WO2021160129A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021160129A1
WO2021160129A1 PCT/CN2021/076264 CN2021076264W WO2021160129A1 WO 2021160129 A1 WO2021160129 A1 WO 2021160129A1 CN 2021076264 W CN2021076264 W CN 2021076264W WO 2021160129 A1 WO2021160129 A1 WO 2021160129A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time unit
uplink reference
time
uplink
Prior art date
Application number
PCT/CN2021/076264
Other languages
English (en)
French (fr)
Inventor
许子杰
高瑜
周国华
彭金磷
窦圣跃
李雪茹
刘显达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21752938.7A priority Critical patent/EP4089967A4/en
Publication of WO2021160129A1 publication Critical patent/WO2021160129A1/zh
Priority to US17/886,453 priority patent/US20220393822A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • the terminal equipment In order to improve the communication quality between network equipment and terminal equipment, the terminal equipment needs to perform frequency synchronization and frequency tracking, and the network equipment performs frequency offset estimation and compensation.
  • the embodiments of the present application provide a communication method and device to improve the accuracy of correcting frequency offset.
  • a communication method is provided.
  • the execution subject of the method may be a terminal device or a chip, a chip system or a circuit located in the terminal device.
  • the method is implemented by the following steps: receiving configuration information from a network device, the configuration The information is used to configure one or more uplink reference signal resources; the one or more uplink reference signal resources include a first time unit and a second time unit; the first antenna port corresponding to the first time unit and the second time unit The second antenna ports corresponding to the two time units are the same; based on the configuration information, an uplink reference signal is sent to the network device.
  • the network device can be based on the first antenna port and the second antenna port.
  • the frequency offset estimation of the uplink reference signal received by the port improves the accuracy of the spectrum estimation.
  • a communication method is provided.
  • the execution subject of the method may be a network device, or a chip, a chip system, or a circuit in the network device.
  • the method is implemented by the following steps: sending configuration information to a terminal device, where the configuration information is used to configure one or more uplink reference signal resources; the one or more uplink reference signal resources include a first time unit and a second time unit The first antenna port corresponding to the first time unit is the same as the second antenna port corresponding to the second time unit; the uplink reference signal from the terminal device is received.
  • the network device can be based on the first antenna port and the second antenna port.
  • the frequency offset estimation of the uplink reference signal received by the port improves the accuracy of the spectrum estimation.
  • a communication method is provided.
  • the execution subject of the method may be a network device, or a chip, a chip system, or a circuit in the network device.
  • the method is implemented by the following steps: determining downlink configuration information, where the downlink configuration information is used to configure resources of a downlink reference signal, and the downlink reference signal conforms to one or more of the following configurations: the downlink reference signal is in a time slot The interval between two adjacent time units is less than 4 symbols, or the interval between any two units of the downlink reference signal in the frequency domain is greater than 4 subcarriers, and the downlink configuration information is sent to the terminal device.
  • the interval between two adjacent units of the downlink reference signal in a time slot is less than 4 symbols, so that the downlink reference signal can have a smaller pattern in the time domain to adapt to the estimation of a larger frequency offset.
  • the carrier frequency is 3.5GHz
  • the rate is 350km/h
  • the SCS is 15KHz
  • the maximum Doppler frequency deviation exceeds the existing tracking reference signal (tracking reference signal, TRS) maximum estimation range of 4 symbols.
  • TRS tracking reference signal
  • uplink configuration information is sent to the terminal device, where the uplink configuration information is used to configure one or more uplink reference signal resources; the one or more uplink reference signal resources include a first time unit and a second time unit. Time unit; the first antenna port corresponding to the first time unit is the same as the second antenna port corresponding to the second time unit.
  • a communication method is provided.
  • the execution subject of the method may be a terminal device, or a chip, a chip system, or a circuit in the terminal device.
  • the method is implemented by the following steps: receiving downlink configuration information from a network device, where the downlink configuration information is used to configure resources of a downlink reference signal, and the downlink reference signal conforms to one or more of the following configurations: The interval between two adjacent time units in a time slot is less than 4 symbols, or the interval between any two frequency domain units of the downlink reference signal in the frequency domain is greater than 4 subcarriers; based on the downlink configuration information, the received signal from all The downlink reference signal of the network device.
  • the interval between two adjacent time units of the downlink reference signal in a time slot is less than 4 symbols, so that the downlink reference signal can have a smaller pattern in the time domain to adapt to the estimation of a larger frequency offset.
  • the carrier frequency is 3.5GHz
  • the rate is 350km/h
  • the SCS is 15KHz
  • the maximum Doppler frequency deviation exceeds the existing maximum TRS estimation range of 4 symbols apart.
  • it can be adapted to larger Doppler frequencies.
  • Estimation of Le frequency deviation By designing the interval between any two units of the downlink signal in the frequency domain to be greater than 4 subcarriers, it is possible to reduce the overhead of the network device informing the configuration.
  • receiving uplink configuration information from the network device where the uplink configuration information is used to configure one or more uplink reference signal resources;
  • the one or more uplink reference signal resources include a first time unit And the second time unit; the first antenna port corresponding to the first time unit is the same as the second antenna port corresponding to the second time unit.
  • the first time unit and the second time unit are two OFDM symbols located in two adjacent time slots.
  • the number of uplink reference signal ports corresponding to the first time unit is different from the number of uplink reference signal ports corresponding to the second time unit.
  • the functions of the uplink reference signal resources can be multiplexed, so that the uplink reference signal resources are multiplexed as much as possible, and the uplink reference signal resources are saved.
  • the uplink reference signal port number corresponding to the first time unit is the same as the uplink reference signal port number corresponding to the second time unit.
  • the first antenna port is associated with at least one uplink reference signal port corresponding to the first time unit
  • the second antenna port is associated with at least one uplink reference signal port corresponding to the second time unit .
  • the first time unit and the second time unit are two OFDM symbols located in a first time slot, and the first time unit and the second time unit are the first time unit and the second time unit. Any two non-contiguous symbols of the time slot. In this way, all symbols of a time slot can be extended to be used for uplink reference signal configuration instead of the last 6 symbols, which can make the uplink reference signal configuration support more terminal equipment.
  • the function of the one or more uplink reference signal resources is configured to be used for measuring frequency offset; or, the function of the one or more uplink reference signal resources is configured to be used for codebook-based uplink Transmission mode.
  • the accuracy of frequency offset estimation is ensured by limiting that the uplink reference signal ports of the two uplink reference signal resources used to estimate the frequency offset are the same and correspond to the same antenna port.
  • the following enhancements may be additionally made: ensuring that the configured multiple SRS resources are phase continuous with each other, and avoiding errors in the frequency offset estimation at the receiving end caused by the different initial phases of the transmitted SRS.
  • the function of the one or more uplink reference signal resources is configured for the codebook-based uplink transmission mode, the existing uplink reference signal resource configuration can be directly reused, saving uplink reference signal resources and ensuring frequency offset estimation accuracy.
  • the first time unit corresponds to the first uplink reference signal resource
  • the second time unit corresponds to the second uplink reference signal resource, part or all of the first uplink reference signal resource and the second uplink reference signal resource
  • the antenna port maintains phase continuity.
  • the terminal device may continue to turn on the power amplifier for sending the first uplink reference signal corresponding to the first time unit until the power amplifier finishes sending the second uplink reference signal corresponding to the second time unit.
  • the network device can estimate the frequency offset on the signal that maintains the continuous phase to ensure the frequency offset estimation performance.
  • an uplink reference signal resource includes the first time unit and the second time unit
  • the first time unit and the second time unit are discontinuous in the time domain .
  • the method further includes: the network device sends a first downlink reference signal to the terminal device, and the terminal device receives the first downlink reference signal from the network device ,
  • the configuration of the first downlink reference signal meets one or more of the following: the interval between two adjacent time units in a time slot of the first downlink reference signal is less than 4 symbols, or the first downlink reference signal
  • the interval between any two units of the downlink reference signal in the frequency domain is greater than 4 subcarriers.
  • the interval between any two time units of the first downlink reference signal in a time slot is less than 4 symbols, so that the first downlink reference signal can have a smaller pattern in the time domain to adapt to a larger frequency. Biased estimate.
  • the maximum Doppler frequency deviation exceeds the existing maximum TRS estimation range of 4 symbols apart.
  • the SCS is 15KHz
  • the maximum Doppler frequency deviation exceeds the existing maximum TRS estimation range of 4 symbols apart.
  • it can be adapted to larger Doppler frequencies. Estimation of Le frequency deviation.
  • the first downlink reference signal is TRS.
  • the method further includes: receiving a second downlink reference signal from the network device; using the frequency offset estimation obtained according to the second downlink reference signal and according to the first A carrier frequency estimate obtained from a downlink reference signal is used for frequency offset compensation.
  • the carrier frequency estimation here refers to the process of using the received reference signal to obtain the carrier frequency of the received signal.
  • the second reference signal is a DMRS, or an additional demodulation reference signal.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a communication interface and a processor.
  • the communication interface is used for communication between the device and other devices, for example, data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be network devices or nodes.
  • the processor is used to call a set of programs, instructions or data to execute the method described in the first or fourth aspect.
  • the device may also include a memory for storing programs, instructions or data called by the processor.
  • the memory is coupled with the processor, and when the processor executes instructions or data stored in the memory, the method described in the first aspect or the fourth aspect can be implemented.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a communication interface and a processor.
  • the communication interface is used for communication between the device and other devices, for example, data or signal transmission and reception.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, and other devices may be terminal devices.
  • the processor is used to call a set of programs, instructions, or data to execute the method described in the second or third aspect.
  • the device may also include a memory for storing programs, instructions or data called by the processor.
  • the memory is coupled with the processor, and when the processor executes the instructions or data stored in the memory, the method described in the second aspect or the third aspect can be implemented.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer-readable instructions.
  • the computer can execute The method as described in the first or fourth aspect or any one of the possible designs.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute as described in the second, third, second, or third aspect Any of the possible designs described in the method.
  • an embodiment of the present application provides a chip system that includes a processor and may also include a memory, configured to implement any one of the first aspect or the fourth aspect, the first aspect, or the fourth aspect. Possible design methods described in.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • an embodiment of the present application provides a chip system that includes a processor and may also include a memory for implementing the method described in any one of the possible designs of the second aspect or the third aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • an embodiment of the present application provides a communication system.
  • the system includes a terminal device and a network device.
  • the terminal device is used to execute the first aspect or the fourth aspect, or the first or fourth aspect.
  • the method described in any one of the possible designs; the network device is used to execute the method described in the second aspect, the third aspect, or any one of the two possible designs.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the above-mentioned aspects and the methods described in any possible design of the aspects.
  • FIG. 1 is a schematic diagram of the architecture of a communication system in an embodiment of the application
  • Fig. 2a is a schematic diagram of a time-frequency offset tracking method in LTE in an embodiment of the application
  • 2b is a schematic diagram of a time-frequency offset tracking method in NR in an embodiment of the application;
  • FIG. 3 is a schematic diagram of symbols occupied by additional DMRS in an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a communication method in an embodiment of this application.
  • FIG. 5a is one of the schematic diagrams of the configuration of uplink reference signal resources in an embodiment of this application.
  • FIG. 5b is the second schematic diagram of the configuration of uplink reference signal resources in an embodiment of this application.
  • FIG. 5c is the third schematic diagram of the configuration of uplink reference signal resources in an embodiment of this application.
  • FIG. 6a is one of schematic diagrams of time-domain configuration of uplink reference signal resources in an embodiment of this application.
  • FIG. 6b is the second schematic diagram of the time-domain configuration mode of uplink reference signal resources in an embodiment of this application.
  • FIG. 6c is the third schematic diagram of the time domain configuration mode of uplink reference signal resources in an embodiment of this application.
  • FIG. 7 is a schematic diagram of the second flow of the communication method in an embodiment of this application.
  • FIG. 8a is one of the schematic diagrams of the time domain configuration mode of downlink reference signal resources in an embodiment of this application.
  • FIG. 8b is the second schematic diagram of the time domain configuration mode of downlink reference signal resources in an embodiment of this application.
  • FIG. 8c is the third schematic diagram of the time domain configuration mode of downlink reference signal resources in an embodiment of this application.
  • FIG. 8d is the fourth schematic diagram of the time-domain configuration mode of downlink reference signal resources in an embodiment of this application.
  • FIG. 9 is a schematic diagram of the third process of the communication method in an embodiment of this application.
  • FIG. 10 is a schematic diagram of the fourth process of the communication method in the embodiment of this application.
  • FIG. 11 is a schematic diagram of a frequency offset adjustment process in an embodiment of the application.
  • FIG. 12 is one of the schematic diagrams of the structure of the communication device in the embodiment of the application.
  • FIG. 13 is the second schematic diagram of the structure of the communication device in the embodiment of this application.
  • the embodiments of the present application provide a communication method and device, wherein the method and the device are based on the same technology and the same or similar concepts. Because the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other. No longer.
  • "at least one" refers to one or more.
  • “Multiple” means two or more.
  • "And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships. For example, A and/or B can mean: A alone exists, A and B exist at the same time, and B exists alone. Among them, A and B can be singular or plural.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship.
  • At least one (item) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c.
  • each of a, b, and c can be an element itself, or a collection containing one or more elements.
  • transmission can include sending and/or receiving, and can be a noun or a verb.
  • the communication method provided by the embodiments of this application can be applied to the fourth generation (4th generation, 4G) communication system, such as long term evolution (LTE) system; the fifth generation (5th generation, 5G) communication system, such as 5G new Air interface (new radio, NR) system; or applied to various future communication systems, such as the 6th generation (6G) communication system.
  • 4G fourth generation
  • 5th generation, 5G fifth generation
  • 5G new Air interface new radio, NR
  • 6G 6th generation
  • the embodiments of the present application may be applicable to high-speed mobile communication scenarios, such as high-speed rail scenarios.
  • the terminal device of the embodiment of the present application can move at a high speed.
  • High speed can be understood as moving speed not less than a certain threshold.
  • the threshold can be 100 meters/second, 120 meters/second, 350 kilometers/hour, 500 kilometers/hour, etc. It can be predefined through a communication protocol, or it can be determined by the terminal according to a preset algorithm or rule. Yes, there is no restriction on this.
  • the specific form of the terminal device in the high-speed moving scene may be an unmanned aerial vehicle (UAV), an airborne terminal, an airplane, a high-speed rail, a vehicle-mounted terminal, etc.
  • UAV can be understood as a kind of aircraft that uses radio equipment to remote control or comes with its own program control.
  • the embodiments of the present application may be suitable for low frequency (for example, the frequency is below 6 gigahertz (gigahertz, GHz)) scenes, and may also be suitable for high frequency (for example, the frequency is above 6 GHz) scenes.
  • low frequency for example, the frequency is below 6 gigahertz (gigahertz, GHz)
  • high frequency for example, the frequency is above 6 GHz
  • FIG. 1 shows the architecture of a possible communication system to which the communication method provided by the embodiment of the present application is applicable.
  • the communication system may include a network device 110 and include one or more terminal devices 120. in:
  • the network device 110 is a node in a radio access network (RAN), and may also be called a base station, an access network device, or a node, and may also be called a RAN node (or device).
  • RAN radio access network
  • examples of some nodes 101 are: next generation nodeB (gNB), next generation evolved nodeB (Ng-eNB), transmission reception point (TRP), evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS) ), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), or wireless fidelity (Wifi) access point (AP), or The equipment in the 5G communication system, or the network equipment in the possible future communication system.
  • gNB next generation nodeB
  • Ng-eNB next generation evolved
  • the network device 110 may also be a device that functions as a base station in device-to-device (D2D) communication.
  • D2D device-to-device
  • the number of network devices may be one or more, and they may belong to the same cell or different cells.
  • the terminal device 120 which may also be referred to as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice or data connectivity to users , It can also be an IoT device.
  • the terminal device 120 includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device 120 may be: a mobile phone (mobile phone), a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device (such as a smart watch, a smart bracelet, a pedometer, etc.) ), on-board equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control (industrial control) Wireless terminals, smart home equipment (for example, refrigerators, TVs, air conditioners, electric meters, etc.), smart robots, workshop equipment, wireless terminals in self-driving, and wireless terminals in remote medical surgery ,
  • the terminal 120 may also be a device that functions as a terminal in D2
  • the embodiments of the present application are applicable to scenarios with single or multiple transmitting and receiving devices, as well as scenarios derived from any of them.
  • the transmitting and receiving device may be a transmission reception point (TRP), or a remote radio unit (RRU), and so on.
  • TRP transmission reception point
  • RRU remote radio unit
  • multiple TRPs can be connected to the same baseband unit (BBU) or different BBUs.
  • BBU baseband unit
  • multiple TRPs can belong to the same cell or different cells.
  • a terminal device can communicate with multiple nodes.
  • a terminal device can communicate with multiple TRPs.
  • the implementation form of Multi-TRP in 4G is a single frequency network cell (SFN cell), and one implementation form in 5G is a super cell (hyper cell).
  • the embodiments of the present application may also be applicable to derivative scenarios of each proposed application scenario.
  • the cell-reference signal (CRS) in the LTE system can be used for downlink time-frequency tracking, that is, the terminal device can determine the downlink timing offset and the frequency offset according to the parameters of the CRS.
  • CRS cell-reference signal
  • the eNB periodically sends a cell synchronization signal, including a primary synchronization signal (primary synchronized signal, PSS) and a secondary synchronization signal (secondary synchronization signal, SSS).
  • a primary synchronization signal primary synchronized signal, PSS
  • a secondary synchronization signal secondary synchronization signal
  • the terminal device performs downlink frequency synchronization after receiving the PSS/SSS.
  • S203 The terminal device receives the CRS sent by the eNB.
  • the terminal device performs time-frequency domain synchronization and/or time-frequency tracking according to the estimation of the downlink timing and/or frequency offset.
  • the terminal device sends uplink data and a demodulation reference signal (DMRS) on the physical uplink shared channel (PUSCH) on the tracked carrier frequency.
  • DMRS demodulation reference signal
  • the eNB performs timing and frequency offset estimation and compensation through the received DMRS.
  • TRS in the NR system can be used for downlink time-frequency tracking to achieve correct signal transmission and reception.
  • the gNB periodically sends the cell synchronization signal SSB.
  • the terminal device After receiving the SSB, the terminal device performs downlink frequency synchronization.
  • the terminal device receives the TRS sent by the gNB.
  • the terminal equipment performs synchronization on the estimation of the downlink timing and frequency offset.
  • the terminal device sends uplink data and a demodulation reference signal DMRS on the PUSCH on the tracked carrier frequency.
  • the gNB performs timing and frequency offset estimation and compensation through the received DMRS.
  • the accuracy of the frequency offset estimation obtained by this method is not high in some application scenarios.
  • most of the frequency offset components are Doppler frequency offset, and the Doppler frequency offset is large, the frequency tracked by the terminal device according to the CRS will be inaccurate, and the residual frequency offset will be relatively large.
  • Such a large residual frequency offset will cause severe inter-carrier interference (ICI), especially when the number of terminals is large, severe multi-terminal interference will greatly reduce the receiving performance of the receiving end and reduce the throughput of the system. quantity.
  • ICI inter-carrier interference
  • the network device needs to schedule the DMRS in advance. If the number of terminal devices is large, the network device scheduling DMRS has a high cost and the network device complexity is high.
  • the "time unit" in the embodiments of this application refers to a period of time in the time domain.
  • the time unit may be a radio frame, subframe, slot, micro-slot, mini-slot, or symbol, etc., and nothing is done for this. limited.
  • the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol.
  • the CSI-RS resource set when the CSI-RS resource set (CSI-RS resource set) includes the trs-Info field, the CSI-RS resource set may be TRS, and the trs-Info field is used to indicate that the CSI-RS resource set is used In TRS.
  • Frequency deviation that is, frequency deviation.
  • Frequency offset includes carrier frequency offset (CFO) caused by the deviation of the carrier frequency of the local oscillator at the transceiver end and Doppler shift (Doppler Shift) caused by the relative movement of the transceiver end.
  • CFO carrier frequency offset
  • Doppler Shift Doppler shift
  • Doppler shift the difference between the transmitting and receiving frequencies caused by the Doppler effect. It reveals the law that the properties of waves change in motion.
  • Frequency offset estimation which can also be described as frequency offset measurement, refers to the estimation of the frequency offset value between the carrier frequency of the received signal and its corresponding carrier frequency of the transmitted signal.
  • Additional DMRS enhances the uplink DMRS. Introduce additional DMRS with higher time domain density.
  • the receiving end needs to perform channel estimation based on the DMRS before receiving the PDSCH or PUSCH.
  • the DMRS is sent on the starting OFDM symbol of the PDSCH or PUSCH, so that the receiving end can quickly obtain the channel estimation result for data demodulation.
  • the DMRS is not only sent on the starting OFDM symbol of the PDSCH or PUSCH, but also sent on other OFDM symbols in the PDSCH or PUSCH, and additional DMRS is sent on other OFDM symbols.
  • the additional DMRS can occupy 1, 2, or 3 OFDM symbols.
  • a large box in the figure represents a resource block (RB) in the frequency domain and a slot (slot) in the time domain, including 12 subcarriers in the frequency domain (the vertical axis in the figure) And 14 OFDM symbols (as shown in the horizontal axis direction).
  • RB resource block
  • slot slot
  • OFDM symbols as shown in the horizontal axis direction.
  • the third OFDM symbol is a DMRS symbol.
  • the second RB from the left in FIG. 3 represents a single-symbol DMRS structure configured with an additional DMRS, and the additional DMRS is located on the 12th OFDM symbol (the 12th column in the RB).
  • the third RB from the left in FIG. 3 represents a single-symbol DMRS structure configured with two additional DMRS, and the additional DMRS is located on the eighth and twelfth OFDM symbols (the eighth and twelfth columns in the RB).
  • the fourth RB from the left in FIG. 3 represents a single-symbol DMRS structure configured with three additional DMRSs, and the additional DMRS is located on the sixth, ninth, and twelfth OFDM symbols (the sixth, ninth, and twelfth columns in the RB).
  • one time unit may correspond to one or more antenna ports (antenna ports), that is, on the time unit, the transmitting end uses the one or more antenna ports to transmit signals.
  • One time unit may correspond to one or more uplink reference signal ports, that is, the uplink reference signal port occupies the time unit, and the transmitting end uses the one or more uplink reference signal ports to send signals on the time unit.
  • the antenna port refers to the physical antenna used by the transmitter to send the signal, or the physical antenna element, or virtualized by multiple physical antennas;
  • the reference signal port refers to the physical resource on the network side used to transmit the reference signal, the reference signal
  • the port can correspond to physical time-frequency resources, code domain resources, and/or spatial beams.
  • Different uplink reference signal ports in the same uplink reference signal resource correspond to different antenna ports, and the same uplink reference signal port in different uplink reference signal resources corresponds to different antenna ports.
  • the uplink reference signal may be an SRS, and the time unit may be a symbol.
  • One symbol can correspond to one or more SRS ports, and one symbol can correspond to one or more antenna ports.
  • Different SRS ports in the same SRS resource correspond to different antenna ports; the same SRS port in different SRS resources corresponds to different antenna ports.
  • Tables 1 to 3 Several possible examples of the association relationship between the SRS port and the antenna port are shown in Tables 1 to 3.
  • Tables 1 to 3 the SRS port and the antenna port in a row have an associated relationship.
  • the SRS port 0 in the SRS resource 1 in Table 1 is associated with the antenna port 0, that is, the SRS port and the antenna port listed in each row of Tables 1 to 3 have an association relationship.
  • the network device sends uplink configuration information to the terminal device, and the terminal device receives the uplink configuration information from the network device.
  • the uplink configuration information is used to configure one or more uplink reference signal resources.
  • the uplink reference signal resource may include any one or more resources in the time domain, frequency domain, or code domain of the uplink reference signal.
  • the one or more uplink reference signal resources include a first time unit and a second time unit, that is, the uplink reference signal resource occupies the first time unit and the second time unit in the time domain.
  • the first time unit and the second time unit may be considered as one or more consecutive OFDM symbols of the uplink reference signal resource in the time domain.
  • the number of uplink reference signal resources may be one or more. If the number of uplink reference signal resources is one, this one uplink reference signal resource includes the first time unit and the second time unit, that is, one uplink reference signal occupies the first time unit and the second time unit. If the data of the uplink reference signal resource is multiple, the first time unit and the second time unit may be included in different uplink reference signal resources.
  • the first uplink reference signal resource includes the first time unit and the second uplink reference signal resource.
  • the signal resource includes the second time unit.
  • the first time unit and the second time unit may be non-contiguous in the time domain.
  • the first time unit corresponds to the first antenna port (antenna port)
  • the second time unit corresponds to the second antenna port
  • the first antenna port and the second antenna port are the same.
  • both the first time unit and the second time unit may correspond to one or more antenna ports.
  • the first time unit corresponds to a third antenna port in addition to the first antenna port
  • the third antenna port corresponds to Both the first antenna port and the second antenna port are different.
  • the antenna port corresponding to the time unit can be understood to mean that on the time unit, the transmitting end uses the antenna port to send a signal.
  • the first time unit corresponds to the first uplink reference signal resource
  • the second time unit corresponds to the first uplink reference signal resource
  • one or more reference signal resources with the same number in the first uplink reference signal resource The antenna ports corresponding to the ports are the same.
  • the reference signal resource or reference signal resource port corresponding to the time unit can be understood as that the reference signal resource or reference signal resource port occupies the time unit.
  • the first time unit corresponds to the first uplink reference signal resource
  • the second time unit corresponds to the second uplink reference signal resource
  • one or more of the first uplink reference signal resource and the second uplink reference signal resource are the same.
  • the first time unit corresponds to the first uplink reference signal resource
  • the second time unit corresponds to the second uplink reference signal resource, part or all of the first uplink reference signal resource and the second uplink reference signal resource
  • the antenna port maintains phase continuity.
  • the terminal device may continue to turn on the power amplifier for sending the first uplink reference signal corresponding to the first time unit until the power amplifier finishes sending the second uplink reference signal corresponding to the second time unit.
  • the network device can estimate the frequency offset on the signal that maintains the continuous phase to ensure the frequency offset estimation performance.
  • the uplink reference signal is SRS.
  • the terminal device sends an uplink reference signal to the network device based on the uplink configuration information.
  • the network device receives the uplink reference signal from the terminal device.
  • the terminal device determines one or more uplink reference signal resources according to the configuration information.
  • the one or more uplink reference signal resources include a first time unit and a second time unit.
  • the terminal device uses the same antenna port to send the uplink reference signal on the first time unit and the second time unit.
  • the network device Since the same antenna port corresponds to the same channel and the same frequency offset, by designing the first antenna port of the first time unit to be the same as the second antenna port of the second time unit, the network device receives two uplink references from the terminal device When the signal passes through the same channel and the same frequency offset, the network device can estimate the frequency offset according to the uplink reference signal received by the first antenna port and the second antenna port, thereby improving the accuracy of the spectrum estimation.
  • S400 is further included.
  • the network device sends a downlink reference signal to the terminal device.
  • the terminal device receives the downlink reference signal from the network device.
  • the downlink reference signal may be TRS or CRS.
  • the terminal device may obtain the downlink carrier frequency according to the downlink reference signal from the network device, and the downlink carrier frequency is used as the carrier frequency reference for sending the uplink reference signal in S402. For example, the terminal device can adjust the center frequency according to the downlink carrier frequency and send the uplink reference signal.
  • the uplink configuration information may be radio resource control (RRC) signaling, or media access control-control element (MAC CE) or downlink control information (DCI).
  • RRC radio resource control
  • MAC CE media access control-control element
  • DCI downlink control information
  • the uplink configuration information can also be used to trigger the transmission of the uplink reference signal.
  • the terminal device receives the uplink configuration information, it triggers the transmission of the uplink reference signal.
  • the uplink reference signal can be a sounding reference signal (SRS), a demodulation reference signal (DMRS), an additional DMRS (additional DMRS), or a phase tracking reference signal (phase tracking reference signal).
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • additional DMRS additional DMRS
  • phase tracking reference signal phase tracking reference signal
  • PTRS phase tracking reference signal
  • the uplink reference signal can be used to estimate or measure the uplink frequency offset.
  • the following is an example in which the uplink reference signal sent by the terminal device in S402 is the SRS for description.
  • uplink reference signal is SRS: SRS may be transmitted periodically, uplink configuration information may be RRC signaling, and RRC signaling is used to configure periodically transmitted SRS; SRS may be semi-static transmission, and uplink configuration information may be RRC signaling.
  • the command and/or MAC CE can configure the SRS for aperiodic transmission or semi-static transmission through RRC signaling, and activate the aperiodic transmission or semi-static transmission through MAC CE.
  • the SRS may be aperiodic transmission, and the uplink configuration information can be RRC signaling.
  • the SRS for aperiodic transmission can be configured through RRC signaling, and the aperiodic transmission can be triggered by DCI.
  • the one or more uplink reference signal resources configured by the uplink configuration information may include two or more time units, and at least two of the time units satisfy that the corresponding antenna ports are the same.
  • one or more uplink reference signal resources include 4 time units, and the antenna ports corresponding to 2 time units of the 4 time units are the same, or the antenna ports corresponding to the 4 time units are all the same.
  • the first time unit and the second time unit may be any two time units included in the one or more uplink reference signal resources.
  • the time unit may also correspond to the uplink reference signal port, for example, the first time unit corresponds to the first uplink reference signal port, and the second time unit corresponds to the second uplink reference signal port.
  • the first uplink reference signal port and the second uplink reference signal port may be designed to be the same.
  • the solution of the embodiment of the present application may also be applicable to scenarios where the number of first uplink reference signal ports and the number of second uplink reference signal ports are different. That is, the number of uplink reference signal ports corresponding to the first time unit is different from the number of uplink reference signal ports corresponding to the second time unit.
  • the number of the first uplink reference signal ports may also be the same as the number of the second uplink reference signal ports.
  • the uplink reference signal resource configured by the uplink configuration information can be used for frequency offset measurement, and the network device performs frequency offset measurement according to the uplink reference signal sent by the terminal device.
  • the function (usage) of the uplink reference signal resource may be set as a newly defined function, for example, defined as a frequency offset measurement (freqOffsetMeasure).
  • the uplink configuration information includes the function of the uplink reference signal resource. After receiving the uplink configuration information, the terminal device determines according to the function that the uplink reference signal resource is used for frequency offset measurement.
