WO2021161554A1 - Auxiliary chamber-type engine - Google Patents

Auxiliary chamber-type engine Download PDF

Info

Publication number
WO2021161554A1
WO2021161554A1 PCT/JP2020/025901 JP2020025901W WO2021161554A1 WO 2021161554 A1 WO2021161554 A1 WO 2021161554A1 JP 2020025901 W JP2020025901 W JP 2020025901W WO 2021161554 A1 WO2021161554 A1 WO 2021161554A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sub
fuel
communication passage
flame
Prior art date
Application number
PCT/JP2020/025901
Other languages
French (fr)
Japanese (ja)
Inventor
浜 程
晃弘 津田
欣也 井上
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2021161554A1 publication Critical patent/WO2021161554A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • F02B19/18Transfer passages between chamber and cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a sub-chamber engine provided with a system for igniting the air-fuel mixture in the main chamber by ejecting a flame formed by igniting the air-fuel mixture in the sub-chamber into the main chamber.
  • an auxiliary combustion chamber (also referred to as a sub chamber) separated from the main combustion chamber (also referred to as a main chamber) by a partition is provided, and a communication passage connecting these main chamber and the sub chamber to each other is formed in the partition.
  • a system also called a jet ignition system
  • ignites the air-fuel mixture in the sub-chamber so that the flame formed in the sub-chamber at this time is ejected into the main room through the communication passage to ignite the air-fuel mixture in the main room.
  • a sub-chamber engine is known (see, for example, Patent Document 1).
  • jet ignition can promote leaning of the air-fuel mixture, suppress the generation of NOx due to combustion in the main chamber, and improve fuel efficiency. It becomes possible to make it. However, if leaning is further promoted, combustion will slow down even with jet ignition. In order to further improve the thermal efficiency, it is an issue to make it possible to further promote combustion in the main chamber.
  • the sub-chamber engine of the present invention includes a main chamber, a sub-chamber partitioned by the main chamber and a partition wall, and a plurality of passages provided in the partition wall and communicating the main chamber and the sub-chamber.
  • a sub-chamber engine that ignites the air-fuel mixture in the main chamber by ejecting a flame formed in the sub-chamber by igniting the air-fuel mixture in the sub-chamber into the main chamber through the communication passage.
  • a surface of the partition wall on the main chamber side is provided with a protrusion protruding toward the main chamber, and the protrusion is provided with the communication passage.
  • the communication passage provided in the protrusion is bent in the protrusion. It is preferable that the communication passage includes a branch communication passage that is branched in a plurality of directions in the direction in which the flame is ejected. The branch passage is branched into two, a side in the first direction along the axial direction of the cylinder in which the main chamber and the sub chamber are formed, and a side in the second direction opposite to the first direction. It is preferable that the axial dichotomized passage is included. It is preferable that the communication passage includes a bending communication passage that is bent without branching in the direction in which the flame is ejected.
  • the passages are oriented so that the ejected flames collide with each other. It is preferable that the flow path cross-sectional area S2 on the outlet side in the direction in which the flame is ejected from the communication passage is set to be equal to or less than the flow path cross-sectional area S1 on the inlet side in the direction in which the flame is ejected.
  • the communication passage includes a bending communication passage that is bent without branching in the direction in which the flame is ejected, and the outlet side of the plurality of bending communication passages from which the flame is ejected is from the clothing room to the main chamber. It is preferable that all of them are oriented in the same direction as the radial direction toward.
  • a fuel injection valve that injects fuel into the main chamber and a fuel inflow communication passage that is a part of the plurality of passages and introduces fuel injected from the fuel injection valve into the sub-chamber. It is preferable that at least two of the protrusions are arranged at positions sandwiching the opening of the fuel inflow communication passage. It is preferable that a recess having a receiving surface on which the direct injection fuel from the fuel injection valve collides is formed around the opening of the fuel inflow communication passage.
  • FIG. 1A to 1C are views showing the configuration of a combustion chamber of one cylinder of the sub-chamber engine according to the first embodiment
  • FIG. 1A is a vertical sectional view thereof
  • FIG. 1B is a top view thereof
  • FIG. 1C is a top view thereof.
  • It is a vertical cross-sectional view which shows the partition wall enlarged.
  • 2A and 2B are views showing the second configuration of the partition wall shown in FIGS. 1A to 1C
  • FIG. 2A is a side view thereof
  • FIG. 2B is a bottom view (viewed from below) thereof.
  • FIG. 3 is a schematic plan view of the partition wall showing the orientation state of the communication passages formed in the partition wall shown in FIGS. 2A and 2B.
  • FIG. 3 is a schematic plan view of the partition wall showing the orientation state of the communication passages formed in the partition wall shown in FIGS. 2A and 2B.
  • FIG. 4 is a schematic perspective view of the partition wall showing the orientation state of the communication passages formed in the partition wall shown in FIGS. 2A and 2B.
  • FIG. 5 is a schematic bottom view showing the orientation state of the communication passage in one protrusion of the partition wall shown in FIGS. 2A and 2B.
  • FIG. 6 is a schematic bottom view showing the orientation state of the communication passage in one protrusion of the partition wall shown in FIGS. 2A and 2B.
  • 7A and 7B are cross-sectional views of a main part of a partition wall (sub-chamber) in the combustion chamber of one cylinder of the sub-chamber engine according to the second embodiment, and FIG. 7A shows the flow of fluid in the combustion stroke.
  • FIG. 7B shows the flow of fluid during the compression stroke.
  • FIG. 7A shows the flow of fluid in the combustion stroke.
  • FIG. 8 is a cross-sectional view of a partition wall (sub chamber) in the combustion chamber of one cylinder of the sub chamber engine according to the third embodiment.
  • FIG. 9 is a cross-sectional view of a partition wall (sub chamber) in the combustion chamber of one cylinder of the sub chamber engine according to the fourth embodiment.
  • FIG. 10 is a vertical cross-sectional view of a main part of a partition wall in the combustion chamber of one cylinder of the sub-chamber engine according to the fifth embodiment.
  • the sub-chamber engine (internal combustion engine, including a gasoline engine and a diesel engine; hereinafter, also simply referred to as “engine”) 1 is a multi-cylinder engine, and each cylinder is shown in FIG. 1A.
  • the exhaust valve 16 provided in the 15 and the exhaust port 14 is provided.
  • FIG. 1 internal combustion engine, including a gasoline engine and a diesel engine
  • the combustion chamber 20 is partitioned by the inner wall of the cylinder 11, the top surface 12a of the piston 12, and the cylinder head 2.
  • An intake port 13 opened and closed by an intake valve 15 and an exhaust port 14 opened and closed by an exhaust valve 16 are connected to the combustion chamber 20 so as to communicate with each other.
  • the top of the combustion chamber 20 is formed in a pent roof shape having an intake slope provided with the intake valve 15 and an exhaust slope provided with the exhaust valve 16.
  • a fuel injection valve 17 is provided on the peripheral wall 11a of the top portion (upper part in FIG. 1A) in the cylinder 11, and the engine 1 of the present embodiment is an in-cylinder injection engine (in-cylinder injection engine) that injects fuel directly into the cylinder 11. It is configured as a direct injection engine). In the present embodiment, only the fuel injection valve 17 that injects fuel directly into the cylinder 11 is provided, but in addition to this, a fuel injection valve for port injection that injects fuel into the intake port 13 may be added. ..
  • the engine 1 according to the present embodiment uses a passive system in which the fuel injected by the fuel injection valve 17 is supplied into the sub chamber 22 through the space in the main chamber 21.
  • the engine 1 according to the present case may adopt an active method in which fuel is directly supplied to the sub-chamber 22.
  • a configuration example in the case of both the passive method and the active method will be described with respect to the fuel supply.
  • the engine 1 according to the present embodiment is a spark-ignition engine, and is located in the combustion chamber 20 at the top of the combustion chamber 20 (here, the top of the pent roof shape) 20a, in the vicinity of the bore center line CL or the bore center line CL.
  • the spark plug 18 is equipped with the spark discharge unit 18a exposed.
  • the engine 1 according to the present case also includes a compression ignition engine not provided with a spark plug 18.
  • ignition When the air-fuel mixture is ignited by the spark plug 18, it is usually referred to as "igniting”, but here, it is referred to as “igniting” or “igniting” in the sense of including compression ignition.
  • the top 20a of the combustion chamber 20 is provided with a partition wall 23 that divides the internal space of the combustion chamber 20 into a main chamber (main combustion chamber) 21 and a sub chamber (sub combustion chamber) 22.
  • the partition 23 is arranged so as to cover the space where the spark discharge portion 18a of the spark plug 18 is exposed, and the internal space (the space including the spark discharge portion 18a) covered by the partition 23 in the combustion chamber 20 is the sub chamber 22.
  • the external space of the partition wall 23 in the combustion chamber 20 is the main chamber 21.
  • the partition wall 23 is formed with a plurality of (six in this embodiment) communication passages (also referred to as “nozzles”) 24 that communicate the main chamber 21 and the sub chamber 22.
  • These plurality of communication passages 24 serve as a flow path for introducing a part of the air-fuel mixture (air and fuel) in the main chamber 21 into the sub chamber 22 in the compression stroke, and are formed in the sub chamber 22 in the combustion stroke. It serves as a flow path for jet-injecting the generated flame toward the main chamber 21 side.
  • a part (one in this case) 24A of the plurality of communication passages 24 is configured as a linear communication passage, and a fuel inflow for introducing the fuel injected into the main chamber 21 from the fuel injection valve 17 into the sub chamber 22. It also functions as a continuous passage. Further, the fuel injection valve 17 includes an injection port for supplying fuel into the main chamber 21 and an injection port for supplying fuel into the sub chamber 22. [Composition of main room and sub room]
  • the fuel (air-fuel mixture containing a large amount of fuel) introduced through the fuel inflow passage 24A is ignited by using the ignition plug 18 at a predetermined timing, and this ignition causes the inside of the sub-chamber 22 to ignite.
  • the flame formed in the above is jetted from the sub-chamber 22 into the main chamber 21 through a plurality of communication passages 24 to ignite the air-fuel mixture in the main chamber 21 and burn it.
  • Such an ignition system also called a jet ignition system, is effective in igniting a dilute mixture and promoting combustion, and can be applied to lean burn in the main chamber 21 or a large amount of EGR, thereby improving fuel efficiency. Become.
  • the engine according to this case shall also include a compression ignition engine not provided with a spark plug 16.
  • a compression ignition engine not provided with a spark plug 16.
  • ignition When the air-fuel mixture is ignited by the spark plug 18, it is usually referred to as “igniting”, but here, it is referred to as “igniting” or “igniting” in the sense of including compression ignition.
  • FIGS. 2A and 2B show configuration examples corresponding to the passive fuel supply.
  • a configuration in which a protrusion 40 is provided at a position where the fuel inflow passage 24A is arranged is also suitable.
  • the protrusion 40 is formed in a substantially hemispherical shape.
  • the protruding shape of the protruding portion 40 is preferably a smooth curved surface shape such as a substantially hemispherical shape, but is not limited to a smooth curved surface shape such as a substantially hemispherical shape, and various shapes can be adopted.
  • the communication passages 24B and 24C formed in the protrusion 40 are bent in the protrusion 40.
  • the direction in which the flame enters the communication passage 24 from the sub chamber 22 side (see arrow L1) and the direction in which the flame jets out from the communication passage 24 into the main chamber 21 (see arrow L2) are different.
  • the communication passage 24C formed in the protrusion 40 is bent in the direction in which the flame is ejected (the direction from the sub chamber 22 toward the main chamber 21) without branching. It is configured as a bent passage.
  • the portion 241 on the incident side (sub chamber 22 side) of the flame in the branch passage 24B (hereinafter referred to as the incident side portion) 241 is in the vicinity of the spark discharge portion 18a of the spark plug 18 (indicated by reference numeral P in FIG. 4).
  • the portion (hereinafter referred to as the incident side portion) 241 of the flame incident side (sub chamber 22 side) in the branch passage 24C is in the vicinity of the spark discharge portion 18a of the spark plug 18 (reference numeral P in FIG. 4).
  • 242 which is oriented in the direction from the bent passageway 24C (shown) and bent at the bent portion indicated by reference numeral B'in FIG. 4, on the ejection side (main chamber 21 side) (hereinafter referred to as the ejection side portion) Is bent and formed on the side of the communication passage 24 adjacent to the incident side portion 241 so that the flames ejected from the adjacent branch communication passages 24B collide with each other.
  • each part of the communication passage 24 is formed in a straight line with one end side open, so that it can be easily processed by using a drill or the like.
