JP4073315B2 - Sub-chamber engine - Google Patents
Sub-chamber engine Download PDFInfo
- Publication number
- JP4073315B2 JP4073315B2 JP2003001205A JP2003001205A JP4073315B2 JP 4073315 B2 JP4073315 B2 JP 4073315B2 JP 2003001205 A JP2003001205 A JP 2003001205A JP 2003001205 A JP2003001205 A JP 2003001205A JP 4073315 B2 JP4073315 B2 JP 4073315B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- sub
- air
- ignition
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Combustion Methods Of Internal-Combustion Engines (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、主室に吸気された新気をピストンの上昇により圧縮して、前記圧縮された新気を連通路を介して副室に流入させ、前記副室に流入した新気と前記副室に供給された燃料との混合気を、前記副室に設けられた点火手段により点火し、前記連通路を介して前記主室に火炎ジェットを噴射する副室点火運転を実行可能な副室式エンジンに関する。
【0002】
【従来の技術】
従来エンジンは、火花点火エンジン(オットーサイクルエンジン)と、圧縮空気中に液体燃料を噴射するディーゼルエンジンに大きく分けられる。
【0003】
火花点火エンジンは、燃焼室において吸気された空気と燃料との混合気を圧縮した後に、点火プラグにより点火して燃焼させるように構成され、その理想的なサイクルはオットーサイクル(定容加熱サイクル)と考えられており、圧縮比を高くして燃料を希薄状態で燃焼させることによって熱効率を向上させることができる。
【0004】
特に部分負荷時の燃焼温度の低下、サイクル効率の向上、ポンピング損失の低下などを実現することができ、排ガス性状及び燃費の改善に有効である火花点火エンジンの希薄燃焼方式としては、層状吸気方式がある。
【0005】
層状吸気方式とは、燃焼室において、点火プラグの点火部の周辺には、火花点火可能な当量比の混合気が存在する点火領域を形成し、その点火領域の周辺には、点火領域の混合気よりも当量比が低く希薄状態である混合気が存在する希薄領域を形成して、先ず、上記点火領域に存在する混合気を点火プラグにより点火して燃焼させ、その火炎により上記希薄領域に存在する混合気を燃焼させて、全体として燃料を希薄状態で燃焼させる燃焼方式であり、層状吸気方式の燃焼室形状は、単室式と副室式とに大別される。
【0006】
単室式は、ピストン頂部に形成した凹部を燃焼室として利用し、燃焼室における吸気の流れを利用して、点火プラグの点火部周辺に火花点火可能な混合気を形成するものである。
【0007】
一方、副室式は、ピストン頂部に接する主室とその主室と連通路を介して連通する副室とを燃焼室として備えたエンジンにおいて、主室に吸気された希薄混合気をピストンの上昇により圧縮して、その圧縮された新気を連通路を介して副室に流入させ、副室に流入した希薄混合気と副室に直接供給された燃料とから、点火プラグが設けられた副室に火花点火可能な当量比の混合気を形成し、その混合気を点火プラグにより点火して燃焼させ、連通路を介して主室に噴射される火炎ジェットにより、主室の希薄混合気を燃焼させる所謂副室点火運転を行うものである(例えば、特許文献1−3参照。)。
そして、火花点火エンジンの層状吸気方式として、上記副室式を採用することにより、吸気行程の後期又は圧縮行程の前期等の燃焼室の圧力が比較的低い時期に、副室に燃料を供給しておいても、その燃料を副室に良好に保持することができ、簡単に、点火時期において火花点火可能な当量比の混合気を副室に形成することができる。よって、上記副室式においては、燃料噴射弁の簡素化が可能であり、例えば燃料として高圧縮が困難な天然ガス等の気体燃料を容易に利用することができる。
【0008】
【特許文献1】
特開2002−276474号公報
【特許文献2】
特開2001−303958号公報
【特許文献3】
特開2001−263069号公報
【0009】
【発明が解決しようとする課題】
火花点火エンジンにおいて、単室式又は副室式の層状吸気方式を採用しても、点火プラグ周辺の点火領域においては、混合気は火炎伝播により急激に燃焼するので、燃焼時の急激な圧力上昇により末端ガスが自己着火してしまう所謂ノッキングを回避するという制約条件下において、圧縮比を設定する必要があったため、ディーゼルエンジン並みの圧縮比に設定して、一層の高効率化を図ることはできなかった。
【0010】
したがって、本発明は、上記の事情に鑑みて、ディーゼルエンジン並みの高圧縮比化を実現して、極めて高い効率で運転可能な副室式エンジンを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するための本発明に係る副室式エンジンの特徴構成は、主室に吸気された新気をピストンの上昇により圧縮して、前記圧縮された新気を連通路を介して副室に流入させ、前記副室に流入した新気と前記副室に供給された燃料との混合気を、前記副室に設けられた点火手段により点火し、前記連通路を介して前記主室に火炎ジェットを噴射する副室点火運転を実行可能な副室式エンジンであって、
前記副室に備えられた点火手段が、前記副室に燃料を供給する燃料供給手段よりも前記連通路に近接する前記連通路側に偏設されており、
前記主室の前記圧縮による最高到達圧力が、前記副室におけるノッキング回避圧力範囲の上限界値より高く設定され、且つ、前記副室の圧縮による最高到達圧力が前記副室におけるノッキング回避範囲内となるように、前記連通路におけるガスの流通に対して付与される背圧が前記連通路の流路断面積により設定されている点にある。
【0012】
即ち、燃焼室として、ピストン頂部に接する主室と、この主室に連通路を介して連通する副室とを備えた副室式エンジンにおいて、上記特徴構成によれば、主室に吸気された新気が圧縮行程において連通路を通過して副室に流入する際に、連通路が所定の流路断面積に設定されていることで、新気の流通を阻止する方向に上記背圧を受けるので、非燃焼時の圧縮のみによる副室の最高到達圧力(以下、「副室最高到達圧力」と呼ぶ。)は、同じく非燃焼時の圧縮のみによる主室の最高到達圧力(以下、「主室最高到達圧力」と呼ぶ。)よりも低くなり、更に、副室の圧力が副室最高到達圧力となる時期が、主室の圧力が主室最高到達圧力となる時期に対して、遅延側にずれることになる。
【0013】
よって、圧縮比(最大燃焼室容積/最小燃焼室容積)を、上記連通路において新気に付与される背圧が非常に小さい従来の副室式エンジンの圧縮比(例えば、10程度)よりも高く設定して、主室最高到達圧力を副室におけるノッキング回避圧力範囲(即ち、副室で混合気を燃焼させた場合にノッキングを回避することができる副室の圧力範囲)の上限値よりも大きくなるように設定しても、主室から副室への方向に連通路を流通する新気に対して付加される背圧を、上記連通路の流路断面積の設定等により適切に設定することにより、副室最高到達圧力を上記主室最高到達圧力よりも小さい副室におけるノッキング回避圧力範囲内とすることができる。
