JP3695011B2 - Sub-chamber engine - Google Patents

Sub-chamber engine Download PDF

Info

Publication number
JP3695011B2
JP3695011B2 JP25225996A JP25225996A JP3695011B2 JP 3695011 B2 JP3695011 B2 JP 3695011B2 JP 25225996 A JP25225996 A JP 25225996A JP 25225996 A JP25225996 A JP 25225996A JP 3695011 B2 JP3695011 B2 JP 3695011B2
Authority
JP
Japan
Prior art keywords
chamber
sub
fuel
piston
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25225996A
Other languages
Japanese (ja)
Other versions
JPH1054244A (en
Inventor
寛 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP25225996A priority Critical patent/JP3695011B2/en
Publication of JPH1054244A publication Critical patent/JPH1054244A/en
Application granted granted Critical
Publication of JP3695011B2 publication Critical patent/JP3695011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0627Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion having additional bores or grooves machined into the piston for guiding air or charge flow to the piston bowl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0636Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space having a substantially flat and horizontal bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は,シリンダ側に形成した主室とピストンヘッドに形成した副室とを連通する連絡孔を備えている副室式エンジンに関する。
【0002】
【従来の技術】
従来,エンジンの燃焼改善を目的として渦流室を持つ渦流室式エンジンが開発されている。このような渦流室式エンジンは,シリンダヘッドに形成した渦流室,該渦流室とシリンダ側に形成した主室とを連通する連絡孔及び渦流室内に燃料を噴霧する燃料噴射ノズルを有し,連絡孔を通じて渦流室に流入する渦流によって渦流室内に噴射された燃料と空気との混合気を形成させて一次燃焼させ,次いで渦流室から連絡孔を通じて主室へ火炎,未燃混合気等のガスを噴出して二次燃焼させている。
【0003】
また,実開昭58−77125号公報には,ピストン内燃焼副室付ディーゼル機関が開示されている。該ピストン内燃焼副室付ディーゼル機関は,燃料噴射ノズルからの燃料噴射を副室で行って,次いで,副燃焼室から主燃焼室に噴出した燃焼ガスに対して燃料噴射ノズルから主燃焼室に残りの燃料を噴射し,主燃焼室に強力な渦流を形成させるものである。
【0004】
また,特開平7−119577号公報には,副室付2サイクルディーゼル機関の燃料噴射制御装置が開示されている。該燃料噴射制御装置は,着火遅れを改善するため,圧縮行程後半に副室へ燃料を噴射する主燃料噴射ノズルと,掃気中にピストン下死点以降に副室に燃料を噴射する予燃料噴射ノズルとを有する。
【0005】
また,特開平7−332091号公報には,副室式エンジンが開示されている。該副室式エンジンは,ピストン側に副室を形成し,副室上部に燃料リッチの混合気を生成し,混合気を早く主室へ噴出させて燃焼期間を短縮するものであり,燃料噴射ノズルをピストン頂部に形成したノズル孔から副室内にピストン上死点近傍で突入させ,多噴孔から側壁面に対して軸方向高さの1/2より高い領域に向けて燃料を噴射させる。ノズル孔の回りの部分のピストン頂部に連絡孔を隔置して形成し,連絡孔の通路断面積をピストン頂面の全面積に対して1.5〜5%の面積比に設定する。ピストン頂部側の側壁面に対する多噴孔からの燃料噴霧の衝突角は90°〜120°の範囲内になるように設定されている。
【0006】
また,特開平3−115727号公報には,副室式断熱エンジンが開示されている。該副室式断熱エンジンは,主ノズルから主室に吸入行程初期に主室の壁面に向かって主室内に可燃混合気以下の量の燃料を噴射して壁面から熱エネルギを吸収し,副ノズルから圧縮行程上死点近くで副室の壁面に向かって副室に燃料を噴射して混合気をリッチにして着火燃焼させ,NOX ,HC,スート等の発生を低減するものである。
【0007】
また,特開平4−259640号公報には,希薄燃焼用火花点火内燃機関が開示されている。該希薄燃焼用火花点火内燃機関は,運転状態が変化しても排ガス中の窒素酸化物濃度が上昇しないように,副室内への燃料供給割合を任意に制御するものである。
【0008】
【発明が解決しようとする課題】
一般に,副室での燃焼温度は高温であるため,NOX の生成を低減する対策としては,燃料リッチで燃焼させることが効果的である。また,燃焼温度が高温である時,燃料リッチで燃焼させるには,エンジン構造のタイプとしては副室式エンジンで対応することが有効である。エンジンを副室式燃焼室に構成した場合に,副室式燃焼室の燃焼スピードを直接噴射式燃焼室の燃焼スピードと同程度まで速くするには,副室と主室とを連通する連通孔の通路断面積を拡大することが必要である。ところが,連通孔の通路断面積を大きくすると,副室から主室へ流出する噴出スピードが低下し,主室での燃焼が十分に行われない。
【0009】
また,従来のエンジンでは,高い熱効率と低NOX を両立させるために,希薄予混合気を圧縮し,上死点近くで自着火により燃焼させる開発が行われており,この場合,高い圧縮比と希薄予混合を組み合わせて,極めて高い熱効率が期待できるが,更に希薄であるため燃焼温度が低く,NOX の生成も極めて小さい。しかしながら,このような予混合希薄自着火式エンジンは,着火ポイントのコントロールが重要になり,ノッキングが発生しないように圧縮してピストン圧縮上死点近くで良好に自着火させることが極めて困難である。即ち,エンジンでは,サイクル毎にバラツキがあり,気筒毎にバラツキがあるため,安定して自着火させることができない。そこで,予混合希薄自着火式エンジンでは,着火ポイントのコントロールを如何に行うかの問題がある。また,このようなエンジンを実用化するためには,ノッキングが発生しないようにするため,十分に希薄なリーン混合気を生成するか,低い圧縮比に設定するか,ガソリン等のノック性の高い(オクタン価の高い)燃料を用いることが重要である。このような燃焼プロセスを有するエンジンでは,基本的には,混合気が十分に希薄なリーン混合気であれば,軽油でも自着火が起きないように運転できる。
【0010】
前掲特開平3−115727号公報に開示された副室式断熱エンジンは,主室に燃料を噴射する主ノズルと副室に燃料を噴射する副ノズルを必要とするので,構造が複雑になってコストアップになり,副室がスワールチャンバタイプであるので,主室での混合時間が長くなって燃焼速度を速くするのは困難である。
【0011】
前掲特開平4−259640号公報に開示されている希薄燃焼用火花点火内燃機関は,主室と副室への燃料ガスの配分は窒素酸化物濃度センサの結果を元にコントロールするものであり,火花点火の場合には,熱エネルギが小さいので,火炎伝播によって燃焼を行う必要があり,主室にある混合気の当量をリーンにするには限度がある。
【0012】
予混合圧縮着火エンジンは,高い効率とNOX の発生を抑制するためには,着火時期のコントロールを適正に行う必要があるが,筒内の温度,圧力又は予混合気の当量比により,着火時期が変化したり,未着火になる。また,予混合圧縮着火エンジンは,筒内の混合気の状態によっては部分的に着火するが,全域で燃焼せず,失火してしまい,極めて狭い運転領域のみで運転が可能である。また,予混合圧縮着火エンジンでは,予混合気を高い圧縮比にして自着火させないため,リーン混合気であって,高いオクタン価の燃料を用いることである。例えば,ガソリンを燃料とし,圧縮比を15〜16とした場合に,自着火しない当量比は0.5以下である。このような状態で火花点火しても火炎は燃焼伝播せず,失火する。また,その対応策として,ガソリンを上死点近くで噴射しても混合気ができる時間が必要であること,その混合気が温度上昇するために,時間がかかること等で自着火は極めて困難である。
【0013】
そこで,副室式エンジンにおいて,噴射した燃料が自着火し易い条件を作るため,副室内の温度を上昇させ,短時間に当量比1近くの混合気を生成することである。また,副室式エンジンでは,超リーン混合気で高圧縮比で着火燃焼させ,理論熱効率を高くすることができるので,如何にして超リーン混合気で高圧縮比で着火燃焼させるかであり,副室で着火した後,主室のリーン混合気をどのように短時間で燃焼させるかであり,着火用燃料を副室に噴射した燃料を主室へ流出させず,副室内に留めて混合気を生成させ,高温の壁面から熱を奪って瞬時に可燃混合気に自着火させることである。
【0014】
【課題を解決するための手段】
この発明の目的は,上記の課題を解決することであり,予混合圧縮着火エンジンにおいて,着火時期のコントロールを適正に行って予混合気が着実に短時間に且つ広い運転領域で燃焼させることであり,主室の予混合希薄燃焼を行わせることであり,主室での予混合気を高い圧縮比に確保し,自着火即ちノッキングしない程度の十分に希薄な混合気を予め生成し,次いで,副室に着火のための燃料を噴射し,副室から多数の連絡孔を通じて火炎と未燃混合気とをシリンダ周辺へ放射状に噴出させ,該火炎を火種にして主室のリーン混合気に火炎伝播させ,主室での燃焼スピードをアップして燃焼を短期に完結させ,全体としてNOX の発生を低減し,熱効率を向上させる副室式エンジンを提供することである。
【0015