  • the function of the uplink reference signal resource configured by the uplink configuration information is used for the codebook-based uplink transmission mode, by setting the uplink reference signal resource used for the codebook, for example, setting the uplink reference signal resource to occupy multiple Discontinuous OFDM symbols, or setting the antenna port association relationship between multiple uplink reference signal resources, can enable the uplink reference signal resources to be used for frequency offset measurement.
  • the terminal device sends the uplink reference signal to the network device based on the uplink configuration information.
  • the network device can estimate the frequency offset based on the received uplink reference signal. Since the uplink reference signal resource is set as described above, the same antenna port corresponds to the same channel With the same frequency offset, the antenna ports corresponding to two or more time units are the same.
  • the network device can receive two or more uplink reference signals from the terminal device through the same channel and the same frequency offset. According to the signals sent with the same phase and the same power at different times, the spectrum information is extracted and the difference processing is performed to obtain a more accurate frequency offset estimation result.
  • the above row reference signal is an SRS as an example, and a time unit is taken as an example to illustrate some possible designs for the configuration of uplink reference signal resources in the embodiments of the present application.
  • the description of the SRS can be extended to the description of any uplink reference signal, and the description of the symbols can be extended to the description of any time unit.
  • the first time unit is the first symbol
  • the second time unit is the second symbol.
  • the uplink configuration information is used to configure one or more SRS resources.
  • One SRS resource includes the first symbol and the second symbol, or multiple SRS resources include the first symbol and the second symbol.
  • the first antenna port corresponding to the first symbol is the same as the second antenna port corresponding to the second symbol. If the first symbol and the second symbol are configured in one SRS resource, the first symbol and the second symbol are non-contiguous in the time domain.
  • an SRS resource set (resource set) is usually configured, and the SRS resource set may include one or more SRS resources.
  • One SRS resource may include one or more symbols.
  • the function of the SRS resource or the SRS resource set may be a newly defined function, for example, defined as frequency offset measurement.
  • the SRS resource set includes a first symbol (symbol 1) and a second symbol (symbol 2), and both symbol 1 and symbol 2 have an SRS port (SRS port), the SRS port is assumed to be SRS port 0. Then symbol 1 and symbol 2 have the same antenna port.
  • the same antenna port corresponds to the same channel and the same frequency offset effect.
  • the terminal device sends two SRS signals on symbol 1 and symbol 2, which will be affected by the same channel and frequency offset.
  • the network device uses the phase difference on symbol 1 and symbol 2 to estimate the frequency offset, which can obtain a more accurate Frequency offset estimation result.
  • the SRS resource or SRS resource set can also reuse existing functions, for example, the function is used for a codebook-based uplink transmission mode.
  • the basic principle of the codebook-based uplink transmission mode is that the terminal device sends signals on multiple SRS ports, and the base station determines and instructs PUSCH precoding according to the signals on the multiple SRS ports, which can be quantified as a transmission precoding matrix. indicator, TPMI), the terminal device uses the TPMI on the antenna port of the SRS port to send a physical uplink shared channel (PUSCH). Under this function, the base station can obtain the channels on each antenna port on the terminal side through the signals of multiple SRS ports.
  • TPMI physical uplink shared channel
  • the SRS for frequency offset measurement is used. It needs to be orthogonally multiplexed with the SRS used for the codebook, so that the same SRS port and the same antenna port are set for the SRS used for frequency offset measurement.
  • the number of reference signal ports included in the first uplink reference signal resource corresponding to the first time unit may be set to be the same as that in the second uplink reference signal resource corresponding to the second time unit.
  • the number of reference signal ports is different.
  • the number of SRS ports corresponding to the first symbol can be set to be different from the number of SRS ports corresponding to the second symbol (symbol 2).
  • symbol 1 corresponds to two SRS ports, including SRS port 0 and SRS port 1.
  • Symbol 2 corresponds to 1 SRS port, which is SRS port 0.
  • SRS port 0 and SRS port 1 of symbol 1 can be used for the codebook.
  • SRS port 0 of symbol 1 and SRS port 0 of symbol 2 can be used for frequency offset measurement. Set the antenna port corresponding to SRS port 0 of symbol 1 and the antenna port corresponding to SRS port 0 of symbol 2 to be the same.
  • the terminal device sends two SRS signals on symbol 1 and symbol 2, which will be affected by the same channel and frequency offset.
  • the network device uses the phase difference on symbol 1 and symbol 2 to estimate the frequency offset, which can obtain a more accurate Frequency offset estimation result.
  • the function of the SRS resource can be multiplexed, so that the SRS resource is reused as much as possible, and the SRS resource is saved.
  • the time-frequency resource configuration of multiple SRS resources in the SRS resource set can reuse the existing mechanism.
  • the time domain configuration form of multiple SRS resources in the SRS resource set is shown in FIG. 5c.
  • the optional OFDM symbol positions for SRS resource configuration in a slot are the 8th symbol and the 12th symbol in a slot, or the 9th symbol and the 13th symbol in a slot, of which, one The symbols in the time slot are numbered starting from 0.
  • the SRS resource bandwidth is 10MHz.
  • This configuration method enables the network equipment to perform accurate frequency offset estimation based on the uplink signal, such as Doppler shift estimation, and is used for downlink Doppler shift pre-compensation.
  • All SRS resources in the SRS resource set can be configured as periodic. For example, in FIG.
  • symbol 1 and symbol 2 are located in the same time slot, and symbol 3 and symbol 4 are located in another adjacent time slot.
  • the cycle and offset of symbol 1 and symbol 2 are 5ms and 1ms, and the cycle and offset of symbol 3 and symbol 4 are 5ms and 2ms.
  • the offset refers to the specific ms in which the SRS resource is located in a period. For example, an offset of 1 ms indicates that the reference signal occupies the second ms in the period of 5 ms. All SRS resources in the SRS resource set may also be configured as aperiodic.
  • the trigger mechanism of aperiodic SRS may be that one DCI triggers the transmission of one or more SRS resource sets, and the SRS resource set is relatively triggered at the time of sending the SRS resource set.
  • the DCI of the resource set has a uniform time offset, and this method cannot support the frequency offset measurement mechanism based on multiple slots as shown in Figure 5c.
  • Method 1 Define two new SRS resource sets, and each set is independently configured with a time offset. In Figure 5c, symbols 1 and 2 are configured in the first SRS resource set, and symbols 3 and 4 are configured in the second SRS resource set.
  • Method 2 Define a set of SRS resources, and each SRS resource is independently configured with a time offset.
  • the number of ports of each SRS resource is the same, and it is stipulated that SRS ports with the same port number in each resource correspond to the same antenna port.
  • This setting can be configured through RRC signaling.
  • the SRS resource set or configured in the SRS resource configuration that requires the defined relationship.
  • the number of ports of each SRS resource may be different, and it is stipulated that the antenna ports of SRS port number 0 in at least two different SRS resources are the same, and the setting may be It is configured in the SRS resource set through RRC signaling, or configured in the SRS resource configuration that requires the defined relationship.
  • the first time unit and the second time unit may be located in the same time slot, or may be located in different time slots. That is, both the first symbol and the second symbol are located in the first time slot, or the first symbol is located in the first time slot and the second symbol is located in the second time slot.
  • the first time slot and the second time slot are two adjacent time slots.
  • the first time unit is one or more consecutive OFDM symbols in a time slot
  • the second time unit is one or more consecutive OFDM symbols in the same time slot, and is the same as the first time unit.
  • the unit is separated by K OFDM symbols, and K can be any integer from 1 to 12.
  • the first time unit is one or more consecutive OFDM symbols in time slot 1
  • the second time unit is one or more consecutive OFDM symbols in time slot 2 adjacent to time slot 1 in the time domain. Consecutive OFDM symbols.
  • the first symbol and the second symbol may not be limited to the last 6 symbols in one time slot. That is, the range in which the first symbol and the second symbol can be configured can be configured in symbols other than the last 6 symbols in addition to the last 6 symbols of a slot.
  • the first symbol and the second symbol may be any two non-contiguous symbols in a time slot, that is, the configurable range is the entire time slot.
  • the first time slot includes 14 symbols, and these 14 symbols are represented by numbers 0-13.
  • the first symbol and the second symbol can be separated by 3 symbols.
  • the first symbol and the second symbol may be the 8th symbol and the 12th symbol of the first time slot, or as shown in FIG. 6b, the first symbol and the second symbol may be the first time slot The 9th symbol and the 13th symbol.
  • the configuration of the uplink reference signal can be made to support more terminal devices.
  • the first symbol and the second symbol are located in two adjacent time slots, as shown in FIG. 6c, the first symbol is located in the first time slot, and the second symbol is located in the second time slot.
  • the position of the first symbol in the first time slot and the position of the second symbol in the second time slot are the same is not limited.
  • the first symbol is arranged in the range of the last 6 symbols of the first slot, and the second symbol is arranged in the range of the last 6 symbols of the second slot.
  • the first symbol is configured on other symbols of the first time slot
  • the second symbol is configured on other symbols of the second time slot.
  • the configuration of the uplink reference signal can be made to support more terminal devices.
  • the second communication method provided by the embodiment of the present application will be introduced below.
  • the network device determines downlink configuration information.
  • the network device sends a first downlink reference signal to the terminal device based on the downlink configuration information, and the terminal device receives the first downlink reference signal from the network device.
  • S703 may also be included.
  • S703 The network device sends downlink configuration information to the terminal device.
  • the terminal device may determine at which resource location to receive the first downlink reference signal according to the downlink configuration information.
  • S704 may be further included.
  • the terminal device sends an uplink reference signal to the network device.
  • the network device receives the uplink reference signal from the terminal device.
  • S705 is further included.
  • S705 The network device sends uplink configuration information to the terminal device, and the terminal device receives the uplink configuration information from the network device.
  • S705 and the execution order of S701 to S703 are not limited. In the figure, S705 is executed after S702 as an example.
  • the first downlink reference signal may be TRS, DMRS, or a combination of the two.
  • the downlink configuration information is used to configure the first downlink reference signal.
  • the downlink configuration information includes the configuration of one or more of the following first downlink reference signals:
  • the interval between two adjacent time units in a time slot of the first downlink reference signal is less than 4 symbols
  • the interval between any two frequency domain units of the first downlink reference signal in the frequency domain is greater than 4 subcarriers.
  • the first downlink reference signal occupies multiple time units of a time slot in the time domain and multiple frequency domain units in the frequency domain, and one time unit and one frequency domain unit form a time-frequency unit.
  • a small shaded block is a time-frequency unit of the first downlink reference signal.
  • the interval between two adjacent units in the time domain in each time slot of the first downlink reference signal may be 3 symbols, and the symbols in a time slot are numbered starting from 0.
  • the first downlink reference signal is located at the 5th symbol and the 8th symbol in each time slot; or as shown in Figure 8b, the first downlink reference signal is located at the fifth symbol in each time slot.
  • the interval between two adjacent units in the time domain in each time slot of the first downlink reference signal may be 2 symbols.
  • the first downlink reference signal is located at the 6th symbol and the 8th symbol in each slot.
  • Figs. 8a to 8c are all illustrated by taking an example in which the interval between any two units in the frequency domain is 4 subcarriers.
  • the interval between any two units of the first downlink reference signal in the frequency domain is greater than 4 subcarriers, and the interval between two adjacent units of the first downlink reference signal in a time slot can be Without limitation, it can also be set according to item 1) above.
  • the interval between two adjacent units of the first downlink reference signal in the frequency domain is 6 subcarriers, and if the resource bandwidth of the first downlink reference signal is 12 RB, the frequency domain density of the first downlink signal is 2.
  • the interval between two adjacent units of the first downlink reference signal in the frequency domain is 6 subcarriers, and the interval between two adjacent units of the first downlink reference signal in one time slot is 3 symbol.
  • the maximum resource bandwidth of the first downlink reference signal may be configured, for example, the maximum value is 16 RB.
  • the network device performs frequency offset estimation according to the uplink reference signal, and determines the frequency offset estimation result.
  • the network device adjusts the carrier frequency of the downlink signal to be sent according to the frequency offset estimation result.
  • S903 The network device sends the downlink signal with the adjusted carrier frequency to the terminal device.
  • S900-1 and S900-2 may also be included.
  • S900-1 The network device sends uplink configuration information to the terminal device, and the terminal device receives the uplink configuration information from the network device.
  • the terminal device sends an uplink reference signal to the network device based on the uplink configuration information.
  • the network device receives the uplink reference signal from the terminal device.
  • the frequency offset will be relatively large.
  • the main component of the frequency offset is the Doppler frequency shift, and the Doppler frequency shift is large.
  • the tracking or measurement of the frequency offset by the terminal device will have a residual frequency offset, and the effect of correcting the frequency offset is not good.
  • the effect of correcting the frequency offset is poor, the interference between sub-carriers will increase, the receiving performance of the receiving end will be reduced, and the throughput of the system will be reduced.
  • the network device can adjust the carrier frequency before sending the downlink signal, which is equivalent to pre-correcting the downlink signal, so that the downlink signal received by the terminal device can have a frequency offset of 0 or a very small frequency offset.
  • Signal, terminal equipment does not need to correct deviation. Shift the correction operation from the receiving end to the sending end. In a scenario with a large frequency deviation, the performance of the correction can be improved.
  • the downlink signal involved in the embodiment of FIG. 9 may be a downlink reference signal or downlink data.
  • the downlink reference signal may be TRS, DMRS or a combination of the two.
  • the downlink data may be a signal carried in a downlink shared channel, for example, a signal carried in a physical downlink shared channel (PDSCH).
  • the downlink signal may also be the message 2 sent by the network device to the terminal device during the initial access process or the cell handover process. Message 2 is a random access response (RAR).
  • RAR random access response
  • the embodiment in FIG. 9 may also be combined with the embodiment in FIG. 7 to form the protection scheme of the present application.
  • S904 is the same as S701.
  • the execution order of S904, S901 and S902 is not limited.
  • the network device sends the carrier frequency adjusted downlink signal to the terminal device, which can be specifically implemented as: the network device sends the carrier frequency adjusted downlink signal to the terminal device based on the downlink configuration information.
  • S905 is the same as S703.
  • FIG. 9 can be used in combination with the method in FIG. 4, or in combination with the method in FIG. 7, or in combination with the two methods in FIG. 4 and FIG.
  • the network device sends frequency offset information to the terminal device, and the terminal device receives the frequency offset information from the network device.
  • the terminal device adjusts the carrier frequency of the uplink signal to be sent according to the frequency offset information.
  • the terminal device sends the uplink signal with the adjusted carrier frequency to the network device, and the network device receives the uplink signal from the terminal device.
  • the frequency offset will be relatively large.
  • the main component of the frequency offset is the Doppler frequency shift, and the Doppler frequency shift is large.
  • the network equipment estimates the frequency offset, there will be residual frequency offset, and the effect of correcting the frequency offset is not good.
  • the effect of correcting the frequency offset is poor, the interference between sub-carriers will increase, the receiving performance of the receiving end will be reduced, and the throughput of the system will be reduced.
  • the terminal device can adjust the carrier frequency before sending the uplink signal, which is equivalent to pre-correcting the uplink signal, so that the uplink signal received by the network device can have a frequency offset of 0 or a very small frequency offset.
  • Signal network equipment does not need to be corrected. Shift the correction operation from the receiving end to the sending end. In a scenario with a large frequency deviation, the performance of the correction can be improved.
  • S1004 may also be included.
  • S1004 The network device sends scheduling information to the terminal device, and the terminal device receives the scheduling information from the network device.
  • the scheduling information is used to schedule the terminal equipment to send uplink signals.
  • the scheduling information may include information on resources used to transmit uplink signals.
  • the uplink signal may be an uplink reference signal or uplink data.
  • the uplink reference signal may be any one or more of SRS, DMRS or PT-RS.
  • the uplink data may be data carried on a physical uplink shared channel (PUSCH).
  • the uplink signal may also be a preamble (premble) sent by the terminal device during initial access or cell handover.
  • the frequency offset information may be carried in RRC signaling, or MAC CE, or DCI.
  • steps of S1001 can be replaced by the following methods:
  • the network device sends two sets of downlink reference signals to the terminal device.
  • One set of the downlink reference signal can be the signal after carrier frequency adjustment according to the embodiment of FIG. 9, and the other is the signal without carrier frequency adjustment, so that the terminal device can receive
  • the two sets of received downlink reference signals determine frequency offset information.
  • the signal to be transmitted is pre-corrected at the transmitting end.
  • the network device adjusts the carrier frequency of the downlink signal to be sent, and sends the adjusted downlink signal.
  • the terminal device adjusts the carrier frequency of the uplink signal to be sent, and sends the adjusted uplink signal.
  • the signal received by the receiving end has no or very small frequency offset.
  • the receiving end may further perform frequency offset estimation and compensation, which can further improve the effect of frequency offset adjustment.
  • the sending end can be a network device or a terminal device.
  • the sender obtains frequency offset information.
  • the network device obtains the frequency offset estimation result, and determines the frequency offset information according to the frequency offset estimation result. If the sending end is a terminal device, the terminal device receives frequency offset information from the network device.
  • the sender adjusts the carrier frequency of the signal to be sent.
  • Carrier frequency adjustment may include adjustment in the frequency domain, adjustment in the time domain, or adjustment in the time domain and frequency domain.
  • the frequency offset information may be convolution polynomial coefficients.
  • the frequency offset information may be filter coefficients.
  • the network equipment can determine whether to perform pre-correction based on the frequency offset information. For example, the network device compares the frequency offset estimation result with a set threshold, and determines whether to adjust the frequency offset according to the comparison result.
  • the set threshold may be 500 Hz, for example.
  • the frequency offset estimation result is greater than the set threshold, it is determined that the frequency offset adjustment is required; otherwise, the frequency offset adjustment is not required, and it is sufficient to send the signal without frequency offset adjustment.
  • the frequency offset estimation result is always greater than the set threshold for a period of time, it is determined that the frequency offset adjustment is required, otherwise, the frequency offset adjustment is not required, and the signal without frequency offset adjustment is only required to be sent.
  • the period of time can be 20s.
  • the frequency offset estimation result is greater than the set threshold, it is determined that frequency offset adjustment is required; if the frequency offset estimation result is not greater than the set threshold for a period of time, no frequency offset adjustment is required, and the transmission has not undergone frequency offset
  • the adjusted signal is fine.
  • the period of time can be 20s.
  • the network equipment performs pre-correction, that is, the network equipment adjusts the carrier frequency of the downlink signal to be sent.
  • the network equipment adjusting the carrier frequency of the signal to be sent may mean that the transmitting end adjusts the carrier frequency of the baseband signal.
  • the baseband signal includes a data signal and/or a reference signal. According to the frequency offset estimation result, it is judged whether the frequency offset adjustment needs to be turned on, if so, the frequency offset adjustment is performed according to the frequency offset information, otherwise the baseband signal is directly transferred to the radio frequency for transmission.
  • the process of judging whether it is necessary to turn on frequency offset adjustment can refer to the "A Possible Implementation Process for Pre-correcting the Transmitting End" described above.
  • the network equipment converts the baseband signal after the carrier frequency adjustment to the radio frequency and sends it out.
  • the above describes the schemes of pre-correction at the sending end from the perspective of the interaction between network equipment, terminal equipment, network equipment and terminal equipment.
  • the terminal device may be any terminal device covered by the network device.
  • the network device may also perform frequency offset estimation for uplink reference signals sent by multiple terminal devices to determine the spectrum estimation result of each terminal device.
  • the carrier frequency adjustment of the downlink signal can be implemented with different granularities.
  • the network device uses the same frequency offset value (for example, fd0) to adjust the carrier frequency for all terminal devices in the cell.
  • the network device can select any one of the obtained frequency offset estimation results of multiple terminal devices in the cell to determine the frequency offset value. Or, determine the average value of multiple frequency offset estimation results as the frequency offset value.
  • the network device uses the same frequency offset value for the terminal devices in the same group.
  • the network device first groups the terminal devices in the cell.
  • the terminal devices with similar frequency offset estimation results can be grouped into a group according to the frequency offset estimation results corresponding to each terminal device.
  • a frequency offset value is determined for each group.
  • the frequency offset value of a group may be the frequency offset estimation result corresponding to any terminal device in the group, or the average value of multiple frequency offset estimation results in the group.
  • network equipment can be divided into 9 groups according to the frequency deviation: the first group has a frequency deviation of less than -900Hz, the second group has a frequency deviation of -900Hz to -700Hz, and the third group has a frequency deviation of -700Hz to- 500Hz, the fourth group has a frequency offset between -500Hz to -300Hz, the fifth group has a frequency offset between -300Hz to 300Hz, the sixth group has a frequency offset between 300Hz and 500Hz, and the seventh group has a frequency offset between 500Hz. To 700Hz, the 8th group has a frequency deviation between 700Hz and 900Hz, and the 9th group has a frequency deviation greater than 900Hz.
  • the network device uses a frequency offset value corresponding to the terminal device to adjust the carrier frequency for each terminal device.
  • the network device estimates the frequency offset of the uplink reference signal sent by the terminal device according to the method of the embodiment in FIG. 9, determines the frequency offset estimation result, and adjusts the carrier frequency of the downlink signal to be sent to the terminal device according to the frequency offset estimation result.
  • this implementation is based on the granularity of the terminal device. For example, the network equipment estimates that the frequency offset values with UE1, UE2,..., UEn are fd1, fd2,..., fdn, respectively, and then pre-corrects each UE according to the corresponding frequency offset value.
  • the network device can also estimate the frequency offset based on the uplink reference signal sent by the first terminal device to obtain the first frequency offset estimation result, and the network device can send the signal to the second terminal device according to the first frequency offset estimation result. Carrier frequency adjustment of the downlink signal.
  • the network device can also report to the second terminal The downlink signal sent by the device is pre-corrected.
  • the first terminal device may have a certain association relationship with the second terminal device, for example, the location is close or adjacent.
  • the network device may send frequency offset information to the terminal device according to the cell granularity, the grouping granularity, or the granularity of the terminal device.
  • the terminal equipment adjusts the carrier frequency of the uplink signal according to the frequency offset information.
  • the specific method can refer to the solution of pre-correcting the downlink signal by the above network equipment, which will not be repeated here.
  • the receiving end when a pre-correction scheme of group granularity or cell granularity is adopted, overhead can be saved, but the frequency offset adjustment effect may not be so accurate.
  • the receiving end when it receives the pre-corrected signal, it can further estimate the frequency offset based on the reference signal to compensate for the residual frequency offset, thereby improving the accuracy of frequency offset adjustment.
  • the terminal device receives TRS and DMRS from the network device.
  • the TRS and DMRS are pre-corrected by the network device at cell granularity or packet granularity.
  • the terminal device may obtain the residual frequency offset estimation according to the received DMRS or the additional DMRS, which is used to further compensate the residual frequency offset of the received pre-corrected signal.
  • any two or more embodiments can be combined together to form a solution that needs to be protected in the present application.
  • the methods or designs described in the various embodiments can be referred to each other.
  • the methods provided in the embodiments of the present application are introduced from the perspective of terminal equipment, network equipment, and interaction between the terminal equipment and the network equipment.
  • the network device and the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application also provides a communication device 1200.
  • the communication device 1200 may be a terminal device or a network device, or a terminal device or a device in the network device, or A device that can be matched with terminal equipment or network equipment.
  • the communication device 1200 may include modules that perform one-to-one correspondence of the methods/operations/steps/actions performed by the terminal equipment or network equipment in the foregoing method embodiments.
  • the modules may be hardware circuits, software, or It can be realized by hardware circuit combined with software.
  • the communication device may include a processing module 1201 and a communication module 1202.
  • the processing module 1201 is used to call the communication module 1202 to perform receiving and/or sending functions.
  • the communication module 1202 is configured to receive configuration information from a network device, where the configuration information is used to configure one or more uplink reference signal resources; the one or more uplink reference signal resources include a first time unit and a second time unit ; The first antenna port corresponding to the first time unit is the same as the second antenna port corresponding to the second time unit.
  • the communication module 1202 is further configured to send an uplink reference signal to the network device based on the configuration information.
  • the processing module 1201 and the communication module 1202 can also be used to execute other corresponding steps or operations performed by the terminal device in the foregoing method embodiment, which will not be repeated here.
  • the communication module 1202 is configured to send configuration information to a terminal device, where the configuration information is used to configure one or more uplink reference signal resources; the one or more uplink reference signal resources include a first time unit and a second time unit; The first antenna port corresponding to the first time unit is the same as the second antenna port corresponding to the second time unit.
  • the communication module 1202 is also used to receive the uplink reference signal from the terminal equipment.
  • the processing module 1201 is configured to determine downlink configuration information, where the downlink configuration information is used to configure resources of a downlink reference signal, and the downlink reference signal conforms to one or more of the following configurations: the downlink reference signal has two configurations in one time slot. The interval between adjacent time units is less than 4 symbols, or the interval between any two frequency domain units in the frequency domain of the downlink reference signal is greater than 4 subcarriers;
  • the communication module 1202 is configured to send the downlink configuration information to the terminal device.
  • the processing module 1201 and the communication module 1202 may also be used to perform other corresponding steps or operations performed by the network device in the foregoing method embodiment, which will not be repeated here.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • a communication device 1300 provided in an embodiment of the application is used to implement the functions of the terminal device or the network device in the foregoing method.
  • the device may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1300 includes at least one processor 1320, configured to implement the functions of the terminal device or the network device in the method provided in the embodiment of the present application.
  • the communication device 1300 may further include a communication interface 1310.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, which is used to communicate with other devices through a transmission medium.
  • the communication interface 1310 is used for the device in the device 1300 to communicate with other devices.
  • the communication apparatus 1300 is a network device
  • the other device may be a terminal device.
  • the communication device 1300 is a terminal device
  • the other device may be a network device.
  • the processor 1320 uses the communication interface 1310 to send and receive data, and is used to implement the methods described in the foregoing method embodiments.
  • the processor 1320 is configured to determine downlink configuration information, where the downlink configuration information is used to configure resources of a downlink reference signal, and the downlink reference signal conforms to one or more of the following configurations:
  • the interval between two adjacent time units of the downlink reference signal in a time slot is less than 4 symbols, or the interval between any two frequency domain units of the downlink reference signal in the frequency domain is greater than 4 subcarriers, and the communication interface is used 1310 sends the downlink configuration information to the terminal device.
  • the processor 1320 is configured to receive configuration information from the network device through the communication interface 1310, the configuration information is used to configure one or more uplink reference signal resources; the one or more uplink reference signals
  • the resource includes a first time unit and a second time unit; the first antenna port corresponding to the first time unit is the same as the second antenna port corresponding to the second time unit; based on the configuration information, the network device Send the uplink reference signal.
  • the processor 1320 and the communication interface 1310 may also be used to execute other corresponding steps or operations performed by the terminal device or the network device in the foregoing method embodiment, which will not be repeated here.
  • the device 1300 may further include at least one memory 1330 for storing program instructions and/or data.
  • the memory 1330 and the processor 1320 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1320 may operate in cooperation with the memory 1330.
  • the processor 1320 may execute program instructions stored in the memory 1330. At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 1310, the processor 1320, and the memory 1330.
  • the memory 1330, the processor 1320, and the communication interface 1310 are connected by a bus 1340.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 1330 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), For example, random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • an embodiment of the present application further provides a chip, including a processor, for supporting the communication device to implement the functions related to the terminal device or node in the foregoing method embodiment .
  • the chip is connected to a memory or the chip includes a memory, and the memory is used to store the necessary program instructions and data of the communication device.
  • the embodiment of the present application provides a computer-readable storage medium that stores a computer program, and the computer program includes instructions for executing the foregoing method embodiments.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the foregoing method embodiments.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置,用以提高纠正频偏的准确度。该方法包括以下步骤:接收来自网络设备的配置信息,所述配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同;基于所述配置信息,向所述网络设备发送上行参考信号。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年02月13日提交中国专利局、申请号为202010090531.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在通信系统中,为了提高网络设备和终端设备之间的通信质量,终端设备需要进行频率同步和频率跟踪,网络设备进行频偏估计和补偿。
如何提高频偏估计的准确性,是值得关注的问题。
发明内容
本申请实施例提供一种通信方法及装置,用以提高纠正频偏的准确度。
本申请实施例提供的具体技术方案如下:
第一方面,提供一种通信方法,该方法的执行主体可以是终端设备或者位于终端设备中的芯片、芯片系统或者电路,该方法通过以下步骤实现:接收来自网络设备的配置信息,所述配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同;基于所述配置信息,向所述网络设备发送上行参考信号。通过设计第一时间单元的第一天线端口和第二时间单元的第二天线端口相同,这样相同的天线端口对应相同的信道和相同的频偏,网络设备可以根据第一天线端口和第二天线端口接收的上行参考信号进行频偏估计,提高频谱估计的准确度。
第二方面,提供一种通信方法,该方法的执行主体可以是网络设备,也可以是网络设备中的芯片、芯片系统或者电路。该方法通过以下步骤实现:向终端设备发送配置信息,所述配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同;接收来自所述终端设备的上行参考信号。通过设计第一时间单元的第一天线端口和第二时间单元的第二天线端口相同,这样相同的天线端口对应相同的信道和相同的频偏,网络设备可以根据第一天线端口和第二天线端口接收的上行参考信号进行频偏估计,提高频谱估计的准确度。
第三方面,提供一种通信方法,该方法的执行主体可以是网络设备,也可以是网络设备中的芯片、芯片系统或者电路。该方法通过以下步骤实现:确定下行配置信息,所述下行配置信息用于配置下行参考信号的资源,所述下行参考信号符合以下一项或多项配置:所述下行参考信号在一个时隙内两个相邻时间单元的间隔小于4个符号、或者所述下行参 考信号在频域上任意两个单元的间隔大于4个子载波,向终端设备发送所述下行配置信息。通过下行参考信号在一个时隙内两个相邻单元的间隔小于4个符号,能够使得下行参考信号在时域上具有更小的模式(pattern),以适应较大频偏的估计。例如,在载波频率为3.5GHz,在速率为350km/h,SCS为15KHz时的最大多普勒频偏超过了现有的间隔4符号的跟踪参考信号(tracking reference signal,TRS)最大估计范围,使用该设计,可以适应更大多普勒频偏的估计。通过设计下行信号在频域上任意两个单元的间隔大于4个子载波,能够降低网络设备通知配置的开销。
在一个可能的设计中,向终端设备发送上行配置信息,所述上行配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同。
第四方面,提供一种通信方法,该方法的执行主体可以是终端设备,也可以是终端设备中的芯片、芯片系统或者电路。该方法通过以下步骤实现:接收来自网络设备的下行配置信息,所述下行配置信息用于配置下行参考信号的资源,所述下行参考信号符合以下一项或多项配置:所述下行参考信号在一个时隙内两个相邻时间单元的间隔小于4个符号、或者所述下行参考信号在频域上任意两个频域单元的间隔大于4个子载波;基于所述下行配置信息,接收来自所述网络设备的下行参考信号。通过下行参考信号在一个时隙内两个相邻时间单元的间隔小于4个符号,能够使得下行参考信号在时域上具有更小的模式(pattern),以适应较大频偏的估计。例如,在载波频率为3.5GHz,在速率为350km/h,SCS为15KHz时的最大多普勒频偏超过了现有的间隔4符号的TRS最大估计范围,使用该设计,可以适应更大多普勒频偏的估计。通过设计下行信号在频域上任意两个单元的间隔大于4个子载波,能够降低网络设备通知配置的开销。
在一个可能的设计中,接收来自所述网络设备的上行配置信息,所述上行配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同。
下面结合第一方面、第二方面、第三方面和第四方面,对第一方面至第四方面的一些可能的设计进行说明。
在一个可能的设计中,所述第一时间单元和所述第二时间单元为位于相邻两个时隙的两个OFDM符号。通过设计第一OFDM符号和第二OFDM符号的可配置范围为两个时隙,可以使得上行参考信号配置支持更多的终端设备。
在一个可能的设计中,所述第一时间单元对应的上行参考信号端口的数量和所述第二时间单元对应的上行参考信号端口的数量不同。这样,能够复用上行参考信号资源的功能,使得上行参考信号资源尽可能的被复用,节省上行参考信号资源。
在一个可能的设计中,所述第一时间单元对应的上行参考信号端口号与所述第二时间单元对应的上行参考信号端口号相同。
在一个可能的设计中,所述第一天线端口关联至少一个所述第一时间单元对应的上行参考信号端口,所述第二天线端口关联至少一个所述第二时间单元对应的上行参考信号端口。
在一个可能的设计中,所述第一时间单元和所述第二时间单元为位于第一时隙的两个 OFDM符号,所述第一时间单元和所述第二时间单元为所述第一时隙的任意两个非连续的符号。这样可以扩展一个时隙的所有符号均可以用于上行参考信号配置,而非最后6个符号,可以使得上行参考信号配置支持更多的终端设备。
在一个可能的设计中,所述一个或多个上行参考信号资源的功能配置为用于测量频偏;或者,所述一个或多个上行参考信号资源的功能配置为用于基于码本的上行传输模式。通过限定用于估计频偏的两个上行参考信号资源的上行参考信号端口相同,并对应相同的天线端口,来保证频偏估计的准确性。此外,还可以额外进行如下增强:保证配置的多个SRS资源彼此之间是相位连续的,避免因为发送的SRS的初相不同导致的接收端频偏估计的误差。当所述一个或多个上行参考信号资源的功能配置为用于基于码本的上行传输模式,可以直接复用现有的上行参考信号资源的配置,节省上行参考信号资源且保证频偏估计的准确性。
在一种可能的设计中,第一时间单元对应第一上行参考信号资源,第二时间单元对应第二上行参考信号资源,第一上行参考信号资源和第二上行参考信号资源上的部分或者全部天线端口保持相位连续。具体的,终端设备可以通过持续开启用于发送第一时间单元对应的第一上行参考信号的功率放大器,直到该功率放大器完成发送第二时间单元对应的第二上行参考信号。通过这种发送方式,网络设备可以在保持相位连续的信号上做频偏估计,保证频偏估计性能。
在一种可能的设计中,当一个上行参考信号资源包括所述第一时间单元和所述第二时间单元时,所述第一时间单元和所述第二时间单元在时域上是非连续的。
结合第一方面和第二方面,在一个可能的设计中,所述方法还包括:网络设备向终端设备发送第一下行参考信号,终端设备接收来自所述网络设备的第一下行参考信号,所述第一下行参考信号的配置符合以下一项或多项:所述第一下行参考信号在一个时隙内两个相邻时间单元的间隔小于4个符号、或者所述第一下行参考信号在频域上任意两个单元的间隔大于4个子载波。通过第一下行参考信号在一个时隙内任意两个时间单元的间隔小于4个符号,能够使得第一下行参考信号在时域上具有更小的模式(pattern),以适应较大频偏的估计。例如,在载波频率为3.5GHz,在速率为350km/h,SCS为15KHz时的最大多普勒频偏超过了现有的间隔4符号的TRS最大估计范围,使用该设计,可以适应更大多普勒频偏的估计。通过设计第一下行信号在频域上任意两个频域单元的间隔大于4个子载波,能够降低网络设备通知配置的开销。
可选的,第一下行参考信号为TRS。
结合第一方面,在一个可能的设计中,所述方法还包括:接收来自所述网络设备的第二下行参考信号;使用根据所述第二下行参考信号获得的频偏估计和根据所述第一下行参考信号获得的载频估计,进行频偏补偿。这样可以使得接收端接收到的信号没有频偏或者频偏很小。这里的载频估计指的是利用接收的参考信号来获取接收信号的载频的过程。
可选的,第二参考信号为DMRS,或者额外解调参考信号。
第五方面,本申请实施例提供一种通信装置,所述通信装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备或节点。处理器用于调用一组程序、指令或数据,执行上述第一方面或第四方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器 与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第一方面或第四方面描述的方法。
第六方面,本申请实施例提供一种通信装置,所述通信装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为终端设备。处理器用于调用一组程序、指令或数据,执行上述第二方面或第三方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第二方面或第三方面描述的方法。
第七方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得计算机执行如第一方面或第四方面或任一种可能的设计中所述的方法。
第八方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第二方面、第三方面、第二方面或第三方面中任一种可能的设计中所述的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第四方面或第一方面或第四方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第二方面或第三方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供了一种通信系统,所述系统包括终端设备和网络设备,所述终端设备用于执行上述第一方面或第四方面、或第一方面或第四方面中任一种可能的设计中所述的方法;所述网络设备用于执行上述第二方面、第三方面或这两方面中任一种可能的设计中所述的方法。
第十二方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面和各方面的任一可能的设计中所述的方法。
附图说明
图1为本申请实施例中通信系统架构示意图;
图2a为本申请实施例中LTE中时频偏跟踪方法示意图;
图2b为本申请实施例中NR中时频偏跟踪方法示意图;
图3为本申请实施例中额外DMRS占用符号的示意图;
图4为本申请实施例中通信方法之一流程示意图;
图5a为本申请实施例中上行参考信号资源的配置方式示意图之一;
图5b为本申请实施例中上行参考信号资源的配置方式示意图之二;
图5c为本申请实施例中上行参考信号资源的配置方式示意图之三;
图6a为本申请实施例中上行参考信号资源的时域配置方式示意图之一;
图6b为本申请实施例中上行参考信号资源的时域配置方式示意图之二;
图6c为本申请实施例中上行参考信号资源的时域配置方式示意图之三;
图7为本申请实施例中通信方法之二流程示意图;
图8a为本申请实施例中下行参考信号资源的时域配置方式示意图之一;
图8b为本申请实施例中下行参考信号资源的时域配置方式示意图之二;
图8c为本申请实施例中下行参考信号资源的时域配置方式示意图之三;
图8d为本申请实施例中下行参考信号资源的时域配置方式示意图之四;
图9为本申请实施例中通信方法之三流程示意图;
图10为本申请实施例中通信方法之四流程示意图;
图11为本申请实施例中频偏调整过程示意图;
图12为本申请实施例中通信装置结构示意图之一;
图13为本申请实施例中通信装置结构示意图之二。
具体实施方式
本申请实施例提供一种通信方法及装置,其中,方法和装置是基于同一技术相同或相似构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例中“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c。其中a、b、c中的每一个本身可以是元素,也可以是包含一个或多个元素的集合。
在本申请中,“示例性地”、“在一些实施例中”、“在另一些实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请中“的(of)”和“对应的(corresponding)”有时可以混用。应当指出的是,在不强调其区别时,其所要表达的含义是一致的。本申请实施例中通信、传输有时可以混用,应当指出的是,在不强调区别是,其所表达的含义是一致的。例如传输可以包括发送和/或接收,可以为名词,也可以是动词。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的通信方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)系统;第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR)系统;或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统。
可选的,本申请实施例可以适用于高速移动的通信场景,例如高铁场景。其中,本申请实施例的终端设备可以高速移动。高速可以理解为移动速度不小于某一阈值。例如,该阈值可以为100米/秒、120米/秒、350千米/小时、500千米/小时等,可以是通过通信协议预先定义好的,也可以是终端根据预设算法或规则确定的,对此不作限定。示例的,高速移动场景的终端设备具体的形态可以是空中飞行的无人机(unmanned aerial vehicle,UAV)、 机载终端、飞机、高铁、车载终端等。具体的,UAV可以理解为一种使用无线电设备遥控或自带程序控制操纵的飞行器。
本申请实施例可以适用于低频(例如频率为6千兆赫兹(gigahertz,GHz)以下)场景,也可以适用于高频(例如频率为6GHz以上)场景。
图1示出了本申请实施例提供的通信方法适用的一种可能的通信系统的架构,该通信系统可以包括网络设备110,以及包括一个或多个终端设备120。其中:
网络设备110,为无线接入网(radio access network,RAN)中的节点,又可以称为基站,接入网设备,节点,还可以称为RAN节点(或设备)。目前,一些节点101的举例为:下一代基站(next generation nodeB,gNB)、下一代演进的基站(next generation evolved nodeB,Ng-eNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或5G通信系统中的设备,或者未来可能的通信系统中的网络设备。网络设备110,还可以是设备到设备(device to device,D2D)通信中担任基站功能的设备。本申请实施例中,涉及到网络设备110与终端设备进行通信时,网络设备的数量可以是一个或多个,可以属于同一个小区,也可以属于不同的小区。
终端设备120,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备120包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备120可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端120还可以是D2D通信中担任终端功能的设备。
本申请实施例适用于具有单个或多个发送接收装置的场景,以及它们任何一种衍生的场景。发送接收装置可以是传输接收节点(transmission reception point,TRP),也可以是射频拉远单元(remote radio unit,RRU),等等。在多个TRP场景下,多个TRP可以连接同一个基带单元(baseband unit,BBU),也可以连接不同的BBU。这里多个TRP可以属于同一个小区,也可以属于不同小区。
在某些应用场景下,例如高速移动通信场景下,终端设备可以与多个节点通信。例如,多传输接收点(multiple transmission reception point,Multi-TRP)场景中,终端设备可以与多个TRP进行通信。例如,Multi-TRP在4G中的实现形式是单频网小区(single frequency network cell,SFN cell),在5G中的一种实现形式是超级小区(hyper cell)。
本申请实施例还可以适用于提出的各个应用场景的衍生场景。
为了提高网络设备和终端设备之间的通信质量,需要终端设备进行频率同步和频率跟踪,网络设备进行频偏估计和补偿。以下通过图2a和图2b两种可能的实现方式来举例说明。
如图2a所示,LTE系统中小区参考信号(cell-reference signal,CRS)可以用于下行时频跟踪,即终端设备可以根据CRS的参数确定下行定时偏移和频率偏移。具体如下所述。
S201、eNB周期性的发送小区同步信号,包括主同步信号(primary synchronized signal,PSS)和辅同步信号(secondary synchronization signal,SSS)。
S202、终端设备收到PSS/SSS后进行下行频率同步。
S203、终端设备接收eNB发送的CRS。
S204、终端设备根据对下行定时和/或频偏的估计,进行时间频域同步和/或时间频率跟踪。
S205、终端设备在跟踪的载频上的物理上行共享信道(physical uplink shared channel,PUSCH)上,发送上行数据和解调参考信号(demodulation reference signal,DMRS)。
S206、eNB通过接收到的DMRS进行定时和频偏估计补偿。
如图2b所示,NR系统中TRS可以用于下行时频跟踪,以实现正确的信号发送和接收。
S301、gNB周期性的发送小区同步信号SSB。
S302、终端设备收到SSB后进行下行频率同步。
S303、终端设备接收gNB发送的TRS。
S304、终端设备对下行定时和频偏的估计,进行同步。
S305、终端设备在跟踪的载频上的PUSCH上,发送上行数据和解调参考信号DMRS。
S306、gNB通过接收到的DMRS进行定时和频偏估计补偿。
上述图2a或图2b所述的方法虽然能够实现频率同步和频偏估计,但是在一些应用场景下该方法获得的频偏估计的准确性不高。例如,在高速移动场景下,频偏的成分大部分为多普勒频偏,且多普勒频偏很大,终端设备根据CRS跟踪的频率会不准,存在残留的频偏比较大。这样较大的残留频偏会带来严重的子载波间干扰(inter-carrier interference,ICI),尤其是在终端数量很多时,严重的多终端干扰会大大降低接收端的接收性能,降低系统的吞吐量。若使用DMRS进行频偏估计补偿,需要网络设备提前调度DMRS,若终端设备的数量很多,网络设备调度DMRS的开销很大,网络设备的复杂度高。
基于此,本申请实施例以下提出一些可能的方法设计。
首先本申请实施例中涉及的一些术语做说明。
1、本申请实施例中“时间单元”指的是在时域上的一段时间。示例的,时间单元可以为无线帧(radio frame)、子帧(subframe)、时隙(slot)、微时隙(micro-slot)、迷你时隙(mini-slot)或者符号等,对此不作限定。符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
2、TRS,当CSI-RS资源集合(CSI-RS resource set)包括trs-Info字段时,该CSI-RS resource set可以是TRS,该trs-Info字段用于表示该CSI-RS resource set是用于TRS的。
3、频偏,即频率偏移。频偏包括收发端本地振荡器载频的偏差带来的载波频率偏移(carrier frequency offset,CFO)和收发端相对运动带来的多普勒频移(Doppler Shift)。在高速移动场景,频偏的主要成分是多普勒频移。
其中,当终端设备以恒定的速率沿某一方向移动时,由于传播路程差的原因,会造成接收信号相位和频率的变化,通常将这种变化称为多普勒频移。或者说,多普勒效应造成的发射和接收的频率之差称为多普勒频移。它揭示了波的属性在运动中发生变化的规律。
4、频偏估计,也可以描述为频偏测量,指的是对接收信号的载频与其对应的发射信号载频的频率偏差值的估计。
5、额外DMRS(additional DMRS)。NR对上行DMRS进行了增强。引入具有更高时域密度的additional DMRS。通常,接收端在接收PDSCH或PUSCH之前需要基于DMRS做信道估计,DMRS在PDSCH或PUSCH的起始OFDM符号上发送,从而接收端可以快速获取信道估计结果用于数据解调。为了提高信道估计性能,DMRS不仅在PDSCH或PUSCH的起始OFDM符号上发送,还会在PDSCH或PUSCH中的其他OFDM符号上发送,在其它OFDM符号上发送的是额外DMRS。额外DMRS可以占用1个、2个或者3个OFDM符号。如图3所示,图中一个大方框表示频域上一个资源块(resource block,RB)和时域上一个时隙(slot),包含频域上12个子载波(如图中纵轴方向)和14个OFDM符号(如图中横轴方向)。图3中最左边的一个RB中,是没有配置额外DMRS的单符号DMRS结构,第3个OFDM符号(该RB中第3列)为DMRS符号。图3中从左边数第2个RB表示配置了1个额外DMRS的单符号DMRS结构,该额外DMRS位于第12个OFDM符号(该RB中第12列)上。图3中从左边数第3个RB表示配置了2个额外DMRS的单符号DMRS结构,该额外DMRS位于第8和第12个OFDM符号(该RB中第8和第12列)上。图3中从左边数第4个RB表示配置了3个额外DMRS的单符号DMRS结构,该额外DMRS位于第6、9、12个OFDM符号(RB中第6、9、12列)上。
6、本申请实施例中,一个时间单元可以对应一个或多个天线端口(antenna port),即,在该时间单元上,发送端采用该一个或多个天线端口发送信号。
一个时间单元可以对应一个或多个上行参考信号端口,即,该上行参考信号端口占用该时间单元、发送端在该时间单元上采用该一个或多个上行参考信号端口发送信号。
其中,天线端口是指发送端发送信号所采用的物理天线,或者物理天线阵子,或者由多个物理天线虚拟化而成;参考信号端口是指用于发送参考信号的网络侧物理资源,参考信号端口可以对应物理时频资源、码域资源和/或空间波束。
同一上行参考信号资源中的不同上行参考信号端口对应不同的天线端口,不同上行参考信号资源中的相同上行参考信号端口对应不同的天线端口。
上行参考信号可以是SRS,时间单元可以是符号。一个符号可以对应一个或多个SRS端口,一个符号可以对应一个或多个天线端口。同一SRS资源中不同的SRS端口对应不同的天线端口;不同SRS资源中相同的SRS端口对应不同的天线端口。
SRS端口和天线端口的关联关系的几种可能的示例如表1~表3所示。表1~表3中,一行中的SRS端口与天线端口具有关联关系。例如,表1中SRS资源1中的SRS端口0关联天线端口0,即表1~3中每一行列出的SRS端口和天线端口具有关联关系。
表1
SRS端口 天线端口
SRS资源1中的SRS端口0 天线端口0
SRS资源2中的SRS端口0 天线端口1
表2
SRS端口 天线端口
SRS资源1中的SRS端口0 天线端口0
SRS资源2中的SRS端口0 天线端口1
SRS资源3中的SRS端口0 天线端口2
SRS资源4中的SRS端口0 天线端口3
表3
SRS端口 天线端口
SRS资源1中的SRS端口0 天线端口0
SRS资源1中的SRS端口1 天线端口1
SRS资源2中的SRS端口0 天线端口2
SRS资源2中的SRS端口1 天线端口3
如图4所示,下面对本申请实施例提供的通信方法之一进行介绍。
S401:网络设备向终端设备发送上行配置信息,终端设备接收来自网络设备的上行配置信息。
其中,该上行配置信息用于配置一个或者多个上行参考信号资源。上行参考信号资源可以包括上行参考信号的时域、频域或码域中的任意一种或多种资源。
该一个或者多个上行参考信号资源中包括第一时间单元和第二时间单元,即上行参考信号资源在时域上占用第一时间单元和第二时间单元。该第一时间单元和第二时间单元可以认为是上行参考信号资源在时域上的一个或多个连续的OFDM符号。上行参考信号资源的数量可以是一个或多个。若上行参考信号资源的数量为一个,则这一个上行参考信号资源包括第一时间单元和第二时间单元,也就是一个上行参考信号占用了第一时间单元和第二时间单元。若上行参考信号资源的数据为多个,则可能第一时间单元和第二时间单元包含于不同的上行参考信号资源中,例如,第一上行参考信号资源包括第一时间单元,第二上行参考信号资源包括第二时间单元。
可选的,第一时间单元和第二时间单元若包含于同一个上行参考信号资源,则第一时间单元和第二时间单元可以在时域上是非连续的。
第一时间单元对应第一天线端口(antenna port),第二时间单元对应第二天线端口,第一天线端口和第二天线端口相同。
可选的,第一时间单元和第二时间单元均可以对应一个或多个天线端口,例如,第一时间单元除了对应第一天线端口之外,还对应第三天线端口,第三天线端口与第一天线端口和第二天线端口均不同。时间单元对应天线端口可以理解为,在该时间单元上,发送端采用该天线端口发送信号。
在一种可能的设计中,第一时间单元对应第一上行参考信号资源,第二时间单元对应第一上行参考信号资源,第一上行参考信号资源中的一个或者多个编号相同的参考信号资源端口对应的天线端口相同。时间单元对应参考信号资源或者参考信号资源端口可以理解为,该参考信号资源或者参考信号资源端口占用该时间单元。
在一种可能的设计中,第一时间单元对应第一上行参考信号资源,第二时间单元对应第二上行参考信号资源,第一上行参考信号资源和第二上行参考信号资源中的一个或者多 个编号相同的参考信号资源端口对应的天线端口相同。
在一种可能的设计中,第一时间单元对应第一上行参考信号资源,第二时间单元对应第二上行参考信号资源,第一上行参考信号资源和第二上行参考信号资源上的部分或者全部天线端口保持相位连续。具体的,终端设备可以通过持续开启用于发送第一时间单元对应的第一上行参考信号的功率放大器,直到该功率放大器完成发送第二时间单元对应的第二上行参考信号。通过这种发送方式,网络设备可以在保持相位连续的信号上做频偏估计,保证频偏估计性能。
可选的,上行参考信号为SRS。
S402:终端设备基于该上行配置信息向网络设备发送上行参考信号。网络设备接收来自终端设备的上行参考信号。
终端设备根据配置信息确定一个或多个上行参考信号资源。其中,该一个或多个上行参考信号资源中包括第一时间单元和第二时间单元。终端设备在第一时间单元和第二时间单元上采用相同的天线端口发送上行参考信号。
由于相同的天线端口对应相同的信道和相同的频偏,这样通过设计第一时间单元的第一天线端口和第二时间单元的第二天线端口相同,网络设备接收来自终端设备的两个上行参考信号通过相同的信道和相同的频偏,网络设备就可以根据第一天线端口和第二天线端口接收的上行参考信号进行频偏估计,提高频谱估计的准确度。
可选的,在S401或者S402之前,还包括S400。
S400:网络设备向终端设备发送下行参考信号。终端设备接收来自网络设备的下行参考信号。
例如下行参考信号可以是TRS或者CRS。
终端设备可以根据来自网络设备的下行参考信号获得下行载频,该下行载频作为S402发送上行参考信号的载频基准。例如,终端设备可以按照该下行载频调整中心频率,并发送上行参考信号。
以下对上行配置信息的一些可能的设计进行说明。
上行配置信息可以是无线资源控制(radio resource control,RRC)信令,或者媒体接入层控制单元(media access control-control element,MAC CE)或者下行控制信息(downlink control information,DCI)。
上行配置信息还可以用于触发上行参考信号的传输。终端设备接收到上行配置信息时,触发上行参考信号的传输。
上行参考信号可以是探测参考信号(sounding reference signal,SRS),也可以是解调参考信号(demodulation reference symbol,DMRS),也可以是额外DMRS(additional DMRS),也可以是相位跟踪参考信号(phase tracking reference signal,PTRS)。也可以是上述参考信号中任意多个的组合。
上行参考信号可以用于上行频偏的估计或者测量。
下面以S402中终端设备发送的上行参考信号为SRS为例进行说明。
若上行参考信号为SRS:SRS可能是周期性传输的,上行配置信息可以是RRC信令,RRC信令用于配置周期性传输的SRS;SRS可能是半静态传输,上行配置信息可以是RRC信令和/或MAC CE,可以在通过RRC信令配置非周期性传输或半静态传输的SRS,通过MAC CE激活该非周期性传输或半静态传输。SRS可能是非周期性传输,上行配置信息可 以是RRC信令,可以在通过RRC信令配置非周期性传输的SRS,通过DCI触发该非周期性传输。
上行配置信息配置的一个或多个上行参考信号资源可能包括两个或两个以上时间单元,且至少两个该时间单元满足:对应的天线端口相同。例如,一个或多个上行参考信号资源包括4个时间单元,4个时间单元中的2个时间单元对应的天线端口相同,或者,4个时间单元对应的天线端口均相同。
第一时间单元和第二时间单元可以是该一个或多个上行参考信号资源包括的任意两个时间单元。
时间单元还可能对应上行参考信号端口,例如,第一时间单元对应第一上行参考信号端口,第二时间单元对应第二上行参考信号端口。本申请实施例中,可以设计第一上行参考信号端口和第二上行参考信号端口相同。本申请实施例的方案还可以适用于第一上行参考信号端口的数量和第二上行参考信号端口的数量不同的场景。即第一时间单元对应的上行参考信号端口的数量和第二时间单元对应的上行参考信号端口的数量不同。当然,第一上行参考信号端口的数量也可以和第二上行参考信号端口的数量是相同的。
上行配置信息配置的上行参考信号资源可以用于频偏测量,网络设备根据终端设备发送的上行参考信号进行频偏测量。
上行参考信号资源的功能(usage)可以设置为新定义的功能,例如定义为频偏测量(freqOffsetMeasure)。上行配置信息中包括该上行参考信号资源的功能,终端设备接收到该上行配置信息后,根据该功能确定该上行参考信号资源是用于频偏测量的。
或者,上行配置信息配置的上行参考信号资源的功能是用于基于码本(codebook)的上行传输模式,通过对用于码本的上行参考信号资源进行设置,比如设置上行参考信号资源占用多个非连续的OFDM符号,或者,设置多个上行参考信号资源之间的天线端口关联关系,能够使得上行参考信号资源用于频偏测量。终端设备基于上行配置信息向网络设备发送上行参考信号,网络设备可以根据接收到的上行参考信号进行频偏估计,由于上行参考信号资源进行了如上所述的设置,相同的天线端口对应相同的信道和相同的频偏,两个或两个以上时间单元对应的天线端口相同,网络设备接收来自终端设备的两个或两个以上上行参考信号经过相同的信道和相同的频偏,网络设备就可以根据在不同时间上采用相同相位、相同功率发送的信号提取频谱信息后做差值处理,获得更准确的频偏估计结果。
以上行参考信号为SRS为例,以时间单元为符号为例,对本申请实施例对上行参考信号资源的配置的一些可能的设计进行说明。以下描述中,对SRS的说明可以扩展到对任意上行参考信号的说明,对符号的说明可以扩展到对任意时间单元的说明。
第一时间单元为第一符号,第二时间单元为第二符号。上行配置信息用于配置一个或多个SRS资源,一个SRS资源包括第一符号和第二符号,或者多个SRS资源包括第一符号和第二符号。第一符号对应的第一天线端口与第二符号对应的第二天线端口相同。若第一符号和第二符号在一个SRS资源中配置,则第一符号和第二符号在时域上是非连续的。
一般情况下,网络设备配置SRS资源通常会配置SRS资源集合(resource set),SRS资源集合中可能包括一个或多个SRS资源。一个SRS资源中可能包括一个或多个符号。
上行参考信号资源的配置方式一:
SRS资源或SRS资源集合的功能可以是新定义的一种功能,例如定义为频偏测量。
如图5a所示,假设SRS资源集合包括第一符号(符号1)和第二符号(符号2),且 符号1和符号2都具有一个SRS端口(SRS port),该SRS port假设为SRS port 0。则符号1和符号2具有相同的天线端口。相同的天线端口对应相同的信道和相同的频偏影响。
这样,终端设备在符号1和符号2上发送两个SRS信号,会经过相同的信道和频偏影响,网络设备使用符号1和符号2上的相位差来进行频偏估计,能够获得更准确的频偏估计结果。
上行参考信号资源的配置方式二:
SRS资源或SRS资源集合也可以复用现有的功能,例如,功能为用于基于码本的上行传输模式。基于码本的上行传输模式的基本原理是,终端设备在多个SRS端口上发送信号,基站根据多个SRS端口上的信号确定并指示PUSCH的预编码,可以量化为预编码指示(transmission precoding matrix indicator,TPMI),终端设备将该TPMI作用在发送SRS端口的天线端口上发送物理上行共享信道(physical uplink shared channel,PUSCH)。该功能下,基站可以通过多SRS端口的信号获得终端侧各个天线端口上的信道若独立配置用于频偏测量的功能和用于码本的功能的SRS资源,则用于频偏测量的SRS需要与用于码本的SRS正交复用,以便于对用于频偏测量的SRS设置相同的SRS端口和相同的天线端口。
本申请实施例中,在一个可能的设计中,可以设置第一时间单元对应的第一上行参考信号资源中包括的参考信号端口的数量与第二时间单元对应的第二上行参考信号资源中包括的参考信号端口的数量不同。对应地,可以设置第一符号(符号1)对应的SRS端口的数量与第二符号(符号2)对应的SRS端口的数量不同。
例如,如图5b所示,符号1对应2个SRS端口,包括SRS端口0和SRS端口1。符号2对应1个SRS端口,为SRS端口0。符号1的SRS端口0和SRS端口1可以用于码本。符号1的SRS端口0和符号2的SRS端口0可以用于频偏测量。设置符号1的SRS端口0对应的天线端口和符号2的SRS端口0对应的天线端口相同。对于一个2Tx终端设备而言,也就是说,对于发送天线数为2的终端设备而言,这样的配置使得该SRS资源集合中2端口(2-port)SRS资源可以和用于“基于码本的上行传输”的SRS资源集合中的2-port SRS资源完全复用,节省SRS资源开销。
这样,终端设备在符号1和符号2上发送两个SRS信号,会经过相同的信道和频偏影响,网络设备使用符号1和符号2上的相位差来进行频偏估计,能够获得更准确的频偏估计结果。并且,通过设置SRS资源中不同符号的不同SRS端口数,能够复用SRS资源的功能,使得SRS资源尽可能的被复用,节省SRS资源。
SRS资源集合中的多个SRS资源的时频资源配置可以复用现有机制。示例性的,SRS资源集合中多个SRS资源的时域配置形式如图5c所示。1个slot内可选的用于SRS资源配置的OFDM符号位置为一个时隙中第8个符号和第12个符号,或者为一个时隙中第9个符号和第13个符号,其中,一个时隙中的符号从0开始编号。SRS资源带宽为10MHz。该配置方式使能网络设备基于上行信号进行精确频偏估计,例如多普勒频移(Doppler shift)估计,并用于下行Doppler shift预补偿。该SRS资源集合中所有SRS资源可以均配置为周期的,比如图5c中,符号1和符号2位于同一个时隙,符号3和符号4位于相邻的另一个时隙。符号1和符号2的周期和偏置为5ms和1ms,符号3和符号4的周期和偏置为5ms和2ms。其中,偏置是指在一个周期内SRS资源所在的具体ms,例如,偏置为1ms表明在该周期5ms内参考信号占第2个ms。该SRS资源集合中所有SRS资源还可以均配置为 非周期的,非周期SRS的触发机制可以是一个DCI触发一个或多个SRS资源集合的发送,且该SRS资源集合的发送时刻相对触发该SRS资源集合的DCI有一个统一的时间偏置,该方式无法支持图5c中所示的基于多个slot的频偏测量机制。针对上述问题,可以有多个方法解决。例如方法一:定义两个新的SRS资源集合,每个集合独立配置一个时间偏置,则图5c中符号1和符号2配置于第一个SRS资源集合,符号3和符号4配置于第二个SRS资源集合;方法二:定义一个SRS资源集合,每个SRS资源独立配置时间偏置。
在一种可选的实施方式中,约定SRS资源集合中,各个SRS资源的端口数相同,则规定各个资源中端口编号相同的SRS端口对应的天线端口相同,该设置可以通过RRC信令配置在SRS资源集合中,或者配置在需要该限定关系的SRS资源配置中。
在另一种可选的实施方式中,约定SRS资源集合中,各个SRS资源的端口数可以不相同,则规定至少两个不同的SRS资源中的SRS端口编号0的天线端口相同,该设置可以通过RRC信令配置在SRS资源集合中,或者配置在需要该限定关系的SRS资源配置中。
本申请实施例中,第一时间单元和第二时间单元可以位于同一个时隙,也可以位于不同的时隙。即,第一符号和第二符号均位于第一时隙,或者,第一符号位于第一时隙,第二符号位于第二时隙。可选的,第一时隙和第二时隙为相邻的两个时隙。在一种可能的设计中,第一时间单元为一个时隙内一个或者多个连续的OFDM符号,第二时间单元为同一个时隙内一个或者多个连续的OFDM符号,且与第一时间单元间隔K个OFDM符号,K可以取1到12之中的任意整数。在另一种可能的设计中,第一时间单元为时隙1内一个或者多个连续的OFDM符号,第二时间单元为与时隙1时域上相邻的时隙2内一个或者多个连续的OFDM符号。
若第一符号和第二符号位于同一个时隙,那么第一符号和第二符号可以是不限于一个时隙中的后6个符号的符号。即第一符号和第二符号可以配置的范围除了一个时隙的后6个符号之外,还可以在除后6个符号之外的其它符号配置。
可选的,第一符号和第二符号可以是一个时隙中的任意两个非连续的符号,即可配置的范围为整个时隙。
例如,第一时隙包括14个符号,用编号0~13来表示这14个符号。第一符号和第二符号可以间隔3个符号。如图6a所示,第一符号和第二符号可以是第一时隙的第8个符号和第12个符号,或者如图6b所示,第一符号和第二符号可以是第一时隙的第9个符号和第13个符号。
通过设计第一符号和第二符号的可配置范围为一个时隙中的任意符号,可以使得上行参考信号配置支持更多的终端设备。
若第一符号和第二符号位于相邻的两个时隙,如图6c所示,第一符号位于第一时隙,第二符号位于第二时隙。第一符号在第一时隙的位置与第二符号在第二时隙的位置是否相同不作限定。例如,可以规定在第一时隙的后6个符号的范围配置第一符号,在第二时隙的后6个符号的范围配置第二符号。当然也可以规定在第一时隙的其它符号上配置第一符号,在第二时隙的其它符号上配置第二符号。
通过设计第一符号和第二符号的可配置范围为两个时隙,可以使得上行参考信号配置支持更多的终端设备。如图7所示,下面对本申请实施例提供的通信方法之二进行介绍。
S701:网络设备确定下行配置信息。
S702:网络设备基于下行配置信息,向终端设备发送第一下行参考信号,终端设备接收来自网络设备的第一下行参考信号。
可选的,在S701之后,在S702之前,还可以包括S703。
S703:网络设备向终端设备发送下行配置信息。
终端设备在接收第一下行参考信号时,可以根据下行配置信息,来确定在什么资源位置上接收第一下行参考信号。
以下对图7实施例的可选实现方式进行详细介绍。
可选的,在S702之后,还可以包括S704。
S704:终端设备向网络设备发送上行参考信号。网络设备接收来自终端设备的上行参考信号。
本步骤可以参照S402。
可选的,在S704之前,还包括S705。
S705:网络设备向终端设备发送上行配置信息,终端设备接收来自网络设备的上行配置信息。
本步骤可以参照S401。
S705的执行顺序与S701~S703的执行顺序不作限定。图中以S705在S702之后执行作为示例。
第一下行参考信号可以是TRS,也可以是DMRS,也可以是两者的结合。
下行配置信息用于配置第一下行参考信号。下行配置信息包括以下一项或多项第一下行参考信号的配置:
1)第一下行参考信号在一个时隙内两个相邻时间单元的间隔小于4个符号;
2)第一下行参考信号在频域上任意两个频域单元的间隔大于4个子载波。
以第一下行参考信号为TRS为例,当符号上述第1)项配置时:
第一下行参考信号在时域上占用一个时隙的多个时间单元,在频域上占用多个频域单元,一个时间单元和一个频域单元组成一个时频单元。图8a、图8b和图8c中,一个小阴影块为第一下行参考信号的一个时频单元。第一下行参考信号在每个时隙中两个时域上相邻的单元之间的间隔可以是3个符号,一个时隙中的符号从0开始编号。如图8a所示,第一下行参考信号在每个时隙中位于第5个符号和第8个符号;或者如图8b所示,第一下行参考信号在每个时隙中位于第6个符号和第9个符号。第一下行参考信号在每个时隙中两个时域上相邻的单元之间的间隔可以是2个符号。如图8c所示,第一下行参考信号在每个时隙中位于第6个符号和第8个符号。
上述图8a~图8c均是以频域上任意两个单元的间隔为4个子载波为例进行示意。
当符合上述第2)项配置时,第一下行参考信号在频域上任意两个单元的间隔大于4个子载波,第一下行参考信号在一个时隙内两个相邻单元的间隔可以不用限制,也可以按照上述第1)项来设置。例如第一下行参考信号在频域上两个相邻单元的间隔为6个子载波,若第一下行参考信号的资源带宽为12RB,则第一下行信号的频域密度为2。如图8d所示,第一下行参考信号在频域上两个相邻单元的间隔为6个子载波,并且第一下行参考信号在一个时隙内两个相邻单元的间隔为3个符号。
可以理解的是,上述第1)项和第2)项可以独立设置,也可以结合在一起设置。
可选的,可以配置第一下行参考信号的资源带宽最大值,例如最大值为16RB。
如图9所示,下面对本申请实施例提供的通信方法之三进行介绍。
S901:网络设备根据上行参考信号进行频偏估计,确定频偏估计结果。
S902:网络设备根据频偏估计结果,对待发送的下行信号进行载频调整。
S903:网络设备向终端设备发送载频调整后的下行信号。
可选的,在S901之前,还可以包括S900-1和S900-2。
S900-1:网络设备向终端设备发送上行配置信息,终端设备接收来自网络设备的上行配置信息。
本步骤可以参照S401。
S900-2:终端设备基于该上行配置信息向网络设备发送上行参考信号。网络设备接收来自终端设备的上行参考信号。
本步骤可以参照S402。
相同步骤可以参照上文对图4实施例的描述,在此不再赘述。
在包括S900-1和S900-2的情况下,图9实施例可以结合图4实施例共同形成本申请的保护方案。
对于一些应用场景,频偏会比较大。例如在高速移动的场景下,频偏的主要成分是多普勒频移,多普勒频移偏大。若采用图2a或图2b所述的方法,终端设备对频偏的跟踪或测量会有残留的频偏,纠正频偏的效果不好。在纠正频偏效果较差的情况下,将会导致子载波间干扰增大,降低接收端的接收性能,降低系统的吞吐量。通过图9所述的方法,网络设备能够在发送下行信号之前进行载频调整,相当于对下行信号进行预纠偏,这样终端设备接收到的下行信号可以是频偏为0或者频偏非常小的信号,终端设备无需进行纠偏。将纠偏的操作由接收端转移到发送端,在频偏较大的场景下,能够提高纠偏的性能。
图9实施例涉及的下行信号可以是下行参考信号,也可以是下行数据。其中,下行参考信号可以是TRS,也可以是DMRS或者两者的结合。下行数据可以是承载于下行共享信道中的信号,例如,承载于物理下行共享信道(physical downlink shared channel,PDSCH)中的信号。下行信号也可以是初始接入流程或者小区切换流程中,网络设备向终端设备发送的消息2。消息2为随机接入响应(random access response,RAR)。
可选的,若下行信号为下行参考信号,图9实施例也可以结合图7实施例形成本申请的保护方案。
在这种情况下,在S903之前,还可以执行S904。
S904同S701。S904与S901和S902的执行顺序不作限定。
参照S702的描述,S903中网络设备向终端设备发送载频调整后的下行信号,具体可以实现为:网络设备基于下行配置信息,向终端设备发送载频调整后的下行信号。
当然,在S904之后,在S903之前,还可以执行S905。S905同S703。
可以理解的是,图9实施例可以结合图4的方法,也可以结合图7的方法,也可以结合图4和图7两个方法来使用。
如图10所示,下面对本申请实施例提供的通信方法之四进行介绍。
S1001:网络设备向终端设备发送频偏信息,终端设备接收来自网络设备的频偏信息。
S1002:终端设备根据该频偏信息,对待发送的上行信号进行载频调整。
S1003:终端设备向网络设备发送载频调整后的上行信号,网络设备接收来自终端设 备的上行信号。
对于一些应用场景,频偏会比较大。例如在高速移动的场景下,频偏的主要成分是多普勒频移,多普勒频移偏大。若采用图2a或图2b所述的方法,网络设备对频偏的估计,会有残留的频偏,纠正频偏的效果不好。在纠正频偏效果较差的情况下,将会导致子载波间干扰增大,降低接收端的接收性能,降低系统的吞吐量。通过图10所述的方法,终端设备能够在发送上行信号之前进行载频调整,相当于对上行信号进行预纠偏,这样网络设备接收到的上行信号可以是频偏为0或者频偏非常小的信号,网络设备无需进行纠偏。将纠偏的操作由接收端转移到发送端,在频偏较大的场景下,能够提高纠偏的性能。
可选的,在S1002之前,还可以包括S1004。
S1004:网络设备向终端设备发送调度信息,终端设备接收来自网络设备的调度信息。
该调度信息用于调度终端设备发送上行信号。调度信息可以包括用于发送上行信号的资源的信息。
其中,上行信号可以是上行参考信号,也可以是上行数据。上行参考信号可以是SRS、DMRS或PT-RS中的任意一项或多项。上行数据可以是承载于物理上行共享信道(physical uplink shared channel,PUSCH)上的数据。上行信号也可以是初始接入或者小区切换过程中终端设备发送的前导码(premble)。
可选的,频偏信息可以携带于RRC信令中,或者MAC CE,或者DCI中。
在一个可能的设计中,S1001的步骤可以替换为通过以下方式实现:
网络设备向终端设备发送两套下行参考信号,其中一套下行参考信号可以按照图9实施例进行载频调整后的信号,另一套为没有进行载频调整的信号,这样终端设备可以根据接收到的两套下行参考信号确定频偏信息。
图9或图10的实施例,可以认为在发送端对待发送的信号进行预纠偏。例如网络设备对待发送的下行信号进行载频调整,发送调整后的下行信号。又例如终端设备对待发送的上行信号进行载频调整,并发送调整后的上行信号。这样接收端接收到的信号没有频偏或者频偏很小。可选的,接收端在接收到载频调整后的信号后,可以进一步进行频偏估计和补偿,能够进一步提高频偏的调整效果。
结合图9或图10的实施例,下面对发送端进行预纠偏的一种可能的实现过程进行介绍。
发送端可以是网络设备或者终端设备。
发送端获取频偏信息。其中,若发送端是网络设备,网络设备获取频偏估计结果,根据频偏估计结果确定频偏信息。若发送端是终端设备,终端设备从网络设备接收频偏信息。
发送端对待发送的信号进行载频调整。载频调整可以包括频域上的调整,也可以包括时域上的调整,或者时域和频域的调整。对于频域上的调整,频偏信息可以是卷积多项式系数。对于时域上的调整,频偏信息可以是滤波系数。
网络设备可以根据频偏信息判断是否进行预纠偏。例如,网络设备将频偏估计结果与设定门限进行比较,根据比较结果确定是否进行频偏调整。设定门限例如可以是500Hz。
可选的,若频偏估计结果大于设定门限,则确定需要进行频偏调整;否则不需要进行频偏调整,发送未经过频偏调整的信号即可。
或者,若频偏估计结果在一段时间内始终大于设定门限,则确定需要进行频偏调整,否则不需要进行频偏调整,发送未经过频偏调整的信号即可。例如,一段时间可以是20s。
或则,若频偏估计结果大于设定门限,则确定需要进行频偏调整;若频偏估计结果在一段时间内始终不大于设定门限,则不需要进行频偏调整,发送未经过频偏调整的信号即可。例如,一段时间可以是20s。
如图11所示,网络设备进行预纠偏,即网络设备对待发送的下行信号进行载频调整。网络设备对待发送的信号进行载频调整,可以是指发送端对基带信号进行载频调整。基带信号包括数据信号和/或参考信号。根据频偏估计结果判断是否需要开启频偏调整,若是则根据频偏信息进行频偏调整,否则将基带信号直接转到射频发送出去。判断是否需要开启频偏调整的过程可以参照上面所述的“对发送端进行预纠偏的一种可能的实现过程”。网络设备将载频调整后的基带信号转换到射频发送出去。
以上从网络设备、终端设备、网络设备和终端设备之间的交互的角度,对发送端进行预纠偏的方案分别进行了描述。其中终端设备可以是网络设备覆盖范围的任一个终端设备。
在网络设备对下行信号进行载频调整(或者说预纠偏)的方案中,网络设备还可以针对多个终端设备发送的上行参考信号进行频偏估计,确定每一个终端设备的频谱估计结果。网络设备在获得多个终端的频偏估计结果的情况下,对下行信号进行载频调整可以通过不同的粒度来实现。
在一个可能的实现方式中,网络设备对小区内所有终端设备均采用同一个频偏值(例如fd0)进行载频调整。
这种情况下,网络设备可以根据获得的小区内多个终端设备的频偏估计结果,选择其中任意一个结果来确定频偏值。或者,确定多个频偏估计结果的平均值作为频偏值。
在另一个可能的实现方式中,网络设备对同一个分组内的终端设备采用同一个频偏值。这种情况下,网络设备首先对小区内的终端设备进行分组。可以按照各个终端设备对应的频偏估计结果,将具有相近频偏估计结果的终端设备分为一组。针对每个分组确定一个频偏值,例如一个组的频偏值可以是组内任意一个终端设备对应的频偏估计结果,或者组内多个频偏估计结果的平均值。
例如网络设备根据频偏大小可以分为9组:第1组为频偏小于-900Hz,第2组为频偏介于-900Hz到-700Hz,第3组为频偏介于-700Hz到-500Hz,第4组为频偏介于-500Hz到-300Hz,第5组为频偏介于-300Hz到300Hz,第6组为频偏介于300Hz到500Hz,第7组为频偏介于500Hz到700Hz,第8组为频偏介于700Hz到900Hz,第9组为频偏大于900Hz。第1组按照fd1=-900Hz来预纠偏,第2组按照fd2=-800Hz来预纠偏,第3组按照fd3=-600Hz来预纠偏,第4组按照fd4=-400Hz来预纠偏,第5组按照fd5=0Hz来预纠偏,第6组按照fd6=400Hz来预纠偏,第7组按照fd7=600Hz来预纠偏,第8组按照fd8=800Hz来预纠偏,第9组按照fd9=900Hz来预纠偏。
在另一个可能的实现方式中,网络设备对每个终端设备采用与该终端设备对应的频偏值进行载频调整。网络设备按照图9实施例的方式,对终端设备发送的上行参考信号进行频偏估计,确定频偏估计结果,根据该频偏估计结果,对欲向该终端设备发送的下行信号进行载频调整。可以认为这种实现方式是以终端设备为粒度的。例如网络设备估计出与UE1,UE2,…,UEn的频偏值分别为fd1,fd2,…,fdn,然后对各个UE分别按照对应的频偏值做预纠偏。
实际应用中,网络设备还可以根据第一终端设备发送的上行参考信号进行频偏估计,获得第一频偏估计结果,网络设备可以按照第一频偏估计结果,对欲向第二终端设备发送 的下行信号进行载频调整。这样,对于第二终端设备没有发送用于频偏测量的上行参考信号时,或者该第二终端设备不具有发送用于频偏测量的上行参考信号的能力时,网络设备也可以对第二终端设备发送的下行信号进行预纠偏。其中第一终端设备可以与第二终端设备具有某种关联关系,例如位置相近或相邻。
类似地,对于终端设备对上行信号进行预纠偏的方案,网络设备可以按照小区粒度、分组粒度或者终端设备为粒度,向终端设备发送频偏信息。终端设备根据频偏信息对上行信号进行载频调整。具体方式可以参照如上网络设备对下行信号进行预纠偏的方案,此处不再赘述。
可选的,当采用分组粒度或者小区粒度的预纠偏方案时,能够节省开销,但是频偏调整效果可能没有那么精确。这种情况下,接收端在接收到预纠偏的信号时,可以进一步根据参考信号进行频偏估计来补偿残余的频偏,从而能够提高频偏调整的精度。例如,终端设备接收来自网络设备的TRS和DMRS,该TRS和DMRS是网络设备经过小区粒度或分组粒度预纠偏的,终端设备接收到的下行数据信号、TRS和DMRS上还有残余的频偏。终端设备可以根据接收的DMRS或额外DMRS获得对残余的频偏估计,用于对接收到的经过预纠偏的信号残余的频偏做进一步补偿。
需要说明的是,本申请实施例中,任意两个或两个以上的实施例(或可能的设计)都可以结合在一起,形成本申请需要保护的方案,当两个实施例结合使用时,各个实施例描述的方法或设计可以相互参见。
需要说明的是,本申请中的各个应用场景中的举例仅仅表现了一些可能的实现方式,是为了对本申请的方法更好的理解和说明。本领域技术人员可以根据申请提供的参考信号的指示方法,得到一些演变形式的举例。
上述本申请提供的实施例中,分别从终端设备、网络设备、以及终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图12所示,基于同一技术构思,本申请实施例还提供了一种通信装置1200,该通信装置1200可以是终端设备或网络设备,也可以是终端设备或网络设备中的装置,或者是能够和终端设备或网络设备匹配使用的装置。一种设计中,该通信装置1200可以包括执行上述方法实施例中终端设备或网络设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块1201和通信模块1202。处理模块1201用于调用通信模块1202执行接收和/或发送的功能。
当用于执行终端设备执行的方法时:
通信模块1202,用于接收来自网络设备的配置信息,所述配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同。
通信模块1202,还用于基于所述配置信息,向所述网络设备发送上行参考信号。
处理模块1201和通信模块1202还可以用于执行上述方法实施例终端设备执行的其它 对应的步骤或操作,在此不再一一赘述。
例如,当用于执行网络设备执行的方法时:
通信模块1202,用于向终端设备发送配置信息,所述配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同。
通信模块1202,还用于接收来自所述终端设备的上行参考信号。
或者,当用于执行网络设备执行的方法时:
处理模块1201,用于确定下行配置信息,所述下行配置信息用于配置下行参考信号的资源,所述下行参考信号符合以下一项或多项配置:所述下行参考信号在一个时隙内两个相邻时间单元的间隔小于4个符号、或者所述下行参考信号在频域上任意两个频域单元的间隔大于4个子载波;
通信模块1202,用于向终端设备发送所述下行配置信息。
处理模块1201和通信模块1202还可以用于执行上述方法实施例网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图13所示为本申请实施例提供的通信装置1300,用于实现上述方法中终端设备或网络设备的功能。当实现网络设备的功能时,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。当实现终端设备的功能时,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置1300包括至少一个处理器1320,用于实现本申请实施例提供的方法中终端设备或网络设备的功能。通信装置1300还可以包括通信接口1310。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1310用于装置1300中的装置可以和其它设备进行通信。示例性地,通信装置1300是网络设备时,该其它设备可以是终端设备。通信装置1300是终端设备时,该其它装置可以是网络设备。处理器1320利用通信接口1310收发数据,并用于实现上述各个方法实施例所述的方法。示例性地,当实现网络设备的功能时,处理器1320用于确定下行配置信息,所述下行配置信息用于配置下行参考信号的资源,所述下行参考信号符合以下一项或多项配置:所述下行参考信号在一个时隙内两个相邻时间单元的间隔小于4个符号、或者所述下行参考信号在频域上任意两个频域单元的间隔大于4个子载波,以及利用通信接口1310向终端设备发送所述下行配置信息。
当实现终端设备的功能时,处理器1320用于利用通信接口1310接收来自网络设备的配置信息,所述配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同;基于所述配置信息,向所述网络设备发送上行参考信号。处理器1320和通信接口1310还可以用于执行上述方法实施例终端设备或网 络设备执行的其它对应的步骤或操作,在此不再一一赘述。
装置1300还可以包括至少一个存储器1330,用于存储程序指令和/或数据。存储器1330和处理器1320耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1320可能和存储器1330协同操作。处理器1320可能执行存储器1330中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1310、处理器1320以及存储器1330之间的具体连接介质。本申请实施例在图13中以存储器1330、处理器1320以及通信接口1310之间通过总线1340连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信装置1200和通信装置1300具体是芯片或者芯片系统时,通信模块1202和通信接口1310所输出或接收的可以是基带信号。通信装置1200和通信装置1300具体是设备时,通信模块1202和通信接口1310所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1330可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请上述方法实施例描述的终端设备所执行的操作和功能中的部分或全部,或节点所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
为了实现上述图12或图13所述的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中终端设备或节点所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的配置信息,所述配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同;
    基于所述配置信息,向所述网络设备发送上行参考信号。
  2. 如权利要求1所述的方法,其特征在于,所述第一时间单元和所述第二时间单元为位于相邻两个时隙的两个符号。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一时间单元对应的上行参考信号端口的数量和所述第二时间单元对应的上行参考信号端口的数量不同。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一时间单元对应的上行参考信号端口号与所述第二时间单元对应的上行参考信号端口号相同。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述第一天线端口关联所述第一时间单元对应的至少一个上行参考信号端口,所述第二天线端口关联所述第二时间单元对应的至少一个上行参考信号端口。
  6. 如权利要求1~5任一项所述的方法,其特征在于,所述第一时间单元和所述第二时间单元为位于第一时隙的任意两个非连续的符号。
  7. 如权利要求1~6任一项所述的方法,其特征在于,所述一个或多个上行参考信号资源的功能配置为用于测量频偏;或者,所述一个或多个上行参考信号资源的功能配置为用于基于码本的上行传输模式。
  8. 如权利要求1~7任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第一下行参考信号,所述第一下行参考信号的配置符合以下至少一项:所述第一下行参考信号在一个时隙内两个相邻时间单元的间隔小于4个符号、所述第一下行参考信号在频域上任意两个频域单元的间隔大于4个子载波。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二下行参考信号;
    使用根据所述第二下行参考信号获得的频偏估计和根据所述第一下行参考信号获得的载频估计,进行频偏补偿。
  10. 如权利要求9所述的方法,其特征在于,所述第二下行参考信号是额外解调参考信号。
  11. 如权利要求1~10任一项所述的方法,其特征在于,当一个上行参考信号资源包括所述第一时间单元和所述第二时间单元时,所述第一时间单元和所述第二时间单元在时域上是非连续的。
  12. 一种通信方法,其特征在于,包括:
    向终端设备发送配置信息,所述配置信息用于配置一个或多个上行参考信号资源;所述一个或多个上行参考信号资源包括第一时间单元和第二时间单元;所述第一时间单元对应的第一天线端口与所述第二时间单元对应的第二天线端口相同;
    接收来自所述终端设备的上行参考信号。
  13. 如权利要求12所述的方法,其特征在于,所述第一时间单元和所述第二时间单元 为位于相邻两个时隙的两个符号。
  14. 如权利要求12或13所述的方法,其特征在于,所述第一时间单元对应的上行参考信号端口的数量和所述第二时间单元对应的上行参考信号端口的数量不同。
  15. 如权利要求12或13所述的方法,其特征在于,所述第一时间单元对应的上行参考信号端口号与所述第二时间单元对应的上行参考信号端口号相同。
  16. 如权利要求12~15任一项所述的方法,其特征在于,所述第一天线端口关联至少一个所述第一时间单元对应的上行参考信号端口,所述第二天线端口关联至少一个所述第二时间单元对应的上行参考信号端口。
  17. 如权利要求12~16任一项所述的方法,其特征在于,所述第一时间单元和所述第二时间单元为位于第一时隙的两个符号,所述第一时间单元和所述第二时间单元为所述第一时隙的任意两个非连续的符号。
  18. 如权利要求12~17任一项所述的方法,其特征在于,所述一个或多个上行参考信号资源的功能配置为用于测量频偏;或者,所述一个或多个上行参考信号资源的功能配置为用于基于码本的上行传输模式。
  19. 如权利要求12~18任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一下行参考信号,所述第一下行参考信号的配置符合以下一项或多项:所述第一下行参考信号在一个时隙内两个相邻时间单元的间隔小于4个符号、或者所述第一下行参考信号在频域上任意两个频域单元的间隔大于4个子载波。
  20. 如权利要求12~19任一项所述的方法,其特征在于,当一个上行参考信号资源包括所述第一时间单元和所述第二时间单元时,所述第一时间单元和所述第二时间单元在时域上是非连续的。
  21. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行一组程序,以使得所述通信装置以实现权利要求1~11任一项所述的方法。
  22. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行一组程序,以使得所述通信装置以实现权利要求12~20任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得所述通信装置执行权利要求1~20任一项所述的方法。
  24. 一种芯片,其特征在于,所述芯片与存储器相连或者所述芯片包括所述存储器,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1~20任一项所述的方法。
PCT/CN2021/076264 2020-02-13 2021-02-09 一种通信方法及装置 WO2021160129A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21752938.7A EP4089967A4 (en) 2020-02-13 2021-02-09 Communication method and apparatus
US17/886,453 US20220393822A1 (en) 2020-02-13 2022-08-11 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010090531.XA CN113259287B (zh) 2020-02-13 2020-02-13 一种通信方法及装置
CN202010090531.X 2020-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/886,453 Continuation US20220393822A1 (en) 2020-02-13 2022-08-11 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021160129A1 true WO2021160129A1 (zh) 2021-08-19

Family

ID=77219824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076264 WO2021160129A1 (zh) 2020-02-13 2021-02-09 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220393822A1 (zh)
EP (1) EP4089967A4 (zh)
CN (1) CN113259287B (zh)
WO (1) WO2021160129A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
CN116156521A (zh) * 2021-11-17 2023-05-23 华为技术有限公司 一种通信方法及装置
CN116437385A (zh) * 2021-12-31 2023-07-14 华为技术有限公司 用于传输参考信号的方法和装置
CN114449562B (zh) * 2022-01-19 2023-12-19 哲库科技(北京)有限公司 通信方法、终端设备以及网络设备
CN116828386A (zh) * 2022-03-22 2023-09-29 华为技术有限公司 通信方法以及通信装置
WO2024041504A1 (zh) * 2022-08-26 2024-02-29 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180331872A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Increasing reference signal density in wireless communications
WO2018225935A1 (ko) * 2017-06-09 2018-12-13 엘지전자(주) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
CN109150467A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、相关设备及计算机存储介质
CN110249599A (zh) * 2017-02-02 2019-09-17 夏普株式会社 基站装置、终端装置、通信方法以及集成电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883324B1 (en) * 2012-08-13 2016-10-05 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for reference signal transmission and reception
CN106921479B (zh) * 2015-12-28 2022-09-23 华为技术有限公司 信道估计方法、发送端设备和接收端设备
CN107371241B (zh) * 2016-05-12 2021-03-23 华为技术有限公司 参考信号传输方法、网络设备、用户设备和通信系统
US11121743B2 (en) * 2017-05-04 2021-09-14 Apple Inc. System and method for phase noise compensation
CN113630228A (zh) * 2018-06-27 2021-11-09 华为技术有限公司 一种通信方法及装置
EP3996436A1 (en) * 2019-07-04 2022-05-11 Ntt Docomo, Inc. Terminal and wireless communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110249599A (zh) * 2017-02-02 2019-09-17 夏普株式会社 基站装置、终端装置、通信方法以及集成电路
US20180331872A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Increasing reference signal density in wireless communications
WO2018225935A1 (ko) * 2017-06-09 2018-12-13 엘지전자(주) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
CN109150467A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、相关设备及计算机存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on New Radio (NR) Access Technology (Release 14)", 3GPP STANDARD ; TECHNICAL SPECIFICATION ; 3GPP TR 38.912, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. V1.0.0, 16 March 2017 (2017-03-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 74, XP051290550 *
See also references of EP4089967A4 *

Also Published As

Publication number Publication date
EP4089967A1 (en) 2022-11-16
CN113259287A (zh) 2021-08-13
US20220393822A1 (en) 2022-12-08
EP4089967A4 (en) 2023-06-28
CN113259287B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2021160129A1 (zh) 一种通信方法及装置
CN112913295B (zh) 用于配置侧链路信道资源单元的方法和装置
CN110049557B (zh) 随机接入方法及装置
CN112806076B (zh) 用于配置边链路信道资源单元的方法和设备
CN111165032B (zh) 新无线电中的定时提前范围适配
RU2726641C1 (ru) Сигнализация о местоположении опорных сигналов в слотах и минислотах
CN111630908B (zh) 在nr中信令发送ta偏移
CN106717080B (zh) 在无线通信系统中的同步信号传输的方法
US20230308242A1 (en) Qcl indication method and related device
US9491021B2 (en) Terminal-to-terminal communication method and terminal
WO2020024218A1 (en) Standalone sss for rrm and channel estimation enhancement
WO2021114059A1 (zh) 一种通信方法及装置
WO2018171783A1 (zh) 信号传输方法、装置及系统
WO2018127138A1 (zh) 一种参考信号配置的方法、基站、用户设备和系统
CN114667708A (zh) 在无线通信系统中的多trp方案的信令
CN112997552B (zh) 用于配置侧链路信道资源单元的方法和装置
CN109952802B (zh) 用于发送下行链路控制信息的方法和设备
CN115066838A (zh) 用于频率调制的参数配置的方法
CN113542176A (zh) 一种信号发送的方法及装置
KR20210093789A (ko) 무선 통신 시스템에서의 동기화 방법 및 장치
US20230370144A1 (en) Apparatus and methods of simultaneous ue rx beam refinement
KR20230124734A (ko) 전송 전력 결정 방법 및 장치
CN112369088B (zh) 未许可频谱中的探测参考信号传输
CN108076442B (zh) 一种pusch传输块长度确定方法及用户设备
JP2023502560A (ja) チャネル品質測定に用いられる方法、及びデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21752938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021752938

Country of ref document: EP

Effective date: 20220810

NENP Non-entry into the national phase

Ref country code: DE