よって、副室に形成された火花点火可能範囲内の当量比の混合気を、適切なノッキング回避圧力範囲内で点火して、副室において安定燃焼させることができる。
【0014】
更に、副室において混合気を燃焼させて、副室の圧力が主室の圧力を上回ると、連通路を介して主室に火炎ジェットが噴射され、その火炎ジェットを着火源として、主室の上記点火可能範囲よりも低い当量比の希薄混合気を、ディーゼルエンジン並みの高圧縮状態で安定して燃焼させることができ、極めて高い効率を達成することができる。
【0015】
また、本発明に係る副室式エンジンにおいて、前記点火手段の点火領域が、前記副室に燃料を供給する燃料供給手段よりも前記連通路に近接する前記連通路側に偏って配置されていることで、主室から連通路を介して流入した新気が点火手段の点火領域に到達しやすくなり、上記点火領域に火花点火可能範囲の当量比の混合気を容易に形成することができ、さらに、連通路に近い上記点火領域の混合気を火花点火して燃焼させて、積極的に、主室に火炎ジェットを噴出させることができる。
【0016】
また、このように副室において点火領域を燃料供給手段よりも前記連通路に近接する連通路側に偏って配置することで、副室に比較的多くの燃料を供給しても、上記点火領域に、上記火花点火可能範囲の当量比の混合気を形成することができ、更に、その点火領域の周辺には、上記火花点火可能範囲よりも高い当量比の過濃混合気が形成されることになる。そして、上記副室において、上記点火領域の混合気を火花点火して燃焼させると、上記過濃混合気は、上記火炎ジェットにより主室に噴出され、更に、膨張行程の進行に伴って主室の圧力が副室よりも低下してから、主室に流入して新気と混合され拡散燃焼することになり、ディーゼルサイクル的な独特なサイクルを実現して、一層の高効率化及び低NOx化を図ることができる。
【0017】
また、前記副室の少なくとも前記点火手段の点火領域に形成される混合気が、当量比が火花点火可能範囲内である混合気であることで、混合気を安定し燃焼させることができ、前記主室に形成される混合気が、当量比が前記火花点火可能範囲内よりも低い希薄混合気であることで、低NOx化等の排ガス性状の改善を図ることができる。
【0018】
また、本発明に係る副室式エンジンにおいて、連通路に制御弁を備えた場合には、前記制御弁を閉状態として、前記主室に形成された混合気を前記主室において圧縮して自己着火させる予混合圧縮着火運転を実行可能に構成することができる。
即ち、上記制御弁を閉状態とすることで、主室から副室への新気の流入を阻止して、主室の圧力を主室の希薄混合気が自己着火する程度に上昇させることができるので、主室に形成された混合気を主室において圧縮して自己着火させる予混合圧縮着火運転を行うことができる。
【0019】
一方、本発明に係る副室式エンジンにおいて、燃料が供給された副室に酸素含有ガスを供給して、前記点火手段の点火領域を火花点火可能範囲内の当量比の混合気が存在するものとすると共に、前記点火領域よりも前記連通路側に偏った領域を燃焼上限界以上の当量比の過濃混合気が存在する過濃領域とする酸素含有ガス供給手段を備えることもでできる。
【0020】
即ち、互いに連通路により連通状態である主室と副室とを備えた副室式エンジンにおいて、副室に燃料を供給することで、副室に前述の過濃混合気を形成し、更に、上記酸素含有ガス供給手段により、例えば圧縮行程初期において、副室に空気等の酸素含有ガスを供給して、副室に上記火花点火過濃範囲内の点火領域と上記過濃領域とを形成することができる。
【0021】
そして、上記点火手段を働かせて、前記副室の点火領域の混合気を火花点火して燃焼させると、副室の点火領域における燃焼による圧力波が、連通路側に形成された過濃領域に伝播され、その過濃領域の燃焼上限界以上の当量比である過濃混合気が、着火することなく、連通路を介して主室に高圧噴射され、後に、上記点火領域の混合気の燃焼による火炎ジェットが連通路を介して主室に噴射されて、上記主室において混合気を燃焼させるのである。
【0022】
従って、上記のような独特な副室式エンジンによって、従来のディーゼルエンジンのような複雑で高価な燃料噴射装置や、燃料を燃焼室に直接噴射する層状給気方式における燃料噴射装置などを必要とせずに、副室の点火領域における燃焼による圧力上昇を利用して、副室に形成した過濃混合気を主室に高圧で噴射し、続いて主室に噴射された火炎ジェットにより、燃焼させるという独特な運転方法を行うことができ、主室においてノッキングが発生せずに所謂層状燃焼が進むことになる。
したがって、その燃料がたとえ気体燃料であっても、主室に高圧で混合気を噴射して自己着火させるディーゼルエンジン、又は、主室に設けられた点火プラグ付近に混合気を噴射し、その混合気を点火して周囲の希薄混合気を燃焼させる層状給気方式のSIエンジンとして構成することができ、高効率化且つ低NOx化を図ることができる。
【0023】
【発明の実施の形態】
本発明に係る副室式エンジンについて、図1−6に基づいて説明する。
【0024】
図1に示す副室式エンジン100は、本発明の権利対象ではないが、本発明の理解を容易にするため、図1に係る副室式エンジン100から説明する。
図1に示す副室式エンジン100は、ピストン2と、ピストン2を収容してピストン2の頂面と共に主室1を形成するシリンダ3を備え、ピストン2をシリンダ3内で往復運動させると共に、吸気弁4および排気弁(図示せず)を開閉動作させて、新気を主室1に取り込み、主室1において吸気、圧縮、燃焼・膨張、排気の諸行程を行い、ピストン2の往復道を連結棒(図示せず)によってクランク軸(図示せず)の回転運動として出力されるものであり、このような構成は、通常の4ストローク内燃機関と変わるところはない。
【0025】
尚、副室式エンジン100に於いて、シリンダ3のボア径は110mmであり、ピストン2のストローク長は106mmであり、ピストン2の位置が上死点位置であるときの燃焼室容積に対する、ピストン2の位置が下死点位置である時の燃焼室容積比である圧縮比は17である。また、副室式エンジン100は、ディーゼルエンジンとしてはクランク軸の回転数が1200rpmで運転されて15kW程度の出力が得られるものである。
【0026】
また、副室式エンジン100は、都市ガス(13A)を燃料Gとして利用するものであり、吸気行程において吸気弁4を開状態として、主室1に空気と少量の燃料Gとの希薄混合気である新気Iを吸入し、圧縮行程においてこの吸入した新気Iを圧縮して燃料Gを燃焼させるものである。
【0027】
副室式エンジン100のシリンダヘッド9には、主室1と共に燃焼室として設けられ、主室1に連通路20を介して連通する副室11が設けられており、この副室11を有する副室機構10の構造について以下に説明する。
尚、副室11の容積は、ピストン2の位置が上死点であるときの主室1と副室11との容積の和である総燃焼室容積の1/10程度である。
【0028】
また、副室11と主室1とを連通する連通路20は、主室1の略中央部に開口する4つの主室孔21と、副室11に開口する1つの副室孔22と、上記主室孔21と上記副室孔22とを接続する流路23とからなる。
流路23は、ピストン2の動作方向(図1における上下方向)に対して20°程度傾斜した軸心に沿って延びる流路として形成され、その流路径は3mmである。