  • the fuel injected by the fuel injection valve 17 is introduced from the space in the main chamber 21 into the sub chamber 22 via one fuel inflow passage 24A.
  • the fuel inflow passage 24A related to the fuel supply is not provided with the protrusion 40 and is not bent, and the passage 24 also faces the inner wall of the sub chamber 22. It is preferable to form the fuel linearly.
  • the bent passage 24C adjacent to the fuel inflow passage 24A is a bent passage in which the ejection side portion 242 is not branched into a plurality of the incident side portion 241 and is only bent. It is composed.
  • the passage portion facing the fuel inflow passage 24A is omitted.
  • the protrusion 40 may be provided at a position where the fuel inflow passage 24A is formed. Further, a branch passage 24B is formed in any of the protrusion 40 of the fuel inflow passage 24A and the protrusion 40 adjacent thereto (the protrusion 40 in which the bending passage 24C is formed in FIGS. 3 and 4). Then, the flames injected from the respective communication passages 24B may collide with each other.
  • the flow path cross-sectional area S1 on the inlet side (incident side portion 241) and the flow path cross-sectional area S2 on the outlet side (spout side portion 242) in the direction in which the flame of the communication passage 24 is ejected are cut off from the flow path on the outlet side.
  • the area S2 is set so as to be equal to or less than the flow path cross-sectional area S1 on the inlet side (S1 ⁇ S2).
  • the outlet side (spout side portion 242) of the branch passage 24B is branched into a plurality of (here, two)
  • the flow path cross-sectional area S2 on the outlet side is the total of the branched flow path cross-sectional areas. And.
  • the flow path cross-sectional area S2 on the outlet side is set smaller than the flow path cross-sectional area S1 on the inlet side (S1> S2)
  • the flow path cross-sectional area of the incident side portion 241 is set to Sa
  • the flow path cross-sectional area on the ejection side portion is set to Sa.
  • the cross-sectional area of the flow path of 242 is Sb
  • S1 Sa
  • S2 2Sb
  • fuel is injected from the fuel injection valve 17 into the main chamber 21 at the beginning of the intake stroke, and fuel is injected from the fuel injection valve 17 into the sub chamber 22 via the main chamber 21 at the end of the subsequent compression stroke.
  • NS When port injection is adopted, port injection is performed in the exhaust stroke, and fuel is supplied into the main chamber 21 together with the intake air in the intake stroke. Then, the air-fuel mixture formed in the sub-chamber 22 is ignited at the end of the compression stroke, and the flame formed in the sub-chamber 22 due to this ignition is jet-sprayed into the main chamber 21 via the plurality of communication passages 24. The air-fuel mixture in the main chamber 21 is ignited and burned.
  • the jet flames ejected from the respective passages 24 branch and collide with the jet flames ejected from the adjacent passages 24.
  • the jet flames By causing the jet flames to interfere with each other at a plurality of locations around the sub chamber 22, it is possible to evenly enhance the turbulence of the flames around the sub chamber 22.
  • the turbulence of the flame in the main chamber 21 becomes stronger, the combustion in the main chamber 21 is promoted, and the thermal efficiency of the engine 1 is enhanced.
  • the two jet flames collide with each other, the penetration force of the jet flames can be suppressed, the jet flames can be suppressed from reaching the wall surface of the combustion chamber 20, the heat loss can be reduced, and the thermal efficiency can be improved. ..
  • the communication passage 24 adjacent to the fuel inflow communication passage 24A is the branch communication passage 24B and the ejection side portion 242 faces on the extension line on the main chamber 21 side of the fuel inflow communication passage 24A
  • the fuel inflow communication A part of the fuel that should go to the passage 24A goes to the ejection side portion 242 of the branch passage 24, and the fuel is sent from the fuel inflow passage 24A to the key point (spark plug 18 spark discharge portion 18a) in the sub chamber 22. May not be able to be supplied intensively.
  • the communication passage adjacent to the fuel inflow communication passage 24A is a bending communication passage 24C in which the flow path portion facing the fuel inflow communication passage 24A is omitted and is bent without branching. It is possible to prevent the fuel toward the passage 24A from being dispersed in the adjacent bent passage 24C. As a result, fuel can be supplied to the vicinity of the spark discharge unit 18a to generate a rich air-fuel mixture having good ignitability.
  • the flow path cross-sectional area S2 on the outlet side is smaller than the flow path cross-sectional area S1 on the inlet side (incident side portion 241) in the direction in which the flame of the communication passage 24 is ejected (S1> S2). ) Since it is set, the effect of improving the ejection intensity of the flame of the communication passage 24 can also be obtained.
  • the fuel inflow passage 24A collides with the outer surface of the partition wall 23 around the fuel inflow passage 24A and is not introduced into the sub chamber 22 from the fuel inflow passage 24A.
  • the fuel flows along the outer surface of the partition wall 23, reaches the side opposite to the injector across the bore center line CL, and forms a rich air-fuel mixture.
  • this rich mixture is close to the stoichiometric mixture ratio, a large amount of NOx is generated.
  • the fuel inflow passage 24A collides with the outer surface of the partition wall 23 around the fuel inflow passage 24A.
  • the fuel that has not been introduced into the sub-chamber 22 flows along the outer surface of the partition wall 23, it may collide with the outer surface of the protrusion 40 and disperse at the periphery of the protrusion 40 to form a rich air-fuel mixture. It is suppressed. Therefore, the generation of NOx can be suppressed.
  • the jet flame jetted from the sub chamber 22 to the main chamber 21 through the communication passage 24 can be supplied to a position farther from the sub chamber 22 than when the protrusion 40 is not present.
  • the influence of the partition wall 23 is reduced and combustion is promoted.
  • the protrusion 40 is made solid and the jet flame passage (continuous passage) is lengthened, the kinetic energy is consumed by that amount, which leads to the suppression of the penetration force of the jet flame, and the combustion chamber of the jet flame. It is possible to suppress the arrival at the wall surface of 20 and reduce the heat loss, and the thermal efficiency is improved.
  • the direct injection fuel from the fuel injection valve 17 is formed around the opening through which the fuel inflow passage 24A opens. It is also preferable that the recess 30 having the receiving surface 30a that collides is formed. As a result, the fuel injected into the main chamber 21 collides with the receiving surface 30a of the recess 30 on the outer surface of the sub chamber 22, so that fuel splitting and vaporization can be promoted. The introduction of fuel into the sub-chamber 22 can be promoted. As a result, fuel with promoted splitting and vaporization can be supplied to the vicinity of the spark discharge portion 18a, the combustibility in the sub chamber 22 is improved, and then from the sub chamber 22 to the main chamber 21. The eruption of flame can be stabilized.
  • the sub-chamber engine according to the second embodiment has a different passage configuration from the first embodiment.
  • the bent passages 24C that are bent and formed without branching are arranged side by side in an annular shape as shown in FIGS. 7A and 7B.
  • the incident side portion 241 of each bending passage 24C is oriented on the line passing through the bore center line CL (radiation direction), and the ejection side portion 242 is oriented in a direction inclined in the same direction with respect to the radiation direction. ..
  • the outside of the sub-chamber 22 in the portion where the bent passages 24C are arranged in an annular shape is an annular space in the main chamber 21, and as shown in FIG. 7A, the flame injected into the annular space is generated in the combustion stroke. Work together to create a swirl flow in the annular space.
  • a strong swirl flow is formed in the annular space in the main chamber 21 by the jet flame injected from each bending passage 24C. Therefore, this strong swirl flow causes the main chamber 21 to have a strong swirl flow. Combustion is promoted.
  • each bending passage 24C is oriented on the line passing through the bore center line CL (radiation direction), the fluid (air or air-fuel mixture) in the main chamber 21 enters the sub chamber 22.
  • a swirl flow is not formed in the sub chamber 22, and the spark plug 18 has an effect of facilitating spark ignition.
  • the communication passage 24 When the communication passage 24 is not bent, if the ejection side portion of the communication passage 24 is oriented in a direction in which it is inclined with respect to the radiation direction, the incident side portion of the communication passage 24 is also inclined with respect to the radiation direction.
  • the direction of the incident side portion 241 and the direction of the ejection side portion 242 can be set in different directions.
  • the sub-chamber engine according to the third embodiment has a different passage configuration from the first and second embodiments.
  • each of the six bending passages 24 is composed of the bending passages 24C, and the six bending passages 24C are divided into three sets so as to form two adjacent pairs. ing.
  • the direction of the incident side portion 241 is oriented on the line passing through the bore center line CL (radiation direction), and the direction of the ejection side portion 242 is such that the jet flames collide with each other. It is oriented in a direction that locks in the opposite direction to the radial direction.
  • the communication passage 24 can collide with the jet flame ejected from the adjacent communication passage 24, and the jet flames interfere with each other as in the first embodiment.
  • the turbulence of the flame in the main chamber 21 becomes stronger, the combustion in the main chamber 21 is promoted, and the thermal efficiency of the engine 1 is enhanced.
  • the penetration force of the jet flame can be suppressed, the reach of the jet flame to the wall surface of the combustion chamber 20 can be suppressed, the heat loss can be reduced, and the thermal efficiency can be improved.
  • the sub-chamber engine according to the fourth embodiment has a different passage configuration from the first to third embodiments.
  • six communication passages 24 are composed of two linear communication passages 24A and four bending communication passages 24C. Two sets of these are provided in a combination in which two bent passages 24C are arranged so as to sandwich the linear passage 24A.
  • one of the two linear passages 24A is a fuel inflow passage.
  • the linear communication passage 24A is oriented on a line (radial direction) passing through the bore center line CL, and the direction of the ejection side portion 242 of the two bending communication passages 24C arranged so as to sandwich the linear communication passage 24A is
  • the jet flames are oriented in a direction in which they are locked in opposite directions to the radial direction so that the jet flames collide with each other on the path of the jet flames from the linear communication passage 24A.
  • the jet flames interfere with each other, so that the reinforcement of the turbulence of the flames around the sub chamber 22 can be equalized, and the reinforcement in the main chamber 21 can be equalized.
  • the turbulence of the flame becomes stronger, the combustion in the main chamber 21 is promoted, and the thermal efficiency of the engine 1 is enhanced.
  • the penetration force of the jet flame can be suppressed, the reach of the jet flame to the wall surface of the combustion chamber 20 can be suppressed, the heat loss can be reduced, and the thermal efficiency can be improved.
  • the sub-chamber engine according to the fifth embodiment has a different passage configuration from the first to fourth embodiments.
  • a branch passage is applied to all of the six passages 24.
  • the flame By branching the flame passage into two or more vertically in this way, the flame quickly hits the wall surface of the combustion chamber 20 (the top surface of the cylinder head 3 and the piston 12), and the flame flow can be disturbed. Combustion can be promoted and the air-fuel mixture in the main chamber 21 can be ignited quickly.
  • the configuration of the sub-chamber engine described above is an example.
  • the arrangement of the sub chamber 22, that is, the partition wall 23 for partitioning the sub chamber 22 is not necessarily limited to the vicinity of the bore center line CL or the bore center line CL of the top 20a of the combustion chamber 20.
  • the direction of the central axis of the sub chamber 22 and the direction of the bore central axis CL do not necessarily have to be the same, and even if the central axis of the sub chamber is provided so as to be inclined with respect to the bore central axis CL. good.
  • the ejection direction of the jet flame from the communication passage 24 can be set with a high degree of freedom, and the jet flames not only collide with each other but also improve combustion.
  • the ejection direction of the jet flame can be appropriately set for various purposes.
  • the protrusion 40 is formed solidly, but the protrusion 40 may be formed in a hollow shape by denting the sub chamber 22 side of the protrusion 40 in a concave shape.
  • the passage 24 may be formed in a straight shape without bending or branching. If at least the surface of the partition wall 23 on the main chamber 21 side is provided with the protrusion 40 protruding toward the main chamber 21, the fuel collides with the outer surface of the protrusion 40 (the surface on the main chamber 21 side) and the protrusion It is possible to suppress the formation of a rich air-fuel mixture in the main chamber 21 by dispersing at the periphery of 40, and to suppress the production of NOx.
  • the jet flame injected from the sub chamber 22 to the main chamber 21 through the communication passage 24 can be supplied to a position farther from the sub chamber 22 than in the case where the protrusion 40 is absent, and the combustion in the main chamber 21 can be performed. At this time, the influence of the partition wall 23 is reduced and combustion is promoted, which is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