の発明は,シリンダ内を往復動するピストン,前記シリンダ側に形成された主室,前記シリンダのほぼ中央に位置するように前記ピストンに形成された副室,前記ピストンに前記主室と前記副室とを連通するほぼ前記シリンダ中央領域に形成された中央連絡孔と前記中央連絡孔の回りの周方向に隔置して形成された複数の連絡孔,前記主室と前記副室に燃料を噴射する多噴孔を備えた燃料噴射ノズル,及び吸入行程から圧縮行程までの間の所定の期間において前記主室に燃料を噴射して自着火しない程度のリーン混合気を生成し,ピストン圧縮上死点近傍で前記副室内に着火用燃料を噴射して前記副室内の混合気を着火燃焼させる制御を行うコントローラ,から成る副室式エンジンに関する。
【0016
また,この副室式エンジンでは,前記燃料噴射ノズルの前記多噴孔から前記副室内への燃料噴射は,前記ピストンに形成された前記中央連絡孔を通じて前記副室の壁面に向かって噴射されるものである。
【0017
また,この副室式エンジンでは,前記燃料噴射ノズルはピストン圧縮上死点近傍で前記中央連絡孔に突入し,前記副室内で前記多噴孔から前記副室の壁面に向かって燃料が噴射されるものである。
【0018
また,この副室式エンジンでは,前記副室は前記ピストンに形成されたキャビティに遮熱層を介して配置された耐熱材料から成る副室構造体で遮熱構造に構成されている。
【0019
この副室式エンジンは,上記のように構成されているので,吸入行程又は圧縮行程において,燃料噴射ノズルから主室に燃料の一部を噴射して主室に自着火しない程度のリーン混合気を予め生成し,次いで,ピストン圧縮上死点近傍で副室内に着火のための燃料を噴射して高温の副室内の空気と混合させて着火燃焼させる。また,副室が遮熱構造に構成されているので,副室内の壁面温度が主室の壁面温度に比較して高温であるので,副室に燃料を再噴射することによって副室で確実に着火燃焼させることができ,副室内の温度と圧力とが急激に上昇して燃焼エネルギーが大きくなり,副室から周方向に隔置した多数の連絡孔を通じて主室へ放射状に火炎を噴出させ,主室ヘ噴出した火炎は強いペネトレーションで放射状に噴出するので,該火炎が火種となって主室内のリーン混合気を巻き込んで燃焼伝播しつつシリンダ周辺へ直ちに到達し,極めて短時間に燃焼を完結して熱効率をアップできる。
【0020
また,この副室式エンジンは,全体として副室での燃焼割合を小さくして主室での燃焼をメインにし,しかも副室内燃焼が一部ディーゼル燃焼であるため,NOX が生成するが,副室内の混合気はオーバオールではリーンであるため,NOX の発生量は小さい。また,副室内の混合気をリッチとしてもNOX の生成は小さい値となる。主室ではリーン混合気が燃焼するので,NOX の発生をほとんど零に低減でき,副室と主室との燃焼全体として,NOX の排出量を大幅に低減でき,例えば,NOX の排出量を0〜50ppmにまで低減できる。
【0021
【発明の実施の形態】
以下,図面を参照して,この発明による副室式エンジンの実施例を説明する。図1はこの発明による副室式エンジンの第1実施例を示し,圧縮行程途中の状態を示す断面図,図2は図1の副室式エンジンのピストン圧縮上死点の状態を示す断面図,図3は図1の副室式エンジンの膨張行程初期の状態を示す断面図,及び図4は図1の副室式エンジンにおける燃料噴射ノズルの噴射タイミングを示す説明図である。
【0022
第1実施例の副室式エンジンは,例えば,シリンダブロック17に形成された孔部19に配置されたシリンダ20を構成するシリンダライナ18,シリンダブロック17にガスケット25を介在して固定されたシリンダヘッド13,シリンダヘッド13に取り付けられた燃料噴射ノズル4及びシリンダ20内を往復運動するピストン3から構成されている。ピストン3には,ピストンリング26を装着するピストンリング溝27が形成されている。この副室式エンジンでは,主室1がシリンダ20側でシリンダヘッド下面14とピストン頂面16とで囲まれる領域に形成され,副室2がピストン3に形成されたキャビティ9に形成されている。シリンダブロック17には,エンジンの気筒数に対応する孔部19が形成されている。シリンダ20は,上記のように,孔部19に嵌合したシリンダライナ18で形成してもよく,又はシリンダブロック17の孔部19によって直接構成してもよいものである。また,シリンダヘッド13には,吸気ポート22と排気ポート24が形成され,吸気ポート22には吸気バルブ21が配置され,排気ポート24には排気バルブ23が配置されている。
【0023
ピストン3は,図示していないが,アルミニウム合金,FC等の金属で作製されたピストン本体,ピストン本体に形成されたキャビティに配置された耐熱性のSi3 4 等の高強度セラミックスで作製された副室を形成する副室構造体から構成することができる。副室2の遮熱構造は,例えば,ピストン3のキャビティにセラミックス製の副室構造体を配置し,キャビティと副室構造体の外面との間に遮熱空気層を形成して構成できる。副室2を遮熱構造に構成すれば,副室2の壁面温度が主室1の壁面温度より高温に維持でき,副室2に噴射された燃料を良好に着火燃焼させることができる。
【0024
この副室式エンジンは,シリンダ20内を往復動するピストン3のシリンダ中央にキャビティ9を形成し,キャビティ9をピストン頂部15で覆うことによって副室2がシリンダ20のほぼ中央に形成されている。ピストン頂部15には,そのシリンダ中央に燃料噴射ノズル4からの燃料が副室2内へ噴射されるように中央連絡孔5が形成されている。また,燃料噴射ノズル4は,周方向に隔置した多噴孔8を備えている。コントローラは,燃料噴射ノズル4の噴射タイミングをコントロールすることができ,燃料噴射ノズル4の多噴孔8から吸入行程から圧縮行程までの間の所定の期間において主室1に燃料を噴射して自着火しない程度のリーン混合気を予め生成させ,次いで,ピストン圧縮上死点近傍で中央連絡孔5を通じて燃料を副室2内に噴射する制御を行う。
【0025
この副室式エンジンにおいて,ピストン3のピストン頂部15には,主室1と副室2とを連通するため,中央連絡孔5と連絡孔6が形成されている。中央連絡孔5は,ピストン頂部15のほぼシリンダ中央領域に形成されている。中央連絡孔5は,図示のように円形の孔に形成してもよく,或いは,図示していないが,花びら状に周縁が凹凸形状の孔に形成されてもよい。また,連絡孔6は,ピストン頂部15に形成された中央連絡孔5の回りの周方向に隔置して複数形成されている。連絡孔6は,主室1に開口する主室側開口10と副室2に開口する副室側開口11とを連通するように形成されている。
【0026
この副室式エンジンでは,図1及び図4に示すように,吸入行程から圧縮行程までの間の所定の期間において,燃料噴射ノズル4の多噴孔8から主室1内に燃料の一部を噴射し,主室1内に自着火しない程度のリーン混合気即ち予混合気を予め生成する。次いで,図2及び図4に示すように,ピストン圧縮上死点(爆発上死点)近傍で,燃料噴射ノズル4の多噴孔8から中央連絡孔5を通じて副室2内に着火用の燃料を噴射し,副室2内のリーン混合気と混合させて着火燃焼させる。この場合,燃料噴射ノズル4の多噴孔8から噴射される燃料が副室2内に噴入されれば十分であるので,図2に示すように,燃料噴射ノズル4の先端部が中央連絡孔5内に突入する必要がなく,シリンダヘッド13の下面14から僅かに突出している程度でよく,燃料噴射ノズル4の耐久性を損なうことがない。
【0027
この副室式エンジンは,上記のように,燃料噴射ノズル4の多噴孔8から副室2内に着火用燃料が噴射されると,副室2が遮熱構造に構成されているので,副室2内の高温の壁面に燃料が衝突し,或いは,燃料が壁面に向かって噴射されると,副室2内の温度が高温であるため,副室2内に燃料を噴射すれば,比較的にリッチな混合気が生成されて自着火することになり,副室2で直ちに確実に着火燃焼が起こり,副室2内の温度と圧力とが急激に上昇して燃焼エネルギーが大きくなり,図3に示すように,副室2から周方向に隔置した多数の連絡孔6を通じて主室1へ放射状に火炎を噴出させ,主室1ヘ噴出した火炎は強いペネトレーションで放射状に噴出する。そこで,噴出した火炎が火種となって主室1内のリーン混合気を巻き込んで燃焼伝播しつつシリンダ周辺へ直ちに到達し,極めて短時間に燃焼を完結して,全体としてNOX の排出量を大幅に低減して,熱効率をアップさせることができる。
【0028
次に,図5を参照して,この発明による副室式エンジンの第2実施例を説明する。図5はこの発明による副室式エンジンの第2実施例を示し,ピストン圧縮上死点近傍の状態を示す断面図である。第2実施例は,第1実施例と比較して,ピストン頂部に形成された中央連絡孔が複数個形成されている以外は,同一の構成及び作用効果を有するので,同一の部材には同一の符号を付し,ここでは重複する説明は省略する。
【0029
図5に示すように,この副室式エンジンでは,中央連絡孔7は,ピストン中心の回りの周方向に隔置して複数個形成されている。しかも,燃料噴射ノズル4に設けた多噴孔8は,個々の中央連絡孔7に対応しており,多噴孔8からそれぞれ噴射された燃料噴霧はそれぞれの中央連絡孔7を通じて副室2内へ噴射され,高温の副室2内の空気と混合して着火燃焼することになる。中央連絡孔7は,燃料噴射ノズル4の多噴孔8から噴射される燃料噴霧を通過させることができる程度の小径の孔に形成され,噴射燃料が副室2の壁面に衝突するように設定されている。
【0030
また,図6を参照して,この発明による副室式エンジンの第3実施例を説明する。図6はこの発明による副室式エンジンの第3実施例におけるピストンを示す断面図である。第3実施例は,第1各実施例と比較して,ピストンに形成された副室2が遮熱構造に構成され,燃料噴射ノズルが中央連絡孔に上死点近傍で挿入される構成以外は,同一の構成及び作用効果を有するので,ここでは重複する説明は省略する。
【0031
図6に示すように,ピストン30は,アルミニウム合金,FC等の金属で作製されたピストン本体31,ピストン本体31に形成されたキャビティ32に配置された耐熱性のSi3 4 等のセラミックスで作製された副室2を形成する副室構造体33から構成されている。副室2の遮熱構造は,ピストン30のキャビティ32に副室構造体33を配置し,キャビティ32と副室構造体33の外面との間に遮熱空気層34を形成することによって構成できる。ピストン頂部35には,シリンダヘッド13に取り付けた燃料噴射ノズル4が突入できるサイズの中央連絡孔36と,中央連絡孔36の回りに周方向に隔置した複数の連絡孔37とが形成されている。また,この副室式エンジンでは,シリンダヘッド13に取り付けられている燃料噴射ノズル4は,ピストン頂部35に形成された中央連絡孔36にピストン圧縮上死点近傍で突入し,副室2内に着火用燃料を多噴孔8から副室2の壁面に衝突するように燃料噴射できるように構成されている。この実施例では,副室構造体33は,上下に二分割した部材から作製されているが,種々の構造に構成できることは勿論である。
【0032
次に,図7〜図13を参照して,副室式エンジンの他の例について説明する。図図8に示す副室式エンジンは,シリンダ20内を往復動するピストン43,シリンダ20側に形成された主室41,シリンダ20のほぼ中央に位置するようにシリンダヘッド13に設けられた副室42,主室41と副室42とを連通するほぼシリンダ中央領域で周方向に隔置して形成された複数の連絡孔46及び少なくとも副室42内に燃料を噴射する燃料噴射ノズル44を具備し,吸入行程から圧縮行程までの間の所定の期間に主室41に自着火しない程度のリーン混合気を生成し,ピストン圧縮上死点近傍で燃料噴射ノズル44から副室42内に燃料を噴射して副室42で着火燃焼させる。ピストン43のピストンクラウンには,キャビティ49が形成され,主室41の一部を形成している。副室42を構成する副室部材45は,フランジ部57をシリンダヘッド13に形成したキャビティ50の段部58に遮熱ガスケット51,52を介在して配置されている。燃料噴射ノズル44は,副室部材45の貫通孔54を挿通して多噴孔48を副室42内に開口している。
【0033
副室42は,シリンダヘッド13のほぼシリンダ中央領域に形成されたキャビティ50に配置された副室部材45に形成され,連絡孔46は副室部材45に形成されている。主室41に生成されるリーン混合気は,図9及び図10に示すように,燃料噴射ノズル44から連絡孔46を通じて主室41に噴射することにより生成される。副室42は,シリンダヘッド13のほぼシリンダ中央領域に形成されたキャビティ50に配置された副室部材45に形成されている。副室部材45は,シリンダヘッド13のキャビティ50に遮熱ガスケット51,52や空気層53から成る遮熱層を介して配置されている。遮熱ガスケット51,52は,熱伝導率が小さいセラミックス等の材料から作製されている。従って,副室部材45に形成されている副室42は,遮熱構造に構成される。また,副室部材45には,副室42内の温度制御のためヒータ47が配置されている。ヒータ47は,リード線56を通じて通電され,コントローラによって制御された電力が供給される。燃料噴射ノズル44には,複数の噴孔48が形成されている。噴孔48は,副室部材45の連絡孔46にそれぞれ対向して形成されている。
【0034
図9及び図13に示す副室式エンジンは,排気行程の終了間際から吸入行程を通じて圧縮行程前半までの期間において,燃料噴射ノズル44の噴孔48から燃料が噴射され,該燃料は副室42から連絡孔46を通過して主室41に噴射される。燃料噴射ノズル44の噴孔48は連絡孔46に対向しているので,噴孔48からの燃料は連絡孔46を通過して主室41へ確実に噴射される。この期間に燃料噴射ノズル44から噴射される燃料流量は,着火しない程度即ち自発火(ノッキング)しない程度のリーン混合気を生成する程度に調整されている。次いで,図10に示すように,燃料が主室41内で拡散され,主室41内にリーン混合気が生成される。
【0035
図11に示すように,圧縮行程において,主室41内のリーン混合気が連絡孔46を通じて副室42へ押し込められ,副室42内で高温状態になる。副室42は遮熱構造に構成され,主室41から連絡孔46を通じて副室42に流入する混合気は連絡孔46に絞られて高速で流入し,副室42内の温度は主室41内の温度に比較して高くなる。図12及び図13に示すように,圧縮行程終端において,燃料噴射ノズル44から燃料が副室42内に再び噴射され,この時,ピストン43の上昇行程であり,主室41から副室42へ混合気が流入している状態であるので,副室42に噴射された燃料が主室41へは流出することはない。副室42に着火用の燃料が噴射することによって,噴霧が副室部材45の高温壁から受熱し,着火するのに十分な温度と圧力及び当量比を確保でき,そこで副室42内の可燃混合気が着火燃焼する。また,始動時或いは部分負荷時において,副室部材45の温度が低く,副室42内の温度が低いので,副室42での自着火が起き難い可能性がある。そこで,副室42での燃料の着火燃焼を補助するため,コントローラの指令でヒータ47に通電し,副室部材45を高温にして副室42内を昇温させる。
【0036
可燃混合気が着火燃焼することによって,副室42内の圧力が上昇し,副室42から連絡孔46を通じて主室41へ火炎と混合気が噴出され,主室41内の温度と圧力が上昇し,主室41内のリーン混合気が自着火すると共に,主室41のリーン混合気に火炎の伝播スピードが上昇し,主室41での燃料スピードをアップし,短期に燃焼が完結する。即ち,副室42から主室41へ噴出した火炎が火種となって主室41での高速燃焼が起こり,短時間で燃焼が完了する。大半の燃料の燃焼が主室41でリーン混合気で燃焼するため,NOX の生成を大幅に抑制することができる。
【0037
また,主室41には,リーン混合気を生成させるが,部分負荷時には,リーンの程度が過ぎる場合があるので,必要に応じて吸気量をコントロールするため,スロットルを設けることができるが,吸気の絞り割合は,従来のガソリンエンジンに比較して大幅に小さいものである。この副室式エンジンに使用する燃料は,ガソリン,メタノール等のオクタン価が高いもの,低セタン価の軽油等を使用することができるが,圧縮比等の選定することによって他の燃料を使用することもできる。
【0038
次に,図14〜図16を参照して,副室式エンジンの別の例について説明する。図14に示す副室式エンジンは,シリンダヘッド13の中央に副室42を形成する副室部材45を設け,副室部材45に放射状に複数の連絡孔46を形成し,エンジンの吸気系に燃料をミキシングする燃料噴射ノズル55を設けたものである。即ち,主室41へ吸気を供給する吸気系(吸気ポート22)には燃料噴射ノズル55が設けられ,主室41に生成されるリーン混合気は燃料噴射ノズル55から吸気ポート22に燃料を噴射することによって生成される。この副室式エンジンは,燃料噴射ノズル55から吸気ポート22に燃料を噴射してリーン混合気を生成し,そのリーン混合気を吸入行程で主室41に吸入すると共に,圧縮行程上死点近傍で副室42に設けられた燃料噴射ノズル44から着火用燃料を副室42に噴射して副室42で着火燃焼させるものである。
【0039
図14に示す副室式エンジンは,吸気系の吸気ポート22のリーン混合気を主室41へ吸入し,主室41では混合気がリーンであるため自着火(ノッキング)は起こらない。副室部材45は,遮熱ガスケット51,52や遮熱空気層53から成る遮熱層を介してシリンダヘッド13に配置されているので,副室42は遮熱構造となり,副室42は高温に保持される。また,主室41から副室42に流入するリーン混合気は,連絡孔46によって絞られて高速で流入するため,熱伝導率が高く,副室42内に流入したリーン混合気は主室41内のリーン混合気に比較して高温になっている。副室42に燃料噴射ノズル44から着火用燃料が噴射されると,噴霧が高温壁から受熱し,自着火するのに必要な温度,圧力,当量比が確保され,混合気が副室42で自着火することになる。次いで,副室42から連絡孔46を通じて主室41に火炎と混合気が噴出するため,主室41内の温度,圧力が上昇し,自着火し易くなり,或いは火炎が火種になって燃焼伝播し,燃焼スピードが速くなり,短時間に燃焼が完結する。
【0040
【発明の効果】
この発明による副室式エンジンは,上記のように構成されているので,主室の燃焼の殆どが予混合希薄燃焼であるため,燃焼温度が低く,NOX の生成を極めて少なくすることができる。副室からの火炎が多数の連絡孔を通じて放射状に主室へ噴出するため,主室における着火源が連絡孔から噴き出される火炎となって主室全体で極めて短時間に燃焼が完結し,高い圧縮比で且つ希薄混合気で燃焼することにより,高い熱効率を確保することができる。また,副室から連絡孔を通じて主室へ噴出した未燃混合や火炎の量は,主室に燃料の大部分が予め噴射されているので,少量で済み,その結果,副室自体のサイズを小型に構成でき,遮熱構造の副室をピストンに良好に形成できる。
【0041
また,この副室式エンジンは,熱発生のほとんどが主室に予め噴射された予混合気であり,副室に噴射する燃料は副室で着火源を作るだけの量でよい。従って,副室での混合気生成は,エンジン性能に及ぼす影響は比較的に小さいため,必ずしも燃料噴射ノズルを副室に突入させる必要がなく,燃料噴射ノズルの耐久性を大幅に向上させることができる。
【0042
この副室式エンジンは,主室において,高圧縮比で,リーン混合気を燃焼させることができるので,熱効率をアップさせることができると共に,大部分の燃料が主室でリーン混合気で燃焼させられるので,NOX の発生を大幅に低減でき,着火コントロールが容易になり,構造自体がシンプルであり,既存のエンジンを改造して構成することができる。
【図面の簡単な説明】
【図1】 この発明による副室式エンジンの第1実施例を示し,圧縮行程途中の燃料噴射時の状態を示す断面図である。
【図2】 図1の副室式エンジンのピストン圧縮上死点付近の燃料噴射時の状態を示す断面図である。
【図3】 図1の副室式エンジンの膨張行程初期の状態を示す断面図である。
【図4】 図1の副室式エンジンにおける燃料噴射ノズルの噴射タイミングを示す説明図である。
【図5】 この発明による副室式エンジンの第2実施例を示し,ピストン圧縮上死点付近の燃料噴射時の状態を示す断面図である。
【図6】 この発明による副室式エンジンの第3実施例におけるピストンを示す断面図である。
【図7】 室式エンジンの他の例を示す断面図である。
【図8】 図7の線A−Aにおける副室部材の断面図である。
【図9】 主室に燃料を噴射する状態を示す説明図である。
【図10】 主室にリーン混合気を生成する状態を示す説明図である。
【図11】 主室から副室へリーン混合気が侵入する状態を示す説明図である。
【図12】 副室から主室へ火炎と混合気が噴出する状態を示す説明図である。
【図13】 燃料噴射と着火タイミングを示す線図である。
【図14】 副室式エンジンの別の例を示す断面図である。
【図15】 ピストン変位に対応した主室と副室との圧力及び筒内温度の変化を示すグラフである。
【図16】 燃料噴射と着火タイミングを示す線図である。
【符号の説明】
1 主室
2 副室
3,30 ピストン
4 燃料噴射ノズル
5,7,36 中央連絡孔
6,37 連絡孔
8 多噴孔
9,32 キャビティ
13 シリンダヘッド
20 シリンダ
22 吸気ポート(吸気系)
33 副室構造体
34 遮熱層
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a main chamber formed on the cylinder side and a piston head. To The present invention relates to a sub-chamber engine having a communication hole communicating with the formed sub-chamber.
[0002]
[Prior art]
Conventionally, a vortex chamber type engine having a vortex chamber has been developed to improve engine combustion. Such a vortex chamber type engine has a vortex chamber formed in the cylinder head, a communication hole communicating the vortex chamber and the main chamber formed on the cylinder side, and a fuel injection nozzle for spraying fuel in the vortex chamber. A mixture of fuel and air injected into the vortex chamber is formed by the vortex flowing into the vortex chamber through the hole, and then primary combustion is performed. Ejected and secondary combustion.
[0003]
Japanese Utility Model Laid-Open No. 58-77125 discloses a diesel engine with a combustion subchamber in a piston. The diesel engine with a combustion subchamber in the piston performs fuel injection from the fuel injection nozzle in the subchamber, and then from the fuel injection nozzle to the main combustion chamber against the combustion gas injected from the subcombustion chamber to the main combustion chamber. The remaining fuel is injected to form a strong vortex in the main combustion chamber.
[0004]
Japanese Laid-Open Patent Publication No. 7-119557 discloses a fuel injection control device for a two-cycle diesel engine with a sub chamber. In order to improve the ignition delay, the fuel injection control device includes a main fuel injection nozzle that injects fuel into the sub chamber in the latter half of the compression stroke, and a pre-fuel injection that injects fuel into the sub chamber after piston bottom dead center during scavenging. And a nozzle.
[0005]
Japanese Patent Laid-Open No. 7-332091 discloses a sub-chamber engine. The sub-chamber engine forms a sub-chamber on the piston side, generates a fuel-rich air-fuel mixture at the upper part of the sub-chamber, and quickly injects the air-fuel mixture into the main chamber to shorten the combustion period. The nozzle is inserted into the sub chamber from the nozzle hole formed at the top of the piston in the vicinity of the top dead center of the piston, and fuel is injected from the multiple injection holes toward a region higher than ½ of the axial height with respect to the side wall surface. A communication hole is formed at the top of the piston around the nozzle hole, and the cross-sectional area of the communication hole is set to an area ratio of 1.5 to 5% with respect to the total area of the piston top surface. The collision angle of the fuel spray from the multiple injection holes with respect to the side wall surface on the piston top side is set to be in the range of 90 ° to 120 °.
[0006]
Japanese Unexamined Patent Publication No. 3-115727 discloses a sub-chamber heat insulation engine. The sub-chamber type heat insulation engine absorbs thermal energy from the wall surface by injecting an amount of fuel equal to or less than the combustible mixture into the main chamber toward the wall surface of the main chamber at the beginning of the suction stroke from the main nozzle to the main chamber. The fuel is injected into the sub chamber toward the wall of the sub chamber near the top dead center of the compression stroke to make the air-fuel mixture rich and ignite and burn. X , HC, soot and the like are reduced.
[0007]
Japanese Laid-Open Patent Publication No. 4-259640 discloses a spark ignition internal combustion engine for lean combustion. The lean combustion spark ignition internal combustion engine arbitrarily controls the fuel supply ratio into the sub chamber so that the nitrogen oxide concentration in the exhaust gas does not increase even when the operating state changes.
[0008]
[Problems to be solved by the invention]
In general, the combustion temperature in the sub chamber is high, so NO X Combustion with a rich fuel is effective as a measure to reduce the production of CO2. In addition, when the combustion temperature is high, it is effective to use a sub-chamber engine as the engine structure type in order to burn the fuel richly. When the engine is configured as a sub-chamber combustion chamber, a communication hole that connects the sub-chamber and main chamber can be used to increase the combustion speed of the sub-chamber combustion chamber to the same level as the combustion speed of the direct injection combustion chamber. It is necessary to enlarge the passage cross-sectional area. However, when the passage cross-sectional area of the communication hole is increased, the ejection speed flowing out from the sub chamber to the main chamber is reduced, and combustion in the main chamber is not sufficiently performed.
[0009]
Also, conventional engines have high thermal efficiency and low NO X In order to achieve both of these, development of compressing lean premixed gas and burning it by self-ignition near top dead center is being carried out. In this case, combining a high compression ratio and lean premixing is expected to achieve extremely high thermal efficiency. Although it is more dilute, it has a lower combustion temperature and NO. X The generation of is also very small. However, in such a premixed lean auto-ignition engine, it is important to control the ignition point, and it is extremely difficult to perform compression so that knocking does not occur and to make it self-ignite well near the piston compression top dead center. . That is, in the engine, there is a variation for each cycle and a variation for each cylinder, so that the engine cannot be ignited stably. Therefore, the premixed lean auto-ignition engine has a problem of how to control the ignition point. In order to put such an engine into practical use, in order to prevent knocking, either a sufficiently lean lean air-fuel mixture is generated, a low compression ratio is set, or a high knocking property such as gasoline is high. It is important to use fuel (high octane number). An engine having such a combustion process can basically be operated so that self-ignition does not occur even with light oil if the mixture is a lean mixture.
[0010]
The sub-chamber heat insulation engine disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 3-115727 requires a main nozzle that injects fuel into the main chamber and a sub-nozzle that injects fuel into the sub-chamber, resulting in a complicated structure. The cost increases and the sub chamber is a swirl chamber type, so it is difficult to increase the combustion rate because the mixing time in the main chamber is long.
[0011]
In the spark ignition internal combustion engine disclosed in the above-mentioned Japanese Patent Laid-Open No. 4-259640, the distribution of the fuel gas to the main chamber and the sub chamber is controlled based on the result of the nitrogen oxide concentration sensor. In the case of spark ignition, since the heat energy is small, it is necessary to burn by flame propagation, and there is a limit to lean the equivalent of the air-fuel mixture in the main chamber.
[0012]
Premixed compression ignition engines have high efficiency and NO X It is necessary to control the ignition timing appropriately in order to suppress the occurrence of the ignition, but depending on the temperature, pressure in the cylinder, or the equivalent ratio of the premixed gas, the ignition timing changes or no ignition occurs. In addition, the premixed compression ignition engine is partially ignited depending on the state of the air-fuel mixture in the cylinder, but does not combust in the entire region and misfires, and can be operated only in a very narrow operating region. In addition, in a premixed compression ignition engine, the premixed gas is made to have a high compression ratio and is not self-ignited. Therefore, a lean mixed gas having a high octane number is used. For example, when gasoline is used as the fuel and the compression ratio is 15 to 16, the equivalent ratio that does not autoignite is 0.5 or less. Even if a spark is ignited in such a state, the flame does not propagate and burns out. In addition, as a countermeasure, self-ignition is extremely difficult due to the time required for the air-fuel mixture to be generated even when gasoline is injected near top dead center, and the time required for the air-fuel mixture to rise in temperature. It is.
[0013]
Therefore, in the sub-chamber engine, in order to create a condition in which the injected fuel is easily ignited, the temperature in the sub-chamber is raised and an air-fuel mixture with an equivalence ratio of 1 is generated in a short time. In addition, the sub-chamber engine can be ignited and burned with a super-lean mixture at a high compression ratio and the theoretical thermal efficiency can be increased. How to burn the lean mixture in the main chamber in a short time after igniting in the sub chamber. The fuel injected into the sub chamber is not discharged into the main chamber, but is kept in the sub chamber and mixed. This is to generate gas, take heat from the hot wall and instantly ignite the combustible mixture.
[0014]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and in a premixed compression ignition engine, by appropriately controlling the ignition timing and causing the premixed gas to burn steadily in a wide operating range. Yes, the premixed lean combustion of the main chamber is performed, the premixed gas in the main chamber is secured at a high compression ratio, and a sufficiently lean mixed gas that does not self-ignite, that is, knocks is generated in advance, The fuel for ignition is injected into the sub-chamber, and the flame and unburned mixture are ejected radially from the sub-chamber through the many communication holes to the periphery of the cylinder. Propagate the flame, increase the combustion speed in the main chamber and complete the combustion in a short time, NO as a whole X It is to provide a sub-chamber engine that reduces the occurrence of heat and improves thermal efficiency.
00 15 ]
This The invention includes a piston that reciprocates in a cylinder, a main chamber formed on the cylinder side, a sub chamber formed in the piston so as to be positioned substantially in the center of the cylinder, and the main chamber and the sub chamber in the piston. A central communication hole formed in the central region of the cylinder that communicates with the chamber, a plurality of communication holes formed in a circumferential direction around the central communication hole, and fuel in the main chamber and the sub chamber. A fuel injection nozzle having a plurality of injection holes for injection, and a lean air-fuel mixture that does not self-ignite by injecting fuel into the main chamber during a predetermined period from the intake stroke to the compression stroke, The present invention relates to a sub-chamber engine comprising a controller that performs control for injecting ignition fuel into the sub-chamber near the dead center and igniting and burning the air-fuel mixture in the sub-chamber.
00 16 ]
Further, in this sub-chamber engine, fuel injection from the multiple injection holes of the fuel injection nozzle into the sub-chamber is injected toward the wall surface of the sub-chamber through the central communication hole formed in the piston. Is.
00 17 ]
In this sub-chamber engine, the fuel injection nozzle enters the central communication hole in the vicinity of the piston compression top dead center, and fuel is injected from the multi-hole into the wall of the sub chamber in the sub chamber. Is.
00 18 ]
Further, in this sub-chamber engine, the sub-chamber is constituted by a sub-chamber structure made of a heat-resistant material disposed in a cavity formed in the piston via a heat shield layer to form a heat shield structure.
00 19 ]
Since the sub-chamber engine is configured as described above, in the intake stroke or the compression stroke, a lean air-fuel mixture that does not self-ignite in the main chamber by injecting part of the fuel from the fuel injection nozzle into the main chamber. Next, the fuel for ignition is injected into the sub chamber near the piston compression top dead center, mixed with the air in the high temperature sub chamber, and ignited and combusted. In addition, since the sub chamber has a heat shielding structure, the wall temperature in the sub chamber is higher than the wall temperature in the main chamber, so that it is ensured in the sub chamber by re-injecting fuel into the sub chamber. It can be ignited and combusted, and the temperature and pressure in the sub chamber rises rapidly, increasing the combustion energy. The flame is ejected radially into the main chamber through a number of communication holes spaced from the sub chamber in the circumferential direction. Since the flame that erupted to the main chamber is emitted radially with strong penetration, the flame becomes a fire type and immediately reaches the periphery of the cylinder while involving the lean gas mixture in the main chamber and propagating, and completes combustion in a very short time. Heat efficiency can be improved.
00 20 ]
In addition, this sub-chamber engine mainly reduces the combustion ratio in the sub-chamber to mainly burn in the main chamber, and the sub-chamber combustion is partly diesel combustion. X However, the mixture in the sub chamber is lean in the overall, so NO X The generation amount of is small. Even if the air-fuel mixture in the sub chamber is rich, NO X The generation of is a small value. Since the lean air-fuel mixture burns in the main room, NO X Generation can be reduced to almost zero, and the combustion in the sub chamber and main chamber can be reduced as a whole. X Emissions can be significantly reduced, for example NO X Can be reduced to 0-50 ppm.
00 21 ]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a sub-chamber engine according to the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of a sub-chamber engine according to the present invention, a cross-sectional view showing a state in the middle of a compression stroke, and FIG. 2 is a cross-sectional view showing a piston compression top dead center state of the sub-chamber engine of FIG. 3 is a cross-sectional view showing the initial stage of the expansion stroke of the sub-chamber engine of FIG. 1, and FIG. 4 is an explanatory diagram showing the injection timing of the fuel injection nozzle in the sub-chamber engine of FIG.
00 22 ]
The sub-chamber engine of the first embodiment includes, for example, a cylinder liner 18 constituting a cylinder 20 disposed in a hole 19 formed in the cylinder block 17 and a cylinder fixed to the cylinder block 17 with a gasket 25 interposed therebetween. The head 13, the fuel injection nozzle 4 attached to the cylinder head 13, and the piston 3 that reciprocates in the cylinder 20 are configured. A piston ring groove 27 for mounting the piston ring 26 is formed in the piston 3. In this sub-chamber engine, the main chamber 1 is formed in a region surrounded by the cylinder head lower surface 14 and the piston top surface 16 on the cylinder 20 side, and the sub-chamber 2 is formed in a cavity 9 formed in the piston 3. . The cylinder block 17 has holes 19 corresponding to the number of cylinders of the engine. The cylinder 20 may be formed by the cylinder liner 18 fitted in the hole 19 as described above, or may be directly constituted by the hole 19 of the cylinder block 17. An intake port 22 and an exhaust port 24 are formed in the cylinder head 13, an intake valve 21 is disposed in the intake port 22, and an exhaust valve 23 is disposed in the exhaust port 24.
00 23 ]
Although not shown, the piston 3 is made of an aluminum alloy, a piston body made of metal such as FC, and a heat-resistant Si disposed in a cavity formed in the piston body. Three N Four A sub chamber structure that forms a sub chamber made of high-strength ceramics such as the like can be used. The heat insulating structure of the sub chamber 2 can be configured, for example, by disposing a ceramic sub chamber structure in the cavity of the piston 3 and forming a heat insulating air layer between the cavity and the outer surface of the sub chamber structure. If the sub chamber 2 has a heat insulating structure, the wall surface temperature of the sub chamber 2 can be maintained higher than the wall surface temperature of the main chamber 1, and the fuel injected into the sub chamber 2 can be ignited and burned satisfactorily.
00 24 ]
In this sub-chamber engine, a cavity 9 is formed in the center of the cylinder of the piston 3 that reciprocates in the cylinder 20, and the sub-chamber 2 is formed in the approximate center of the cylinder 20 by covering the cavity 9 with the piston top 15. . A central communication hole 5 is formed in the piston top 15 so that fuel from the fuel injection nozzle 4 is injected into the sub chamber 2 at the center of the cylinder. The fuel injection nozzle 4 includes multiple injection holes 8 spaced in the circumferential direction. The controller can control the injection timing of the fuel injection nozzle 4, and injects fuel into the main chamber 1 during a predetermined period from the multiple injection holes 8 of the fuel injection nozzle 4 from the intake stroke to the compression stroke. A lean air-fuel mixture that does not ignite is generated in advance, and then fuel is injected into the sub chamber 2 through the central communication hole 5 in the vicinity of the piston compression top dead center.
00 25 ]
In this sub-chamber engine, a central communication hole 5 and a communication hole 6 are formed in the piston top portion 15 of the piston 3 to communicate the main chamber 1 and the sub-chamber 2. The central communication hole 5 is formed in a substantially cylinder central region of the piston top 15. The central communication hole 5 may be formed as a circular hole as shown in the figure, or may be formed as a petal-like peripheral edge, although not shown. Further, a plurality of communication holes 6 are formed in the circumferential direction around the central communication hole 5 formed in the piston top 15. The communication hole 6 is formed so as to communicate the main chamber side opening 10 that opens to the main chamber 1 and the sub chamber side opening 11 that opens to the sub chamber 2.
00 26 ]
In this sub-chamber engine, as shown in FIGS. 1 and 4, a part of the fuel enters the main chamber 1 from the multiple injection holes 8 of the fuel injection nozzle 4 during a predetermined period from the intake stroke to the compression stroke. And a lean air-fuel mixture, that is, a pre-air mixture that does not self-ignite in the main chamber 1 is generated in advance. Next, as shown in FIGS. 2 and 4, an ignition fuel is injected into the sub chamber 2 from the multiple injection holes 8 of the fuel injection nozzle 4 through the central communication hole 5 in the vicinity of the piston compression top dead center (explosion top dead center). Is injected and mixed with the lean air-fuel mixture in the sub chamber 2 to be ignited and burned. In this case, it is sufficient if the fuel injected from the multiple injection holes 8 of the fuel injection nozzle 4 is injected into the sub chamber 2, so that the tip of the fuel injection nozzle 4 is connected to the center as shown in FIG. There is no need to enter into the hole 5, and it only needs to protrude slightly from the lower surface 14 of the cylinder head 13, and the durability of the fuel injection nozzle 4 is not impaired.
00 27 ]
In this subchamber engine, as described above, when ignition fuel is injected into the subchamber 2 from the multiple injection holes 8 of the fuel injection nozzle 4, the subchamber 2 is configured to have a heat shielding structure. If the fuel collides with the high temperature wall surface in the sub chamber 2 or the fuel is injected toward the wall surface, the temperature in the sub chamber 2 is high, so if the fuel is injected into the sub chamber 2, A relatively rich air-fuel mixture is generated and self-ignition occurs, so that ignition combustion occurs immediately and reliably in the sub chamber 2, and the temperature and pressure in the sub chamber 2 suddenly rise to increase the combustion energy. As shown in FIG. 3, a flame is ejected radially to the main chamber 1 through a large number of communication holes 6 spaced circumferentially from the sub chamber 2, and the flame ejected to the main chamber 1 is ejected radially with strong penetration. . Therefore, the fired flame becomes the fire type, and the lean mixture in the main chamber 1 is involved and propagates through the combustion, and immediately reaches the periphery of the cylinder. The combustion is completed in a very short time, and NO as a whole. X Can greatly reduce the amount of emissions and increase the thermal efficiency.
00 28 ]
Next, a second embodiment of the sub-chamber engine according to the present invention will be described with reference to FIG. FIG. 5 is a sectional view showing a second embodiment of the sub-chamber engine according to the present invention and showing a state in the vicinity of the piston compression top dead center. Compared to the first embodiment, the second embodiment has the same configuration and operational effect except that a plurality of central communication holes formed at the top of the piston are formed. The description which overlaps is abbreviate | omitted here.
00 29 ]
As shown in FIG. 5, in this sub-chamber engine, a plurality of central communication holes 7 are formed in a circumferential direction around the center of the piston. Moreover, the multi-injection holes 8 provided in the fuel injection nozzle 4 correspond to the individual central communication holes 7, and the fuel spray injected from the multi-injection holes 8 passes through the respective central communication holes 7 in the sub chamber 2. Is mixed with the air in the high temperature sub chamber 2 and ignited and combusted. The central communication hole 7 is formed as a hole having a small diameter that allows the fuel spray injected from the multiple injection holes 8 of the fuel injection nozzle 4 to pass therethrough, and is set so that the injected fuel collides with the wall surface of the sub chamber 2. Has been.
00 30 ]
A third embodiment of the sub-chamber engine according to the present invention will be described with reference to FIG. FIG. 6 is a sectional view showing a piston in a third embodiment of the sub-chamber engine according to the present invention. The third embodiment is different from the first embodiment in that the sub-chamber 2 formed in the piston has a heat shielding structure and the fuel injection nozzle is inserted into the central communication hole near the top dead center. Since they have the same configuration and operational effects, redundant description is omitted here.
00 31 ]
As shown in FIG. , Pi The stone 30 includes a piston body 31 made of a metal such as an aluminum alloy or FC, and a heat-resistant Si disposed in a cavity 32 formed in the piston body 31. Three N Four It is comprised from the subchamber structure 33 which forms the subchamber 2 produced with ceramics, such as. The heat insulation structure of the sub chamber 2 can be configured by disposing the sub chamber structure 33 in the cavity 32 of the piston 30 and forming a heat insulation air layer 34 between the cavity 32 and the outer surface of the sub chamber structure 33. . The piston top 35 is formed with a central communication hole 36 sized to allow the fuel injection nozzle 4 attached to the cylinder head 13 to enter, and a plurality of communication holes 37 spaced circumferentially around the central communication hole 36. Yes. In this sub-chamber engine, the fuel injection nozzle 4 attached to the cylinder head 13 enters a central communication hole 36 formed in the piston top 35 near the piston compression top dead center, and enters the sub-chamber 2. The fuel for ignition can be injected so as to collide with the wall surface of the sub chamber 2 from the multiple injection holes 8. In this embodiment, the sub chamber structure 33 is made of a member divided into two parts in the vertical direction, but it goes without saying that it can be constructed in various structures.
00 32 ]
Next, referring to FIGS. , Deputy Of the engine other Explain examples . Figure 7 When As shown in FIG. Deputy The chamber type engine includes a piston 43 that reciprocates in the cylinder 20, a main chamber 41 formed on the cylinder 20 side, a sub chamber 42 provided in the cylinder head 13 so as to be positioned substantially in the center of the cylinder 20, and a main chamber 41. And a plurality of communication holes 46 formed in a circumferentially spaced manner in the central region of the cylinder that communicates with the sub chamber 42, and a fuel injection nozzle 44 that injects fuel into at least the sub chamber 42. A lean air-fuel mixture that does not self-ignite in the main chamber 41 during a predetermined period until the compression stroke is generated, and fuel is injected from the fuel injection nozzle 44 into the sub chamber 42 in the vicinity of the piston compression top dead center. 42 to ignite and burn The A cavity 49 is formed in the piston crown of the piston 43 and forms a part of the main chamber 41. The sub chamber member 45 constituting the sub chamber 42 is , Fu The flange portion 57 is disposed on the step portion 58 of the cavity 50 formed in the cylinder head 13 with the heat shielding gaskets 51 and 52 interposed therebetween. The fuel injection nozzle 44 is inserted through the through hole 54 of the sub chamber member 45 to open a multi injection hole 48 in the sub chamber 42.
00 33 ]
The sub chamber 42 is formed in the sub chamber member 45 disposed in the cavity 50 formed in the cylinder central region of the cylinder head 13, and the communication hole 46 is formed in the sub chamber member 45. As shown in FIGS. 9 and 10, the lean air-fuel mixture generated in the main chamber 41 is generated by being injected into the main chamber 41 from the fuel injection nozzle 44 through the communication hole 46. The sub chamber 42 is formed in a sub chamber member 45 disposed in a cavity 50 formed in the cylinder central region of the cylinder head 13. The sub chamber member 45 is disposed in the cavity 50 of the cylinder head 13 via a heat insulating layer including heat insulating gaskets 51 and 52 and an air layer 53. The heat shielding gaskets 51 and 52 are made of a material such as ceramics having a low thermal conductivity. Therefore, the sub chamber 42 formed in the sub chamber member 45 has a heat shielding structure. The sub chamber member 45 is provided with a heater 47 for controlling the temperature in the sub chamber 42. The heater 47 is energized through the lead wire 56 and supplied with power controlled by the controller. A plurality of injection holes 48 are formed in the fuel injection nozzle 44. The injection holes 48 are formed to face the communication holes 46 of the sub chamber member 45, respectively.
00 34 ]
As shown in FIG. 9 and FIG. Sub-chamber engine Is an exhaust In the period from the end of the air stroke to the first half of the compression stroke through the suction stroke, fuel is injected from the injection hole 48 of the fuel injection nozzle 44, and the fuel passes through the communication hole 46 from the sub chamber 42 and is injected into the main chamber 41. Is done. Since the injection hole 48 of the fuel injection nozzle 44 faces the communication hole 46, the fuel from the injection hole 48 passes through the communication hole 46 and is reliably injected into the main chamber 41. During this period, the flow rate of the fuel injected from the fuel injection nozzle 44 is adjusted so as to generate a lean air-fuel mixture that does not ignite, that is, does not spontaneously ignite (knock). Next, as shown in FIG. 10, the fuel is diffused in the main chamber 41, and a lean air-fuel mixture is generated in the main chamber 41.
00 35 ]
As shown in FIG. 11, in the compression stroke, the lean air-fuel mixture in the main chamber 41 is pushed into the sub chamber 42 through the communication hole 46 and becomes a high temperature state in the sub chamber 42. The sub chamber 42 has a heat shield structure, and the air-fuel mixture flowing into the sub chamber 42 from the main chamber 41 through the communication hole 46 is throttled into the communication hole 46 and flows in at a high speed. It becomes higher than the temperature inside. As shown in FIGS. 12 and 13, at the end of the compression stroke, the fuel is injected again from the fuel injection nozzle 44 into the sub chamber 42. At this time, the piston 43 is in the ascending stroke, and the main chamber 41 moves to the sub chamber 42. Since the air-fuel mixture is flowing in, the fuel injected into the sub chamber 42 does not flow out into the main chamber 41. By injecting the fuel for ignition into the sub chamber 42, the spray receives heat from the hot wall of the sub chamber member 45, and sufficient temperature, pressure and equivalence ratio can be secured to ignite. The mixture is ignited and burned. Further, since the temperature of the sub chamber member 45 is low and the temperature in the sub chamber 42 is low at the time of starting or partial load, there is a possibility that self-ignition in the sub chamber 42 is difficult to occur. Therefore, in order to assist the ignition and combustion of the fuel in the sub chamber 42, the heater 47 is energized by a command from the controller, and the temperature of the sub chamber 42 is raised by raising the temperature of the sub chamber member 45.
00 36 ]
As the combustible air-fuel mixture ignites and burns, the pressure in the sub chamber 42 rises, and the sub chamber 42 The flame and air-fuel mixture are ejected from the communication hole 46 to the main chamber 41, the temperature and pressure in the main chamber 41 rise, the lean air-fuel mixture in the main chamber 41 self-ignites, and the main chamber 41 The flame propagation speed of the lean air-fuel mixture is increased, the fuel speed in the main chamber 41 is increased, and combustion is completed in a short time. That is, the flame ejected from the sub chamber 42 to the main chamber 41 becomes a fire type, causing high-speed combustion in the main chamber 41 and completing the combustion in a short time. Since most of the fuel burns in the main chamber 41 with a lean mixture, NO X Can be greatly suppressed.
00 37 ]
Also ,main Although a lean air-fuel mixture is generated in the chamber 41, the degree of leanness may be exceeded at the time of partial load. Therefore, a throttle can be provided to control the intake air amount as necessary. Is much smaller than conventional gasoline engines. The fuel used for this sub-chamber engine can be gasoline, methanol, etc. with high octane number, low cetane number light oil, etc., but use other fuels by selecting the compression ratio etc. You can also.
00 38 ]
Next, referring to FIGS. , Deputy Of the engine another Explain examples . As shown in FIG. The sub-chamber engine is provided with a sub-chamber member 45 for forming the sub-chamber 42 in the center of the cylinder head 13 and a plurality of communication holes 46 are formed radially in the sub-chamber member 45 to mix fuel into the engine intake system. A fuel injection nozzle 55 is provided. That is, a fuel injection nozzle 55 is provided in the intake system (intake port 22) for supplying intake air to the main chamber 41, and the lean air-fuel mixture generated in the main chamber 41 injects fuel from the fuel injection nozzle 55 into the intake port 22. Is generated by The sub-chamber engine injects fuel from the fuel injection nozzle 55 to the intake port 22 to generate a lean air-fuel mixture, sucks the lean air-fuel mixture into the main chamber 41 in the intake stroke, and near the compression stroke top dead center. The fuel for ignition is injected into the sub chamber 42 from the fuel injection nozzle 44 provided in the sub chamber 42, and is ignited and combusted in the sub chamber 42.
00 39 ]
As shown in FIG. The sub-chamber engine sucks the lean air-fuel mixture at the intake port 22 of the intake system into the main chamber 41, and the air-fuel mixture is lean in the main chamber 41, so that self-ignition (knocking) does not occur. Since the sub chamber member 45 is disposed in the cylinder head 13 via a heat insulating layer including the heat insulating gaskets 51 and 52 and the heat insulating air layer 53, the sub chamber 42 has a heat insulating structure, and the sub chamber 42 has a high temperature. Retained. Further, the lean air-fuel mixture flowing from the main chamber 41 into the sub chamber 42 is throttled by the communication hole 46 and flows in at a high speed, so that the heat conductivity is high, and the lean air-fuel mixture flowing into the sub chamber 42 is the main chamber 41. The temperature is higher than that of the lean mixture. When the fuel for ignition is injected into the sub chamber 42 from the fuel injection nozzle 44, the spray receives heat from the hot wall, and the temperature, pressure, and equivalence ratio necessary for self-ignition are ensured. It will self-ignite. Next, since the flame and the air-fuel mixture are ejected from the sub chamber 42 to the main chamber 41 through the communication hole 46, the temperature and pressure in the main chamber 41 rise, and it becomes easy to self-ignite, or the flame becomes a fire type and propagates combustion. However, the combustion speed is increased and combustion is completed in a short time.
00 40 ]
【The invention's effect】
Since the sub-chamber engine according to the present invention is configured as described above, most of the combustion in the main chamber is premixed lean combustion, so the combustion temperature is low and NO. X Can be generated very little. Since the flame from the sub chamber is ejected radially to the main chamber through many communication holes, the ignition source in the main chamber becomes a flame ejected from the communication hole, and the entire main chamber completes combustion in a very short time. High thermal efficiency can be ensured by burning in a lean mixture with a high compression ratio. In addition, the amount of unburned mixture and flames ejected from the sub chamber through the communication hole into the main chamber is small because most of the fuel is injected into the main chamber in advance, and as a result, the size of the sub chamber itself is reduced. It can be configured in a small size, and the sub-chamber with heat insulation structure can be formed well on the piston.
00 41 ]
This sub-chamber engine Is Most of the heat generation is premixed in the main chamber, and the amount of fuel injected into the subchamber is sufficient to create an ignition source in the subchamber. Therefore, deputy In the room Since the air-fuel mixture generation has a relatively small effect on the engine performance, the fuel injection nozzle does not necessarily have to enter the sub chamber, and the durability of the fuel injection nozzle can be greatly improved.
00 42 ]
This sub-chamber engine can burn the lean mixture at a high compression ratio in the main chamber, so that the heat efficiency can be improved and most of the fuel is burned in the main chamber with the lean mixture. NO X Generation can be greatly reduced, ignition control becomes easy, the structure itself is simple, and the existing engine can be modified and configured.
[Brief description of the drawings]
FIG. 1 shows a sub-chamber engine according to the present invention. First It is sectional drawing which shows an Example and shows the state at the time of the fuel injection in the middle of a compression stroke.
2 is a cross-sectional view showing a state at the time of fuel injection in the vicinity of a piston compression top dead center of the sub-chamber engine of FIG. 1;
3 is a cross-sectional view showing an initial stage of an expansion stroke of the sub-chamber engine of FIG. 1. FIG.
4 is an explanatory diagram showing injection timings of fuel injection nozzles in the sub-chamber engine of FIG. 1. FIG.
FIG. 5 shows a sub-chamber engine according to the present invention. Second It is sectional drawing which shows an Example and shows the state at the time of the fuel injection of piston compression top dead center vicinity.
FIG. 6 shows a sub-chamber engine according to the present invention. Third It is sectional drawing which shows the piston in an Example.
[Fig. 7] Vice Of the engine other It is sectional drawing which shows an example.
8 is a cross-sectional view of the sub chamber member taken along line AA in FIG.
FIG. 9 is an explanatory view showing a state in which fuel is injected into the main chamber.
FIG. 10 is an explanatory diagram showing a state in which a lean air-fuel mixture is generated in the main chamber.
FIG. 11 is an explanatory diagram showing a state where a lean air-fuel mixture enters from the main chamber into the sub chamber.
FIG. 12 is an explanatory diagram showing a state in which flame and air-fuel mixture are ejected from the sub chamber to the main chamber.
FIG. 13 is a diagram showing fuel injection and ignition timing.
FIG. 14: Sub-chamber engine another It is sectional drawing which shows an example.
FIG. 15 is a graph showing changes in pressure and in-cylinder temperature between the main chamber and the sub chamber corresponding to piston displacement.
FIG. 16 is a diagram showing fuel injection and ignition timing.
[Explanation of symbols]
1 main room
2 Sub-room
3,30 piston
4 Fuel injection nozzle
5,7,36 Central communication hole
6,37 communication hole
8 Multi-hole
9,32 cavity
13 Cylinder head
20 cylinders
22 Intake port (intake system)
33 Sub chamber structure
34 Heat shield layer

Claims (4)

シリンダ内を往復動するピストン,前記シリンダ側に形成された主室,前記シリンダのほぼ中央に位置するように前記ピストンに形成された副室,前記ピストンに前記主室と前記副室とを連通するほぼ前記シリンダ中央領域に形成された中央連絡孔と前記中央連絡孔の回りの周方向に隔置して形成された複数の連絡孔,前記主室と前記副室に燃料を噴射する多噴孔を備えた燃料噴射ノズル,及び吸入行程から圧縮行程までの間の所定の期間において前記主室に燃料を噴射して自着火しない程度のリーン混合気を生成し,ピストン圧縮上死点近傍で前記副室内に着火用燃料を噴射して前記副室内の混合気を着火燃焼させる制御を行うコントローラ,から成る副室式エンジン。  A piston that reciprocates in a cylinder, a main chamber formed on the cylinder side, a sub chamber formed in the piston so as to be positioned substantially in the center of the cylinder, and the main chamber and the sub chamber communicated with the piston A plurality of communication holes formed in the circumferential direction around the central communication hole, and a plurality of injection holes for injecting fuel into the main chamber and the sub chamber. A fuel injection nozzle having a hole, and a lean air-fuel mixture that does not self-ignite by injecting fuel into the main chamber during a predetermined period from the suction stroke to the compression stroke; A sub-chamber engine comprising: a controller that performs control for injecting ignition fuel into the sub-chamber and igniting and burning the air-fuel mixture in the sub-chamber. 前記燃料噴射ノズルの前記多噴孔から前記副室内への燃料噴射は,前記ピストンに形成された前記中央連絡孔を通じて前記副室の壁面に向かって噴射される請求項に記載の副室式エンジン。2. The sub-chamber type according to claim 1 , wherein fuel injection from the multiple injection holes of the fuel injection nozzle into the sub-chamber is injected toward a wall surface of the sub-chamber through the central communication hole formed in the piston. engine. 前記燃料噴射ノズルはピストン圧縮上死点近傍で前記中央連絡孔に突入し,前記副室内で前記多噴孔から前記副室の壁面に向かって燃料が噴射される請求項に記載の副室式エンジン。2. The sub chamber according to claim 1 , wherein the fuel injection nozzle enters the central communication hole in the vicinity of a piston compression top dead center, and fuel is injected from the multiple injection holes toward the wall surface of the sub chamber in the sub chamber. Expression engine. 前記副室は前記ピストンに形成されたキャビティに遮熱層を介して配置された耐熱材料から成る副室構造体で遮熱構造に構成されている請求項1〜3のいずれか1項に記載の副室式エンジン。The subchamber according to claim 1, which is configured to heat insulating structure antechamber structure comprising a refractory material which is arranged over the thermal barrier layer to the cavity formed in the piston Sub-chamber engine.
JP25225996A 1996-06-07 1996-09-04 Sub-chamber engine Expired - Fee Related JP3695011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25225996A JP3695011B2 (en) 1996-06-07 1996-09-04 Sub-chamber engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16670196 1996-06-07
JP8-166701 1996-06-07
JP25225996A JP3695011B2 (en) 1996-06-07 1996-09-04 Sub-chamber engine

Publications (2)

Publication Number Publication Date
JPH1054244A JPH1054244A (en) 1998-02-24
JP3695011B2 true JP3695011B2 (en) 2005-09-14

Family

ID=26490983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25225996A Expired - Fee Related JP3695011B2 (en) 1996-06-07 1996-09-04 Sub-chamber engine

Country Status (1)

Country Link
JP (1) JP3695011B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506439B2 (en) 2015-04-13 2016-11-29 Caterpillar Inc. Ducted combustion systems utilizing adjustable length ducts
US9587606B2 (en) 2015-04-13 2017-03-07 Caterpillar Inc. Ducted combustion systems utilizing tubular ducts
US9803538B2 (en) 2015-04-13 2017-10-31 Caterpillar Inc. Ducted combustion systems utilizing duct structures

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804983C2 (en) * 1998-02-07 2003-04-24 Daimler Chrysler Ag Method for operating a four-stroke internal combustion engine
CN113653560A (en) * 2021-08-18 2021-11-16 天津大学 Gasoline engine ignition mechanism containing strong turbulence jet flow precombustion chamber
CN114542315B (en) * 2022-01-18 2023-02-21 北京理工大学 Turbulent jet flow spontaneous combustion ignition engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506439B2 (en) 2015-04-13 2016-11-29 Caterpillar Inc. Ducted combustion systems utilizing adjustable length ducts
US9587606B2 (en) 2015-04-13 2017-03-07 Caterpillar Inc. Ducted combustion systems utilizing tubular ducts
US9803538B2 (en) 2015-04-13 2017-10-31 Caterpillar Inc. Ducted combustion systems utilizing duct structures

Also Published As

Publication number Publication date
JPH1054244A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
US6845746B2 (en) Internal combustion engine with injection of gaseous fuel
US5522357A (en) Apparatus and method of fuel injection and ignition of internal combustion engine
JP5118839B2 (en) In-cylinder direct injection internal combustion engine
JP2006233839A (en) Internal combustion engine
JP4657187B2 (en) Internal combustion engine
JP5765819B2 (en) 2-cycle gas engine
US6595181B2 (en) Dual mode engine combustion process
JP2016089747A (en) Control device of internal combustion engine
JP2017008752A (en) Gas engine
JP3695011B2 (en) Sub-chamber engine
CN110953067A (en) Engine and double-jet combustion method thereof
JP7204982B2 (en) Multi-mode operation of internal combustion engine fueled by hydrogen
JP2018087520A (en) Premixing compression ignition type engine
JP2005232988A (en) Subsidiary chamber type engine
JP4073315B2 (en) Sub-chamber engine
JP2005232987A (en) Subsidiary chamber type engine
JP3879155B2 (en) Direct in-cylinder spark ignition engine
JP4145177B2 (en) Engine and operation method thereof
JPH09317470A (en) Diesel engine for low volatile fuel
JP2001020744A (en) Engine and combustion control method for the same
JP3374478B2 (en) Heat-shielded gas engine with two-tier subchamber
JP2620974B2 (en) Secondary combustion chamber type insulated diesel engine
JPH04262020A (en) Combustion chamber of direct injection type diesel engine
JP2016200080A (en) Control device for internal combustion engine
CN114233464A (en) Combustion system, engine and combustion control method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees