WO2023181393A1 - Engine - Google Patents
Engine Download PDFInfo
- Publication number
- WO2023181393A1 WO2023181393A1 PCT/JP2022/014592 JP2022014592W WO2023181393A1 WO 2023181393 A1 WO2023181393 A1 WO 2023181393A1 JP 2022014592 W JP2022014592 W JP 2022014592W WO 2023181393 A1 WO2023181393 A1 WO 2023181393A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication passage
- chamber
- swirl flow
- flow generation
- flame injection
- Prior art date
Links
- 238000002347 injection Methods 0.000 claims abstract description 149
- 239000007924 injection Substances 0.000 claims abstract description 149
- 239000000446 fuel Substances 0.000 claims description 32
- 238000005192 partition Methods 0.000 claims description 31
- 230000001629 suppression Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 239000000567 combustion gas Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/08—Engines characterised by precombustion chambers the chamber being of air-swirl type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/12—Engines characterised by precombustion chambers with positive ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/16—Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/16—Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
- F02B19/18—Transfer passages between chamber and cylinder
Definitions
- the present disclosure relates to an engine.
- Patent Document 1 discloses an engine that combusts an air-fuel mixture in a sub-chamber and injects flame into the main chamber through an injection hole that opens from the sub-chamber to the main chamber.
- an intake port that introduces fresh air into the main chamber is formed as a swirl port that generates a swirling flow of fresh air into the main chamber, and the direction of flame injection at the injection hole is the swirling direction with respect to the axis of the main chamber. ing.
- An engine includes a piston, a cylinder block provided with a cylinder in which the piston reciprocates, and a main chamber that is fixed to the cylinder block and forms a main chamber between the cylinder block and the piston.
- a cylinder head a partition wall provided on the main chamber side of the cylinder head and forming a sub-chamber in the main chamber, and a spark plug installed in the sub-chamber; a swirl flow generation communication passage that is provided at an angle in the circumferential direction with respect to the direction toward the center of the sub-chamber and that communicates from the main chamber to the sub-chamber; and a flame injection communication path communicating from the auxiliary chamber to the main chamber, and a suppressing means for suppressing flame injection from the swirl flow generation communication path.
- the suppressing means suppresses the flame injection from the swirl flow generation communication passage, the flame injection energy from the flame injection communication passage increases, and the flame injection from the flame injection communication passage increases. A decrease in injection energy can be suppressed. Thereby, it is possible to generate a swirl flow in the subchamber and to suppress a decrease in flame injection energy.
- the suppressing means makes the maximum flow cross-sectional area of the swirl flow generation communication passage smaller than the minimum flow passage cross-section area of the flame injection communication passage. That's true.
- the maximum flow cross-sectional area of the swirl flow generation communication passage is made smaller than the minimum flow passage cross-section area of the flame injection communication passage, so flame injection from the swirl flow generation communication passage is suppressed. , the flame injection energy from the flame injection communication passage increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage.
- the suppressing means may reduce the distance from the swirl flow generation communication passage to the spark plug of the flame injection communication passage to the spark plug of the flame injection communication passage. This is because the distance was made longer than the previous distance.
- the suppressing means is an obstacle provided between the spark plug and the swirl flow generation communication path. It is.
- the suppressing means is that the swirl flow generation communication passage is made longer than the flame injection communication passage.
- the swirl flow generation communication passage is made longer than the flame injection communication passage, flame injection from the swirl flow generation communication passage is suppressed, and flame injection energy from the flame injection communication passage is reduced. increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage.
- the partition wall is connected to the ignition point of the spark plug and the sub-chamber base where the flame injection communication passage is provided.
- a sub-chamber tip portion provided closer to the piston than the sub-chamber base and provided with the swirl flow generation communication passage, and the suppressing means is configured to reduce the volume of the sub-chamber tip portion to the sub-chamber tip portion. This is because the volume is smaller than that of the base.
- the flame separates at the boundary between the sub-chamber base and the sub-chamber tip. This makes it difficult for the flame to flow from the base of the sub-chamber to the tip of the sub-chamber, and suppresses the injection of flame from the swirl flow generation communication passage provided at the tip of the sub-chamber. As a result, the energy of the flame ejected from the flame injection communication passage provided at the base of the auxiliary chamber increases, so that a decrease in the energy of the flame injection from the flame injection communication passage can be suppressed.
- an injection nozzle for injecting fuel into the main chamber is provided, and the swirl flow generation communication passage is connected to the cylinder.
- the injection nozzle is provided so as to extend in the circumferential direction from the auxiliary chamber toward the main chamber on the side opposite to the side where the injection nozzle is provided.
- the swirl flow generation communication passage is provided so as to go from the sub chamber to the main chamber in the circumferential direction of the cylinder, toward the side opposite to the side where the injection nozzle is provided. It is possible to suppress the generation of a flow of air-fuel mixture containing a large amount of fuel on the side of the partition wall of the chamber, and it is possible to stratify the inside of the pre-chamber.
- FIG. 1 is a cross-sectional view schematically showing the overall configuration of an engine.
- FIG. 2 is a cross-sectional view schematically showing the partition wall and spark plug shown in FIG. 1.
- FIG. 2B is a sectional view taken along line BB of the partition wall shown in FIG. 2A.
- 2A is a cross-sectional view taken along the line CC of the partition wall shown in FIG. 2A.
- FIG. FIG. 7 is a cross-sectional view showing an example of a partition wall and a spark plug of an engine according to a third embodiment.
- FIG. 7 is a cross-sectional view schematically showing a partition wall and a spark plug of an engine according to a sixth embodiment.
- FIG. 7 is a schematic diagram schematically showing a partition wall and an injection nozzle of an engine according to a seventh embodiment.
- an engine 1A includes a piston 10, a cylinder block 12, a cylinder head 14, a partition wall 16, an injection nozzle 18, and a spark plug 20.
- the cylinder block 12 is provided with a cylinder 22 in which the piston 10 reciprocates.
- the cylinder head 14 is fixed to the cylinder block 12 and forms a main chamber (combustion chamber) 24 between it and the piston 10.
- the cylinder head 14 is provided with an intake port 26 and an exhaust port 28.
- two intake ports 26 and two exhaust ports 28 are provided for one main chamber 24, but the invention is not limited to this.
- the intake port 26 is provided with an intake valve 30 that opens and closes the intake port 26, and the exhaust port 28 is provided with an exhaust valve 32 that opens and closes the exhaust port 28.
- the intake port 26 is provided with an injection nozzle 34 (hereinafter referred to as "port injector 34") that injects fuel, but the port injector 34 is not essential.
- the partition wall 16 is provided on the main chamber side of the cylinder head 14, and forms an auxiliary chamber (preliminary combustion chamber) 36 within the main chamber.
- the injection nozzle 18 (hereinafter referred to as "direct injector 18") is an injection nozzle that injects fuel into the main chamber.
- the spark plug 20 is installed in the subchamber and is capable of igniting the air-fuel mixture that has flowed into the subchamber.
- the port injector 34 injects fuel during the intake stroke in which the intake valve 30 opens the intake port 26 and the piston 10 descends. As a result, the air-fuel mixture is supplied from the intake port 26 to the main chamber 24 .
- the air-fuel mixture in the main chamber is a lean air-fuel mixture that is thinner than the stoichiometric air-fuel ratio.
- the direct injector 18 injects fuel. Thereby, the fuel injected from the direct injector 18 is supplied to the auxiliary chamber 36 together with the air-fuel mixture in the main chamber.
- the air-fuel mixture in the pre-chamber is near the stoichiometric air-fuel ratio.
- the air-fuel mixture in the pre-chamber is ignited by the spark plug 20.
- the air-fuel mixture in the auxiliary chamber becomes a flame and is injected into the main chamber, thereby combusting the air-fuel mixture in the main chamber.
- the engine 1A is operated by repeating these intake stroke, compression stroke, expansion stroke, and exhaust stroke.
- the partition wall 16 has a truncated conical outer shape.
- a flange 38 is provided at the end of the large diameter side of the partition wall 16, and the partition wall 16 is fixed to the main chamber side of the cylinder head 14 by this flange 38.
- the large diameter side of the partition wall 16 becomes the proximal end side fixed to the cylinder head 14, and the small diameter side becomes the distal end side located on the piston side.
- the partition wall 16 has a truncated conical subchamber 36 therein.
- the large diameter side of the subchamber 36 forms a subchamber base 40 located on the cylinder head side, and the small diameter side forms a subchamber tip 42 located on the piston side.
- the partition wall 16 has a swirl flow generation communication passage 44 and a flame injection communication passage 46.
- the swirl flow generation communication passage 44 is a communication passage leading from the main chamber 24 to the auxiliary chamber 36, and is inclined with respect to the direction toward the center O of the auxiliary chamber 36 in the circumferential direction of the cylinder 22, as shown in FIG. 2B. (for example, provided at an angle ⁇ ).
- the flame injection communication passage 46 is a communication passage that communicates from the auxiliary chamber 36 to the main chamber 24, and is located at a different position from the swirl flow generation communication passage 44 in the circumferential direction or the extending direction of the cylinder 22, as shown in FIG. 2C. It is provided.
- the flame injection communication passage 46 is provided straight toward the center of the auxiliary chamber 36 in the circumferential direction of the cylinder 22 .
- the partition wall 16 includes a suppressing means for suppressing flame injection from the swirl flow generation communication passage 44.
- the suppressing means may be of any type as long as it suppresses the flame injected from the swirl flow generation communication path 44 to be smaller than the flame injected from the flame injection communication path 46.
- the air-fuel mixture is supplied from the main chamber 24 to the auxiliary chamber 36 through the swirl flow generation communication passage 44 and the flame injection communication passage 46 during the compression stroke of the engine 1A.
- the air-fuel mixture supplied from the swirl flow generation communication passage 44 swirls along the sub-chamber side wall surface 16a of the partition wall 16 to generate a swirl flow SF in the sub-chamber.
- the spark plug 20 ignites the air-fuel mixture in the pre-chamber. Then, the air-fuel mixture in the auxiliary chamber becomes a flame and is injected into the main chamber through the flame injection communication passage 46 and the swirl flow generation communication passage 44. At this time, the flame injection from the main chamber 24 through the swirl flow generation communication passage 44 is suppressed by the suppressing means. As a result, the energy of the flame emitted from the flame injection communication passage 46 increases, and a decrease in the energy of the flame injection from the flame injection communication passage 46 can be suppressed. The flame injected into the main chamber through the flame injection communication passage 46 and the swirl flow generation communication passage 44 combusts the air-fuel mixture within the main chamber.
- the suppressing means suppresses the flame injection from the swirl flow generation communication passage 44, the flame injection energy from the flame injection communication passage 46 increases, and the flame injection communication passage 46 increases. It is possible to suppress a decrease in the flame injection energy from the flame. Thereby, it is possible to generate a swirl flow SF in the subchamber and to suppress a decrease in flame injection energy.
- the suppressing means is that the maximum flow passage cross-sectional area A1 of the swirl flow generation communication passage 44 is made smaller than the minimum flow passage cross-sectional area A2 of the flame injection communication passage 46.
- the diameters (diameters) of the swirl flow generation communication passage 44 and the flame injection communication passage 46 are constant, the diameter (diameter) D1 of the swirl flow generation communication passage 44 is smaller than the diameter D2 of the flame injection communication passage 46. do.
- the other configuration of the engine 1B according to the second embodiment is the same as the configuration of the engine 1A according to the first embodiment described above.
- the maximum flow passage cross-sectional area A1 of the swirl flow generation communication passage 44 is made smaller than the minimum flow passage cross-section area A2 of the flame injection communication passage 46, so that during the expansion stroke of the engine 1B, the main chamber 24 through the swirl flow generation communication path 44 is suppressed.
- Other operations of the engine 1B according to the second embodiment are the same as those of the engine 1A according to the first embodiment described above.
- the suppressing means is to make the distance from the swirl flow generation communication passage 44 to the spark plug 20 longer than the distance from the flame injection communication passage 46 to the spark plug 20.
- the flame injection communication passage 46 is provided on the base end side of the partition wall 16, while the flame injection communication passage 46 is provided on the distal end side of the partition wall 16.
- the flame injection communication passage 46 is provided at the front end side of the partition wall 16; By providing the swirl flow generation communication passage 44 on the side, the distance from the swirl flow generation communication passage 44 to the spark plug 20 is made longer than the distance from the flame injection communication passage 46 to the spark plug 20.
- the other configuration of the engine 1C according to the third embodiment is the same as the configuration of the engine 1A or 1B according to the first or second embodiment described above.
- the suppressing means is an obstacle provided between the spark plug 20 and the swirl flow generation communication path 44.
- the obstacle is, for example, an eave-like structure, and is arranged so as to suppress the injection of flame from the swirl flow generation communication passage 44 during the expansion stroke of the engine 1D.
- the other configuration of the engine 1D according to the fourth embodiment is the same as the configuration of any one of the engines 1A to 1C according to the first to third embodiments described above.
- the suppressing means is that the swirl flow generation communication passage 44 is made longer than the flame injection communication passage 46.
- the swirl flow generation communication passage 44 is made longer than the flame injection communication passage 46.
- the other configuration of the engine 1E according to the fifth embodiment is the same as the configuration of any one of the engines 1A to 1D according to the first to fourth embodiments described above.
- the ignition point 48 of the spark plug 20 and the flame injection communication passage 46 are provided in the pre-chamber base 40, the swirl flow generation communication passage 44 is provided in the pre-chamber tip 42, and the suppressing means is , the volume of the sub-chamber tip 42 is made smaller than the volume of the sub-chamber base 40.
- a truncated conical sub-chamber base 40 in which the tip of the spark plug 20 is accommodated is provided on the base end side of the partition wall 16, and a sub-chamber base 40 is provided on the distal end side of the partition wall 16.
- a step surface 50 is provided at the boundary between the sub-chamber base 40 and the sub-chamber tip 42, and the volume of the sub-chamber tip 42 is made smaller than the volume of the sub-chamber base 40. It's smaller than that.
- the other configuration of the engine 1F according to the sixth embodiment is the same as the configuration of any one of the engines 1A to 1E according to the first to fifth embodiments described above.
- the flame separates at the boundary between the sub-chamber base 40 and the sub-chamber tip 42. This makes it difficult for the flame to flow from the sub-chamber base 40 to the sub-chamber tip 42, and suppresses flame injection from the swirl flow generation communication passage 44 provided in the sub-chamber tip 42. As a result, the energy of the flame ejected from the flame injection communication passage 46 provided in the sub-chamber base 40 increases, so that a decrease in the energy of the flame injection from the flame injection communication passage 46 can be suppressed.
- the suppressing means has a curved surface on the upstream side in the swirl flow direction of the sub-chamber side opening of the flame injection communication passage 46, and a corner portion on the upstream side of the swirl flow generation communication passage 44. It is to be.
- the upstream side in the swirl flow direction of the opening on the side of the sub-chamber of the flame injection communication passage 46 is rounded (so-called R-chamfering), while the opening on the side of the sub-chamber of the swirl flow generation communication passage 44 is left as is.
- the other configuration of the engine 1G according to the seventh embodiment is the same as the configuration of any one of the engines 1A to 1F according to the first to sixth embodiments described above.
- the upstream side in the swirl flow direction of the sub-chamber side opening of the flame injection communication passage 46 is a curved surface, and the upstream side of the swirl flow generation communication passage 44 is a corner.
- the flow rate coefficient of the combustion gas injected from the flame injection communication passage 46 becomes larger than the flow rate coefficient of the combustion gas injected from the swirl flow generation communication passage 44, and the injection energy of the flame flow from the flame injection communication passage 46 increases. do. Thereby, a decrease in the injection energy of the flame stream from the flame injection communication passage 46 can be suppressed.
- the swirl flow generation communication passage 44 extends from the subchamber 36 toward the main chamber 24 in the circumferential direction of the cylinder 22 on the side where the direct injector 18 is provided. It is installed facing the opposite side. Furthermore, the swirl flow generation communication passage 44 is provided on the opposite side of the direct injector 18 in the circumferential direction of the cylinder 22 . Note that the swirl flow generation communication passage 44 may be provided at least in the circumferential direction of the cylinder 22 from the auxiliary chamber 36 toward the main chamber 24 on the side opposite to the side where the injection nozzle 18 is provided. It may be provided on the direct injector 18 side.
- the other configuration of the engine 1H according to the seventh embodiment is the same as the configuration of any one of the engines 1A to 1G according to the first to sixth embodiments described above.
- the swirl flow generation communication passage 44 extends from the auxiliary chamber 36 toward the main chamber 24 in the circumferential direction of the cylinder 22, toward the side opposite to the side where the direct injector 18 is provided. Since it is provided in the subchamber 36, it is possible to suppress the generation of a flow of air-fuel mixture containing a large amount of fuel on the partition wall side of the subchamber 36, and to stratify the inside of the subchamber 36. Furthermore, by providing the swirl flow generation communication passage 44 on the opposite side of the direct injector 18 in the circumferential direction of the cylinder 22, the air-fuel mixture containing more fuel can be moved closer to the partition wall side of the auxiliary chamber 36. generation can be suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
This engine comprises: a piston; a cylinder block having cylinders in which the piston performs a reciprocating motion; a cylinder head that is fixed to the cylinder block and that forms a main chamber between the cylinder head and the piston; a dividing wall that is provided on the main chamber side of the cylinder head and that forms a secondary chamber inside the main chamber; and an ignition plug installed inside the secondary chamber. The dividing wall has a swirl flow-generating communication path that is provided inclined in a direction toward the center of the secondary chamber in the circumferential direction of the cylinder and that leads from the main chamber to the secondary chamber; a flame injection communication path that is provided straight toward the center of the secondary chamber in the circumferential direction of the cylinder and that leads from the secondary chamber to the main chamber; and a suppression means for suppressing flame injection from the swirl flow-generating communication path.
Description
本開示は、エンジンに関する。
The present disclosure relates to an engine.
特許文献1には、副室において混合気を燃焼させて、副室から主室に開口する噴射孔を介して主室に火炎を噴射するエンジンが開示されている。かかるエンジンでは、主室に新気を導入する吸気ポートが主室に新気の旋回流を発生させるスワールポートとして形成され、噴射孔における火炎の噴射方向が主室の軸心に対する旋回方向とされている。
Patent Document 1 discloses an engine that combusts an air-fuel mixture in a sub-chamber and injects flame into the main chamber through an injection hole that opens from the sub-chamber to the main chamber. In such an engine, an intake port that introduces fresh air into the main chamber is formed as a swirl port that generates a swirling flow of fresh air into the main chamber, and the direction of flame injection at the injection hole is the swirling direction with respect to the axis of the main chamber. ing.
特許文献1に開示されたエンジンでは、副室内に流入した新気によって副室内にスワール流が生成されているので、副室内で着火された火炎も副室内のスワール流に乗って旋回する。これにより、副室から主室に火炎を噴射する際に噴射孔の内壁から火炎が剥離し、噴射孔の有効径が実際よりも小さくなり、噴射孔から噴射する火炎の噴射エネルギが低下してしまっていた。
In the engine disclosed in Patent Document 1, a swirl flow is generated in the subchamber by fresh air flowing into the subchamber, so the flame ignited in the subchamber also swirls on the swirl flow in the subchamber. As a result, when the flame is injected from the auxiliary chamber to the main chamber, the flame separates from the inner wall of the injection hole, the effective diameter of the injection hole becomes smaller than it actually is, and the injection energy of the flame injected from the injection hole decreases. It was put away.
上述の事情に鑑みて、本発明の少なくとも一実施形態は、副室内にスワール流を生成するとともに、火炎の噴射エネルギの低下を抑制することができるエンジンを提供することを目的とする。
In view of the above circumstances, it is an object of at least one embodiment of the present invention to provide an engine that can generate a swirl flow in the subchamber and suppress a decrease in flame injection energy.
(1)本発明の少なくとも一実施形態に係るエンジンは、ピストンと、前記ピストンが往復動するシリンダが設けられたシリンダブロックと、前記シリンダブロックに固定され、前記ピストンとの間に主室を形成するシリンダヘッドと、前記シリンダヘッドの前記主室側に設けられ、前記主室内に副室を形成する隔壁と、前記副室内に設置された点火プラグと、を備え、前記隔壁は、前記シリンダの周方向において前記副室の中心に向かう方向に対して傾いて設けられ、前記主室から前記副室に通じるスワール流生成連通路と、前記シリンダの周方向において前記副室の中心に向かって真っ直ぐに設けられ、前記副室から前記主室に通じる火炎噴射連通路と、前記スワール流生成連通路からの火炎の噴射を抑制するための抑制手段とを有する。
(1) An engine according to at least one embodiment of the present invention includes a piston, a cylinder block provided with a cylinder in which the piston reciprocates, and a main chamber that is fixed to the cylinder block and forms a main chamber between the cylinder block and the piston. a cylinder head, a partition wall provided on the main chamber side of the cylinder head and forming a sub-chamber in the main chamber, and a spark plug installed in the sub-chamber; a swirl flow generation communication passage that is provided at an angle in the circumferential direction with respect to the direction toward the center of the sub-chamber and that communicates from the main chamber to the sub-chamber; and a flame injection communication path communicating from the auxiliary chamber to the main chamber, and a suppressing means for suppressing flame injection from the swirl flow generation communication path.
上記(1)の構成によれば、抑制手段がスワール流生成連通路からの火炎の噴射を抑制するので、火炎噴射連通路からの火炎の噴射エネルギが増加し、火炎噴射連通路からの火炎の噴射エネルギの低下を抑制することができる。これにより、副室内にスワール流を生成するとともに、火炎の噴射エネルギの低下を抑制することができる。
According to the configuration (1) above, since the suppressing means suppresses the flame injection from the swirl flow generation communication passage, the flame injection energy from the flame injection communication passage increases, and the flame injection from the flame injection communication passage increases. A decrease in injection energy can be suppressed. Thereby, it is possible to generate a swirl flow in the subchamber and to suppress a decrease in flame injection energy.
(2)幾つかの実施形態では、上記(1)の構成において、前記抑制手段は、前記スワール流生成連通路の最大流路断面積を前記火炎噴射連通路の最小流路断面積より小さくしたことである。
(2) In some embodiments, in the configuration of (1) above, the suppressing means makes the maximum flow cross-sectional area of the swirl flow generation communication passage smaller than the minimum flow passage cross-section area of the flame injection communication passage. That's true.
上記(2)の構成によれば、スワール流生成連通路の最大流路断面積を火炎噴射連通路の最小流路断面積より小さくしたので、スワール流生成連通路からの火炎の噴射が抑制され、火炎噴射連通路からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路からの火炎の噴射エネルギの低下を抑制することができる。
According to the configuration (2) above, the maximum flow cross-sectional area of the swirl flow generation communication passage is made smaller than the minimum flow passage cross-section area of the flame injection communication passage, so flame injection from the swirl flow generation communication passage is suppressed. , the flame injection energy from the flame injection communication passage increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage.
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、前記抑制手段は、前記スワール流生成連通路の前記点火プラグまでの距離を前記火炎噴射連通路の前記点火プラグまでの距離より長くしたことである。
(3) In some embodiments, in the configuration of (1) or (2) above, the suppressing means may reduce the distance from the swirl flow generation communication passage to the spark plug of the flame injection communication passage to the spark plug of the flame injection communication passage. This is because the distance was made longer than the previous distance.
上記(3)の構成によれば、スワール流生成連通路の点火プラグまでの距離を火炎噴射連通路の点火プラグまでの距離より長くしたので、スワール流生成連通路からの火炎の噴射が抑制され、火炎噴射連通路からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路からの火炎の噴射エネルギの低下を抑制することができる。
According to the configuration (3) above, since the distance from the swirl flow generation communication passage to the ignition plug is made longer than the distance from the flame injection communication passage to the ignition plug, flame injection from the swirl flow generation communication passage is suppressed. , the flame injection energy from the flame injection communication passage increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage.
(4)幾つかの実施形態では、上記(1)から(3)のいずれか一つの構成において、前記抑制手段は、前記点火プラグと前記スワール流生成連通路との間に設けられた障害物である。
(4) In some embodiments, in the configuration of any one of (1) to (3) above, the suppressing means is an obstacle provided between the spark plug and the swirl flow generation communication path. It is.
上記(4)の構成によれば、障害物が点火プラグからスワール流生成連通路に流れる火炎の障害となるので、スワール流生成連通路からの火炎の噴射が抑制され、火炎噴射連通路からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路からの火炎の噴射エネルギの低下を抑制することができる。
According to the configuration (4) above, since the obstruction becomes an obstacle to the flame flowing from the spark plug to the swirl flow generation communication passage, flame injection from the swirl flow generation communication passage is suppressed, and flame injection from the flame injection communication passage is suppressed. Flame injection energy increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage.
(5)幾つかの実施形態では、上記(1)から(4)のいずれか一つの構成において、前記抑制手段は、前記スワール流生成連通路を前記火炎噴射連通路より長くしたことである。
(5) In some embodiments, in the configuration of any one of (1) to (4) above, the suppressing means is that the swirl flow generation communication passage is made longer than the flame injection communication passage.
上記(5)の構成によれば、スワール流生成連通路を火炎噴射連通路よりも長くしたので、スワール流生成連通路からの火炎の噴射が抑制され、火炎噴射連通路からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路からの火炎の噴射エネルギの低下を抑制することができる。
According to the configuration (5) above, since the swirl flow generation communication passage is made longer than the flame injection communication passage, flame injection from the swirl flow generation communication passage is suppressed, and flame injection energy from the flame injection communication passage is reduced. increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage.
(6)幾つかの実施形態では、上記(1)から(5)のいずれか一つの構成において、前記隔壁は、前記点火プラグの点火点と前記火炎噴射連通路が設けられた副室基部と、前記副室基部よりも前記ピストン側に設けられ、前記スワール流生成連通路が設けられた副室先端部と、を有し、前記抑制手段は、前記副室先端部の容積を前記副室基部の容積より小さくしたことである。
(6) In some embodiments, in the configuration according to any one of (1) to (5) above, the partition wall is connected to the ignition point of the spark plug and the sub-chamber base where the flame injection communication passage is provided. , a sub-chamber tip portion provided closer to the piston than the sub-chamber base and provided with the swirl flow generation communication passage, and the suppressing means is configured to reduce the volume of the sub-chamber tip portion to the sub-chamber tip portion. This is because the volume is smaller than that of the base.
上記(6)の構成によれば、副室先端部の容積を副室基部の容積より小さくしたので、副室基部と副室先端部の境界で火炎が剥離する。これにより、副室基部から副室先端部に火炎が流れ難くなり、副室先端部に設けられたスワール流生成連通路からの火炎の噴射が抑制される。この結果、副室基部に設けられた火炎噴射連通路からの火炎の噴射エネルギが増加するので、火炎噴射連通路からの火炎の噴射エネルギの低下を抑制することができる。
According to the configuration (6) above, since the volume of the sub-chamber tip is made smaller than the volume of the sub-chamber base, the flame separates at the boundary between the sub-chamber base and the sub-chamber tip. This makes it difficult for the flame to flow from the base of the sub-chamber to the tip of the sub-chamber, and suppresses the injection of flame from the swirl flow generation communication passage provided at the tip of the sub-chamber. As a result, the energy of the flame ejected from the flame injection communication passage provided at the base of the auxiliary chamber increases, so that a decrease in the energy of the flame injection from the flame injection communication passage can be suppressed.
(7)幾つかの実施形態では、上記(1)から(6)のいずれか一つの構成において、前記主室内に燃料を噴射する噴射ノズルを備え、前記スワール流生成連通路は、前記シリンダの周方向において前記副室から主室に向けて前記噴射ノズルが設けられた側とは反対側に向かうように設けられる。
(7) In some embodiments, in the configuration according to any one of (1) to (6) above, an injection nozzle for injecting fuel into the main chamber is provided, and the swirl flow generation communication passage is connected to the cylinder. The injection nozzle is provided so as to extend in the circumferential direction from the auxiliary chamber toward the main chamber on the side opposite to the side where the injection nozzle is provided.
上記(7)の構成によれば、スワール流生成連通路は、シリンダの周方向において副室から主室に向けて噴射ノズルが設けられた側とは反対側に向かうように設けられるので、副室の隔壁側に燃料が多く含まれた混合気の流れが生成させるのを抑制することができ、副室内を成層化することができる。
According to configuration (7) above, the swirl flow generation communication passage is provided so as to go from the sub chamber to the main chamber in the circumferential direction of the cylinder, toward the side opposite to the side where the injection nozzle is provided. It is possible to suppress the generation of a flow of air-fuel mixture containing a large amount of fuel on the side of the partition wall of the chamber, and it is possible to stratify the inside of the pre-chamber.
本発明の少なくとも一実施形態によれば、副室内にスワール流を生成するとともに、火炎の噴射エネルギの低下を抑制することができる。
According to at least one embodiment of the present invention, it is possible to generate a swirl flow within the subchamber and to suppress a decrease in flame injection energy.
以下、添付図面を参照して本発明の実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, and are merely illustrative examples. do not have.
[実施形態1]
[エンジンの全体構成]
図1に示すように、実施形態1に係るエンジン1Aは、ピストン10、シリンダブロック12、シリンダヘッド14、隔壁16、噴射ノズル18及び点火プラグ20を備えている。シリンダブロック12には、ピストン10が往復動するシリンダ22が設けられている。シリンダヘッド14は、シリンダブロック12に固定され、ピストン10との間に主室(燃焼室)24を形成している。シリンダヘッド14には、吸気ポート26及び排気ポート28が設けられている。吸気ポート26及び排気ポート28は、例えば、1つの主室24に対して2つずつ設けられているが、これに限定されるものではない。吸気ポート26には、吸気ポート26を開閉する吸気バルブ30が設けられ、排気ポート28には、排気ポート28を開閉する排気バルブ32が設けられている。例えば、吸気ポート26には、燃料を噴射する噴射ノズル34(以下「ポートインジェクタ34」という)が設けられているが、ポートインジェクタ34は必須ではない。隔壁16は、シリンダヘッド14の主室側に設けられ、主室内に副室(予備燃焼室)36を形成している。噴射ノズル18(以下「ダイレクトインジェクタ18」という)は、主室内に燃料を噴射する噴射ノズルである。点火プラグ20は、副室内に設置され、副室内に流入した混合気に点火可能である。 [Embodiment 1]
[Overall engine configuration]
As shown in FIG. 1, anengine 1A according to the first embodiment includes a piston 10, a cylinder block 12, a cylinder head 14, a partition wall 16, an injection nozzle 18, and a spark plug 20. The cylinder block 12 is provided with a cylinder 22 in which the piston 10 reciprocates. The cylinder head 14 is fixed to the cylinder block 12 and forms a main chamber (combustion chamber) 24 between it and the piston 10. The cylinder head 14 is provided with an intake port 26 and an exhaust port 28. For example, two intake ports 26 and two exhaust ports 28 are provided for one main chamber 24, but the invention is not limited to this. The intake port 26 is provided with an intake valve 30 that opens and closes the intake port 26, and the exhaust port 28 is provided with an exhaust valve 32 that opens and closes the exhaust port 28. For example, the intake port 26 is provided with an injection nozzle 34 (hereinafter referred to as "port injector 34") that injects fuel, but the port injector 34 is not essential. The partition wall 16 is provided on the main chamber side of the cylinder head 14, and forms an auxiliary chamber (preliminary combustion chamber) 36 within the main chamber. The injection nozzle 18 (hereinafter referred to as "direct injector 18") is an injection nozzle that injects fuel into the main chamber. The spark plug 20 is installed in the subchamber and is capable of igniting the air-fuel mixture that has flowed into the subchamber.
[エンジンの全体構成]
図1に示すように、実施形態1に係るエンジン1Aは、ピストン10、シリンダブロック12、シリンダヘッド14、隔壁16、噴射ノズル18及び点火プラグ20を備えている。シリンダブロック12には、ピストン10が往復動するシリンダ22が設けられている。シリンダヘッド14は、シリンダブロック12に固定され、ピストン10との間に主室(燃焼室)24を形成している。シリンダヘッド14には、吸気ポート26及び排気ポート28が設けられている。吸気ポート26及び排気ポート28は、例えば、1つの主室24に対して2つずつ設けられているが、これに限定されるものではない。吸気ポート26には、吸気ポート26を開閉する吸気バルブ30が設けられ、排気ポート28には、排気ポート28を開閉する排気バルブ32が設けられている。例えば、吸気ポート26には、燃料を噴射する噴射ノズル34(以下「ポートインジェクタ34」という)が設けられているが、ポートインジェクタ34は必須ではない。隔壁16は、シリンダヘッド14の主室側に設けられ、主室内に副室(予備燃焼室)36を形成している。噴射ノズル18(以下「ダイレクトインジェクタ18」という)は、主室内に燃料を噴射する噴射ノズルである。点火プラグ20は、副室内に設置され、副室内に流入した混合気に点火可能である。 [Embodiment 1]
[Overall engine configuration]
As shown in FIG. 1, an
[エンジン1Aの全体動作]
実施形態1に係るエンジン1Aは、吸気バルブ30が吸気ポート26を開放するとともにピストン10が下降する吸気行程において、ポートインジェクタ34が燃料を噴射する。これにより、吸気ポート26から主室24に混合気が供給される。実施形態1に係るエンジン1Aでは、主室内の混合気は理論空燃比よりも薄いリーン混合気となる。 [Overall operation ofengine 1A]
In theengine 1A according to the first embodiment, the port injector 34 injects fuel during the intake stroke in which the intake valve 30 opens the intake port 26 and the piston 10 descends. As a result, the air-fuel mixture is supplied from the intake port 26 to the main chamber 24 . In the engine 1A according to the first embodiment, the air-fuel mixture in the main chamber is a lean air-fuel mixture that is thinner than the stoichiometric air-fuel ratio.
実施形態1に係るエンジン1Aは、吸気バルブ30が吸気ポート26を開放するとともにピストン10が下降する吸気行程において、ポートインジェクタ34が燃料を噴射する。これにより、吸気ポート26から主室24に混合気が供給される。実施形態1に係るエンジン1Aでは、主室内の混合気は理論空燃比よりも薄いリーン混合気となる。 [Overall operation of
In the
吸気バルブ30が吸気ポート26を閉鎖するとともにピストン10が上昇する圧縮行程において、ダイレクトインジェクタ18が燃料を噴射する。これにより、ダイレクトインジェクタ18から噴射された燃料は主室内の混合気とともに副室36に供給される。実施形態1に係るエンジン1Aでは、副室内の混合気は理論空燃比付近の混合気となる。
During the compression stroke in which the intake valve 30 closes the intake port 26 and the piston 10 rises, the direct injector 18 injects fuel. Thereby, the fuel injected from the direct injector 18 is supplied to the auxiliary chamber 36 together with the air-fuel mixture in the main chamber. In the engine 1A according to the first embodiment, the air-fuel mixture in the pre-chamber is near the stoichiometric air-fuel ratio.
ピストン10を下降させる膨張行程において、副室内の混合気は点火プラグ20によって点火される。これにより、副室内の混合気は火炎となって主室内に噴射され、主室内の混合気を燃焼させる。
During the expansion stroke that moves the piston 10 downward, the air-fuel mixture in the pre-chamber is ignited by the spark plug 20. As a result, the air-fuel mixture in the auxiliary chamber becomes a flame and is injected into the main chamber, thereby combusting the air-fuel mixture in the main chamber.
排気バルブ32が排気ポート28を開放するとともにピストン10が上昇する排気行程において、主室内の燃焼ガスが排出される。これら、吸気行程、圧縮行程、膨張行程及び排気行程を繰り返すことにより、エンジン1Aは運転される。
During the exhaust stroke in which the exhaust valve 32 opens the exhaust port 28 and the piston 10 rises, the combustion gas in the main chamber is exhausted. The engine 1A is operated by repeating these intake stroke, compression stroke, expansion stroke, and exhaust stroke.
[隔壁16の構成]
図2Aに示すように、隔壁16は、円錐台形状の外形を有している。隔壁16の大径側の端部にはフランジ38が設けられ、このフランジ38によって隔壁16がシリンダヘッド14の主室側に固定される。これにより、隔壁16の大径側がシリンダヘッド14に固定される基端部側となり、小径側がピストン側に位置する先端部側となる。隔壁16は、その内部に円錐台形状の副室36を有している。そして、副室36の大径側はシリンダヘッド側に位置する副室基部40を構成し、小径側はピストン側に位置する副室先端部42を構成する。 [Configuration of partition wall 16]
As shown in FIG. 2A, thepartition wall 16 has a truncated conical outer shape. A flange 38 is provided at the end of the large diameter side of the partition wall 16, and the partition wall 16 is fixed to the main chamber side of the cylinder head 14 by this flange 38. Thereby, the large diameter side of the partition wall 16 becomes the proximal end side fixed to the cylinder head 14, and the small diameter side becomes the distal end side located on the piston side. The partition wall 16 has a truncated conical subchamber 36 therein. The large diameter side of the subchamber 36 forms a subchamber base 40 located on the cylinder head side, and the small diameter side forms a subchamber tip 42 located on the piston side.
図2Aに示すように、隔壁16は、円錐台形状の外形を有している。隔壁16の大径側の端部にはフランジ38が設けられ、このフランジ38によって隔壁16がシリンダヘッド14の主室側に固定される。これにより、隔壁16の大径側がシリンダヘッド14に固定される基端部側となり、小径側がピストン側に位置する先端部側となる。隔壁16は、その内部に円錐台形状の副室36を有している。そして、副室36の大径側はシリンダヘッド側に位置する副室基部40を構成し、小径側はピストン側に位置する副室先端部42を構成する。 [Configuration of partition wall 16]
As shown in FIG. 2A, the
隔壁16は、スワール流生成連通路44及び火炎噴射連通路46を有している。スワール流生成連通路44は、主室24から副室36に通じる連通路であって、図2Bに示すように、シリンダ22の周方向において副室36の中心Oに向かう方向に対して傾いて設けられている(例えば、角度θ傾いて設けられている)。火炎噴射連通路46は、副室36から主室24に通じる連通路であって、図2Cに示すように、シリンダ22の周方向又は延在方向において、スワール流生成連通路44と異なる位置に設けられている。火炎噴射連通路46は、シリンダ22の周方向において副室36の中心に向かって真っ直ぐに設けられている。
The partition wall 16 has a swirl flow generation communication passage 44 and a flame injection communication passage 46. The swirl flow generation communication passage 44 is a communication passage leading from the main chamber 24 to the auxiliary chamber 36, and is inclined with respect to the direction toward the center O of the auxiliary chamber 36 in the circumferential direction of the cylinder 22, as shown in FIG. 2B. (for example, provided at an angle θ). The flame injection communication passage 46 is a communication passage that communicates from the auxiliary chamber 36 to the main chamber 24, and is located at a different position from the swirl flow generation communication passage 44 in the circumferential direction or the extending direction of the cylinder 22, as shown in FIG. 2C. It is provided. The flame injection communication passage 46 is provided straight toward the center of the auxiliary chamber 36 in the circumferential direction of the cylinder 22 .
また、隔壁16は、スワール流生成連通路44からの火炎の噴射を抑制するための抑制手段を備えている。抑制手段は、火炎噴射連通路46から噴射される火炎よりもスワール流生成連通路44から噴射される火炎が小さくなるように抑制するものであれば、いかなるものであってもよい。
Furthermore, the partition wall 16 includes a suppressing means for suppressing flame injection from the swirl flow generation communication passage 44. The suppressing means may be of any type as long as it suppresses the flame injected from the swirl flow generation communication path 44 to be smaller than the flame injected from the flame injection communication path 46.
[エンジン1Aの動作]
実施形態1に係るエンジン1Aでは、エンジン1Aの圧縮行程において主室24からスワール流生成連通路44及び火炎噴射連通路46を通り副室36に混合気が供給される。スワール流生成連通路44から供給された混合気は、隔壁16の副室側壁面16aに沿って旋回し、副室内にスワール流SFを生成する。 [Operation ofengine 1A]
In theengine 1A according to the first embodiment, the air-fuel mixture is supplied from the main chamber 24 to the auxiliary chamber 36 through the swirl flow generation communication passage 44 and the flame injection communication passage 46 during the compression stroke of the engine 1A. The air-fuel mixture supplied from the swirl flow generation communication passage 44 swirls along the sub-chamber side wall surface 16a of the partition wall 16 to generate a swirl flow SF in the sub-chamber.
実施形態1に係るエンジン1Aでは、エンジン1Aの圧縮行程において主室24からスワール流生成連通路44及び火炎噴射連通路46を通り副室36に混合気が供給される。スワール流生成連通路44から供給された混合気は、隔壁16の副室側壁面16aに沿って旋回し、副室内にスワール流SFを生成する。 [Operation of
In the
次に、エンジン1Aの膨張行程において点火プラグ20が副室内の混合気に点火する。すると、副室内の混合気は火炎となって火炎噴射連通路46及びスワール流生成連通路44を通り主室内に噴射される。このとき、主室24からスワール流生成連通路44を通る火炎の噴射は抑制手段によって抑制される。これにより、火炎噴射連通路46からの火炎の噴射エネルギが増加し、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。そして、火炎噴射連通路46及びスワール流生成連通路44を通り主室内に噴射された火炎は主室内の混合気を燃焼させる。
Next, during the expansion stroke of the engine 1A, the spark plug 20 ignites the air-fuel mixture in the pre-chamber. Then, the air-fuel mixture in the auxiliary chamber becomes a flame and is injected into the main chamber through the flame injection communication passage 46 and the swirl flow generation communication passage 44. At this time, the flame injection from the main chamber 24 through the swirl flow generation communication passage 44 is suppressed by the suppressing means. As a result, the energy of the flame emitted from the flame injection communication passage 46 increases, and a decrease in the energy of the flame injection from the flame injection communication passage 46 can be suppressed. The flame injected into the main chamber through the flame injection communication passage 46 and the swirl flow generation communication passage 44 combusts the air-fuel mixture within the main chamber.
[効果]
実施形態1に係るエンジン1Aによれば、抑制手段がスワール流生成連通路44からの火炎の噴射を抑制するので、火炎噴射連通路46からの火炎の噴射エネルギが増加し、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。これにより、副室内にスワール流SFを生成するとともに、火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to theengine 1A according to the first embodiment, since the suppressing means suppresses the flame injection from the swirl flow generation communication passage 44, the flame injection energy from the flame injection communication passage 46 increases, and the flame injection communication passage 46 increases. It is possible to suppress a decrease in the flame injection energy from the flame. Thereby, it is possible to generate a swirl flow SF in the subchamber and to suppress a decrease in flame injection energy.
実施形態1に係るエンジン1Aによれば、抑制手段がスワール流生成連通路44からの火炎の噴射を抑制するので、火炎噴射連通路46からの火炎の噴射エネルギが増加し、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。これにより、副室内にスワール流SFを生成するとともに、火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the
[実施形態2]
[エンジンの構成]
実施形態2に係るエンジン1Bでは、抑制手段は、スワール流生成連通路44の最大流路断面積A1を火炎噴射連通路46の最小流路断面積A2より小さくしたことである。例えば、スワール流生成連通路44及び火炎噴射連通路46の径(直径)が一定である場合には、スワール流生成連通路44の径(直径)D1を火炎噴射連通路46の径D2より小さくする。実施形態2に係るエンジン1Bの他の構成は、上述した実施形態1に係るエンジン1Aの構成と同じである。 [Embodiment 2]
[Engine configuration]
In theengine 1B according to the second embodiment, the suppressing means is that the maximum flow passage cross-sectional area A1 of the swirl flow generation communication passage 44 is made smaller than the minimum flow passage cross-sectional area A2 of the flame injection communication passage 46. For example, when the diameters (diameters) of the swirl flow generation communication passage 44 and the flame injection communication passage 46 are constant, the diameter (diameter) D1 of the swirl flow generation communication passage 44 is smaller than the diameter D2 of the flame injection communication passage 46. do. The other configuration of the engine 1B according to the second embodiment is the same as the configuration of the engine 1A according to the first embodiment described above.
[エンジンの構成]
実施形態2に係るエンジン1Bでは、抑制手段は、スワール流生成連通路44の最大流路断面積A1を火炎噴射連通路46の最小流路断面積A2より小さくしたことである。例えば、スワール流生成連通路44及び火炎噴射連通路46の径(直径)が一定である場合には、スワール流生成連通路44の径(直径)D1を火炎噴射連通路46の径D2より小さくする。実施形態2に係るエンジン1Bの他の構成は、上述した実施形態1に係るエンジン1Aの構成と同じである。 [Embodiment 2]
[Engine configuration]
In the
[エンジン1Bの動作]
実施形態2に係るエンジン1Bでは、スワール流生成連通路44の最大流路断面積A1を火炎噴射連通路46の最小流路断面積A2よりも小さくしたことによって、エンジン1Bの膨張行程において主室24からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態2に係るエンジン1Bの他の動作は、上述した実施形態1に係るエンジン1Aの動作と同じである。 [Operation ofengine 1B]
In theengine 1B according to the second embodiment, the maximum flow passage cross-sectional area A1 of the swirl flow generation communication passage 44 is made smaller than the minimum flow passage cross-section area A2 of the flame injection communication passage 46, so that during the expansion stroke of the engine 1B, the main chamber 24 through the swirl flow generation communication path 44 is suppressed. Other operations of the engine 1B according to the second embodiment are the same as those of the engine 1A according to the first embodiment described above.
実施形態2に係るエンジン1Bでは、スワール流生成連通路44の最大流路断面積A1を火炎噴射連通路46の最小流路断面積A2よりも小さくしたことによって、エンジン1Bの膨張行程において主室24からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態2に係るエンジン1Bの他の動作は、上述した実施形態1に係るエンジン1Aの動作と同じである。 [Operation of
In the
[効果]
実施形態2に係るエンジン1Bによれば、スワール流生成連通路44の最大流路断面積A1を火炎噴射連通路46の最小流路断面積A2より小さくしたので、スワール流生成連通路44からの火炎の噴射が抑制され、火炎噴射連通路46からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to theengine 1B according to the second embodiment, since the maximum flow passage cross-sectional area A1 of the swirl flow generation communication passage 44 is made smaller than the minimum flow passage cross-section area A2 of the flame injection communication passage 46, the flow from the swirl flow generation communication passage 44 is Flame injection is suppressed, and the flame injection energy from the flame injection communication passage 46 increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage 46.
実施形態2に係るエンジン1Bによれば、スワール流生成連通路44の最大流路断面積A1を火炎噴射連通路46の最小流路断面積A2より小さくしたので、スワール流生成連通路44からの火炎の噴射が抑制され、火炎噴射連通路46からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the
[実施形態3]
[エンジンの構成]
実施形態3に係るエンジン1Cでは、抑制手段は、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20までの距離より長くしたことである。図2Aに示すように、点火プラグ20の点火点48が副室基部40に配置される場合に、隔壁16の基端部側に火炎噴射連通路46を設ける一方、隔壁16の先端部側にスワール流生成連通路44を設けることで、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20までの距離より長くしている。一方、図3に示すように、点火プラグ20の点火点48が副室先端部42に配置される場合に、隔壁16の先端部側に火炎噴射連通路46を設ける一方、隔壁16の先端部側にスワール流生成連通路44を設けることで、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20までの距離より長くしている。実施形態3に係るエンジン1Cの他の構成は、上述した実施形態1又は2に係るエンジン1A又は1Bの構成と同じである。 [Embodiment 3]
[Engine configuration]
In the engine 1C according to the third embodiment, the suppressing means is to make the distance from the swirl flowgeneration communication passage 44 to the spark plug 20 longer than the distance from the flame injection communication passage 46 to the spark plug 20. As shown in FIG. 2A, when the ignition point 48 of the spark plug 20 is disposed at the sub-chamber base 40, the flame injection communication passage 46 is provided on the base end side of the partition wall 16, while the flame injection communication passage 46 is provided on the distal end side of the partition wall 16. By providing the swirl flow generation communication passage 44, the distance from the swirl flow generation communication passage 44 to the spark plug 20 is made longer than the distance from the flame injection communication passage 46 to the spark plug 20. On the other hand, as shown in FIG. 3, when the ignition point 48 of the ignition plug 20 is disposed at the front end portion 42 of the sub-chamber, the flame injection communication passage 46 is provided at the front end side of the partition wall 16; By providing the swirl flow generation communication passage 44 on the side, the distance from the swirl flow generation communication passage 44 to the spark plug 20 is made longer than the distance from the flame injection communication passage 46 to the spark plug 20. The other configuration of the engine 1C according to the third embodiment is the same as the configuration of the engine 1A or 1B according to the first or second embodiment described above.
[エンジンの構成]
実施形態3に係るエンジン1Cでは、抑制手段は、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20までの距離より長くしたことである。図2Aに示すように、点火プラグ20の点火点48が副室基部40に配置される場合に、隔壁16の基端部側に火炎噴射連通路46を設ける一方、隔壁16の先端部側にスワール流生成連通路44を設けることで、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20までの距離より長くしている。一方、図3に示すように、点火プラグ20の点火点48が副室先端部42に配置される場合に、隔壁16の先端部側に火炎噴射連通路46を設ける一方、隔壁16の先端部側にスワール流生成連通路44を設けることで、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20までの距離より長くしている。実施形態3に係るエンジン1Cの他の構成は、上述した実施形態1又は2に係るエンジン1A又は1Bの構成と同じである。 [Embodiment 3]
[Engine configuration]
In the engine 1C according to the third embodiment, the suppressing means is to make the distance from the swirl flow
[エンジン1Cの動作]
実施形態3に係るエンジン1Cでは、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20の距離より長くしたことによって、エンジン1Cの膨張行程において主室24からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態3に係るエンジン1Cの他の動作は、上述した実施形態1又は2に係るエンジン1A又は1Bの動作と同じである。 [Operation of engine 1C]
In the engine 1C according to the third embodiment, by making the distance from the swirl flowgeneration communication passage 44 to the spark plug 20 longer than the distance from the flame injection communication passage 46 to the spark plug 20, the distance from the main chamber 24 during the expansion stroke of the engine 1C is Flame injection through the swirl flow generation communication passage 44 is suppressed. Other operations of the engine 1C according to the third embodiment are the same as those of the engine 1A or 1B according to the first or second embodiment described above.
実施形態3に係るエンジン1Cでは、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20の距離より長くしたことによって、エンジン1Cの膨張行程において主室24からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態3に係るエンジン1Cの他の動作は、上述した実施形態1又は2に係るエンジン1A又は1Bの動作と同じである。 [Operation of engine 1C]
In the engine 1C according to the third embodiment, by making the distance from the swirl flow
[効果]
実施形態3に係るエンジン1Cによれば、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20までの距離より長くしたので、スワール流生成連通路44からの火炎の噴射が抑制され、火炎噴射連通路46からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1C according to the third embodiment, since the distance from the swirl flowgeneration communication passage 44 to the spark plug 20 is made longer than the distance from the flame injection communication passage 46 to the spark plug 20, Flame injection is suppressed, and the flame injection energy from the flame injection communication passage 46 increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage 46.
実施形態3に係るエンジン1Cによれば、スワール流生成連通路44の点火プラグ20までの距離を火炎噴射連通路46の点火プラグ20までの距離より長くしたので、スワール流生成連通路44からの火炎の噴射が抑制され、火炎噴射連通路46からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1C according to the third embodiment, since the distance from the swirl flow
[実施形態4]
[エンジンの構成]
実施形態4に係るエンジン1Dでは、抑制手段は、点火プラグ20とスワール流生成連通路44との間に設けられた障害物である。障害物は、例えば、庇状の構造物であり、エンジン1Dの膨張行程においてスワール流生成連通路44からの火炎の噴射を抑制するように配置される。実施形態4に係るエンジン1Dの他の構成は、上述した実施形態1から3に係るエンジン1Aから1Cのいずれかの構成と同じである。 [Embodiment 4]
[Engine configuration]
In the engine 1D according to the fourth embodiment, the suppressing means is an obstacle provided between thespark plug 20 and the swirl flow generation communication path 44. The obstacle is, for example, an eave-like structure, and is arranged so as to suppress the injection of flame from the swirl flow generation communication passage 44 during the expansion stroke of the engine 1D. The other configuration of the engine 1D according to the fourth embodiment is the same as the configuration of any one of the engines 1A to 1C according to the first to third embodiments described above.
[エンジンの構成]
実施形態4に係るエンジン1Dでは、抑制手段は、点火プラグ20とスワール流生成連通路44との間に設けられた障害物である。障害物は、例えば、庇状の構造物であり、エンジン1Dの膨張行程においてスワール流生成連通路44からの火炎の噴射を抑制するように配置される。実施形態4に係るエンジン1Dの他の構成は、上述した実施形態1から3に係るエンジン1Aから1Cのいずれかの構成と同じである。 [Embodiment 4]
[Engine configuration]
In the engine 1D according to the fourth embodiment, the suppressing means is an obstacle provided between the
[エンジン1の動作]
実施形態4に係るエンジン1Dでは、点火プラグ20とスワール流生成連通路44との間に設けられた障害物によって、エンジン1Dの膨張行程において主室24からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態4に係るエンジン1Dの他の動作は、上述した実施形態1から3に係るエンジン1Aから1Cのいずれかの動作と同じである。 [Operation of engine 1]
In the engine 1D according to the fourth embodiment, an obstacle provided between thespark plug 20 and the swirl flow generation communication passage 44 prevents the flame from passing from the main chamber 24 through the swirl flow generation communication passage 44 during the expansion stroke of the engine 1D. Injection is suppressed. Other operations of the engine 1D according to the fourth embodiment are the same as those of any of the engines 1A to 1C according to the first to third embodiments described above.
実施形態4に係るエンジン1Dでは、点火プラグ20とスワール流生成連通路44との間に設けられた障害物によって、エンジン1Dの膨張行程において主室24からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態4に係るエンジン1Dの他の動作は、上述した実施形態1から3に係るエンジン1Aから1Cのいずれかの動作と同じである。 [Operation of engine 1]
In the engine 1D according to the fourth embodiment, an obstacle provided between the
[効果]
実施形態4に係るエンジン1Dによれば、障害物が点火プラグ20からスワール流生成連通路44に流れる火炎の障害となるので、スワール流生成連通路44からの火炎の噴射が抑制され、火炎噴射連通路46からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1D according to the fourth embodiment, since the obstacle becomes an obstacle to the flame flowing from thespark plug 20 to the swirl flow generation communication passage 44, flame injection from the swirl flow generation communication passage 44 is suppressed, and flame injection is suppressed. The injection energy of the flame from the communication path 46 increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage 46.
実施形態4に係るエンジン1Dによれば、障害物が点火プラグ20からスワール流生成連通路44に流れる火炎の障害となるので、スワール流生成連通路44からの火炎の噴射が抑制され、火炎噴射連通路46からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1D according to the fourth embodiment, since the obstacle becomes an obstacle to the flame flowing from the
[実施形態5]
[エンジンの構成]
実施形態5に係るエンジン1Eでは、抑制手段は、スワール流生成連通路44を火炎噴射連通路46より長くしたことである。例えば、図2Bに示すように、スワール流生成連通路44を副室36の接線方向に配置することで、スワール流生成連通路44を火炎噴射連通路46より長くしている。実施形態5に係るエンジン1Eの他の構成は、上述した実施形態1から4に係るエンジン1Aから1Dのいずれかの構成と同じである。 [Embodiment 5]
[Engine configuration]
In the engine 1E according to the fifth embodiment, the suppressing means is that the swirl flowgeneration communication passage 44 is made longer than the flame injection communication passage 46. For example, as shown in FIG. 2B, by arranging the swirl flow generation communication passage 44 in the tangential direction of the auxiliary chamber 36, the swirl flow generation communication passage 44 is made longer than the flame injection communication passage 46. The other configuration of the engine 1E according to the fifth embodiment is the same as the configuration of any one of the engines 1A to 1D according to the first to fourth embodiments described above.
[エンジンの構成]
実施形態5に係るエンジン1Eでは、抑制手段は、スワール流生成連通路44を火炎噴射連通路46より長くしたことである。例えば、図2Bに示すように、スワール流生成連通路44を副室36の接線方向に配置することで、スワール流生成連通路44を火炎噴射連通路46より長くしている。実施形態5に係るエンジン1Eの他の構成は、上述した実施形態1から4に係るエンジン1Aから1Dのいずれかの構成と同じである。 [Embodiment 5]
[Engine configuration]
In the engine 1E according to the fifth embodiment, the suppressing means is that the swirl flow
[エンジン1Eの動作]
実施形態5に係るエンジン1Eでは、スワール流生成連通路44を火炎噴射連通路46より長くしたことによって、エンジン1Eの膨張行程において副室36からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態5に係るエンジン1Eの他の動作は、上述した実施形態1から4に係るエンジン1Aから1Dのいずれかの動作と同じである。 [Operation of engine 1E]
In the engine 1E according to the fifth embodiment, by making the swirl flowgeneration communication passage 44 longer than the flame injection communication passage 46, flame injection from the auxiliary chamber 36 through the swirl flow generation communication passage 44 is suppressed during the expansion stroke of the engine 1E. be done. Other operations of the engine 1E according to the fifth embodiment are the same as those of any of the engines 1A to 1D according to the first to fourth embodiments described above.
実施形態5に係るエンジン1Eでは、スワール流生成連通路44を火炎噴射連通路46より長くしたことによって、エンジン1Eの膨張行程において副室36からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態5に係るエンジン1Eの他の動作は、上述した実施形態1から4に係るエンジン1Aから1Dのいずれかの動作と同じである。 [Operation of engine 1E]
In the engine 1E according to the fifth embodiment, by making the swirl flow
[効果]
実施形態5に係るエンジン1Eによれば、スワール流生成連通路44を火炎噴射連通路46よりも長くしたので、スワール流生成連通路44からの火炎の噴射が抑制され、火炎噴射連通路46からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1E according to the fifth embodiment, since the swirl flowgeneration communication passage 44 is made longer than the flame injection communication passage 46, flame injection from the swirl flow generation communication passage 44 is suppressed, and flame injection from the flame injection communication passage 46 is suppressed. The injection energy of the flame increases. Thereby, it is possible to suppress a decrease in the flame injection energy from the flame injection communication passage 46.
実施形態5に係るエンジン1Eによれば、スワール流生成連通路44を火炎噴射連通路46よりも長くしたので、スワール流生成連通路44からの火炎の噴射が抑制され、火炎噴射連通路46からの火炎の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1E according to the fifth embodiment, since the swirl flow
[実施形態6]
[エンジンの構成]
実施形態6に係るエンジン1Fでは、副室基部40に点火プラグ20の点火点48と火炎噴射連通路46が設けられ、副室先端部42にスワール流生成連通路44が設けられ、抑制手段は、副室先端部42の容積を副室基部40の容積より小さくしたことである。例えば、図4に示すように、隔壁16の基端部側に点火プラグ20の先端部が収容される円錐台状の副室基部40を設けるとともに、隔壁16の先端部側に副室基部40の容積より小さい円柱状の副室先端部42を設けることで、副室基部40と副室先端部42の境界に段差面50を設け、副室先端部42の容積を副室基部40の容積よりも小さくしている。実施形態6に係るエンジン1Fの他の構成は、上述した実施形態1から5に係るエンジン1Aから1Eのいずれかの構成と同じである。 [Embodiment 6]
[Engine configuration]
In the engine 1F according to the sixth embodiment, theignition point 48 of the spark plug 20 and the flame injection communication passage 46 are provided in the pre-chamber base 40, the swirl flow generation communication passage 44 is provided in the pre-chamber tip 42, and the suppressing means is , the volume of the sub-chamber tip 42 is made smaller than the volume of the sub-chamber base 40. For example, as shown in FIG. 4, a truncated conical sub-chamber base 40 in which the tip of the spark plug 20 is accommodated is provided on the base end side of the partition wall 16, and a sub-chamber base 40 is provided on the distal end side of the partition wall 16. By providing the cylindrical sub-chamber tip 42 whose volume is smaller than the volume of the sub-chamber, a step surface 50 is provided at the boundary between the sub-chamber base 40 and the sub-chamber tip 42, and the volume of the sub-chamber tip 42 is made smaller than the volume of the sub-chamber base 40. It's smaller than that. The other configuration of the engine 1F according to the sixth embodiment is the same as the configuration of any one of the engines 1A to 1E according to the first to fifth embodiments described above.
[エンジンの構成]
実施形態6に係るエンジン1Fでは、副室基部40に点火プラグ20の点火点48と火炎噴射連通路46が設けられ、副室先端部42にスワール流生成連通路44が設けられ、抑制手段は、副室先端部42の容積を副室基部40の容積より小さくしたことである。例えば、図4に示すように、隔壁16の基端部側に点火プラグ20の先端部が収容される円錐台状の副室基部40を設けるとともに、隔壁16の先端部側に副室基部40の容積より小さい円柱状の副室先端部42を設けることで、副室基部40と副室先端部42の境界に段差面50を設け、副室先端部42の容積を副室基部40の容積よりも小さくしている。実施形態6に係るエンジン1Fの他の構成は、上述した実施形態1から5に係るエンジン1Aから1Eのいずれかの構成と同じである。 [Embodiment 6]
[Engine configuration]
In the engine 1F according to the sixth embodiment, the
[エンジン1Fの動作]
実施形態6に係るエンジン1Fでは、エンジン1Fの膨張行程において火炎は副室基部40と副室先端部42の境界で副室側壁面16aから剥離するので、副室36からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態6に係るエンジン1Fの他の動作は、上述した実施形態1から5に係るエンジン1Aから1Eのいずれかの動作と同じである。 [Engine 1F operation]
In the engine 1F according to the sixth embodiment, during the expansion stroke of the engine 1F, the flame separates from the sub-chamberside wall surface 16a at the boundary between the sub-chamber base 40 and the sub-chamber tip 42, so that the flame is separated from the sub-chamber side wall surface 16a from the sub-chamber 36 to the swirl flow generation communication passage 44. The flame jet through is suppressed. Other operations of the engine 1F according to the sixth embodiment are the same as those of any of the engines 1A to 1E according to the first to fifth embodiments described above.
実施形態6に係るエンジン1Fでは、エンジン1Fの膨張行程において火炎は副室基部40と副室先端部42の境界で副室側壁面16aから剥離するので、副室36からスワール流生成連通路44を通る火炎の噴射は抑制される。実施形態6に係るエンジン1Fの他の動作は、上述した実施形態1から5に係るエンジン1Aから1Eのいずれかの動作と同じである。 [Engine 1F operation]
In the engine 1F according to the sixth embodiment, during the expansion stroke of the engine 1F, the flame separates from the sub-chamber
[効果]
実施形態6に係るエンジン1Fによれば、副室先端部42の容積を副室基部40の容積より小さくしたので、副室基部40と副室先端部42の境界で火炎が剥離する。これにより、副室基部40から副室先端部42に火炎が流れ難くなり、副室先端部42に設けられたスワール流生成連通路44からの火炎の噴射が抑制される。この結果、副室基部40に設けられた火炎噴射連通路46からの火炎の噴射エネルギが増加するので、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1F according to the sixth embodiment, since the volume of thesub-chamber tip 42 is made smaller than the volume of the sub-chamber base 40, the flame separates at the boundary between the sub-chamber base 40 and the sub-chamber tip 42. This makes it difficult for the flame to flow from the sub-chamber base 40 to the sub-chamber tip 42, and suppresses flame injection from the swirl flow generation communication passage 44 provided in the sub-chamber tip 42. As a result, the energy of the flame ejected from the flame injection communication passage 46 provided in the sub-chamber base 40 increases, so that a decrease in the energy of the flame injection from the flame injection communication passage 46 can be suppressed.
実施形態6に係るエンジン1Fによれば、副室先端部42の容積を副室基部40の容積より小さくしたので、副室基部40と副室先端部42の境界で火炎が剥離する。これにより、副室基部40から副室先端部42に火炎が流れ難くなり、副室先端部42に設けられたスワール流生成連通路44からの火炎の噴射が抑制される。この結果、副室基部40に設けられた火炎噴射連通路46からの火炎の噴射エネルギが増加するので、火炎噴射連通路46からの火炎の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1F according to the sixth embodiment, since the volume of the
[実施形態7]
[エンジンの構成]
実施形態7に係るエンジン1Gでは、抑制手段は、火炎噴射連通路46の副室側開口のスワール流流れ方向上流側を湾曲面とする一方、スワール流生成連通路44の上流側を角部とすることである。例えば、火炎噴射連通路46の副室側開口のスワール流流れ方向上流側を角丸め加工(いわゆるR面取り加工)を施す一方、スワール流生成連通路44の副室側開口をそのままとする。実施形態7に係るエンジン1Gの他の構成は、上述した実施形態1から6に係るエンジン1Aから1Fのいずれかの構成と同じである。 [Embodiment 7]
[Engine configuration]
In the engine 1G according to the seventh embodiment, the suppressing means has a curved surface on the upstream side in the swirl flow direction of the sub-chamber side opening of the flameinjection communication passage 46, and a corner portion on the upstream side of the swirl flow generation communication passage 44. It is to be. For example, the upstream side in the swirl flow direction of the opening on the side of the sub-chamber of the flame injection communication passage 46 is rounded (so-called R-chamfering), while the opening on the side of the sub-chamber of the swirl flow generation communication passage 44 is left as is. The other configuration of the engine 1G according to the seventh embodiment is the same as the configuration of any one of the engines 1A to 1F according to the first to sixth embodiments described above.
[エンジンの構成]
実施形態7に係るエンジン1Gでは、抑制手段は、火炎噴射連通路46の副室側開口のスワール流流れ方向上流側を湾曲面とする一方、スワール流生成連通路44の上流側を角部とすることである。例えば、火炎噴射連通路46の副室側開口のスワール流流れ方向上流側を角丸め加工(いわゆるR面取り加工)を施す一方、スワール流生成連通路44の副室側開口をそのままとする。実施形態7に係るエンジン1Gの他の構成は、上述した実施形態1から6に係るエンジン1Aから1Fのいずれかの構成と同じである。 [Embodiment 7]
[Engine configuration]
In the engine 1G according to the seventh embodiment, the suppressing means has a curved surface on the upstream side in the swirl flow direction of the sub-chamber side opening of the flame
[エンジン1Gの動作]
実施形態7に係るエンジン1Gでは、火炎噴射連通路46の副室側開口のスワール流流れ方向上流側を湾曲面とする一方、スワール流生成連通路44の上流側を角部とすることで、火炎噴射連通路46から噴射される燃焼ガスの流量係数がスワール流生成連通路44から噴射される燃焼ガスの流量係数よりも大きくなる。実施形態7に係るエンジン1Gの他の動作は、上述した実施形態1から6に係るエンジン1Aから1Fのいずれかの動作と同じである。 [Engine 1G operation]
In the engine 1G according to the seventh embodiment, the upstream side in the swirl flow direction of the sub-chamber side opening of the flameinjection communication passage 46 is made into a curved surface, while the upstream side of the swirl flow generation communication passage 44 is made into a corner part. The flow coefficient of the combustion gas injected from the flame injection communication passage 46 becomes larger than the flow coefficient of the combustion gas injected from the swirl flow generation communication passage 44. Other operations of the engine 1G according to the seventh embodiment are the same as those of the engines 1A to 1F according to the first to sixth embodiments described above.
実施形態7に係るエンジン1Gでは、火炎噴射連通路46の副室側開口のスワール流流れ方向上流側を湾曲面とする一方、スワール流生成連通路44の上流側を角部とすることで、火炎噴射連通路46から噴射される燃焼ガスの流量係数がスワール流生成連通路44から噴射される燃焼ガスの流量係数よりも大きくなる。実施形態7に係るエンジン1Gの他の動作は、上述した実施形態1から6に係るエンジン1Aから1Fのいずれかの動作と同じである。 [Engine 1G operation]
In the engine 1G according to the seventh embodiment, the upstream side in the swirl flow direction of the sub-chamber side opening of the flame
[効果]
実施形態7に係るエンジン1Gによれば、火炎噴射連通路46の副室側開口のスワール流流れ方向上流側を湾曲面とする一方、スワール流生成連通路44の上流側を角部とするので、火炎噴射連通路46から噴射される燃焼ガスの流量係数がスワール流生成連通路44から噴射される燃焼ガスの流量係数よりも大きくなり、火炎噴射連通路46からの火炎流の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎流の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1G according to the seventh embodiment, the upstream side in the swirl flow direction of the sub-chamber side opening of the flameinjection communication passage 46 is a curved surface, and the upstream side of the swirl flow generation communication passage 44 is a corner. , the flow rate coefficient of the combustion gas injected from the flame injection communication passage 46 becomes larger than the flow rate coefficient of the combustion gas injected from the swirl flow generation communication passage 44, and the injection energy of the flame flow from the flame injection communication passage 46 increases. do. Thereby, a decrease in the injection energy of the flame stream from the flame injection communication passage 46 can be suppressed.
実施形態7に係るエンジン1Gによれば、火炎噴射連通路46の副室側開口のスワール流流れ方向上流側を湾曲面とする一方、スワール流生成連通路44の上流側を角部とするので、火炎噴射連通路46から噴射される燃焼ガスの流量係数がスワール流生成連通路44から噴射される燃焼ガスの流量係数よりも大きくなり、火炎噴射連通路46からの火炎流の噴射エネルギが増加する。これにより、火炎噴射連通路46からの火炎流の噴射エネルギの低下を抑制することができる。 [effect]
According to the engine 1G according to the seventh embodiment, the upstream side in the swirl flow direction of the sub-chamber side opening of the flame
[実施形態8]
[エンジンの構成]
図5に示すように、実施形態7に係るエンジン1Hでは、スワール流生成連通路44は、シリンダ22の周方向において副室36から主室24に向けてダイレクトインジェクタ18が設けられた側とは反対側に向かうように設けられる。また、シリンダ22の周方向においてスワール流生成連通路44はダイレクトインジェクタ18の反対側に設けられている。なお、スワール流生成連通路44は、少なくともシリンダ22の周方向において副室36から主室24に向けて噴射ノズル18が設けられた側とは反対側に向かうように設けられていれば良く、ダイレクトインジェクタ18側に設けられていても良い。実施形態7に係るエンジン1Hの他の構成は、上述した実施形態1から6に係るエンジン1Aから1Gのいずれかの構成と同じである。 [Embodiment 8]
[Engine configuration]
As shown in FIG. 5, in theengine 1H according to the seventh embodiment, the swirl flow generation communication passage 44 extends from the subchamber 36 toward the main chamber 24 in the circumferential direction of the cylinder 22 on the side where the direct injector 18 is provided. It is installed facing the opposite side. Furthermore, the swirl flow generation communication passage 44 is provided on the opposite side of the direct injector 18 in the circumferential direction of the cylinder 22 . Note that the swirl flow generation communication passage 44 may be provided at least in the circumferential direction of the cylinder 22 from the auxiliary chamber 36 toward the main chamber 24 on the side opposite to the side where the injection nozzle 18 is provided. It may be provided on the direct injector 18 side. The other configuration of the engine 1H according to the seventh embodiment is the same as the configuration of any one of the engines 1A to 1G according to the first to sixth embodiments described above.
[エンジンの構成]
図5に示すように、実施形態7に係るエンジン1Hでは、スワール流生成連通路44は、シリンダ22の周方向において副室36から主室24に向けてダイレクトインジェクタ18が設けられた側とは反対側に向かうように設けられる。また、シリンダ22の周方向においてスワール流生成連通路44はダイレクトインジェクタ18の反対側に設けられている。なお、スワール流生成連通路44は、少なくともシリンダ22の周方向において副室36から主室24に向けて噴射ノズル18が設けられた側とは反対側に向かうように設けられていれば良く、ダイレクトインジェクタ18側に設けられていても良い。実施形態7に係るエンジン1Hの他の構成は、上述した実施形態1から6に係るエンジン1Aから1Gのいずれかの構成と同じである。 [Embodiment 8]
[Engine configuration]
As shown in FIG. 5, in the
[エンジンHの動作]
実施形態7に係るエンジン1Hでは、エンジン1Hの圧縮行程においてダイレクトインジェクタ18から噴射された燃料がスワール流生成連通路44から流入するのを抑制する。これにより、スワール流生成連通路44から流入された混合気がスワール流SFを生成する。実施形態7に係るエンジン1Hの他の動作は、上述した実施形態1から6に係るエンジン1Aから1Gのいずれかの動作と同じである。 [Operation of engine H]
In theengine 1H according to the seventh embodiment, the fuel injected from the direct injector 18 during the compression stroke of the engine 1H is suppressed from flowing into the swirl flow generation communication passage 44. Thereby, the air-fuel mixture flowing from the swirl flow generation communication passage 44 generates a swirl flow SF. Other operations of the engine 1H according to the seventh embodiment are the same as those of the engines 1A to 1G according to the first to sixth embodiments described above.
実施形態7に係るエンジン1Hでは、エンジン1Hの圧縮行程においてダイレクトインジェクタ18から噴射された燃料がスワール流生成連通路44から流入するのを抑制する。これにより、スワール流生成連通路44から流入された混合気がスワール流SFを生成する。実施形態7に係るエンジン1Hの他の動作は、上述した実施形態1から6に係るエンジン1Aから1Gのいずれかの動作と同じである。 [Operation of engine H]
In the
[効果]
実施形態7に係るエンジン1Hによれば、スワール流生成連通路44は、シリンダ22の周方向において副室36から主室24に向けてダイレクトインジェクタ18が設けられた側とは反対側に向かうように設けられているので、副室36の隔壁側に燃料が多く含まれた混合気の流れが生成されるのを抑制することができ副室内を成層化することができる。また、スワール流生成連通路44をシリンダ22の周方向においてスワール流生成連通路44をダイレクトインジェクタ18の反対側に設けることで、より副室36の隔壁側に燃料が多く含まれた混合気が生成されるのを抑制することができる。 [effect]
According to theengine 1H according to Embodiment 7, the swirl flow generation communication passage 44 extends from the auxiliary chamber 36 toward the main chamber 24 in the circumferential direction of the cylinder 22, toward the side opposite to the side where the direct injector 18 is provided. Since it is provided in the subchamber 36, it is possible to suppress the generation of a flow of air-fuel mixture containing a large amount of fuel on the partition wall side of the subchamber 36, and to stratify the inside of the subchamber 36. Furthermore, by providing the swirl flow generation communication passage 44 on the opposite side of the direct injector 18 in the circumferential direction of the cylinder 22, the air-fuel mixture containing more fuel can be moved closer to the partition wall side of the auxiliary chamber 36. generation can be suppressed.
実施形態7に係るエンジン1Hによれば、スワール流生成連通路44は、シリンダ22の周方向において副室36から主室24に向けてダイレクトインジェクタ18が設けられた側とは反対側に向かうように設けられているので、副室36の隔壁側に燃料が多く含まれた混合気の流れが生成されるのを抑制することができ副室内を成層化することができる。また、スワール流生成連通路44をシリンダ22の周方向においてスワール流生成連通路44をダイレクトインジェクタ18の反対側に設けることで、より副室36の隔壁側に燃料が多く含まれた混合気が生成されるのを抑制することができる。 [effect]
According to the
1A~1H エンジン
10 ピストン
12 シリンダブロック
14 シリンダヘッド
16 隔壁
16a
18 噴射ノズル(ダイレクトインジェクタ)
20 点火プラグ
22 シリンダ
24 主室
26 吸気ポート
28 排気ポート
30 吸気バルブ
32 排気バルブ
34 噴射ノズル(ポートインジェクタ)
36 副室
38 フランジ
40 副室基部
42 副室先端部
44 スワール流生成連通路
46 火炎噴射連通路
48 点火点
50 段差面
SF スワール流
1A to1H Engine 10 Piston 12 Cylinder block 14 Cylinder head 16 Partition wall 16a
18 Injection nozzle (direct injector)
20Spark plug 22 Cylinder 24 Main chamber 26 Intake port 28 Exhaust port 30 Intake valve 32 Exhaust valve 34 Injection nozzle (port injector)
36Subchamber 38 Flange 40 Subchamber base 42 Subchamber tip 44 Swirl flow generation communication passage 46 Flame injection communication passage 48 Ignition point 50 Step surface SF Swirl flow
10 ピストン
12 シリンダブロック
14 シリンダヘッド
16 隔壁
16a
18 噴射ノズル(ダイレクトインジェクタ)
20 点火プラグ
22 シリンダ
24 主室
26 吸気ポート
28 排気ポート
30 吸気バルブ
32 排気バルブ
34 噴射ノズル(ポートインジェクタ)
36 副室
38 フランジ
40 副室基部
42 副室先端部
44 スワール流生成連通路
46 火炎噴射連通路
48 点火点
50 段差面
SF スワール流
1A to
18 Injection nozzle (direct injector)
20
36
Claims (7)
- ピストンと、
前記ピストンが往復動するシリンダが設けられたシリンダブロックと、
前記シリンダブロックに固定され、前記ピストンとの間に主室を形成するシリンダヘッドと、
前記シリンダヘッドの前記主室側に設けられ、前記主室内に副室を形成する隔壁と、
前記副室内に設置された点火プラグと、
を備え、
前記隔壁は、
前記シリンダの周方向において前記副室の中心に向かう方向に対して傾いて設けられ、前記主室から前記副室に通じるスワール流生成連通路と、
前記シリンダの周方向において前記副室の中心に向かって真っ直ぐに設けられ、前記副室から前記主室に通じる火炎噴射連通路と、
前記スワール流生成連通路からの火炎の噴射を抑制するための抑制手段と
を有する、エンジン。 piston and
a cylinder block provided with a cylinder in which the piston reciprocates;
a cylinder head fixed to the cylinder block and forming a main chamber between it and the piston;
a partition wall provided on the main chamber side of the cylinder head and forming a subchamber within the main chamber;
a spark plug installed in the subchamber;
Equipped with
The partition wall is
a swirl flow generation communication passage that is provided in a circumferential direction of the cylinder and is inclined with respect to a direction toward the center of the sub-chamber, and that communicates from the main chamber to the sub-chamber;
a flame injection communication passage provided straight toward the center of the auxiliary chamber in the circumferential direction of the cylinder and communicating from the auxiliary chamber to the main chamber;
and a suppressing means for suppressing flame injection from the swirl flow generation communication passage. - 前記抑制手段は、前記スワール流生成連通路の最大流路断面積を前記火炎噴射連通路の最小流路断面積より小さくしたことである、請求項1に記載のエンジン。 The engine according to claim 1, wherein the suppressing means is that the maximum flow cross-sectional area of the swirl flow generation communication passage is made smaller than the minimum flow passage cross-section area of the flame injection communication passage.
- 前記抑制手段は、前記スワール流生成連通路の前記点火プラグまでの距離を前記火炎噴射連通路の前記点火プラグまでの距離より長くしたことである、
請求項1又は2に記載のエンジン。 The suppressing means is that the distance between the swirl flow generation communication passage and the spark plug is made longer than the distance between the flame injection communication passage and the spark plug.
The engine according to claim 1 or 2. - 前記抑制手段は、前記点火プラグと前記スワール流生成連通路との間に設けられた障害物である、
請求項1から3のいずれか一項に記載のエンジン。 The suppressing means is an obstacle provided between the spark plug and the swirl flow generation communication path,
An engine according to any one of claims 1 to 3. - 前記抑制手段は、前記スワール流生成連通路を前記火炎噴射連通路より長くしたことである、
請求項1から4のいずれか一項に記載のエンジン。 The suppressing means is that the swirl flow generation communication passage is made longer than the flame injection communication passage.
An engine according to any one of claims 1 to 4. - 前記隔壁は、
前記点火プラグの点火点と前記火炎噴射連通路が設けられた副室基部と、
前記副室基部よりも前記ピストン側に設けられ、前記スワール流生成連通路が設けられた副室先端部と、
を有し、
前記抑制手段は、前記副室先端部の容積を前記副室基部の容積より小さくしたことである、
請求項1から5のいずれか一項に記載のエンジン。 The partition wall is
an auxiliary chamber base in which the ignition point of the spark plug and the flame injection communication passage are provided;
a sub-chamber tip portion provided closer to the piston than the sub-chamber base and provided with the swirl flow generation communication passage;
has
The suppressing means is that the volume of the tip of the sub-chamber is smaller than the volume of the base of the sub-chamber,
An engine according to any one of claims 1 to 5. - 前記主室内に燃料を噴射する噴射ノズルを備え、
前記スワール流生成連通路は、前記シリンダの周方向において前記副室から主室に向けて前記噴射ノズルが設けられた側とは反対側に向かうように設けられる、
請求項1から6のいずれか一項に記載のエンジン。 comprising an injection nozzle that injects fuel into the main chamber,
The swirl flow generation communication passage is provided in a circumferential direction of the cylinder from the auxiliary chamber toward the main chamber toward a side opposite to the side where the injection nozzle is provided.
An engine according to any one of claims 1 to 6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/014592 WO2023181393A1 (en) | 2022-03-25 | 2022-03-25 | Engine |
JP2024509693A JPWO2023181393A1 (en) | 2022-03-25 | 2022-03-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/014592 WO2023181393A1 (en) | 2022-03-25 | 2022-03-25 | Engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023181393A1 true WO2023181393A1 (en) | 2023-09-28 |
Family
ID=88100312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/014592 WO2023181393A1 (en) | 2022-03-25 | 2022-03-25 | Engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023181393A1 (en) |
WO (1) | WO2023181393A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52170903U (en) * | 1976-06-21 | 1977-12-26 | ||
WO2020196207A1 (en) * | 2019-03-27 | 2020-10-01 | 三菱自動車工業株式会社 | Pre-chamber type internal combustion engine |
WO2021161553A1 (en) * | 2020-02-10 | 2021-08-19 | 三菱自動車工業株式会社 | Sub-chamber spark ignition engine |
-
2022
- 2022-03-25 WO PCT/JP2022/014592 patent/WO2023181393A1/en unknown
- 2022-03-25 JP JP2024509693A patent/JPWO2023181393A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52170903U (en) * | 1976-06-21 | 1977-12-26 | ||
WO2020196207A1 (en) * | 2019-03-27 | 2020-10-01 | 三菱自動車工業株式会社 | Pre-chamber type internal combustion engine |
WO2021161553A1 (en) * | 2020-02-10 | 2021-08-19 | 三菱自動車工業株式会社 | Sub-chamber spark ignition engine |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023181393A1 (en) | 2023-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10208653B2 (en) | Pre-chamber of an internal combustion engine | |
US7926463B2 (en) | Cylinder injection type spark ignition internal combustion engine | |
JP5002566B2 (en) | Engine and spark plug for engine | |
WO2021161553A1 (en) | Sub-chamber spark ignition engine | |
WO2023181393A1 (en) | Engine | |
EP2998538A1 (en) | Pre-chamber of internal combustion engine | |
JP2009215973A (en) | Internal combustion engine with divided combustion chamber | |
GB2106179A (en) | Spark ignition pre-combustion chamber internal combustion engine | |
JP6564288B2 (en) | piston | |
EP2192287B1 (en) | Direct injection internal combustion engine | |
WO2021161552A1 (en) | Auxiliary chamber engine | |
US4058090A (en) | Internal combuston engine with auxiliary combustion chamber | |
WO2023181398A1 (en) | Engine | |
JP7571759B2 (en) | engine | |
WO2004099584A1 (en) | Combustion chamber structure of divided gas engine and divided gas engine | |
JP2023143150A (en) | engine | |
JP7524796B2 (en) | Internal combustion engine | |
JP7487595B2 (en) | Spark plug for internal combustion engine and internal combustion engine | |
JP2023143082A (en) | engine | |
JP2526324Y2 (en) | Torch ignition device for torch ignition type gas engine | |
WO2020196682A1 (en) | Auxiliary chamber-type internal combustion engine | |
JP3082403B2 (en) | Engine intake system | |
JP2022089136A (en) | Spark plug for internal combustion engine | |
JP2023016618A (en) | Spark plug for internal combustion engine and internal combustion engine having the same | |
JPS6118182Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22933531 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024509693 Country of ref document: JP Kind code of ref document: A |