上記4つの主室孔21は、図2(a),(b)にも示すように、上記流路23の軸心を中心に周方向に等間隔で配置され、更に、上記シリンダ3軸心に対して75/2°傾斜した噴孔角を有する。
【0029】
また、ピストン2の頂面の中央部には、いわゆる深皿型の凹部2aが形成されている。上記のような凹部2aを形成することで、圧縮行程に於いてピストン2が上昇するときに、ピストン2の頂面外周部から凹部2aの中心部に流れるスキッシュが発生することになる。
【0030】
副室11の上方には、燃料Gを0.2MPa(Gauge)の供給圧力で副室11に供給可能な燃料供給弁30が設けられている。
さらにまた、副室11の上方には、副室11の混合気を火花点火可能な点火プラグ32(点火手段の一例)が設けられている。
【0031】
このような副室式エンジン100において、図4(a),(b)に示すように、連通路20において最も小さい流路断面積である4つの主室孔21の開口面積の和Spのシリンダ3の横断面積Smに対する比(以下、断面積比と呼ぶ。)Srは、0.0013以下に設定すると、主室1に吸気された新気Iが圧縮行程において連通路20を通過して副室11に流入する際に受ける背圧を大きくして、非燃焼時の圧縮のみによる副室最高到達圧力P2を、同じく非燃焼時の圧縮のみによる主室最高到達圧力P1よりも低くすることができ、更に、図4(c)に示すように、副室11の圧力が副室最高到達圧力P2となる時期を、主室1の圧力が主室最高到達圧力P1となる時期に対して、遅延側にずらすことができる。
【0032】
そして、本副室式エンジン100においては、上記断面積比Srが、上記のように副室最高到達圧力P2を主室最高到達圧力P1よりも低くすることができるように、0.0013以下、好適には、0.0005以下、さらに好適には、0.0003程度となるように、上記連通路20の最小流路断面積が設定されている。
【0033】
上記のように、上記連通路20の流路断面積を小さくする設定して、主室1から副室11への方向に連通路20を流通する新気Iに対して付加される背圧を大きくすることで、圧縮比を17程度と高く設定しても、副室最高到達圧力P2を、上記主室最高到達圧力P1よりも小さく、副室11で混合気を燃焼させた場合にノッキングを回避することができる副室11のノッキング回避圧力範囲内とすることができる。
【0034】
次に、副室式エンジン100における、1サイクルにおける吸気弁4、排気弁、燃料供給弁30、点火プラグ32の動作状態を説明する。
【0035】
図3に示すように、副室式エンジン100は、先ず、吸気弁4が開状態となり、ピストン2のTDC(上死点)からの下降により、主室1に希薄混合気である新気Iが吸入される吸気行程が行われる。
このとき副室11に設置された燃料供給弁30が吸気弁4の開時期に対して若干遅れた時期に開状態となり、副室11への燃料Gの供給を開始される。
【0036】
後に、吸気弁4および燃料供給弁30が同時期に閉状態となり、ピストン2の上昇により、主室1に吸気された新気Iを圧縮する、いわゆる圧縮行程が行われる。
【0037】
なお、圧縮行程初期の副室11がまだ定圧状態のときに、燃料供給弁30を開状態として燃料Gを副室11に供給しても良い。
【0038】
このように副室11に燃料を供給することにより、副室11に供給された燃料Gの一部は、連通路20を介して主室1に流出するのであるが、上記の連通路20の断面積比が例えば0.0003程度と非常に小さく設定されているため、その流出量は、副室11に供給された全副室燃料供給量の5%程度となる。
【0039】
そして、次の圧縮行程では、ピストン2の上昇により、主室1の容積減少によって、主室1の新気Iが連通路20介して副室11に流入し、副室11には、連通路22から上方に向かう新気流が発生し、その新気流が点火プラグ32の点火領域に到達する。
【0040】
よって、副室11の上記点火プラグ32の点火領域では、その新気Iと燃料Gとが混合されて、火花点火可能範囲内の当量比の混合気が形成される。
【0041】
この圧縮行程では、連通路20の主室孔21が所謂絞り弁のように働き、主室1の圧力はほぼ圧縮比どおりの圧力になるが、副室最高到達圧力P2は、主室最高到達圧力P1の圧力よりも、図4(a)に示すように、約2MPa低下したものになる。
よって、上記圧縮行程終了時にて、副室11には、約25MPaの圧力場で当量比が1.0−1.6程度、好適には当量比が1.3−1.5程度の混合気が存在し、主室1には、約45MPaの圧力場で当量比が0.4−0.55、好適には当量比が0.45−0.50程度の混合気が存在することになる。尚、副室11に形成する混合気の当量比を理論当量比よりも増加させるほど、副室11におけるNOx生成量を低減することができると共に、主室1への燃料供給量に対する副室11への燃料供給量の割合を増加させることで、主室1において燃焼する混合気を希薄化して、一層の低NOx化を図ることができる。
【0042】
そして、副室式エンジン100は、10°BTDC付近において、点火プラグ32を働かせて、上記副室11に形成された混合気を火花点火して燃焼させる。
【0043】
すると副室11では、その圧力が通常のSIエンジンなみであるため、急激な圧力上昇を伴わず、燃焼が進み、副室11の燃焼しなかった燃料Gと共に、火炎ジェットが連通路20を介して主室1に噴出される。
【0044】
一方、主室1においては、高圧力場で、連通路20から噴出された高エネルギの火炎ジェットにより希薄混合気を燃焼させるので、副室11と同様に急激な圧力上昇を伴わず、高効率且つ低NOxな燃焼が行われる。
【0045】
このような主室1における燃焼状態は、通常のSIエンジンに近い状態であるが、圧縮比を高く設定した場合においてもノッキングが発生しないため、例えば、図5に示すように、連通路20の断面積比を0.0013より大きくした副室エンジンに比べて、正味熱効率ηeを向上することができ、例えば、連通路20の断面積比を0.0005程度とすることで、正味熱効率ηeを2.5ポイント程度向上することができ、連通路20の断面積比を0.0003程度とすることで、正味熱効率ηeを3.0ポイント程度向上することができる。また、主室11に吸気される新気Iの空気比(当量比の逆数)を小さくして、出力を増加させた場合でも、良好にノッキングを回避することができるため、図6に示すように、ノッキング限界における空気比λを低くすることができ、広い出力調整範囲を確保することができる。
また、副室11内を当量比を濃い側に、主室1内の混合気を希薄側に設定しているためNOXも抑制することができる。
【0046】
本発明に係る副室式エンジン200の実施形態について、図7に基づいて説明する。
図7に示す副室式エンジン200は、点火プラグ32の点火領域の位置が連通路20の副室孔22に偏った位置に配置されており、それ以外は、前述した副室式エンジン100と同様の構成である。
【0047】
本エンジン200は、前述の副室式エンジン100と同様な運転方法で運転されるのであるが、副室11及び主室1に供給される燃料割合が異なる。
【0048】
即ち、副室11には、圧縮行程後期に当量比が1.5−2.0程度と比較的高い混合気が形成され、主室1には当量比が0.4−0.55程度の混合気が形成されている。副室11に形成された混合気は、上記当量比が比較的高いため、そのままでは点火プラグ32により火花点火することは困難であるが、副室式エンジン200の点火領域が、連通路20の副室孔22に非常に近く、連通路20からの新気流の通り道であることから、新気がその点火領域に多く供給されて、点火領域の混合気は、火花点火可能な当量比にまで希釈されることになる。
【0049】
そして、副室式エンジン200は、10°BTDC付近において、点火プラグ32を働かせて、上記副室11に形成された混合気を火花点火して燃焼させる。
【0050】
すると、副室11では、点火領域に存在する火花点火可能な混合気のみが燃焼し、副室11の圧力が主室1の圧力よりも高くなった時点で、その点火領域の火炎が連通路20から主室1に火炎ジェットとして噴出される。
【0051】
主室1においては、連通路20から噴出された高エネルギの火炎ジェットにより希薄混合気が燃焼すると、再度、主室1の圧力が副室11の圧力より高くなる。その際、副室11から主室1へのガスの噴出が停止され、副室11において燃焼しなかった比較的高当量比の混合気が残存することになる。
【0052】
燃焼・膨張行程が進行するにつれて、主室1の圧力が副室11の圧力よりも低くなると、副室11に残存していた混合気が連通路20を介して主室1へ噴出され、主室1において緩やかに燃焼することになる。
【0053】
このように構成された副室式エンジン200は、点火プラグ32の位置を変更すると共に、副室11へ比較的高い当量比の混合気を形成するように燃料を供給することで、主室1の燃焼状態は所謂ディーゼルサイクルに近い状態となり、効率は高いまま、初期の燃焼を抑えて、低NOX化を図ることができる。また、副室11に供給する燃料量を増加させることで、燃焼後期に燃焼する燃料の割合が増加するため、過給機や触媒システムに有利な高温の排気ガスを排出させることもできる。
【0054】
先に説明した図1に示す副室式エンジン100において、副室11に空気供給弁31(酸素含有ガス供給手段の一例)を有する副室式エンジン300の構成を、図8、図9に基づいて説明する。そして、この空気供給弁31を有する構成は、先に説明した図7に示した副室式エンジン200でも採用することが可能である。
図8に示す副室式エンジン300は、副室機構20に、空気流路40に供給された空気Aを所定の時期に0.7MPa(Gauge)の供給圧力で副室11の上方の点火プラグ32の点火領域付近に供給可能な空気供給弁31(酸素含有ガス供給手段の一例)が設けられており、それ以外は、前述の副室式エンジン100と同様の構成である。
【0055】
次に、本実施形態の副室式エンジン300において、1サイクルにおける吸気弁4、排気弁、燃料供給弁30、点火プラグ32と、上記空気供給弁31の動作状態を説明する。
【0056】
図9に示すように、副室式エンジン300は、上記吸気弁4、排気弁、燃料供給弁30、点火プラグ32の動作時期は、前述の副室式エンジン100と同様であるので、説明を割愛するが、圧縮行程中期の、例えばクランク角度が60−50°BTDCである期間において、空気供給弁31が開状態とされて、空気Aが副室11の点火プラグ32の点火領域付近に向けて供給される。
【0057】
よって、副室11の上記点火プラグ32の点火領域では、主室1から流入した新気Iと上記空気供給弁31から供給された空気Aと、燃料Gとが混合されて、火花点火可能範囲内の当量比の混合気が形成され、一方、上記点火領域よりも連通路20側に偏った過濃領域では、燃焼上限界以上の当量比の過濃混合気が形成される。
【0058】
この圧縮行程では、これまで説明してきたように、連通路20の主室孔21が所謂絞り弁のように働き、主室1の圧力はほぼ圧縮比どおりの圧力になるが、副室最高到達圧力P2は、主室最高到達圧力P1の圧力よりも、図4(a)に示すように、約2MPa低下したものになる。
【0059】
そして、副室式エンジン100は、10°BTDC付近において、点火プラグ32を働かせて、上記副室11に形成された混合気を火花点火して燃焼させる。
【0060】
すると、副室11では、点火領域における燃焼による圧力波が、連通路側に形成された過濃領域に伝播され、その過濃領域の燃焼上限界以上の当量比である過濃混合気が、着火することなく、連通路20を介して主室1に高圧噴射され、後に、上記点火領域の混合気の燃焼による火炎ジェットが連通路20を介して主室1に噴射され、上記主室1において混合気を燃焼させる。
【0061】
即ち、副室式エンジン300は、燃料Gが高圧噴射が困難な気体燃料であっても、副室11の点火領域における燃焼による圧力上昇を利用して、副室11に形成した過濃混合気を主室1に高圧で噴射し、続いて主室1に噴射された火炎ジェットにより、主室1の混合気を燃焼させるディーゼルエンジンのような運転を行うことができ、主室1においてノッキングが発生せずに所謂層状燃焼を進めることができ、高効率化且つ低NOx化を図ることができる。
【0062】
尚、本副室エンジン300において、副室11への燃料供給量及び空気供給量、主室1への燃料供給量等を一定としたが、別に、それらの供給量を調整して、主室1及び副室11に形成される混合気の分布を調整することもできる。例えば、起動時には、副室11への燃料供給量の割合を低下させて、副室11全域に火花点火可能範囲内の当量比の混合気を形成し、副室11から連通路20を介して主室1へ、過濃混合気を殆ど噴出させずに、火炎ジェットのみを噴出させて、主室1の混合気を安定して燃焼させることもできる。また、例えば、高負荷時には、上記のように、副室11から主室1へ火炎ジェットのみを噴出させる運転を行い、低負荷時には、副室11への燃料供給量の割合を増加させて、副室11から主室1に過濃混合気を噴出するディーゼルエンジンのような運転を行うことができる。
【0063】
〔別実施形態〕
(1) 本発明に係る副室式エンジンは、前述の実施形態で説明したように、都市ガス等の気体燃料を利用する場合に優れた効果を発揮するものであり、このような気体燃料としては、上記都市ガス以外に水素やプロパン等のCOやH2を主成分とする炭化水素以外の気体燃料がある。また、本発明に係る副室式エンジンは、もちろん気体燃料以外の燃料を利用することもでき、たとえば、ガソリン、アルコール、メタノール、エタノール、任意の燃料を使用することができる。
【図面の簡単な説明】
【図1】 副室式エンジンの概略構成図
【図2】 副室式エンジンの部分拡大図
【図3】 副室式エンジンの動作状態を示すタイムチャート図
【図4】 副室式エンジンの連通路の断面積比と最高到達圧力に関連する状態との関係を示すグラフ図
【図5】 副室式エンジンの連通路の断面積比と正味熱効率との関係を示すグラフ図
【図6】 副室式エンジンの連通路の断面積比とノッキング限界における空気比との関係を示すグラフ図
【図7】 本発明に係る副室式エンジンの概略構成図
【図8】 副室式エンジンの概略構成図
【図9】 副室式エンジンの動作状態を示すタイムチャート図
【符号の説明】
1:主室
2:ピストン
2a:凹部
3:シリンダ
4:吸気弁
9:シリンダヘッド
10:副室機構
20:連通路
21:主室孔
22:副室孔
23:流路
30:燃料供給弁
31:空気供給弁(酸素含有ガス供給手段)
32:点火プラグ
100,200:副室式エンジン[0001]
BACKGROUND OF THE INVENTION
The present invention compresses fresh air sucked into the main chamber by raising the piston, causes the compressed fresh air to flow into the sub chamber via the communication passage, and the fresh air flowing into the sub chamber and the sub chamber A sub chamber capable of executing a sub chamber ignition operation in which an air-fuel mixture supplied to the chamber is ignited by ignition means provided in the sub chamber, and a flame jet is injected into the main chamber through the communication passage. Relates to the expression engine.
[0002]
[Prior art]
Conventional engines are roughly classified into spark ignition engines (Otto cycle engines) and diesel engines that inject liquid fuel into compressed air.
[0003]
The spark ignition engine is configured to compress an air-fuel mixture inhaled in a combustion chamber and then ignite it with a spark plug for combustion, and its ideal cycle is an Otto cycle (constant volume heating cycle). The thermal efficiency can be improved by increasing the compression ratio and burning the fuel in a lean state.
[0004]
In particular, the stratified intake system is used as a lean combustion system for a spark ignition engine that can reduce combustion temperature at partial load, improve cycle efficiency, and reduce pumping loss, and is effective in improving exhaust gas properties and fuel consumption. There is.
[0005]
In the combustion chamber, in the combustion chamber, an ignition region in which an air-fuel mixture with an equivalent ratio capable of spark ignition exists is formed around the ignition part of the spark plug, and the ignition region is mixed around the ignition region. A lean region is formed in which an air-fuel mixture that is in a lean state with a lower equivalence ratio than the air is present.First, the air-fuel mixture present in the ignition region is ignited and burned by a spark plug, and the flame is brought into the lean region. This is a combustion system in which an existing air-fuel mixture is burned and the fuel is burned in a lean state as a whole. The combustion chamber shape of the stratified intake system is roughly divided into a single chamber type and a sub-chamber type.
[0006]
The single-chamber type uses a recess formed at the top of the piston as a combustion chamber, and uses an intake air flow in the combustion chamber to form an air-fuel mixture capable of spark ignition around the ignition portion of the spark plug.
[0007]
On the other hand, in the sub-chamber type, an engine equipped with a main chamber in contact with the top of the piston and a sub-chamber communicating with the main chamber via a communication passage as a combustion chamber raises the lean air-fuel mixture sucked into the main chamber The compressed fresh air is caused to flow into the sub chamber through the communication passage, and the sub-chamber provided with the spark plug is formed from the lean mixture flowing into the sub chamber and the fuel directly supplied to the sub chamber. An air-fuel mixture with an equivalent ratio capable of spark ignition is formed in the chamber, the air-fuel mixture is ignited by a spark plug and burned, and the lean air-fuel mixture in the main chamber is formed by a flame jet injected into the main chamber through the communication passage. A so-called sub-chamber ignition operation is performed (see, for example, Patent Documents 1-3).
By adopting the above sub-chamber type as the stratified intake system of the spark ignition engine, fuel is supplied to the sub-chamber at a time when the pressure of the combustion chamber is relatively low, such as the late stage of the intake stroke or the early stage of the compression stroke. However, the fuel can be satisfactorily held in the sub chamber, and an air-fuel mixture with an equivalent ratio capable of spark ignition at the ignition timing can be easily formed in the sub chamber. Therefore, in the sub chamber type, the fuel injection valve can be simplified, and for example, a gaseous fuel such as natural gas, which is difficult to be highly compressed, can be easily used as the fuel.
[0008]
[Patent Document 1]
JP 2002-276474 A
[Patent Document 2]
JP 2001-303958 A
[Patent Document 3]
JP 2001-263069 A
[0009]
[Problems to be solved by the invention]
Even if a single-chamber or sub-chamber stratified intake system is used in a spark ignition engine, the air-fuel mixture burns abruptly due to flame propagation in the ignition region around the spark plug. Because it was necessary to set the compression ratio under the constraint of avoiding the so-called knocking in which the terminal gas self-ignites due to the above, it is necessary to set the compression ratio to the same level as that of a diesel engine and achieve higher efficiency. could not.
[0010]
Therefore, in view of the above circumstances, an object of the present invention is to provide a sub-chamber engine that can be operated with extremely high efficiency by realizing a high compression ratio comparable to that of a diesel engine.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the sub-chamber engine according to the present invention is characterized in that fresh air sucked into the main chamber is compressed by raising a piston, and the compressed fresh air is compressed via a communication passage. A mixture of fresh air flowing into the sub chamber and fuel supplied to the sub chamber is ignited by ignition means provided in the sub chamber, and the main chamber is connected via the communication passage. A sub-chamber engine capable of performing a sub-chamber ignition operation for injecting a flame jet into
The ignition means provided in the sub chamber is offset from the fuel supply means for supplying fuel to the sub chamber closer to the communication path than the communication path,
The maximum ultimate pressure due to the compression of the main chamber is set higher than the upper limit value of the knock avoidance pressure range in the sub chamber, and the maximum ultimate pressure due to the compression of the sub chamber is within the knock avoidance range in the sub chamber. The back pressure applied to the gas flow in the communication path isDepending on the cross-sectional area of the communication pathIt is in the set point.
[0012]
That is, in the sub-chamber engine having a main chamber in contact with the top of the piston as a combustion chamber and a sub-chamber communicating with the main chamber via a communication passage, the main chamber is inhaled according to the above-described characteristic configuration. When fresh air passes through the communication passage in the compression stroke and flows into the sub chamber,By setting the communication path to a predetermined flow path cross-sectional area,Since the back pressure is applied in a direction that prevents the flow of fresh air, the maximum pressure reached in the sub chamber only by compression during non-combustion (hereinafter referred to as “sub chamber maximum ultimate pressure”) is also the same during non-combustion. The main chamber pressure is lower than the maximum ultimate pressure of the main chamber (hereinafter referred to as “main chamber maximum ultimate pressure”) due to compression alone, and when the sub chamber pressure becomes the sub chamber maximum ultimate pressure. It will shift to the delay side with respect to the time when the maximum pressure reaches the main chamber.
[0013]
Therefore, the compression ratio (maximum combustion chamber volume / minimum combustion chamber volume) is set to be higher than the compression ratio (for example, about 10) of the conventional sub-chamber engine in which the back pressure applied to the fresh air in the communication passage is very small. Set the main chamber maximum pressure higher than the upper limit of the knock avoidance pressure range in the sub chamber (that is, the sub chamber pressure range in which knocking can be avoided when the air-fuel mixture is burned in the sub chamber). Even if it is set to be large, the back pressure applied to the fresh air flowing through the communication passage in the direction from the main chamber to the sub chamber is appropriately set by setting the cross-sectional area of the communication passage. By doing so, the sub chamber maximum ultimate pressure can be set within the knock avoidance pressure range in the sub chamber smaller than the main chamber maximum ultimate pressure.
Therefore, an air-fuel mixture having an equivalent ratio within the spark ignition possible range formed in the sub chamber can be ignited within an appropriate knocking avoidance pressure range and stably combusted in the sub chamber.
[0014]
Further, when the air-fuel mixture is combusted in the sub chamber and the pressure of the sub chamber exceeds the pressure of the main chamber, a flame jet is injected into the main chamber via the communication path, and the main chamber is used as an ignition source. The lean air-fuel mixture having an equivalent ratio lower than the above ignitable range can be stably burned in a high compression state comparable to that of a diesel engine, and extremely high efficiency can be achieved.
[0015]
Further, in the sub-chamber engine according to the present invention, the ignition region of the ignition means is arranged to be biased toward the communication path closer to the communication path than the fuel supply means for supplying fuel to the sub-chamber. Thus, fresh air that has flowed in from the main chamber via the communication passage easily reaches the ignition region of the ignition means, and an air-fuel mixture having an equivalent ratio in the spark ignition possible range can be easily formed in the ignition region. Furthermore, the air-fuel mixture in the ignition region close to the communication path can be spark-ignited and burned, and a flame jet can be actively ejected into the main chamber.
[0016]
Further, by arranging the ignition region in the sub chamber so as to be closer to the communication passage side closer to the communication passage than the fuel supply means, the ignition region can be supplied even if a relatively large amount of fuel is supplied to the sub chamber. In addition, an air-fuel mixture having an equivalent ratio in the spark-ignitable range can be formed, and a rich air-fuel mixture having an equivalent ratio higher than the spark-ignitable range is formed around the ignition region. become. When the air-fuel mixture in the ignition region is spark-ignited and burned in the sub-chamber, the rich air-fuel mixture is ejected into the main chamber by the flame jet, and further, as the expansion stroke proceeds, the main chamber After the pressure of the sub-chamber decreases, it flows into the main chamber, mixes with fresh air and diffuses and burns, realizing a unique cycle like a diesel cycle, further increasing efficiency and reducing NOx Can be achieved.
[0017]
Also, at least before the sub-chamberPointThe air-fuel mixture formed in the ignition region of the fire means is an air-fuel mixture whose equivalence ratio is within the spark ignition possible range, so that the air-fuel mixture can be stably burned, and the air-fuel mixture formed in the main chamber However, when the equivalence ratio is a lean air-fuel mixture that is lower than the spark ignition possible range, it is possible to improve exhaust gas properties such as low NOx.
[0018]
In the sub-chamber engine according to the present invention, when the control valve is provided in the communication passage, the control valve is closed, and the air-fuel mixture formed in the main chamber is compressed in the main chamber to A premixed compression ignition operation for igniting can be configured to be executable.
That is, by closing the control valve, it is possible to prevent the inflow of fresh air from the main chamber into the sub chamber and increase the pressure in the main chamber to such an extent that the lean air-fuel mixture in the main chamber self-ignites. Therefore, the premixed compression ignition operation in which the air-fuel mixture formed in the main chamber is compressed and self-ignited in the main chamber can be performed.
[0019]
On the other hand, in the sub-chamber engine according to the present invention, an oxygen-containing gas is supplied to the sub-chamber supplied with fuel, and an air-fuel mixture having an equivalence ratio within the spark ignition possible range exists in the ignition region of the ignition means In addition, oxygen-containing gas supply means may be provided in which a region that is more biased toward the communication path than the ignition region is a rich region in which a rich mixture having an equivalent ratio equal to or higher than the upper limit of combustion exists.
[0020]
That is, in the sub-chamber engine provided with the main chamber and the sub-chamber that are in communication with each other through the communication path, by supplying fuel to the sub-chamber, the above-described rich mixture is formed in the sub-chamber, The oxygen-containing gas supply means supplies, for example, an oxygen-containing gas such as air to the sub chamber at the initial stage of the compression stroke, and forms an ignition region within the spark ignition over-concentration region and the over-concentration region in the sub chamber. be able to.
[0021]
Then, when the ignition means is operated and the air-fuel mixture in the ignition region of the sub chamber is spark-ignited and burned, the pressure wave due to the combustion in the ignition region of the sub chamber is generated in the overconcentrated region formed on the communication path side. A rich mixture that is propagated and has an equivalent ratio that is equal to or greater than the upper limit of combustion in the overconcentrated region is injected into the main chamber through a communication passage without ignition, and then burned in the ignition region. A flame jet is injected into the main chamber through the communication passage, and the air-fuel mixture is combusted in the main chamber.
[0022]
Therefore, the unique sub-chamber engine as described above requires a complicated and expensive fuel injection device such as a conventional diesel engine or a fuel injection device in a stratified charge system that directly injects fuel into the combustion chamber. Without using the pressure increase due to combustion in the ignition region of the sub chamber, the rich mixture formed in the sub chamber is injected into the main chamber at a high pressure, and then burned by the flame jet injected into the main chamber. Thus, a so-called stratified combustion proceeds without causing knocking in the main chamber.
Therefore, even if the fuel is gaseous fuel, the mixture is injected into the vicinity of a spark engine installed in the main chamber or a diesel engine that injects the mixture into the main chamber at a high pressure and self-ignites. It can be configured as a stratified charge SI engine that ignites air and burns the surrounding lean air-fuel mixture, so that high efficiency and low NOx can be achieved.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Sub-chamber engine according to the present inventionToThis will be described with reference to FIGS. 1-6.
[0024]
The
A
[0025]
stillViceIn the
[0026]
The
[0027]
The
The volume of the
[0028]
In addition, the
The
As shown in FIGS. 2A and 2B, the four main chamber holes 21 are arranged at equal intervals in the circumferential direction around the axis of the
[0029]
A so-called deep dish-shaped
[0030]
Above the
Furthermore, an ignition plug 32 (an example of ignition means) capable of spark ignition of the air-fuel mixture in the
[0031]
In such a
[0032]
In the
[0033]
As described above, the back pressure applied to the fresh air I flowing through the
[0034]
nextViceThe operating states of the
[0035]
As shown in FIG. 3, in the
At this time, the
[0036]
Later, the
[0037]
Note that when the
[0038]
By supplying the fuel to the
[0039]
In the next compression stroke, as the
[0040]
Therefore, in the ignition region of the
[0041]
In this compression stroke, the
Therefore, at the end of the compression stroke, the sub-chamber 11 has an air-fuel mixture having an equivalent ratio of about 1.0 to 1.6, preferably about 1.3 to 1.5 in a pressure field of about 25 MPa. In the
[0042]
The
[0043]
Then, since the pressure in the
[0044]
On the other hand, in the
[0045]
The combustion state in the
Further, since the equivalence ratio is set to the rich side in the
[0046]
BookSub-chamber engine according to the invention200 fruitsThe embodiment will be described with reference to FIG.
The
[0047]
This
[0048]
That is, a relatively high air-fuel ratio is formed in the
[0049]
Then, the
[0050]
Then, in the
[0051]
In the
[0052]
When the pressure in the
[0053]
The
[0054]
In the
The
[0055]
Next, in the
[0056]
As shown in FIG. 9, in the
[0057]
Therefore, in the ignition region of the
[0058]
In this compression stroke, as described above, the
[0059]
The
[0060]
Then, in the
[0061]
That is, the
[0062]
still,This sub chamber engine 300In FIG. 4, the fuel supply amount and air supply amount to the
[0063]
[Another embodiment]
(1) The sub-chamber engine according to the present invention exhibits an excellent effect when using a gaseous fuel such as city gas as described in the above embodiment, and as such a gaseous fuel, In addition to the above city gas, CO and H such as hydrogen and propane2There are gaseous fuels other than hydrocarbons whose main component is. Further, the sub-chamber engine according to the present invention can of course use fuel other than gaseous fuel, for example, gasoline, alcohol, methanol, ethanol, and any fuel can be used..
[Brief description of the drawings]
[Figure 1]ViceSchematic configuration diagram of the room type engine
[Figure 2]VicePartial enlarged view of a room type engine
[Fig. 3]ViceTime chart showing the operating state of the room type engine
FIG. 4 is a graph showing the relationship between the cross-sectional area ratio of the communication passage of the sub-chamber engine and the state related to the maximum ultimate pressure
FIG. 5 is a graph showing the relationship between the cross-sectional area ratio of the communication passage of the sub-chamber engine and the net thermal efficiency.
FIG. 6 is a graph showing the relationship between the cross-sectional area ratio of the communication passage of the sub-chamber engine and the air ratio at the knocking limit.
[Fig. 7]According to the present inventionSchematic diagram of sub-chamber engine
FIG. 8 is a schematic configuration diagram of a sub-chamber engine.
FIG. 9 is a time chart showing the operating state of the sub-chamber engine.
[Explanation of symbols]
1: Main room
2: Piston
2a: recess
3: Cylinder
4: Intake valve
9: Cylinder head
10: Sub chamber mechanism
20: Communication passage
21: Main chamber hole
22: Sub chamber hole
23: Flow path
30: Fuel supply valve
31: Air supply valve (oxygen-containing gas supply means)
32: Spark plug
100, 200: Sub-chamber engine
Claims (4)
前記副室に備えられた点火手段が、前記副室に燃料を供給する燃料供給手段よりも前記連通路に近接する前記連通路側に偏設されており、
前記主室の前記圧縮による最高到達圧力が、前記副室におけるノッキング回避圧力範囲の上限界値より高く設定され、且つ、前記副室の圧縮による最高到達圧力が前記副室におけるノッキング回避範囲内となるように、前記連通路におけるガスの流通に対して付与される背圧が前記連通路の流路断面積により設定されている副室式エンジン。The fresh air sucked into the main chamber is compressed by the rise of the piston, and the compressed fresh air flows into the sub chamber through the communication path, and is supplied to the sub chamber and the fresh air flowing into the sub chamber. The sub-chamber engine is capable of performing a sub-chamber ignition operation in which an air-fuel mixture is ignited by ignition means provided in the sub-chamber and a flame jet is injected into the main chamber through the communication passage. And
The ignition means provided in the sub chamber is offset from the fuel supply means for supplying fuel to the sub chamber closer to the communication path than the communication path,
The maximum ultimate pressure due to the compression of the main chamber is set higher than the upper limit value of the knock avoidance pressure range in the sub chamber, and the maximum ultimate pressure due to the compression of the sub chamber is within the knock avoidance range in the sub chamber. The sub-chamber engine in which the back pressure applied to the gas flow in the communication passage is set by the flow passage cross-sectional area of the communication passage .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003001205A JP4073315B2 (en) | 2003-01-07 | 2003-01-07 | Sub-chamber engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003001205A JP4073315B2 (en) | 2003-01-07 | 2003-01-07 | Sub-chamber engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004211633A JP2004211633A (en) | 2004-07-29 |
JP4073315B2 true JP4073315B2 (en) | 2008-04-09 |
Family
ID=32819290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003001205A Expired - Fee Related JP4073315B2 (en) | 2003-01-07 | 2003-01-07 | Sub-chamber engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4073315B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005121522A1 (en) | 2004-06-10 | 2005-12-22 | Ichiro Kamimura | Independent combustion chamber-type internal combustion engine |
JP2007085181A (en) * | 2005-09-20 | 2007-04-05 | Nissan Motor Co Ltd | Indirect injection internal combustion engine |
JP2007205236A (en) * | 2006-02-01 | 2007-08-16 | Nissan Motor Co Ltd | Auxiliary chamber type internal combustion engine |
JP5140836B2 (en) * | 2007-05-18 | 2013-02-13 | 一般社団法人日本ガス協会 | Sub-chamber gas engine |
KR101734583B1 (en) | 2011-12-13 | 2017-05-12 | 현대자동차주식회사 | Combustion generating device for internal combustion engine |
KR101926861B1 (en) * | 2012-02-29 | 2019-03-08 | 현대자동차주식회사 | Prechamber Jet ignitor and Combustion Chamber having it in Engine |
CN106194395A (en) * | 2014-09-25 | 2016-12-07 | 马勒动力总成有限公司 | The turbulent jet igniting precombustion chamber combustion system of spark ignition engine |
DE102019208930A1 (en) * | 2019-06-19 | 2020-12-24 | Hitachi Automotive Systems, Ltd. | DEVICE AND METHOD OF CONTROLLING A TEMPERATURE OF AN ANALYTIC CHAMBER INCLUDED IN AN IGNITION DEVICE OF AN INTERNAL COMBUSTION MACHINE |
-
2003
- 2003-01-07 JP JP2003001205A patent/JP4073315B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004211633A (en) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3920526B2 (en) | Spark ignition stratified combustion internal combustion engine | |
US20080257304A1 (en) | Internal combustion engine and combustion method of the same | |
RU2005109391A (en) | METHOD AND DEVICE FOR CONTROL OF INTERNAL COMBUSTION ENGINE ON GAS-FUEL FUEL | |
JP2002161780A (en) | Operation system in internal combustion engine which is operated by self-ignitable fuel | |
JP5922830B1 (en) | Gas engine | |
KR20220047528A (en) | Method for operating a hydrogen fuelled combustion engine | |
KR20220009355A (en) | Internal combustion engine | |
JP2002266645A (en) | Engine, its operating method and auxiliary combustion chamber mechanism | |
JP4073315B2 (en) | Sub-chamber engine | |
JP2003254105A (en) | Diesel engine and its operating method | |
JP2007255313A (en) | Indirect injection engine | |
JP2005232988A (en) | Subsidiary chamber type engine | |
JP4086440B2 (en) | engine | |
JP2009500560A (en) | Internal combustion engine operation method | |
JP2002266644A (en) | Engine and auxiliary combustion chamber mechanism | |
JP2002266643A (en) | Engine, its operating method and auxiliary combustion chamber mechanism | |
JP4145177B2 (en) | Engine and operation method thereof | |
JP4386781B2 (en) | engine | |
JPH0763076A (en) | Internal combustion engine | |
JP2005232987A (en) | Subsidiary chamber type engine | |
JP3969915B2 (en) | Premixed compression self-ignition engine and operation method thereof | |
JP4023434B2 (en) | Internal combustion engine capable of premixed compression self-ignition operation using two types of fuel | |
JPH11324805A (en) | Precombustion chamber type gas engine | |
JP4007729B2 (en) | Engine and operation method thereof | |
JP2004278428A (en) | Diesel engine and its operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110201 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140201 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |