WO2021114059A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021114059A1
WO2021114059A1 PCT/CN2019/124144 CN2019124144W WO2021114059A1 WO 2021114059 A1 WO2021114059 A1 WO 2021114059A1 CN 2019124144 W CN2019124144 W CN 2019124144W WO 2021114059 A1 WO2021114059 A1 WO 2021114059A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reference signal
downlink
uplink
information
Prior art date
Application number
PCT/CN2019/124144
Other languages
English (en)
French (fr)
Inventor
许子杰
高瑜
周国华
彭金磷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/124144 priority Critical patent/WO2021114059A1/zh
Priority to CN201980101574.9A priority patent/CN114600524A/zh
Publication of WO2021114059A1 publication Critical patent/WO2021114059A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the terminal device in order to improve the communication quality between a node and a terminal device, the terminal device needs to adjust the parameters corresponding to the uplink and downlink signals.
  • the terminal equipment adjusts the parameters corresponding to the uplink and downlink signals through the downlink reference signal sent by the node.
  • the timing offset and frequency offset of the downlink reference signal are estimated to be used for time-frequency tracking of subsequent uplink and downlink signals.
  • the terminal device in order to achieve correct reception, the terminal device needs to adjust the parameters corresponding to the downlink signal.
  • the time-frequency offset tracking of the downlink signal by the terminal equipment is achieved by tracking reference signal (tracking reference signal, TRS).
  • TRS tracking reference signal
  • the terminal equipment adjusts the reception of the downlink signal by receiving the time-frequency offset estimation obtained by the TRS.
  • the terminal device needs to adjust the parameters corresponding to the uplink signal.
  • the terminal equipment adjusts the transmission of the uplink signal by receiving the time-frequency offset estimation obtained by the TRS.
  • the present application provides a communication method and device, in order to achieve consistency of reference signals determined by a node and a terminal for adjusting signal parameters, thereby improving the communication quality between the node and the terminal.
  • a communication method is provided.
  • the execution subject of the method may be a terminal device or a chip, a chip system or a circuit located in the terminal device.
  • the method is implemented by the following steps: receiving multiple reference signals, the multiple reference The signal includes a first reference signal and a second reference signal; receiving first information, where the first information is used to indicate that an uplink signal and/or a downlink signal has an association relationship with the first reference signal; sending the uplink signal and/ Or receiving the downlink signal; wherein the parameters corresponding to the uplink signal and/or the parameters corresponding to the downlink signal are determined according to the association relationship.
  • the terminal when the terminal receives multiple reference signals, it can be determined to use the first reference signal among the multiple reference signals as a reference for parameter adjustment corresponding to the uplink and downlink signals according to the first information sent by the network device or node.
  • the reference signal used by the terminal device for parameter adjustment of the uplink and downlink signals is consistent with the reference signal selected by the node, and the parameter adjustment result of the uplink and downlink signal of the terminal device is synchronized with the node, which improves the accuracy of the terminal device for adjusting the corresponding parameters of the uplink and downlink signals.
  • the quality of communication between the node and the terminal device is a reference for parameter adjustment corresponding to the uplink and downlink signals.
  • the parameter corresponding to the uplink signal includes a carrier frequency
  • the uplink signal is sent on the carrier frequency of the first reference signal.
  • the terminal device can determine according to the first information of the first node to send the uplink signal on the carrier frequency of the first reference signal, so that the terminal can align with the frequency of the first node. It helps to improve the accuracy of the terminal equipment's adjustment of the carrier frequency of the uplink signal.
  • the parameter corresponding to the downlink signal includes a carrier frequency
  • the downlink signal is received on the carrier frequency of the first reference signal.
  • the terminal device can determine according to the first information of the first node to receive the downlink signal at the carrier frequency of the first reference signal, so that the terminal can align with the frequency of the first node. It helps to improve the accuracy of the terminal equipment to adjust the carrier frequency of the downlink signal.
  • the parameter corresponding to the uplink signal includes a Doppler frequency shift
  • the uplink signal is sent on the basis of performing frequency alignment according to the Doppler frequency shift.
  • the terminal device can determine the carrier frequency for sending the uplink signal according to the first information of the first node and the Doppler frequency shift of the first reference signal, so that the terminal can communicate with the first node. Frequency alignment helps improve the accuracy of the terminal equipment's adjustment of the carrier frequency of the uplink signal.
  • the parameter corresponding to the downlink signal includes a Doppler frequency shift
  • the downlink signal is received on the basis of performing frequency alignment according to the Doppler frequency shift.
  • the terminal device can determine the carrier frequency of the received downlink signal according to the first information of the first node and the Doppler frequency shift of the first reference signal, so that the terminal can communicate with the first node. Frequency alignment helps to improve the accuracy of the terminal equipment's adjustment of the carrier frequency of the downlink signal.
  • the parameter corresponding to the uplink signal includes a time synchronization reference
  • the uplink signal is sent on the basis of performing time synchronization according to the time synchronization reference of the first reference signal.
  • the terminal device can perform time synchronization according to the first information of the first node and the time synchronization reference of the first reference signal, and send an uplink signal so that the terminal can communicate with the time of the first node. Alignment helps to improve the accuracy of the time adjustment of the uplink signal by the terminal equipment.
  • the parameter corresponding to the downlink signal includes a time synchronization reference
  • the downlink signal is received on the basis of performing time synchronization according to the time synchronization reference of the first reference signal.
  • the terminal device can perform time synchronization according to the first information of the first node and the time synchronization reference of the first reference signal, and receive the downlink signal, so that the terminal can communicate with the time of the first node. Alignment helps to improve the accuracy of the time adjustment of the downlink signal by the terminal equipment.
  • the method further includes: receiving configuration information, where the configuration information is used to indicate a parameter of the first reference signal.
  • the terminal can receive the first reference signal according to the configuration information.
  • the terminal may receive configuration information sent by multiple nodes respectively.
  • the terminal device receives multiple reference signals from multiple nodes according to the configuration information.
  • a communication method is provided.
  • the execution subject of the method may be a node or a network device, or a chip, a chip system, or a circuit in the node or the network device.
  • the method is implemented by the following steps: sending multiple reference signals to a terminal, the multiple reference signals including a first reference signal and a second reference signal; sending first information to the terminal, the first information being used to indicate uplink
  • the signal and/or the downlink signal have an association relationship with the first reference signal.
  • the terminal device can be instructed to use the first reference signal to adjust the parameters of the uplink and downlink signals, so that the parameter adjustment results of the uplink and downlink signals of the terminal device are synchronized with the node, and the terminal device's response to the uplink and downlink is improved.
  • the accuracy of the adjustment of the corresponding parameters of the signal improves the communication quality between the node and the terminal device.
  • the method further includes: sending configuration information to the terminal, where the configuration information is used to indicate a parameter of the first reference signal.
  • the first node sends configuration information indicating the parameters of the first reference signal to the terminal, and the terminal may receive the first reference signal according to the configuration information of the first node.
  • multiple nodes may respectively send configuration information to the terminal, so that the terminal receives the reference signal from each node according to the multiple configuration information.
  • the association relationship includes: a parameter corresponding to the uplink signal and/or a parameter corresponding to the downlink signal has a corresponding relationship with at least one of the following parameters of the first reference signal: carrier Frequency point, Doppler frequency shift, carrier frequency point synchronization reference, time synchronization reference or time timing reference.
  • this correspondence relationship is that the parameter corresponding to the uplink signal and/or the parameter corresponding to the downlink signal corresponds to the same at least one of the following parameters of the first reference signal.
  • the first information may indicate the association relationship in an explicit or implicit manner.
  • the first information includes quasi co-located QCL information, and the QCL information is used to indicate that the uplink signal and/or the downlink signal has a QCL relationship with the first reference signal.
  • the first information includes a transmission configuration indication TCI state
  • the TCI state is the TCI state of the uplink signal and/or the downlink signal, and is compared with the state of the first reference signal.
  • the TCI status has a corresponding relationship.
  • the correspondence relationship is that the TCI state of the uplink signal and/or the downlink signal is the same as the TCI state of the first reference signal.
  • the first information includes an identifier of the first reference signal, and/or the first information includes an identifier of a resource for receiving the first reference signal.
  • the first information can be sent through higher layer signaling.
  • High-level signaling includes RRC signaling, MAC CE, or DCI.
  • the uplink signal includes any one or more of the following: an uplink reference signal, a signal carried in an uplink shared channel, a signal carried in an access channel, or a signal carried in an uplink control channel .
  • the downlink signal includes any one or more of the following: a downlink reference signal, a signal carried in a downlink shared channel, a signal carried in a downlink control channel, or a signal in a broadcast channel.
  • the first reference signal and the second reference signal belong to different cells, the first reference signal belongs to a primary cell, and the second reference signal belongs to a secondary cell.
  • a communication method which is implemented by the following steps: a terminal device receives first configuration information and second configuration information, where the first configuration information is used to configure at least two sets of downlink reference signals; the second The configuration information is used to configure at least one set of uplink reference signals; the terminal device receives first indication information, and the first indication information is used to indicate at least one of the at least two sets of downlink reference signals and the at least one set of uplink reference signals The association relationship; the terminal device determines that the at least one set of downlink reference signals corresponding to the at least one set of uplink reference signals has an association relationship according to the first indication information.
  • the terminal when the terminal receives multiple reference signals, it can determine which of the multiple reference signals to use as a reference for parameter adjustment corresponding to the uplink reference signal according to the first indication information.
  • the result of parameter adjustment of the uplink reference signal of the terminal device is kept synchronized with the node, the accuracy of the adjustment of the corresponding parameter of the uplink reference signal by the terminal device is improved, and the communication quality between the node and the terminal device is improved.
  • the association relationship may be a quasi co-location QCL relationship.
  • the association relationship is used to determine the association relationship between the at least one parameter corresponding to the at least one set of uplink reference signals and the at least one parameter corresponding to the at least one set of downlink reference signals
  • the at least A parameter includes at least one of the following parameters: carrier frequency point, Doppler offset, carrier frequency point synchronization reference, time synchronization reference, and time timing reference.
  • the terminal device determines the at least one set of uplink reference signal or uplink data channel or uplink control channel or uplink shared access channel used for transmitting the at least one set of uplink reference signal or uplink data channel or uplink shared access channel according to the QCL relationship indicated by the first indication information. Describe at least one parameter.
  • the QCL relationship may be defined as QCL type E, which is configured through high-level RRC signaling.
  • a communication method which is implemented by the following steps: a terminal device receives first configuration information, where the first configuration information is used to configure multiple sets of downlink reference signals; the terminal device receives first indication information, The first indication information is used to instruct the terminal device to determine, according to at least one set of downlink reference signals in the multiple sets of downlink reference signals, that the at least one parameter is used for the terminal device to receive downlink transmission.
  • the parameter adjustment result of the downlink signal of the terminal device is kept synchronized with the node, the accuracy of the adjustment of the corresponding parameter of the downlink signal by the terminal device is improved, and the communication quality between the node and the terminal device is improved.
  • the at least one parameter includes at least one of the following parameters: carrier frequency, Doppler offset, carrier frequency synchronization reference, time synchronization reference, and time timing reference.
  • the downlink transmission includes at least one of a downlink reference signal, a downlink data channel, a downlink synchronization channel, and a downlink control channel.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a communication interface and a processor.
  • the communication interface is used for communication between the device and other devices, for example, data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be network devices or nodes.
  • the processor is used to call a set of programs, instructions or data to execute the method described in the first aspect, the third aspect, or the fourth aspect.
  • the device may also include a memory for storing programs, instructions or data called by the processor.
  • the memory is coupled with the processor, and when the processor executes the instructions or data stored in the memory, the method described in the first aspect, the third aspect, or the fourth aspect can be implemented.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a communication interface and a processor.
  • the communication interface is used for communication between the device and other devices, for example, data or signal transmission and reception.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, and other devices may be terminal devices.
  • the processor is used to call a set of programs, instructions or data to execute the method described in the second aspect.
  • the device may also include a memory for storing programs, instructions or data called by the processor.
  • the memory is coupled with the processor, and when the processor executes instructions or data stored in the memory, the method described in the second aspect can be implemented.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer-readable instructions.
  • the computer can execute The method described in the first aspect, the third aspect, the fourth aspect, or any one of the possible designs of these aspects.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute as described in the second aspect or any one of the possible designs in the second aspect. The method described.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory for implementing the first aspect, the third aspect, the fourth aspect, or any of these aspects. Possible design methods described in.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • an embodiment of the present application provides a chip system that includes a processor and may also include a memory for implementing the method described in the second aspect or any one of the possible designs of the second aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, the system includes a terminal device and a node, and the terminal device is configured to perform the first aspect, the third aspect, the fourth aspect, or any of these aspects.
  • the method described in a possible design; the node is used to execute the method described in the second aspect or any one of the possible designs of the second aspect.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the above-mentioned aspects and the methods described in any possible design of the aspects.
  • Figure 1a is a schematic diagram of a communication system architecture in an embodiment of the application
  • FIG. 1b is a schematic diagram of the SFN architecture of the 4G communication system in an embodiment of the application
  • Figure 1c is a schematic diagram of the HyperCell architecture of the 4G communication system in an embodiment of the application
  • FIG. 2 is a schematic diagram of a time-frequency offset tracking method in LTE in an embodiment of the application
  • FIG. 3 is a schematic diagram of a time-frequency offset tracking method in NR in an embodiment of the application
  • FIG. 4 is one of the schematic diagrams of the flow of the communication method in the embodiment of this application.
  • FIG. 5 is the second schematic diagram of the communication method flow in an embodiment of this application.
  • FIG. 6 is the third schematic diagram of the flow of the communication method in the embodiment of this application.
  • FIG. 7 is the fourth flow diagram of the communication method in the embodiment of this application.
  • FIG. 8 is one of the schematic diagrams of the structure of the communication device in the embodiment of the application.
  • FIG. 9 is the second schematic diagram of the structure of the communication device in the embodiment of the application.
  • the embodiments of the present application provide a communication method and device, wherein the method and the device are based on the same technology and the same or similar concepts. Because the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other. No longer.
  • "at least one" refers to one or more.
  • “Multiple” means two or more.
  • "And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships. For example, A and/or B can mean: A alone exists, A and B exist at the same time, and B exists alone. Among them, A and B can be singular or plural.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship.
  • At least one (item) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c.
  • each of a, b, and c can be an element itself, or a collection containing one or more elements.
  • transmission can include sending and/or receiving, and can be a noun or a verb.
  • the communication method provided by the embodiments of this application can be applied to the fourth generation (4th generation, 4G) communication system, such as long term evolution (LTE) system; the fifth generation (5th generation, 5G) communication system, such as 5G new Air interface (new radio, NR) system; or applied to various communication systems in the future.
  • 4G fourth generation
  • 5th generation, 5G fifth generation
  • new Air interface new radio
  • the embodiments of the present application may be applicable to high-speed mobile communication scenarios, such as high-speed rail scenarios.
  • FIG. 1a shows the architecture of a possible communication system to which the communication method provided in the embodiments of the present application is applicable.
  • the communication system may include one or more network devices 110 and one or more terminal devices 120. among them:
  • the network device 110 is a node in a radio access network (RAN), and may also be called a base station, an access network device, or a node, and may also be called a RAN node (or device).
  • RAN radio access network
  • examples of some nodes 101 are: next generation nodeB (gNB), next generation evolved nodeB (Ng-eNB), transmission reception point (TRP), evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS) ), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), or wireless fidelity (Wifi) access point (AP), or The equipment in the 5G communication system, or the network equipment in the possible future communication system.
  • gNB next generation nodeB
  • Ng-eNB next generation evolved
  • the network device 110 may also be a device that functions as a base station in device-to-device (D2D) communication.
  • D2D device-to-device
  • the number of network devices may be one or more, and they may belong to the same cell or different cells.
  • the terminal device 120 which may also be referred to as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice or data connectivity to users , It can also be an IoT device.
  • the terminal device 120 includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device 120 may be: a mobile phone (mobile phone), a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device (such as a smart watch, a smart bracelet, a pedometer, etc.) ), on-board equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control (industrial control) Wireless terminals, smart home equipment (for example, refrigerators, TVs, air conditioners, electric meters, etc.), smart robots, workshop equipment, wireless terminals in self-driving, and wireless terminals in remote medical surgery ,
  • the terminal 120 may also be a device that functions as a terminal in D2
  • the terminal of the embodiment of the present application can move at a high speed.
  • the high speed in the embodiment of the present application can be understood as the moving speed not less than a certain threshold.
  • the threshold can be 100 meters/second, 120 meters/second, 350km/h to 500km/h, etc. It can be pre-defined through a communication protocol, or it can be determined by the terminal according to a preset algorithm or rule.
  • the specific form of the terminal in the high-speed moving scene may be an unmanned aerial vehicle (UAV), an airborne terminal, an airplane, a high-speed rail, a vehicle-mounted terminal, and the like.
  • UAV unmanned aerial vehicle
  • UAV can be understood as a kind of aircraft that uses radio equipment to remote control or comes with its own program control.
  • TRP transmission reception point
  • BBU baseband unit
  • TRPs can belong to the same cell or different cells.
  • a terminal device can communicate with multiple nodes.
  • a terminal device can communicate with multiple TRPs.
  • the implementation form of Multi-TRP in 4G is a single frequency network cell (SFN cell), and one implementation form in 5G is a super cell (hyper cell).
  • SFN in 4G refers to combining multiple pico remote radio units (pRRUs) working on the same frequency band within a geographic area to form the same cell.
  • pRRU pico remote radio units
  • PCI physical cell identity
  • the number of pRRU channels and the number of antennas here are the same.
  • SFN adopts a joint scheduling method, which increases the capacity by 45% to 50% compared with ordinary cells by reducing interference in overlapping areas and reducing the number of handovers.
  • the BBU can implement the functions of layer 3 and 2
  • the TRP implements the function of pRRU.
  • the BBU performs data scheduling and processing, and transmits uplink and downlink signals with other devices through the pRRU.
  • the HyperCell in 5G is a key technology in 5G high-speed networking scenarios (high-speed rail, high-speed).
  • the service channel is independent between each TRP, and each TRP can be independently scheduled, and the capacity is equal to the sum of multiple TRPs. It can reduce frequent switching and improve user experience in high-speed scenes. Compared with the SFN technology of LTE, it not only realizes the expansion of coverage, but also increases the system capacity. Support sending data on different layers.
  • the BBU can implement the functions of layer 3 and layer 2, and layer 2 scheduling can be implemented by scheduling a cooperative processing module.
  • TRP implements the function of pRRU.
  • the BBU performs data scheduling and processing, and transmits uplink and downlink signals with other devices through the pRRU.
  • the moving speed of the train is very high, generally up to 350km/h to 500km/h, so the terminal moving at a high speed has a higher moving speed.
  • the Doppler frequency shift is relatively large in the high-speed moving scene. For example, when the carrier frequency is 3.5GHz: when the rate is 350km/h, the maximum Doppler frequency shift is 1.1KHz, and when the rate is 500km/h, the maximum Doppler frequency shift is 1.6KHz.
  • High-speed rail trains usually consist of 8 or 16-car marshallings. Under normal circumstances, they can carry 500 to 1,000 passengers, so the number of terminal equipment may also be 500 to 1,000. 4) During the operation of high-speed rail, terminal equipment on the train may be required Communicate with multiple adjacent TRPs.
  • the network device sends a reference signal to the terminal device, and the reference signal is used to adjust parameters corresponding to the uplink and downlink signals. In order to achieve correct signal transmission and reception.
  • QCL quasi-co-location
  • the large-scale characteristics may include at least one of the following characteristics: delay spread, average delay, doppler spread, doppler shift, average gain, reception parameters , Terminal equipment receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, spatial correlation of receiver antenna, main angle of arrival (angel-of-arrival, AoA), average angle of arrival, AoA extension, etc.
  • delay spread average delay
  • doppler spread doppler shift
  • average gain reception parameters
  • reception parameters Terminal equipment receiving beam number
  • transmitting/receiving channel correlation receiving angle of arrival
  • spatial correlation of receiver antenna main angle of arrival (angel-of-arrival, AoA), average angle of arrival, AoA extension, etc.
  • AoA angle of arrival
  • the two signals QCL may mean that the two signals have a QCL relationship, or that the two signals satisfy the QCL relationship.
  • QCL type including multiple types, such as type A (type-A), type B (type-B), type C (type-C) or type D (type-D).
  • Type-A means that the four parameters of the average delay, Doppler shift, delay spread and Doppler spread of the two signals in the receiving end have a QCL relationship, or the time-frequency of the two signals when they are received There is a corresponding relationship.
  • Type-B means that the two signals, Doppler shift and Doppler spread, have a QCL relationship in the eyes of the receiving end.
  • Type-C means that the two parameters of the average delay and Doppler shift of the two signals have a QCL relationship in the view of the receiving end.
  • Type-D means that the two signals have a QCL relationship in the spatial reception parameter (spatial Rx parameter) of the receiving end.
  • the CSI-RS resource set (CSI-RS resource set) includes the trs-Info field
  • the CSI-RS resource set may be TRS
  • the trs-Info field is used to indicate that the CSI-RS resource set is Used for TRS.
  • Frequency deviation that is, frequency deviation.
  • Frequency offset includes carrier frequency offset (CFO) caused by the deviation of the carrier frequency of the local oscillator at the transceiver end and Doppler shift (Doppler Shift) caused by the relative movement of the transceiver end.
  • CFO carrier frequency offset
  • Doppler Shift Doppler shift
  • Doppler shift the difference between the transmitting and receiving frequencies caused by the Doppler effect. It reveals the law that the properties of waves change in motion.
  • the parameter corresponding to the uplink signal refers to the parameter used to send the uplink signal
  • the parameter corresponding to the downlink signal refers to the parameter used to receive the downlink signal.
  • the parameters corresponding to the uplink signal and/or the parameters corresponding to the downlink signal may include one or more of the following: carrier frequency point, Doppler frequency shift, carrier frequency point synchronization reference, time synchronization reference, time timing reference, average delay, Delay spread, Doppler spread, or airspace reception parameters.
  • the reference signal may include a cell-specific reference signal (CRS) or a tracking reference signal (tracking reference signal, TRS).
  • CRS cell-specific reference signal
  • TRS tracking reference signal
  • the terminal can adjust the receiving parameter of the downlink signal according to the reference signal.
  • the following uses two possible implementation manners as shown in Figure 2 and Figure 3 to illustrate.
  • the CRS in the LTE system can be used for downlink time-frequency tracking, that is, the terminal device can determine the downlink timing offset and the frequency offset according to the parameters of the CRS.
  • the terminal device can determine the downlink timing offset and the frequency offset according to the parameters of the CRS.
  • the eNB periodically sends a cell synchronization signal, including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the terminal device performs downlink frequency synchronization after receiving the PSS/SSS.
  • S203 The terminal device receives the CRS sent by the eNB.
  • the terminal equipment performs synchronization on the estimation of downlink timing and/or frequency offset.
  • the terminal device sends uplink data and a demodulation reference signal (DMRS) on the physical uplink shared channel (PUSCH) on the tracked carrier frequency.
  • DMRS demodulation reference signal
  • the eNB performs timing and frequency offset estimation and compensation through the received DMRS.
  • the TRS in the NR system can be used for downlink time-frequency tracking to achieve correct signal transmission and reception.
  • the gNB periodically sends the cell synchronization signal SSB.
  • the terminal device After receiving the SSB, the terminal device performs downlink frequency synchronization.
  • the terminal device receives the TRS sent by the gNB.
  • the terminal equipment performs synchronization on the estimation of the downlink timing and frequency offset.
  • the terminal device sends uplink data and a demodulation reference signal (DMRS) on the PUSCH on the tracked carrier frequency.
  • DMRS demodulation reference signal
  • the gNB performs timing and frequency offset estimation and compensation through the received DMRS.
  • the terminal device communicates with the network device, and the network device may also send multiple reference signals to the terminal device.
  • the network device may include one or more nodes.
  • the architecture of the network device includes BBUs and nodes, and the nodes may be TRPs.
  • the architecture of the network device includes a BBU and a TRP.
  • the architecture of the network device may include a BBU and multiple TRPs.
  • TRP serves as a transmission receiving point, and signals sent by network equipment to the terminal and/or signals received from the terminal can be transmitted through TRP.
  • multiple network devices include multiple nodes.
  • the terminal device receives multiple reference signals.
  • the multiple reference signals received by the terminal device may come from one or more network devices, or may come from one or more nodes. Take multiple nodes as an example to introduce the embodiment of the present application.
  • the terminal device can communicate with multiple nodes.
  • Each of the multiple nodes can send a reference signal to the terminal device.
  • the purpose of the reference signal is that the terminal device can adjust the parameter corresponding to the uplink signal according to the reference signal, and can also adjust the parameter corresponding to the downlink signal.
  • a terminal device receives multiple reference signals sent by multiple nodes, it needs to adjust the parameters of the sent/received signals based on one of the reference signals. And one or more nodes that send the reference signal also need to know which reference signal the terminal device adjusts according to. In this way, the terminal equipment and the network equipment can reach an agreement to ensure the alignment of receiving and sending and improve the reliability of data.
  • the communication method provided in the embodiments of the present application can achieve the above-mentioned objectives.
  • the plurality of nodes communicating with the terminal device includes a first node and at least one second node.
  • the reference signal sent by the first node to the terminal device may be recorded as the first reference signal, and the reference signal sent by the second node to the terminal device may be recorded as the second reference signal.
  • the first node transmits the estimated frequency offset result to the second node, so that the second node can better communicate with the terminal.
  • the flow of the communication method provided by the embodiment of the present application is as follows.
  • S401 The network device sends multiple reference signals to the terminal device.
  • the terminal device receives multiple reference signals.
  • the network device may include one or more network devices, which may belong to the same cell or different cells.
  • the "network device” here is a general concept.
  • the network device can send multiple reference signals to the terminal device through one or more nodes.
  • the plurality of reference signals may include a first reference signal and a second reference signal.
  • the first reference signal comes from the first node
  • the second reference signal comes from the second node.
  • the network device sends the first information to the terminal device.
  • the terminal device receives the first information.
  • the network device may send the first information to the terminal through the first node.
  • the first information is used to indicate that the uplink signal has an association relationship with the first reference signal.
  • the first information may also be used to indicate that the downlink signal has an association relationship with the first reference signal.
  • the uplink signal may be a signal to be sent by the terminal device to the first node; the downlink signal may be a signal to be sent by the first node to the terminal device.
  • the association relationship can be a mapping relationship.
  • the association relationship may also refer to a QCL relationship.
  • the uplink signal has an association relationship with the first reference signal. It can also be understood that the parameters corresponding to the uplink signal have an association relationship with the parameters of the first reference signal. As an implementation manner, the parameters corresponding to the uplink signal are based on the parameters of the first reference signal. definite. For example, the parameter corresponding to the uplink signal is the same as the parameter of the first reference signal.
  • the downlink signal has an association relationship with the first reference signal can also be understood as that the parameter corresponding to the downlink signal has an association relationship with the parameter of the first reference signal.
  • the parameters corresponding to the downlink signal are determined according to the parameters of the first reference signal. For example, the parameter corresponding to the downlink signal is the same as the parameter of the first reference signal.
  • the terminal device sends an uplink signal and/or receives a downlink signal according to the association relationship indicated by the first information.
  • the parameters corresponding to the uplink signal and/or the parameters corresponding to the downlink signal are determined according to the association relationship in the first information.
  • the terminal equipment adjusts the parameters corresponding to the sending uplink signal to send the uplink signal according to the parameters corresponding to the first reference signal, and/or the terminal equipment adjusts the parameters corresponding to the received downlink signal according to the parameters corresponding to the first reference signal to receive the downlink signal. signal.
  • the object to which the terminal device sends the uplink signal may include the first node and/or the second node; the terminal device may receive the downlink signal from the first node and/or the second node.
  • the first information is used to indicate that the uplink signal sent by the terminal device has the same carrier frequency as the first reference signal.
  • the terminal device sends the uplink signal on the same carrier frequency as the first reference signal according to the first information.
  • the first information is used to indicate that the terminal equipment receives the downlink signal and the carrier frequency of the first reference signal is the same.
  • the terminal device receives the downlink signal at the same carrier frequency as the first reference signal according to the first information.
  • the first information is used to indicate that the uplink signal sent by the terminal device has an association relationship with the time synchronization reference of the first reference signal.
  • the terminal device performs time synchronization according to the time synchronization reference of the first reference signal according to the first information, and sends an uplink signal or receives a downlink signal on the basis of performing time synchronization according to the time synchronization reference of the first reference signal.
  • the terminal device When the terminal device receives multiple reference signals, it may determine to use the first reference signal among the multiple reference signals as a reference for parameter adjustment corresponding to the uplink and downlink signals according to the first information sent by the network device or the node. In this way, the network side and the terminal equipment can determine the same reference signal among multiple reference signals, so that the uplink and downlink transmission parameters can be agreed, and the transmission reliability is improved.
  • S400 may also be included.
  • the network device sends configuration information to the terminal device, where the configuration information is used to indicate the parameters of the reference signal.
  • the first node sends first configuration information to the terminal device, where the first configuration information is used to indicate a parameter corresponding to the first reference signal.
  • the second node may also send second configuration information to the terminal device, where the second configuration information is used to indicate the parameters of the second reference signal.
  • the terminal device receives reference signals from one or more nodes respectively according to configuration information sent by multiple nodes.
  • the terminal device receives the reference signal from the multiple nodes respectively according to the configuration information sent by the multiple nodes respectively.
  • the network device may also send the resource configuration of the uplink and downlink signals to the terminal device.
  • the network device sends the configuration information of the SRS to the terminal device.
  • the network device may send the resource configuration of the uplink and downlink signals through one or more nodes.
  • Uplink reference signals for example, channel sounding reference signal (sounding reference signal, SRS), demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference signal (phase tracking reference signal, PTRS);
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • PTRS phase tracking reference signal
  • a signal carried in a shared channel for example, a signal carried in a physical uplink shared channel (PUSCH);
  • PUSCH physical uplink shared channel
  • a signal carried in an access channel for example, a signal carried in a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the signal carried in the uplink control channel for example, the signal carried in the physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • Downlink reference signal for example, tracking reference signal (tracking reference signal, TRS), channel state information reference signal (channel state information-reference signal, CSI-RS), demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference Signal (phase tracking reference signal, PTRS).
  • TRS tracking reference signal
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • phase tracking reference Signal phase tracking reference signal
  • a signal carried in a downlink shared channel for example, a signal carried in a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • a signal carried in a downlink control channel for example, a signal carried in a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • a signal carried in a broadcast channel for example, a signal carried in a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • the first information is information that is sent by the network device to the terminal device and used to indicate that the uplink signal and/or the downlink signal have an association relationship with the first reference signal.
  • the first information may be carried in one or more of the following signaling: radio resource control (radio resource control, RRC) signaling, media access layer control element (MAC control element, MAC CE), or downlink control information ( downlink control information, DCI).
  • RRC radio resource control
  • MAC control element media access layer control element
  • DCI downlink control information
  • the first information may include or indicate an identifier of the first reference signal, and the identifier may be an index number (index). Assume that multiple reference signals sent by multiple nodes are distinguished by multiple index numbers.
  • the index number of the first reference signal carried in the high-layer signal may be used to indicate that the uplink signal and/or the downlink signal have an association relationship with the first reference signal corresponding to the index number.
  • the first information may include or indicate the status of a transmission configuration index (TCI).
  • TCI transmission configuration index
  • the state of the TCI is the TCI state of the uplink signal and/or the downlink signal, and the TCI state can be used to determine that it has an association relationship (for example, the same) with the TCI state of the first reference signal.
  • TCI transmission configuration index
  • a network device configures multiple TCIs for a terminal device through any node, one of the TCIs is activated at the same time.
  • the TCI included or indicated by the first information is the activated TCI.
  • the terminal device may select the first reference signal corresponding to the activated TCI as the reference signal having an association relationship with the uplink signal and/or the downlink signal.
  • the terminal device sends an uplink signal and/or receives a downlink signal according to the activated TCI.
  • the first information uses the TCI identification (ID) to indicate one of the TCIs, and the terminal device can select the first information to include or
  • the first reference signal corresponding to the indicated TCI identifier is used as the reference signal having an association relationship with the uplink signal and/or the downlink signal.
  • the state of TCI does not indicate whether TCI is activated
  • the first information includes or indicates the TCI identifier
  • the terminal device may select the first reference signal corresponding to the TCI identifier included or indicated by the first information as the first reference signal associated with the uplink signal and/or the downlink signal The reference signal of the relationship.
  • the configuration of TCI can be realized in the following way.
  • the network device sends RRC signaling to the terminal device to configure TCI related parameters, and the network device sends the MAC CE signaling to the terminal device for activation.
  • the MAC CE signaling is carried in the PDSCH.
  • the terminal device receives the MAC CE signaling and feeds back an acknowledgement response.
  • the network device sends DCI to the terminal device to configure TCI.
  • the first information may include or indicate an identifier of a resource used to receive the first reference signal. If the first reference signal is a TRS, the first information may include or indicate a CSI-RS resource corresponding to the TRS. The terminal device may select the TRS received on the CSI-RS resource included or indicated by the first information as the reference signal associated with the uplink signal and/or the downlink signal. Alternatively, the first information may include or indicate the identifier of the resource used to receive the TRS, and the terminal device may select the reference signal in which the TRS received on the TRS resource included or indicated by the first information has an association relationship with the uplink signal and/or the downlink signal .
  • the first information may also be QCL information, and the QCL information is used to indicate that the uplink signal and/or the downlink signal have a QCL relationship with the first reference signal.
  • the QCL relationship may refer to a QCL relationship in which two signals have one of type-A, type-B, type-C, and type-D.
  • the existing QCL type can be extended.
  • QCL type E type-E QCL
  • the type-E QCL means that the two signals have the same carrier frequency and/or Doppler shift from the receiving end.
  • the first information indicates that the uplink signal sent by the terminal device has a type-E QCL relationship with the first reference signal, it refers to the carrier frequency of the uplink signal sent by the terminal device and the carrier frequency and/or Doppler of the first signal Frequency shift correlation.
  • the first information indicates that the downlink signal received by the terminal device has a type-E QCL relationship with the first reference signal, it refers to the carrier frequency of the downlink signal received by the terminal device and the carrier frequency of the first signal and/or Doppler shift correlation.
  • an embodiment of the present application also provides a communication method.
  • S501 A network device sends multiple reference signals to a terminal device, and the terminal device receives multiple reference signals.
  • This step is the same as S401.
  • the network device may send multiple reference signals to the terminal device through one or more nodes.
  • the first node sends a first reference signal
  • the second node sends a second reference signal.
  • S502 The terminal device sends second information to the network device, and the network device receives the second information.
  • the terminal device may send the second information to the first node and/or the second node, and the first node and/or the second node receive the second information.
  • the second information is used to instruct the terminal device to select the first reference signal from the multiple reference signals to adjust the parameters corresponding to the uplink and downlink signals.
  • the second information can be multiplexed with the ACK/NACK information mechanism.
  • the terminal device sends ACK information to the first node, where the ACK information is used to instruct the terminal device to select the first reference signal.
  • the terminal device sends NACK information to the first node, where the NACK information is used to instruct the terminal device to select the second reference signal.
  • the specific indication content of the ACK/NACK information is not limited in this embodiment of the application.
  • the second information can also be sent through higher layer signaling.
  • high-level signaling refer to the above-mentioned explanation of high-level signaling.
  • the terminal device sends an uplink signal and/or receives a downlink signal according to the second information.
  • the terminal device determines the parameter corresponding to the first reference signal.
  • the uplink signal is sent according to the parameter corresponding to the first reference signal; the downlink signal can also be received according to the parameter corresponding to the first reference signal.
  • the terminal device adjusts the parameters corresponding to the transmitted uplink signal to transmit the uplink signal according to the parameters corresponding to the first reference signal, and/or the terminal device adjusts the received downlink signal according to the parameters corresponding to the first reference signal Corresponding parameters to receive downlink signals.
  • the object to which the terminal device sends the uplink signal may include the first node and/or the second node; the terminal device may receive the downlink signal from the first node and/or the second node.
  • S500 is included before S501, and S500 is the same as S400.
  • an embodiment of the present application also provides a communication method.
  • Multiple nodes send multiple reference signals to a terminal device, and the terminal device receives multiple reference signals.
  • This step is the same as S401.
  • the first node sends the first reference signal to the terminal device
  • the second node sends the second reference signal to the terminal device.
  • Figure 6 takes the first node and the second node as an example for illustration.
  • the terminal device determines a parameter corresponding to the first reference signal.
  • the terminal device sends an uplink signal to the first node and receives a downlink signal from the first node according to the parameter corresponding to the first reference signal.
  • the terminal device determines a parameter corresponding to the second reference signal.
  • the terminal device sends an uplink signal to the second node and receives a downlink signal from the second node according to the parameter corresponding to the second reference signal.
  • the order of execution of S602 to S603 and S604 to S605 is not limited, and can be performed simultaneously or in exchange order.
  • S600 is included before S601, and S500 is the same as S400.
  • an embodiment of the present application also provides a communication method.
  • the network device sends configuration information to the terminal device, and the terminal device receives the configuration information.
  • the configuration information includes the mapping relationship between m reference signals and n uplink signals, and m and n are positive integers.
  • the mapping relationship may be that one reference signal may correspond to one uplink signal, and one reference signal may also correspond to multiple uplink signals; and one uplink signal may also correspond to multiple reference signals.
  • the correspondence relationship may be represented by the correspondence relationship between the resources of the reference signal and the resources of the uplink signal. For example, if the reference signal is TRS and the uplink signal is SRS, the configuration information includes the mapping relationship between m TRS resources (resources) and n SRS resources.
  • the network device can send configuration information to the terminal device through any one or more of the multiple nodes.
  • the terminal device sends a first uplink signal to the network device.
  • the corresponding network device receives the first uplink signal.
  • the first uplink signal has a corresponding relationship with the first reference signal.
  • the terminal device sends the first uplink signal according to the parameter corresponding to the first reference signal. For example, the terminal device transmits the first uplink signal on the carrier frequency point where the first reference signal is received. For another example, the terminal device transmits the first uplink signal on the basis of time synchronization according to the time synchronization reference of the first reference signal.
  • the network device determines that the terminal device uses the first reference signal corresponding to the first uplink signal as an uplink and downlink transmission parameter adjustment reference.
  • the terminal device uses the first reference signal as an uplink and downlink transmission parameter adjustment reference, that is, the terminal device sends an uplink signal and/or receives a downlink signal according to a parameter corresponding to the first reference signal.
  • the network device may determine the first reference signal resource corresponding to the first uplink signal resource according to the first uplink signal resource that receives the uplink signal, so as to determine that the terminal device uses the first reference signal on the first reference signal resource As a benchmark for adjusting uplink and downlink transmission parameters.
  • multiple nodes send multiple reference signals to the terminal device, and the specific network device or terminal selects which reference signal of the multiple reference signals to use as a reference for subsequent transmission and reception of signals.
  • the specific network device or terminal selects which reference signal of the multiple reference signals to use as a reference for subsequent transmission and reception of signals.
  • multiple nodes belong to the same cell.
  • multiple cells on the same frequency band are free from handover.
  • the network device can select the reference signal according to the distance between the node and the terminal device. For example, when the terminal device is moving close to the first node, the distance between the first node and the terminal device is smaller than the distance between the second node and the terminal device.
  • the first node sends the first information to the terminal device, instructing the terminal device to select the first reference signal.
  • multiple nodes may belong to different cells.
  • multiple nodes jointly provide services for terminal devices, the first node is the master node, and the second node is the auxiliary node.
  • the first information may also include the identification of the primary node and the secondary node.
  • the terminal device selects the reference signal sent by the master node as a parameter adjustment reference for uplink and downlink transmission.
  • the terminal device recognizes which TRP sent the received DCI through the index in the received control resource set (CORESET).
  • the terminal equipment selects the reference signal corresponding to the TRP as the parameter adjustment reference for uplink and downlink transmission according to which TRP the DCI belongs to, that is, by default, the downlink signal corresponding to the TRP is used for time/frequency synchronization, and the downlink signal used may be SSB( PBCH), TRS or CSI-RS.
  • the methods provided in the embodiments of the present application are introduced from the perspective of terminal equipment, nodes, and interaction between the terminal equipment and the nodes.
  • the network device and the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application also provides a communication device 800.
  • the communication device 800 may be a terminal device or a network device or a node, or a terminal device or a network device or node. A device, or a device that can be matched with a terminal device, a network device, or a node.
  • the communication device 800 may include a one-to-one corresponding module for executing the method/operation/step/action performed by the terminal device or node in the above method embodiment.
  • the module may be a hardware circuit, software, or It is realized by hardware circuit combined with software.
  • the communication device may include a processing module 801 and a communication module 802. The processing module 801 is used to call the communication module 802 to perform receiving and/or sending functions.
  • the communication module 802 is configured to receive multiple reference signals, where the multiple reference signals include a first reference signal and a second reference signal; and are configured to receive first information, and the first information is used to indicate the uplink signal and/or the downlink signal and the second reference signal.
  • a reference signal has an association relationship; and is used to send an uplink signal and/or receive a downlink signal; wherein the parameters corresponding to the uplink signal and/or the parameters corresponding to the downlink signal are determined according to the association relationship.
  • the processing module 801 and the communication module 802 may also be used to execute other corresponding steps or operations performed by the terminal device in the foregoing method embodiment, which will not be repeated here.
  • the communication module 802 is configured to send multiple reference signals to the terminal, the multiple reference signals including a first reference signal and a second reference signal; and to send first information to the terminal, the first information is used to indicate an uplink signal and/or The downlink signal has an association relationship with the first reference signal.
  • the processing module 801 and the communication module 802 may also be used to execute other corresponding steps or operations performed by the nodes in the foregoing method embodiments, which will not be repeated here.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • a communication device 900 provided by an embodiment of this application is used to implement the functions of the terminal device or the network device or the node in the foregoing method.
  • the device can be a network device or node, or a device in the network device or node, or a device that can be matched with the network device or node.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 900 includes at least one processor 920, configured to implement the functions of the terminal device or the network device in the method provided in the embodiment of the present application.
  • the communication device 900 may further include a communication interface 910.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, which is used to communicate with other devices through a transmission medium.
  • the communication interface 910 is used for the device in the device 900 to communicate with other devices.
  • the communication apparatus 900 is a network device
  • the other device may be a terminal device.
  • the communication device 900 is a terminal device
  • the other device may be a network device.
  • the processor 920 uses the communication interface 910 to send and receive data, and is used to implement the methods described in the foregoing method embodiments.
  • the processor 920 is configured to send multiple reference signals to the terminal using a communication interface, the multiple reference signals including a first reference signal and a second reference signal, and to the terminal Sending first information, where the first information is used to indicate that an uplink signal and/or a downlink signal has an association relationship with the first reference signal.
  • the processor 920 is configured to receive multiple reference signals using a communication interface, the multiple reference signals including a first reference signal and a second reference signal; and configured to receive first information using the communication interface 910
  • the first information is used to indicate that the uplink signal and/or the downlink signal has an association relationship with the first reference signal; and the communication interface 910 is used to transmit the uplink signal and/or receive the downlink signal; wherein, the The parameters corresponding to the uplink signal and/or the parameters corresponding to the downlink signal are determined according to the association relationship.
  • the processor 920 and the communication interface 910 may also be used to perform other corresponding steps or operations performed by the terminal device or node in the foregoing method embodiment, which will not be repeated here.
  • the device 900 may also include at least one memory 930 for storing program instructions and/or data.
  • the memory 930 and the processor 920 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 920 may cooperate with the memory 930 to operate.
  • the processor 920 may execute program instructions stored in the memory 930. At least one of the at least one memory may be included in the processor.
  • the specific connection medium between the aforementioned communication interface 910, the processor 920, and the memory 930 is not limited in the embodiment of the present application.
  • the memory 930, the processor 920, and the communication interface 910 are connected by a bus 940 in FIG. 9.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application can be directly embodied as executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 930 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory). For example, random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • an embodiment of the present application further provides a chip, including a processor, for supporting the communication device to implement the functions related to the terminal device or node in the foregoing method embodiment .
  • the chip is connected to a memory or the chip includes a memory, and the memory is used to store the necessary program instructions and data of the communication device.
  • the embodiment of the present application provides a computer-readable storage medium that stores a computer program, and the computer program includes instructions for executing the foregoing method embodiments.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the foregoing method embodiments.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用于在接收到多个参考信号时,与网络侧选择一致的参考信号来进行后续收发信号的调整。该方法包括以下步骤:接收多个参考信号,所述多个参考信号包括第一参考信号和第二参考信号;接收第一信息,所述第一信息用于指示上行信号和/或下行信号与所述第一参考信号具有关联关系;发送所述上行信号和/或接收所述下行信号;其中,所述上行信号对应的参数和/或所述下行信号对应的参数是根据所述关联关系确定的。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种通信方法及装置。
背景技术
在现有通信系统中,为了提高节点和终端设备之间的通信质量,需要终端设备对上下行信号对应的参数进行调整。终端设备通过节点发送的下行参考信号来对上下行信号对应的参数进行调整。比如对下行参考信号的定时偏移和频率偏移进行估计,用来对后续上下行信号进行时频跟踪。例如,为了实现正确的接收,终端设备需要对下行信号对应的参数进行调整。通常情况下,终端设备对下行信号时频偏跟踪是通过跟踪参考信号(tracking reference signal,TRS)来实现的。终端设备通过接收TRS获得的时频偏估计来调整下行信号的接收。又例如,为了实现正确的发送,终端设备需要对上行信号对应的参数进行调整。终端设备通过接收TRS获得的时频偏估计来调整上行信号的发送。
如何提高终端设备对上下行信号对应参数调整的精准性,是有待解决的问题。
发明内容
本申请提供一种通信方法及装置,以期实现节点与终端确定的用于调整信号参数的参考信号一致,从而提高节点和终端之间的通信质量。
第一方面,提供一种通信方法,该方法的执行主体可以是终端设备或者位于终端设备中的芯片、芯片系统或者电路,该方法通过以下步骤实现:接收多个参考信号,所述多个参考信号包括第一参考信号和第二参考信号;接收第一信息,所述第一信息用于指示上行信号和/或下行信号与所述第一参考信号具有关联关系;发送所述上行信号和/或接收所述下行信号;其中,所述上行信号对应的参数和/或所述下行信号对应的参数是根据所述关联关系确定的。通过以上方法,在终端接收到多个参考信号时,可以根据网络设备或节点发送的第一信息,确定使用多个参考信号中的第一参考信号作为上下行信号对应的参数调整的参考。这样,终端设备使用上下行信号参数调整的参考信号与节点选择的参考信号一致,终端设备上下行信号的参数调整结果与节点保持同步,提高终端设备对上下行信号对应参数调整的精准性,提高节点和终端设备之间的通信质量。
在一个可能的设计中,所述上行信号对应的参数包括载波频点,在所述第一参考信号的载波频点上发送上行信号。这样,在接收到多个参考信号时,终端设备能够按照第一节点的第一信息,确定按照第一参考信号的载波频点上发送上行信号,使得终端能够与第一节点的频率对齐,有助于提高终端设备对上行信号的载波频点调整的精准性。
在一个可能的设计中,所述下行信号对应的参数包括载波频点,在所述第一参考信号的载波频点上,接收下行信号。这样,在接收到多个参考信号时,终端设备能够按照第一节点的第一信息,确定按照第一参考信号的载波频点上接收下行信号,使得终端能够与第一节点的频率对齐,有助于提高终端设备对下行信号的载波频点调整的精准性。
在一个可能的设计中,所述上行信号对应的参数包括多普勒频移,在按照所述多普勒频移进行频率对齐的基础上,发送上行信号。这样,在接收到多个参考信号时,终端设备 能够按照第一节点的第一信息,按照第一参考信号的多普勒频移确定发送上行信号的载波频率,使得终端能够与第一节点的频率对齐,有助于提高终端设备对上行信号的载波频点调整的精准性。
在一个可能的设计中,所述下行信号对应的参数包括多普勒频移,在按照所述多普勒频移进行频率对齐的基础上,接收下行信号。这样,在接收到多个参考信号时,终端设备能够按照第一节点的第一信息,按照第一参考信号的多普勒频移确定接收下行信号的载波频率,使得终端能够与第一节点的频率对齐,有助于提高终端设备对下行信号的载波频点调整的精准性。
在一个可能的设计中,所述上行信号对应的参数包括时间同步基准,在按照所述第一参考信号的时间同步基准进行时间同步的基础上,发送所述上行信号。这样,在接收到多个参考信号时,终端设备能够按照第一节点的第一信息,按照第一参考信号的时间同步基准进行时间同步,并发送上行信号,使得终端能够与第一节点的时间对齐,有助于提高终端设备对上行信号的时间调整的精准性。
在一个可能的设计中,所述下行信号对应的参数包括时间同步基准,在按照所述第一参考信号的时间同步基准进行时间同步的基础上,接收所述下行信号。这样,在接收到多个参考信号时,终端设备能够按照第一节点的第一信息,按照第一参考信号的时间同步基准进行时间同步,并接收下行信号,使得终端能够与第一节点的时间对齐,有助于提高终端设备对下行信号的时间调整的精准性。
在一个可能的设计中,所述方法还包括:接收配置信息,所述配置信息用于指示所述第一参考信号的参数。这样终端能够按照该配置信息去接收第一参考信号。可选的,终端可能会接收到多个节点分别发送的配置信息。终端设备按照配置信息接收来自多个节点的多个参考信号。
第二方面,提供一种通信方法,该方法的执行主体可以是节点或网络设备,也可以是节点或网络设备中的芯片、芯片系统或者电路。该方法通过以下步骤实现:向终端发送多个参考信号,所述多个参考信号包括第一参考信号和第二参考信号;向所述终端发送第一信息,所述第一信息用于指示上行信号和/或下行信号与所述第一参考信号具有关联关系。通过以上方法,通过向终端设备发送第一信息,能够指示终端设备使用第一参考信号进行上下行信号参数调整,使得终端设备上下行信号的参数调整结果与节点保持同步,提高终端设备对上下行信号对应参数调整的精准性,提高节点和终端设备之间的通信质量。
在一个可能的设计中,所述方法还包括:向所述终端发送配置信息,所述配置信息用于指示所述第一参考信号的参数。例如,第一节点向终端发送指示第一参考信号的参数的配置信息,终端可以按照第一节点的配置信息去接收第一参考信号。可选的,可能多个节点分别向终端发送配置信息,使得终端按照多个配置信息分别从各个节点接收参考信号。
结合第一方面和第二方面提供的方法,以下给出几种可能的设计。
在一个可能的设计中,所述关联关系包括:所述上行信号对应的参数和/或所述下行信号对应的参数与所述第一参考信号的参数中的以下至少一种具有对应关系:载波频点、多普勒频移、载波频点同步基准、时间同步基准或时间定时基准。例如,这种对应关系为,所述上行信号对应的参数和/或所述下行信号对应的参数与所述第一参考信号的参数中的以下至少一种对应相同。
第一信息可能通过显示或隐式的方式指示所述关联关系,下面提供几种可能的实现方 式。
在一个可能的设计中,所述第一信息包括准共址QCL信息,所述QCL信息用于指示所述上行信号和/或所述下行信号与所述第一参考信号具有QCL关系。
在一个可能的设计中,所述第一信息包括传输配置指示TCI的状态,所述TCI的状态为所述上行信号和/或所述下行信号的TCI状态,且与所述第一参考信号的TCI状态具有对应关系。例如,该对应关系为所述上行信号和/或所述下行信号的TCI状态与所述第一参考信号的TCI状态相同。
在一个可能的设计中,所述第一信息包括所述第一参考信号的标识,和/或,所述第一信息包括用于接收第一参考信号的资源的标识。
第一信息可以通过高层信令发送。高层信令包括RRC信令、MAC CE或DCI。
在一个可能的设计中,所述上行信号包括以下任意一种或多种:上行参考信号、承载于上行共享信道中的信号、承载于接入信道中的信号或承载于上行控制信道中的信号。
在一个可能的设计中,所述下行信号包括以下任意一种或多种:下行参考信号、承载于下行共享信道中的信号、承载于下行控制信道中的信号或广播信道中的信号。
在一个可能的设计中,所述第一参考信号和所述第二参考信号属于不同的小区,所述第一参考信号属于主小区,所述第二参考信号属于辅小区。
第三方面,提供一种通信方法,该方法通过以下步骤实现:终端设备接收第一配置信息和第二配置信息,所述第一配置信息用于配置至少两套下行参考信号;所述第二配置信息用于配置至少一套上行参考信号;所述终端设备接收第一指示信息,所述第一指示信息用于指示至少一个所述至少两套下行参考信号与所述至少一套上行参考信号的关联关系;所述终端设备根据所述第一指示信息,确定所述至少一套上行参考信号所对应的所述至少一套下行参考信号具有关联关系。通过以上方法,在终端接收到多个参考信号时,可以根据第一指示信息,确定使用多个参考信号中的哪些参考信号作为上行参考信号对应的参数调整的参考。使得终端设备上行参考信号的参数调整结果与节点保持同步,提高终端设备对上行参考信号对应参数调整的精准性,提高节点和终端设备之间的通信质量。
在一个可能的设计中,所述关联关系可以是一种准共址QCL关系。
在一个可能的设计中,所述关联关系用于确定所述至少一套上行参考信号对应的至少一种参数与所述至少一套下行参考信号对应的至少一种参数的关联关系,所述至少一种参数包括以下参数中的至少一种:载波频点、多普勒偏移、载波频点同步基准、时间同步基准、时间定时基准。
在一个可能的设计中,所述终端设备根据第一指示信息指示的所述QCL关系,确定发送所述至少一套上行参考信号或上行数据信道或上行控制信道或上行共享接入信道所使用所述至少一种参数。
在一个可能的设计中,所述第一配置信息可以为一个或多个物理层信令和/或高层信令;所述第二配置信息可以为一个或多个物理层信令和/或高层信令;所述第一指示信息可以为一个或多个物理层信令和/或/MAC CE信令和/或高层信令。
在一个可能的设计中,所述QCL关系可以定义为QCL类型E,通过高层RRC信令配置。
第四方面,提供一种通信方法,该方法通过以下步骤实现:终端设备接收第一配置信息,所述第一配置信息用于配置多套下行参考信号;所述终端设备接收第一指示信息, 所述第一指示信息用于指示所述终端设备,根据所述多套下行参考信号中的至少一套下行参考信号,确定所述至少一种参数用于所述终端设备接收下行传输。通过以上方法,在终端接收到多个参考信号时,可以根据第一指示信息,确定使用多个参考信号中的一个参考信号作为下行信号对应的参数调整的参考。这样,使得终端设备下行信号的参数调整结果与节点保持同步,提高终端设备对下行信号对应参数调整的精准性,提高节点和终端设备之间的通信质量。
在一个可能的设计中,所述至少一种参数包括以下参数中的至少一种,载波频点、多普勒偏移、载波频点同步基准、时间同步基准、时间定时基准。
在一个可能的设计中,所述下行传输包括下行参考信号、下行数据信道、下行同步信道、下行控制信道中的至少一个。
第五方面,本申请实施例提供一种通信装置,所述通信装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备或节点。处理器用于调用一组程序、指令或数据,执行上述第一方面、第三方面或第四方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第一方面、第三方面或第四方面描述的方法。
第六方面,本申请实施例提供一种通信装置,所述通信装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为终端设备。处理器用于调用一组程序、指令或数据,执行上述第二方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第二方面描述的方法。
第七方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得计算机执行如第一方面、第三方面、第四方面或这几方面中任一种可能的设计中所述的方法。
第八方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第二方面或第二方面中任一种可能的设计中所述的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面、第三方面、第四方面或这几方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第二方面或第二方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供了一种通信系统,所述系统包括终端设备和节点,所述终端设备用于执行上述第一方面、第三方面、第四方面或这几方面中任一种可能的设计中所述的方法;所述节点用于执行上述第二方面或第二方面中任一种可能的设计中所述的方法。
第十二方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面和各方面的任一可能的设计中所述的方法。
附图说明
图1a为本申请实施例中通信系统架构示意图;
图1b为本申请实施例中4G通信系统的SFN架构示意图;
图1c为本申请实施例中4G通信系统的Hyper Cell架构示意图;
图2为本申请实施例中LTE中时频偏跟踪方法示意图;
图3为本申请实施例中NR中时频偏跟踪方法示意图;
图4为本申请实施例中通信方法流程示意图之一;
图5为本申请实施例中通信方法流程示意图之二;
图6为本申请实施例中通信方法流程示意图之三;
图7为本申请实施例中通信方法流程示意图之四;
图8为本申请实施例中通信装置结构示意图之一;
图9为本申请实施例中通信装置结构示意图之二。
具体实施方式
本申请实施例提供一种通信方法及装置,其中,方法和装置是基于同一技术相同或相似构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例中“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c。其中a、b、c中的每一个本身可以是元素,也可以是包含一个或多个元素的集合。
在本申请中,“示例的”、“在一些实施例中”、“在另一些实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请中“的(of)”和“对应的(corresponding)”有时可以混用。应当指出的是,在不强调其区别时,其所要表达的含义是一致的。本申请实施例中通信、传输有时可以混用,应当指出的是,在不强调区别是,其所表达的含义是一致的。例如传输可以包括发送和/或接收,可以为名词,也可以是动词。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的通信方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)系统;第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR)系统;或应用于未来的各种通信系统。
可选的,本申请实施例可以适用于高速移动的通信场景,例如高铁场景。
图1a示出了本申请实施例提供的通信方法适用的一种可能的通信系统的架构,该通信系统可以包括一个或多个网络设备110,以及包括一个或多个终端设备120。其中:
网络设备110,为无线接入网(radio access network,RAN)中的节点,又可以称为基 站,接入网设备,节点,还可以称为RAN节点(或设备)。目前,一些节点101的举例为:下一代基站(next generation nodeB,gNB)、下一代演进的基站(next generation evolved nodeB,Ng-eNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或5G通信系统中的设备,或者未来可能的通信系统中的网络设备。网络设备110,还可以是设备到设备(device to device,D2D)通信中担任基站功能的设备。本申请实施例中,涉及到网络设备110与终端设备进行通信时,网络设备的数量可以是一个或多个,可以属于同一个小区,也可以属于不同的小区。
终端设备120,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备120包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备120可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端120还可以是D2D通信中担任终端功能的设备。本申请用终端来描述。
其中,本申请实施例的终端可以高速移动。需要说明的是,本申请实施例中的高速可以理解为移动速度不小于某一阈值。例如,该阈值可以为100米/秒、120米/秒、350km/h至500km/h等,可以是通过通信协议预先定义好的,也可以是终端根据预设算法或规则确定的,对此不作限定。示例的,高速移动场景的终端具体的形态可以是空中飞行的无人机(unmanned aerial vehicle,UAV)、机载终端、飞机、高铁、车载终端等。具体的,UAV可以理解为一种使用无线电设备遥控或自带程序控制操纵的飞行器。
本申请实施例适用于单个或多个传输接收点(transmission reception point,TRP)场景,以及它们任何一种衍生的场景。在多个TRP场景下,多个TRP可以连接同一个基带单元(baseband unit,BBU),也可以连接不同的BBU。这里多个TRP可以属于同一个小区,也可以属于不同小区。
在某些应用场景下,例如高速移动通信场景下,终端设备可以与多个节点通信。例如,多传输接收点(multiple transmission reception point,Multi-TRP)场景中,终端设备可以与多个TRP进行通信。例如,Multi-TRP在4G中的实现形式是单频网小区(single frequency network cell,SFN cell),在5G中的一种实现形式是超级小区(hyper cell)。
如图1b所示,4G中的SFN是指在一个地理区域内,将多个工作在相同频段上的多个微型射频拉远模块(pico remote radio unit,pRRU)进行合并,构成同一个小区,具有相同 的物理小区标识(physical cell identity,PCI),这里的pRRU的通道数和天线数相同。SFN采用联合调度方式,通过减小交叠区干扰和减少切换次数,比普通小区在容量上提升了45%~50%。SFN的架构中,BBU可以实现层3和层2的功能,TRP实现pRRU的功能。BBU进行数据的调度和处理,通过pRRU与其他设备进行上下行信号的传输。
如图1c所示,5G中的Hyper Cell是5G高速组网场景下(高铁、高速)的关键技术,业务信道在各个TRP之间独立,各TRP可独立调度,容量等于多个TRP之和。可减少频繁切换,提升高速场景用户体验。相对于LTE的SFN技术,不仅实现了覆盖范围的扩展,还增加了系统容量。支持在不同的layer上发数据。Hyper Cell架构中,BBU可以实现层3和层2的功能,层2调度可以通过调度协同处理模块来实现。TRP实现pRRU的功能。BBU进行数据的调度和处理,通过pRRU与其他设备进行上下行信号的传输。
以高铁场景为例介绍高速移动的通信场景可能具有的特点。1)高铁场景中,列车的运动速度非常高,一般可达350km/h至500km/h,因此处于高速移动的终端具有较高的移动速度。2)高速移动场景下多普勒频移较大。例如在载波频率为3.5GHz时:在速率为350km/h时最大多普勒频移为1.1KHz,在速率为500km/h时,最大多普勒频移为1.6KHz。3)高铁场景中终端设备数量较多。高铁列车通常为8节或者16节车厢编组,一般情况下,可以载客500到1000人,因此终端设备数量也可能在500到1000。4)高铁运行的过程中,列车上的终端设备可能需要与多个相邻的TRP进行通信。
本申请实施例中,网络设备向终端设备发送参考信号,该参考信号用于上下行信号对应的参数的调整。以实现正确的信号发送和接收。
为方便对本申请实施例的方法的理解,以下介绍一下几个术语的概念。
1、准共址(quasi-co-location,QCL)的概念。QCL用于表示多个资源之间具有一个或多个相同或者相类似的通信特征。对于具有QCL关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口之间具有QCL关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括如下特性中的至少一个:延迟扩展(delay spread),平均延迟(average delay),多普勒扩展(doppler spread),多普勒频移(doppler shift),平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。又例如,两个信号具有QCL关系,那么发送这两个信号的天线端口之间具有QCL关系。
本申请实施例中,两个信号QCL可以指两个信号具有QCL关系,或者,两个信号满足QCL关系。
2、QCL类型(type),包括多种类型,例如类型A(type-A)、类型B(type-B)、类型C(type-C)或类型D(type-D)。
可选的,上述几种类型的QCL可以做如下理解。
type-A是指两个信号在接收端看来平均时延、多普勒偏移、时延扩展和多普勒扩展这四个参数具有QCL关系,或者说两个信号在接收时的时频偏具有对应关系。
type-B是指两个信号在接收端看来多普勒偏移和多普勒扩展这两个参数具有QCL关系。
type-C是指两个信号在接收端看来平均时延和多普勒偏移这两个参数具有QCL关系。
type-D是指两个信号在接收端看来空域接收参数(spatial Rx parameter)具有QCL关 系。
3、TRS,当该CSI-RS资源集合(CSI-RS resource set)包括trs-Info字段时,该CSI-RS resource set可以是TRS,该trs-Info字段用于表示该CSI-RS resource set是用于TRS的。
4、频偏,即频率偏移。频偏包括收发端本地振荡器载频的偏差带来的载波频率偏移(carrier frequency offset,CFO)和收发端相对运动带来的多普勒频移(Doppler Shift)。在高速移动场景,频偏的主要成分是多普勒频移。
其中,当终端设备以恒定的速率沿某一方向移动时,由于传播路程差的原因,会造成相位和频率的变化,通常将这种变化称为多普勒频移。或者说,多普勒效应造成的发射和接收的频率之差称为多普勒频移。它揭示了波的属性在运动中发生变化的规律。
5、上行信号对应的参数是指发送上行信号所使用的参数,下行信号对应的参数是指接收下行信号所使用的参数。上行信号对应的参数和/或下行信号对应的参数可以包括以下一种或多种:载波频点、多普勒频移、载波频点同步基准、时间同步基准、时间定时基准、平均时延、时延扩展、多普勒扩展或空域接收参数。
6、参考信号,可以包括小区参考信号(cell-specific reference signal,CRS)、或跟踪参考信号(tracking reference signal,TRS)。
当网络设备向终端发送参考信号时,终端可以按照参考信号调整下行信号的接收参数。以下通过图2和图3两种可能的实现方式来举例说明。
在一个可能的实现方式中,如图2所示,LTE系统中CRS可以用于下行时频跟踪,即终端设备可以根据CRS的参数确定下行定时偏移和频率偏移。具体如下所述。
S201、eNB周期性的发送小区同步信号,包括主同步信号(primary synchronized signal,PSS)和辅同步信号(secondary synchronization signal,SSS)。
S202、终端设备收到PSS/SSS后进行下行频率同步。
S203、终端设备接收eNB发送的CRS。
S204、终端设备对下行定时和/或频偏的估计,进行同步。
S205、终端设备在跟踪的载频上的物理上行共享信道(physical uplink shared channel,PUSCH)上,发送上行数据和解调参考信号(demodulation reference signal,DMRS)。
S206、eNB通过接收到的DMRS进行定时和频偏估计补偿。
在一个可能的实现方式中,如图3所示,NR系统中TRS可以用于下行时频跟踪,以实现正确的信号发送和接收。
S301、gNB周期性的发送小区同步信号SSB。
S302、终端设备收到SSB后进行下行频率同步。
S303、终端设备接收gNB发送的TRS。
S304、终端设备对下行定时和频偏的估计,进行同步。
S305、终端设备在跟踪的载频上的PUSCH上,发送上行数据和解调参考信号(demodulation reference signal,DMRS)。
S306、gNB通过接收到的DMRS进行定时和频偏估计补偿。
本申请实施例中,终端设备与网络设备进行通信,网络设备还可以向终端设备发送多个参考信号。例如网络设备可能包括一个或多个节点。例如,网络设备的架构包括BBU和节点,节点可以是TRP。在单个TRP传输场景中网络设备的架构包括BBU和一个TRP。在多个TRP的场景中,网络设备的架构可以包括BBU和多个TRP。TRP作为传输接收点, 网络设备向终端发送的信号和/或从终端接收的信号都可以通过TRP来传输。又例如,多个网络设备包括多个节点。无论网络设备的数量是一个还是多个,都可能存在终端设备接收到多个参考信号的场景。终端设备收到的多个参考信号可能来自一个或多个网络设备,也可能来自一个或多个节点。以多个节点为例介绍本申请实施例。
多个节点向终端设备发送多个参考信号。具体的,终端设备可以与多个节点进行通信。多个节点中的每一个节点都可以向终端设备发送参考信号。该参考信号的用途是,终端设备可以根据该参考信号调整上行信号对应的参数,也可以调整下行信号对应的参数。当终端设备接收多个节点发送的多个参考信号时,需要按照其中一个参考信号为基准来调整发送/接收信号的参数。而发送参考信号的一个或多个节点也需要获知终端设备按照哪一个参考信号进行参数调整的。这样终端设备与网络设备才能达成一致,保证收发对齐,提高数据可靠性。本申请实施例提供的通信方法可以达到上述这样的目的。
与终端设备通信的多个节点包括用第一节点和至少一个第二节点。其中,第一节点向终端设备发送的参考信号可以记为第一参考信号,第二节点向终端设备发送的参考信号可以记为第二参考信号。第一节点将估计的频偏结果传递给第二节点,使得第二节点更好的跟终端通信。
如图4所示,本申请实施例提供的通信方法的流程如下所述。
S401、网络设备向终端设备发送多个参考信号。
对应的,终端设备接收多个参考信号。
其中,网络设备可以包括一个或多个网络设备,可以属于同一个小区,也可以属于不同的小区。当网络设备包括多个网络设备时,这里的“网络设备”是一种泛指的概念。
网络设备可以通过一个或多个节点向终端设备发送多个参考信号。
多个参考信号可以包括第一参考信号和第二参考信号。例如,第一参考信号来自于第一节点,第二参考信号来自于第二节点。
S402、网络设备向终端设备发送第一信息。
对应的,终端设备接收第一信息。
网络设备可以通过第一节点向终端发送第一信息。
第一信息用于指示上行信号与第一参考信号具有关联关系。第一信息还可以用于指示下行信号与第一参考信号具有关联关系。作为一种实现方式,该上行信号可以为终端设备待向第一节点发送的信号;该下行信号可以为第一节点待向终端设备发送的信号。
关联关系可以是一种映射关系。关联关系还可以是指QCL关系。
上行信号与第一参考信号具有关联关系还可以理解为,上行信号对应的参数与第一参考信号的参数具有关联关系,作为一种实现方式,上行信号对应的参数是根据第一参考信号的参数确定的。例如,上行信号对应的参数与第一参考信号的参数相同。
类似的,下行信号与第一参考信号具有关联关系还可以理解为,下行信号对应的参数与第一参考信号的参数具有关联关系。作为一种实现方式,下行信号对应的参数是根据第一参考信号的参数确定的。例如,下行信号对应的参数与第一参考信号的参数相同。
S403、终端设备按照第一信息指示的该关联关系,发送上行信号和/或接收下行信号。
上行信号对应的参数和/或下行信号对应的参数是根据第一信息中的关联关系确定的。
终端设备按照第一参考信号对应的参数,调整发送上行信号对应的参数,以发送上行信号,和/或,终端设备按照第一参考信号对应的参数,调整接收下行信号对应的参数,以 接收下行信号。
这里终端设备发送上行信号的对象可以包括第一节点和/或第二节点;终端设备可以从第一节点和/或第二节点接收下行信号。
例如,第一信息用于指示终端设备发送的上行信号与第一参考信号的载波频点相同。终端设备根据第一信息,在与第一参考信号相同的载波频点上,发送上行信号。
例如,第一信息用于指示终端设备接收下行信号与第一参考信号的载波频点相同。终端设备根据第一信息,在与第一参考信号相同的载波频点上,接收下行信号。
又例如,第一信息用于指示终端设备发送的上行信号与第一参考信号的时间同步基准具有关联关系。终端设备根据第一信息,按照第一参考信号的时间同步基准进行时间同步,在按照第一参考信号的时间同步基准进行时间同步的基础上,发送上行信号或者接收下行信号。
在终端设备接收到多个参考信号时,可以根据网络设备或节点发送的第一信息,确定使用多个参考信号中的第一参考信号作为上下行信号对应的参数调整的参考。这样,网络侧和终端设备能够在多个参考信号中确定相同的参考信号,从而使得上下行传输参数达成一致,提高传输可靠性。
可选的,在S401之前,还可以包括S400。
S400、网络设备向终端设备发送配置信息,配置信息用于指示参考信号的参数。
一种可能的实现方式,第一节点向终端设备发送第一配置信息,第一配置信息用于指示第一参考信号对应的参数。
一种可能的实施方式,第二节点也可以向终端设备发送第二配置信息,第二配置信息用于指示第二参考信号的参数。
一种可能的实施方式,终端设备根据多个节点分别发送的配置信息,分别从一个或多个节点接收参考信号。
终端设备根据多个节点分别发送的配置信息,分别从多个节点接收参考信号。
可选的,网络设备还可以向终端设备发送上下行信号的资源配置。例如,网络设备向终端设备发送SRS的配置信息。例如,网络设备可以通过一个或多个节点发送该上下行信号的资源配置。
本申请实施例中的上行信号可以包括以下任意一种或多种:
上行参考信号,例如,信道探测参考信号(sounding reference signal,SRS),解调参考信号(demodulation reference signal,DMRS),相位跟踪参考信号(phase tracking reference signal,PTRS);
承载于共享信道中的信号,例如承载于物理上行共享信道(physical uplink shared channel,PUSCH)中的信号;
承载于接入信道中的信号,例如承载于物理随机接入信道(physical random access channel,PRACH)中的信号。
承载于上行控制信道中的信号,例如承载于物理上行控制信道(physical uplink control channel,PUCCH)中的信号。
本申请实施例中的下行信号可以包括以下任意一种或多种:
下行参考信号,例如,跟踪参考信号(tracking reference signal,TRS),信道状态信息参考信号(channel state information-reference signal,CSI-RS),解调参考信号(demodulation  reference signal,DMRS),相位跟踪参考信号(phase tracking reference signal,PTRS)。
承载于下行共享信道中的信号,例如,承载于物理下行共享信号(physical downlink shared channel,PDSCH)中的信号。
承载于下行控制信道中的信号,例如承载于物理下行控制信号(physical downlink control channel,PDCCH)中的信号。
承载于广播信道中的信号,例如承载于物理广播信道(physical broadcast channel,PBCH)中的信号。
以下展开介绍本申请实施例中的第一信息的可能的几种实现形式。
第一信息为网络设备向终端设备发送的用于指示上行信号和/或下行信号与第一参考信号具有关联关系的信息。例如,第一信息可以承载在以下一种或多种信令中:无线资源控制(radio resource control,RRC)信令、媒体接入层控制单元(MAC control element,MAC CE)或下行控制信息(downlink control information,DCI)。
例如,第一信息中可以包括或指示第一参考信号的标识,该标识可以是索引号(index)。假设多个节点发送的多个参考信号用多个索引号来区分。在高层信号中携带第一参考信号的索引号,可以用于指示上行信号和/或下行信号与索引号对应的第一参考信号具有关联关系。
又例如,第一信息可以包括或指示传输配置编号(transmission configuration index,TCI)的状态。TCI的状态为上行信号和/或下行信号的TCI状态,通过该TCI状态可以确定与第一参考信号的TCI状态具有关联关系(例如相同)。当网络设备通过任意一个节点为终端设备配置多个TCI时,同时激活其中的一个TCI。第一信息包括或指示的TCI即为该激活的TCI。终端设备可以选择该激活的TCI所对应的第一参考信号作为与上行信号和/或下行信号具有关联关系的参考信号。或者终端设备根据该激活的TCI发送上行信号和/或接收下行信号。或者,网络设备通过任意一个节点为终端设备配置多个TCI时,同时激活其中多个TCI,则第一信息使用TCI标识(ID)来指示其中的一个TCI,终端设备可以选择第一信息包括或指示的TCI标识对应的第一参考信号作为与上行信号和/或下行信号具有关联关系的参考信号。或者,TCI的状态不指示TCI是否激活,第一信息包括或指示TCI标识,终端设备可以选择第一信息包括或指示的TCI标识对应的第一参考信号作为与上行信号和/或下行信号具有关联关系的参考信号。
其中,TCI的配置可以通过如下方式实现。网络设备给终端设备发送RRC信令,配置TCI相关的参数,网络设备给终端设备发送MAC CE信令进行激活,MAC CE信令是承载在PDSCH中的。终端设备接收MAC CE信令,反馈确认响应。或者,网络设备给终端设备发送DCI来配置TCI。
再例如,第一信息可以包括或指示用于接收第一参考信号的资源的标识。若第一参考信号为TRS,第一信息可以包括或指示用于接收TRS对应的CSI-RS资源。终端设备可以选择第一信息包括或指示的CSI-RS的资源上接收的TRS作为与上行信号和/或下行信号具有关联关系的参考信号。或者,第一信息可以包括或指示用于接收TRS的资源的标识,终端设备可以选择第一信息包括或指示的TRS的资源上接收的TRS与上行信号和/或下行信号具有关联关系的参考信号。
再例如,第一信息还可以是QCL信息,该QCL信息用于指示上行信号和/或下行信号与第一参考信号具有QCL关系。该QCL关系可以是指两个信号具有type-A、type-B、type-C、type-D中的一种类型的QCL关系。
作为一种实现方式,可以对现有的QCL类型进行扩展。例如,如表1所示,新增QCL类型E(type-E QCL)。该type-E QCL是指两个信号在接收端看来载波频点和/或多普勒频移相同。当第一信息指示终端设备发送的上行信号与第一参考信号具有type-E QCL关系时,是指终端设备发送的上行信号的载波频点与第一信号的载波频点和/或多普勒频移关联。类似的,当第一信息指示终端设备接收的下行信号与第一参考信号具有type-E QCL关系时,是指终端设备接收的下行信号的载波频点与第一信号的载波频点和/或多普勒频移关联。
表1
Figure PCTCN2019124144-appb-000001
基于上述实施例的描述,如图5所示,本申请实施例还提供一种通信方法。
S501、网络设备向终端设备发送多个参考信号,终端设备接收多个参考信号。
本步骤同S401。
例如,网络设备可以通过一个或多个节点向终端设备发送多个参考信号。一种可能的实现方式,第一节点发送第一参考信号,第二节点发送第二参考信号。
S502、终端设备向网络设备发送第二信息,网络设备接收该第二信息。
例如,终端设备可以向第一节点和/或第二节点发送第二信息,第一节点和/或第二节点接收该第二信息。
该第二信息用于指示终端设备从多个参考信号中选择第一参考信号来调整上下行信号对应的参数。
作为一种实现方式,该第二信息可以复用ACK/NACK信息的机制。例如,终端设备向第一节点发送ACK信息,该ACK信息用于指示终端设备选择第一参考信号。终端设备向第一节点发送NACK信息,该NACK信息用于指示终端设备选择第二参考信号。具体ACK/NACK信息的指示内容本申请实施例不作限定。
第二信息也可以通过高层信令进行发送。高层信令的解释参照上文中对高层信令的解释。
S503、终端设备按照第二信息发送上行信号和/或接收下行信号。
终端设备确定第一参考信号对应的参数。根据第一参考信号对应的参数,发送上行信号;还可以根据第一参考信号对应的参数,接收下行信号。
具体的,与S403类似,终端设备按照第一参考信号对应的参数,调整发送上行信号对应的参数,以发送上行信号,和/或,终端设备按照第一参考信号对应的参数,调整接收下行信号对应的参数,以接收下行信号。
这里终端设备发送上行信号的对象可以包括第一节点和/或第二节点;终端设备可以从第一节点和/或第二节点接收下行信号。
可选的,在S501之前包括S500,S500同S400。
基于上述实施例的描述,如图6所示,本申请实施例还提供一种通信方法。
S601、多个节点向终端设备发送多个参考信号,终端设备接收多个参考信号。
本步骤同S401。
例如,第一节点向终端设备发送第一参考信号,第二节点向终端设备发送第二参考信号。图6中以第一节点和第二节点为例进行示意。
S602、终端设备确定第一参考信号对应的参数;
S603、终端设备根据第一参考信号对应的参数,向第一节点发送上行信号以及接收来自第一节点的下行信号。
S604、终端设备确定第二参考信号对应的参数。
S605、终端设备根据第二参考信号对应的参数,向第二节点发送上行信号以及接收来自第二节点的下行信号。
S602~S603与S604~S605的执行顺序不作限定,可以同时进行或交换顺序执行。
可选的,在S601之前包括S600,S500同S400。
基于上述实施例的描述,如图7所示,本申请实施例还提供一种通信方法。
S700、网络设备向终端设备发送配置信息,终端设备接收该配置信息。
该配置信息包括m个参考信号与n个上行信号的映射关系,m、n为正整数。其中,该映射关系可以是一个参考信号可以对应一个上行信号,一个参考信号也可以对应多个上行信号;一个上行信号也可以对应多个参考信号。该对应关系可以通过参考信号的资源与上行信号的资源之间的对应关系来表示。例如,参考信号为TRS,上行信号为SRS,则该配置信息包括m个TRS资源(resource)和n个SRS resource之间的映射关系。
该网络设备可以通过多个节点中的任意一个或多个节点向终端设备发送配置信息。
S701、终端设备向网络设备发送第一上行信号。
对应的网络设备接收该第一上行信号。
其中,第一上行信号与第一参考信号具有对应关系。终端设备按照第一参考信号对应的参数,发送第一上行信号。例如,终端设备在接收第一参考信号的载波频点上,发送第一上行信号。又例如,终端设备在按照第一参考信号的时间同步基准进行时间同步的基础上,发送第一上行信号。
S702、网络设备确定终端设备使用与第一上行信号对应的第一参考信号作为上下行传输参数调整基准。
其中,终端设备使用第一参考信号作为上下行传输参数调整基准,即,终端设备根据第一参考信号对应的参数发送上行信号和/或接收下行信号。
在S702中,网络设备可以根据接收该上行信号的第一上行信号资源,确定与第一上行信号资源对应的第一参考信号资源,从而确定终端设备使用第一参考信号资源上的第一参考信号作为上下行传输参数调整基准。
如上图4~图7所示的实施例中,多个节点向终端设备发送多个参考信号,具体网络设备或终端选择多个参考信号中的哪一个参考信号,来作为后续收发信号的参考,可以有多种可能的选择方式。
在一种可能的实现方式中,多个节点属于同一个小区。例如在Multi-TRP场景下,相同频段上的多个小区之间免切换。网络设备可以按照节点与终端设备之间的距离来选择参考信号。例如终端设备在移动过程中,靠近第一节点时,第一节点与终端设备的距离小于第二节点与终端设备的距离。第一节点向终端设备发送第一信息,指示终端设备选择第一参考信号。
在另一种可能的实现方式中,多个节点可能属于不同的小区。例如,在Multi-TRP场景下,多个节点共同为终端设备提供服务,第一节点为主节点,第二节点为辅节点。其中,第一信息还可以包括主节点和辅节点的标识。当多个节点发送多个参考信号时,终端设备选择主节点发送的参考信号来作为上下行传输的参数调整基准。
在另一种可能的实现方式中,例如在Multi-TRP场景下,终端设备通过收到的控制资源集(control resource set,CORESET)中的索引来识别收到的DCI是哪个TRP发送的。终端设备按照DCI属于哪一个TRP来选择该TRP对应的参考信号作为上下行传输的参数调整基准,即默认使用该TRP所对应的下行信号进行时间/频率同步,该使用的下行信号可以是SSB(PBCH),TRS或CSI-RS。
需要说明的是,本申请中的各个应用场景中的举例仅仅表现了一些可能的实现方式,是为了对本申请的方法更好的理解和说明。本领域技术人员可以根据申请提供的参考信号的指示方法,得到一些演变形式的举例。
上述本申请提供的实施例中,分别从终端设备、节点、以及终端设备和节点之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图8所示,基于同一技术构思,本申请实施例还提供了一种通信装置800,该通信装置800可以是终端设备或网络设备或节点,也可以是终端设备或网络设备或节点中的装置,或者是能够和终端设备或网络设备或节点匹配使用的装置。一种设计中,该通信装置800可以包括执行上述方法实施例中终端设备或节点执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块801和通信模块802。处理模块801用于调用通信模块802执行接收和/或发送的功能。
当用于执行终端设备执行的方法时:
通信模块802,用于接收多个参考信号,多个参考信号包括第一参考信号和第二参考信号;以及用于接收第一信息,第一信息用于指示上行信号和/或下行信号与第一参考信号具有关联关系;以及用于发送上行信号和/或接收下行信号;其中,上行信号对应的参数和/或下行信号对应的参数是根据关联关系确定的。
处理模块801和通信模块802还可以用于执行上述方法实施例终端设备执行的其它对应的步骤或操作,在此不再一一赘述。
当用于执行网络设备或节点执行的方法时:
通信模块802,用于向终端发送多个参考信号,多个参考信号包括第一参考信号和第二参考信号;以及用于向终端发送第一信息,第一信息用于指示上行信号和/或下行信号与第一参考信号具有关联关系。
处理模块801和通信模块802还可以用于执行上述方法实施例节点执行的其它对应的步骤或操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器 中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图9所示为本申请实施例提供的通信装置900,用于实现上述方法中终端设备或网络设备或节点的功能。当实现网络设备或节点的功能时,该装置可以是网络设备或节点,也可以是网络设备或节点中的装置,或者是能够和网络设备或节点匹配使用的装置。当实现终端设备的功能时,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置900包括至少一个处理器920,用于实现本申请实施例提供的方法中终端设备或网络设备的功能。通信装置900还可以包括通信接口910。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口910用于装置900中的装置可以和其它设备进行通信。示例性地,通信装置900是网络设备时,该其它设备可以是终端设备。通信装置900是终端设备时,该其它装置可以是网络设备。处理器920利用通信接口910收发数据,并用于实现上述各个方法实施例所述的方法。示例性地,当实现网络设备的功能时,处理器920用于利用通信接口向终端发送多个参考信号,所述多个参考信号包括第一参考信号和第二参考信号,以及向所述终端发送第一信息,所述第一信息用于指示上行信号和/或下行信号与所述第一参考信号具有关联关系。当实现终端设备的功能时,处理器920用于利用通信接口接收多个参考信号,所述多个参考信号包括第一参考信号和第二参考信号;以及用于利用通信接口910接收第一信息,所述第一信息用于指示上行信号和/或下行信号与所述第一参考信号具有关联关系;以及利用通信接口910发送所述上行信号和/或接收所述下行信号;其中,所述上行信号对应的参数和/或所述下行信号对应的参数是根据所述关联关系确定的。处理器920和通信接口910还可以用于执行上述方法实施例终端设备或节点执行的其它对应的步骤或操作,在此不再一一赘述。
装置900还可以包括至少一个存储器930,用于存储程序指令和/或数据。存储器930和处理器920耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器920可能和存储器930协同操作。处理器920可能执行存储器930中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口910、处理器920以及存储器930之间的具体连接介质。本申请实施例在图9中以存储器930、处理器920以及通信接口910之间通过总线940连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
装置1200和装置900具体是芯片或者芯片系统时,通信模块1202和通信接口910所输出或接收的可以是基带信号。装置1200和装置900具体是设备时,通信模块1202和通信接口910所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件 及软件模块组合执行完成。
在本申请实施例中,存储器930可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请上述方法实施例描述的终端设备所执行的操作和功能中的部分或全部,或节点所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
为了实现上述图8或图9所述的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中终端设备或节点所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    接收多个参考信号,所述多个参考信号包括第一参考信号和第二参考信号;
    接收第一信息,所述第一信息用于指示上行信号和/或下行信号与所述第一参考信号具有关联关系;
    发送所述上行信号和/或接收所述下行信号;其中,所述上行信号对应的参数和/或所述下行信号对应的参数是根据所述关联关系确定的。
  2. 如权利要求1所述的方法,其特征在于,所述关联关系包括:所述上行信号对应的参数和/或所述下行信号对应的参数与所述第一参考信号的参数中的以下至少一种具有对应关系:
    载波频点、多普勒频移、载波频点同步基准、时间同步基准或时间定时基准。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信息包括准共址QCL信息,所述QCL信息用于指示所述上行信号和/或所述下行信号与所述第一参考信号具有QCL关系。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一信息包括传输配置指示TCI的状态,所述TCI的状态为所述上行信号和/或所述下行信号的TCI状态,且与所述第一参考信号的TCI状态具有对应关系。
  5. 如权利要求1或2所述的方法,其特征在于,所述第一信息包括所述第一参考信号的标识,和/或,所述第一信息包括用于接收第一参考信号的资源的标识。
  6. 如权利要求2~5任一所述的方法,其特征在于,所述上行信号对应的参数和/或所述下行信号对应的参数包括载波频点;
    所述发送所述上行信号和/或接收所述下行信号,包括:在所述第一参考信号的载波频点上,发送上行信号和/或接收下行信号。
  7. 如权利要求2~6任一所述的方法,其特征在于,所述上行信号对应的参数和/或所述下行信号对应的参数包括时间同步基准;
    所述发送所述上行信号和/或接收所述下行信号,包括:
    在按照所述第一参考信号的时间同步基准进行时间同步的基础上,发送所述上行信号和/或接收所述下行信号。
  8. 如权利要求1~7任一项所述的方法,其特征在于,所述上行信号包括以下任意一种或多种:上行参考信号、承载于上行共享信道中的信号、承载于接入信道中的信号或承载于上行控制信道中的信号;
    所述下行信号包括以下任意一种或多种:下行参考信号、承载于下行共享信道中的信号、承载于下行控制信道中的信号或广播信道中的信号。
  9. 如权利要求1~8任一项所述的方法,其特征在于,所述第一参考信号和所述第二参考信号属于不同的小区,所述第一参考信号属于主小区,所述第二参考信号属于辅小区。
  10. 如权利要求1~9任一项所述的方法,其特征在于,所述方法还包括:
    接收配置信息,所述配置信息用于指示所述第一参考信号的参数。
  11. 一种通信方法,其特征在于,包括:
    向终端发送多个参考信号,所述多个参考信号包括第一参考信号和第二参考信号;
    向所述终端发送第一信息,所述第一信息用于指示上行信号和/或下行信号与所述第一参考信号具有关联关系。
  12. 如权利要求11所述的方法,其特征在于,所述关联关系包括:所述上行信号对应的参数和/或所述下行信号对应的参数与所述第一参考信号的参数中的以下至少一种具有对应关系:
    载波频点、多普勒频移、载波频点同步基准、时间同步基准或时间定时基准。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一信息包括准共址QCL信息,所述QCL信息用于指示所述上行信号和/或所述下行信号与所述第一参考信号具有QCL关系。
  14. 如权利要求11或者12所述的方法,其特征在于,所述第一信息包括传输配置指示TCI的状态,所述TCI的状态为所述上行信号和/或所述下行信号的TCI状态,且与所述第一参考信号的TCI状态具有对应关系。
  15. 如权利要求11或12所述的方法,其特征在于,所述第一信息包括所述第一参考信号的标识,和/或,所述第一信息包括用于接收第一参考信号的资源的标识。
  16. 如权利要求11~15任一项所述的方法,其特征在于,所述上行信号包括以下任意一种或多种:上行参考信号、承载于上行共享信道中的信号、承载于接入信道中的信号或承载于上行控制信道中的信号;
    所述下行信号包括以下任意一种或多种:下行参考信号、承载于下行共享信道中的信号、承载于下行控制信道中的信号或广播信道中的信号。
  17. 如权利要求11~16任一项所述的方法,其特征在于,所述第一参考信号和所述第二参考信号属于不同的小区,所述第一参考信号属于主小区,所述第二参考信号属于辅小区
  18. 如权利要求11~17任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送配置信息,所述配置信息用于指示所述第一参考信号的参数。
  19. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行一组程序,以使得所述通信装置以实现权利要求1至10任一项所述的方法。
  20. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行一组程序,以使得所述通信装置以实现权利要求11至18任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得所述通信装置执行权利要求1~18任一项所述的方法。
  22. 一种芯片,其特征在于,所述芯片与存储器相连或者所述芯片包括所述存储器,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1~18任一项所述的方法。
PCT/CN2019/124144 2019-12-09 2019-12-09 一种通信方法及装置 WO2021114059A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/124144 WO2021114059A1 (zh) 2019-12-09 2019-12-09 一种通信方法及装置
CN201980101574.9A CN114600524A (zh) 2019-12-09 2019-12-09 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124144 WO2021114059A1 (zh) 2019-12-09 2019-12-09 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021114059A1 true WO2021114059A1 (zh) 2021-06-17

Family

ID=76329340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124144 WO2021114059A1 (zh) 2019-12-09 2019-12-09 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN114600524A (zh)
WO (1) WO2021114059A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023280212A1 (zh) * 2021-07-09 2023-01-12 维沃移动通信有限公司 信道状态信息csi上报处理方法、接收方法及相关设备
CN116887288A (zh) * 2023-07-10 2023-10-13 武汉船舶通信研究所(中国船舶集团有限公司第七二二研究所) 一种特殊场景下5g网络部署方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020978A1 (en) * 2022-07-29 2024-02-01 Qualcomm Incorporated Downlink reference timing determination for multiple timing advances in multi-dci/multi-trp
CN117527009A (zh) * 2022-07-30 2024-02-06 华为技术有限公司 信道状态信息反馈方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018053814A1 (zh) * 2016-09-23 2018-03-29 广东欧珀移动通信有限公司 传输srs的方法、网络设备和终端设备
WO2018081991A1 (zh) * 2016-11-03 2018-05-11 广东欧珀移动通信有限公司 传输上行信号的方法、终端设备和网络侧设备
CN108282198A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信号传输方法和装置
CN108632971A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 功率控制方法、终端和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018053814A1 (zh) * 2016-09-23 2018-03-29 广东欧珀移动通信有限公司 传输srs的方法、网络设备和终端设备
WO2018081991A1 (zh) * 2016-11-03 2018-05-11 广东欧珀移动通信有限公司 传输上行信号的方法、终端设备和网络侧设备
CN108282198A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信号传输方法和装置
CN108632971A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 功率控制方法、终端和网络设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023280212A1 (zh) * 2021-07-09 2023-01-12 维沃移动通信有限公司 信道状态信息csi上报处理方法、接收方法及相关设备
CN116887288A (zh) * 2023-07-10 2023-10-13 武汉船舶通信研究所(中国船舶集团有限公司第七二二研究所) 一种特殊场景下5g网络部署方法

Also Published As

Publication number Publication date
CN114600524A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN110049557B (zh) 随机接入方法及装置
WO2021114059A1 (zh) 一种通信方法及装置
US20170353985A1 (en) Method of transceiving for device to device communication
US10750517B2 (en) Communication control device, communication control method, and communication device
WO2020221318A1 (zh) 一种上行波束管理方法及装置
WO2021160129A1 (zh) 一种通信方法及装置
EP4322609A1 (en) Mobility management method, and communication apparatus
US20230379739A1 (en) Method for transmitting and receiving channel state information and device for same in wireless communication system
EP4224765A1 (en) Method and apparatus for determining transmission mode, and communication device
WO2023011188A1 (zh) 一种通信方法及装置
CN111328463A (zh) 一种通信方法及装置
JP7468678B2 (ja) ネットワーク装置、端末装置、及び方法
CN112106417B (zh) 一种通信方法及装置
WO2021254365A1 (zh) 信息传输方法、装置、相关设备及存储设备
WO2022147735A1 (zh) 确定发送功率的方法及装置
KR20230073147A (ko) 무선 통신 시스템에서 빔 관리 방법 및 장치
KR20230006483A (ko) 무선 통신 시스템에서 위치 정보 전송 방법 및 장치
WO2019095396A1 (zh) 一种数据传输节点确定方法和装置
JP2022529566A (ja) V2x通信装置のためのリソースプールを軟分離する通信装置および通信方法
WO2019214331A1 (zh) 一种发送pucch的方法、装置及可读存储介质
KR20220113733A (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 주행 그룹 간의 송신 자원을 고려한 송신 자원의 재할당 방법 및 이를 위한 장치
WO2023221726A9 (zh) 一种数据传输方法及装置
WO2022151230A1 (zh) 一种波束指示方法及装置
WO2023202420A1 (zh) 一种通信方法及相关装置
WO2023241505A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955559

Country of ref document: EP

Kind code of ref document: A1