WO2021160105A1 - 通信方法、设备和存储介质 - Google Patents

通信方法、设备和存储介质 Download PDF

Info

Publication number
WO2021160105A1
WO2021160105A1 PCT/CN2021/076153 CN2021076153W WO2021160105A1 WO 2021160105 A1 WO2021160105 A1 WO 2021160105A1 CN 2021076153 W CN2021076153 W CN 2021076153W WO 2021160105 A1 WO2021160105 A1 WO 2021160105A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
air interface
mapping
drb
data
Prior art date
Application number
PCT/CN2021/076153
Other languages
English (en)
French (fr)
Inventor
杜伟强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2022549061A priority Critical patent/JP7340111B2/ja
Priority to US17/799,335 priority patent/US11917449B2/en
Priority to KR1020227030648A priority patent/KR20220137725A/ko
Priority to EP21754200.0A priority patent/EP4102862A4/en
Priority to CA3167943A priority patent/CA3167943A1/en
Publication of WO2021160105A1 publication Critical patent/WO2021160105A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to communication, for example, to a communication method, device, and storage medium.
  • the embodiments of the present application provide a communication method, device, and storage medium, which effectively implement direct link relay communication in a 5G NR system.
  • the embodiment of the present application provides a communication method, which is applied to a first communication node, and includes:
  • the IP data is mapped to the relay bearer according to the first preset mapping manner, and transmitted to the third communication node.
  • the embodiment of the present application provides a communication method, which is applied to a first communication node, and includes:
  • the downlink data is mapped to PC5 data according to the second preset mapping manner, mapped to PC5DRB, and transmitted to the second communication node to which it belongs.
  • An embodiment of the present application provides a device, including: a memory, and one or more processors;
  • the memory is used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method described in any one of the foregoing embodiments.
  • An embodiment of the present application provides a storage medium that stores a computer program, and when the computer program is executed by a processor, the method described in any of the foregoing embodiments is implemented.
  • FIG. 1 is a flowchart of a communication method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a display of a user plane protocol stack provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an air interface data forwarding bearer establishment process when a relay UE forwards data for a remote UE according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram showing another user plane protocol stack provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an air interface data forwarding bearer establishment process when another relay UE forwards data for a remote UE according to an embodiment of the present application
  • FIG. 7 is a schematic diagram showing another user plane protocol stack provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an air interface data forwarding bearer establishment process when another relay UE forwards data for a remote UE according to an embodiment of the present application
  • FIG. 9 is a structural block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a structural block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • D2D device-to-device
  • the application of D2D technology can reduce the burden on the cellular network, reduce the battery power consumption of user equipment, increase the data rate, and improve the robustness of the network infrastructure, which satisfies the requirements of the aforementioned high data rate services and proximity services.
  • the D2D technology is also called Proximity Services (ProSe), and communicates with a unilateral/side chain/through link (Side Link, SL); the interface between the device and the device is the PC5 interface.
  • SideLink-based relay communication technology In order to be able to support a wider range of network communications, SideLink-based relay communication technology has attracted widespread attention. From the perspective of communication objects, SideLink communication technology can be divided into:
  • UE-to-Network relay This communication technology supports the provision of data relay functions for the UE in areas where the base station cannot cover or the base station has weak coverage.
  • a UE that needs to communicate with a base station but cannot directly connect to a base station becomes a remote UE (remote UE), and a UE that provides a relay function for a remote UE is called a relay UE (relay UE).
  • UE-to-UE realy This communication technology supports two UEs with communication requirements without direct communication capability or direct communication conditions, through other supporting UE assistance Complete the communication between UEs. Among them, a UE with communication requirements becomes a remote UE, and a UE that provides a relay function for the remote UE is called a relay UE.
  • SideLink relay communication technology can be divided into:
  • IP Internet Protocol
  • Layer-3 Layer-3 based, based on layer 3 relay technology
  • RRC Radio Resource Control
  • Relay technology based on the access layer (Layer2-based, based on layer 2), that is, the remote UE establishes a connection with the gNB and the core network through the relay, and the remote UE forwards the bearer data between the relay UE and the gNB.
  • Layer3-based relay In the actual communication process, Layer3-based relay is simple to implement, but the reliability and security are not good enough, and Layer2-based relay is complex to implement, but the support for reliability and security is stronger than Layer-3 based relay, and it can effectively Remote UE supports mobility and security.
  • the present application provides a communication method to effectively implement direct link relay communication in a 5G NR system.
  • FIG. 1 is a flowchart of a communication method provided by an embodiment of the present application. As shown in Figure 1, this embodiment is applied to the first communication node and is used for uplink data transmission. Exemplarily, the first communication node may be a relay UE. As shown in Figure 1, this embodiment includes: S110-S120.
  • S120 Map the IP data to the relay bearer according to the first preset mapping manner, and transmit it to the third communication node.
  • the first communication node can be used as a relay node between the second communication node and the third communication node to forward the transmission data between the second communication node and the third communication node.
  • the IP data may be mapped to the relay bearer according to the first preset mapping method configured in advance for transmission to the third communication node .
  • the PDU session selected by the first communication node for the IP data includes one of the following:
  • PDU Protocol Data Unit
  • DRB Data Radio Bearer
  • the IP data is transmitted using the PDU session of the first communication node itself.
  • the first preset mapping manner includes one of the following: one-to-one mapping; many-to-one mapping;
  • the one-to-one mapping is used to indicate that the IP data of different second communication nodes are sent through different relay air interface DRBs; the many-to-one mapping is used to indicate that the IP data of at least two second communication nodes are mapped to the same A relay air interface DRB transmits.
  • multiple pairs A mapping includes one of the following methods:
  • the IP data is mapped to the relay air interface DRB;
  • mapping the IP data to the relay air interface DRB based on the mapping relationship between the PC5 QoS flow and the NR air interface QoS flow configured or pre-configured by the third communication node and the configuration of the NR air interface DRB;
  • the IP data is mapped to the relay air interface DRB.
  • a new air interface direct link interface NR PC5 is used between the first communication node and the second communication node to connect, and the second communication node and the third communication node use NR air interface
  • the method further includes:
  • the air interface DRB and the downlink PC5 DRB may be established before the relay connection
  • the QoS information in the request and the PC5 unicast connection request are sent to the third communication node.
  • the third preset mapping method is used to map the pre-acquired PC5 QoS information to air interface QoS information.
  • the third preset mapping method includes:
  • the 5QI value closest to the QoS attribute represented by the PQI in the standard 5QI list is selected;
  • the method further includes:
  • the communication method further includes: receiving a relay air interface DRB or PC5 DRB configured by the third communication node, and a mapping relationship between PC5 data and air interface data.
  • the mapping relationship between PC5 data and air interface data includes the following One of the above: the mapping of PC5 QoS flow and air interface QoS flow, the mapping of PC5 DRB and air interface DRB, the mapping of PC5 QoS flow and air interface DRB, and the mapping of PC5 DRB and air interface QoS flow.
  • the third communication node is configured for the first communication node
  • the time period of the mapping relationship between PC5 data and air interface data includes one of the following:
  • the first communication node After the first communication node sends a PDU session establishment request or a PDU session modification request;
  • the first communication node reports PC5 DRB information
  • the PC5 DRB information includes at least one of the following: bearer identification, radio link control protocol (Radio Link Control, RLC) ) Mode, logical channel identification, logical channel priority, RLC related configuration;
  • the first communication node After the first communication node sends the sidelink UE information (SUI) to the third communication node.
  • SAI sidelink UE information
  • the mapping relationship between PC5 data and air interface data includes One of the following:
  • the mapping configuration includes at least one of the following: PC5 QoS information and air interface QoS information mapping, quality of service flow identifier (QoS flow identifier, QFI) and PC5 flow identifier (PC5 Flow) Identifier, PFI) mapping;
  • the mapping between the PC5 QoS information and the air interface QoS information includes at least one of the following: mapping the 5QI in the air interface QoS flow to an identical PC5 PQI; and the 5QI does not match the PQI at the identical air interface
  • GFBR and MFBR in the air interface QoS flow are directly set to GFBR and MFBR in the PC5 QoS information;
  • the mapping configuration includes at least one of the following: PC5 PFI and air interface DRB identification mapping, PC5 PQI and air interface DRB priority mapping, PC5 PQI and air interface logical channel priority mapping ;
  • the mapping configuration includes at least one of the following: PC5 DRB priority and air interface DRB priority mapping, PC5 DRB identification and air interface DRB identification mapping, PC5 logical channel priority and air interface logic Channel priority mapping, PC5 logical channel identification and air interface logical channel identification;
  • the configuration includes at least one of the following: PC5DRB identification and Uu QFI mapping, PC5 DRB priority and Uu 5QI mapping, PC5 logical channel priority and Uu 5QI mapping.
  • multiple pairs A mapping includes one of the following methods:
  • the IP data is mapped to the relay NR air interface DRB;
  • the second communication Based on the neighbor service packet priority (PPPP) of the received PC5 data of the second communication node, the mapping relationship between PPPP and 5QI configured or pre-configured by the third communication node, and the NR air interface DRB configuration, the second communication
  • the node's IP data is mapped to the air interface QoS flow, and then to the relay NR air interface DRB;
  • the IP data of the second communication node is mapped to the relay NR air interface DRB.
  • the method before receiving the Internet Protocol IP data sent by the second communication node, the method further includes:
  • the air interface DRB and the mapping of uplink and downlink data are established according to the configuration information fed back by the third communication node.
  • the relay connection request may be The QoS information in the established relay connection and the PC5 unicast connection requested by the PC5 unicast connection are sent to the third communication node.
  • the fourth preset mapping method is used to map the pre-acquired PPPP value to the NR air interface QoS information.
  • the fourth preset mapping method includes:
  • the method further includes:
  • a PDU session modification request is sent to the third communication node, where the PDU session modification request is used to modify the current PDU session and carries the air interface QoS information obtained after the mapping.
  • the communication method further includes: receiving a relay air interface DRB configured by the third communication node, and a mapping relationship between PC5 data and air interface data.
  • the mapping relationship between PC5 data and air interface data includes the following One of the above: the mapping of PC5 logical channel and air interface DRB, the mapping of PC5 PPPP data flow and air interface DRB, and the mapping of PC5 PPPP data flow and Uu QoS flow.
  • the third communication node is configured for the first communication node
  • the time period of the mapping relationship between PC5 data and air interface data includes one of the following:
  • the first communication node After the first communication node sends a PDU session establishment request or a PDU session modification request;
  • the first communication node After the first communication node establishes a relay connection with the second communication node, the first communication node reports LTE PC5 logical channel information.
  • the PC5 logical channel information includes at least one of the following: RLC mode, logical channel identifier, logical channel priority, RLC related configuration;
  • the mapping relationship between PC5 data and air interface data includes One of the following:
  • the mapping configuration includes at least one of the following: LTE PC5 logical channel identification and NR air interface DRB identification mapping, LTE PC5 logical channel priority and NR air interface DRB priority mapping , LTE PC5 logical channel priority and NR air interface logical channel priority mapping, LTE PC5 logical channel identification and NR air interface logical channel identification mapping;
  • the mapping configuration includes at least one of the following: LTE PPPP value and air interface DRB priority mapping configuration, LTE PPPP value and air interface logical channel priority mapping;
  • the mapping configuration includes at least one of the following: LTE PPPP value and NR air interface QoS information mapping configuration;
  • mapping configuration of the LTE PC5 PPPP value and the NR air interface QoS information where the mapping configuration includes at least one of the following: a mapping table of the LTE PC5 PPPP value and the NR air interface 5QI.
  • the many-to-one mapping includes one of the following methods one:
  • IP data of at least two second communication nodes to the LTE air interface DRB according to the upstream traffic flow template (TFT) and DRB configuration of the first communication node;
  • TFT upstream traffic flow template
  • IP data is mapped to LTE air interface DRB;
  • mapping the IP data to the LTE air interface DRB based on the mapping relationship between the NR PC5 QoS flow configured or pre-configured by the third communication node and the LTE air interface DRB;
  • the IP data is mapped to the LTE air interface DRB .
  • EPS Evolved Packet System
  • the fifth preset mapping method is used to obtain the NR PC5 QoS information is mapped to LTE air interface QoS information.
  • the fifth preset mapping method includes:
  • the method further includes:
  • a PDU session modification request is sent to the third communication node, where the PDU session modification request is used to modify the current PDU session and carries the air interface QoS information obtained after the mapping.
  • the communication method further includes: receiving a relay air interface DRB configured by the third communication node, and a mapping relationship between PC5 data and air interface data.
  • the mapping relationship between PC5 data and air interface data includes the following One of the above: NR PC5 QoS and LTE air interface EPS bearer mapping, NR PC5 DRB and LTE air interface DRB mapping, NR PC5 QoS flow and LTE air interface DRB mapping, NR PC5 DRB and LTE air interface EPS bearer mapping.
  • the third communication node is configured for the first communication node
  • the time period of the mapping relationship between PC5 data and air interface data includes one of the following:
  • the first communication node After the first communication node sends a PDU session connection request or a bearer resource modification request;
  • the first communication node reports NR PC5 DRB information, and NR PC5 DRB information includes at least one of the following: bearer identifier, RLC mode, logical channel identifier, Logical channel priority, RLC related configuration;
  • the mapping relationship between PC5 data and air interface data includes One of the following:
  • the mapping configuration includes at least one of the following: the mapping between PC5 QFI and air interface EPS bearer identifier, and the mapping between NR PC5 QoS Info and LTE air interface QoS Info;
  • the mapping between PC5 QoS Info and air interface QoS Info includes at least one of the following:
  • the GFBR and MFBR in the air interface QoS flow are directly set to the GFBR and MFBR in the PC5 QoS Info;
  • the GFBR and MFBR in the PC5 QoS flow are directly set to the GFBR and MFBR in the Uu QoS Info;
  • the mapping configuration includes at least one of the following: PC5 PFI and air interface DRB identification mapping, PC5 PQI and air interface DRB priority mapping, PC5 PQI and air interface logical channel priority mapping ;
  • the mapping configuration includes at least one of the following: PC5 DRB priority and air interface DRB priority mapping, PC5 DRB identification and air interface DRB identification mapping, PC5 logical channel priority and air interface logic Channel priority mapping, mapping between NR PC5 logical channel identification and LTE air interface logical channel identification.
  • the mapping configuration includes at least one of the following: PC5 DRB priority and air interface EPS bearer QCI mapping, PC5 DRB identification and air interface EPS bearer identification mapping, PC5 logical channel and Air interface EPS bearer QCI mapping.
  • the switching mode of the second communication node includes one of the following: switching from the air interface connection to the relay connection ; Switch from the relay connection to the air interface connection; switch from the first first communication node connection to the second first communication node connection.
  • the uplink data buffered in the second communication node waiting to be transmitted includes one of the following connection modes:
  • the air interface QoS flow is mapped to the PC5 QoS flow based on the configuration or pre-configured air interface QoS flow to PC5 QoS flow mapping configuration of the third communication node, or based on The third communication node configuration or pre-configured air interface QoS flow to PC5 DRB mapping configuration, and the air interface QoS flow is mapped to PC5 DRB;
  • the IP data For the IP data that has been mapped to the air interface DRB in the second communication node, the IP data is decrypted according to the air interface packet data convergence protocol (Packet Data Convergence Protocol, PDCP), and based on the air interface DRB to PC5 DRB configured or pre-configured by the third communication node
  • the mapping configuration is to map the air interface DRB to PC5 DRB.
  • the uplink data buffered in the second communication node and waiting for transmission includes one of the following connection modes:
  • the PC5 QoS flow is mapped to the air interface QoS flow based on the configuration or pre-configured air interface QoS flow to the PC5 QoS flow mapping configuration of the third communication node, or based on The PC5 QoS flow to the air interface DRB mapping configuration configured or pre-configured by the third communication node, and the PC5 QoS flow is mapped to the air interface DRB;
  • IP data that has been mapped to PC5 DRB in the second communication node decrypt the IP data according to PC5 PDCP, and map the PC5 DRB to the air interface DRB based on the PC5 DRB to air interface DRB mapping configuration configured or pre-configured by the third communication node .
  • the switching mode of the second communication node when the switching mode of the second communication node is from the first first communication node to the second first communication node, for the uplink data buffered in the second communication node waiting to be transmitted, Including one of the following connection methods:
  • the IP data that has been mapped to the PC5 DRB established with the first first communication node is decrypted according to the PDCP layer established with the second first communication node, and mapped to the IP data established with the second first communication node.
  • the first first communication node continues to complete the uplink transmission.
  • the link switching decision includes one of the following:
  • the link switching criterion is configured or pre-configured through the third communication node.
  • the link switching criterion includes at least one of the following:
  • Air interface link quality threshold for service type; PC5 interface link quality threshold;
  • Measurement configuration including: air interface measurement configuration and relay measurement configuration.
  • the link switching criterion includes at least one of the following:
  • Air interface link quality threshold PC5 interface link quality threshold; first communication node air interface link quality threshold; PC5 interface resource pool channel busy ratio (CBR) threshold; service type/service requirement.
  • CBR PC5 interface resource pool channel busy ratio
  • Fig. 2 is a flowchart of another communication method provided by an embodiment of the present application. This embodiment is applied to the second communication node and is used for downlink data transmission. As shown in Figure 2, this embodiment includes S201-S203.
  • S201 Receive downlink data sent by the third communication node.
  • S202 Determine the second communication node to which it belongs according to the IP address in the downlink data.
  • S203 Map the downlink data to PC5 data according to a second preset mapping manner, and transmit it to the second communication node to which it belongs.
  • the The second preset mapping method includes one of the following:
  • the air interface QoS flow is mapped to the PC5 QoS flow, and then to the PC5 DRB;
  • the downlink data is mapped to the PC5 DRB.
  • the The second preset mapping method includes one of the following:
  • the IP data of the second communication node is mapped to the LTE PC5 logical channel.
  • the The second preset mapping method includes one of the following:
  • mapping the IP data to the NR PC5 DRB based on the mapping relationship between the LTE air interface DRB and NR PC5 DRB configured or pre-configured by the third communication node;
  • the IP data is mapped to the LTE air interface DRB.
  • the uplink transmission, uplink, and uplink data involved between the first communication node refer to the process of sending by the second communication node and receiving by the first communication node; correspondingly ,
  • the downlink transmission, downlink, and downlink data involved between the first communication node and the second communication node refer to the process of sending by the first communication node and receiving by the second communication node.
  • NR PC5 is used between the first communication node and the second communication node, and NR is used between the first communication node and the third communication node.
  • the first communication node is a relay UE
  • the second communication node is a remote UE
  • the third communication node is a base station.
  • the remote UE does not establish an RRC connection with the base station, that is, the base station does not recognize the remote UE, and does not save the remote UE context, the core network does not recognize the remote UE, and does not establish a connection for the remote UE.
  • Maintain PDU session (session).
  • the remote UE's IP data packet is sent to the relay UE through the PC5 unicast connection, and the relay UE sends the remote UE's IP data packet to the base station through the relay UE's own air interface bearer, and the base station transmits the data to the 5G core network through the relay UE's PDU session (5G Core, 5GC).
  • Fig. 3 is a schematic diagram of a display of a user plane protocol stack provided by an embodiment of the present application. As shown in Figure 3, the user plane protocol stack is an L3 UE-to-Network relay user plane protocol stack.
  • uplink user plane data routing it includes steps one to four:
  • Step 1 The Remote UE receives the IP data packet from the application layer, and transmits the IP data packet to the relay UE through self-derived QoS processing rules and PC5 unicast bearer configuration.
  • the determination can be made in the following ways:
  • Method 1 The remote UE and the relay UE negotiate to establish a PC5 unicast bearer or logical channel through RRC signaling, and are specifically used to forward remote UE data.
  • the PC5 DRB identifier or the logical channel identifier (Logical Channel ID, LCID).
  • Method 2 The data sent by the Remote UE to the gNB and the data sent to the relay UE use different SRC ID (source ID) and DST ID (destination ID).
  • the relay UE uses Media Access Control (MAC). )
  • the ID contained in the subheader indicates that it is possible to distinguish whether it is data sent to itself or data that needs to be relayed.
  • Step 2 Relay UE receives and parses the IP data packet sent by the remote UE, and judges whether the IP data packet needs to be relayed and forwarded to the gNB according to the ID in the MAC subheader, or the negotiated logical channel/bearer, if it is in progress Following the forwarded data, the relay UE reads the IP information of the remote UE data packet, uses the network address translation (Network Address Translation, NAT) function to modify the IP header of the corresponding remote UE data packet and forwards it.
  • Network Address Translation Network Address Translation
  • Step 3 The Relay UE maps the IP data packet to be forwarded to the relay air interface bearer between the base station and the base station and transmits it to the base station.
  • the Relay UE maps the IP data packet to be forwarded to the relay air interface bearer between the base station and the base station and transmits it to the base station.
  • it includes one of the following mapping methods:
  • Relay UE establishes an independent PDU session for data that needs to be relayed and forwarded, and transmits remote UE data on the DRB corresponding to the PDU session;
  • the Relay UE uses its own PDU session to transmit the data of the remote UE.
  • the relay UE can choose the following two mapping methods:
  • mapping method 1 One-to-one mapping, that is, the IP data of different remote UEs are sent through different air interface DRBs;
  • Mapping method 2 Many-to-one mapping, that is, IP data packets with similar QoS of multiple remote UEs can be mapped to the same Uu DRB for transmission.
  • Method 1 The relay UE does not distinguish the remote UE from which the IP data packet comes, and maps the IP data packets of multiple remote UEs to the Uu DRB according to the Uu QoS rules and DRB configuration of the relay UE;
  • Method 2 Relay UE maps the forwarded IP data to Uu DRB based on the mapping relationship between PC5 DRB and Uu DRB configured or pre-configured by the base station (for example, mapping based on bearer identification, or mapping based on bearer/logical channel priority) ;
  • Method 4 Relay UE maps the PC5 QoS flow data packet to the Uu QoS flow based on the PQI of the received remote UE PC5 data and the mapping relationship between the PQI and 5QI configured or pre-configured by the base station, and further configures the IP data according to the Uu DRB configuration It is transmitted to the base station through the corresponding relay Uu DRB.
  • Step 4 The base station receives the remote UE user plane data forwarded by the relay UE, and further maps the data packet to the NG interface transmission tunnel of the PDU session of the relay UE and sends it to the core network element (UPF).
  • UPF core network element
  • the base station and the core network treat remote UE data as relay UE data for processing and forwarding during data communication.
  • the base station receives the downlink data sent by the user plane function entity (UPF) to the relay UE, and maps the downlink data of the relay UE to the air interface bearer of the relay UE.
  • the relay UE determines the location of the data packet based on the IP information and NAT sent to its own data packet. It belongs to the remote UE, and then forwards the downlink data to the corresponding remote UE through the PC5 DRB.
  • UPF user plane function entity
  • Step 1 Relay UE receives the downlink data sent by the base station, reads the IP information in the downlink data, determines which remote UE the data packet belongs to according to the stored NAT information, and then replaces the IP header in the data packet with the corresponding remote UE IP information.
  • Step 2 The relay UE maps the data packet onto the PC5 bearer and sends it to the remote UE, including one of the following mapping methods:
  • Relay UE maps the remote UE's data to the corresponding PC5 DRB according to the QoS rules derived by itself and the PC5 DRB configuration configured by the base station;
  • mapping method two based on the 5QI to PQI mapping relationship configured by the base station and the PC5 DRB configuration, map the Uu QoS flow to the PC5 QoS flow, and then map it to the PC5 DRB;
  • Mapping method 3 Relay UE maps remote UE data packets to PC5 DRB based on the mapping relationship between 5QI/QFI and PC5 DRB configured or pre-configured by the base station;
  • mapping method five based on the mapping relationship between the air interface DRB and PC5 DRB configured or pre-configured by the base station (for example, bearer identification mapping, or bearer/logical channel priority mapping), the data packet is mapped to PC5 DRB;
  • the remote UE data packet is mapped to the PC5 DRB with the same bearer/logical channel priority.
  • Step 3 Remote UE receives downlink data from PC5 DRB.
  • NR PC5 is used between the first communication node and the second communication node, and NR is used between the first communication node and the third communication node.
  • the first communication node is a relay UE
  • the second communication node is a remote UE
  • the third communication node is a base station.
  • the configuration performed by the base station is all the steps shown in FIG. 4 below.
  • the remote UE does not need to establish an RRC connection with the gNB, nor does it establish a PDU session with the core network.
  • the remote UE first searches for a suitable relay UE to relay and forward IP data for it. Then the remote UE in the RRC connected state establishes the uplink SL bearer based on the configuration of the base station, the RRC idle/inactive remote UE establishes the uplink SL bearer based on the SL bearer configuration in the system message; the UE without coverage is based on the pre-configuration
  • the SL bearer configuration in the information performs uplink SL bearer establishment.
  • the Relay UE After the Relay UE receives the relay request of the remote UE and the PC5 unicast connection request, it reports the QoS related information in the relay request and the PC5 unicast connection request to the base station, and establishes the air interface DRB and downlink according to the configuration information issued by the base station PC5 DRB, and forward the remote UE data packet according to the mapping relationship configured by the base station.
  • FIG. 4 is a schematic diagram of an air interface data forwarding bearer establishment process when a relay UE forwards data for a remote UE according to an embodiment of the present application.
  • the forwarding bearer establishment process in this embodiment includes S210-S2140.
  • the IP data packet arrives.
  • S220 derive the QoS information by itself.
  • S2120 derive the QoS information by itself.
  • the Remote UE establishes an L2 link connection with the relay UE through high-layer signaling. Then, the relay UE maps the PC5 QoS flow (for example, PQI, MFBR, and GFBR) obtained in the process of establishing the connection of the L2 link into a Uu QoS flow.
  • the mapping method of PC5 QoS flow mapping to Uu QoS flow includes:
  • the PQI in the PC5 QoS flow is mapped to exactly the same Uu 5QI. If no exactly the same Uu 5QI matches the PQI, then the 5QI value in the standard 5QI list that is closest to the QoS attribute represented by the PQI is selected.
  • the GFBR and MFBR values in the Uu QoS flow are directly set to the GFBR and MFBR values in the PC5 QoS info.
  • the Relay UE sends a PDU session establishment request (PDU session establishment request) according to the mapped Uu QoS flow to establish a new PDU session for the remote UE, which is dedicated to forwarding remote UE data packets, or sends a PDU session modification request (PDU session modification request). request) Modify the existing PDU session, which contains the mapped Uu QoS flow.
  • the core network configures the corresponding PDU session according to the QoS in the PDU session establishment request or the PDU session modification request, and informs the base station of the configuration result.
  • the base station configures the corresponding relay UE air interface DRB or relay UE to forward the remote UE according to the PDU session configuration result.
  • the PC5 DRB of downlink data and the mapping relationship between PC5 data and air interface data when the relay UE forwards remote UE uplink and downlink data (for example, PC5 QoS flow to Uu QoS flow mapping, PC5 DRB to Uu DRB mapping).
  • the base station can configure the mapping relationship between PC5 data and air interface data for the relay UE at the following points in time:
  • the PC5 DRB information contains at least one of the following: bearer identifier, RLC mode, logical channel identifier, logical channel priority, RLC related configuration, As shown in Figure 4, S280, S290 and S2100.
  • the base station configures an air interface data forwarding bearer (relay DRB) for the relay UE.
  • the air interface data forwarding bearer configuration includes at least one of the following: data forwarding bearer indication, bearer identification, RLC mode, logical channel identification, logical channel group identification, logical channel priority, Prioritize the bit rate, bucket size duration, and RLC-related configuration.
  • the base station configures the PC5 DRB for the relay UE.
  • PC5 DRB is the downlink PC5 DRB (refers to the relay UE sending and the remote UE receiving).
  • the configuration information includes the relevant parameters required for sidelink radio bearer (SLRB) transmission; RLC confirmation mode (Acknowledged Mode, AM) mode or Unacknowledged Mode (UM) mode, other RLC and logical channel related configuration information.
  • SLRB sidelink radio bearer
  • AM Acknowledged Mode
  • UM Unacknowledged Mode
  • the base station configures the mapping relationship between PC5 data and air interface data when the relay UE forwards the uplink and downlink data of the remote UE, and the mapping relationship includes one of the following:
  • Mapping relationship 1 NR PC5 QoS flow and NR U QoS flow mapping configuration, the configuration includes at least one of the following: PC5 QoS info and U QoS info mapping, QFI and PFI mapping.
  • the configuration includes at least one of the following: PC5 PFI and Uu DRB identification mapping, PC5 5QI and Uu DRB priority mapping, PC5 5QI and Uu logical channel priority Mapping.
  • mapping relationship three NR PC5 DRB and NR Uu DRB mapping configuration
  • the configuration includes at least one of the following: PC5 DRB priority and Uu DRB priority mapping, PC5 DRB identification and Uu DRB identification mapping, PC5 logical channel priority and Uu logical channel priority mapping.
  • the base station sends the above configuration information to the relay UE through the RRC reconfiguration message.
  • LTE PC5 is used between the first communication node and the second communication node
  • NR is used between the first communication node and the third communication node.
  • the first communication node is a relay UE
  • the second communication node is a remote UE
  • the third communication node is a base station.
  • this embodiment is similar to the above-described embodiment in which NR PC5 is used between the first communication node and the second communication node, and the NR air interface is used between the first communication node and the third communication node.
  • the difference is that The remote UE and the relay UE are connected by LTE sidelink, and the relay UE and the base station are connected by the NR air interface.
  • uplink user plane data routing it includes steps one to four:
  • Step 1 The Remote UE receives the IP data packet from the application layer, and transmits the IP data packet to the corresponding LTE PC5 logical channel according to the neighbor service packet priority (PPPP) value provided by upper.
  • PPPP neighbor service packet priority
  • the determination can be made in the following ways:
  • Method 1 The Remote UE and the Relay UE negotiate which logical channel data is dedicated to forwarding the data of the Remote UE through the upper layer.
  • logical channel data can be dedicated to forwarding the data of the Remote UE through the upper layer.
  • it can be defined by means of LCID.
  • Method 2 The data sent by the remote UE to the gNB and the data sent to the relay UE use different SRC ID and DST ID.
  • the relay UE uses the ID contained in the MAC sub-header to indicate whether it is the data sent to itself or the data sent to the relay UE. Data that needs to be relayed.
  • Step 2 Relay UE receives and parses the IP data packet sent by the remote UE, and judges whether the IP data packet needs to be relayed and forwarded to the gNB according to the ID in the MAC subheader or the negotiated logical channel, and if so, it needs to be relayed and forwarded
  • the relay UE reads the IP information of the remote UE data packet, uses the NAT function to modify the IP header of the corresponding remote UE data packet and forwards it.
  • Step 3 The Relay UE maps the IP data packet to be forwarded to the relay air interface bearer between the base station and the base station and transmits it to the base station.
  • the Relay UE maps the IP data packet to be forwarded to the relay air interface bearer between the base station and the base station and transmits it to the base station.
  • it includes one of the following mapping methods:
  • Relay UE establishes an independent PDU session for data that needs to be relayed and forwarded, and transmits remote UE data on the DRB corresponding to the PDU session;
  • the Relay UE uses its own PDU session to transmit the data of the remote UE.
  • the relay UE can choose the following two mapping methods:
  • Mapping method 1 One-to-one mapping, that is, the data of different remote UEs are sent through different Uu DRBs;
  • Mapping method 2 Many-to-one mapping, that is, similar PPPP data packets of multiple remote UEs can be mapped to the same Uu DRB for transmission.
  • Method 1 The relay UE does not distinguish the remote UE from which the IP data packet comes, and maps the IP data packets of multiple remote UEs to the relay NR Uu DRB according to the Uu UL QoS rules of the relay UE and the DRB configuration.
  • the relay UE maps the forwarded data to the relay NR Uu DRB based on the mapping relationship between the LTE PC5 logical channel and NR Uu DRB configured or pre-configured by the base station (for example, the mapping of logical channel priority).
  • the relay UE maps the LTE PC5 logical channel to the relay NR Uu DRB with the same logical channel priority.
  • Method four Relay UE maps LTE PC5 data packets to Uu QoS flow based on the PPPP value of the received remote UE PC5 data and the mapping relationship between the base station configuration or pre-configured PPPP value and 5QI, and further configures the IP data according to Uu DRB configuration It is transmitted to the base station through the corresponding relay NR Uu DRB.
  • Realy UE maps the LTE PC5 data packet to the relay NR Uu DRB based on the PPPP value of the received remote UE PC5 data and the mapping relationship between the base station configuration or pre-configured PPPP value and NR Uu DRB, and transmits it to the base station.
  • Step 4 The base station receives the remote UE user plane data forwarded by the relay UE, and further maps the data packet to the NG interface transmission tunnel of the relay UE's PDU session and sends it to the user plane function (UPF) in the core network element.
  • UPF user plane function
  • Step 1 Relay UE receives the downlink data sent by the base station, reads the IP information in the downlink data, determines which remote UE the data packet belongs to according to the stored NAT information, and then replaces the IP header in the data packet with the corresponding remote UE IP information.
  • Step 2 The relay UE maps the data packet onto the PC5 bearer and sends it to the remote UE, including one of the following mapping methods:
  • Relay UE maps the NR Uu data stream to PC5 PPPP data stream based on the 5QI to PPPP mapping relationship configured by the base station, and then maps it to the LTE PC5 logical channel;
  • Relay UE maps the remote UE data packet to the LTE PC5 logical channel based on the mapping relationship between the 5QI/QFI configured or pre-configured by the base station and the priority of the PC5 logical channel;
  • Relay UE maps the data packet to the LTE PC5 logical channel based on the mapping relationship between the NR Uu DRB configured or pre-configured by the base station and the LTE PC5 logical channel (for example, bearer/logical channel priority mapping);
  • Relay UE maps remote UE data packets to LTE PC5 logical channels with the same logical channel priority based on the NR Uu DRB bearer priority or logical channel priority configured by the base station or pre-configured.
  • LTE PC5 is used between the first communication node and the second communication node
  • NR is used between the first communication node and the third communication node.
  • the first communication node is a relay UE
  • the second communication node is a remote UE
  • the third communication node is a base station.
  • the configurations performed by the base station are all the steps shown in FIG. 6 below.
  • Fig. 6 is a schematic diagram of an air interface data forwarding bearer establishment process when another relay UE forwards data for a remote UE according to an embodiment of the present application.
  • the forwarding bearer establishment process in this embodiment includes S310-S3110.
  • S330 A PDU session establishment request, or a PDU session modification request.
  • the Remote UE establishes an L2 link connection with the relay UE through high-layer signaling. After that, the relay UE maps PPPP to Uu QoS info, and its mapping method is based on the PPPP-5QI mapping table configured or pre-configured by the base station.
  • Relay UE sends PDU session establishment request according to the mapped Uu QoS flow to establish a new PDU session for the remote UE, which is dedicated to forwarding remote UE data packets, or sends PDU session modification request to modify the existing PDU session, which includes the mapping After the Uu QoS flow.
  • the core network configures the corresponding PDU session according to the QoS information in the PDU session establishment request or PDU session modification request, and informs the base station of the configuration result.
  • the base station configures the corresponding relay UE NR Uu DRB and relay UE forwarding the remote UE according to the PDU session configuration result.
  • the mapping relationship between PC5 data and air interface data of downlink data for example, LTE PC5 PPPP-NR DRB priority mapping, LTE PC5 PPPP-NR 5QI mapping, LTE PC5 PPPP-NR logical channel priority mapping).
  • the base station can configure the mapping relationship between PC5 data and air interface data for the relay UE at the following points in time:
  • the PC5 logical channel information includes at least one of the following: RLC mode, logical channel identifier, logical channel priority, RLC related configuration, S360, S370 and S380 in Figure 6.
  • Time point three after the Relay UE sends the SUI to the base station, as shown in S390, S3100, and S3110 in Figure 6.
  • Relay UE configures LTE PC5 logical channels based on system broadcast or pre-configured information: data forwarding bearer indication, bearer identifier, RLC mode, logical channel identifier, logical channel group identifier, logical channel priority, priority guaranteed bit rate, bucket size duration , RLC related configuration.
  • the base station configures the mapping relationship between the PC5 data and the air interface data of the relay UE forwarding the downlink data of the remote UE, and the mapping relationship includes one of the following:
  • the configuration includes at least one of the following: PC5 PPPP and Uu DRB identification mapping, PC5 PPPP and Uu DRB priority mapping, PC5 PPPP and Uu logical channel priority Mapping.
  • mapping relationship three LTE PC5 logical channel and NR Uu DRB mapping configuration
  • the configuration includes at least one of the following: PC5 logical channel priority and Uu logical channel priority mapping, PC5 logical channel ID and Uu logical channel ID mapping.
  • the base station sends the above configuration information to the relay UE through the RRC reconfiguration message.
  • NR PC5 is used between the first communication node and the second communication node
  • LTE is used between the first communication node and the third communication node.
  • the first communication node is a relay UE
  • the second communication node is a remote UE
  • the third communication node is a base station.
  • uplink user plane data routing it includes steps one to four:
  • Step 1 The Remote UE receives the IP data packet from the application layer, and transmits the IP data packet to the relay UE through self-derived QoS processing rules and PC5 unicast bearer configuration.
  • the determination can be made in the following ways:
  • Method 1 Remote UE and relay UE negotiate to establish NR PC5 unicast bearer or logical channel through RRC signaling.
  • the data in it is dedicated to forwarding remote UE data.
  • NR PC5 DRB identification can be used to define which DRB is used for Forward the data of the remote UE or define which logical channel is used to forward the data of the remote UE through the LCID identification.
  • Method 2 The data sent by the remote UE to the gNB and the data sent to the relay UE use different SRC ID and DST ID.
  • the relay UE uses the ID contained in the MAC sub-header to indicate whether it is the data sent to itself or the data sent to the relay UE. Data that needs to be relayed.
  • Step 2 Relay UE receives and parses the IP data packet sent by the remote UE, and judges whether the IP data packet needs to be relayed and forwarded to the gNB according to the ID in the MAC subheader, or the negotiated logical channel or bearer, if it is in progress Following the forwarded data, the relay UE reads the IP information of the remote UE data packet, uses the NAT function to modify the IP header of the corresponding remote UE data packet and forwards it.
  • Step 3 The Relay UE maps the data packet to be forwarded to the relay air interface bearer between the base station and the base station and transmits it to the base station.
  • the Relay UE maps the data packet to be forwarded to the relay air interface bearer between the base station and the base station and transmits it to the base station.
  • it includes one of the following mapping methods:
  • Relay UE establishes an independent PDU session for data that needs to be relayed and forwarded, and transmits remote UE data on the DRB corresponding to the PDU session;
  • the Relay UE uses its own PDU session to transmit the data of the remote UE.
  • the relay UE can choose the following two mapping methods:
  • Mapping method 1 One-to-one mapping, that is, the data of different remote UEs are sent through different Uu DRBs;
  • Mapping method 2 Many-to-one mapping, that is, data packets with similar QoS of multiple remote UEs can be mapped to the same Uu DRB for transmission.
  • Relay UE does not distinguish the remote UE from which the IP data packet comes, and maps the IP data packets of multiple remote UEs to Uu DRB according to the uplink TFT and DRB configuration of the relay UE;
  • Method 2 Relay UE maps the forwarded data to LTE based on the mapping relationship between NR PC5 DRB and LTE Uu DRB configured or pre-configured by the base station (for example, mapping based on bearer identification, or mapping based on bearer/logical channel priority) Uu DRB;
  • Method 4 Relay UE based on the received remote UE NR PC5 data PQI and base station configuration or pre-configured NR PC5 PQI and LTE Uu QCI mapping relationship, the PC5 QoS flow data packets are mapped to the Uu QoS flow, and further according to the Uu DRB configuration , The data is transmitted to the base station through the corresponding relay LTE Uu DRB.
  • Step 4 The base station receives the remote UE user plane data forwarded by the relay UE, and further maps the data packet to the PDU session of the relay UE and forwards it to the PDN gateway (Packet Data Network GateWay, PGW) in the core network element.
  • PDN gateway Packet Data Network GateWay, PGW
  • the base station and the core network treat remote UE data as relay UE data for processing and forwarding during data communication.
  • the base station receives the downlink data sent to the relay UE, and maps the downlink relay UE data to the relay UE Uu bearer.
  • the relay UE judges which remote UE the data packet belongs to according to the IP information and NAT of the data packet sent to itself, and then The data is forwarded to the corresponding remote UE through NR PC5 DRB.
  • Step 1 Relay UE receives the downlink data sent by the base station, reads the IP information in the downlink data, determines which remote UE the data packet belongs to according to the stored NAT information, and then replaces the IP header in the data packet with the corresponding remote UE IP information.
  • Step 2 The relay UE maps the data packet to the NR PC5 bearer and sends it to the remote UE. Specifically, it can include one of the following mapping methods:
  • Relay UE maps the IP data of the remote UE to the corresponding PC5 DRB according to its own QoS rules and the PC5 DRB configuration configured by the base station;
  • Relay UE maps the Uu QoS flow to PC5 QoS flow based on the mapping relationship between LTE Uu QCI to NR PC5 PQI configured by the base station and PC5 DRB configuration, and then maps it to PC5 DRB;
  • Relay UE maps remote UE data packets to PC5 DRB based on the mapping relationship between the LTE Uu QCI/EPS bearer ID configured or pre-configured by the base station and the PC5 DRB priority;
  • PC5 DRB is a bidirectional bearer, reverse mapping can be performed based on the uplink NR PC5 DRB to LTE Uu DRB mapping relationship;
  • Mapping mode five based on the mapping relationship between LTE Uu DRB and NR PC5 DRB configured or pre-configured by the base station (for example, bearer identification mapping, or bearer/logical channel priority mapping), the data packet is mapped to PC5 DRB;
  • the remote UE data packet is mapped to the PC5 DRB with the same bearer/logical channel priority.
  • Step 3 Remote UE receives downlink data from NR PC5 DRB.
  • NR PC5 is used between the first communication node and the second communication node
  • LTE is used between the first communication node and the third communication node.
  • the first communication node is a relay UE
  • the second communication node is a remote UE
  • the third communication node is a base station.
  • the configurations performed by the base station are all the steps shown in FIG. 8 below.
  • FIG. 8 is a schematic diagram of an air interface data forwarding bearer establishment process when another relay UE forwards data for a remote UE according to an embodiment of the present application.
  • the forwarding bearer establishment process in this embodiment includes S410-S4140.
  • S4120 derive the QoS information by itself.
  • the Remote UE establishes an L2 link connection with the relay UE through high-layer signaling.
  • the relay UE maps the NR PC5 QoS info (for example, PQI, MFBR, GFBR) obtained during the establishment of the L2 link to LTE Uu QoS info, and the mapping methods include:
  • the Relay UE selects to send a PDU connection request (PDU connectivity request) according to the mapped UQoS info to establish a new PDU session for the remote UE, which is dedicated to forwarding the remote UE’s data packets, or sends a bearer resource modification request (Bearer resource modification request).
  • PDU connectivity request PDU connectivity request
  • Bearer resource modification request contains the mapped Uu QoS info.
  • the core network configures the corresponding PDU session according to the QoS information in the Bearer resource modification request, and informs the base station of the configuration result.
  • the base station configures the corresponding relay UE air interface DRB or relay according to the PDU session configuration result.
  • the UE uses the PC5 to forward remote UE downlink data.
  • DRB and the mapping relationship between PC5 data and air interface data when the relay UE forwards the uplink and downlink data of the remote UE for example, LTE PC5 QoS flow to NR Uu QoS flow mapping, LTE PC5 DRB to NRUu DRB mapping).
  • the base station can configure the mapping relationship between PC5 data and air interface data for the relay UE at the following points in time:
  • Time point 1 after the Relay UE sends a PDU connectivity request or Bearer resource modification request, as shown in S450, S460, and S470 in Figure 8.
  • the relay UE reports NR PC5 DRB information, and the PC5 DRB information contains at least one of the following: bearer identifier, RLC mode, logical channel identifier, logical channel priority, RLC related configuration , As shown in S480, S490 and S4100 in Figure 8.
  • Time point three after the Relay UE sends the SUI to the base station, as shown in Figure 8 S4110, S4120, S4130 and S4140.
  • the base station configures an air interface data forwarding bearer (relay DRB) for the relay UE.
  • the air interface data forwarding bearer configuration includes at least one of the following: data forwarding bearer indication, bearer identification, RLC mode, logical channel identification, logical channel group identification, logical channel priority, Prioritize the bit rate, bucket size duration, and RLC-related configuration.
  • the base station configures PC5 DRB for the relay UE.
  • PC5 DRB is the downlink PC5 DRB (that is, the relay UE sends and the remote UE receives).
  • the configuration information includes the relevant parameters required for SLRB transmission; RLC AM mode or UM mode, other RLC and logical channel related configuration information .
  • the base station configures the mapping relationship between PC5 data and air interface data when the relay UE forwards the uplink and downlink data of the remote UE, and the mapping relationship includes one of the following:
  • Mapping relationship 1 NR PC5 QoS flow and LTE Uu QoS flow mapping configuration, the configuration includes at least one of the following: PC5 QoS info and Uu QoS info mapping, PQI and QCI mapping, PFI and EPS bearer ID mapping;
  • Mapping relationship 2 NR PC5 QoS flow and LTE Uu DRB mapping configuration, the configuration includes at least one of the following: PC5 PFI and Uu DRB identification mapping, PC5 5QI and Uu DRB priority mapping, PC5 5QI and Uu logical channel priority The mapping;
  • mapping relationship three NR PC5 DRB and LTE Uu DRB mapping configuration
  • the configuration includes at least one of the following: PC5 DRB priority and Uu DRB priority mapping, PC5 DRB identification and Uu DRB identification mapping, PC5 logical channel priority and Uu logical channel priority mapping.
  • the base station sends the above configuration information to the relay UE through the RRC reconfiguration message.
  • the air interface link quality or the relay link quality of the UE deteriorates.
  • the UE can choose to switch from the air interface connection to the relay connection.
  • the connection is switched to an air interface connection, or switched from one relay UE to another relay UE to maintain UE-to-Network data transmission.
  • how to maintain service continuity during the handover process is described.
  • the scenario where a network link switch occurs includes one of the following:
  • Scenario 1 Path conversion from direct air interface link to PC5/SL relay link: remote UE1 is in the RRC connection state and communicates through direct air interface link (direct Uu link), the Uu channel quality deteriorates, UE1 finds the relay UE, And the air interface path (Uu traffic) is switched to relay the UE to forward data to the network.
  • the base station of the remote UE and the base station of the relay UE may be the same base station or different base stations.
  • Scenario 2 Path switch from the PC5/SL relay link to the direct air interface link (path switch from PC5/SL relay link to direct Uu link): remote UE1 communicates with the network through the relay UE, and when UE1 enters the base station to cover and establish The RRC connection switches the services forwarded by the UE through the relay to direct transmission through the Uu port.
  • the base station of the remote UE and the base station of the relay UE may be the same base station or different base stations.
  • Scenario 3 Due to the occurrence of relay reselection, the relay UE connected to the remote UE has changed, and the service forwarded by the remote UE through the relay UE1 is switched to the service forwarded through the relay UE2.
  • the base station of relay UE1 and the base station of relay UE2 may be the same base station or different base stations.
  • Method 1 The base station configures link switching criteria or measurement configuration. When the remote UE meets the criteria, it notifies the base station or reports the measurement result to the base station according to the measurement report configuration, and the base station decides and instructs the handover.
  • Method 2 The base station configures or pre-configures the link handover criterion.
  • the remote UE meets the criterion, the remote UE performs the handover autonomously.
  • the remote UE notifies the base station after the handover, and the link switching notification information reported by the remote UE to the base station includes at least one of the following: handover indication, handover service type, handover PDU session ID, handover DRB, handover QoS flow Information (such as QFI/5QI, etc.), relay UE identification.
  • the link switching criterion includes at least one of the following: Uu link quality threshold (known, including a certain hysteresis value; in the case that the remote UE Uu link quality is lower than the threshold, link switching can be performed ), service type (for example, data of certain service types are transmitted through the PC5 interface), PC5 interface link quality threshold (for example, the quality of the PC5 interface link between the remote UE and the relay UE is higher than the threshold, the executable link Switch).
  • Uu link quality threshold known, including a certain hysteresis value; in the case that the remote UE Uu link quality is lower than the threshold, link switching can be performed
  • service type for example, data of certain service types are transmitted through the PC5 interface
  • PC5 interface link quality threshold for example, the quality of the PC5 interface link between the remote UE and the relay UE is higher than the threshold, the executable link Switch.
  • measurement configuration includes Uu measurement configuration and relay (PC5 interface between UE and relay) measurement configuration.
  • the link switching criterion includes at least one of the following: Uu link quality threshold (known, including a certain hysteresis value; when the remote UE Uu link quality is higher than the threshold, link switching can be performed), PC5 link Quality threshold (for example, the link quality of the PC5 interface between the remote UE and the relay UE is lower than this threshold, and link switching can be performed), the relay UE Uu link quality threshold (optionally, the relay UE uses the PC5 RRC signaling message Inform the remote UE of its Uu link quality, or Uu link quality level indication (such as higher/lower threshold indication, good/medium/bad indication), PC5 interface resource pool CBR threshold (for example, PC5 interface resource pool CBR Or the average CBR of all resource pools is higher than the threshold, indicating that the relay link load is increasing and link switching can be performed), service type/service requirement (for example, certain service types/service requirements (such as delay requirements below a certain threshold)) Data is switched to Uu interface for transmission).
  • Uu link quality threshold
  • the Uu link quality is the measured Uu port reference signal received power/reference signal receiving quality (ReferenceSignalReceiving Power/ReferenceSignalReceiving Quality, RSRP/RSRQ, PC5 link quality is the measured SL discovery channel or communication channel RSRP/RSRQ/Received Signal Strength Indicator (RSSI).
  • RSRP/RSRQ ReferenceSignalReceiving Power/ReferenceSignalReceiving Quality
  • PC5 link quality is the measured SL discovery channel or communication channel RSRP/RSRQ/Received Signal Strength Indicator (RSSI).
  • Scenario 1 For the remote UE to switch from air interface data communication to relay data communication, the remote UE needs to establish a new PC5 PDCP/RLC layer for relay data transmission. For the uplink data buffered in the remote UE waiting to be transmitted:
  • the remote UE For the downlink data buffered in the gNB, since the remote UE uses L3 UE-to-Network relay after the handover, the remote UE does not establish an RRC connection with the gNB. Therefore, the downlink data buffered in the gNB cannot be switched to the relay link for transmission. To maintain service continuity, it is necessary to remotely complete the downlink data transmission before the UE handover.
  • Scenario 2 For the remote UE to switch from relay data communication to air interface data communication, the remote UE needs to establish a new Uu PDCP/RLC layer for air interface data transmission. For the uplink data buffered in the remote UE waiting to be transmitted:
  • the data packets in the Remote UE that have been mapped to PC5 QoS flow are based on the mapping configuration of the base station configuration or pre-configured Uu QoS flow to PC5 QoS flow, and the PC5 QoS flow data is mapped to the Uu QoS flow, or based on the base station configuration Or the pre-configured PC5 QoS flow to Uu DRB mapping configuration, which maps the PC5 QoS flow data to Uu DRB.
  • the relay UE For the uplink data buffered in the relay UE, the relay UE continues to complete the uplink transmission.
  • the remote UE uses L3 UE-to-Network relay before handover, the remote UE does not establish an RRC connection with the gNB, and the gNB cannot know the handover behavior of the remote UE. Therefore, the downlink data buffered in the gNB cannot Switch to the remote UE's Uu link for transmission and can only be discarded. For the same reason, for the downlink data buffered in the relay UE, the relay UE cannot transfer it to the air interface of the remote UE for transmission, so the transmission needs to be completed before the remote UE handover.
  • the remote UE For the remote UE to switch from one relay UE1 to another relay UE2, the remote UE needs to establish a new PC5 PDCP/RLC layer for relay data transmission.
  • the IP data packets sent to the relay UE1 and PC5 QoS flow data packets are then sent to the relay UE2; for the data that has been mapped to the PC5 DRB established with the relay UE1, first Decrypt according to the PDCP layer established with relay UE1, and then map to PC5 DRB with the same logical channel priority established with relay UE2 for transmission;
  • relay UE1 For the uplink data buffered in relay UE1, relay UE1 continues to complete the uplink transmission;
  • relay UE1 and relay UE2 do not communicate with each other, this part of the data can only be discarded for processing.
  • the remote UE uses L3 UE-to-Network relay before handover, the remote UE does not establish an RRC connection with the gNB, and the gNB cannot know the handover behavior of the remote UE. Therefore, the downlink data buffered in the gNB cannot Switch to the remote UE's Uu link for transmission and can only be discarded.
  • FIG. 9 is a structural block diagram of a communication device provided by an embodiment of the present application. This embodiment is applied to the first communication node. As shown in FIG. 9, the communication device in this embodiment includes: a first receiving module 510 and a first mapping module 520.
  • the first receiving module 510 is configured to receive Internet Protocol IP data sent by the second communication node;
  • the first mapping module 520 is configured to map the IP data to the relay bearer according to the first preset mapping manner, and transmit it to the third communication node.
  • the communication device provided in this embodiment is configured to implement the communication method applied to the first communication node in the embodiment shown in FIG.
  • the PDU session selected by the first communication node for the IP data includes one of the following:
  • the IP data is transmitted using the PDU session of the first communication node itself.
  • the first preset mapping manner includes one of the following: one-to-one mapping; many-to-one mapping;
  • the one-to-one mapping is used to indicate that the IP data of different second communication nodes are sent through different relay air interface DRBs; the many-to-one mapping is used to indicate that the IP data of at least two second communication nodes are mapped to the same A relay air interface DRB transmits.
  • the new air interface direct link interface NR PC5 when used between the first communication node and the second communication node, and the second communication node and the third communication node use the NR air interface, the many-to-one mapping , Including one of the following methods:
  • the IP data is mapped to the relay air interface DRB;
  • mapping the IP data to the relay air interface DRB based on the mapping relationship between the PC5 QoS flow and the NR air interface QoS flow configured or pre-configured by the third communication node and the configuration of the NR air interface DRB;
  • the IP data is mapped to the relay air interface DRB.
  • a new air interface direct link interface NR PC5 is used between the first communication node and the second communication node to connect, and the second communication node and the third communication node use NR air interface
  • the method further includes:
  • the third preset mapping method is used to map the PC5 QoS information obtained in advance to air interface QoS information.
  • the third preset mapping method includes:
  • the 5QI value closest to the QoS attribute represented by the PQI in the standard 5QI list is selected;
  • the method further includes:
  • the communication device further includes:
  • the second receiving module is configured to receive the relay air interface DRB or PC5 DRB configured by the third communication node, and the mapping relationship between PC5 data and air interface data.
  • the mapping relationship between PC5 data and air interface data includes the following One of the above: the mapping of PC5 QoS flow and air interface QoS flow, the mapping of PC5 DRB and air interface DRB, the mapping of PC5 QoS flow and air interface DRB, and the mapping of PC5 DRB and air interface QoS flow.
  • the third communication node is configured for the first communication node
  • the time period of the mapping relationship between PC5 data and air interface data includes one of the following:
  • the first communication node After the first communication node sends a PDU session establishment request or a PDU session modification request;
  • the first communication node reports PC5 DRB information, and the PC5 DRB information includes at least one of the following: bearer identifier, RLC mode, logical channel identifier, logical channel priority, Radio link layer control protocol RLC related configuration;
  • the first communication node After the first communication node sends the through link UE information SUI to the third communication node.
  • the mapping relationship between PC5 data and air interface data includes One of the following:
  • the mapping configuration includes at least one of the following: PC5 QoS information and air interface QoS information mapping, QFI and PC5 flow identification PFI mapping;
  • the mapping between the PC5 QoS information and the air interface QoS information includes at least one of the following: mapping the 5QI in the air interface QoS flow to an identical PC5 PQI; in the case that the identical air interface 5QI does not match the PQI, the standard 5QI is selected The 5QI value in the list that is closest to the QoS attribute represented by the PQI; GFBR and MFBR in the air interface QoS flow are directly set to GFBR and MFBR in the PC5 QoS information;
  • the mapping configuration includes at least one of the following: PC5 PFI and air interface DRB identification mapping, PC5 PQI and air interface DRB priority mapping, PC5 PQI and air interface logical channel priority mapping ;
  • the mapping configuration includes at least one of the following: PC5 DRB priority and air interface DRB priority mapping, PC5 DRB identification and air interface DRB identification mapping, PC5 logical channel priority and air interface logic Channel priority mapping, PC5 logical channel identification and air interface logical channel identification;
  • the configuration includes at least one of the following: PC5 DRB identification and Uu QFI mapping, PC5 DRB priority and Uu 5QI mapping, PC5 logical channel priority and Uu 5QI mapping.
  • the many-to-one mapping includes the following One way:
  • the IP data is mapped to the relay NR air interface DRB;
  • the mapping relationship between PPPP and 5QI configured or pre-configured by the third communication node, and the NR air interface DRB configuration map the IP data of the second communication node To air interface QoS flow, and then map to relay NR air interface DRB;
  • the IP data of the second communication node is mapped to the relay NR air interface DRB.
  • the method before receiving the Internet Protocol IP data sent by the second communication node, the method further includes:
  • the air interface DRB and the mapping of uplink and downlink data are established according to the configuration information fed back by the third communication node.
  • the fourth preset mapping method is used to map the pre-acquired PPPP value to the NR air interface QoS information.
  • the fourth preset mapping method includes:
  • the method further includes:
  • a PDU session modification request is sent to the third communication node, where the PDU session modification request is used to modify the current PDU session and carries the air interface QoS information obtained after the mapping.
  • the communication method further includes: receiving a relay air interface DRB configured by the third communication node, and a mapping relationship between PC5 data and air interface data.
  • the mapping relationship between PC5 data and air interface data includes the following One of the above: the mapping of PC5 logical channel and air interface DRB, the mapping of PC5 PPPP data flow and air interface DRB, and the mapping of PC5 PPPP data flow and Uu QoS flow.
  • the third communication node is configured for the first communication node
  • the time period of the mapping relationship between PC5 data and air interface data includes one of the following:
  • the first communication node After the first communication node sends a PDU session establishment request or a PDU session modification request;
  • the first communication node After the first communication node establishes a relay connection with the second communication node, the first communication node reports LTE PC5 logical channel information.
  • the PC5 logical channel information includes at least one of the following: RLC mode, logical channel identifier, logical channel priority, RLC related configuration;
  • the mapping relationship between PC5 data and air interface data includes One of the following:
  • the mapping configuration includes at least one of the following: LTE PC5 logical channel identification and NR air interface DRB identification mapping, LTE PC5 logical channel priority and NR air interface DRB priority mapping , LTE PC5 logical channel priority and NR air interface logical channel priority mapping, LTE PC5 logical channel identification and NR air interface logical channel identification mapping;
  • the mapping configuration includes at least one of the following: LTE PPPP value and air interface DRB priority mapping configuration, LTE PPPP value and air interface logical channel priority mapping;
  • the mapping configuration includes at least one of the following: LTE PPPP value and NR air interface QoS information mapping configuration;
  • mapping configuration of the LTE PC5 PPPP value and the NR air interface QoS information where the mapping configuration includes at least one of the following: a mapping table of the LTE PC5 PPPP value and the NR air interface 5QI.
  • the many-to-one mapping includes one of the following methods one:
  • IP data is mapped to LTE air interface DRB;
  • mapping the IP data to the LTE air interface DRB based on the mapping relationship between the NR PC5 QoS flow configured or pre-configured by the third communication node and the LTE air interface DRB;
  • the IP data is mapped to the LTE air interface DRB.
  • the fifth preset mapping method is used to obtain the NR PC5 QoS information is mapped to LTE air interface QoS information.
  • the fifth preset mapping method includes:
  • the method further includes:
  • a PDU session modification request is sent to the third communication node, where the PDU session modification request is used to modify the current PDU session and carries the air interface QoS information obtained after the mapping.
  • the communication device further includes: a third receiving module configured to receive the relay air interface DRB configured by the third communication node and the mapping relationship between PC5 data and air interface data.
  • the mapping relationship between PC5 data and air interface data includes the following One of the above: NR PC5 QoS and LTE air interface EPS bearer mapping, NR PC5 DRB and LTE air interface DRB mapping, NR PC5 QoS flow and LTE air interface DRB mapping, NR PC5 DRB and LTE air interface EPS bearer mapping.
  • the third communication node is configured for the first communication node
  • the time period of the mapping relationship between PC5 data and air interface data includes one of the following:
  • the first communication node After the first communication node sends a PDU session connection request or a bearer resource modification request;
  • the first communication node reports NR PC5 DRB information, and NR PC5 DRB information includes at least one of the following: bearer identifier, RLC mode, logical channel identifier, Logical channel priority, RLC related configuration;
  • the mapping relationship between PC5 data and air interface data includes One of the following:
  • the mapping configuration includes at least one of the following: the mapping between PC5 QFI and air interface EPS bearer identifier, and the mapping between NR PC5 QoS Info and LTE air interface QoS Info;
  • the mapping of the PC5 QoS Info and the air interface QoS Info includes at least one of the following: mapping the QCI of the air interface QoS flow to an identical PC5 PQI; in the case that the identical air interface QCI does not match the PQI, select the standard QCI list The QCI value closest to the QoS attribute represented by the PQI; GFBR and MFBR in the air interface QoS flow are directly set to GFBR and MFBR in the PC5 QoS Info;
  • the mapping configuration includes at least one of the following: PC5 PFI and air interface DRB identification mapping, PC5 PQI and air interface DRB priority mapping, PC5 PQI and air interface logical channel priority mapping ;
  • the mapping configuration includes at least one of the following: PC5 DRB priority and air interface DRB priority mapping, PC5 DRB identification and air interface DRB identification mapping, PC5 logical channel priority and air interface logic Channel priority mapping, mapping between NR PC5 logical channel identification and LTE air interface logical channel identification;
  • the mapping configuration includes at least one of the following: PC5 DRB priority and air interface EPS bearer QCI mapping, PC5 DRB identification and air interface EPS bearer identification mapping, PC5 logical channel and Air interface EPS bearer QCI mapping.
  • the switching mode of the second communication node includes one of the following: switching from the air interface connection to the relay connection ; Switch from the relay connection to the air interface connection; switch from the first first communication node connection to the second first communication node connection.
  • the uplink data buffered in the second communication node waiting to be transmitted includes one of the following connection modes:
  • the air interface QoS flow is mapped to the PC5 QoS flow based on the configuration or pre-configured air interface QoS flow to PC5 QoS flow mapping configuration of the third communication node, or based on the first 3.
  • the mapping configuration of the communication node configuration or pre-configured air interface QoS flow to PC5DRB, and the air interface QoS flow is mapped to PC5 DRB;
  • the IP data For the IP data that has been mapped to the air interface DRB in the second communication node, the IP data is decrypted according to the air interface PDCP, and the air interface DRB is mapped to PC5 DRB based on the configuration or pre-configured air interface DRB to PC5 DRB mapping configuration of the third communication node .
  • the uplink data buffered in the second communication node and waiting for transmission includes one of the following connection modes:
  • the PC5 QoS flow is mapped to the air interface QoS flow based on the configuration or pre-configured air interface QoS flow to PC5 QoS flow mapping configuration of the third communication node, or based on the first Three communication node configuration or pre-configured PC5 QoS flow to air interface DRB mapping configuration, and PC5 QoS flow is mapped to air interface DRB;
  • IP data that has been mapped to PC5 DRB in the second communication node decrypt the IP data according to PC5 PDCP, and map the PC5 DRB to the air interface DRB based on the PC5 DRB to air interface DRB mapping configuration configured or pre-configured by the third communication node .
  • the switching mode of the second communication node when the switching mode of the second communication node is from the first first communication node to the second first communication node, for the uplink data buffered in the second communication node waiting to be transmitted, Including one of the following connection methods:
  • the IP data that has been mapped to the PC5 DRB established with the first first communication node is decrypted according to the PDCP layer established with the second first communication node, and mapped to the IP data established with the second first communication node.
  • the first first communication node continues to complete the uplink transmission.
  • the link switching decision includes one of the following:
  • the link switching criterion is configured or pre-configured through the third communication node.
  • the link switching criterion includes at least one of the following:
  • Air interface link quality threshold for service type; PC5 interface link quality threshold;
  • Measurement configuration including: air interface measurement configuration and relay measurement configuration.
  • the link switching criterion includes at least one of the following:
  • Air interface link quality threshold PC5 interface link quality threshold; first communication node air interface link quality threshold; PC5 interface resource pool CBR threshold; service type/service requirement.
  • Fig. 10 is a structural block diagram of another communication device provided by an embodiment of the present application.
  • the communication device in this embodiment includes: a fourth receiving module 610, a determining module 620, and a second mapping module 630;
  • the fourth receiving module 610 is configured to receive downlink data sent by the third communication node
  • the determining module 620 is configured to determine the second communication node to which it belongs according to the IP address in the downlink data
  • the second mapping module 630 is configured to map the downlink data to PC5 data according to a second preset mapping manner, and transmit it to the second communication node to which it belongs.
  • the communication device provided in this embodiment is configured to implement the communication method applied to the first communication node in the embodiment shown in FIG.
  • the The second preset mapping method includes one of the following:
  • the air interface QoS flow is mapped to the PC5 QoS flow, and then to the PC5 DRB;
  • the downlink data is mapped to the PC5 DRB.
  • the The second preset mapping method includes one of the following:
  • the IP data of the second communication node is mapped to the LTE PC5 logical channel.
  • the The second preset mapping method includes one of the following:
  • mapping the IP data to the NR PC5 DRB based on the mapping relationship between the LTE air interface DRB and NR PC5 DRB configured or pre-configured by the third communication node;
  • the IP data is mapped to the LTE air interface DRB.
  • FIG. 11 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device provided by the present application includes: a processor 710, a memory 720, and a communication module 730.
  • the number of processors 710 in the device may be one or more.
  • One processor 710 is taken as an example in FIG. 11.
  • the number of memories 720 in the device may be one or more, and one memory 720 is taken as an example in FIG. 11.
  • the processor 710, the memory 720, and the communication module 730 of the device may be connected through a bus or in other ways. In FIG. 11, the connection through a bus is taken as an example.
  • the device is the first communication node.
  • the memory 720 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the device of any embodiment of the present application (for example, the first receiving module in the communication device). And the first mapping module).
  • the memory 720 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 720 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 720 may further include a memory remotely provided with respect to the processor 710, and these remote memories may be connected to the device through a network.
  • networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 730 is configured to perform a communication connection between the first communication node and the second communication node for data communication and signal communication.
  • the above-provided device can be configured to execute the communication method applied to the first communication node provided by any of the above-mentioned embodiments, and has corresponding functions and effects.
  • An embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, they are used to execute a communication method applied to a first communication node.
  • the method includes: receiving a second communication node. Internet Protocol IP data sent by the communication node; the IP data is mapped to the relay bearer according to the first preset mapping mode, and transmitted to the third communication node.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, the computer-executable instructions are used to execute a communication method applied to a first communication node.
  • the method includes: receiving a third communication node. Downlink data sent by a communication node; determine the second communication node to which it belongs according to the IP address in the downlink data; map the downlink data to PC5 data according to a second preset mapping method, and transmit it to the second communication node to which it belongs .
  • user equipment encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • processors based on multi-core processor architecture such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Computer And Data Communications (AREA)

Abstract

本申请提供一种通信方法、设备和存储介质。该通信方法包括:接收第二通信节点发送的网际协议IP数据;按照第一预设映射方式将所述IP数据映射至中继承载,并传输至第三通信节点。

Description

通信方法、设备和存储介质
本申请要求在2020年02月13日提交中国专利局、申请号为202010091507.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信,例如涉及一种通信方法、设备和存储介质。
背景技术
随着无线多媒体业务的发展,人们对高数据速率和用户体验的需求日益增长,从而对蜂窝网络的系统容量和覆盖提出了较高要求。为了能够支持更大范围的网络通信,基于直通链路(Side Link,SL)的中继(relay)通信技术得到了广泛的关注。在5G新空口(New Radio,NR)系统中,如何进行中继通信是亟待解决的问题。
发明内容
本申请实施例提供一种通信方法、设备和存储介质,有效实现了在5G NR系统中的直通链路中继通信。
本申请实施例提供一种通信方法,应用于第一通信节点,包括:
接收第二通信节点发送的网际协议IP数据;
按照第一预设映射方式将所述IP数据映射至中继承载,并传输至第三通信节点。
本申请实施例提供一种通信方法,应用于第一通信节点,包括:
接收第三通信节点发送的下行数据;
根据所述下行数据中的IP地址确定所属的第二通信节点;
按照第二预设映射方式将所述下行数据映射为PC5数据,并映射至PC5DRB,以及传输至所属的第二通信节点。
本申请实施例提供一种设备,包括:存储器,以及一个或多个处理器;
所述存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一实施例所述的方法。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1是本申请实施例提供的一种通信方法的流程图;
图2是本申请实施例提供的另一种通信方法的流程图;
图3是本申请实施例提供的一种用户面协议栈的显示示意图;
图4是本申请实施例提供的一种中继UE为远程UE转发数据时,空口数据转发承载建立过程的示意图;
图5是本申请实施例提供的另一种用户面协议栈的显示示意图;
图6是本申请实施例提供的另一种中继UE为远程UE转发数据时,空口数据转发承载建立过程的示意图;
图7是本申请实施例提供的又一种用户面协议栈的显示示意图;
图8是本申请实施例提供的又一种中继UE为远程UE转发数据时,空口数据转发承载建立过程的示意图;
图9是本申请实施例提供的一种通信装置的结构框图;
图10是本申请实施例提供的另一种通信装置的结构框图;
图11是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
公共安全、社交网络、近距离数据共享、本地广告等应用场景使得人们对 了解附近人或事物并与之通信的需求逐渐增加。以基站为中心的蜂窝网络在高数据速率以及近邻服务的支持方面存在明显的局限性,在这种需求背景下,设备到设备(Device-to-Device,D2D)通信技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担、减少用户设备的电池功耗、提高数据速率,并改善网络基础设施的鲁棒性,很好地满足上述高数据速率业务和邻近服务的要求。D2D技术又称之为近邻服务(Proximity Services,ProSe),和单边/旁链/直通链路(Side Link,SL)通信;设备与设备之间的接口为PC5接口。
为了能够支持更大范围的网络通信,基于SideLink的中继(relay)通信技术得到了广泛的关注。从通信的对象来看,SideLink通信技术可以分为:
1)用户设备-网络中继(UE-to-Network relay):这种通信技术支持的是在基站无法覆盖或者基站覆盖能力较弱的地区为UE提供数据中继功能。其中,具有和基站通信的需求但又无法直接连接到基站的UE成为远程UE(remote UE),为remote UE提供relay功能的UE称之为中继UE(relay UE)。
2)用户设备-用户设备中继(UE-to-UE realy):这种通信技术支持的是具有通信需求的两个UE在没有直接通信能力或者直接通信条件的前提下,通过其他支持UE辅助完成UE间的通信。其中,具有通信需求的UE成为remote UE,为remote UE提供relay功能的UE称之为relay UE。
从relay技术的实现来看,SideLink relay通信技术可以分为:
1)基于网际协议(Internet Protocol,IP)层(Layer-3 based,基于层3)的relay技术,即relay UE根据数据包的IP信息(如IP地址和端口号)完成数据的转发,remote UE不与基站(gNB)建立无线资源控制(Radio Resource Control,RRC)连接,也不与核心网建立连接。
2)基于接入层(Layer2-based,基于层2)的relay技术,即remote UE通过relay UE与gNB和核心网建立连接,remote UE转发relay UE与gNB之间的承载数据。
在实际通信过程中,Layer3-based relay实现简单,但是可靠性、安全性不够好,Layer2-based relay实现复杂,但是对于可靠性、安全性的支持较Layer-3 based relay强,可以有效的对remote UE进行移动性、安全性的支持。5G NR系 统中尚未有成熟的relay通信技术。有鉴于此,本申请提供一种通信方法,有效实现在5G NR系统中的直通链路中继通信。
在一实施例中,图1是本申请实施例提供的一种通信方法的流程图。如图1所示,本实施例应用于第一通信节点,并用于上行数据的传输。示例性地,第一通信节点可以为中继UE。如图1所示,本实施例包括:S110-S120。
S110、接收第二通信节点发送的IP数据。
S120、按照第一预设映射方式将IP数据映射至中继承载,并传输至第三通信节点。
在实施例中,第二通信节点与基站进行通信过程中,由于第二通信节点的移动性和网络环境的动态性,第二通信节点出现空口链路质量或中继链路质量变差的情况。此时,可通过第一通信节点作为第二通信节点和第三通信节点之间的中继节点,以转发第二通信节点和第三通信节点之间的传输数据。在一实施例中,在第一通信节点接收到第二通信节点发送的IP数据之后,可按照预先配置的第一预设映射方式将IP数据映射至中继承载,以传输至第三通信节点。
在一实施例中,第一通信节点为所述IP数据选择的PDU会话,包括下述之一:
为IP数据建立独立的协议数据单元(Protocol Data Unit,PDU)会话,并在PDU会话对应的数据无线承载(Data Radio Bearer,DRB)上传输IP数据;
采用第一通信节点自身的PDU会话传输IP数据。
在一实施例中,针对至少两个第二通信节点连接到同一个第一通信节点的情况,第一预设映射方式,包括下述之一:一对一映射;多对一映射;
其中,一对一映射,用于指示不同第二通信节点的IP数据分别通过不同的中继空口DRB进行发送;多对一映射,用于指示至少两个第二通信节点的IP数据映射至同一个中继空口DRB进行发送。
在一实施例中,在第一通信节点与第二通信节点之间采用新空口直通链路接口(NR PC5)连接,且第二通信节点与第三通信节点采用NR空口的情况下,多对一映射,包括下述方式之一:
根据第一通信节点的空口服务质量(Quality of service,QoS)规则和DRB配 置,将第二通信节点的IP数据映射至中继空口DRB;
基于第三通信节点配置或预配置的PC5 DRB与空口DRB的映射关系,将IP数据映射至中继空口DRB;
基于所述第三通信节点配置或预配置的PC5 QoS流与NR空口QoS流的映射关系和NR空口DRB的配置,将所述IP数据映射至中继空口DRB;
基于所述第三通信节点配置或预配置的PC5 QoS流与空口DRB的映射关系,将所述IP数据映射至中继空口DRB。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用新空口直通链路接口NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口的情况下,在接收第二通信节点发送的IP数据之前,还包括:
接收第二通信节点的中继连接请求和/或PC5单播连接请求;
根据第三通信节点反馈的配置信息建立空口DRB和下行PC5 DRB,以及上下行数据的映射。在实施例中,在接收第二通信节点的中继连接请求和/或PC5单播连接请求之后,根据根据第三通信节点反馈的配置信息建立空口DRB和下行PC5 DRB之前,可以将中继连接请求和PC5单播连接请求中的QoS信息发送至第三通信节点。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,在第一通信节点和第二通信节点建立层2链路连接的过程中,采用第三预设映射方式将预先获取的PC5QoS信息映射为空口QoS信息。
在一实施例中,第三预设映射方式,包括:
将PC5 QoS流中的PC5接口上的5QI(PC5 5QI,PQI)映射为完全相同的空口5G服务质量标识(5G服务质量标识,5QI);
在完全相同的空口5QI未匹配PQI的情况下,选择标准5QI列表中最接近PQI所表示QoS属性的5QI值;
将空口QoS流中的保证流比特率(Guarantee Flow Bit Rate,GFBR)值和最大流比特率(Maximum Flow Bit Rate,MFBR)值设置为PC5 QoS流中的GFBR和MFBR值。
在一实施例中,在将预先获取的PC5 QoS信息映射为空口QoS信息之后,还包括:
根据空口QoS流向第三通信节点发送PDU会话建立请求,PDU会话建立请求用于转发第二通信节点的IP数据;
或者,向第三通信节点发送PDU会话修改请求,PDU会话修改请求用于修改当前的PDU会话,并且携带映射后得到的空口QoS信息。
在一实施例中,通信方法,还包括:接收第三通信节点配置的中继空口DRB或PC5 DRB,以及PC5数据和空口数据的映射关系。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,PC5数据和空口数据的映射关系包括下述之一:PC5 QoS流与空口QoS流的映射,PC5 DRB与空口DRB的映射,PC5 QoS流与空口DRB的映射,PC5 DRB与空口QoS流的映射。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,第三通信节点为第一通信节点配置PC5数据和空口数据的映射关系的时间段,包括下述之一:
在第一通信节点发送PDU会话建立请求或PDU会话修改请求之后;
在第一通信节点与第二通信节点建立PC5 RRC连接之后,第一通信节点上报PC5 DRB信息,PC5 DRB信息包括下述至少之一:承载标识、无线链路层控制协议(Radio Link Control,RLC)模式、逻辑信道标识、逻辑信道优先级、RLC相关配置;
在第一通信节点发送直通链路UE信息(SideLink UE information,SUI)至第三通信节点之后。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,PC5数据和空口数据的映射关系,包括下述之一:
NR PC5 QoS流与NR空口QoS流的映射配置,映射配置包括下述至少之一:PC5 QoS信息与空口QoS信息的映射、服务质量流标识(QoS flow identifier,QFI)与PC5流标识(PC5 Flow Identifier,PFI)的映射;所述PC5 QoS信息与 空口QoS信息的映射包括以下至少之一:将空口QoS流中的5QI映射为完全相同的PC5 PQI;在所述完全相同的空口5QI未匹配PQI的情况下,选择标准5QI列表中最接近PQI所表示QoS属性的5QI值;空口QoS流中的GFBR,MFBR直接设置为PC5 QoS信息中的GFBR,MFBR;
将PC5 QoS流中的PQI映射为完全相同的空口5QI;在所述完全相同的空口5QI未匹配PQI的情况下,选择标准PQI列表中最接近5QI所表示QoS属性的PQI值;PC5 QoS流中的GFBR,MFBR直接设置为Uu QoS Info中的GFBR,MFBR;
NR PC5 QoS流与NR空口DRB的映射配置,映射配置包括下述至少之一:PC5 PFI与空口DRB标识的映射、PC5 PQI与空口DRB优先级的映射、PC5 PQI与空口逻辑信道优先级的映射;
NR PC5 DRB与NR空口DRB的映射配置,映射配置包括下述至少之一:PC5 DRB优先级与空口DRB优先级的映射、PC5 DRB标识与空口DRB标识的映射、PC5逻辑信道优先级与空口逻辑信道优先级的映射,PC5逻辑信道标识与空口逻辑信道标识的映射;
NR PC5 DRB与NR Uu QoS流的映射配置,配置包含以下至少之一:PC5DRB标识与Uu QFI的映射,PC5 DRB优先级与Uu 5QI的映射,PC5逻辑信道优先级与Uu 5QI的映射。
在一实施例中,在第一通信节点与第二通信节点之间采用长期演进(Long Term Evolution,LTE)PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,多对一映射,包括下述方式之一:
根据第一通信节点的空口上行QoS规则和DRB配置,将第二通信节点的IP数据映射至中继NR空口DRB;
基于第三通信节点配置或预配置的LTE PC5逻辑信道与NR空口DRB的映射关系,将IP数据映射至中继NR空口DRB;
基于接收的第二通信节点的PC5数据的近邻服务包优先级(ProSe Per Packet Priority,PPPP),第三通信节点配置或预配置的PPPP与5QI的映射关系以及NR空口DRB配置,将第二通信节点的IP数据映射至空口QoS流,进而映射到 中继NR空口DRB;
基于接收的第二通信节点的PC5数据的PPPP值,以及第三通信节点配置或预配置的PPPP值与NR空口DRB的映射关系,将第二通信节点的IP数据映射至中继NR空口DRB。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用LTE PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口的情况下,在所述接收第二通信节点发送的网际协议IP数据之前,还包括:
接收第二通信节点的中继连接请求和/或PC5单播连接请求;
将所述中继连接请求建立的中继连接和所述PC5单播连接请求建立的PC5单播连接中的QoS信息发送至所述第三通信节点;
根据所述第三通信节点反馈的配置信息建立空口DRB,以及上下行数据的映射。在实施例中,在接收第二通信节点的中继连接请求和/或PC5单播连接请求之后,根据所述第三通信节点反馈的配置信息建立空口DRB之前,可以将所述中继连接请求建立的中继连接和所述PC5单播连接请求建立的PC5单播连接中的QoS信息发送至所述第三通信节点。
在一实施例中,在第一通信节点与第二通信节点之间采用LTE PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,在第一通信节点和第二通信节点建立层2链路连接的过程中,采用第四预设映射方式将预先获取的PPPP值映射为NR空口QoS信息。
在一实施例中,第四预设映射方式,包括:
基于第三通信节点配置或预配置的PPPP-5QI映射表。
在一实施例中,在所述将预先获取的PC5 PPPP值映射为NR空口QoS信息之后,还包括:
根据所述空口QoS信息向所述第三通信节点发送PDU会话建立请求,所述PDU会话建立请求用于转发所述第二通信节点的IP数据;
或者,向所述第三通信节点发送PDU会话修改请求,所述PDU会话修改请求用于修改当前的PDU会话,并且携带映射后得到的空口QoS信息。
在一实施例中,通信方法,还包括:接收所述第三通信节点配置的中继空 口DRB,以及PC5数据和空口数据的映射关系。
在一实施例中,在第一通信节点与第二通信节点之间采用LTE PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,PC5数据和空口数据的映射关系包括下述之一:PC5逻辑信道与空口DRB的映射,PC5 PPPP数据流与空口DRB的映射,PC5 PPPP数据流与Uu QoS流的映射。
在一实施例中,在第一通信节点与第二通信节点之间采用LTE PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,第三通信节点为第一通信节点配置PC5数据和空口数据的映射关系的时间段,包括下述之一:
在第一通信节点发送PDU会话建立请求或PDU会话修改请求之后;
在第一通信节点与第二通信节点建立中继连接之后,第一通信节点上报LTE PC5逻辑信道信息,PC5逻辑信道信息包括下述至少之一:RLC模式、逻辑信道标识、逻辑信道优先级、RLC相关配置;
在第一通信节点发送SUI至第三通信节点之后。
在一实施例中,在第一通信节点与第二通信节点之间采用LTE PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,PC5数据和空口数据的映射关系,包括下述之一:
LTE PC5逻辑信道与NR空口DRB的映射配置,所述映射配置包括下述至少之一:LTE PC5逻辑信道标识与NR空口DRB标识的映射,LTE PC5逻辑信道优先级与NR空口DRB优先级的映射,LTE PC5逻辑信道优先级与NR空口逻辑信道优先级的映射,LTE PC5逻辑信道标识与NR空口逻辑信道标识的映射;
LTE PC5 PPPP流与NR空口DRB的映射配置,所述映射配置包括下述至少之一:LTE PPPP值与空口DRB优先级的映射配置,LTE PPPP值与空口逻辑信道优先级的映射;
LTE PC5 PPPP流与NR空口QoS流的映射配置,所述映射配置包括下述至少之一:LTE PPPP值与NR空口QoS信息的映射配置;
LTE PC5 PPPP值与NR空口QoS信息的映射配置,所述映射配置包括下述至少之一:LTE PC5 PPPP值与NR空口5QI的映射表。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,多对一映射,包括下述方式之一:
根据第一通信节点的上行业务流模板(Traffic Flow Template,TFT)和DRB配置,将至少两个第二通信节点的IP数据映射至LTE空口DRB;
基于第三通信节点配置或预配置的NR PC5 DRB或LTE空口DRB的映射关系,将IP数据映射至LTE空口DRB;
基于所述第三通信节点配置或预配置的NR PC5 QoS流与LTE空口DRB的映射关系,将所述IP数据映射至LTE空口DRB;
基于所述第三通信节点配置或预配置的NR PC5 QoS流与LTE空口演进分组系统(Evolved Packet System,EPS)承载的映射关系以及LTE空口DRB的配置,将所述IP数据映射至LTE空口DRB。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,采用第五预设映射方式将预先获取的NR PC5 QoS信息映射为LTE空口QoS信息。
在一实施例中,第五预设映射方式,包括:
将NR PC5 QoS流中的PQI映射为完全相同的LTE空口5QI;
在完全相同的LTE空口5QI未匹配PQI的情况下,选择标准LTE服务质量分类标识(Quality of Service Class Identifier,QCI)列表中最接近PQI所表示QoS属性的QCI值;
将空口QoS流中的GFBR值和MFBR值设置为PC5 QoS流中的GFBR和MFBR值。
在一实施例中,在所述将预先获取的PC5 PPPP值映射为NR空口QoS信息之后,还包括:
根据所述空口QoS信息向所述第三通信节点发送PDU会话建立请求,所述PDU会话建立请求用于转发所述第二通信节点的IP数据;
或者,向所述第三通信节点发送PDU会话修改请求,所述PDU会话修改 请求用于修改当前的PDU会话,并且携带映射后得到的空口QoS信息。
在一实施例中,通信方法,还包括:接收所述第三通信节点配置的中继空口DRB,以及PC5数据和空口数据的映射关系。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,PC5数据和空口数据的映射关系包括下述之一:NR PC5 QoS与LTE空口EPS承载映射,NR PC5 DRB与LTE空口DRB映射,NR PC5 QoS流与LTE空口DRB映射,NR PC5 DRB与LTE空口EPS承载映射。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,第三通信节点为第一通信节点配置PC5数据和空口数据的映射关系的时间段,包括下述之一:
在第一通信节点发送PDU会话连接请求或承载资源修改请求之后;
在第一通信节点与第二通信节点建立PC5无线资源控制RRC连接之后,第一通信节点上报NR PC5 DRB信息,NR PC5 DRB信息包括下述至少之一:承载标识、RLC模式、逻辑信道标识、逻辑信道优先级、RLC相关配置;
在第一通信节点发送SUI至第三通信节点之后。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,PC5数据和空口数据的映射关系,包括下述之一:
NR PC5 QoS流与LTE空口EPS承载的映射配置,映射配置包括下述至少之一:PC5 QFI与空口EPS承载标识之间的映射,NR PC5 QoS Info与LTE空口QoS Info之间的映射;所述PC5 QoS Info与空口QoS Info的映射包括以下至少之一:
将空口QoS流的QCI映射为完全相同的PC5 PQI;
在所述完全相同的空口QCI未匹配PQI的情况下,选择标准QCI列表中最接近PQI所表示QoS属性的QCI值;
空口QoS流中的GFBR,MFBR直接设置为PC5 QoS Info中的GFBR,MFBR;
将PC5 QoS流中的PQI映射为完全相同的空口QCI;
在所述完全相同的空口QCI未匹配PQI的情况下,选择标准PQI列表中最接近QCI所表示QoS属性的PQI值;
PC5 QoS流中的GFBR,MFBR直接设置为Uu QoS Info中的GFBR,MFBR;
NR PC5 QoS流与LTE空口DRB的映射配置,映射配置包括下述至少之一:PC5 PFI与空口DRB标识的映射、PC5 PQI与空口DRB优先级的映射、PC5 PQI与空口逻辑信道优先级的映射;
NR PC5 DRB与LTE空口DRB的映射配置,映射配置包括下述至少之一:PC5 DRB优先级与空口DRB优先级的映射、PC5 DRB标识与空口DRB标识的映射、PC5逻辑信道优先级与空口逻辑信道优先级的映射,NR PC5逻辑信道标识与LTE空口逻辑信道标识的映射。
NR PC5 DRB与LTE空口EPS承载的映射配置,所述映射配置包括下述至少之一:PC5 DRB优先级与空口EPS承载QCI的映射,PC5 DRB标识与空口EPS承载标识的映射,PC5逻辑信道与空口EPS承载QCI的映射。
在一实施例中,在第二通信节点的空口链路质量或中继链路质量出现故障的情况下,第二通信节点的切换方式,包括下述之一:从空口连接切换为中继连接;从中继连接切换为空口连接;从第一个第一通信节点连接切换为第二个第一通信节点连接。
在一实施例中,在第二通信节点的切换方式为从空口连接切换为中继连接的情况下,对于缓存在第二通信节点中等待传输的上行数据,包括下述连接方式之一:
将第二通信节点中未处理的IP数据,直接切换到中继链路传输;
针对第二通信节点中已映射至空口QoS流的IP数据,基于第三通信节点配置或预配置的空口QoS流至PC5 QoS流的映射配置,将空口QoS流映射为PC5 QoS流,或者,基于第三通信节点配置或预配置的空口QoS流至PC5 DRB的映射配置,将空口QoS流映射为PC5 DRB;
针对第二通信节点中已映射至空口DRB的IP数据,根据空口分组数据会聚协议(Packet Data Convergence Protocol,PDCP)对IP数据解密,并基于第三通 信节点配置或预配置的空口DRB至PC5 DRB的映射配置,将空口DRB映射为PC5 DRB。
在一实施例中,在第二通信节点的切换方式为从中继连接切换为空口连接的情况下,对于缓存在第二通信节点中等待传输的上行数据,包括下述连接方式之一:
将第二通信节点中未处理的IP数据,直接切换到空口链路传输;
针对第二通信节点中已映射至PC5 QoS流的IP数据,基于第三通信节点配置或预配置的空口QoS流至PC5 QoS流的映射配置,将PC5 QoS流映射为空口QoS流,或者,基于第三通信节点配置或预配置的PC5 QoS流至空口DRB的映射配置,将PC5 QoS流映射为空口DRB;
针对第二通信节点中已映射至PC5 DRB的IP数据,根据PC5 PDCP对IP数据解密,并基于第三通信节点配置或预配置的PC5 DRB至空口DRB的映射配置,将PC5 DRB映射为空口DRB。
在一实施例中,在第二通信节点的切换方式为从第一个第一通信节点切换为第二个第一通信节点的情况下,对于缓存在第二通信节点中等待传输的上行数据,包括下述连接方式之一:
将第二通信节点发送至第一个第一通信节点的IP数据和PC5 QoS流数据转发至第二个第一通信节点;
针对已映射到与第一个第一通信节点建立的PC5 DRB中的IP数据,按照与第二个第一通信节点建立的PDCP层解密,并映射到与第二个第一通信节点建立的具有相同逻辑信道优先级的PC5 DRB;
针对已缓存在第一个第一通信节点的IP数据,继续由第一个第一通信节点完成上行传输。
在一实施例中,在第二通信节点的空口链路质量或中继链路质量出现故障的情况下,链路切换决策,包括下述之一:
通过第三通信节点配置链路切换准则或测量配置;
通过第三通信节点配置或预配置链路切换准则。
在一实施例中,在第二通信节点的切换方式为从空口连接切换为中继连接 的情况下,链路切换准则包括下述至少之一:
空口链路质量阈值;业务类型;PC5接口链路质量阈值;
测量配置,包括:空口测量配置和中继测量配置。
在一实施例中,在第二通信节点的切换方式为从中继连接切换为空口连接的情况下,链路切换准则包括下述至少之一:
空口链路质量阈值;PC5接口链路质量阈值;第一通信节点空口链路质量阈值;PC5接口资源池信道忙碌率(Channel Busy Ratio,CBR)阈值;业务类型/业务需求。
图2是本申请实施例提供的另一种通信方法的流程图。本实施例应用于第二通信节点,并用于下行数据的传输。如图2所示,本实施例包括S201-S203。
S201、接收第三通信节点发送的下行数据.
S202、根据所述下行数据中的IP地址确定所属的第二通信节点。
S203、按照第二预设映射方式将所述下行数据映射为PC5数据,并传输至所属的第二通信节点。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口的情况下,所述第二预设映射方式,包括下述之一:
根据第一通信节点自身推导的QoS规则和所述第三通信节点配置的PC5 DRB配置,将所述下行数据映射至相应的PC5 DRB;
在PC5 DRB为双向承载的情况下,基于上行PC5 DRB到空口DRB的映射关系进行反向映射;
基于所述第三通信节点配置的NR Uu QoS流到PC5 QoS流的映射关系和PC5 DRB配置,将空口QoS流映射为PC5 QoS流,再映射至PC5 DRB;
基于所述第三通信节点配置或者预配置的NR Uu QoS流到PC5 DRB的映射关系,将所述下行数据映射至PC5 DRB;
基于所述第三通信节点配置或者预配置的空口DRB与PC5 DRB的映射关系,将所述下行数据映射至PC5 DRB。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用LTE PC5 连接,且所述第二通信节点与所述第三通信节点采用NR空口的情况下,所述第二预设映射方式,包括下述之一:
基于所述第三通信节点配置或预配置的NR空口DRB与LTE PC5逻辑信道的映射关系,将第二通信节点的IP数据映射至LTE PC5逻辑信道;
基于所述第三通信节点配置的或预配置的NR空口DRB与LTE PC5 PPPP值之间的映射关系,将第二通信节点的IP数据映射至LTE PC5逻辑信道;
基于所述第三通信节点配置或预配置的NR空口QoS流与LTE PC5 PPPP数据流的映射关系,将第二通信节点的IP数据映射至LTE PC5逻辑信道。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用LTE空口的情况下,所述第二预设映射方式,包括下述之一:
根据第一通信节点自身推导的QoS规则和所述第三通信节点配置的PC5 DRB配置,将所述下行数据映射至相应的NR PC5 DRB;
基于所述第三通信节点配置或预配置的LTE空口DRB与NR PC5 DRB的映射关系,将所述IP数据映射至NR PC5 DRB;
基于所述第三通信节点配置或预配置的LTE空口DRB与NR PC5 QoS flow的映射关系,将所述IP数据映射至NR PC5 DRB;
基于所述第三通信节点配置或预配置的LTE空口EPS承载与NR PC5 QoS流的映射关系以及LTE空口DRB的配置,将所述IP数据映射至LTE空口DRB。
在此需要说明的是,在本申请中,在第一通信节点之间涉及到的上行传输、上行、上行数据等,指的是第二通信节点发送,第一通信节点接收的过程;相应的,在第一通信节点和第二通信节点之间涉及到的下行传输、下行、下行数据等,指的是第一通信节点发送,第二通信节点接收的过程。
在一实现方式中,针对L3 UE-to-Network中继数据路由的场景,在第一通信节点和第二通信节点之间采用NR PC5,在第一通信节点和第三通信节点之间采用NR空口(Uu)。示例性地,第一通信节点为relay UE,第二通信节点为remote UE,第三通信节点为基站。
对于L3 UE-to-Network relay,remote UE与基站之间不建立RRC连接,也 就是说,基站不识别remote UE,且不保存remote UE上下文,核心网不识别remote UE,不为remote UE建立和维护PDU会话(session)。remote UE的IP数据包通过PC5单播连接发送给relay UE,relay UE将remote UE的IP数据包通过relay UE自身的空口承载发送给基站,基站通过relay UE的PDU session将数据传输到5G核心网(5G Core,5GC)。
对于L3 UE-to-Network relay,remote UE不与基站建立连接,因此,relay UE不需要执行控制面数据的转发,relay UE与remote UE之间使用SideLink控制面协议栈,relay UE与基站之间使用NR空口协议栈。图3是本申请实施例提供的一种用户面协议栈的显示示意图。如图3所示,该用户面协议栈为L3 UE-to-Network relay的用户面协议栈。
在进行上行用户面数据路由的情况下,包括步骤一至步骤四:
步骤一:Remote UE接收到来自应用层的IP数据包,通过自我推导的QoS处理规则和PC5单播承载配置将IP数据包传输至relay UE。
为了relay UE接收到数据包之后能够区分是终结到relay UE自身的数据还是需要转发的数据,可通过以下方式进行确定:
方式一,Remote UE和relay UE通过RRC信令协商建立PC5单播承载或者逻辑信道,并专门用于转发remote UE的数据,可选的,可以通过PC5 DRB标识或者逻辑信道标识(Logical Channel ID,LCID)的方式进行定义。
方式二,Remote UE发送给gNB的数据和发送给relay UE的数据使用的是不同的SRC ID(即源ID)和DST ID(即目的ID),relay UE通过媒体访问控制(Media Access Control,MAC)子头(subheader)中包含的ID表示,可以区分出是发送给自身的数据还是需要进行中继的数据。
步骤二:Relay UE接收remote UE发送的IP数据包并进行解析,通过MAC子头中的ID,或者协商的逻辑信道/承载判断该IP数据包是否需要中继转发到gNB,如果是需要进行中继转发的数据,relay UE读取remote UE数据包的IP信息,使用网络地址转换(Network Address Translation,NAT)功能修改相应的remote UE数据包的IP header并进行转发。
步骤三:Relay UE将需转发的IP数据包映射到与基站之间的中继空口承载 上传输给基站,示例性地,包括下述映射方式之一:
映射方式一,Relay UE为需要进行中继转发的数据建立独立的PDU session,在该PDU session对应的DRB上传输remote UE的数据;
映射方式二,Relay UE使用自身的PDU session传输remote UE的数据。
在上述两种映射方式的基础上,对于多个remote UE连接到同一个relay UE的情况,relay UE可以选择以下两种映射方式:
映射方式一:一对一映射,即不同remote UE的IP数据分别通过不同的空口DRB发送;
映射方式二:多对一映射,即多个remote UE的相似QoS的IP数据包可映射到同一Uu DRB发送。
针对多对一映射,包括下述方式之一:
方式一,relay UE不区分IP数据包所来自的remote UE,将多个remote UE的IP数据包根据relay UE的Uu QoS规则和DRB配置映射到Uu DRB;
方式二,relay UE基于基站配置或预配置的PC5 DRB与Uu DRB的映射关系(比如,基于承载标识的映射,或基于承载/逻辑信道优先级的映射),将转发的IP数据映射到Uu DRB;
方式三,relay UE基于PC5 DRB的逻辑信道或承载优先级映射到相同逻辑信道优先级的relay Uu DRB;
方式四,Relay UE基于接收的remote UE PC5数据的PQI,以及基站配置或预配置的PQI与5QI的映射关系,将PC5 QoS流数据包映射到Uu QoS流,进一步根据Uu DRB配置,将IP数据通过相应的relay Uu DRB传输到基站。
步骤四:基站接收到relay UE转发的remote UE用户面数据,进一步将数据包映射到relay UE的PDU session的NG接口传输隧道发送给核心网网元(UPF)。
在进行下行用户面数据路由的情况下,包括步骤一至步骤三:
在Layer3-based中,基站和核心网在数据通信过程中将remote UE的数据当作relay UE的数据进行处理转发。基站接收用户面功能实体(UPF)发送给relay UE的下行数据,将relay UE的下行数据映射到relay UE空口承载,relay UE根 据发给自身数据包中的IP信息和NAT,判断该数据包所属于的remote UE,然后将下行数据通过PC5 DRB转发给相应的remote UE。
步骤一:relay UE接收到基站发送的下行数据,读取下行数据中的IP信息,根据存储的NAT信息判断该数据包是属于哪个remote UE,然后替换数据包中IP header为相应remote UE的IP信息。
步骤二:relay UE将数据包映射到PC5承载上发送给remote UE,包括下述映射方式之一:
映射方式一,Relay UE根据自身推导的QoS规则和基站配置的PC5 DRB配置,将remote UE的数据映射到相应的PC5 DRB上;
映射方式二,基于基站配置的5QI到PQI的映射关系和PC5 DRB配置,将Uu QoS流映射为PC5 QoS流,再映射到PC5 DRB上;
映射方式三,Relay UE基于基站配置或预配置的5QI/QFI与PC5 DRB的优先级的映射关系,将remote UE数据包映射到PC5 DRB;
映射方式四,若PC5 DRB为双向承载,则可基于上行PC5 DRB到Uu DRB的映射关系进行反向映射;
映射方式五,基于基站配置或预配置的空口DRB与PC5 DRB的映射关系(比如,承载标识映射,或承载/逻辑信道优先级映射),将数据包映射到PC5 DRB上;
映射方式六,基于基站配置的或者预配置的Uu DRB承载优先级或逻辑信道优先级,将remote UE数据包映射到具有相同承载/逻辑信道优先级的PC5 DRB。
步骤三:Remote UE从PC5 DRB接收下行数据。
在一实现方式中,针对L3 UE-to-Network中继数据路由的场景,在第一通信节点和第二通信节点之间采用NR PC5,在第一通信节点和第三通信节点之间采用NR Uu。示例性地,第一通信节点为relay UE,第二通信节点为remote UE,第三通信节点为基站。在实施例中,在对上行数据和下行数据的传输过程中,基站所进行的配置均为下述图4的步骤。
对于Layer-3 based UE-to-network relay,remote UE不需要与gNB建立RRC 连接,也不与核心网建立PDU session,remote UE首先寻找合适的relay UE为其进行IP数据的中继转发工作。然后处于RRC连接状态的remote UE基于基站的配置进行上行SL承载建立,RRC空闲/激活(idle/inactive)的remote UE基于系统消息中的SL承载配置进行上行SL承载建立;无覆盖UE基于预配置信息中的SL承载配置进行上行SL承载建立。Relay UE在接收到remote UE的中继请求和PC5单播连接请求后,向基站上报中继请求和PC5单播连接请求中的QoS相关信息,并根据基站下发的配置信息建立空口DRB和下行PC5 DRB,并根据基站配置的映射关系转发remote UE的数据包。
图4是本申请实施例提供的一种中继UE为远程UE转发数据时,空口数据转发承载建立过程的示意图。如图4所示,本实施例中的转发承载建立过程包括S210-S2140。
S210、IP数据包到达。
S220、自身推导QoS信息。
S230、中继发现。
S240、L2链路建立过程。
S250、PDU会话建立请求,或者,PDU会话修改请求。
S260、N2PDU会话建立请求。
S270、RRC重配置。
S280、SL RRC重配置。
S290、报告PC5承载信息。
S2100、RRC重配置。
S2110、下行(Downlink,DL)数据。
S2120、自身推导QoS信息。
S2130、SUI:QoS Profile。
S2140、RRC重配置。
在实施例中,Remote UE通过高层信令和relay UE建立L2 link连接。然后,relay UE将L2 link建立连接过程中获得的PC5 QoS流(比如,PQI,MFBR和GFBR)映射为Uu QoS流。示例性地,PC5 QoS流映射为Uu QoS流的映射方 式包括:
将PC5 QoS流中的PQI映射为完全相同的Uu 5QI,若没有完全相同的Uu 5QI匹配PQI,则选择标准5QI列表中最接近PQI所表示的QoS属性的5QI值。将Uu QoS流中的GFBR、MFBR值直接设置为PC5 QoS info中的GFBR、MFBR值。
Relay UE根据映射后的Uu QoS流发送PDU会话建立请求(PDU session establishment request)为remote UE建立一条新的PDU session,以专用于转发remote UE的数据包,或者发送PDU会话修改请求(PDU session modification request)修改现有的PDU session,其中包含映射后的Uu QoS流。核心网根据PDU session establishment request或者PDU session modification request中的QoS,配置相应的PDU session,并将配置结果通知基站,基站根据PDU session配置结果配置相应的relay UE空口DRB或者relay UE用于转发remote UE下行数据的PC5 DRB,以及relay UE转发remote UE上下行数据时的PC5数据和空口数据的映射关系(比如,PC5 QoS flow到Uu QoS flow映射,PC5 DRB到Uu DRB映射)。
其中,基站可以在下述时间点为relay UE配置PC5数据和空口数据的映射关系:
时间点一,Relay UE发送PDU session establishment request或者PDU session modification request之后,如图4中的S250、S260和S270。
时间点二,Relay UE与remote UE建立PC5 RRC连接之后,relay UE上报PC5 DRB信息,PC5 DRB信息包含以下至少之一:承载标识,RLC模式,逻辑信道标识,逻辑信道优先级,RLC相关配置,如图4中的S280、S290和S2100。
时间点三,Relay UE发送SUI到基站之后,如图4中的S2110、S2120和S2130和S2140。
基站为relay UE配置空口数据转发承载(relay DRB),空口数据转发承载配置包括以下至少之一:数据转发承载指示,承载标识,RLC模式,逻辑信道标识,逻辑信道组标识,逻辑信道优先级,优先保证比特率,桶大小持续时间,RLC相关配置。
基站为relay UE配置PC5 DRB,PC5 DRB为下行PC5 DRB(指的是relay UE发送,remote UE接收),配置信息包括直通链路承载(Sidelink radio bearer,SLRB)发送所需相关参数;RLC确认模式(Acknowledged Mode,AM)模式或非确认模式(Unacknowledged Mode,UM)模式,其它RLC及逻辑信道相关配置信息。
在实施例中,基站配置relay UE转发remote UE上下行数据时的PC5数据和空口数据的映射关系,映射关系包括下述之一:
映射关系一,NR PC5 QoS flow与NR Uu QoS flow的映射配置,配置包含以下至少之一:PC5 QoS info与Uu QoS info的映射,QFI与PFI的映射。
映射关系二,NR PC5 QoS flow与NR Uu DRB的映射配置,配置包含以下至少之一:PC5 PFI与Uu DRB标识的映射,PC5 5QI与Uu DRB优先级的映射,PC5 5QI与Uu逻辑信道优先级的映射。
映射关系三,NR PC5 DRB与NR Uu DRB的映射配置,配置包含以下至少之一:PC5 DRB优先级与Uu DRB优先级的映射,PC5 DRB标识与Uu DRB标识的映射,PC5逻辑信道优先级与Uu逻辑信道优先级的映射。
基站通过RRC重配消息将上述配置信息发送给relay UE。
在一实现方式中,针对L3 UE-to-Network中继数据路由的场景,在第一通信节点和第二通信节点之间采用LTE PC5,在第一通信节点和第三通信节点之间采用NR空口(Uu)。示例性地,第一通信节点为relay UE,第二通信节点为remote UE,第三通信节点为基站。
在实施例中,本实施例与上述描述的第一通信节点和第二通信节点之间采用NR PC5,在第一通信节点和第三通信节点之间采用NR空口的实施例类似,其区别在于remote UE与relay UE使用LTE sidelink连接,relay UE与基站使用NR空口连接。
在进行上行用户面数据路由的情况下,包括步骤一至步骤四:
步骤一:Remote UE收到来自应用层的IP数据包,根据upper提供的近邻服务包优先级(ProSe Per Packet Priority,PPPP)值将IP数据包传送至对应的LTE PC5逻辑信道。
为了relay UE接收到数据包之后能够区分是终结到relay UE自身的数据还 是需要转发的数据,可通过以下方式进行确定:
方式一,Remote UE和relay UE通过上层(Upper layer)协商哪些逻辑信道中的数据是专用于转发remote UE的数据,可选的,可以通过LCID的方式进行定义。
方式二,Remote UE发送给gNB的数据和发送给relay UE的数据使用的是不同的SRC ID和DST ID,relay UE通过MAC子头中包含的ID表示,可以区分出来是发送给自身的数据还是需要进行中继的数据。
步骤二:Relay UE接收remote UE发送的IP数据包并进行解析,通过MAC子头中的ID,或者协商的逻辑信道判断该IP数据包是否需要中继转发到gNB,如果是需要进行中继转发的数据,relay UE读取remote UE数据包的IP信息,使用NAT功能修改相应的remote UE数据包的IP header并进行转发。
步骤三:Relay UE将需转发的IP数据包映射到与基站之间的中继空口承载上传输给基站,示例性地,包括下述映射方式之一:
映射方式一,Relay UE为需要进行中继转发的数据建立独立的PDU session,在该PDU session对应的DRB上传输remote UE的数据;
映射方式二,Relay UE使用自身的PDU session传输remote UE的数据。
在上述两种映射方式的基础上,对于多个remote UE连接到同一个relay UE的情况,relay UE可以选择以下两种映射方式:
映射方式一:一对一映射,即不同remote UE的数据分别通过不同的Uu DRB发送;
映射方式二:多对一映射,即多个remote UE的相似PPPP的数据包可映射到同一Uu DRB发送。
针对多对一映射,包括下述方式之一:
方式一,relay UE不区分IP数据包所来自的remote UE,根据relay UE的Uu UL QoS规则和DRB配置,将多个remote UE的IP数据包映射到relay NR Uu DRB。
方式二,relay UE基于基站配置或预配置的LTE PC5逻辑信道与NR Uu DRB的映射关系(比如,逻辑信道优先级的映射),将转发的数据映射到relay  NR Uu DRB。
方式三,relay UE将LTE PC5的逻辑信道映射到具有相同逻辑信道优先级的relay NR Uu DRB。
方式四,Relay UE基于接收的remote UE PC5数据的PPPP值及基站配置或预配置的PPPP值与5QI的映射关系,将LTE PC5数据包映射到Uu QoS flow,进一步根据Uu DRB配置,将IP数据通过相应的relay NR Uu DRB传输到基站。
方式五,Realy UE基于接收的remote UE PC5数据的PPPP值及基站配置或预配置的PPPP值与NR Uu DRB的映射关系,将LTE PC5数据包映射到relay NR Uu DRB上传输到基站。
步骤四:基站接收到relay UE转发的remote UE用户面数据,进一步将数据包映射到relay UE的PDU session的NG接口传输隧道发送给核心网网元中的用户平面功能(User Plane Function,UPF)。
在进行下行用户面数据路由的情况下,包括步骤一至步骤三:
步骤一:relay UE接收到基站发送的下行数据,读取下行数据中的IP信息,根据存储的NAT信息判断该数据包是属于哪个remote UE,然后替换数据包中IP header为相应remote UE的IP信息。
步骤二:relay UE将数据包映射到PC5承载上发送给remote UE,包括下述映射方式之一:
映射方式一,Relay UE基于基站配置的5QI到PPPP的映射关系,将NR Uu数据流映射为PC5 PPPP数据流,再映射到LTE PC5逻辑信道上;
映射方式二,Relay UE基于基站配置或预配置的5QI/QFI与PC5逻辑信道的优先级的映射关系,将remote UE数据包映射到LTE PC5逻辑信道上;
映射方式三,Relay UE基于基站配置或预配置的NR Uu DRB与LTE PC5逻辑信道的映射关系(比如,承载/逻辑信道优先级映射),将数据包映射到LTE PC5逻辑信道上;
映射方式四,Relay UE基于基站配置的或者预配置的NR Uu DRB承载优先级或逻辑信道优先级,将remote UE数据包映射到具有相同逻辑信道优先级的LTE PC5逻辑信道上。
步骤三:Remote UE从PC5逻辑信道接收下行数据。
在一实现方式中,针对L3 UE-to-Network中继数据路由的场景,在第一通信节点和第二通信节点之间采用LTE PC5,在第一通信节点和第三通信节点之间采用NR Uu。示例性地,第一通信节点为relay UE,第二通信节点为remote UE,第三通信节点为基站。在实施例中,在对上行数据和下行数据的传输过程中,基站所进行的配置均为下述图6的步骤。
图6是本申请实施例提供的另一种中继UE为远程UE转发数据时,空口数据转发承载建立过程的示意图。如图6所示,本实施例中的转发承载建立过程包括S310-S3110。
S310、中继发现。
S320、L2链路建立过程。
S330、PDU会话建立请求,或者,PDU会话修改请求。
S340、N2PDU会话建立请求。
S350、RRC重配置。
S360、自身推导QoS信息。
S370、报告LTE PC5接收逻辑信道信息。
S380、RRC重配置。
S390、DL数据。
S3100、SUI:QoS Profile。
S3110、RRC重配置。
在实施例中,Remote UE通过高层信令和relay UE建立L2 link连接。之后,relay UE将PPPP映射为Uu QoS info,其映射方式为基于基站配置的或者预配置的PPPP-5QI映射表。
Relay UE根据映射后的Uu QoS流发送PDU session establishment request为remote UE建立一条新的PDU session,以专用于转发remote UE的数据包,或者发送PDU session modification request修改现有的PDU session,其中包含映射后的Uu QoS流。核心网根据PDU session establishment request或者PDU session modification request中的QoS信息,配置相应的PDU session,并将配置结果通 知基站,基站根据PDU session配置结果配置相应的relay UE NR Uu DRB以及relay UE转发remote UE下行数据的PC5数据和空口数据的映射关系(比如,LTE PC5 PPPP-NR DRB优先级映射,LTE PC5 PPPP-NR 5QI映射,LTE PC5 PPPP-NR逻辑信道优先级映射)。
其中,基站可以在下述时间点为relay UE配置PC5数据和空口数据的映射关系:
时间点一,Relay UE发送PDU session establishment request或者PDU session modification request之后,如图6中的S330、S340和S350。
时间点二,Relay UE与remote UE建立中继连接之后,relay UE上报LTE PC5逻辑信道信息,PC5逻辑信道信息包含以下至少之一:RLC模式,逻辑信道标识,逻辑信道优先级,RLC相关配置,如图6中的S360、S370和S380。
时间点三,Relay UE发送SUI到基站之后,如图6中的S390、S3100和S3110。
Relay UE基于系统广播或者预配置的信息配置LTE PC5逻辑信道:数据转发承载指示,承载标识,RLC模式,逻辑信道标识,逻辑信道组标识,逻辑信道优先级,优先保证比特率,桶大小持续时间,RLC相关配置。
可选的,基站配置relay UE转发remote UE下行数据的PC5数据和空口数据的映射关系,映射关系包括下述之一:
映射关系一,LTE PC5 PPPP与NR Uu 5QI的映射。
映射关系二,LTE PC5 PPPP与NR Uu DRB的映射配置,配置包含以下至少之一:PC5 PPPP与Uu DRB标识的映射,PC5 PPPP与Uu DRB优先级的映射,PC5 PPPP与Uu逻辑信道优先级的映射。
映射关系三,LTE PC5逻辑信道与NR Uu DRB的映射配置,配置包含以下至少之一:PC5逻辑信道优先级与Uu逻辑信道优先级的映射,PC5逻辑信道ID与Uu逻辑信道ID的映射。
基站通过RRC重配消息发送上述配置信息给relay UE。
在一实现方式中,针对L3 UE-to-Network中继数据路由的场景,在第一通信节点和第二通信节点之间采用NR PC5,在第一通信节点和第三通信节点之间采用LTE空口(Uu)。示例性地,第一通信节点为relay UE,第二通信节点为 remote UE,第三通信节点为基站。
在进行上行用户面数据路由的情况下,包括步骤一至步骤四:
步骤一:Remote UE接收到来自应用层的IP数据包,通过自我推导的QoS处理规则和PC5单播承载配置将IP数据包传输给relay UE。
为了relay UE接收到数据包之后能够区分是终结到relay UE自身的数据还是需要转发的数据,可通过以下方式进行确定:
方式一,Remote UE和relay UE通过RRC信令协商建立NR PC5单播承载或者逻辑信道,其中的数据是专用于转发remote UE的数据,可选的,可以通过NR PC5 DRB标识定义哪个DRB用于转发remote UE的数据或者通过LCID标识定义哪个逻辑信道用于转发remote UE的数据。
方式二,Remote UE发送给gNB的数据和发送给relay UE的数据使用的是不同的SRC ID和DST ID,relay UE通过MAC子头中包含的ID表示,可以区分出来是发送给自身的数据还是需要进行中继的数据。
步骤二:Relay UE接收remote UE发送的IP数据包并进行解析,通过MAC子头中的ID,或者协商的逻辑信道或承载判断该IP数据包是否需要中继转发到gNB,如果是需要进行中继转发的数据,relay UE读取remote UE数据包的IP信息,使用NAT功能修改相应的remote UE数据包的IP header并进行转发。
步骤三:Relay UE将需转发的数据包映射到与基站之间的中继空口承载上传输给基站,示例性地,包括下述映射方式之一:
映射方式一,Relay UE为需要进行中继转发的数据建立独立的PDU session,在该PDU session对应的DRB上传输remote UE的数据;
映射方式二,Relay UE使用自己的PDU session传输remote UE的数据。
在上述两种映射方式的基础上,对于多个remote UE连接到同一个relay UE的情况,relay UE可以选择以下两种映射方式:
映射方式一:一对一映射,即不同remote UE的数据分别通过不同的Uu DRB发送;
映射方式二:多对一映射,即多个remote UE的相似QoS的数据包可映射到同一Uu DRB发送。
针对多对一映射,包括下述方式之一:
方式一,relay UE不区分IP数据包所来自的remote UE,根据relay UE的上行TFT和DRB配置,将多个remote UE的IP数据包映射到Uu DRB;
方式二,relay UE基于基站配置或预配置的NR PC5 DRB与LTE Uu DRB的映射关系(比如,基于承载标识的映射,或基于承载/逻辑信道优先级的映射),将转发的数据映射到LTE Uu DRB;
方式三,relay UE基于LTE PC5 DRB的逻辑信道或承载优先级映射到相同逻辑信道优先级的relay NR Uu DRB;
方式四,Relay UE基于接收的remote UE NR PC5数据的PQI及基站配置或预配置的NR PC5 PQI与LTE Uu QCI的映射关系,将PC5 QoS流数据包映射到Uu QoS流,进一步根据Uu DRB配置,将数据通过相应的relay LTE Uu DRB传输到基站。
步骤四:基站接收到relay UE转发的remote UE用户面数据,进一步将数据包映射到relay UE的PDU session转发给核心网网元中的PDN网关(Packet Data Network GateWay,PGW)。
在进行下行用户面数据路由的情况下,包括步骤一至步骤三:
在Layer3-based中,基站和核心网在数据通信过程中将remote UE的数据当作relay UE的数据进行处理转发。基站接收发送给relay UE的下行数据,将下行relay UE数据映射到relay UE Uu承载,relay UE根据发给自身的数据包的IP信息和NAT判断该数据包是属于哪个remote UE的数据,然后将数据通过NR PC5 DRB转发给相应的remote UE。
步骤一:relay UE接收到基站发送的下行数据,读取下行数据中的IP信息,根据存储的NAT信息判断该数据包是属于哪个remote UE,然后替换数据包中IP header为相应remote UE的IP信息。
步骤二:relay UE将数据包映射到NR PC5承载上发送给remote UE。具体可包括下述映射方式之一:
映射方式一,Relay UE根据自身推导的QoS规则和基站配置的PC5 DRB配置,将remote UE的IP数据映射到相应的PC5 DRB上;
映射方式二,Relay UE基于基站配置的LTE Uu QCI到NR PC5 PQI的映射关系和PC5 DRB配置,将Uu QoS流映射为PC5 QoS流,再映射到PC5 DRB上;
映射方式三,Relay UE基于基站配置或预配置的LTE Uu QCI/EPS承载ID与PC5 DRB优先级的映射关系,将remote UE数据包映射到PC5 DRB;
映射方式四,若PC5 DRB为双向承载,则可基于上行NR PC5 DRB到LTE Uu DRB的映射关系进行反向映射;
映射方式五,基于基站配置或预配置的LTE Uu DRB与NR PC5 DRB的映射关系(比如,承载标识映射,或承载/逻辑信道优先级映射),将数据包映射到PC5 DRB上;
映射方式六,基于基站配置的或者预配置的Uu DRB承载优先级或逻辑信道优先级,将remote UE数据包映射到具有相同承载/逻辑信道优先级的PC5 DRB。
步骤三:Remote UE从NR PC5 DRB接收下行数据。
在一实现方式中,针对L3 UE-to-Network中继数据路由的场景,在第一通信节点和第二通信节点之间采用NR PC5,在第一通信节点和第三通信节点之间采用LTE Uu。示例性地,第一通信节点为relay UE,第二通信节点为remote UE,第三通信节点为基站。在实施例中,在对上行数据和下行数据的传输过程中,基站所进行的配置均为下述图8的步骤。
图8是本申请实施例提供的又一种中继UE为远程UE转发数据时,空口数据转发承载建立过程的示意图。如图8所示,本实施例中的转发承载建立过程包括S410-S4140。
S410、IP数据包到达。
S420、自身推导QoS信息。
S430、中继发现。
S440、L2链路建立过程。
S450、PDU会话连接请求,或者,承载资源修改请求。
S460、建立或修改PDU会话。
S470、RRC重配置。
S480、SL RRC重配置。
S490、报告PC5承载信息。
S4100、RRC重配置。
S4110、DL数据。
S4120、自身推导QoS信息。
S4130、SUI:QoS Profile。
S4140、RRC重配置。
在实施例中,Remote UE通过高层信令和relay UE建立L2 link连接。之后,relay UE将L2 link建立过程中获得的NR PC5 QoS info(比如,PQI,MFBR,GFBR)映射为LTE Uu QoS info,其映射方式包括:
将NR PC5 QoS info中的PQI映射为完全相同的LTE Uu QCI,若没有完全相同的Uu QCI匹配PQI,则选择标准LTE QCI列表中最接近PQI所表示的QoS属性的QCI值。将Uu QoS info中的GFBR,MFBR值直接设置为PC5 QoS info中的GFBR、MFBR值。
Relay UE根据映射后的Uu QoS info选择发送PDU连接请求(PDU connectivity request)为remote UE建立一条新的PDU session,以专用于转发remote UE的数据包,或者发送承载资源修改请求(Bearer resource modification request)修改现有的PDU session,Bearer resource modification request中包含映射后的Uu QoS info。核心网根据Bearer resource modification request中的QoS信息,配置相应的PDU session,并将配置结果通知基站,基站根据PDU session配置结果配置相应的relay UE空口DRB或者relay UE用于转发remote UE下行数据的PC5 DRB,以及relay UE转发remote UE上下行数据时的PC5数据和空口数据的映射关系(比如,LTE PC5 QoS flow到NR Uu QoS flow映射,LTE PC5 DRB到NRUu DRB映射)。
其中,基站可以在下述时间点为relay UE配置PC5数据和空口数据的映射关系:
时间点一,Relay UE发送PDU connectivity request或者Bearer resource  modification request之后,如图8中的S450、S460和S470。
时间点二,Relay UE与remote UE建立PC5 RRC连接之后,relay UE上报NR PC5 DRB信息,PC5 DRB信息包含以下至少之一:承载标识,RLC模式,逻辑信道标识,逻辑信道优先级,RLC相关配置,如图8中的S480、S490和S4100。
时间点三,Relay UE发送SUI到基站之后,如图8中的S4110、S4120、S4130和S4140。
基站为relay UE配置空口数据转发承载(relay DRB),空口数据转发承载配置包括以下至少之一:数据转发承载指示,承载标识,RLC模式,逻辑信道标识,逻辑信道组标识,逻辑信道优先级,优先保证比特率,桶大小持续时间,RLC相关配置。
基站为relay UE配置PC5 DRB,PC5 DRB为下行PC5 DRB(即relay UE发送,remote UE接收),配置信息包括SLRB发送所需相关参数;RLC AM模式或UM模式,其它RLC及逻辑信道相关配置信息。
可选的,基站配置relay UE转发remote UE上下行数据时的PC5数据和空口数据的映射关系,映射关系包括下述之一:
映射关系一,NR PC5 QoS flow与LTE Uu QoS flow的映射配置,配置包含以下至少之一:PC5 QoS info与Uu QoS info的映射,PQI与QCI的映射,PFI与EPS承载ID的映射;
映射关系二,NR PC5 QoS flow与LTE Uu DRB的映射配置,配置包含以下至少之一:PC5 PFI与Uu DRB标识的映射,PC5 5QI与Uu DRB优先级的映射,PC5 5QI与Uu逻辑信道优先级的映射;
映射关系三,NR PC5 DRB与LTE Uu DRB的映射配置,配置包含以下至少之一:PC5 DRB优先级与Uu DRB优先级的映射,PC5 DRB标识与Uu DRB标识的映射,PC5逻辑信道优先级与Uu逻辑信道优先级的映射。
基站通过RRC重配消息发送上述配置信息给relay UE。
在一实现方式中,由于UE的移动性和网络环境的动态性,UE出现空口链路质量或者relay链路质量变差的现象,此时,UE可以选择从空口连接切换为 relay连接,从relay连接切换为空口连接,或者从一个relay UE切换到另一个relay UE,以保持UE-to-Network的数据传输。在本实施例中,描述了如何在切换过程中保持服务连续性。
示例性地,发生网络链路切换的场景包括下述之一:
场景一:从直接空口链路到PC5/SL中继链路的路径转换:remote UE1处于RRC连接态通过直接空口链路(direct Uu link)通信,Uu信道质量变差,UE1寻找到relay UE,并将空口路径(Uu traffic)切换到通过relay UE转发数据给网络。其中,remote UE的基站与relay UE的基站可为同一基站或不同基站。
场景二:从PC5/SL中继链路到直接空口链路的路径转换(path switch from PC5/SL relay link to direct Uu link):remote UE1通过relay UE与网络通信,当UE1进入基站覆盖并建立RRC连接,将通过relay UE转发的业务切换到通过Uu口直接传输。其中,remote UE的基站与relay UE的基站可为同一基站或不同基站。
场景三:由于发生了relay重选,remote UE所连接的relay UE发生了变化,remote UE通过relay UE1转发的业务切换到通过relay UE2转发。其中,relay UE1的基站与relay UE2的基站可为同一基站或不同基站。
关于链路切换决策,有如下两种方式:
方式一:基站配置链路切换准则或测量配置,当remote UE满足准则通知基站或根据测量上报配置报告测量结果给基站,基站决定并指示切换。
方式二:基站配置或预配置链路切换准则,当remote UE满足准则,remote UE自主进行切换。可选的,remote UE切换后通知基站,remote UE向基站上报的链路切换通知信息包括以下至少之一:切换指示,切换的业务类型,切换的PDU session ID,切换的DRB,切换的QoS flow的信息(如QFI/5QI等),relay UE标识。
其中,对于场景一,链路切换准则包括以下至少之一:Uu链路质量阈值(可知的,包括一定迟滞值;在remote UE Uu链路质量低于该阈值的情况下,可执行链路切换),业务类型(如,某些业务类型的数据通过PC5接口传输),PC5接口链路质量阈值(如,remote UE与relay UE之间的PC5接口链路质量高于该 阈值,可执行链路切换)。其中,测量配置,包括Uu测量配置和relay(UE与relay UE之间PC5接口)测量配置。对于场景二,链路切换准则包括以下至少之一:Uu链路质量阈值(可知的,包括一定迟滞值;当remote UE Uu链路质量高于该阈值,可执行链路切换),PC5链路质量阈值(如,remote UE与relay UE之间的PC5接口链路质量低于该阈值,可执行链路切换),relay UE Uu链路质量阈值(可选的,relay UE通过PC5 RRC信令消息将其Uu链路质量告知remote UE,或Uu链路质量等级指示(如高于/低于阈值指示、好/中/差指示)),PC5接口资源池CBR阈值(如,PC5接口资源池CBR或所有资源池CBR平均值高于阈值,表明relay link负荷渐大,可执行链路切换),业务类型/业务需求(如,某些业务类型/业务需求(如延迟需求低于一定阈值)的数据切换到Uu接口传输)。可知的,Uu链路质量为测量的Uu口的参考信号接收功率/参考信号接收质量(Reference Signal Receiving Power/Reference Signal Receiving Quality,RSRP/RSRQ,PC5链路质量为测量的SL发现信道或通信信道的RSRP/RSRQ/接收信号强度指示(Received Signal Strength Indicator,RSSI)。
对于上述三种场景中所描述的UE-to-Network路径/链路切换(path/link switch)情况,由于UE-to-Network relay中,remote UE不会保持与gNB的RRC连接。
场景一:对于remote UE从空口数据通讯切换为relay数据通讯,remote UE需要建立新的PC5 PDCP/RLC层用于relay数据传输。对于缓存在remote UE中等待传输的上行数据:
1.Remote UE中未处理的IP数据包,直接切换到relay链路传输。
2.Remote UE中已经映射到Uu QoS flow的数据包,基于基站配置的或者预配置的Uu QoS flow到PC5 QoS flow的映射配置,将Uu QoS flow数据映射为PC5 QoS flow,或者基于基站配置的或者预配置的Uu QoS flow到PC5 DRB的映射配置,将Uu QoS flow数据映射到PC5 DRB。
3.Remote UE中已经映射到Uu DRB的数据包,由于remote UE建立了新的PC5 PDCP层,因此需要将Uu DRB中的数据根据Uu PDCP解密,然后根据基站配置的或者预配置的Uu DRB到PC5 DRB的映射配置,将Uu DRB数据映射 到PC5 DRB中。
对于缓存在gNB中的下行数据,由于切换后remote UE使用L3 UE-to-Network relay,remote UE不与gNB建立RRC连接,因此,gNB中缓存的下行数据无法切换到relay链路上传输,为了保持服务连续性,需要remote UE切换前完成下行数据的传输。
场景二:对于remote UE从relay数据通讯切换为空口数据通讯,remote UE需要建立新的Uu PDCP/RLC层用于空口数据传输。对于缓存在remote UE中等待传输的上行数据:
1.Remote UE中未处理的IP数据包,直接切换到空口链路传输;
2.Remote UE中已经映射到PC5 QoS flow的数据包,基于基站配置的或者预配置的Uu QoS flow到PC5 QoS flow的映射配置,将PC5 QoS flow数据映射为Uu QoS flow,或者基于基站配置的或者预配置的PC5 QoS flow到Uu DRB的映射配置,将PC5 QoS flow数据映射到Uu DRB。
3.Remote UE中已经映射到PC5 DRB的数据包,由于remote UE建立了新的Uu PDCP层,因此需要将PC5 DRB中的数据根据PC5 PDCP解密,然后根据基站配置的或者预配置的PC5 DRB到Uu DRB的映射配置,将PC5 DRB数据映射到Uu DRB中。
对于缓存在relay UE中的上行数据,由relay UE继续完成上行传输。
对于缓存在gNB的下行数据,由于切换前remote UE使用L3 UE-to-Network relay,remote UE不与gNB建立RRC连接,gNB无法得知remote UE的切换行为,所以,gNB中缓存的下行数据无法切换到remote UE的Uu链路上传输,只能丢弃。基于相同的理由,对于缓存在relay UE中的下行数据,relay UE无法将其转移到remote UE的空口上进行传输,所以,需要在remote UE切换前完成传输。
场景三:对于remote UE从一个relay UE1切换为另外一个relay UE2,remote UE需要建立新的PC5 PDCP/RLC层用于relay数据传输。对于缓存在remote UE中等待传输的上行数据,将发送给relay UE1的IP数据包和PC5 QoS flow数据包转而发送给relay UE2;对于已经映射到与relay UE1建立的PC5 DRB中的数 据,先按照与relay UE1建立的PDCP层解密,然后映射到与relay UE2建立的具有相同逻辑信道优先级的PC5 DRB上进行传输;
对于缓存在relay UE1的上行数据,继续由relay UE1完成上行传输;
对于缓存在relay UE1的下行数据,由于relay UE1与relay UE2并不互相通讯,所以,这部分数据只能丢弃处理。
对于缓存在gNB的下行数据,由于切换前remote UE使用L3 UE-to-Network relay,remote UE不与gNB建立RRC连接,gNB无法得知remote UE的切换行为,所以,gNB中缓存的下行数据无法切换到remote UE的Uu链路上传输,只能丢弃。
在一实施例中,图9是本申请实施例提供的一种通信装置的结构框图。本实施例应用于第一通信节点。如图9所示,本实施例中的通信装置包括:第一接收模块510和第一映射模块520。
第一接收模块510,设置为接收第二通信节点发送的网际协议IP数据;
第一映射模块520,设置为按照第一预设映射方式将IP数据映射至中继承载,并传输至第三通信节点。
本实施例提供的通信装置设置为实现图1所示实施例的应用于第一通信节点的通信方法,本实施例提供的通信装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,第一通信节点为所述IP数据选择的PDU会话,包括下述之一:
为IP数据建立独立的协议数据单元PDU会话,并在PDU会话对应的数据无线承载DRB上传输IP数据;
采用第一通信节点自身的PDU会话传输IP数据。
在一实施例中,针对至少两个第二通信节点连接到同一个第一通信节点的情况,第一预设映射方式,包括下述之一:一对一映射;多对一映射;
其中,一对一映射,用于指示不同第二通信节点的IP数据分别通过不同的中继空口DRB进行发送;多对一映射,用于指示至少两个第二通信节点的IP数据映射至同一个中继空口DRB进行发送。
在一实施例中,在第一通信节点与第二通信节点之间采用新空口直通链路接口NR PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,多对一映射,包括下述方式之一:
根据第一通信节点的空口QoS规则和DRB配置,将第二通信节点的IP数据映射至中继空口DRB;
基于第三通信节点配置或预配置的PC5 DRB与空口DRB的映射关系,将IP数据映射至中继空口DRB;
基于所述第三通信节点配置或预配置的PC5 QoS流与NR空口QoS流的映射关系和NR空口DRB的配置,将所述IP数据映射至中继空口DRB;
基于所述第三通信节点配置或预配置的PC5 QoS流与空口DRB的映射关系,将所述IP数据映射至中继空口DRB。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用新空口直通链路接口NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口的情况下,在接收第二通信节点发送的网际协议IP数据之前,还包括:
接收第二通信节点的中继连接请求和PC5单播连接请求;
根据第三通信节点反馈的配置信息建立空口DRB和下行PC5 DRB,以及上下行数据的映射。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,在第一通信节点和第二通信节点建立层2链路连接的过程中,采用第三预设映射方式将预先获取的PC5 QoS信息映射为空口QoS信息。
在一实施例中,第三预设映射方式,包括:
将PC5 QoS流中的PQI映射为完全相同的空口5QI;
在完全相同的空口5QI未匹配PQI的情况下,选择标准5QI列表中最接近PQI所表示QoS属性的5QI值;
将空口QoS流中的保证流比特率GFBR值和最大流比特率MFBR值设置为PC5 QoS流中的GFBR和MFBR值。
在一实施例中,在将预先获取的PC5 QoS信息映射为空口QoS信息之后, 还包括:
根据空口QoS流向第三通信节点发送PDU会话建立请求,PDU会话建立请求用于转发第二通信节点的IP数据;
或者,向第三通信节点发送PDU会话修改请求,PDU会话修改请求用于修改当前的PDU会话,并且携带映射后得到的空口QoS信息。
在一实施例中,通信装置,还包括:
第二接收模块,设置为接收第三通信节点配置的中继空口DRB或PC5 DRB,以及PC5数据和空口数据的映射关系。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,PC5数据和空口数据的映射关系包括下述之一:PC5 QoS流与空口QoS流的映射,PC5 DRB与空口DRB的映射,PC5 QoS流与空口DRB的映射,PC5 DRB与空口QoS流的映射。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,第三通信节点为第一通信节点配置PC5数据和空口数据的映射关系的时间段,包括下述之一:
在第一通信节点发送PDU会话建立请求或PDU会话修改请求之后;
在第一通信节点与第二通信节点建立PC5 RRC连接之后,第一通信节点上报PC5 DRB信息,PC5 DRB信息包括下述至少之一:承载标识、RLC模式、逻辑信道标识、逻辑信道优先级、无线链路层控制协议RLC相关配置;
在第一通信节点发送直通链路UE信息SUI至第三通信节点之后。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,PC5数据和空口数据的映射关系,包括下述之一:
NR PC5 QoS流与NR空口QoS流的映射配置,映射配置包括下述至少之一:PC5 QoS信息与空口QoS信息的映射、QFI与PC5流标识PFI的映射;
所述PC5 QoS信息与空口QoS信息的映射包括以下至少之一:将空口QoS流中的5QI映射为完全相同的PC5 PQI;在所述完全相同的空口5QI未匹配PQI的情况下,选择标准5QI列表中最接近PQI所表示QoS属性的5QI值;空口 QoS流中的GFBR,MFBR直接设置为PC5 QoS信息中的GFBR,MFBR;
将PC5 QoS流中的PQI映射为完全相同的空口5QI;在所述完全相同的空口5QI未匹配PQI的情况下,选择标准PQI列表中最接近5QI所表示QoS属性的PQI值;PC5 QoS流中的GFBR,MFBR直接设置为Uu QoS Info中的GFBR,MFBR;
NR PC5 QoS流与NR空口DRB的映射配置,映射配置包括下述至少之一:PC5 PFI与空口DRB标识的映射、PC5 PQI与空口DRB优先级的映射、PC5 PQI与空口逻辑信道优先级的映射;
NR PC5 DRB与NR空口DRB的映射配置,映射配置包括下述至少之一:PC5 DRB优先级与空口DRB优先级的映射、PC5 DRB标识与空口DRB标识的映射、PC5逻辑信道优先级与空口逻辑信道优先级的映射,PC5逻辑信道标识与空口逻辑信道标识的映射;
NR PC5 DRB与NR Uu QoS流的映射配置,配置包含以下至少之一:PC5 DRB标识与Uu QFI的映射,PC5 DRB优先级与Uu 5QI的映射,PC5逻辑信道优先级与Uu 5QI的映射。
在一实施例中,在第一通信节点与第二通信节点之间采用长期演进LTE PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,多对一映射,包括下述方式之一:
根据第一通信节点的空口上行QoS规则和DRB配置,将第二通信节点的IP数据映射至中继NR空口DRB;
基于第三通信节点配置或预配置的LTE PC5逻辑信道与NR空口DRB的映射关系,将IP数据映射至中继NR空口DRB;
基于接收的第二通信节点的PC5数据的近邻服务包优先级PPPP,以及第三通信节点配置或预配置的PPPP与5QI的映射关系,以及NR空口DRB配置,将第二通信节点的IP数据映射至空口QoS流,进而映射到中继NR空口DRB;
基于接收的第二通信节点的PC5数据的PPPP值,以及第三通信节点配置或预配置的PPPP值与NR空口DRB的映射关系,将第二通信节点的IP数据映射至中继NR空口DRB。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用LTE PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口的情况下,在所述接收第二通信节点发送的网际协议IP数据之前,还包括:
接收第二通信节点的中继连接请求和PC5单播连接请求;
根据所述第三通信节点反馈的配置信息建立空口DRB,以及上下行数据的映射。
在一实施例中,在第一通信节点与第二通信节点之间采用LTE PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,在第一通信节点和第二通信节点建立层2链路连接的过程中,采用第四预设映射方式将预先获取的PPPP值映射为NR空口QoS信息。
在一实施例中,第四预设映射方式,包括:
基于第三通信节点配置或预配置的PPPP-5QI映射表。
在一实施例中,在所述将预先获取的PC5 PPPP值映射为NR空口QoS信息之后,还包括:
根据所述空口QoS信息向所述第三通信节点发送PDU会话建立请求,所述PDU会话建立请求用于转发所述第二通信节点的IP数据;
或者,向所述第三通信节点发送PDU会话修改请求,所述PDU会话修改请求用于修改当前的PDU会话,并且携带映射后得到的空口QoS信息。
在一实施例中,通信方法,还包括:接收所述第三通信节点配置的中继空口DRB,以及PC5数据和空口数据的映射关系。
在一实施例中,在第一通信节点与第二通信节点之间采用LTE PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,PC5数据和空口数据的映射关系包括下述之一:PC5逻辑信道与空口DRB的映射,PC5 PPPP数据流与空口DRB的映射,PC5 PPPP数据流与Uu QoS流的映射。
在一实施例中,在第一通信节点与第二通信节点之间采用LTE PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,第三通信节点为第一通信节点配置PC5数据和空口数据的映射关系的时间段,包括下述之一:
在第一通信节点发送PDU会话建立请求或PDU会话修改请求之后;
在第一通信节点与第二通信节点建立中继连接之后,第一通信节点上报LTE PC5逻辑信道信息,PC5逻辑信道信息包括下述至少之一:RLC模式、逻辑信道标识、逻辑信道优先级、RLC相关配置;
在第一通信节点发送SUI至第三通信节点之后。
在一实施例中,在第一通信节点与第二通信节点之间采用LTE PC5连接,且第二通信节点与第三通信节点采用NR空口的情况下,PC5数据和空口数据的映射关系,包括下述之一:
LTE PC5逻辑信道与NR空口DRB的映射配置,所述映射配置包括下述至少之一:LTE PC5逻辑信道标识与NR空口DRB标识的映射,LTE PC5逻辑信道优先级与NR空口DRB优先级的映射,LTE PC5逻辑信道优先级与NR空口逻辑信道优先级的映射,LTE PC5逻辑信道标识与NR空口逻辑信道标识的映射;
LTE PC5 PPPP流与NR空口DRB的映射配置,所述映射配置包括下述至少之一:LTE PPPP值与空口DRB优先级的映射配置,LTE PPPP值与空口逻辑信道优先级的映射;
LTE PC5 PPPP流与NR空口QoS流的映射配置,所述映射配置包括下述至少之一:LTE PPPP值与NR空口QoS信息的映射配置;
LTE PC5 PPPP值与NR空口QoS信息的映射配置,所述映射配置包括下述至少之一:LTE PC5 PPPP值与NR空口5QI的映射表。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,多对一映射,包括下述方式之一:
根据第一通信节点的上行业务流模板TFT和DRB配置,将至少两个第二通信节点的IP数据映射至LTE空口DRB;
基于第三通信节点配置或预配置的NR PC5 DRB或LTE空口DRB的映射关系,将IP数据映射至LTE空口DRB;
基于所述第三通信节点配置或预配置的NR PC5 QoS流与LTE空口DRB的映射关系,将所述IP数据映射至LTE空口DRB;
基于所述第三通信节点配置或预配置的NR PC5 QoS流与LTE空口EPS承载的映射关系以及LTE空口DRB的配置,将所述IP数据映射至LTE空口DRB。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,采用第五预设映射方式将预先获取的NR PC5 QoS信息映射为LTE空口QoS信息。
在一实施例中,第五预设映射方式,包括:
将NR PC5 QoS流中的PQI映射为完全相同的LTE空口5QI;
在完全相同的LTE空口5QI未匹配PQI的情况下,选择标准LTE QCI列表中最接近PQI所表示QoS属性的QCI值;
将空口QoS流中的GFBR值和MFBR值设置为PC5 QoS流中的GFBR和MFBR值。
在一实施例中,在所述将预先获取的PC5 PPPP值映射为NR空口QoS信息之后,还包括:
根据所述空口QoS信息向所述第三通信节点发送PDU会话建立请求,所述PDU会话建立请求用于转发所述第二通信节点的IP数据;
或者,向所述第三通信节点发送PDU会话修改请求,所述PDU会话修改请求用于修改当前的PDU会话,并且携带映射后得到的空口QoS信息。
在一实施例中,通信装置,还包括:第三接收模块,设置为接收所述第三通信节点配置的中继空口DRB,以及PC5数据和空口数据的映射关系。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,PC5数据和空口数据的映射关系包括下述之一:NR PC5 QoS与LTE空口EPS承载映射,NR PC5 DRB与LTE空口DRB映射,NR PC5 QoS流与LTE空口DRB映射,NR PC5 DRB与LTE空口EPS承载映射。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,第三通信节点为第一通信节点配置PC5数据和空口数据的映射关系的时间段,包括下述之一:
在第一通信节点发送PDU会话连接请求或承载资源修改请求之后;
在第一通信节点与第二通信节点建立PC5无线资源控制RRC连接之后,第一通信节点上报NR PC5 DRB信息,NR PC5 DRB信息包括下述至少之一:承载标识、RLC模式、逻辑信道标识、逻辑信道优先级、RLC相关配置;
在第一通信节点发送SUI至第三通信节点之后。
在一实施例中,在第一通信节点与第二通信节点之间采用NR PC5连接,且第二通信节点与第三通信节点采用LTE空口的情况下,PC5数据和空口数据的映射关系,包括下述之一:
NR PC5 QoS流与LTE空口EPS承载的映射配置,映射配置包括下述至少之一:PC5 QFI与空口EPS承载标识之间的映射,NR PC5 QoS Info与LTE空口QoS Info之间的映射;
所述PC5 QoS Info与空口QoS Info的映射包括以下至少之一:将空口QoS流的QCI映射为完全相同的PC5 PQI;在所述完全相同的空口QCI未匹配PQI的情况下,选择标准QCI列表中最接近PQI所表示QoS属性的QCI值;空口QoS流中的GFBR,MFBR直接设置为PC5 QoS Info中的GFBR,MFBR;
将PC5 QoS流中的PQI映射为完全相同的空口QCI;在所述完全相同的空口QCI未匹配PQI的情况下,选择标准PQI列表中最接近QCI所表示QoS属性的PQI值;PC5 QoS流中的GFBR,MFBR直接设置为Uu QoS Info中的GFBR,MFBR;
NR PC5 QoS流与LTE空口DRB的映射配置,映射配置包括下述至少之一:PC5 PFI与空口DRB标识的映射、PC5 PQI与空口DRB优先级的映射、PC5 PQI与空口逻辑信道优先级的映射;
NR PC5 DRB与LTE空口DRB的映射配置,映射配置包括下述至少之一:PC5 DRB优先级与空口DRB优先级的映射、PC5 DRB标识与空口DRB标识的映射、PC5逻辑信道优先级与空口逻辑信道优先级的映射,NR PC5逻辑信道标识与LTE空口逻辑信道标识的映射;
NR PC5 DRB与LTE空口EPS承载的映射配置,所述映射配置包括下述至少之一:PC5 DRB优先级与空口EPS承载QCI的映射,PC5 DRB标识与空口EPS承载标识的映射,PC5逻辑信道与空口EPS承载QCI的映射。
在一实施例中,在第二通信节点的空口链路质量或中继链路质量出现故障的情况下,第二通信节点的切换方式,包括下述之一:从空口连接切换为中继连接;从中继连接切换为空口连接;从第一个第一通信节点连接切换为第二个第一通信节点连接。
在一实施例中,在第二通信节点的切换方式为从空口连接切换为中继连接的情况下,对于缓存在第二通信节点中等待传输的上行数据,包括下述连接方式之一:
将第二通信节点中未处理的IP数据,直接切换到中继链路传输;
针对第二通信节点中已映射至空口QoS流的IP数据,基于第三通信节点配置或预配置的空口QoS流至PC5QoS流的映射配置,将空口QoS流映射为PC5 QoS流,或者,基于第三通信节点配置或预配置的空口QoS流至PC5DRB的映射配置,将空口QoS流映射为PC5 DRB;
针对第二通信节点中已映射至空口DRB的IP数据,根据空口PDCP对IP数据解密,并基于第三通信节点配置或预配置的空口DRB至PC5 DRB的映射配置,将空口DRB映射为PC5 DRB。
在一实施例中,在第二通信节点的切换方式为从中继连接切换为空口连接的情况下,对于缓存在第二通信节点中等待传输的上行数据,包括下述连接方式之一:
将第二通信节点中未处理的IP数据,直接切换到空口链路传输;
针对第二通信节点中已映射至PC5 QoS流的IP数据,基于第三通信节点配置或预配置的空口QoS流至PC5QoS流的映射配置,将PC5 QoS流映射为空口QoS流,或者,基于第三通信节点配置或预配置的PC5 QoS流至空口DRB的映射配置,将PC5 QoS流映射为空口DRB;
针对第二通信节点中已映射至PC5 DRB的IP数据,根据PC5 PDCP对IP数据解密,并基于第三通信节点配置或预配置的PC5 DRB至空口DRB的映射配置,将PC5 DRB映射为空口DRB。
在一实施例中,在第二通信节点的切换方式为从第一个第一通信节点切换为第二个第一通信节点的情况下,对于缓存在第二通信节点中等待传输的上行 数据,包括下述连接方式之一:
将第二通信节点发送至第一个第一通信节点的IP数据和PC5 QoS流数据转发至第二个第一通信节点;
针对已映射到与第一个第一通信节点建立的PC5 DRB中的IP数据,按照与第二个第一通信节点建立的PDCP层解密,并映射到与第二个第一通信节点建立的具有相同逻辑信道优先级的PC5 DRB;
针对已缓存在第一个第一通信节点的IP数据,继续由第一个第一通信节点完成上行传输。
在一实施例中,在第二通信节点的空口链路质量或中继链路质量出现故障的情况下,链路切换决策,包括下述之一:
通过第三通信节点配置链路切换准则或测量配置;
通过第三通信节点配置或预配置链路切换准则。
在一实施例中,在第二通信节点的切换方式为从空口连接切换为中继连接的情况下,链路切换准则包括下述至少之一:
空口链路质量阈值;业务类型;PC5接口链路质量阈值;
测量配置,包括:空口测量配置和中继测量配置。
在一实施例中,在第二通信节点的切换方式为从中继连接切换为空口连接的情况下,链路切换准则包括下述至少之一:
空口链路质量阈值;PC5接口链路质量阈值;第一通信节点空口链路质量阈值;PC5接口资源池CBR阈值;业务类型/业务需求。
图10是本申请实施例提供的另一种通信装置的结构框图。如图10所示,本实施例中的通信装置包括:第四接收模块610、确定模块620、第二映射模块630;
第四接收模块610,设置为接收第三通信节点发送的下行数据;
确定模块620,设置为根据所述下行数据中的IP地址确定所属的第二通信节点;
第二映射模块630,设置为按照第二预设映射方式将所述下行数据映射为PC5数据,并传输至所属的第二通信节点。
本实施例提供的通信装置设置为实现图2所示实施例的应用于第一通信节点的通信方法,本实施例提供的通信装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口的情况下,所述第二预设映射方式,包括下述之一:
根据第一通信节点自身推导的QoS规则和所述第三通信节点配置的PC5 DRB配置,将所述下行数据映射至相应的PC5 DRB;
在PC5 DRB为双向承载的情况下,基于上行PC5 DRB到空口DRB的映射关系进行反向映射;
基于所述第三通信节点配置的NR Uu QoS流到PC5 QoS流的映射关系和PC5 DRB配置,将空口QoS流映射为PC5 QoS流,再映射至PC5 DRB;
基于所述第三通信节点配置或者预配置的NR Uu QoS流到PC5 DRB的映射关系,将所述下行数据映射至PC5 DRB;
基于所述第三通信节点配置或者预配置的空口DRB与PC5 DRB的映射关系,将所述下行数据映射至PC5 DRB。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用LTE PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口的情况下,所述第二预设映射方式,包括下述之一:
基于所述第三通信节点配置或预配置的NR空口DRB与LTE PC5逻辑信道的映射关系,将第二通信节点的IP数据映射至LTE PC5逻辑信道;
基于所述第三通信节点配置的或预配置的NR空口DRB与LTE PC5 PPPP值之间的映射关系,将第二通信节点的IP数据映射至LTE PC5逻辑信道;
基于所述第三通信节点配置或预配置的NR空口QoS流与LTE PC5 PPPP数据流的映射关系,将第二通信节点的IP数据映射至LTE PC5逻辑信道。
在一实施例中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用LTE空口的情况下,所述第二预设映射方式,包括下述之一:
根据第一通信节点自身推导的QoS规则和所述第三通信节点配置的PC5 DRB配置,将所述下行数据映射至相应的NR PC5 DRB;
基于所述第三通信节点配置或预配置的LTE空口DRB与NR PC5 DRB的映射关系,将所述IP数据映射至NR PC5 DRB;
基于所述第三通信节点配置或预配置的LTE空口DRB与NR PC5 QoS flow的映射关系,将所述IP数据映射至NR PC5 DRB;
基于所述第三通信节点配置或预配置的LTE空口EPS承载与NR PC5 QoS流的映射关系以及LTE空口DRB的配置,将所述IP数据映射至LTE空口DRB。
图11是本申请实施例提供的一种设备的结构示意图。如图11所示,本申请提供的设备,包括:处理器710、存储器720和通信模块730。该设备中处理器710的数量可以是一个或者多个,图11中以一个处理器710为例。该设备中存储器720的数量可以是一个或者多个,图11中以一个存储器720为例。该设备的处理器710、存储器720和通信模块730可以通过总线或者其他方式连接,图11中以通过总线连接为例。在该实施例中,该设备为第一通信节点。
存储器720作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,通信装置中的第一接收模块和第一映射模块)。存储器720可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器720可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器720可进一步包括相对于处理器710远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块730,设置为在第一通信节点和第二通信节点之间进行通信连接,以进行数据通信和信号通信。
上述提供的设备可设置为执行上述任意实施例提供的应用于第一通信节点的通信方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行应用于第一通信节点的一种通信方法,该方法包括:接收第二通信节点发送的网际协议IP数据;按照第一预设映射方式将IP数据映射至中继承载,并传输至第三通信节点。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行应用于第一通信节点的一种通信方法,该方法包括:接收第三通信节点发送的下行数据;根据所述下行数据中的IP地址确定所属的第二通信节点;按照第二预设映射方式将所述下行数据映射为PC5数据,并传输至所属的第二通信节点。
本领域内的技术人员应明白,术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于 通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (42)

  1. 一种通信方法,应用于第一通信节点,包括:
    接收第二通信节点发送的网际协议IP数据;
    按照第一预设映射方式将所述IP数据映射至中继承载,并将映射后的IP数据传输至第三通信节点。
  2. 根据权利要求1所述的方法,其中,所述第一通信节点为所述IP数据选择的协议数据单元PDU会话,包括下述之一:
    为所述IP数据建立独立的PDU会话,并在所述PDU会话对应的数据无线承载DRB上传输所述IP数据;
    采用所述第一通信节点自身的PDU会话传输所述IP数据。
  3. 根据权利要求1所述的方法,其中,针对至少两个第二通信节点连接到同一个所述第一通信节点的情况,所述第一预设映射方式,包括下述之一:一对一映射;多对一映射;
    其中,所述一对一映射,用于指示不同第二通信节点的IP数据分别通过不同的中继空口DRB进行发送;所述多对一映射,用于指示至少两个第二通信节点的IP数据映射至同一个中继空口DRB进行发送。
  4. 根据权利要求3所述的方法,其中,在所述第一通信节点与所述至少两个第二通信节点之间采用新空口直通链路接口NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,所述多对一映射,包括下述方式之一:
    根据所述第一通信节点的空口服务质量QoS规则和DRB配置,将所述至少两个第二通信节点的IP数据映射至中继空口DRB;
    基于所述第三通信节点配置或预配置的PC5 DRB与空口DRB的映射关系,将所述IP数据映射至中继空口DRB;
    基于所述第三通信节点配置或预配置的PC5 QoS流与NR空口QoS流的映射关系和NR空口DRB的配置,将所述IP数据映射至中继空口DRB;
    基于所述第三通信节点配置或预配置的PC5 QoS流与空口DRB的映射关系,将所述IP数据映射至中继空口DRB。
  5. 根据权利要求1所述的方法,其中,在所述第一通信节点与所述第二通信 节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,在所述接收第二通信节点发送的IP数据之前,还包括:
    接收所述第二通信节点的中继连接请求或PC5单播连接请求;
    根据所述第三通信节点反馈的配置信息建立空口DRB和下行PC5 DRB,以及上下行数据的映射。
  6. 根据权利要求5所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,在所述第一通信节点和所述第二通信节点建立层2链路连接的过程中,采用第三预设映射方式将预先获取的PC5 QoS信息映射为空口QoS信息。
  7. 根据权利要求6所述的方法,其中,所述第三预设映射方式,包括:
    将PC5 QoS流中的直通链路接口上的第五代移动通信技术服务质量标识PQI映射为完全相同的空口第五代移动通信技术服务质量标识5QI;
    在所述完全相同的空口5QI未匹配所述PQI的情况下,选择标准5QI列表中最接近所述PQI所表示QoS属性的5QI值;
    将空口QoS流中的保证流比特率GFBR值和最大流比特率MFBR值设置为所述PC5 QoS流中的GFBR值和MFBR值。
  8. 根据权利要求6或7所述的方法,其中,在所述将预先获取的PC5 QoS信息映射为空口QoS信息之后,还包括:
    根据空口QoS流向所述第三通信节点发送PDU会话建立请求,所述PDU会话建立请求用于转发所述第二通信节点的IP数据;
    或者,向所述第三通信节点发送PDU会话修改请求,所述PDU会话修改请求用于修改当前的PDU会话,并且携带映射后得到的空口QoS信息。
  9. 根据权利要求5所述的方法,还包括:
    接收所述第三通信节点配置的中继空口DRB或PC5 DRB,以及PC5数据和空口数据的映射关系。
  10. 根据权利要求9所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用 NR空口连接的情况下,所述PC5数据和空口数据的映射关系包括下述之一:PC5 QoS流与空口QoS流的映射,PC5 DRB与空口DRB的映射,PC5 QoS流与空口DRB的映射,PC5 DRB与空口QoS流的映射。
  11. 根据权利要求9所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,所述第三通信节点为所述第一通信节点配置所述PC5数据和空口数据的映射关系的时间段,包括下述之一:
    在所述第一通信节点发送PDU会话建立请求或PDU会话修改请求之后;
    在所述第一通信节点与所述第二通信节点建立PC5无线资源控制RRC连接之后,所述第一通信节点上报PC5 DRB信息,所述PC5 DRB信息包括下述至少之一:承载标识、无线链路层控制协议RLC模式、逻辑信道标识、逻辑信道优先级、RLC相关配置;
    在所述第一通信节点发送直通链路用户设备信息SUI至所述第三通信节点之后。
  12. 根据权利要求4、9或10所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,PC5数据和空口数据的映射关系,包括下述之一:
    NR PC5 QoS流与NR空口QoS流的映射配置,所述NR PC5 QoS流与NR空口QoS流的映射配置包括下述至少之一:PC5 QoS信息与空口QoS信息的映射、服务质量流标识QFI与PC5流标识PFI的映射;
    所述PC5 QoS信息与空口QoS信息的映射包括以下至少之一:
    将空口QoS流中的5QI映射为完全相同的PC5 PQI;
    在所述完全相同的空口5QI未匹配PQI的情况下,选择标准5QI列表中最接近PQI所表示QoS属性的5QI值;
    将空口QoS流中的GFBR值和MFBR值直接设置为PC5 QoS信息中的GFBR值和MFBR值;
    将PC5 QoS流中的PQI映射为完全相同的空口5QI;
    在所述完全相同的空口5QI未匹配PQI的情况下,选择标准PQI列表中最 接近5QI所表示QoS属性的PQI值;
    将PC5 QoS流中的GFBR值和MFBR值直接设置为Uu QoS信息中的GFBR值和MFBR值;
    NR PC5 QoS流与NR空口DRB的映射配置,所述NR PC5 QoS流与NR空口DRB的映射配置包括下述至少之一:PC5 PFI与空口DRB标识的映射、PC5 PQI与空口DRB优先级的映射、PC5 PQI与空口逻辑信道优先级的映射;
    NR PC5 DRB与NR空口DRB的映射配置,所述NR PC5 DRB与NR空口DRB的映射配置包括下述至少之一:PC5 DRB优先级与空口DRB优先级的映射、PC5 DRB标识与空口DRB标识的映射、PC5逻辑信道优先级与空口逻辑信道优先级的映射,PC5逻辑信道标识与空口逻辑信道标识的映射;
    NR PC5 DRB与NR Uu QoS流的映射配置,所述NR PC5 DRB与NR Uu QoS流的映射配置包含以下至少之一:PC5 DRB标识与Uu QFI的映射,PC5 DRB优先级与Uu 5QI的映射,PC5逻辑信道优先级与Uu 5QI的映射。
  13. 根据权利要求3所述的方法,其中,在所述第一通信节点与所述至少两个第二通信节点之间采用长期演进LTE PC5连接,且所述至少两个第二通信节点与所述第三通信节点采用NR空口连接的情况下,所述多对一映射,包括下述方式之一:
    根据所述第一通信节点的空口上行QoS规则和DRB配置,将所述至少两个第二通信节点的IP数据映射至中继NR空口DRB;
    基于所述第三通信节点配置或预配置的LTE PC5逻辑信道与NR空口DRB的映射关系,将所述IP数据映射至中继NR空口DRB;
    基于接收的第二通信节点的PC5数据的近邻服务包优先级PPPP值,所述第三通信节点配置或预配置的PPPP与5QI的映射关系以及NR空口DRB配置,将所述第二通信节点的IP数据映射至空口QoS流,并映射到中继NR空口DRB;
    基于接收的第二通信节点的PC5数据的PPPP值,以及所述第三通信节点配置或预配置的PPPP值与NR空口DRB的映射关系,将所述第二通信节点的IP数据映射至中继NR空口DRB。
  14. 根据权利要求1所述的方法,其中,在所述第一通信节点与所述第二通 信节点之间采用LTE PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,在所述接收第二通信节点发送的IP数据之前,还包括:
    接收所述第二通信节点的中继连接请求或PC5单播连接请求;
    根据所述第三通信节点反馈的配置信息建立空口DRB,以及上下行数据的映射。
  15. 根据权利要求14所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用LTE PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,在所述第一通信节点和所述第二通信节点建立层2链路连接的过程中,采用第四预设映射方式将预先获取的PC5 PPPP值映射为NR空口QoS信息。
  16. 根据权利要求15所述的方法,其中,所述第四预设映射方式,包括:
    基于所述第三通信节点配置或预配置的PPPP-5QI映射表。
  17. 根据权利要求15或16所述的方法,其中,在所述将预先获取的PC5 PPPP值映射为NR空口QoS信息之后,还包括:
    根据所述NR空口QoS信息向所述第三通信节点发送PDU会话建立请求,所述PDU会话建立请求用于转发所述第二通信节点的IP数据;
    或者,向所述第三通信节点发送PDU会话修改请求,所述PDU会话修改请求用于修改当前的PDU会话,并且携带映射后得到的NR空口QoS信息。
  18. 根据权利要求14所述的方法,还包括:
    接收所述第三通信节点配置的中继空口DRB,以及PC5数据和空口数据的映射关系。
  19. 根据权利要求18所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用LTE PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,所述PC5数据和空口数据的映射关系包括下述之一:PC5逻辑信道与空口DRB的映射,PC5 PPPP数据流与空口DRB的映射,PC5 PPPP数据流与Uu QoS流的映射。
  20. 根据权利要求19所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用LTE PC5连接,且所述第二通信节点与所述第三通信节点采用 NR空口连接的情况下,所述第三通信节点为所述第一通信节点配置所述PC5数据和空口数据的映射关系的时间段,包括下述之一:
    在所述第一通信节点发送PDU会话建立请求或PDU会话修改请求之后;
    在所述第一通信节点与所述第二通信节点建立中继连接之后,所述第一通信节点上报LTE PC5逻辑信道信息,所述LTE PC5逻辑信道信息包括下述至少之一:RLC模式、逻辑信道标识、逻辑信道优先级、RLC相关配置;
    在所述第一通信节点发送SUI至所述第三通信节点之后。
  21. 根据权利要求13、19或20所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用LTE PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,所述PC5数据和空口数据的映射关系,包括下述之一:
    LTE PC5逻辑信道与NR空口DRB的映射配置,所述映射配置包括下述至少之一:LTE PC5逻辑信道标识与NR空口DRB标识的映射,LTE PC5逻辑信道优先级与NR空口DRB优先级的映射,LTE PC5逻辑信道优先级与NR空口逻辑信道优先级的映射,LTE PC5逻辑信道标识与NR空口逻辑信道标识的映射;
    LTE PC5 PPPP流与NR空口DRB的映射配置,所述映射配置包括下述至少之一:LTE PPPP值与空口DRB优先级的映射配置,LTE PPPP值与空口逻辑信道优先级的映射;
    LTE PC5 PPPP流与NR空口QoS流的映射配置,所述LTE PC5 PPPP流与NR空口QoS流的映射配置包括下述至少之一:LTE PPPP值与NR空口QoS信息的映射配置;
    LTE PC5 PPPP值与NR空口QoS信息的映射配置,所述LTE PC5 PPPP值与NR空口QoS信息的映射配置包括下述至少之一:LTE PC5 PPPP值与NR空口5QI的映射表。
  22. 根据权利要求3所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用LTE空口连接的情况下,所述多对一映射,包括下述方式之一:
    根据所述第一通信节点的上行业务流模板TFT和DRB配置,将至少两个所述第二通信节点的IP数据映射至LTE空口DRB;
    基于所述第三通信节点配置或预配置的NR PC5 DRB或LTE空口DRB的映射关系,将所述IP数据映射至LTE空口DRB;
    基于所述第三通信节点配置或预配置的NR PC5 QoS流与LTE空口DRB的映射关系,将所述IP数据映射至LTE空口DRB;
    基于所述第三通信节点配置或预配置的NR PC5 QoS流与LTE空口演进分组系统EPS承载的映射关系以及LTE空口DRB的配置,将所述IP数据映射至LTE空口DRB。
  23. 根据权利要求22所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用LTE空口连接的情况下,采用第五预设映射方式将预先获取的NR PC5 QoS信息映射为LTE空口QoS信息。
  24. 根据权利要求23所述的方法,其中,所述第五预设映射方式,包括:
    将NR PC5 QoS流中的PQI映射为完全相同的LTE空口5QI;
    在所述完全相同的LTE空口5QI未匹配PQI的情况下,选择标准LTE服务质量分类标识QCI列表中最接近PQI所表示QoS属性的QCI值;
    将空口QoS流中的GFBR值和MFBR值设置为PC5 QoS流中的GFBR值和MFBR值。
  25. 根据权利要求21所述的方法,其中,在所述将预先获取的PC5 PPPP值映射为NR空口QoS信息之后,还包括:
    根据所述NR空口QoS信息向所述第三通信节点发送PDU会话建立请求,所述PDU会话建立请求用于转发所述第二通信节点的IP数据;
    或者,向所述第三通信节点发送PDU会话修改请求,所述PDU会话修改请求用于修改当前的PDU会话,并且携带映射后得到的NR空口QoS信息。
  26. 根据权利要求22所述的方法,还包括:
    接收所述第三通信节点配置的中继空口DRB,以及PC5数据和空口数据的映射关系。
  27. 根据权利要求26所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用LTE空口连接的情况下,所述PC5数据和空口数据的映射关系包括下述之一:NR PC5 QoS与LTE空口EPS承载映射,NR PC5 DRB与LTE空口DRB映射,NR PC5 QoS流与LTE空口DRB映射,NR PC5 DRB与LTE空口EPS承载映射。
  28. 根据权利要求27所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用LTE空口连接的情况下,所述第三通信节点为所述第一通信节点配置所述PC5数据和空口数据的映射关系的时间段,包括下述之一:
    在所述第一通信节点发送PDU会话连接请求或承载资源修改请求之后;
    在所述第一通信节点与所述第二通信节点建立PC5 RRC连接之后,所述第一通信节点上报NR PC5 DRB信息,所述NR PC5 DRB信息包括下述至少之一:承载标识、RLC模式、逻辑信道标识、逻辑信道优先级、RLC相关配置;
    在所述第一通信节点发送SUI至所述第三通信节点之后。
  29. 根据权利要求22、27或28所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用LTE空口连接的情况下,PC5数据和空口数据的映射关系,包括下述之一:
    NR PC5 QoS流与LTE空口EPS承载的映射配置,所述NR PC5 QoS流与LTE空口EPS承载的映射配置包括下述至少之一:PC5 QFI与空口EPS承载标识之间的映射,NR PC5 QoS信息与LTE空口QoS信息之间的映射;
    所述NR PC5 QoS信息与LTE空口QoS信息的映射包括以下至少之一:
    将空口QoS流的QCI映射为完全相同的PC5 PQI;
    在所述完全相同的空口QCI未匹配PQI的情况下,选择标准QCI列表中最接近PQI所表示QoS属性的QCI值;
    将空口QoS流中的GFBR值和MFBR值直接设置为PC5 QoS信息中的GFBR值和MFBR值;
    将PC5 QoS流中的PQI映射为完全相同的空口QCI;
    在所述完全相同的空口QCI未匹配PQI的情况下,选择标准PQI列表中最接近QCI所表示QoS属性的PQI值;
    将PC5 QoS流中的GFBR值和MFBR值直接设置为Uu QoS信息中的GFBR值和MFBR值;
    NR PC5 QoS流与LTE空口DRB的映射配置,所述映射配置包括下述至少之一:PC5 PFI与空口DRB标识的映射、PC5 PQI与空口DRB优先级的映射、PC5 PQI与空口逻辑信道优先级的映射;
    NR PC5 DRB与LTE空口DRB的映射配置,所述映射配置包括下述至少之一:PC5 DRB优先级与空口DRB优先级的映射、PC5 DRB标识与空口DRB标识的映射、PC5逻辑信道优先级与空口逻辑信道优先级的映射,NR PC5逻辑信道标识与LTE空口逻辑信道标识的映射;
    NR PC5 DRB与LTE空口EPS承载的映射配置,所述映射配置包括下述至少之一:PC5 DRB优先级与空口EPS承载QCI的映射,PC5 DRB标识与空口EPS承载标识的映射,PC5逻辑信道与空口EPS承载QCI的映射。
  30. 根据权利要求1所述的方法,其中,在所述第二通信节点的空口链路质量或中继链路质量出现故障的情况下,所述第二通信节点的切换方式,包括下述之一:从空口连接切换为中继连接;从中继连接切换为空口连接;从第一个第一通信节点连接切换为第二个第一通信节点连接。
  31. 根据权利要求30所述的方法,其中,在所述第二通信节点的切换方式为从所述空口连接切换为所述中继连接的情况下,对于缓存在所述第二通信节点中等待传输的上行数据,包括下述连接方式之一:
    将所述第二通信节点中未处理的IP数据,直接切换到中继链路传输;
    针对所述第二通信节点中已映射至空口QoS流的IP数据,基于所述第三通信节点配置或预配置的空口QoS流至PC5 QoS流的映射配置,将空口QoS流映射为PC5 QoS流,或者,基于所述第三通信节点配置或预配置的空口QoS流至PC5 DRB的映射配置,将空口QoS流映射为PC5 DRB;
    针对所述第二通信节点中已映射至空口DRB的IP数据,根据空口分组数据会聚协议PDCP对所述IP数据解密,并基于所述第三通信节点配置或预配置 的空口DRB至PC5 DRB的映射配置,将空口DRB映射为PC5 DRB。
  32. 根据权利要求30所述的方法,其中,在所述第二通信节点的切换方式为从所述中继连接切换为所述空口连接的情况下,对于缓存在所述第二通信节点中等待传输的上行数据,包括下述连接方式之一:
    将所述第二通信节点中未处理的IP数据,直接切换到空口链路传输;
    针对所述第二通信节点中已映射至PC5 QoS流的IP数据,基于所述第三通信节点配置或预配置的空口QoS流至PC5 QoS流的映射配置,将PC5 QoS流映射为空口QoS流,或者,基于所述第三通信节点配置或预配置的PC5 QoS流至空口DRB的映射配置,将PC5 QoS流映射为空口DRB;
    针对所述第二通信节点中已映射至PC5 DRB的IP数据,根据PC5 PDCP对所述IP数据解密,并基于所述第三通信节点配置或预配置的PC5 DRB至空口DRB的映射配置,将PC5 DRB映射为空口DRB。
  33. 根据权利要求30所述的方法,其中,在所述第二通信节点的切换方式为从所述第一个第一通信节点切换为所述第二个第一通信节点的情况下,对于缓存在所述第二通信节点中等待传输的上行数据,包括下述连接方式之一:
    将所述第二通信节点发送至所述第一个第一通信节点的IP数据和PC5 QoS流数据转发至所述第二个第一通信节点;
    针对已映射到与所述第一个第一通信节点建立的PC5 DRB中的IP数据,按照与所述第二个第一通信节点建立的PDCP层解密,并将所述PDCP层解密后的IP数据映射到与所述第二个第一通信节点建立的具有相同逻辑信道优先级的PC5 DRB;
    针对已缓存在所述第一个第一通信节点的IP数据,继续由所述第一个第一通信节点完成上行传输。
  34. 根据权利要求30所述的方法,其中,在所述第二通信节点的空口链路质量或中继链路质量出现故障的情况下,链路切换决策,包括下述之一:
    通过所述第三通信节点配置链路切换准则或测量配置;
    通过所述第三通信节点配置或预配置链路切换准则。
  35. 根据权利要求34所述的方法,其中,在所述第二通信节点的切换方式为 从所述空口连接切换为所述中继连接的情况下,所述链路切换准则包括下述至少之一:
    空口链路质量阈值;业务类型;PC5接口链路质量阈值;
    所述测量配置,包括:空口测量配置和中继测量配置。
  36. 根据权利要求34所述的方法,其中,在所述第二通信节点的切换方式为从所述中继连接切换为所述空口连接的情况下,所述链路切换准则包括下述至少之一:
    空口链路质量阈值;PC5接口链路质量阈值;第一通信节点的空口链路质量阈值;PC5接口资源池信道忙碌率CBR阈值;业务类型或业务需求。
  37. 一种通信方法,应用于第一通信节点,包括:
    接收第三通信节点发送的下行数据;
    根据所述下行数据中的网际协议IP地址确定所属的第二通信节点;
    按照第二预设映射方式将所述下行数据映射为直通链路接口PC5数据,并将所述PC5数据传输至所属的第二通信节点。
  38. 根据权利要求37所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用新空口直通链路接口NR PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,所述第二预设映射方式,包括下述之一:
    根据所述第一通信节点自身推导的服务质量QoS规则和所述第三通信节点配置的直通链路接口数据无线承载PC5 DRB配置,将所述下行数据映射至PC5 DRB;
    在PC5 DRB为双向承载的情况下,基于上行PC5 DRB到空口DRB的映射关系进行反向映射;
    基于所述第三通信节点配置的NR Uu QoS流到PC5 QoS流的映射关系和PC5 DRB配置,将空口QoS流映射为PC5 QoS流,再映射至PC5 DRB;
    基于所述第三通信节点配置或者预配置的NR Uu QoS流到PC5 DRB的映射关系,将所述下行数据映射至PC5 DRB;
    基于所述第三通信节点配置或者预配置的空口DRB与PC5 DRB的映射关 系,将所述下行数据映射至PC5 DRB。
  39. 根据权利要求37所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用长期演进LTE PC5连接,且所述第二通信节点与所述第三通信节点采用NR空口连接的情况下,所述第二预设映射方式,包括下述之一:
    基于所述第三通信节点配置或预配置的NR空口DRB与LTE PC5逻辑信道的映射关系,将所述第二通信节点的IP数据映射至LTE PC5逻辑信道;
    基于所述第三通信节点配置的或预配置的NR空口DRB与LTE PC5近邻服务包优先级PPPP值之间的映射关系,将所述第二通信节点的IP数据映射至LTE PC5逻辑信道;
    基于所述第三通信节点配置或预配置的NR空口QoS流与LTE PC5 PPPP数据流的映射关系,将所述第二通信节点的IP数据映射至LTE PC5逻辑信道。
  40. 根据权利要求37所述的方法,其中,在所述第一通信节点与所述第二通信节点之间采用NR PC5连接,且所述第二通信节点与所述第三通信节点采用LTE空口连接的情况下,所述第二预设映射方式,包括下述之一:
    根据所述第一通信节点自身推导的QoS规则和所述第三通信节点配置的PC5 DRB配置,将所述下行数据映射至NR PC5 DRB;
    基于所述第三通信节点配置或预配置的LTE空口DRB与NR PC5 DRB的映射关系,将所述IP数据映射至NR PC5 DRB;
    基于所述第三通信节点配置或预配置的LTE空口DRB与NR PC5 QoS flow的映射关系,将所述IP数据映射至NR PC5 DRB;
    基于所述第三通信节点配置或预配置的LTE空口演进分组系统EPS承载与NR PC5 QoS流的映射关系以及LTE空口DRB的配置,将所述IP数据映射至LTE空口DRB。
  41. 一种设备,包括:存储器,以及一个或多个处理器;
    所述存储器,设置为存储一个或多个程序;
    所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-40中任一项所述的方法。
  42. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处 理器执行时实现权利要求1-40中任一项所述的方法。
PCT/CN2021/076153 2020-02-13 2021-02-09 通信方法、设备和存储介质 WO2021160105A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022549061A JP7340111B2 (ja) 2020-02-13 2021-02-09 通信方法、デバイスおよび記憶媒体
US17/799,335 US11917449B2 (en) 2020-02-13 2021-02-09 Communication method and device and storage medium
KR1020227030648A KR20220137725A (ko) 2020-02-13 2021-02-09 통신 방법, 설비 및 저장 매체
EP21754200.0A EP4102862A4 (en) 2020-02-13 2021-02-09 COMMUNICATION METHOD AND DEVICE AND STORAGE MEDIUM
CA3167943A CA3167943A1 (en) 2020-02-13 2021-02-09 Communication method and device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010091507.8 2020-02-13
CN202010091507.8A CN111901784A (zh) 2020-02-13 2020-02-13 一种通信方法、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021160105A1 true WO2021160105A1 (zh) 2021-08-19

Family

ID=73169787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076153 WO2021160105A1 (zh) 2020-02-13 2021-02-09 通信方法、设备和存储介质

Country Status (7)

Country Link
US (1) US11917449B2 (zh)
EP (1) EP4102862A4 (zh)
JP (1) JP7340111B2 (zh)
KR (1) KR20220137725A (zh)
CN (1) CN111901784A (zh)
CA (1) CA3167943A1 (zh)
WO (1) WO2021160105A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210321365A1 (en) * 2020-04-08 2021-10-14 Qualcomm Incorporated Quality of service or priority configuration for relay user equipment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543207B (zh) * 2020-04-20 2024-02-09 大唐移动通信设备有限公司 一种信息传输方法、网络设备及终端
KR20220001454A (ko) * 2020-06-29 2022-01-05 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드링크 데이터 무선 베어러 설정을 위한 위한 방법 및 장치
CN117158114A (zh) * 2020-12-09 2023-12-01 华为技术有限公司 一种路由方法、装置以及系统
WO2022155138A1 (en) * 2021-01-12 2022-07-21 Idac Holdings, Inc. Methods and apparatus for supporting differentiated quality of service in sidelink relays
CN115175116A (zh) * 2021-04-01 2022-10-11 维沃移动通信有限公司 Pdu会话建立方法、相关设备及可读存储介质
US20220330115A1 (en) * 2021-04-01 2022-10-13 Lg Electronics Inc. Method of operating a ue related to an rrc connection in a sidelink relay in a wireless communication system
CN115623467A (zh) * 2021-07-13 2023-01-17 维沃移动通信有限公司 中继的识别方法、中继的确定方法、终端及网络侧设备
WO2023004529A1 (en) * 2021-07-26 2023-02-02 Qualcomm Incorporated Techniques for performing quality of service management for sidelink communications
US11843971B2 (en) * 2021-10-14 2023-12-12 Cisco Technology, Inc. Dynamic enablement of RLC mode based on UE RF conditions
KR20240008232A (ko) * 2022-07-11 2024-01-18 아서스 테크놀러지 라이센싱 아이엔씨. 무선 통신 시스템에서 qos(quality of service) 플로우 설정을 위한 방법 및 장치
WO2024101659A1 (ko) * 2022-11-10 2024-05-16 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 포지셔닝 프로토콜 메시지의 재전송을 수행하는 방법 및 이를 위한 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180288822A1 (en) * 2017-03-30 2018-10-04 Lg Electronics Inc. Method and apparatus for transmitting and receiving a signal in a wireless communication system supporting a relay ue
CN108809897A (zh) * 2017-04-28 2018-11-13 中兴通讯股份有限公司 一种中继发现及中继转发方法、设备和存储介质
CN109246793A (zh) * 2017-05-17 2019-01-18 华为技术有限公司 多链接的数据传输方法及装置
CN109792326A (zh) * 2018-12-29 2019-05-21 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统
CN110662202A (zh) * 2018-06-29 2020-01-07 华硕电脑股份有限公司 在无线通信系统中处理装置到装置资源释放的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694814C1 (ru) * 2015-06-23 2019-07-17 Интердиджитал Пейтент Холдингз, Инк. ОБРАБОТКА ПРИОРИТЕТОВ В СИСТЕМЕ СВЯЗИ ProSe
CN108391285B (zh) * 2017-02-03 2023-05-05 中兴通讯股份有限公司 一种设备直通系统的通信方法、数据转发方法及装置
KR102265907B1 (ko) * 2017-03-22 2021-06-16 엘지전자 주식회사 무선 통신 시스템에서 서비스 품질 (QoS) 구조 기반으로 상향링크 패킷을 전송하는 방법 및 이를 위한 장치
US20190281491A1 (en) 2018-03-12 2019-09-12 Qualcomm Incorporated Quality of service (qos) congestion control handling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180288822A1 (en) * 2017-03-30 2018-10-04 Lg Electronics Inc. Method and apparatus for transmitting and receiving a signal in a wireless communication system supporting a relay ue
CN108809897A (zh) * 2017-04-28 2018-11-13 中兴通讯股份有限公司 一种中继发现及中继转发方法、设备和存储介质
CN109246793A (zh) * 2017-05-17 2019-01-18 华为技术有限公司 多链接的数据传输方法及装置
CN110662202A (zh) * 2018-06-29 2020-01-07 华硕电脑股份有限公司 在无线通信系统中处理装置到装置资源释放的方法和设备
CN109792326A (zh) * 2018-12-29 2019-05-21 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102862A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210321365A1 (en) * 2020-04-08 2021-10-14 Qualcomm Incorporated Quality of service or priority configuration for relay user equipment
US11838894B2 (en) * 2020-04-08 2023-12-05 Qualcomm Incorporated Quality of service or priority configuration for relay user equipment

Also Published As

Publication number Publication date
US20230063139A1 (en) 2023-03-02
EP4102862A4 (en) 2024-01-10
CN111901784A (zh) 2020-11-06
US11917449B2 (en) 2024-02-27
JP7340111B2 (ja) 2023-09-06
CA3167943A1 (en) 2021-08-19
EP4102862A1 (en) 2022-12-14
KR20220137725A (ko) 2022-10-12
JP2023514265A (ja) 2023-04-05

Similar Documents

Publication Publication Date Title
WO2021160105A1 (zh) 通信方法、设备和存储介质
US20230073469A1 (en) Sidelink relay communication method and apparatus, device and medium
US11638320B2 (en) Method and apparatus for resuming RRC connection in CU-DU division scenario
US10278098B2 (en) Method and apparatus for performing dual connectivity in heterogeneous network
KR102261172B1 (ko) 통신 방법 및 장치
WO2018059126A1 (zh) 一种支持远端用户设备移动性的方法及装置
RU2523175C2 (ru) Способ и устройство для поддерживания непрерывности трафика
US10674521B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
US10548044B2 (en) Mobile communication system, QoS control station and mobile station
US20200045764A1 (en) Method for performing mcg recovery in dual connectivity in wireless communication system and a device therefor
US9066325B2 (en) Methods and apparatus for controlling quality of service parameters in a radio network
JP2019068465A (ja) 通信制御方法、ユーザ装置、及びプロセッサ
WO2013097586A1 (zh) 通信切换方法、用户设备与基站
WO2013095000A1 (ko) 근접 서비스 제공을 위한 네트워크-개시 제어 방법 및 장치
CN110366140B (zh) 一种数据传输方法和装置
WO2013010418A1 (zh) 一种无线宽带通信方法,装置和系统
US20190059015A1 (en) Method and apparatus for relaying using non-3gpp radio access technology in wireless communication system
JP2016513431A (ja) 無線通信システムにおけるセルラセッションを設定する方法及び装置
WO2020147543A1 (zh) 一种pdu会话激活方法、寻呼方法及其装置
WO2014032311A1 (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
WO2013127326A1 (zh) 多模无线通信系统的控制方法、控制服务器和终端
JP6563602B2 (ja) 無線通信システムにおけるマスタ端末及びそのコンパニオン装置のモビリティをサポートする方法及び装置
WO2015096133A1 (zh) 切换的方法、用户设备、基站和接入点
CN115699816A (zh) 用于在双连接下进行侧行链路中继通信的方法
WO2014183276A1 (zh) 一种无线网络的分流方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549061

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3167943

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227030648

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021754200

Country of ref document: EP

Effective date: 20220906

NENP Non-entry into the national phase

Ref country code: DE