This auxiliary chamber-type engine comprises: a main chamber (21); an auxiliary chamber (22) partitioned from the main chamber (21) by a separation wall (23); and a plurality of communication paths (24) provided to the separation wall (23), wherein flame that is formed inside the auxiliary chamber (22) by the ignition of a mixed gas inside the auxiliary chamber (22) is jetted inside the main chamber (21) via the communication paths (24) and ignites a mixed gas inside the main chamber (21). The engine is provided with, on a main chamber (21) side of the separation wall (23), a protruding section (40) protruding to the main chamber (21) side, and the communication paths (24) are provided to the protruding section (40).

Description

副室式エンジンSub-chamber engine
 本発明は、副室内で混合気が発火することで形成される火炎を主室内に噴出させて主室内の混合気に点火するシステムを備えた、副室式エンジンに関するものである。 The present invention relates to a sub-chamber engine provided with a system for igniting the air-fuel mixture in the main chamber by ejecting a flame formed by igniting the air-fuel mixture in the sub-chamber into the main chamber.
 エンジンにおいて、隔壁により主燃焼室(主室ともいう)から分離された副燃焼室(副室ともいう)を設け、これらの主室と副室とを互いに連通する連通路を隔壁に形成し、副室内の混合気を発火させて、このとき副室内に形成される火炎が連通路を介し主室内に噴出するようにして主室内の混合気に点火するシステム(ジェット点火システムともいう)を備えた、副室式エンジンが知られている(例えば、特許文献1参照)。 In the engine, an auxiliary combustion chamber (also referred to as a sub chamber) separated from the main combustion chamber (also referred to as a main chamber) by a partition is provided, and a communication passage connecting these main chamber and the sub chamber to each other is formed in the partition. It is equipped with a system (also called a jet ignition system) that ignites the air-fuel mixture in the sub-chamber so that the flame formed in the sub-chamber at this time is ejected into the main room through the communication passage to ignite the air-fuel mixture in the main room. In addition, a sub-chamber engine is known (see, for example, Patent Document 1).
特開2004-204835号公報Japanese Unexamined Patent Publication No. 2004-204835
 ところで、上記のようなジェット点火システムを備えた副室式エンジンでは、ジェット点火によって、混合気のリーン化を促進することができ、主室内での燃焼によるNOxの発生を抑えると共に、燃費を向上させることが可能になる。しかし、リーン化をさらに進めていくと、ジェット点火であっても燃焼が遅くなっていく。更なる熱効率の向上のためには、主室内での燃焼をより促進できるようにすることが課題となっている。 By the way, in a sub-chamber engine equipped with a jet ignition system as described above, jet ignition can promote leaning of the air-fuel mixture, suppress the generation of NOx due to combustion in the main chamber, and improve fuel efficiency. It becomes possible to make it. However, if leaning is further promoted, combustion will slow down even with jet ignition. In order to further improve the thermal efficiency, it is an issue to make it possible to further promote combustion in the main chamber.
 本件は、このような課題に着目して創案されたもので、ジェット点火システムを備えた副室式エンジンにおいて、熱効率を向上させることができるようにすることを目的の一つとしている。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。 This case was created by paying attention to such issues, and one of the purposes is to make it possible to improve the thermal efficiency of a sub-chamber engine equipped with a jet ignition system. Not limited to this purpose, it is also an action and effect derived by each configuration shown in the embodiment for carrying out the invention described later, and it is also for another purpose of this case to exert an action and effect that cannot be obtained by the conventional technique. be.
 本件の副室式エンジンは、主室と、前記主室と隔壁により区画された副室と、前記隔壁に設けられ前記主室と前記副室とを連通する複数の連通路と、を備え、前記副室内の混合気の着火により前記副室内に形成される火炎を、前記連通路を介して前記主室内に噴出させて前記主室内の混合気に着火する、副室式エンジンであって、前記隔壁の前記主室側の面に、前記主室側に突出した突起部を備え、前記突起部に前記連通路が設けられることを特徴としている。 The sub-chamber engine of the present invention includes a main chamber, a sub-chamber partitioned by the main chamber and a partition wall, and a plurality of passages provided in the partition wall and communicating the main chamber and the sub-chamber. A sub-chamber engine that ignites the air-fuel mixture in the main chamber by ejecting a flame formed in the sub-chamber by igniting the air-fuel mixture in the sub-chamber into the main chamber through the communication passage. A surface of the partition wall on the main chamber side is provided with a protrusion protruding toward the main chamber, and the protrusion is provided with the communication passage.
 前記突起部に設けられる前記連通路は、前記突起部内で屈曲していることが好ましい。
 前記連通路は、前記火炎の噴出する方向に向けて、複数に分岐している分岐連通路を含んでいることが好ましい。
 前記分岐連通路は、前記主室及び前記副室が形成される気筒の軸方向に沿った第1方向の側と、前記第1方向と逆方向の第2方向の側との2つに分岐した軸方向二分連通路を含んでいることが好ましい。
 前記連通路は、前記火炎の噴出する方向に向けて、分岐することなく屈曲した屈曲連通路を含んでいることが好ましい。
 前記連通路のうちの少なくとも2つの連通路は、噴出した前記火炎が互いに衝突するように配向されていることが好ましい。
 前記連通路の前記火炎の噴出する方向における出口側の流路断面積S2は、前記噴出する方向における入口側の流路断面積S1以下に設定されることが好ましい。
前記連通路は、前記火炎の噴出する方向に向けて、分岐することなく屈曲した屈曲連通路を含み、複数の前記屈曲連通路の前記火炎の噴出する出口側は、前記服室内から前記主室に向かう放射方向に対して何れも同一方向に傾斜する方向に配向されることが好ましい。
 前記主室内に燃料を噴射する燃料噴射弁と、複数の前記連通路のうちの一部であって、前記燃料噴射弁から噴射された燃料を前記副室内に導入する燃料流入連通路と、を備え、少なくとも2つの前記突起部は、前記燃料流入連通路の開口部を挟む位置に配置されていることが好ましい。
 前記燃料流入連通路の前記開口部の周囲に、前記燃料噴射弁からの直噴燃料が衝突する受面を持つ凹部が形成されていることが好ましい。
It is preferable that the communication passage provided in the protrusion is bent in the protrusion.
It is preferable that the communication passage includes a branch communication passage that is branched in a plurality of directions in the direction in which the flame is ejected.
The branch passage is branched into two, a side in the first direction along the axial direction of the cylinder in which the main chamber and the sub chamber are formed, and a side in the second direction opposite to the first direction. It is preferable that the axial dichotomized passage is included.
It is preferable that the communication passage includes a bending communication passage that is bent without branching in the direction in which the flame is ejected.
It is preferable that at least two of the passages are oriented so that the ejected flames collide with each other.
It is preferable that the flow path cross-sectional area S2 on the outlet side in the direction in which the flame is ejected from the communication passage is set to be equal to or less than the flow path cross-sectional area S1 on the inlet side in the direction in which the flame is ejected.
The communication passage includes a bending communication passage that is bent without branching in the direction in which the flame is ejected, and the outlet side of the plurality of bending communication passages from which the flame is ejected is from the clothing room to the main chamber. It is preferable that all of them are oriented in the same direction as the radial direction toward.
A fuel injection valve that injects fuel into the main chamber and a fuel inflow communication passage that is a part of the plurality of passages and introduces fuel injected from the fuel injection valve into the sub-chamber. It is preferable that at least two of the protrusions are arranged at positions sandwiching the opening of the fuel inflow communication passage.
It is preferable that a recess having a receiving surface on which the direct injection fuel from the fuel injection valve collides is formed around the opening of the fuel inflow communication passage.
 本件によれば、副室内に形成される火炎を主室内に噴出させる方向や火炎を主室内に供給する位置の自由度を高めることができる。 According to this case, it is possible to increase the degree of freedom in the direction in which the flame formed in the sub-chamber is ejected into the main chamber and the position in which the flame is supplied to the main chamber.
図1A~図1Cは第1実施形態に係る副室式エンジンの1つの気筒の燃焼室の構成を示す図であり、図1Aはその縦断面図、図1Bはその頂面図、図1Cはその隔壁を拡大して示す縦断面図である。1A to 1C are views showing the configuration of a combustion chamber of one cylinder of the sub-chamber engine according to the first embodiment, FIG. 1A is a vertical sectional view thereof, FIG. 1B is a top view thereof, and FIG. 1C is a top view thereof. It is a vertical cross-sectional view which shows the partition wall enlarged. 図2A,図2Bは図1A~図1Cに示す隔壁の第2の構成を示す図であって、図2Aはその側面図、図2Bはその下面図(下方から見た図)である。2A and 2B are views showing the second configuration of the partition wall shown in FIGS. 1A to 1C, FIG. 2A is a side view thereof, and FIG. 2B is a bottom view (viewed from below) thereof. 図3は図2A,図2Bに示す隔壁に形成された連通路の配向状態を示す隔壁の模式的平面図である。FIG. 3 is a schematic plan view of the partition wall showing the orientation state of the communication passages formed in the partition wall shown in FIGS. 2A and 2B. 図4は図2A,図2Bに示す隔壁に形成された連通路の配向状態を示す隔壁の模式的斜視図である。FIG. 4 is a schematic perspective view of the partition wall showing the orientation state of the communication passages formed in the partition wall shown in FIGS. 2A and 2B. 図5は図2A,図2Bに示す隔壁の1つの突起部における連通路の配向状態を示す模式的下面図である。FIG. 5 is a schematic bottom view showing the orientation state of the communication passage in one protrusion of the partition wall shown in FIGS. 2A and 2B. 図6は図2A,図2Bに示す隔壁の1つの突起部における連通路の配向状態を示す模式的下面図である。FIG. 6 is a schematic bottom view showing the orientation state of the communication passage in one protrusion of the partition wall shown in FIGS. 2A and 2B. 図7A,図7Bは第2実施形態に係る副室式エンジンの1つの気筒の燃焼室内の隔壁(副室)の要部横断面図であり、図7Aは燃焼行程における流体の流れを示し、図7Bは圧縮行程における流体の流れを示す。7A and 7B are cross-sectional views of a main part of a partition wall (sub-chamber) in the combustion chamber of one cylinder of the sub-chamber engine according to the second embodiment, and FIG. 7A shows the flow of fluid in the combustion stroke. FIG. 7B shows the flow of fluid during the compression stroke. 図8は第3実施形態に係る副室式エンジンの1つの気筒の燃焼室内の隔壁(副室)の横断面図である。FIG. 8 is a cross-sectional view of a partition wall (sub chamber) in the combustion chamber of one cylinder of the sub chamber engine according to the third embodiment. 図9は第4実施形態に係る副室式エンジンの1つの気筒の燃焼室内の隔壁(副室)の横断面図である。FIG. 9 is a cross-sectional view of a partition wall (sub chamber) in the combustion chamber of one cylinder of the sub chamber engine according to the fourth embodiment. 図10は第5実施形態に係る副室式エンジンの1つの気筒の燃焼室内の隔壁の要部縦断面図である。FIG. 10 is a vertical cross-sectional view of a main part of a partition wall in the combustion chamber of one cylinder of the sub-chamber engine according to the fifth embodiment.
 以下、図面を参照して、実施形態としての副室式エンジンについて説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 Hereinafter, the sub-chamber engine as an embodiment will be described with reference to the drawings. The embodiments shown below are merely examples, and there is no intention of excluding the application of various modifications and techniques not specified in the following embodiments. Each configuration of the present embodiment can be variously modified and implemented without departing from the gist thereof. In addition, it can be selected as needed, or can be combined as appropriate.
 〔第1実施形態〕
 [全体構成]
 本実施形態に係る副室式エンジン(内燃機関であって、ガソリンエンジンやディーゼルエンジンを含む。以下、単に「エンジン」ともいう)1は、多気筒エンジンであり、各気筒は、図1Aに示すように、シリンダブロック2に形成されたシリンダ11と、シリンダ11内を往復動するピストン12と、シリンダヘッド3に形成された吸気ポート13及び排気ポート14と、吸気ポート13に装備された吸気弁15及び排気ポート14に装備された排気弁16を備えている。
 なお、本実施形態では、図1Bに示すように、吸気ポート13(吸気弁15)及び排気ポート14(排気弁16)はいずれも2つずつ装備されているが、吸気ポート数(吸気弁数)及び排気ポート数(排気弁数)はこれに限定されるものではない。
[First Embodiment]
[overall structure]
The sub-chamber engine (internal combustion engine, including a gasoline engine and a diesel engine; hereinafter, also simply referred to as “engine”) 1 according to the present embodiment is a multi-cylinder engine, and each cylinder is shown in FIG. 1A. As described above, the cylinder 11 formed in the cylinder block 2, the piston 12 reciprocating in the cylinder 11, the intake port 13 and the exhaust port 14 formed in the cylinder head 3, and the intake valve provided in the intake port 13 The exhaust valve 16 provided in the 15 and the exhaust port 14 is provided.
In the present embodiment, as shown in FIG. 1B, two intake ports 13 (15 intake valves) and two exhaust ports 14 (exhaust valves 16) are provided, but the number of intake ports (number of intake valves). ) And the number of exhaust ports (the number of exhaust valves) are not limited to this.
 シリンダ11内のシリンダヘッド2側(図1A中上部)には、シリンダ11の内壁とピストン12の頂面12aと、シリンダヘッド2とによって、燃焼室20が区画形成されている。燃焼室20には、吸気弁15で開閉される吸気ポート13及び排気弁16で開閉される排気ポート14が連通可能に接続されている。なお、ここでは、燃焼室20の頂部は、吸気弁15が設けられた吸気斜面と排気弁16が設けられた排気斜面とを有するペントルーフ形状に形成されている。 On the cylinder head 2 side (upper middle of FIG. 1A) in the cylinder 11, the combustion chamber 20 is partitioned by the inner wall of the cylinder 11, the top surface 12a of the piston 12, and the cylinder head 2. An intake port 13 opened and closed by an intake valve 15 and an exhaust port 14 opened and closed by an exhaust valve 16 are connected to the combustion chamber 20 so as to communicate with each other. Here, the top of the combustion chamber 20 is formed in a pent roof shape having an intake slope provided with the intake valve 15 and an exhaust slope provided with the exhaust valve 16.
 シリンダ11内の頂部(図1A中の上部)の周壁11aには、燃料噴射弁17が装備されており、本実施形態のエンジン1は、シリンダ11内に直接燃料を噴射する筒内噴射エンジン(直噴エンジン)として構成されている。本実施形態では、シリンダ11内に直接燃料噴射する燃料噴射弁17のみを備えているが、これに加えて、吸気ポート13に燃料を噴射するポート噴射用の燃料噴射弁を追加してもよい。 A fuel injection valve 17 is provided on the peripheral wall 11a of the top portion (upper part in FIG. 1A) in the cylinder 11, and the engine 1 of the present embodiment is an in-cylinder injection engine (in-cylinder injection engine) that injects fuel directly into the cylinder 11. It is configured as a direct injection engine). In the present embodiment, only the fuel injection valve 17 that injects fuel directly into the cylinder 11 is provided, but in addition to this, a fuel injection valve for port injection that injects fuel into the intake port 13 may be added. ..
 また、本実施形態に係るエンジン1は、燃料噴射弁17で噴射した燃料を主室21内の空間を介して副室22内に供給するパッシブ方式が用いられている。ただし、本件に係るエンジン1には、副室22内に直接燃料を供給するアクティブ方式を採用してもよい。
 本実施形態では、燃料供給に関し、パッシブ方式及びアクティブ方式の双方の場合の構成例について説明する。
Further, the engine 1 according to the present embodiment uses a passive system in which the fuel injected by the fuel injection valve 17 is supplied into the sub chamber 22 through the space in the main chamber 21. However, the engine 1 according to the present case may adopt an active method in which fuel is directly supplied to the sub-chamber 22.
In the present embodiment, a configuration example in the case of both the passive method and the active method will be described with respect to the fuel supply.
 本実施形態に係るエンジン1は、火花点火式エンジンであり、燃焼室20の頂部(ここでは、ペントルーフ形状の頂部)20aにおいて、ボア中心線CL又はボア中心線CLの近傍に、燃焼室20に火花放電部18aを露出させて点火プラグ18が装備されている。ただし、本件に係るエンジン1は、点火プラグ18を備えない圧縮着火エンジンをも含むものとする。なお、点火プラグ18により混合気を着火する場合、通常は「点火する」というが、ここでは、圧縮着火も含める意味で、「着火する」、又は「発火させる」という。 The engine 1 according to the present embodiment is a spark-ignition engine, and is located in the combustion chamber 20 at the top of the combustion chamber 20 (here, the top of the pent roof shape) 20a, in the vicinity of the bore center line CL or the bore center line CL. The spark plug 18 is equipped with the spark discharge unit 18a exposed. However, the engine 1 according to the present case also includes a compression ignition engine not provided with a spark plug 18. When the air-fuel mixture is ignited by the spark plug 18, it is usually referred to as "igniting", but here, it is referred to as "igniting" or "igniting" in the sense of including compression ignition.
 [主室及び副室の構成]
 燃焼室20の頂部20aには、燃焼室20の内部空間を、主室(主燃焼室)21と、副室(副燃焼室)22とに区画する隔壁23が装備されている。この隔壁23は、点火プラグ18の火花放電部18aが露出する空間を覆うように配置され、燃焼室20内の隔壁23で覆われる内部空間(火花放電部18aを含む空間)が副室22となっており、燃焼室20内の隔壁23の外部空間が主室21となっている。
[Composition of main room and sub room]
The top 20a of the combustion chamber 20 is provided with a partition wall 23 that divides the internal space of the combustion chamber 20 into a main chamber (main combustion chamber) 21 and a sub chamber (sub combustion chamber) 22. The partition 23 is arranged so as to cover the space where the spark discharge portion 18a of the spark plug 18 is exposed, and the internal space (the space including the spark discharge portion 18a) covered by the partition 23 in the combustion chamber 20 is the sub chamber 22. The external space of the partition wall 23 in the combustion chamber 20 is the main chamber 21.
 図1Cに示すように、隔壁23には、主室21と副室22とを連通する複数(本実施形態では6個)の連通路(「ノズル」ともいう)24が形成されている。これらの複数の連通路24は、圧縮行程では、主室21内の混合気(空気や燃料)の一部を副室22内に導入する流路となり、燃焼行程では、副室22内で形成された火炎を主室21側にジェット噴射するための流路となる。 As shown in FIG. 1C, the partition wall 23 is formed with a plurality of (six in this embodiment) communication passages (also referred to as “nozzles”) 24 that communicate the main chamber 21 and the sub chamber 22. These plurality of communication passages 24 serve as a flow path for introducing a part of the air-fuel mixture (air and fuel) in the main chamber 21 into the sub chamber 22 in the compression stroke, and are formed in the sub chamber 22 in the combustion stroke. It serves as a flow path for jet-injecting the generated flame toward the main chamber 21 side.
 複数の連通路24の一部(ここでは1つ)24Aは、直線状連通路として構成され、燃料噴射弁17から主室21内に噴射された燃料を副室22に導入するための燃料流入連通路としても機能する。
 また、燃料噴射弁17は、主室21内に燃料供給するための噴射口と、副室22内に燃料供給するための噴射口とを備えている。
 [主室及び副室の構成]
A part (one in this case) 24A of the plurality of communication passages 24 is configured as a linear communication passage, and a fuel inflow for introducing the fuel injected into the main chamber 21 from the fuel injection valve 17 into the sub chamber 22. It also functions as a continuous passage.
Further, the fuel injection valve 17 includes an injection port for supplying fuel into the main chamber 21 and an injection port for supplying fuel into the sub chamber 22.
[Composition of main room and sub room]
 副室22内では、圧縮行程において、燃料流入連通路24Aを通じて導入された燃料(燃料を多く含んだ混合気)に所定のタイミングで点火プラグ18を用いて着火し、この着火により副室22内に形成される火炎を、副室22内から複数の連通路24を介して主室21内にジェット噴出させて主室21内の混合気に点火し、燃焼させる。このような点火システムは、ジェット点火システムとも呼ばれ、希薄混合気への点火及び燃焼促進に有効であり、主室21内のリーンバーンや大量EGR時に適用でき、これにより、燃費向上が可能になる。
 ただし、本件に係るエンジンは、点火プラグ16を備えない圧縮着火エンジンをも含むものとする。なお、点火プラグ18により混合気を着火する場合、通常は「点火する」というが、ここでは、圧縮着火も含める意味で、「着火する」、又は「発火させる」という。
In the sub-chamber 22, in the compression stroke, the fuel (air-fuel mixture containing a large amount of fuel) introduced through the fuel inflow passage 24A is ignited by using the ignition plug 18 at a predetermined timing, and this ignition causes the inside of the sub-chamber 22 to ignite. The flame formed in the above is jetted from the sub-chamber 22 into the main chamber 21 through a plurality of communication passages 24 to ignite the air-fuel mixture in the main chamber 21 and burn it. Such an ignition system, also called a jet ignition system, is effective in igniting a dilute mixture and promoting combustion, and can be applied to lean burn in the main chamber 21 or a large amount of EGR, thereby improving fuel efficiency. Become.
However, the engine according to this case shall also include a compression ignition engine not provided with a spark plug 16. When the air-fuel mixture is ignited by the spark plug 18, it is usually referred to as "igniting", but here, it is referred to as "igniting" or "igniting" in the sense of including compression ignition.
 [突起部及び連通路の構成]
 ところで、副室22の外側面(即ち、隔壁23の外面)において、連通路24(燃料流入連通路24Aを除く)が形成される箇所には、図2A,図2Bに示すように、外方(主室21側)に突出した突起部40が備えられている。なお、図2A,図2Bはパッシブ方式の燃料供給に対応した構成例を示している。アクティブ方式による燃料供給の場合は、燃料流入連通路24Aの配設される箇所に突起部40を設けた構成も適している。本実施形態では、突起部40は略半球形状に形成されている。突起部40の突出形状は略半球形状のような滑らかな曲面形状が好ましいが、略半球形状等の滑らかな曲面形状に限定されるものではなく、種々の形状を採用しうる。
[Structure of protrusions and passages]
By the way, on the outer surface of the sub chamber 22 (that is, the outer surface of the partition wall 23), where the communication passage 24 (excluding the fuel inflow communication passage 24A) is formed, as shown in FIGS. 2A and 2B, the outside A protruding portion 40 is provided (on the main chamber 21 side). Note that FIGS. 2A and 2B show configuration examples corresponding to the passive fuel supply. In the case of fuel supply by the active method, a configuration in which a protrusion 40 is provided at a position where the fuel inflow passage 24A is arranged is also suitable. In the present embodiment, the protrusion 40 is formed in a substantially hemispherical shape. The protruding shape of the protruding portion 40 is preferably a smooth curved surface shape such as a substantially hemispherical shape, but is not limited to a smooth curved surface shape such as a substantially hemispherical shape, and various shapes can be adopted.
 また、図3,図4,図5及び図6に一点鎖線の矢印L1,L2で示すように、突起部40に形成される連通路24B,24Cは、突起部40内で屈曲しており、火炎が副室22側から連通路24内に進入する方向(矢印L1参照)と、火炎が連通路24内から主室21内にジェット噴出する方向(矢印L2参照)とが異なっている。 Further, as shown by arrows L1 and L2 of the alternate long and short dash line in FIGS. 3, 4, 5, and 6, the communication passages 24B and 24C formed in the protrusion 40 are bent in the protrusion 40. The direction in which the flame enters the communication passage 24 from the sub chamber 22 side (see arrow L1) and the direction in which the flame jets out from the communication passage 24 into the main chamber 21 (see arrow L2) are different.
 本実施形態の場合、突起部40に形成される連通路24Bは、図5に示すように、火炎の噴出する方向(副室22から主室21に向かう方向)に向けて、複数(ここでは2本)に分岐している分岐連通路として構成されている。また、突起部40に形成される連通路24Cは、図6に示すように、火炎の噴出する方向(副室22から主室21に向かう方向)に向けて、分岐することなく屈曲している屈曲連通路として構成されている。 In the case of the present embodiment, as shown in FIG. 5, there are a plurality of passages 24B formed in the protrusion 40 (here, in the direction from the sub chamber 22 toward the main chamber 21) in the direction in which the flame is ejected. It is configured as a branch passage that branches into two). Further, as shown in FIG. 6, the communication passage 24C formed in the protrusion 40 is bent in the direction in which the flame is ejected (the direction from the sub chamber 22 toward the main chamber 21) without branching. It is configured as a bent passage.
 つまり、分岐連通路24Bにおける火炎の入射側(副室22側)の部分(以下、入射側部分という)241は、点火プラグ18の火花放電部18aの付近(図4中に、符号Pで示す)から分岐連通路24Bに向かう方向に配向され、図4に符号Bで示す分岐部で分岐した連通路24の噴出側(主室21側)の部分(以下、噴出側部分という)242は、それぞれ隣接する分岐連通路24B,屈曲連通路24Cから噴出した火炎どうしが互いに衝突するように、入射側部分241に対して隣接する連通路24の側に屈曲形成されている。 That is, the portion 241 on the incident side (sub chamber 22 side) of the flame in the branch passage 24B (hereinafter referred to as the incident side portion) 241 is in the vicinity of the spark discharge portion 18a of the spark plug 18 (indicated by reference numeral P in FIG. 4). ) Toward the branch passage 24B, and the portion (hereinafter referred to as the ejection side portion) 242 of the passage 24 on the ejection side (main chamber 21 side) branched at the branch portion indicated by reference numeral B in FIG. 4 is The flames ejected from the adjacent branch passages 24B and the bent passages 24C are bent and formed on the side of the adjacent passages 24 with respect to the incident side portion 241 so that the flames ejected from each other collide with each other.
 同様に、分岐連通路24Cにおける火炎の入射側(副室22側)の部分(以下、入射側部分という)241は、点火プラグ18の火花放電部18aの付近(図4中に、符号Pで示す)から屈曲連通路24Cに向かう方向に配向され、図4に符号B´で示す屈曲部で屈曲した連通路24の噴出側(主室21側)の部分(以下、噴出側部分という)242は、それぞれ隣接する分岐連通路24Bから噴出した火炎どうしが互いに衝突するように、入射側部分241に対して隣接する連通路24の側に屈曲形成されている。 Similarly, the portion (hereinafter referred to as the incident side portion) 241 of the flame incident side (sub chamber 22 side) in the branch passage 24C is in the vicinity of the spark discharge portion 18a of the spark plug 18 (reference numeral P in FIG. 4). 242, which is oriented in the direction from the bent passageway 24C (shown) and bent at the bent portion indicated by reference numeral B'in FIG. 4, on the ejection side (main chamber 21 side) (hereinafter referred to as the ejection side portion) Is bent and formed on the side of the communication passage 24 adjacent to the incident side portion 241 so that the flames ejected from the adjacent branch communication passages 24B collide with each other.
 突起部40を形成しているため、連通路24の噴出側部分241の配向自由度が高く、隣接する連通路24から噴出した火炎が、隔壁23の外面に近い部分で(シリンダ11の内壁面に到達する前に)互いに衝突するように配向することができる。
 また、矢印L1,L2で示すように、連通路24の各部は、一端側が開口した直線状に形成されるので、ドリル等を用いて容易に加工することができる。
Since the protrusion 40 is formed, the degree of freedom of orientation of the ejection side portion 241 of the communication passage 24 is high, and the flame ejected from the adjacent communication passage 24 is located near the outer surface of the partition wall 23 (inner wall surface of the cylinder 11). Can be oriented to collide with each other (before reaching).
Further, as shown by arrows L1 and L2, each part of the communication passage 24 is formed in a straight line with one end side open, so that it can be easily processed by using a drill or the like.
 本実施形態では、パッシブ方式が用いられているので、燃料噴射弁17で噴射した燃料を主室21内の空間から1つの燃料流入連通路24Aを介して副室22内に導入するため、図3,図4に一点鎖線L3で示すように、燃料供給に係る燃料流入連通路24Aについては、突起部40を設けずに、屈曲することもなく、連通路24も副室22の内壁に向かうように直線状に形成することが好ましい。この場合、燃料流入連通路24Aに隣接する屈曲連通路24Cは、図6に示すように、入射側部分241に対して噴出側部分242が複数に分岐することなく屈曲のみをした屈曲連通路として構成される。ここでは、分岐連通路24の噴出側部分242のうち、燃料流入連通路24Aに向く流路部分が省略される。 In the present embodiment, since the passive method is used, the fuel injected by the fuel injection valve 17 is introduced from the space in the main chamber 21 into the sub chamber 22 via one fuel inflow passage 24A. 3, As shown by the alternate long and short dash line L3 in FIG. 4, the fuel inflow passage 24A related to the fuel supply is not provided with the protrusion 40 and is not bent, and the passage 24 also faces the inner wall of the sub chamber 22. It is preferable to form the fuel linearly. In this case, as shown in FIG. 6, the bent passage 24C adjacent to the fuel inflow passage 24A is a bent passage in which the ejection side portion 242 is not branched into a plurality of the incident side portion 241 and is only bent. It is composed. Here, of the ejection side portion 242 of the branch passage 24, the passage portion facing the fuel inflow passage 24A is omitted.
 なお、燃料供給がアクティブ方式の場合には、燃料流入連通路24Aが形成される箇所にも突起部40を設けるようにしてもよい。さらに、燃料流入連通路24Aの突起部40や、これに隣接する突起部40(図3,図4において、屈曲連通路24Cが形成される突起部40)の何れにも分岐連通路24Bを形成し、それぞれの連通路24Bから噴射される火炎どうしが互いに衝突するようにしてもよい。 When the fuel supply is an active system, the protrusion 40 may be provided at a position where the fuel inflow passage 24A is formed. Further, a branch passage 24B is formed in any of the protrusion 40 of the fuel inflow passage 24A and the protrusion 40 adjacent thereto (the protrusion 40 in which the bending passage 24C is formed in FIGS. 3 and 4). Then, the flames injected from the respective communication passages 24B may collide with each other.
 また、連通路24の火炎の噴出する方向における入口側(入射側部分241)の流路断面積S1と出口側(噴出側部分242)の流路断面積S2とでは、出口側の流路断面積S2が入口側の流路断面積S1以下となるように(S1≧S2)設定されている。なお、分岐連通路24Bの出口側(噴出側部分242)が複数(ここでは、2つ)に分岐している場合は、出口側の流路断面積S2は、分岐した流路断面積の合計とする。
 このとき、例えば、入口側の流路断面積S1よりも出口側の流路断面積S2を小さく(S1>S2)設定した場合、入射側部分241の流路断面積をSaとし、噴出側部分242の流路断面積をSbとすると、S1=Sa、S2=2Sbなので、Sa>2Sbとなる。
 これにより、連通路24の火炎の噴出強度を向上させることができる。
Further, the flow path cross-sectional area S1 on the inlet side (incident side portion 241) and the flow path cross-sectional area S2 on the outlet side (spout side portion 242) in the direction in which the flame of the communication passage 24 is ejected are cut off from the flow path on the outlet side. The area S2 is set so as to be equal to or less than the flow path cross-sectional area S1 on the inlet side (S1 ≧ S2). When the outlet side (spout side portion 242) of the branch passage 24B is branched into a plurality of (here, two), the flow path cross-sectional area S2 on the outlet side is the total of the branched flow path cross-sectional areas. And.
At this time, for example, when the flow path cross-sectional area S2 on the outlet side is set smaller than the flow path cross-sectional area S1 on the inlet side (S1> S2), the flow path cross-sectional area of the incident side portion 241 is set to Sa, and the flow path cross-sectional area on the ejection side portion is set to Sa. Assuming that the cross-sectional area of the flow path of 242 is Sb, S1 = Sa and S2 = 2Sb, so Sa> 2Sb.
Thereby, the ejection intensity of the flame of the communication passage 24 can be improved.
 [燃料噴射及び燃焼]
 本実施形態では、吸気行程初期に燃料噴射弁17から主室21内に燃料が噴射され、その後の圧縮行程終期に燃料噴射弁17から主室21を介して副室22内に燃料が噴射される。なお、ポート噴射を採用する場合は、排気行程においてポート噴射を実施し、吸気行程において吸気と共に燃料を主室21内に供給する。そして、圧縮行程末期に副室22内に形成された混合気に着火して、この着火により副室22内に形成される火炎を、複数の連通路24を介して主室21内にジェット噴出させて主室21内の混合気に点火し、燃焼させる。
[Fuel injection and combustion]
In the present embodiment, fuel is injected from the fuel injection valve 17 into the main chamber 21 at the beginning of the intake stroke, and fuel is injected from the fuel injection valve 17 into the sub chamber 22 via the main chamber 21 at the end of the subsequent compression stroke. NS. When port injection is adopted, port injection is performed in the exhaust stroke, and fuel is supplied into the main chamber 21 together with the intake air in the intake stroke. Then, the air-fuel mixture formed in the sub-chamber 22 is ignited at the end of the compression stroke, and the flame formed in the sub-chamber 22 due to this ignition is jet-sprayed into the main chamber 21 via the plurality of communication passages 24. The air-fuel mixture in the main chamber 21 is ignited and burned.
 [作用及び効果]
 本実施形態に係る副室式エンジンによれば、パッシブ方式の燃料供給の場合には、圧縮行程終期に燃料噴射弁17から主室21を介して副室22内に燃料が噴射されると、噴射された燃料は、1つの燃料流入連通路24Aを経て副室22内へ導入される。アクティブ方式の燃料供給の場合には、副室22内へ直接燃料が導入される。
 そして、圧縮行程末期に、副室22内に形成された混合気に着火して、この着火により副室22内に形成される火炎を、複数の連通路24を介して主室21内にジェット噴出させて主室21内の混合気に点火し、燃焼させる。
[Action and effect]
According to the sub-chamber engine according to the present embodiment, in the case of passive fuel supply, when fuel is injected into the sub-chamber 22 from the fuel injection valve 17 via the main chamber 21 at the end of the compression stroke, The injected fuel is introduced into the sub chamber 22 via one fuel inflow communication passage 24A. In the case of active fuel supply, the fuel is introduced directly into the sub chamber 22.
Then, at the end of the compression stroke, the air-fuel mixture formed in the sub chamber 22 is ignited, and the flame formed in the sub chamber 22 due to this ignition is jetted into the main chamber 21 via the plurality of communication passages 24. It is ejected to ignite the air-fuel mixture in the main chamber 21 and burn it.
 このとき、それぞれの連通路24から噴射されるジェット火炎は分岐して、隣接する連通路24から噴出したジェット火炎と互いに衝突する。副室22の周囲の複数箇所で、ジェット火炎が互いに干渉することで、副室22の周囲の火炎の乱れの強化を均等にすることができる。これにより、主室21内の火炎の乱れが強くなり、主室21内の燃焼が促進され、エンジン1の熱効率が高められる。 At this time, the jet flames ejected from the respective passages 24 branch and collide with the jet flames ejected from the adjacent passages 24. By causing the jet flames to interfere with each other at a plurality of locations around the sub chamber 22, it is possible to evenly enhance the turbulence of the flames around the sub chamber 22. As a result, the turbulence of the flame in the main chamber 21 becomes stronger, the combustion in the main chamber 21 is promoted, and the thermal efficiency of the engine 1 is enhanced.
 また、二つのジェット火炎が互いに衝突するため、ジェット火炎の貫徹力を抑えることができ、ジェット火炎の燃焼室20の壁面への到達を抑え、熱損失を低減させることができ、熱効率が高められる。 Further, since the two jet flames collide with each other, the penetration force of the jet flames can be suppressed, the jet flames can be suppressed from reaching the wall surface of the combustion chamber 20, the heat loss can be reduced, and the thermal efficiency can be improved. ..
 また、燃料流入連通路24Aに隣接する連通路24が分岐連通路24Bであって、噴出側部分242が、燃料流入連通路24Aの主室21側の延長線上に向いていると、燃料流入連通路24Aに向かうべき燃料の一部が、分岐連通路24の噴出側部分242に向かってしまい、燃料流入連通路24Aから副室22内の要所(点火プラグ18の火花放電部18a)に燃料を集中的に供給できないおそれがある。 Further, if the communication passage 24 adjacent to the fuel inflow communication passage 24A is the branch communication passage 24B and the ejection side portion 242 faces on the extension line on the main chamber 21 side of the fuel inflow communication passage 24A, the fuel inflow communication A part of the fuel that should go to the passage 24A goes to the ejection side portion 242 of the branch passage 24, and the fuel is sent from the fuel inflow passage 24A to the key point (spark plug 18 spark discharge portion 18a) in the sub chamber 22. May not be able to be supplied intensively.
 しかし、本実施形態では、燃料流入連通路24Aに隣接する連通路は、燃料流入連通路24Aに向く流路部分が省略され、分岐することなく屈曲形成された屈曲連通路24Cなので、燃料流入連通路24Aに向かう燃料が、隣接する屈曲連通路24Cに分散してしまうことが抑制される。これにより、火花放電部18aの近傍に燃料を供給して、発火性のいい濃い混合気を生成させることができる。 However, in the present embodiment, the communication passage adjacent to the fuel inflow communication passage 24A is a bending communication passage 24C in which the flow path portion facing the fuel inflow communication passage 24A is omitted and is bent without branching. It is possible to prevent the fuel toward the passage 24A from being dispersed in the adjacent bent passage 24C. As a result, fuel can be supplied to the vicinity of the spark discharge unit 18a to generate a rich air-fuel mixture having good ignitability.
 また、連通路24の火炎の噴出する方向における入口側(入射側部分241)の流路断面積S1よりも出口側(噴出側部分242)の流路断面積S2の方が小さく(S1>S2)設定されているので、連通路24の火炎の噴出強度を向上させることができる効果も得られる。 Further, the flow path cross-sectional area S2 on the outlet side (spouting side portion 242) is smaller than the flow path cross-sectional area S1 on the inlet side (incident side portion 241) in the direction in which the flame of the communication passage 24 is ejected (S1> S2). ) Since it is set, the effect of improving the ejection intensity of the flame of the communication passage 24 can also be obtained.
 また、パッシブ方式の燃料供給の場合、突起部40が設けられていないと、燃料流入連通路24Aの周囲の隔壁23の外面に衝突して燃料流入連通路24Aから副室22内に導入されなかった燃料は、隔壁23の外面に沿って流れてボア中心線CLを挟んでインジェクタとは反対側に到達し濃い混合気を形成する。この濃い混合気が量論混合比付近になるとNOxを多く生成してしまう。 Further, in the case of passive fuel supply, if the protrusion 40 is not provided, the fuel inflow passage 24A collides with the outer surface of the partition wall 23 around the fuel inflow passage 24A and is not introduced into the sub chamber 22 from the fuel inflow passage 24A. The fuel flows along the outer surface of the partition wall 23, reaches the side opposite to the injector across the bore center line CL, and forms a rich air-fuel mixture. When this rich mixture is close to the stoichiometric mixture ratio, a large amount of NOx is generated.
 本実施形態では、燃料流入連通路24Aの開口部を挟む位置に2つの突起部40が配置されているので、燃料流入連通路24Aの周囲の隔壁23の外面に衝突して燃料流入連通路24Aから副室22内に導入されなかった燃料は、隔壁23の外面に沿って流れるものの、突起部40の外面に衝突して突起部40の周縁で分散して、濃い混合気を形成することが抑制される。このため、NOxの生成を抑制することができる。 In the present embodiment, since the two protrusions 40 are arranged at positions sandwiching the opening of the fuel inflow passage 24A, the fuel inflow passage 24A collides with the outer surface of the partition wall 23 around the fuel inflow passage 24A. Although the fuel that has not been introduced into the sub-chamber 22 flows along the outer surface of the partition wall 23, it may collide with the outer surface of the protrusion 40 and disperse at the periphery of the protrusion 40 to form a rich air-fuel mixture. It is suppressed. Therefore, the generation of NOx can be suppressed.
 また、突起部40がある場合、連通路24を通じて副室22から主室21へ噴射されたジェット火炎を、突起部40が無い場合よりも副室22から離れた位置に供給することができ、主室21での燃焼の際に隔壁23の影響が小さくなり燃焼が促進される。更に突起部40を中実にしてジェット火炎通路(連通路)を長くしているのでその分だけ運動エネルギが消費されることによって、ジェット火炎の貫徹力を抑えることにつながり、ジェット火炎の燃焼室20の壁面への到達を抑え、熱損失を低減させることができ、熱効率が高められる。 Further, when the protrusion 40 is present, the jet flame jetted from the sub chamber 22 to the main chamber 21 through the communication passage 24 can be supplied to a position farther from the sub chamber 22 than when the protrusion 40 is not present. During combustion in the main chamber 21, the influence of the partition wall 23 is reduced and combustion is promoted. Furthermore, since the protrusion 40 is made solid and the jet flame passage (continuous passage) is lengthened, the kinetic energy is consumed by that amount, which leads to the suppression of the penetration force of the jet flame, and the combustion chamber of the jet flame. It is possible to suppress the arrival at the wall surface of 20 and reduce the heat loss, and the thermal efficiency is improved.
 なお、図1Cに示すように、副室22の外側面(即ち、隔壁23の外面)において、燃料流入連通路24Aが開口する開口部の周囲には、燃料噴射弁17からの直噴燃料が衝突する受面30aを持つ凹部30が形成されていることも好ましい。これにより、主室21内に噴射された燃料が副室22の外側面の凹部30の受面30aに衝突するため、燃料の分裂や気化を促進でき、凹部30を通じて、燃料流入連通路24Aから副室22内への燃料導入を促進できる。これにより、火花放電部18aの近傍に分裂や気化を促進された燃料を供給することができ、副室22内での燃焼性を向上させ、その後の副室22内から主室21内への火炎の噴出を安定させることができる。 As shown in FIG. 1C, on the outer surface of the sub chamber 22 (that is, the outer surface of the partition wall 23), the direct injection fuel from the fuel injection valve 17 is formed around the opening through which the fuel inflow passage 24A opens. It is also preferable that the recess 30 having the receiving surface 30a that collides is formed. As a result, the fuel injected into the main chamber 21 collides with the receiving surface 30a of the recess 30 on the outer surface of the sub chamber 22, so that fuel splitting and vaporization can be promoted. The introduction of fuel into the sub-chamber 22 can be promoted. As a result, fuel with promoted splitting and vaporization can be supplied to the vicinity of the spark discharge portion 18a, the combustibility in the sub chamber 22 is improved, and then from the sub chamber 22 to the main chamber 21. The eruption of flame can be stabilized.
 〔第2実施形態〕
 第2実施形態に係る副室式エンジンは、連通路の構成が第1実施形態と異なっている。
 本実施形態では、図6に示すように、分岐することなく屈曲形成された屈曲連通路24Cが、図7A,図7Bに示すように、環状に並べて配置されている。各屈曲連通路24Cの入射側部分241はボア中心線CLを通る線上(放射方向)に配向され、噴出側部分242は、放射方向に対して何れも同一方向に傾斜する方向に配向されている。
[Second Embodiment]
The sub-chamber engine according to the second embodiment has a different passage configuration from the first embodiment.
In the present embodiment, as shown in FIG. 6, the bent passages 24C that are bent and formed without branching are arranged side by side in an annular shape as shown in FIGS. 7A and 7B. The incident side portion 241 of each bending passage 24C is oriented on the line passing through the bore center line CL (radiation direction), and the ejection side portion 242 is oriented in a direction inclined in the same direction with respect to the radiation direction. ..
 屈曲連通路24Cが環状に並べて配置された部分の副室22の外側は主室21内の環状空間であり、燃焼行程において、図7Aに示すように、この環状空間に噴射される火炎は、協働して環状空間にスワール流を生成する。 The outside of the sub-chamber 22 in the portion where the bent passages 24C are arranged in an annular shape is an annular space in the main chamber 21, and as shown in FIG. 7A, the flame injected into the annular space is generated in the combustion stroke. Work together to create a swirl flow in the annular space.
 本実施形態によれば、燃焼行程において、主室21内の環状空間に、各屈曲連通路24Cから噴射されるジェット火炎によって強いスワール流が形成されるので、この強いスワール流によって主室21における燃焼が促進される。 According to the present embodiment, in the combustion stroke, a strong swirl flow is formed in the annular space in the main chamber 21 by the jet flame injected from each bending passage 24C. Therefore, this strong swirl flow causes the main chamber 21 to have a strong swirl flow. Combustion is promoted.
 また、各屈曲連通路24Cの入射側部分241はボア中心線CLを通る線上(放射方向)に配向されているので、主室21内の流体(空気や混合気)が副室22内に進入する圧縮工程では、図7Bに示すように、副室22にスワール流が形成されることはなく、点火プラグ18により火花点火しやすくなる効果がある。 Further, since the incident side portion 241 of each bending passage 24C is oriented on the line passing through the bore center line CL (radiation direction), the fluid (air or air-fuel mixture) in the main chamber 21 enters the sub chamber 22. In the compression step, as shown in FIG. 7B, a swirl flow is not formed in the sub chamber 22, and the spark plug 18 has an effect of facilitating spark ignition.
 連通路24を屈曲させない場合、連通路24の噴出側部分を放射方向に対して傾斜する方向に配向すると、連通路24の入射側部分も同様に放射方向に対して傾斜することになるが、連通路24を屈曲させることで、入射側部分241の方向と噴出側部分242の方向とを異なる方向に設定できる。 When the communication passage 24 is not bent, if the ejection side portion of the communication passage 24 is oriented in a direction in which it is inclined with respect to the radiation direction, the incident side portion of the communication passage 24 is also inclined with respect to the radiation direction. By bending the communication passage 24, the direction of the incident side portion 241 and the direction of the ejection side portion 242 can be set in different directions.
 このため、燃焼行程におけるジェット火炎による強いスワール流の形成と、圧縮工程における火花点火に適した副室22内への気体の流入とを両立させることができる。
 しかも、突起部40を設け、突起部40内に連通路24を形成することで、噴出側部分242の方向自由度が高まり、燃焼行程における主室21内での強いスワール流の形成が容易になる。
Therefore, it is possible to achieve both the formation of a strong swirl flow by the jet flame in the combustion stroke and the inflow of gas into the sub chamber 22 suitable for spark ignition in the compression step.
Moreover, by providing the protrusion 40 and forming the communication passage 24 in the protrusion 40, the degree of freedom in the direction of the ejection side portion 242 is increased, and a strong swirl flow can be easily formed in the main chamber 21 in the combustion stroke. Become.
 〔第3実施形態〕
 第3実施形態に係る副室式エンジンは、連通路の構成が第1,2実施形態と異なっている。
 本実施形態では、図8に示すように、6つの連通路24を何れも屈曲連通路24Cで構成し、6個の屈曲連通路24Cを隣接する2個ずつ対をなすように3組に分けている。各対の屈曲連通路24Cは、入射側部分241の方向は、ボア中心線CLを通る線上(放射方向)に配向され、噴出側部分242の方向は、互いのジェット火炎が衝突するように、放射方向に対して互いに逆方向に係止する方向に配向されている。
[Third Embodiment]
The sub-chamber engine according to the third embodiment has a different passage configuration from the first and second embodiments.
In the present embodiment, as shown in FIG. 8, each of the six bending passages 24 is composed of the bending passages 24C, and the six bending passages 24C are divided into three sets so as to form two adjacent pairs. ing. In each pair of bending communication passages 24C, the direction of the incident side portion 241 is oriented on the line passing through the bore center line CL (radiation direction), and the direction of the ejection side portion 242 is such that the jet flames collide with each other. It is oriented in a direction that locks in the opposite direction to the radial direction.
 このように、連通路24は分岐することなく屈曲しているだけでも、隣接する連通路24から噴出したジェット火炎と互いに衝突させることができ、第1実施形態と同様に、ジェット火炎が互いに干渉することで、副室22の周囲の火炎の乱れの強化を均等にすることができる。これにより、主室21内の火炎の乱れが強くなり、主室21内の燃焼が促進され、エンジン1の熱効率が高められる。
 また、ジェット火炎の貫徹力を抑えることができ、ジェット火炎の燃焼室20の壁面への到達を抑え、熱損失を低減させることができ、熱効率が高められる。
In this way, even if the communication passage 24 is bent without branching, it can collide with the jet flame ejected from the adjacent communication passage 24, and the jet flames interfere with each other as in the first embodiment. By doing so, it is possible to equalize the strengthening of the turbulence of the flame around the sub-chamber 22. As a result, the turbulence of the flame in the main chamber 21 becomes stronger, the combustion in the main chamber 21 is promoted, and the thermal efficiency of the engine 1 is enhanced.
Further, the penetration force of the jet flame can be suppressed, the reach of the jet flame to the wall surface of the combustion chamber 20 can be suppressed, the heat loss can be reduced, and the thermal efficiency can be improved.
 〔第4実施形態〕
 第4実施形態に係る副室式エンジンは、連通路の構成が第1~3実施形態と異なっている。
 本実施形態では、図9に示すように、6つの連通路24を、2つの直線状連通路24Aと、4つの屈曲連通路24Cとから構成している。これらは、1つの直線状連通路24Aに対して、これを挟むように2つの屈曲連通路24Cを配置した組み合わせで、2組設けられる。なお、パッシブ方式の燃料供給の場合、2つの直線状連通路24Aの一方は、燃料流入連通路となる。
[Fourth Embodiment]
The sub-chamber engine according to the fourth embodiment has a different passage configuration from the first to third embodiments.
In the present embodiment, as shown in FIG. 9, six communication passages 24 are composed of two linear communication passages 24A and four bending communication passages 24C. Two sets of these are provided in a combination in which two bent passages 24C are arranged so as to sandwich the linear passage 24A. In the case of passive fuel supply, one of the two linear passages 24A is a fuel inflow passage.
 直線状連通路24Aは、ボア中心線CLを通る線上(放射方向)に配向され、この直線状連通路24Aを挟むように配置される2つの屈曲連通路24Cの噴出側部分242の方向は、互いのジェット火炎が直線状連通路24Aからのジェット火炎の経路上で衝突するように、放射方向に対して互いに逆方向に係止する方向に配向されている。 The linear communication passage 24A is oriented on a line (radial direction) passing through the bore center line CL, and the direction of the ejection side portion 242 of the two bending communication passages 24C arranged so as to sandwich the linear communication passage 24A is The jet flames are oriented in a direction in which they are locked in opposite directions to the radial direction so that the jet flames collide with each other on the path of the jet flames from the linear communication passage 24A.
 このような構成によっても、第1,3実施形態と同様に、ジェット火炎が互いに干渉することで、副室22の周囲の火炎の乱れの強化を均等にすることができ、主室21内の火炎の乱れが強くなり、主室21内の燃焼が促進され、エンジン1の熱効率が高められる。
 また、ジェット火炎の貫徹力を抑えることができ、ジェット火炎の燃焼室20の壁面への到達を抑え、熱損失を低減させることができ、熱効率が高められる。
Even with such a configuration, as in the first and third embodiments, the jet flames interfere with each other, so that the reinforcement of the turbulence of the flames around the sub chamber 22 can be equalized, and the reinforcement in the main chamber 21 can be equalized. The turbulence of the flame becomes stronger, the combustion in the main chamber 21 is promoted, and the thermal efficiency of the engine 1 is enhanced.
Further, the penetration force of the jet flame can be suppressed, the reach of the jet flame to the wall surface of the combustion chamber 20 can be suppressed, the heat loss can be reduced, and the thermal efficiency can be improved.
 〔第5実施形態〕
 第5実施形態に係る副室式エンジンは、連通路の構成が第1~4実施形態と異なっている。
 本実施形態では、図10に示すように、6つの連通路24に何れも分岐連通路を適用している。ただし、2つに分岐する噴出側部分242,242は、気筒の軸方向(ボア中心線CLの方向)に沿った上方(第1方向)の側と下方(第2方向)の側とに分岐した軸方向二分連通路24Dとして構成されている。
[Fifth Embodiment]
The sub-chamber engine according to the fifth embodiment has a different passage configuration from the first to fourth embodiments.
In the present embodiment, as shown in FIG. 10, a branch passage is applied to all of the six passages 24. However, the ejection side portions 242 and 242 that branch into two branch into an upper (first direction) side and a lower (second direction) side along the axial direction of the cylinder (direction of the bore center line CL). It is configured as an axial dichotomous passage 24D.
 このように、火炎通路を上下に二つ以上に分岐することで、火炎が素早く燃焼室20の壁面(シリンダヘッド3やピストン12の頂面)に当たり、火炎流に乱れを発生させることができ、燃焼を促進し、主室21内の混合気に早く着火することができる。 By branching the flame passage into two or more vertically in this way, the flame quickly hits the wall surface of the combustion chamber 20 (the top surface of the cylinder head 3 and the piston 12), and the flame flow can be disturbed. Combustion can be promoted and the air-fuel mixture in the main chamber 21 can be ignited quickly.
 [その他]
 上述した副室式エンジンの構成は一例である。例えば、副室22、即ち、副室22を区画する隔壁23の配置は、必ずしも燃焼室20の頂部20aのボア中心線CL又はボア中心線CLの近傍に限定されない。
 また、副室22の中心軸方向とボア中心軸CLの方向とは、必ずしも一致している必要はなく、ボア中心軸CLに対して副室の中心軸が傾斜するように設けられていてもよい。
[others]
The configuration of the sub-chamber engine described above is an example. For example, the arrangement of the sub chamber 22, that is, the partition wall 23 for partitioning the sub chamber 22, is not necessarily limited to the vicinity of the bore center line CL or the bore center line CL of the top 20a of the combustion chamber 20.
Further, the direction of the central axis of the sub chamber 22 and the direction of the bore central axis CL do not necessarily have to be the same, and even if the central axis of the sub chamber is provided so as to be inclined with respect to the bore central axis CL. good.
 何れにしても、突起部40において連通路24を屈曲させることで、連通路24からのジェット火炎の噴出方向を高い自由度で設定でき、ジェット火炎を互いに衝突させるだけでなく、燃焼向上等の様々な目的のために、ジェット火炎の噴出方向を適宜設定することができる。 In any case, by bending the communication passage 24 at the protrusion 40, the ejection direction of the jet flame from the communication passage 24 can be set with a high degree of freedom, and the jet flames not only collide with each other but also improve combustion. The ejection direction of the jet flame can be appropriately set for various purposes.
 また、上記の各実施形態では、突起部40が中実に形成されるが、突起部40の副室22側を凹状に凹ませて、突起部40を中空に形成してもよく、また、連通路24を屈曲や分岐のないストレート形状に形成してもよい。
 少なくとも、隔壁23の主室21側の面が主室21側に突出した突起部40を備えていれば、燃料が、突起部40の外面(主室21側の面)に衝突して突起部40の周縁で分散して、主室21内で濃い混合気を形成することが抑制され、NOxの生成を抑制することができる。
Further, in each of the above embodiments, the protrusion 40 is formed solidly, but the protrusion 40 may be formed in a hollow shape by denting the sub chamber 22 side of the protrusion 40 in a concave shape. The passage 24 may be formed in a straight shape without bending or branching.
If at least the surface of the partition wall 23 on the main chamber 21 side is provided with the protrusion 40 protruding toward the main chamber 21, the fuel collides with the outer surface of the protrusion 40 (the surface on the main chamber 21 side) and the protrusion It is possible to suppress the formation of a rich air-fuel mixture in the main chamber 21 by dispersing at the periphery of 40, and to suppress the production of NOx.
 また、連通路24を通じて副室22から主室21へ噴射されたジェット火炎を、突起部40が無い場合よりも副室22から離れた位置に供給することができ、主室21での燃焼の際に隔壁23の影響が小さくなり燃焼が促進されるが得られる。 Further, the jet flame injected from the sub chamber 22 to the main chamber 21 through the communication passage 24 can be supplied to a position farther from the sub chamber 22 than in the case where the protrusion 40 is absent, and the combustion in the main chamber 21 can be performed. At this time, the influence of the partition wall 23 is reduced and combustion is promoted, which is obtained.
 1 副室式エンジン(エンジン)
 2 シリンダブロック
 3 シリンダヘッド
 11 シリンダ
 12 ピストン
 13 吸気ポート
 14 排気ポート
 15 吸気弁
 16 排気弁
 17 燃料噴射弁
 18 点火プラグ
 18a 火花放電部
 20 燃焼室
 20a 燃焼室20の頂部
 21 主室(主燃焼室)
 22 副室(副燃焼室)
 23 隔壁
 24 連通路(ノズル)
 24A 直線状連通路(燃料流入連通路)
 24B 分岐連通路
 24C 屈曲連通路
 24D 軸方向二分連通路
 241 連通路24の入射側部分
 242 連通路24の噴出側部分
 40 突起部
 CL ボア中心線
 
1 Sub-chamber engine (engine)
2 Cylinder block 3 Cylinder head 11 Cylinder 12 Piston 13 Intake port 14 Exhaust port 15 Intake valve 16 Exhaust valve 17 Fuel injection valve 18 Spark plug 18a Spark discharge part 20 Combustion chamber 20a Top of combustion chamber 20 21 Main chamber (main combustion chamber)
22 Sub-chamber (sub-combustion chamber)
23 partition wall 24 continuous passage (nozzle)
24A straight passage (fuel inflow passage)
24B Branch passage 24C Bending passage 24D Axial bifurcation passage 241 Incoming side part of the connection 24 242 Ejection side part of the connection 24 40 Projection CL bore center line

Claims (10)

  1.  主室と、前記主室と隔壁により区画された副室と、前記隔壁に設けられ前記主室と前記副室とを連通する複数の連通路と、を備え、
     前記副室内の混合気の着火により前記副室内に形成される火炎を、前記連通路を介して前記主室内に噴出させて前記主室内の混合気に着火する、副室式エンジンであって、
     前記隔壁の前記主室側の面に、前記主室側に突出した突起部を備え、
     前記突起部に前記連通路が設けられる
    ことを特徴とする、副室式エンジン。
    A main room, a sub-chamber partitioned by the main room and a partition wall, and a plurality of communication passages provided in the partition wall and communicating the main room and the sub-chamber are provided.
    A sub-chamber engine that ignites the air-fuel mixture in the main chamber by ejecting a flame formed in the sub-chamber by igniting the air-fuel mixture in the sub-chamber into the main chamber through the communication passage.
    The surface of the partition wall on the main chamber side is provided with a protrusion protruding toward the main chamber.
    A sub-chamber engine characterized in that the connecting passage is provided in the protrusion.
  2.  前記突起部に設けられる前記連通路は、前記突起部内で屈曲している
    ことを特徴とする、副室式エンジン。
    A sub-chamber engine characterized in that the communication passage provided in the protrusion is bent in the protrusion.
  3.  前記連通路は、前記火炎の噴出する方向に向けて、複数に分岐している分岐連通路を含んでいる
    ことを特徴とする、請求項2に記載された副室式エンジン。
    The sub-chamber engine according to claim 2, wherein the communication passage includes a branch communication passage that is branched in a plurality of directions in the direction in which the flame is ejected.
  4.  前記分岐連通路は、前記主室及び前記副室が形成される気筒の軸方向に沿った第1方向の側と、前記第1方向と逆方向の第2方向の側との2つに分岐した軸方向二分連通路を含んでいる
    ことを特徴とする、請求項3に記載された副室式エンジン。
    The branch passage is branched into two, a side in the first direction along the axial direction of the cylinder in which the main chamber and the sub chamber are formed, and a side in the second direction opposite to the first direction. The sub-chamber engine according to claim 3, wherein the sub-chamber engine includes a bifurcated passage in the axial direction.
  5.  前記連通路は、前記火炎の噴出する方向に向けて、分岐することなく屈曲した屈曲連通路を含んでいる
    ことを特徴とする、請求項2~4の何れか1項に記載された副室式エンジン。
    The sub-chamber according to any one of claims 2 to 4, wherein the communication passage includes a bending communication passage that is bent without branching in the direction in which the flame is ejected. Formula engine.
  6.  前記連通路のうちの少なくとも2つの連通路は、噴出した前記火炎が互いに衝突するように配向されている
    ことを特徴とする、請求項1~5の何れか1項に記載された副室式エンジン。
    The sub-chamber type according to any one of claims 1 to 5, wherein at least two of the passages are oriented so that the ejected flames collide with each other. engine.
  7.  前記連通路の前記火炎の噴出する方向における出口側の流路断面積S2は、前記噴出する方向における入口側の流路断面積S1以下に設定される
    ことを特徴とする、請求項1~6の何れか1項に記載された副室式エンジン。
    Claims 1 to 6 are characterized in that the flow path cross-sectional area S2 on the outlet side in the direction in which the flame is ejected in the communication passage is set to be equal to or less than the flow path cross-sectional area S1 on the inlet side in the direction in which the flame is ejected. The sub-chamber engine according to any one of the above items.
  8.  前記連通路は、前記火炎の噴出する方向に向けて、分岐することなく屈曲した屈曲連通路を含み、
     複数の前記屈曲連通路の前記火炎の噴出する出口側は、前記服室内から前記主室に向かう放射方向に対して何れも同一方向に傾斜する方向に配向される
    ことを特徴とする、請求項2に記載された副室式エンジン。
    The communication passage includes a bending communication passage that is bent without branching in the direction in which the flame is ejected.
    The invention, wherein the outlet side of the plurality of bent passages from which the flame is ejected is oriented in a direction in which the flame is inclined in the same direction with respect to the radial direction from the clothing chamber to the main chamber. The sub-chamber engine described in 2.
  9.  前記主室内に燃料を噴射する燃料噴射弁と、
     複数の前記連通路のうちの一部であって、前記燃料噴射弁から噴射された燃料を前記副室内に導入する燃料流入連通路と、を備え、
     少なくとも2つの前記突起部は、前記燃料流入連通路の開口部を挟む位置に配置されている
    ことを特徴とする、請求項1~8の何れか1項に記載された副室式エンジン。
    A fuel injection valve that injects fuel into the main chamber and
    It is provided with a fuel inflow communication passage which is a part of the plurality of communication passages and introduces the fuel injected from the fuel injection valve into the sub chamber.
    The sub-chamber engine according to any one of claims 1 to 8, wherein at least two of the protrusions are arranged at positions sandwiching an opening of the fuel inflow communication passage.
  10.  前記燃料流入連通路の前記開口部の周囲に、前記燃料噴射弁からの直噴燃料が衝突する受面を持つ凹部が形成されている
    ことを特徴とする、請求項9に記載された副室式エンジン。
    The sub-chamber according to claim 9, wherein a recess having a receiving surface on which the direct-injection fuel from the fuel injection valve collides is formed around the opening of the fuel inflow communication passage. Formula engine.
PCT/JP2020/025901 2020-02-10 2020-07-01 Auxiliary chamber-type engine WO2021161554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-020842 2020-02-10
JP2020020842 2020-02-10

Publications (1)

Publication Number Publication Date
WO2021161554A1 true WO2021161554A1 (en) 2021-08-19

Family

ID=77292171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025901 WO2021161554A1 (en) 2020-02-10 2020-07-01 Auxiliary chamber-type engine

Country Status (1)

Country Link
WO (1) WO2021161554A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171025A (en) * 1981-04-14 1982-10-21 Nissan Motor Co Ltd Combustion chamber of swirl chamber type diesel engine
JPH0527240A (en) * 1991-07-24 1993-02-05 Sanyo Electric Co Ltd Surface illuminator
JP2004204835A (en) * 2002-10-28 2004-07-22 Toyota Motor Corp Spark ignition type internal combustion engine
JP2006177248A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Divided chamber type internal combustion engine
JP2009270540A (en) * 2008-05-09 2009-11-19 Osaka Gas Co Ltd Engine and ignition plug for engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171025A (en) * 1981-04-14 1982-10-21 Nissan Motor Co Ltd Combustion chamber of swirl chamber type diesel engine
JPH0527240A (en) * 1991-07-24 1993-02-05 Sanyo Electric Co Ltd Surface illuminator
JP2004204835A (en) * 2002-10-28 2004-07-22 Toyota Motor Corp Spark ignition type internal combustion engine
JP2006177248A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Divided chamber type internal combustion engine
JP2009270540A (en) * 2008-05-09 2009-11-19 Osaka Gas Co Ltd Engine and ignition plug for engine

Similar Documents

Publication Publication Date Title
JP3163906B2 (en) In-cylinder injection spark ignition engine
JP4561522B2 (en) Sub-chamber internal combustion engine
JPH0323314A (en) Stratified combustion type internal combustion engine
JP2021127706A (en) Internal combustion engine equipped with pre-chamber
JP2001003753A (en) Auxiliary chamber system of gas engine
WO2021161553A1 (en) Sub-chamber spark ignition engine
WO2021161554A1 (en) Auxiliary chamber-type engine
WO2021161552A1 (en) Auxiliary chamber engine
JPH09280055A (en) Direct cylinder injection type spark ignition engine
JP2009215973A (en) Internal combustion engine with divided combustion chamber
JP2004519606A (en) Fuel injection system
JP4420212B2 (en) 2-point ignition internal combustion engine
WO2020196682A1 (en) Auxiliary chamber-type internal combustion engine
JP2629745B2 (en) Spark assist diesel engine
WO2023181398A1 (en) Engine
CN113719342B (en) Jet-compression ignition combustion system with double swirl combustion chambers
CN113719341B (en) Jet-compression ignition combustion system of multi-partition combustion chamber
US20070261664A1 (en) Internal combustion engine with direct fuel injection
JPS63215817A (en) Combustion chamber structure of engine
WO2020196683A1 (en) Auxiliary chamber-type internal combustion engine
JP3468055B2 (en) Lean-burn internal combustion engine
JPH0159434B2 (en)
JP2699722B2 (en) Stratified combustion internal combustion engine
JP2000064839A (en) Precombustion chamber system gas engine
JPS6316123A (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP