes an inner wall surface 8c located outside the sub chamber 6 (inner wall surface on the side far from the center X1 in the crankshaft direction P or the left-right direction L) and an inner wall surface located inside the sub chamber 6. It has 8d (inner wall surface on the side closer to the center X1 in the crankshaft direction P or the left-right direction L).
  • the inner wall surface 8c and the inner wall surface 8d of the communication passage 8 face each other in the opposite direction U of the rotation direction F of the swirling flow SW, and the inner wall surface 8c located outside the sub chamber 6 in the communication passage 8
  • the inner wall surface 8d located on the upstream side of the opposite direction U and inside the sub chamber 6 is located on the downstream side of the opposite direction U.
  • the inner wall surface 8c located outside the sub chamber 6 is formed along the tangent line S2 of the inner circumference 61c of the sub chamber wall 61.
  • the inner wall surface 8c of the communication passage 8 is formed from the introduction port 8b to the injection port 8a along the tangent line S2.
  • the communication passage 8 may be formed so as to be inclined in the vertical direction from the main chamber 4 as shown in FIG. 3 and to be inclined in the radial direction as shown in FIG. As a result, the lateral vortex rises in the sub-chamber 6.
  • the inner diameter of the injection port 8a of the communication passage 8 increases as it approaches the main chamber 4. More specifically, the inner diameter Da at the injection port 8a of this space is larger than the inner diameter Db at the introduction port 8b of the space formed by the outer inner wall surface 8c and the inner inner wall surface 8d of the communication passage 8.
  • the inner diameter of the communication passage 8 gradually increases from the introduction port 8b to the injection port 8a. Therefore, the area along the outer circumference 61b of the injection port 8a is larger than the area along the inner circumference 61c of the introduction port 8b. As a result, it is possible to prevent the amount of flame injected through the communication passage 8 from being reduced.
  • the inner diameter of the injection port 8a expands in the direction U opposite to the rotation direction F of the swirling flow SW. That is, the inner wall surface 8d is inclined in the opposite direction U (direction in which the inner diameter of the injection port 8a is expanded) with respect to the inner wall surface 8c. As a result, the flame injected from the injection port 8a directs in a direction along the direction U opposite to the rotation direction F of the swirling flow SW. As a result, the flame injected from the injection port 8a is more likely to be disturbed and diffused by the swirling flow SW. At least the inner diameter of the injection port 8a may be expanded in the opposite direction U, and the inner diameter of the communication passage 8 excluding the injection port 8a may be constant, for example.
  • the inner wall surface 8d may extend in the opposite direction U from the inner wall surface 8c, and in the communication passage 8 excluding the injection port 8a, the inner wall surface 8d may be parallel to, for example, the inner wall surface 8c.
  • the center electrode 10a of the spark plug 10 is arranged at a position overlapping the center X1 of the sub chamber 6.
  • the center line C1 of the communication passage 8 intersects the wall surface of the inner circumference 61c of the sub chamber wall 61 of the sub chamber 6 at the position H. Then, the tip portion 10c of the center electrode 10a of the spark plug 10 is arranged at a position higher than the position H.
  • the fuel injection valve 12 is provided toward the main chamber 4. Further, the fuel injection valve 12 is provided outside the sub chamber 6. In the present embodiment, the fuel injection valve 12 injects fuel directly into the main chamber 4. That is, the sub-chamber internal combustion engine 1 is a direct injection type internal combustion engine. The injection amount and injection timing of the fuel injection valve 12 are controlled. Further, the fuel injection valve 12 is connected to a fuel injection pump (not shown) and a fuel tank. The fuel injection valve 12 is arranged on the intake valve 104 side of the cylinder head 102. In the present embodiment, the air-fuel ratio of the sub-chamber internal combustion engine 1 is set to a value leaner than the stoichiometric air-fuel ratio. That is, the sub-chamber internal combustion engine 1 is operated by lean burn. This improves fuel efficiency.
  • the swirling flow generating unit 14 generates a swirling flow SW that swirls in the rotation direction F in the main chamber 4.
  • the swirling flow generating unit 14 generates the swirling flow SW by changing the lift heights of the intake valve 104a and the intake valve 104b.
  • the swirling flow generating unit 14 may generate the swirling flow SW depending on the shape of the intake port 105.
  • the swirl flow SW is a swirl flow that swirls counterclockwise when viewed from the piston 103 side with respect to a surface perpendicular to the sliding direction (cylinder axial direction Q) of the piston 103.
  • the swirling flow SW swirls along the inner wall surface of the cylinder 101a and swivels along the outer peripheral 61b of the sub chamber wall 61.
  • the intake valve 104a and the intake valve 104b are opened, the piston 103 is lowered, and the intake air is introduced into the main chamber 4 and the sub-chamber 6. ..
  • a swirling flow SW is generated in the main chamber 4 due to the difference in lift height between the intake valve 104a and the intake valve 104b.
  • the intake air is pressurized by a supercharger (not shown).
  • the pressures in the main chamber 4 and the sub chamber 6 become the same as the pressure of the intake air.
  • fuel injection mainly for supplying fuel to the main chamber 4 is performed by the fuel injection valve 12.
  • the injected fuel mixes with the intake air in the main chamber 4 to form an air-fuel mixture.
  • the air-fuel mixture is supplied to the entire main chamber 4 as the piston 103 is lowered.
  • the intake valve 104a and the intake valve 104b are closed and the piston 103 is raised to compress the air-fuel mixture in the main chamber 4.
  • the piston 103 rises in the compression stroke, the air-fuel mixture is introduced from the main chamber 4 to the sub chamber 6 via the communication passage 8.
  • the air-fuel mixture introduced into the sub-chamber 6 becomes a lateral vortex (see the arrow in the sub-chamber 6 in FIG. 4) that rises by the communication passage 8.
  • the inner wall surface 8c of the communication passage 8 is formed along the tangent line S2 of the inner circumference 61c of the sub-chamber wall 61.
  • an ascending lateral vortex is generated along the inner circumference 61c in the sub chamber 6, and the spark plug 10 ignites the lateral vortex.
  • the diameter Dr of the inner circumference 61c of the sub chamber wall 61 expands from the main chamber 4 toward the cylinder head 102 (see FIG. 3).
  • the flow velocity of the lateral vortex in the sub chamber 6 is reduced.
  • misfire caused by the flow velocity of the lateral vortex in the sub chamber 6 being too high is prevented.
  • the air-fuel mixture introduced into the sub chamber 6 is ignited and burned by the spark plug 10. As shown in FIG. 5, at this time, the flame G is injected from the injection port 8a. Then, the air-fuel mixture in the main chamber 4 burns, and the pressure rises due to the combustion gas generated by the combustion. As a result, the piston 103 is pushed down and proceeds to the expansion stroke.
  • the injection port 8a of the communication passage 8 extends in the direction U opposite to the rotation direction F of the swirling flow SW generated in the main chamber 4 along the outer circumference 61b of the sub chamber wall 61, and is in the opposite direction U. Lead the flame G to. As a result, the flame G is injected and then faces the swirling flow SW. Therefore, the flame G is disturbed and diffused like the flame G1 by the swirling flow SW. As a result, the flame G1 diffuses into the space V in the main chamber 4 between the flame G and the flame ejected from the adjacent passage 8. In space V, flame G does not reach and combustion tends to be imbalanced.
  • the flame G faces the swirling flow SW and is disturbed and diffused by the swirling flow SW, so that the flame G1 reaches the space V. As a result, the main chamber 4 burns uniformly. Further, the penetrating force of the flame G is weakened by the swirling flow SW, and the flame G is prevented from directly hitting the cylinder 101a. As a result, the cooling loss generated by cooling the flame G by the cylinder 101a is reduced.
  • the inner diameter of the communication passage 8 increases from the inner diameter Db of the communication passage 8 at the introduction port 8b to the inner diameter Da of the communication passage 8 at the injection port 8a.
  • the inner diameter Da of the injection port 8a increases, the area of the injection port 8a increases.
  • the diameter of the flame injected from the injection port 8a also increases. Therefore, a large flame G1 is ejected into the space V in the main chamber 4 between the flame G ejected from the communication passage 8 and the flame G injected from the adjacent passage 8.
  • the combustion of the space V is promoted.
  • the diameter of the injection port 8a increases in the direction U opposite to the rotation direction F of the swirling flow SW. As a result, more flame G faces the swirling flow SW. That is, the number of flames facing the swirling flow SW increases. Therefore, more flame G1 is supplied to the space V. As a result, the combustion of the space V is promoted.
  • the exhaust valve 109 opens, the piston 103 rises from the bottom dead center, and the combustion gas (exhaust) in the cylinder is discharged to the exhaust port 110. Then, when the piston 103 reaches top dead center, the intake stroke starts again. When the piston 103 reciprocates twice in this way, four strokes are completed.
  • the injection port 8a of the communication passage 8 is the rotation direction F of the swirling flow SW generated in the main chamber 4 along the outer circumference 61b of the sub-chamber wall 61. Guide the flame G in the opposite direction U of. As a result, the occurrence of cooling loss of the flame G ejected from the sub chamber 6 toward the main chamber 4 is prevented, and the combustion of the main chamber 4 is promoted.
  • the sub-chamber internal combustion engine 1 is a direct injection type internal combustion engine, but the present disclosure is not limited to this.
  • it may be an auxiliary chamber type internal combustion engine provided with an intake port injector provided at the intake port 105.
  • the communication passage 8 may be one or a plurality.
  • the inner diameter of the communication passage 8 increases toward the outer circumference 61b of the sub-chamber wall 61, but the present disclosure is not limited to this.
  • the inner diameter of the communication passage 8 may be constant. That is, the inner diameter Da at the injection port 8a in FIG. 2 and the inner diameter Db at the introduction port 8b may be the same.
  • the communication passage 8 is provided at one position in the protruding direction of the sub chamber 6, but the present disclosure is not limited to this.
  • the first passage 208 and the second passage 209 may be provided at different positions in the protruding direction of the sub chamber 6.
  • the inner diameter of either the first passage 208 or the second passage 209 may be constant.
  • the inner diameter of the other passage may be expanded toward the outer circumference 261b of the sub chamber wall 261.
  • the inner diameter of the first passage 208 faces the outer circumference 261b of the sub chamber wall 261. May be expanded.
  • the inner diameter of the second passage 209 may be constant. As a result, the amount of flame injected from the first passage 208 near the tip 210c of the spark plug 210 increases.
  • the bottom 61a has a hemispherical shape, but the present disclosure is not limited to this. As shown in FIG. 6, the shape of the bottom portion 261a may be a truncated cone shape. Further, it may have various shapes such as a conical shape.
  • the swirl flow generation unit 14 generates a swirl flow, but the present disclosure is not limited to this.
  • the swirling flow generating unit 14 may generate a vertical vortex that swirls in one direction along a plane parallel to the cylinder axial direction Q, that is, may generate a tumble flow.
  • the communication passage 8 may be formed along the direction opposite to the rotation direction of the tumble flow.
  • the shape of the sub chamber is an example of a shape (hemispherical shape, cylindrical shape, etc.) having a circular cross section due to a plane perpendicular to the cylinder axis direction.
  • the cross section may be an ellipse or a regular polygon. From the viewpoint of flame propagation, a symmetrical shape is preferable, but the shape is not limited to this.
  • Geometric expressions such as "diameter direction", “diameter direction”, and "tangent line” in the present disclosure can be appropriately understood by those skilled in the art even when the cross section is other than circular. That is, even in an embodiment in which the cross section of the sub chamber is other than circular, those skilled in the art will be able to appropriately apply the features of the present disclosure so as to obtain the same effects as those of the present disclosure.
  • a spark-ignition internal combustion engine in which the air-fuel mixture is ignited by a spark plug provided in the sub chamber is taken as an example.
  • Gasoline is used as a fuel in the internal combustion engine of the present disclosure, but the fuel is not limited to this, and other fuels such as alcohol may be used.
  • the features of the present disclosure are not limited to the spark ignition internal combustion engine, and can be applied to a compression ignition internal combustion engine such as a diesel engine. In other words, it is not essential to provide a spark plug or other spark generating means in the sub-chamber, and it is the first normal in one combustion cycle of an internal combustion engine (in the case of a 4-stroke engine, a cycle consisting of intake, compression, combustion, and exhaust).
  • the internal combustion engine is designed so that combustion (pre-combustion) occurs in the sub-chamber. It is well known that even in a compression ignition internal combustion engine, pre-combustion can be generated in the sub-chamber by injecting fuel directly from the injector into the sub-chamber or by setting the compression ratio appropriately. Further, even in the case of a compression ignition internal combustion engine, the fuel is not particularly limited to light oil, and may be gasoline, alcohol, or the like.
  • the sub-chamber internal combustion engine (1) is A main chamber (4) defined by a cylinder head (102), a cylinder (101a), and a piston (103).
  • a sub-chamber (6) protruding from the cylinder head (102) toward the main chamber (4) and separated from the main chamber (4).
  • a communication passage (8) connecting the main room (4) and the sub room (6), With The communication passage (8) has an injection port (8a) for injecting a flame generated in the sub chamber (6) into the main chamber (4).
  • the injection port (8a) is configured to guide the flame in a direction (U) opposite to the rotation direction (F) of the swirling flow (SW) generated in the main chamber (4).
  • the injection port (8a) may extend in the opposite direction (U) toward the main chamber (4).
  • the inner diameter (Da) of the injection port (8a) may be enlarged as it approaches the main chamber (4).
  • the communication passage (8) has an inner wall surface (S2) formed along the tangent line (S2) of the inner circumference (61c) of the sub chamber (6) when viewed in the rotation axis direction of the swirling flow (SW). 8c) may be provided.
  • the inner diameter (Dr) of the sub chamber (6) may be expanded from the main chamber (4) toward the cylinder head (102).
  • Sub-chamber internal combustion engine 4 Main chamber 6: Sub-chamber 8: Communication passage 8c: Inner wall surface 14: Swirling flow generator 61: Sub-chamber wall 61b: Outer circumference 61c: Inner circumference 101a: Cylinder 102: Cylinder head 103: Piston Da: Inner diameter Db: Inner diameter Dr: Inner circumference diameter F: Swirling flow rotation direction U: Swirling flow rotation direction opposite direction S2: Inner circumference tangent SW: Swirling flow

Abstract

This auxiliary chamber type internal combustion engine is provided with a main chamber, an auxiliary chamber, and communicating passages. The main chamber is defined by a cylinder head, a cylinder, and a piston. The auxiliary chamber projects from the cylinder head toward the main chamber, and is separated from the main chamber. The communicating passages provide communication between the main chamber and the auxiliary chamber, and have injection openings for injecting a flame generated in the auxiliary chamber into the main chamber. The injection openings are configured to guide the flame in the opposite direction to the direction of rotation of a swirling flow generated in the main chamber.

Description

副室式内燃機関Sub-chamber internal combustion engine
 本開示は、副室式内燃機関に関する。 This disclosure relates to a sub-chamber internal combustion engine.
 従来から、主室およびその主室に隣接して設けられる副室を備えた副室式内燃機関が提案されている(例えば、日本国特許第4561522号公報参照)。このような副室式内燃機関では、主室に噴射された燃料から混合気が形成される。形成された混合気は、連通路を介して副室内に供給され、副室内で点火プラグによって点火される。これにより、火炎が形成される。副室内で形成された火炎は、連通路を介して主室に噴射され、主室の混合気を着火する。このように、副室で形成された火炎が主室に噴射されることで、主室の燃焼速度が高まる。これによって、より希薄な空燃比での運転が可能となり、燃費が向上する。 Conventionally, a sub-chamber type internal combustion engine having a main chamber and a sub-chamber provided adjacent to the main chamber has been proposed (see, for example, Japanese Patent No. 4561522). In such a sub-chamber internal combustion engine, an air-fuel mixture is formed from the fuel injected into the main chamber. The formed air-fuel mixture is supplied to the sub-chamber via the communication passage, and is ignited by the spark plug in the sub-chamber. As a result, a flame is formed. The flame formed in the sub-chamber is jetted into the main chamber through the continuous passage and ignites the air-fuel mixture in the main chamber. By injecting the flame formed in the sub chamber into the main chamber in this way, the combustion speed of the main chamber is increased. This enables operation with a leaner air-fuel ratio and improves fuel efficiency.
 日本国特許第4561522号公報に記載された副室式内燃機関では、第1の噴射口の中心軸線は、ピストンが圧縮上死点近傍にある場合において、ピストン冠面に衝突せずにシリンダ内壁面を指向する。また、第2の噴射口の中心軸線は、ピストンが圧縮上死点近傍にある場合において、ピストン冠面のキャビティーの底面外周部を指向する。 In the sub-chamber internal combustion engine described in Japanese Patent No. 4561522, the central axis of the first injection port is inside the cylinder without colliding with the piston crown surface when the piston is near the compression top dead center. Orient the wall. Further, the central axis of the second injection port points to the outer peripheral portion of the bottom surface of the cavity on the crown surface of the piston when the piston is near the compression top dead center.
 しかし、日本国特許第4561522号公報に記載された副室式内燃機関では、噴射口がシリンダ内壁面に向いている。このため、シリンダ内壁面に火炎が衝突し、シリンダ内壁面に火炎の熱が奪われる。この結果、冷却損失が発生し、主室の燃焼速度が遅くなる。 However, in the sub-chamber internal combustion engine described in Japanese Patent No. 4561522, the injection port faces the inner wall surface of the cylinder. Therefore, the flame collides with the inner wall surface of the cylinder, and the heat of the flame is taken to the inner wall surface of the cylinder. As a result, a cooling loss occurs and the combustion speed of the main chamber becomes slow.
 本開示の実施形態は、副室から主室に向けて噴射された火炎がシリンダに衝突することが抑制され、冷却損失の発生が低減された副室式内燃機関に関する。 The embodiment of the present disclosure relates to a sub-chamber type internal combustion engine in which the flame injected from the sub-chamber toward the main chamber is suppressed from colliding with the cylinder and the occurrence of cooling loss is reduced.
 本開示の実施形態によれば、副室式内燃機関は、主室と、副室と、連通路とを備える。主室は、シリンダヘッドと、シリンダと、ピストンと、で画定される。副室は、シリンダヘッドから主室に向かって突出し、主室と隔てられる。連通路は、主室と副室を連通し、副室で発生した火炎を主室内に噴射する噴射口を有する。噴射口は、主室に発生する旋回流の回転方向の反対方向に火炎を導くように構成されている。 According to the embodiment of the present disclosure, the sub-chamber internal combustion engine includes a main chamber, a sub-chamber, and a continuous passage. The main chamber is defined by a cylinder head, a cylinder, and a piston. The sub chamber projects from the cylinder head toward the main chamber and is separated from the main chamber. The communication passage has an injection port that connects the main room and the sub-chamber and injects the flame generated in the sub-chamber into the main room. The injection port is configured to guide the flame in the direction opposite to the direction of rotation of the swirling flow generated in the main chamber.
 一般に、燃焼室内に導入される吸気によってスワールなどと呼ばれる旋回流が発生することは広く知られている。そして、燃焼効率を向上させるべく旋回流の発生を促す種々の技術も広く知られている。本開示の実施形態による内燃機関では、連通路の噴射口がこの旋回流の回転方向の反対方向に火炎を導くように構成されている。これにより、噴射口から主室に噴射される火炎の噴射方向は、旋回流の回転方向に対向する。これによって、噴射口から主室に噴射された火炎が旋回流によって乱されて拡散される。これによって、火炎がシリンダに衝突することが抑制され、火炎の熱が奪われることが低減される。このため、冷却損失の発生が低減される。 In general, it is widely known that a swirling flow called a swirl or the like is generated by the intake air introduced into the combustion chamber. Also, various techniques for promoting the generation of a swirling flow in order to improve the combustion efficiency are widely known. In the internal combustion engine according to the embodiment of the present disclosure, the injection port of the communication passage is configured to guide the flame in the direction opposite to the rotation direction of the swirling flow. As a result, the injection direction of the flame injected from the injection port into the main chamber faces the rotation direction of the swirling flow. As a result, the flame injected from the injection port into the main chamber is disturbed and diffused by the swirling flow. As a result, the flame is prevented from colliding with the cylinder, and the heat of the flame is reduced. Therefore, the occurrence of cooling loss is reduced.
 噴射口は、主室に向かって旋回流の回転方向の反対方向に延びてもよい。 The injection port may extend toward the main chamber in the direction opposite to the direction of rotation of the swirling flow.
 この構成によれば、噴射口から主室に噴射された火炎が、旋回流によって拡散されやすい。 According to this configuration, the flame injected from the injection port into the main chamber is easily diffused by the swirling flow.
 噴射口の内径は、主室に近付くにつれて拡大してもよい。 The inner diameter of the injection port may be increased as it approaches the main chamber.
 火炎を主室に噴射する連通路の噴射口の面積が大きくなるほど、噴射される火炎は広がり、火炎の直径も大きくなる。噴射口の面積が小さいと、火炎が絞られ、火炎の噴射量が減る。この構成によれば、噴射口の内径が主室に近付くにつれて拡大することで、噴射口の面積が大きくなる。これによって、連通路から噴射される火炎の直径が大きくなるとともに、連通路を通過する火炎の量が減少することが防止される。 The larger the area of the injection port of the communication passage that injects the flame into the main room, the wider the injected flame and the larger the diameter of the flame. If the area of the injection port is small, the flame is narrowed down and the injection amount of the flame is reduced. According to this configuration, the area of the injection port is increased by increasing the inner diameter of the injection port as it approaches the main chamber. As a result, the diameter of the flame ejected from the communication passage is increased, and the amount of flame passing through the communication passage is prevented from being reduced.
 連通路は、旋回流の回転軸方向に見たときに、副室の内壁の接線に沿って形成された内壁面を有してもよい。 The communication passage may have an inner wall surface formed along the tangent line of the inner wall of the sub chamber when viewed in the direction of the rotation axis of the swirling flow.
 この構成によれば、連通路から副室に導入される混合気が、壁の内周に導かれる。これによって、混合気は副室内で渦を形成しやすい。このため、副室内の混合気のムラや、混合気の流動のバラツキが防止される。この結果、副室内の混合気が着火しやすい。 According to this configuration, the air-fuel mixture introduced into the sub-chamber from the connecting passage is guided to the inner circumference of the wall. As a result, the air-fuel mixture tends to form a vortex in the sub-chamber. Therefore, unevenness of the air-fuel mixture in the sub-chamber and variation in the flow of the air-fuel mixture are prevented. As a result, the air-fuel mixture in the sub-chamber is easily ignited.
 壁の内周の直径は、主室からシリンダヘッドに向かって拡大してもよい。 The diameter of the inner circumference of the wall may increase from the main chamber toward the cylinder head.
 この構成によれば、連通路から副室に導入された混合気は、シリンダヘッドへ向かうにつれて、流速が弱まる。すなわち、混合気の渦の流速が弱まる。これによって、混合気の流速が速すぎることによる失火が防止される。 According to this configuration, the flow velocity of the air-fuel mixture introduced into the sub-chamber from the communication passage decreases toward the cylinder head. That is, the flow velocity of the vortex of the air-fuel mixture weakens. This prevents misfire due to the flow velocity of the air-fuel mixture being too high.
本開示の一実施形態による副室式内燃機関の概略構成を示す縦断面図。The vertical sectional view which shows the schematic structure of the auxiliary chamber type internal combustion engine by one Embodiment of this disclosure. 図1の副室式内燃機関の連通路の形成部を示す横断面図。The cross-sectional view which shows the formation part of the communication passage of the auxiliary chamber type internal combustion engine of FIG. 図1の副室式内燃機関の連通路の形成部を示す縦断面図。The vertical sectional view which shows the formation part of the communication passage of the auxiliary chamber type internal combustion engine of FIG. 図1の副室式内燃機関の吸気行程および圧縮行程における混合気の状態を説明するための模式図。The schematic diagram for demonstrating the state of the air-fuel mixture in the intake stroke and the compression stroke of the auxiliary chamber type internal combustion engine of FIG. 図1の副室式内燃機関の点火後における混合気の火炎の状態を説明するための模式図。The schematic diagram for demonstrating the state of the flame of the air-fuel mixture after ignition of the subchamber type internal combustion engine of FIG. 本開示の他の実施形態による副室の概略構成を示す縦断面図。The vertical sectional view which shows the schematic structure of the auxiliary chamber by another embodiment of this disclosure.
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、以下明細書において、シリンダ軸方向Qとは、シリンダに沿ってピストンの摺動する方向を示す。上下方向と記す場合は、シリンダ軸方向Qを示し、シリンダヘッド側を「上」、ピストン側を「下」とする。また、左右方向Lとは、シリンダ軸方向Qに直交し、吸気ポートおよび排気ポートが配置される方向を示す。また、クランク軸方向Pとは、シリンダ軸方向Qに直交し、気筒が配置される方向を示す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following specification, the cylinder axial direction Q indicates the sliding direction of the piston along the cylinder. When described as the vertical direction, the cylinder axial direction Q is indicated, and the cylinder head side is "up" and the piston side is "down". Further, the left-right direction L indicates a direction orthogonal to the cylinder axial direction Q and where the intake port and the exhaust port are arranged. Further, the crankshaft direction P indicates a direction in which the cylinders are arranged, orthogonal to the cylinder shaft direction Q.
 図1に示すように、副室式内燃機関1は、主室4と、副室6と、主室4と副室6とを連通する複数の連通路8と、副室6に設けられる点火プラグ10と、燃料噴射弁12と、旋回流発生部14と、を備える。本実施形態では、副室式内燃機関1は、主室4および副室6を含む気筒Nが、直列に複数配列された直列型内燃機関である。すなわち、主室4、副室6、複数の連通路8、点火プラグ10、および、燃料噴射弁12は、各気筒Nに備えられる。しかし、気筒Nの配列についてはこれに限定されず、V型であっても水平対向型であってもよい。 As shown in FIG. 1, the sub-chamber internal combustion engine 1 has a main chamber 4, a sub-chamber 6, a plurality of communication passages 8 communicating the main chamber 4 and the sub-chamber 6, and ignition provided in the sub-chamber 6. It includes a plug 10, a fuel injection valve 12, and a swirling flow generating unit 14. In the present embodiment, the sub-chamber internal combustion engine 1 is an in-line internal combustion engine in which a plurality of cylinders N including a main chamber 4 and a sub chamber 6 are arranged in series. That is, the main chamber 4, the sub chamber 6, the plurality of communication passages 8, the spark plug 10, and the fuel injection valve 12 are provided in each cylinder N. However, the arrangement of the cylinders N is not limited to this, and may be a V type or a horizontally opposed type.
 主室4は、シリンダブロック101のシリンダ101a、シリンダヘッド102、およびピストン103で画定された空間である。本実施形態では、主室4は、ペントルーフ形状であり、シリンダヘッド102の吸気ポート105側および排気ポート110側に向けて2つの斜面を有する。主室4は、吸気カム(図示せず)によって駆動される2つの吸気バルブ104aおよび吸気バルブ104bを介して吸気ポート105に接続される。吸気ポート105は、図示しない吸気通路、スロットルバルブ、および、エアクリーナに接続される。また、主室4は、排気カム(図示せず)によって駆動される2つの排気バルブ109aおよび排気バルブ109bを介して、排気ポート110、排気通路(図示せず)、および、排気浄化触媒(図示せず)に接続される。副室式内燃機関1は、気筒Nの配列方向に設けられる、クランク軸(図示せず)によって動力を出力する。ピストン103は、コンロッド(図示せず)を介してクランク軸を駆動する。 The main chamber 4 is a space defined by the cylinder 101a of the cylinder block 101, the cylinder head 102, and the piston 103. In the present embodiment, the main chamber 4 has a pent roof shape and has two slopes toward the intake port 105 side and the exhaust port 110 side of the cylinder head 102. The main chamber 4 is connected to the intake port 105 via two intake valves 104a and an intake valve 104b driven by an intake cam (not shown). The intake port 105 is connected to an intake passage, a throttle valve, and an air cleaner (not shown). Further, the main chamber 4 has an exhaust port 110, an exhaust passage (not shown), and an exhaust purification catalyst (not shown) via two exhaust valves 109a and 109b driven by an exhaust cam (not shown). (Not shown) is connected. The sub-chamber internal combustion engine 1 outputs power by a crankshaft (not shown) provided in the arrangement direction of the cylinders N. The piston 103 drives the crankshaft via a connecting rod (not shown).
 副室6は、ペントルーフ形状の頂上部に設けられ、主室4と隣接する。副室6は、副室壁61で画定された空間である。副室6は、シリンダヘッド102から主室4に向かって突出し、副室壁61を介して主室4と隔てられる。本実施形態では、副室6は、主室4のペントルーフ形状の2つの斜面の交線(稜線)の略中央に設けられる。しかし、副室6は、主室4の略中央からオフセットして設けられもよい。本実施形態では副室6は主室4と同じ中心X1を有する。副室6の容積は、主室4よりも小さく、点火プラグ10で点火した混合気の火炎が副室6内に素早く伝播する。 The sub chamber 6 is provided at the top of the pent roof shape and is adjacent to the main chamber 4. The sub-chamber 6 is a space defined by the sub-chamber wall 61. The sub chamber 6 projects from the cylinder head 102 toward the main chamber 4 and is separated from the main chamber 4 via the sub chamber wall 61. In the present embodiment, the sub chamber 6 is provided substantially at the center of the line of intersection (ridge line) of the two slopes of the main chamber 4 having a pent roof shape. However, the sub chamber 6 may be provided offset from the substantially center of the main chamber 4. In this embodiment, the sub chamber 6 has the same center X1 as the main chamber 4. The volume of the sub chamber 6 is smaller than that of the main chamber 4, and the flame of the air-fuel mixture ignited by the spark plug 10 quickly propagates into the sub chamber 6.
 図2は、連通路8の形成部における副室6の横断面をピストン103側からみた図である。図1の拡大図および図2に示すように、副室壁61は、中心X1を中心とした円形の断面を有し、底部61aが半球状に形成される。図3は、左右方向Lに垂直な連通路8の形成部における縦断面図である。図3に示すように、副室壁61の内周61cは、主室4側からシリンダヘッド102側に向かって直径Drが拡大する。すなわち、副室壁61の内周61cは、上下方向(シリンダ軸方向Qと同じ)にみて下方から上方に向かって直径Drが拡大する。 FIG. 2 is a view of the cross section of the sub chamber 6 in the forming portion of the communication passage 8 as viewed from the piston 103 side. As shown in the enlarged view of FIG. 1 and FIG. 2, the auxiliary chamber wall 61 has a circular cross section centered on the center X1, and the bottom portion 61a is formed in a hemispherical shape. FIG. 3 is a vertical cross-sectional view of the forming portion of the communication passage 8 perpendicular to the left-right direction L. As shown in FIG. 3, the diameter Dr of the inner circumference 61c of the sub chamber wall 61 increases from the main chamber 4 side toward the cylinder head 102 side. That is, the diameter Dr of the inner circumference 61c of the auxiliary chamber wall 61 increases from the lower side to the upper side in the vertical direction (same as the cylinder axial direction Q).
 図2および図3に示すように、連通路8は、副室壁61の底部61aに複数個設けられる。連通路8は、主室4と副室6とを連通し、主室4の混合気を副室6に導く。副室6に導入された混合気は、副室6内で着火して予備燃焼する。図2示すように、連通路8は、副室壁61の外周61bの面に、副室6で予備燃焼した火炎を噴射する噴射口8aを有する。噴射口8aは、副室壁61の外周61bの面に沿って形成される。また、連通路8は、副室壁61の内周61cの面に、混合気を副室6に導入する導入口8bを有する。導入口8bは、副室壁61の内周61cの面に沿って形成される。本実施形態では、連通路8は、例えば、4つ設けられる。 As shown in FIGS. 2 and 3, a plurality of communication passages 8 are provided at the bottom 61a of the sub chamber wall 61. The communication passage 8 communicates the main chamber 4 and the sub chamber 6 and guides the air-fuel mixture of the main chamber 4 to the sub chamber 6. The air-fuel mixture introduced into the sub chamber 6 ignites in the sub chamber 6 and precombusts. As shown in FIG. 2, the communication passage 8 has an injection port 8a for injecting a flame precombusted in the sub chamber 6 on the surface of the outer circumference 61b of the sub chamber wall 61. The injection port 8a is formed along the surface of the outer circumference 61b of the sub chamber wall 61. Further, the communication passage 8 has an introduction port 8b for introducing the air-fuel mixture into the sub-chamber 6 on the surface of the inner circumference 61c of the sub-chamber wall 61. The introduction port 8b is formed along the surface of the inner circumference 61c of the auxiliary chamber wall 61. In the present embodiment, for example, four communication passages 8 are provided.
 連通路8の噴射口8aは、噴射口8aから噴射される火炎を、副室壁61の外周61bに沿って主室4内に発生する旋回流SWの回転方向Fの反対方向Uに導くように構成され、本実施形態では、噴射口8aは、主室4に向かって反対方向Uに延びている。ここで、噴射口8aから噴射される火炎は、噴射口8aの中心線C1に沿って噴射される。また、旋回流SWは、中心線C1と外周61bとの交点O1においては、接線S1に沿って流れる。連通路8が、旋回流SWの回転方向Fの反対方向Uに沿って延びるとは、中心線C1(中心線C1の延長線を含む)が、交点O1における垂線R1に対して反対方向Uに傾斜することを言う。すなわち、接線S1と中心線C1がなす角度が鈍角Aとなる。なお、少なくとも噴射口8aが反対方向Uに延びていればよく、連通路8は、噴射口8aを除いて、例えば副室6の径方向に延びてもよい。 The injection port 8a of the communication passage 8 guides the flame injected from the injection port 8a in the direction U opposite to the rotation direction F of the swirling flow SW generated in the main chamber 4 along the outer circumference 61b of the sub chamber wall 61. In the present embodiment, the injection port 8a extends in the opposite direction U toward the main chamber 4. Here, the flame injected from the injection port 8a is injected along the center line C1 of the injection port 8a. Further, the swirling flow SW flows along the tangent line S1 at the intersection O1 between the center line C1 and the outer circumference 61b. When the communication passage 8 extends along the direction U opposite to the rotation direction F of the swirling flow SW, the center line C1 (including the extension line of the center line C1) is in the direction U opposite to the perpendicular line R1 at the intersection O1. Say to incline. That is, the angle formed by the tangent line S1 and the center line C1 is an obtuse angle A. It is sufficient that at least the injection port 8a extends in the opposite direction U, and the communication passage 8 may extend in the radial direction of the sub chamber 6, for example, except for the injection port 8a.
 連通路8は、副室6の外側に位置する内壁面8c(クランク軸方向P、または、左右方向Lにみて中心X1から遠い側の内壁面)と、副室6の内側に位置する内壁面8d(クランク軸方向P、または、左右方向Lにみて中心X1から近い側の内壁面)と、を有する。連通路8の内壁面8cと内壁面8dとは、旋回流SWの回転方向Fの反対方向Uに対向しており、この連通路8内において、副室6の外側に位置する内壁面8cは反対方向Uの上流側に位置し、副室6の内側に位置する内壁面8dは反対方向Uの下流側に位置している。副室6の外側に位置する内壁面8cは、副室壁61の内周61cの接線S2に沿って形成される。好ましくは、連通路8の内壁面8cが、導入口8bから噴射口8aまで接線S2に沿って形成される。これによって、噴射口8aと導入口8bとの間、および導入口8bと副室6の内周61cの面との間に、段差がなくなる。このため、圧縮行程時に混合気が副室6に導入される場合に、段差によって発生する圧力損失が抑制される。この結果、副室6の突出方向と垂直な面に沿ったらせん状の横渦が副室6内に円滑に形成される。また、連通路8は、図3に示すように、主室4から上下方向に斜めに傾き、かつ図2に示すように、径方向に対して斜め傾いて形成されてもよい。これによって、横渦が副室6内を上昇する。 The communication passage 8 includes an inner wall surface 8c located outside the sub chamber 6 (inner wall surface on the side far from the center X1 in the crankshaft direction P or the left-right direction L) and an inner wall surface located inside the sub chamber 6. It has 8d (inner wall surface on the side closer to the center X1 in the crankshaft direction P or the left-right direction L). The inner wall surface 8c and the inner wall surface 8d of the communication passage 8 face each other in the opposite direction U of the rotation direction F of the swirling flow SW, and the inner wall surface 8c located outside the sub chamber 6 in the communication passage 8 The inner wall surface 8d located on the upstream side of the opposite direction U and inside the sub chamber 6 is located on the downstream side of the opposite direction U. The inner wall surface 8c located outside the sub chamber 6 is formed along the tangent line S2 of the inner circumference 61c of the sub chamber wall 61. Preferably, the inner wall surface 8c of the communication passage 8 is formed from the introduction port 8b to the injection port 8a along the tangent line S2. As a result, there is no step between the injection port 8a and the introduction port 8b, and between the introduction port 8b and the surface of the inner circumference 61c of the sub chamber 6. Therefore, when the air-fuel mixture is introduced into the sub chamber 6 during the compression stroke, the pressure loss generated by the step is suppressed. As a result, a spiral lateral vortex is smoothly formed in the sub chamber 6 along the plane perpendicular to the projecting direction of the sub chamber 6. Further, the communication passage 8 may be formed so as to be inclined in the vertical direction from the main chamber 4 as shown in FIG. 3 and to be inclined in the radial direction as shown in FIG. As a result, the lateral vortex rises in the sub-chamber 6.
 また、図2に示すように、連通路8の噴射口8aの内径は、主室4に近付くにつれて拡大する。より具体的には、連通路8の外側の内壁面8cおよび内側の内壁面8dによって形成される空間の導入口8bにおける内径Dbよりも、この空間の噴射口8aにおける内径Daの方が大きく、導入口8bから噴射口8aまで連通路8の内径が徐々に拡大する。このため、噴射口8aの外周61bに沿った面積が、導入口8bの内周61cに沿った面積よりも大きくなる。この結果、連通路8を通過する火炎の噴射量が減ることが防止される。さらに、噴射口8aの内径は、旋回流SWの回転方向Fの反対方向Uに向けて拡大する。すなわち、内壁面8dは、内壁面8cよりも反対方向U(噴射口8aの内径が拡大する方向)に傾いている。これによって、噴射口8aから噴射される火炎は、旋回流SWの回転方向Fの反対方向Uに沿った方向を指向する。この結果、噴射口8aから噴射される火炎が、より旋回流SWによって乱れて拡散されやすくなる。なお、少なくとも噴射口8aの内径が反対方向Uに拡大すればよく、噴射口8aを除く連通路8の内径は、例えば一定でもよい。また、少なくとも噴射口8aにおいて内壁面8dが内壁面8cよりも反対方向Uに延びていればよく、噴射口8aを除く連通路8において、内壁面8dは、例えば内壁面8cと平行でもよい。 Further, as shown in FIG. 2, the inner diameter of the injection port 8a of the communication passage 8 increases as it approaches the main chamber 4. More specifically, the inner diameter Da at the injection port 8a of this space is larger than the inner diameter Db at the introduction port 8b of the space formed by the outer inner wall surface 8c and the inner inner wall surface 8d of the communication passage 8. The inner diameter of the communication passage 8 gradually increases from the introduction port 8b to the injection port 8a. Therefore, the area along the outer circumference 61b of the injection port 8a is larger than the area along the inner circumference 61c of the introduction port 8b. As a result, it is possible to prevent the amount of flame injected through the communication passage 8 from being reduced. Further, the inner diameter of the injection port 8a expands in the direction U opposite to the rotation direction F of the swirling flow SW. That is, the inner wall surface 8d is inclined in the opposite direction U (direction in which the inner diameter of the injection port 8a is expanded) with respect to the inner wall surface 8c. As a result, the flame injected from the injection port 8a directs in a direction along the direction U opposite to the rotation direction F of the swirling flow SW. As a result, the flame injected from the injection port 8a is more likely to be disturbed and diffused by the swirling flow SW. At least the inner diameter of the injection port 8a may be expanded in the opposite direction U, and the inner diameter of the communication passage 8 excluding the injection port 8a may be constant, for example. Further, at least at the injection port 8a, the inner wall surface 8d may extend in the opposite direction U from the inner wall surface 8c, and in the communication passage 8 excluding the injection port 8a, the inner wall surface 8d may be parallel to, for example, the inner wall surface 8c.
 図1および図2に示すように、点火プラグ10の中心電極10aは、副室6の中心X1に重なる位置に配置される。図3に示すように、連通路8の中心線C1は、副室6の副室壁61の内周61cの壁面と、位置Hで交わる。そして、点火プラグ10の中心電極10aの先端部10cは、位置Hよりも高い位置に配置される。 As shown in FIGS. 1 and 2, the center electrode 10a of the spark plug 10 is arranged at a position overlapping the center X1 of the sub chamber 6. As shown in FIG. 3, the center line C1 of the communication passage 8 intersects the wall surface of the inner circumference 61c of the sub chamber wall 61 of the sub chamber 6 at the position H. Then, the tip portion 10c of the center electrode 10a of the spark plug 10 is arranged at a position higher than the position H.
 燃料噴射弁12は、主室4に向けて設けられる。また、燃料噴射弁12は、副室6の外に設けられる。本実施形態では、燃料噴射弁12は、主室4に直接燃料を噴射する。すなわち、副室式内燃機関1は、直噴型の内燃機関である。燃料噴射弁12の噴射量と噴射時期が制御される。また、燃料噴射弁12は、図示しない燃料噴射ポンプ、および、燃料タンクに接続される。燃料噴射弁12は、シリンダヘッド102の吸気弁104側に配置される。本実施形態では、副室式内燃機関1の空燃比は、理論空燃比よりもリーンな値に設定される。すなわち、副室式内燃機関1は、希薄燃焼で運転される。これによって、燃費性能が向上する。 The fuel injection valve 12 is provided toward the main chamber 4. Further, the fuel injection valve 12 is provided outside the sub chamber 6. In the present embodiment, the fuel injection valve 12 injects fuel directly into the main chamber 4. That is, the sub-chamber internal combustion engine 1 is a direct injection type internal combustion engine. The injection amount and injection timing of the fuel injection valve 12 are controlled. Further, the fuel injection valve 12 is connected to a fuel injection pump (not shown) and a fuel tank. The fuel injection valve 12 is arranged on the intake valve 104 side of the cylinder head 102. In the present embodiment, the air-fuel ratio of the sub-chamber internal combustion engine 1 is set to a value leaner than the stoichiometric air-fuel ratio. That is, the sub-chamber internal combustion engine 1 is operated by lean burn. This improves fuel efficiency.
 図4に示すように、旋回流発生部14は、回転方向Fに旋回する旋回流SWを主室4に発生させる。本実施形態では、旋回流発生部14は、吸気バルブ104aと吸気バルブ104bのリフト高さを変えることで旋回流SWを発生させる。しかし、旋回流発生部14は、吸気ポート105の形状によって旋回流SWを発生させてもよい。また、本実施形態では、旋回流SWは、ピストン103の摺動方向(シリンダ軸方向Q)に垂直な面に対し、ピストン103側から見て反時計回りに旋回するスワール流である。旋回流SWは、シリンダ101aの内壁面に沿って旋回するとともに、副室壁61の外周61bに沿って旋回する。 As shown in FIG. 4, the swirling flow generating unit 14 generates a swirling flow SW that swirls in the rotation direction F in the main chamber 4. In the present embodiment, the swirling flow generating unit 14 generates the swirling flow SW by changing the lift heights of the intake valve 104a and the intake valve 104b. However, the swirling flow generating unit 14 may generate the swirling flow SW depending on the shape of the intake port 105. Further, in the present embodiment, the swirl flow SW is a swirl flow that swirls counterclockwise when viewed from the piston 103 side with respect to a surface perpendicular to the sliding direction (cylinder axial direction Q) of the piston 103. The swirling flow SW swirls along the inner wall surface of the cylinder 101a and swivels along the outer peripheral 61b of the sub chamber wall 61.
 このように構成された副室式内燃機関1では、吸気行程では、吸気バルブ104aおよび吸気バルブ104bが開弁するとともに、ピストン103が下降し、吸気が主室4および副室6に導入される。このとき、吸気バルブ104aと吸気バルブ104bのリフト高さの違いによって、主室4に旋回流SWが発生する。また、本実施形態では、吸気は、図示しない過給機によって加圧される。これによって、主室4および副室6の圧力は、吸気の圧力と同じになる。吸気行程では、主として主室4に燃料を供給するための燃料噴射が、燃料噴射弁12によって行われる。噴射された燃料は、主室4内で吸気と混じり混合気を形成する。混合気は、ピストン103が下がるとともに主室4全体に供給される。 In the sub-chamber internal combustion engine 1 configured in this way, in the intake stroke, the intake valve 104a and the intake valve 104b are opened, the piston 103 is lowered, and the intake air is introduced into the main chamber 4 and the sub-chamber 6. .. At this time, a swirling flow SW is generated in the main chamber 4 due to the difference in lift height between the intake valve 104a and the intake valve 104b. Further, in the present embodiment, the intake air is pressurized by a supercharger (not shown). As a result, the pressures in the main chamber 4 and the sub chamber 6 become the same as the pressure of the intake air. In the intake stroke, fuel injection mainly for supplying fuel to the main chamber 4 is performed by the fuel injection valve 12. The injected fuel mixes with the intake air in the main chamber 4 to form an air-fuel mixture. The air-fuel mixture is supplied to the entire main chamber 4 as the piston 103 is lowered.
 圧縮行程では、吸気バルブ104aおよび吸気バルブ104bが閉弁するとともにピストン103が上昇し、主室4の混合気が圧縮される。図4に示すように、圧縮行程で、ピストン103が上昇すると、主室4から連通路8を介して混合気が副室6に導入される。このとき、副室6に導入された混合気は、連通路8によって、上昇する横渦(図4の副室6内の矢印参照)となる。 In the compression stroke, the intake valve 104a and the intake valve 104b are closed and the piston 103 is raised to compress the air-fuel mixture in the main chamber 4. As shown in FIG. 4, when the piston 103 rises in the compression stroke, the air-fuel mixture is introduced from the main chamber 4 to the sub chamber 6 via the communication passage 8. At this time, the air-fuel mixture introduced into the sub-chamber 6 becomes a lateral vortex (see the arrow in the sub-chamber 6 in FIG. 4) that rises by the communication passage 8.
 本実施形態では、連通路8の内壁面8cが副室壁61の内周61cの接線S2に沿って形成される。これによって、上昇する横渦が副室6内の内周61cに沿って発生し、点火プラグ10は、この横渦に点火する。一方、副室壁61の内周61cの直径Drは、主室4からシリンダヘッド102に向かって拡大する(図3参照)。これによって、副室6内の横渦の流速が減速する。この結果、副室6内の横渦の流速が速すぎることが原因となる失火が防止される。 In the present embodiment, the inner wall surface 8c of the communication passage 8 is formed along the tangent line S2 of the inner circumference 61c of the sub-chamber wall 61. As a result, an ascending lateral vortex is generated along the inner circumference 61c in the sub chamber 6, and the spark plug 10 ignites the lateral vortex. On the other hand, the diameter Dr of the inner circumference 61c of the sub chamber wall 61 expands from the main chamber 4 toward the cylinder head 102 (see FIG. 3). As a result, the flow velocity of the lateral vortex in the sub chamber 6 is reduced. As a result, misfire caused by the flow velocity of the lateral vortex in the sub chamber 6 being too high is prevented.
 副室6に導入された混合気は、点火プラグ10によって点火され燃焼される。図5に示すように、このとき噴射口8aから火炎Gが噴射される。そして、主室4の混合気が燃焼し、燃焼によって発生する燃焼ガスで圧力が上昇する。これにより、ピストン103が押し下げられ、膨張行程に進む。 The air-fuel mixture introduced into the sub chamber 6 is ignited and burned by the spark plug 10. As shown in FIG. 5, at this time, the flame G is injected from the injection port 8a. Then, the air-fuel mixture in the main chamber 4 burns, and the pressure rises due to the combustion gas generated by the combustion. As a result, the piston 103 is pushed down and proceeds to the expansion stroke.
 本実施形態では、連通路8の噴射口8aは、副室壁61の外周61bに沿って主室4内に発生する旋回流SWの回転方向Fの反対方向Uに延びており、反対方向Uに火炎Gを導く。これによって、火炎Gは、噴射されたのち、旋回流SWと対向する。このため、火炎Gは旋回流SWによって、火炎G1のように乱され拡散される。この結果、火炎Gと隣の連通路8から噴射される火炎との間の主室4における空間Vに火炎G1が拡散する。空間Vは、火炎Gが届かず燃焼が不均衡になりやすい。火炎Gが旋回流SWに対向して、旋回流SWによって乱され拡散されることで、空間Vに火炎G1が届く。この結果、主室4は、均質に燃焼する。また、火炎Gは、旋回流SWによって貫徹力が弱められ、シリンダ101aに火炎Gが直接当たることが防止される。これによって、火炎Gがシリンダ101aによって冷却されることで発生する冷却損失が低減される。 In the present embodiment, the injection port 8a of the communication passage 8 extends in the direction U opposite to the rotation direction F of the swirling flow SW generated in the main chamber 4 along the outer circumference 61b of the sub chamber wall 61, and is in the opposite direction U. Lead the flame G to. As a result, the flame G is injected and then faces the swirling flow SW. Therefore, the flame G is disturbed and diffused like the flame G1 by the swirling flow SW. As a result, the flame G1 diffuses into the space V in the main chamber 4 between the flame G and the flame ejected from the adjacent passage 8. In space V, flame G does not reach and combustion tends to be imbalanced. The flame G faces the swirling flow SW and is disturbed and diffused by the swirling flow SW, so that the flame G1 reaches the space V. As a result, the main chamber 4 burns uniformly. Further, the penetrating force of the flame G is weakened by the swirling flow SW, and the flame G is prevented from directly hitting the cylinder 101a. As a result, the cooling loss generated by cooling the flame G by the cylinder 101a is reduced.
 さらに、本実施形態では、導入口8bにおける連通路8の内径Dbから噴射口8aにおける連通路8の内径Daへと、連通路8の内径が大きくなる。噴射口8aの内径Daが大きくなると、噴射口8aの面積が大きくなる。これによって、噴射口8aから噴射される火炎の直径も大きくなる。このため、連通路8から噴射される火炎Gと隣の連通路8から噴射される火炎Gとの間の主室4における空間Vに大きい火炎G1が噴出される。この結果、空間Vの燃焼が促進される。また、旋回流SWの回転方向Fの反対方向Uに向けて噴射口8aの直径が拡大する。これによって、より多くの火炎Gが旋回流SWと対向する。すなわち、旋回流SWと対向する火炎が多くなる。このため、空間Vに、より多くの火炎G1が供給される。この結果、空間Vの燃焼が促進される。 Further, in the present embodiment, the inner diameter of the communication passage 8 increases from the inner diameter Db of the communication passage 8 at the introduction port 8b to the inner diameter Da of the communication passage 8 at the injection port 8a. As the inner diameter Da of the injection port 8a increases, the area of the injection port 8a increases. As a result, the diameter of the flame injected from the injection port 8a also increases. Therefore, a large flame G1 is ejected into the space V in the main chamber 4 between the flame G ejected from the communication passage 8 and the flame G injected from the adjacent passage 8. As a result, the combustion of the space V is promoted. Further, the diameter of the injection port 8a increases in the direction U opposite to the rotation direction F of the swirling flow SW. As a result, more flame G faces the swirling flow SW. That is, the number of flames facing the swirling flow SW increases. Therefore, more flame G1 is supplied to the space V. As a result, the combustion of the space V is promoted.
 排気行程では、排気バルブ109が開弁するとともに、ピストン103が下死点から上昇し、シリンダ内の燃焼ガス(排気)が排気ポート110に排出される。そして、ピストン103が上死点に達すると、再び吸気行程が始まる。このようにピストン103が2往復すると4つの行程が完了する。 In the exhaust stroke, the exhaust valve 109 opens, the piston 103 rises from the bottom dead center, and the combustion gas (exhaust) in the cylinder is discharged to the exhaust port 110. Then, when the piston 103 reaches top dead center, the intake stroke starts again. When the piston 103 reciprocates twice in this way, four strokes are completed.
 以上説明した通り、本実施形態の副室式内燃機関1では、連通路8の噴射口8aは、副室壁61の外周61bに沿って主室4内に発生する旋回流SWの回転方向Fの反対方向Uに火炎Gを導く。これによって、副室6から主室4に向けて噴射された火炎Gの冷却損失の発生が防止され、主室4の燃焼が促進される。 As described above, in the sub-chamber internal combustion engine 1 of the present embodiment, the injection port 8a of the communication passage 8 is the rotation direction F of the swirling flow SW generated in the main chamber 4 along the outer circumference 61b of the sub-chamber wall 61. Guide the flame G in the opposite direction U of. As a result, the occurrence of cooling loss of the flame G ejected from the sub chamber 6 toward the main chamber 4 is prevented, and the combustion of the main chamber 4 is promoted.
 <他の実施形態>
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
<Other embodiments>
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. In particular, the plurality of modifications described in the present specification can be arbitrarily combined as required.
 上記実施形態では、副室式内燃機関1は、直噴型の内燃機関であるが、本開示はこれに限定されるものではない。例えば、吸気ポート105に設けられる吸気ポートインジェクタを備える副室式内燃機関であってもよい。 In the above embodiment, the sub-chamber internal combustion engine 1 is a direct injection type internal combustion engine, but the present disclosure is not limited to this. For example, it may be an auxiliary chamber type internal combustion engine provided with an intake port injector provided at the intake port 105.
 上記実施形態では、連通路8は、副室壁61に4つ設けるが、本開示はこれに限定されるものではない。連通路8は、1つでも複数でもよい。 In the above embodiment, four communication passages 8 are provided on the sub-chamber wall 61, but the present disclosure is not limited to this. The communication passage 8 may be one or a plurality.
 上記実施形態では、連通路8の内径は、副室壁61の外周61bに向かって拡大するが、本開示はこれに限定されない。例えば、連通路8の内径は一定であってもよい。すなわち、図2における噴射口8aにおける内径Daと、導入口8bにおける内径Dbが同じであってもよい。 In the above embodiment, the inner diameter of the communication passage 8 increases toward the outer circumference 61b of the sub-chamber wall 61, but the present disclosure is not limited to this. For example, the inner diameter of the communication passage 8 may be constant. That is, the inner diameter Da at the injection port 8a in FIG. 2 and the inner diameter Db at the introduction port 8b may be the same.
 上記実施形態では、連通路8は、副室6の突出する方向の1つの位置に設けられるが、本開示は、これに限定されない。図6に示すように、副室6の突出する方向の異なる位置に第1連通路208と、第2連通路209が設けられてもよい。この場合に、第1連通路208と、第2連通路209のいずれか一方の連通路の内径は、一定でもよい。また、他方の連通路の内径は、副室壁261の外周261bに向かって拡大してもよい。例えば、第1連通路208が、第2連通路209よりも点火プラグ210の先端部210cに近い距離に設けられる場合、第1連通路208の内径がが、副室壁261の外周261bに向かって拡大してもよい。一方、第2連通路209の内径は、一定であってもよい。これによって、点火プラグ210の先端部210cに近い第1連通路208からの火炎の噴射量が大きくなる。 In the above embodiment, the communication passage 8 is provided at one position in the protruding direction of the sub chamber 6, but the present disclosure is not limited to this. As shown in FIG. 6, the first passage 208 and the second passage 209 may be provided at different positions in the protruding direction of the sub chamber 6. In this case, the inner diameter of either the first passage 208 or the second passage 209 may be constant. Further, the inner diameter of the other passage may be expanded toward the outer circumference 261b of the sub chamber wall 261. For example, when the first passage 208 is provided closer to the tip 210c of the spark plug 210 than the second passage 209, the inner diameter of the first passage 208 faces the outer circumference 261b of the sub chamber wall 261. May be expanded. On the other hand, the inner diameter of the second passage 209 may be constant. As a result, the amount of flame injected from the first passage 208 near the tip 210c of the spark plug 210 increases.
 上記実施形態では、底部61aは半球形状であるが、本開示はこれに限定されない。図6に示すように、底部261aの形状は円錐台形状であってもよい。また、円錐形状など種々形状であってもよい。 In the above embodiment, the bottom 61a has a hemispherical shape, but the present disclosure is not limited to this. As shown in FIG. 6, the shape of the bottom portion 261a may be a truncated cone shape. Further, it may have various shapes such as a conical shape.
 上記実施形態では、旋回流発生部14が、スワール流を発生させるが、本開示はこれに限定されない。旋回流発生部14は、シリンダ軸方向Qに平行な面に沿って一方向に旋回する縦型の渦を発生させてもよく、すなわちタンブル流を発生させてもよい。この場合に、連通路8は、タンブル流の回転方向の反対方向に沿って形成されてもよい。 In the above embodiment, the swirl flow generation unit 14 generates a swirl flow, but the present disclosure is not limited to this. The swirling flow generating unit 14 may generate a vertical vortex that swirls in one direction along a plane parallel to the cylinder axial direction Q, that is, may generate a tumble flow. In this case, the communication passage 8 may be formed along the direction opposite to the rotation direction of the tumble flow.
 上記実施形態では、副室の形状はシリンダ軸方向に垂直な面による断面が円形となる形状(半球や円筒形状など)を例にしている。しかしながら、副室の形状はこれに限られない。断面が楕円や正多角形となる形状であってもよい。火炎伝播の観点からは、対称性のある形状が好ましいが、これに限られない。なお、本開示における「直径方向」「径方向」「接線」などの幾何学的表現は、断面が円形以外の場合であっても、当業者であれば適宜理解することができるであろう。つまり、副室の断面が円形以外になる実施態様であっても、当業者であれば本開示と同様の効果が奏されるように本開示の特徴を適宜適用できるであろう。 In the above embodiment, the shape of the sub chamber is an example of a shape (hemispherical shape, cylindrical shape, etc.) having a circular cross section due to a plane perpendicular to the cylinder axis direction. However, the shape of the sub-chamber is not limited to this. The cross section may be an ellipse or a regular polygon. From the viewpoint of flame propagation, a symmetrical shape is preferable, but the shape is not limited to this. Geometric expressions such as "diameter direction", "diameter direction", and "tangent line" in the present disclosure can be appropriately understood by those skilled in the art even when the cross section is other than circular. That is, even in an embodiment in which the cross section of the sub chamber is other than circular, those skilled in the art will be able to appropriately apply the features of the present disclosure so as to obtain the same effects as those of the present disclosure.
 上記実施形態では、副室に設けられた点火プラグで混合気が点火される火花点火内燃機関を例にしている。本開示の内燃機関では燃料としてガソリンが使用されるが、当然これに限定されず、アルコールなどの他の燃料であってもよい。また、本開示の特徴は、火花点火内燃機関に限られず、ディーゼルエンジンなどの圧縮着火内燃機関にも適用可能である。つまり、副室内に点火プラグ等の火花発生手段を設けることは必須ではなく、内燃機関の1燃焼サイクル(4ストロークエンジンであれば吸入、圧縮、燃焼、排気からなるサイクル)の中で最初の正常燃焼(予備燃焼)が副室内で生じるように設計された内燃機関であれば同様の作用効果が期待される。なお、圧縮着火内燃機関であっても、インジェクタから副室内に燃料を直接噴射させることや圧縮比を適宜設定することで、副室内で予備燃焼を発生させられることは従来周知である。また、圧縮着火内燃機関であっても、燃料は特に軽油に限定されず、ガソリンやアルコール等であってもよい。 In the above embodiment, a spark-ignition internal combustion engine in which the air-fuel mixture is ignited by a spark plug provided in the sub chamber is taken as an example. Gasoline is used as a fuel in the internal combustion engine of the present disclosure, but the fuel is not limited to this, and other fuels such as alcohol may be used. Further, the features of the present disclosure are not limited to the spark ignition internal combustion engine, and can be applied to a compression ignition internal combustion engine such as a diesel engine. In other words, it is not essential to provide a spark plug or other spark generating means in the sub-chamber, and it is the first normal in one combustion cycle of an internal combustion engine (in the case of a 4-stroke engine, a cycle consisting of intake, compression, combustion, and exhaust). Similar effects can be expected if the internal combustion engine is designed so that combustion (pre-combustion) occurs in the sub-chamber. It is well known that even in a compression ignition internal combustion engine, pre-combustion can be generated in the sub-chamber by injecting fuel directly from the injector into the sub-chamber or by setting the compression ratio appropriately. Further, even in the case of a compression ignition internal combustion engine, the fuel is not particularly limited to light oil, and may be gasoline, alcohol, or the like.
 本開示の実施形態によれば、副室式内燃機関(1)は、
 シリンダヘッド(102)と、シリンダ(101a)と、ピストン(103)と、で画定される主室(4)と、
 前記シリンダヘッド(102)から前記主室(4)に向かって突出し、前記主室(4)と隔てられる副室(6)と、
 前記主室(4)と前記副室(6)を連通する連通路(8)と、
 を備え、
 前記連通路(8)は、前記副室(6)内で発生した火炎を前記主室(4)内に噴射する噴射口(8a)を有し、
 前記噴射口(8a)は、前記主室(4)内に発生する旋回流(SW)の回転方向(F)の反対方向(U)に前記火炎を導くように構成されている。
According to the embodiment of the present disclosure, the sub-chamber internal combustion engine (1) is
A main chamber (4) defined by a cylinder head (102), a cylinder (101a), and a piston (103).
A sub-chamber (6) protruding from the cylinder head (102) toward the main chamber (4) and separated from the main chamber (4).
A communication passage (8) connecting the main room (4) and the sub room (6),
With
The communication passage (8) has an injection port (8a) for injecting a flame generated in the sub chamber (6) into the main chamber (4).
The injection port (8a) is configured to guide the flame in a direction (U) opposite to the rotation direction (F) of the swirling flow (SW) generated in the main chamber (4).
 前記噴射口(8a)は、前記主室(4)に向かって前記反対方向(U)に延びてもよい。 The injection port (8a) may extend in the opposite direction (U) toward the main chamber (4).
 前記噴射口(8a)の内径(Da)は、前記主室(4)に近付くにつれて拡大してもよい。 The inner diameter (Da) of the injection port (8a) may be enlarged as it approaches the main chamber (4).
 前記連通路(8)は、前記旋回流(SW)の回転軸方向に見たときに、前記副室(6)の内周(61c)の接線(S2)に沿って形成された内壁面(8c)を有してもよい。 The communication passage (8) has an inner wall surface (S2) formed along the tangent line (S2) of the inner circumference (61c) of the sub chamber (6) when viewed in the rotation axis direction of the swirling flow (SW). 8c) may be provided.
 前記副室(6)の内径(Dr)は、前記主室(4)から前記シリンダヘッド(102)に向かって拡大してもよい。 The inner diameter (Dr) of the sub chamber (6) may be expanded from the main chamber (4) toward the cylinder head (102).
 本出願は、2019年3月27日出願の日本特許出願特願2019-061137に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2019-061137 filed on March 27, 2019, the contents of which are incorporated herein by reference.
1:副室式内燃機関
4:主室
6:副室
8:連通路
8c:内壁面
14:旋回流発生部
61:副室壁
61b:外周
61c:内周
101a:シリンダ
102:シリンダヘッド
103:ピストン
Da:内径
Db:内径
Dr:内周の直径
F:旋回流の回転方向
U:旋回流の回転方向の反対方向
S2:内周の接線
SW:旋回流
1: Sub-chamber internal combustion engine 4: Main chamber 6: Sub-chamber 8: Communication passage 8c: Inner wall surface 14: Swirling flow generator 61: Sub-chamber wall 61b: Outer circumference 61c: Inner circumference 101a: Cylinder 102: Cylinder head 103: Piston Da: Inner diameter Db: Inner diameter Dr: Inner circumference diameter F: Swirling flow rotation direction U: Swirling flow rotation direction opposite direction S2: Inner circumference tangent SW: Swirling flow

Claims (5)

  1.  シリンダヘッドと、シリンダと、ピストンと、で画定される主室と、
     前記シリンダヘッドから前記主室に向かって突出し、前記主室と隔てられる副室と、
     前記主室と前記副室を連通する連通路と、
     を備え、
     前記連通路は、前記副室内で発生した火炎を前記主室内に噴射する噴射口を有し、
     前記噴射口は、前記主室内に発生する旋回流の回転方向の反対方向に前記火炎を導くように構成されている、副室式内燃機関。
    A main chamber defined by a cylinder head, a cylinder, and a piston,
    An auxiliary chamber that protrudes from the cylinder head toward the main chamber and is separated from the main chamber.
    A communication passage connecting the main room and the sub room,
    With
    The communication passage has an injection port for injecting a flame generated in the sub chamber into the main chamber.
    The injection port is a sub-chamber type internal combustion engine configured to guide the flame in a direction opposite to the rotation direction of a swirling flow generated in the main chamber.
  2.  前記噴射口は、前記主室に向かって前記反対方向に延びる、
    請求項1に記載の副室式内燃機関。
    The injection port extends in the opposite direction toward the main chamber.
    The sub-chamber internal combustion engine according to claim 1.
  3.  前記噴射口の内径は、前記主室に近付くにつれて拡大する、
    請求項1または2に記載の副室式内燃機関。
    The inner diameter of the injection port expands as it approaches the main chamber.
    The sub-chamber internal combustion engine according to claim 1 or 2.
  4.  前記連通路は、前記旋回流の回転軸方向に見たときに、前記副室の内周の接線に沿って形成された内壁面を有する、
    請求項1から3のいずれか1項に記載の副室式内燃機関。
    The communication passage has an inner wall surface formed along the tangent line of the inner circumference of the sub chamber when viewed in the rotation axis direction of the swirling flow.
    The sub-chamber internal combustion engine according to any one of claims 1 to 3.
  5.  前記副室の内径は、前記主室から前記シリンダヘッドに向かって拡大する、
    請求項1から4のいずれか1項に記載の副室式内燃機関。
    The inner diameter of the sub chamber expands from the main chamber toward the cylinder head.
    The sub-chamber internal combustion engine according to any one of claims 1 to 4.
PCT/JP2020/012160 2019-03-27 2020-03-18 Auxiliary chamber type internal combustion engine WO2020196210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509283A JP7143935B2 (en) 2019-03-27 2020-03-18 pre-chamber internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061137 2019-03-27
JP2019061137 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196210A1 true WO2020196210A1 (en) 2020-10-01

Family

ID=72611931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012160 WO2020196210A1 (en) 2019-03-27 2020-03-18 Auxiliary chamber type internal combustion engine

Country Status (2)

Country Link
JP (1) JP7143935B2 (en)
WO (1) WO2020196210A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113738497A (en) * 2021-09-10 2021-12-03 潍柴动力股份有限公司 Engine and vehicle
TWI828417B (en) * 2022-02-15 2024-01-01 日商山葉發動機股份有限公司 auxiliary chamber combustion four-stroke engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465921U (en) * 1990-10-09 1992-06-09
JP2002081321A (en) * 2000-09-06 2002-03-22 Tokyo Gas Co Ltd Blowout structure of internal combustion engine
JP2005232987A (en) * 2004-02-17 2005-09-02 Osaka Gas Co Ltd Subsidiary chamber type engine
JP2011038465A (en) * 2009-08-10 2011-02-24 Mitsubishi Heavy Ind Ltd Auxiliary chamber structure of auxiliary chamber type internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465921U (en) * 1990-10-09 1992-06-09
JP2002081321A (en) * 2000-09-06 2002-03-22 Tokyo Gas Co Ltd Blowout structure of internal combustion engine
JP2005232987A (en) * 2004-02-17 2005-09-02 Osaka Gas Co Ltd Subsidiary chamber type engine
JP2011038465A (en) * 2009-08-10 2011-02-24 Mitsubishi Heavy Ind Ltd Auxiliary chamber structure of auxiliary chamber type internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113738497A (en) * 2021-09-10 2021-12-03 潍柴动力股份有限公司 Engine and vehicle
TWI828417B (en) * 2022-02-15 2024-01-01 日商山葉發動機股份有限公司 auxiliary chamber combustion four-stroke engine

Also Published As

Publication number Publication date
JPWO2020196210A1 (en) 2020-10-01
JP7143935B2 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP4722129B2 (en) In-cylinder injection spark ignition internal combustion engine
US7536994B2 (en) Internal combustion engine and fuel injection method in internal combustion engine
US11199155B2 (en) Piston crown for a combustion system and an associated method thereof
WO2020196210A1 (en) Auxiliary chamber type internal combustion engine
WO2020196207A1 (en) Pre-chamber type internal combustion engine
JP4244745B2 (en) In-cylinder direct injection gasoline engine
JP7156505B2 (en) pre-chamber internal combustion engine
JP2007138780A (en) Auxiliary chamber type internal combustion engine
JP7143934B2 (en) pre-chamber internal combustion engine
JP4682885B2 (en) In-cylinder direct injection internal combustion engine
WO2020196683A1 (en) Auxiliary chamber-type internal combustion engine
KR19990085898A (en) Pistons in direct injection gasoline engines
WO2021161552A1 (en) Auxiliary chamber engine
JP3695011B2 (en) Sub-chamber engine
JP7147962B2 (en) pre-chamber internal combustion engine
JP4075255B2 (en) diesel engine
JP4145177B2 (en) Engine and operation method thereof
JP7327466B2 (en) pre-chamber internal combustion engine
JP2004162577A (en) Cylinder injection type spark ignition internal combustion engine
JP4007729B2 (en) Engine and operation method thereof
JP2005232987A (en) Subsidiary chamber type engine
WO2020196204A1 (en) Auxiliary-chamber-type internal combustion engine
JP2001020744A (en) Engine and combustion control method for the same
JP2007285244A (en) Direct injection type internal combustion engine
KR20220122926A (en) Ignition promoter assembly and engine having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779043

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021509283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779043

Country of ref document: EP

Kind code of ref document: A1