WO2021159905A1 - Sma马达、摄像头模组及电子设备 - Google Patents

Sma马达、摄像头模组及电子设备 Download PDF

Info

Publication number
WO2021159905A1
WO2021159905A1 PCT/CN2021/071415 CN2021071415W WO2021159905A1 WO 2021159905 A1 WO2021159905 A1 WO 2021159905A1 CN 2021071415 W CN2021071415 W CN 2021071415W WO 2021159905 A1 WO2021159905 A1 WO 2021159905A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
plating layer
sma
metal
fixed
Prior art date
Application number
PCT/CN2021/071415
Other languages
English (en)
French (fr)
Inventor
王刚
胡彬
李昕
李邓峰
唐玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180013410.8A priority Critical patent/CN115053177B/zh
Priority to EP21753774.5A priority patent/EP4089477A4/en
Priority to BR112022015885A priority patent/BR112022015885A2/pt
Publication of WO2021159905A1 publication Critical patent/WO2021159905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0076Driving means for the movement of one or more optical element using shape memory alloys

Definitions

  • This application relates to the field of photographing technology, and in particular to an SMA motor, a camera module and an electronic device.
  • optical image stabilizer With the increasingly powerful camera function of smartphones, optical image stabilizer (OIS) has gradually become one of the main selling points and competitiveness of mobile phone cameras.
  • the function of optical image stabilization is to perform real-time detection and feedback of mobile phone jitter within a certain frequency and amplitude range and reverse compensation when taking pictures. Because the compensation is usually obtained by correcting the optical path through an optical lens (lens), it is improved compared to software algorithms. In terms of gain, the loss in image quality is very small, so the image quality is well guaranteed.
  • the current optical anti-shake technology is gradually being developed from the electromagnetic suspension-type anti-shake technology of the traditional voice coil motor (VCM) to the shape memory alloy (SMA) motor's memory metal pyroelectric anti-shake technology .
  • the SMA motor drives the lens to move through the combined force generated by the energization and contraction of multiple SMA wires to achieve anti-shake.
  • the shooting preview interface is opened, the shooting preview interface is in a static state and no photo is taken, that is, when the anti-shake function is turned on but no anti-shake operation, There will be low-frequency water ripple jitter in the shooting preview interface, resulting in a poor shooting experience for users.
  • the purpose of this application is to provide an SMA motor, camera module and electronic equipment.
  • the SMA motor improves the stroke control accuracy of the SMA motor by reducing the coefficient of friction between the support and the upper part, reduces the amount of jitter, and improves the low-frequency water ripple-like jitter phenomenon when the shooting preview interface is stationary.
  • the present application provides an SMA motor, which includes an upper part, a lower part, a plurality of supports, and four SMA wires.
  • the lower part and the upper part are stacked, a plurality of supports are located between the lower part and the upper part, one end of each support is fixedly connected to the lower part, and the other end is slidably connected to the upper part.
  • One end of each SMA wire is fixedly connected to the upper part and the other end is fixedly connected to the lower part.
  • the SMA wire shrinks when it is energized and heated.
  • the four SMA wires are paired in pairs, and the two pairs of SMA wires are symmetrically arranged with respect to the first reference plane.
  • the two SMA wires are symmetrically arranged with respect to the second reference plane, and the second reference plane intersects the first reference plane.
  • Each support includes a lubricating coating, and the lubricating coating is arranged on the end of the support close to the upper part and contacts the upper part.
  • the SMA motor can control the electrical signals in the four SMA wires to make The combined force of the four SMA wires on the upper part moves along the first reference surface or along the second reference surface, and the combined displacement of the displacement on the first reference surface and the displacement on the second reference surface can make the upper part Move to any position relative to the lower part.
  • the SMA motor is applied to the camera module, the upper part of the SMA motor is used to carry the lens of the camera module. Since the upper part can translate relative to the lower part, the SMA motor can drive the lens to translate, so that the camera module realizes optical anti-shake.
  • the lubricating coating can reduce the coefficient of friction between the upper part and the support, the friction between the upper part and the support is achieved when the SMA wire of the SMA motor pulls the upper part and the lens relative to the support to achieve anti-shake
  • the force is small, and the stroke control accuracy of the SMA motor is high, thereby reducing the amount of shaking of the upper part and the lens, and improving the low-frequency water ripple-like shaking phenomenon when the shooting preview interface is stationary.
  • each support further includes a support body, one end of the support body is fixed to the lower part, and the lubricating coating is fixed to the other end of the support body.
  • the lubricating coating includes a metal layer, a metal inorganic compound layer, and an inorganic layer stacked in sequence.
  • the metal layer of the lubricating coating is fixed to the support body.
  • the metal layer of the lubricating coating and the metal inorganic compound layer of the lubricating coating include the same elements.
  • the metal of the lubricating coating The inorganic compound layer and the inorganic layer of the lubricating plating layer include the same elements.
  • the top layer of the lubricating coating away from the support body is an inorganic layer
  • the hardness of the inorganic layer is high and smooth, so the lubricating coating as a whole has better lubricating performance, which can effectively reduce the friction between the support and the upper part
  • the force makes the stroke control accuracy of the SMA motor better.
  • the inorganic layer can also play an insulating role, thereby effectively isolating the support and the upper part electrically, and reducing the risk of a short circuit between the support and the upper part.
  • the metal layer has higher flexibility and is not easy to crack, so the lubricating plating layer can be better fixed to the support body, and has better flexibility and reliability. high.
  • the intermediate layer between the metal layer and the inorganic layer of the lubricating plating layer is a metal inorganic compound layer
  • the metal inorganic compound layer and the metal layer have the same elements, and also have the same elements as the inorganic layer, so the metal inorganic compound layer can be smooth
  • the transition metal layer and the inorganic layer can improve the bonding performance between the metal layer and the inorganic layer, so that the lubricating coating has higher integrity and higher structural reliability.
  • the multi-layer structure of the lubricating coating is an integrated structure, that is, an integrated coating structure.
  • the metal layer, the metal inorganic compound layer and the inorganic layer are gradually transitioned.
  • the interface between the metal layer and the metal inorganic compound layer and the metal inorganic is a fuzzy interface, in a state where the two layer materials are doped with each other.
  • the thickness of the lubricating coating can be controlled to the micron level.
  • the overall thickness of the lubricating coating can be in the range of 5 to 10 microns
  • the thickness of the diamond-like structure on the surface of the inorganic layer of the lubricating coating can be in the range of 1 to 3 microns.
  • the inorganic layer of the lubricating coating is a carbon layer
  • the surface structure of the inorganic layer of the lubricating coating away from the metal inorganic compound layer of the lubricating coating is a diamond-like structure. That is, the surface layer of the lubricating plating layer forms a diamond-like carbon film.
  • the diamond-like carbon film is composed of carbon elements, which is similar in nature to diamond, and at the same time has a structure composed of graphite atoms.
  • Diamond-like carbon film is an amorphous film with high hardness and high elastic modulus, low friction factor, wear resistance and good vacuum tribological characteristics, making the lubricating coating wear-resistant, and can effectively reduce the bearing and the upper Friction between parts.
  • the metal layer of the lubricating plating layer is a chromium layer
  • the metal inorganic compound layer of the lubricating plating layer is a carbon-chromium compound layer.
  • the metal layer of the lubricating plating layer and the metal inorganic compound layer are made of chromium, so that the carbon layer with the diamond-like carbon structure on the surface has better adhesion to the carbon chromium compound layer at the bottom, and the overall structure of the lubricating plating layer Higher reliability.
  • the lubricating coating can be formed on the surface of the support body through a physical vapor deposition process and chemical vapor deposition, so that the lubricating coating has a thin thickness, high strength, and a low coefficient of friction.
  • the inorganic layer of the lubricating coating can also be a carbon layer with a non-diamond-like carbon structure on the surface. At this time, the inorganic layer of the lubricating coating still has lubricity, but the lubricity is compared with the aforementioned diamond-like carbon layer. The scheme of the surface structure is poor.
  • the inorganic layer of the lubricating plating layer is a carbon layer
  • the surface structure of the inorganic layer of the lubricating plating layer away from the metal inorganic compound layer of the lubricating plating layer is a diamond-like structure.
  • the metal layer of the lubricating coating is a titanium layer
  • the metal inorganic compound layer is a carbon-titanium compound layer.
  • the inorganic layer of the lubricating coating is a silicon layer.
  • the metal layer of the lubricating plating layer can be a titanium layer or a chromium layer, and the metal inorganic compound layer is a silicon-titanium compound layer or a silicon-chromium compound layer.
  • the lubricating coating can also extend to the peripheral side of the support body.
  • the support body includes a top surface facing the upper part, a bottom surface facing the lower part, and a peripheral side surface connected between the top surface and the bottom surface.
  • the lubricating plating layer covers the entire top surface, and can also cover part of the peripheral side or all of the peripheral side.
  • the upper part includes an upper part body and an upper plating layer, and the upper plating layer is fixed on a side of the upper part body close to the support.
  • the upper plating layer may be a lubricating plating layer. The upper plating layer contacts the lubricating plating layer of the support, thereby further reducing the friction between the upper part and the support, so that the stroke control accuracy of the SMA motor is higher, and the lens jitter of the camera module is reduced.
  • the upper plating layer includes a metal layer, a metal inorganic compound layer, and an inorganic layer stacked in sequence, and the metal layer of the upper plating layer is fixed to the body of the upper component, and the metal layer of the upper plating layer and the metal inorganic compound layer of the upper plating layer include The same element, the metal inorganic compound layer of the upper plating layer and the inorganic layer of the upper plating layer include the same elements.
  • the top layer of the upper plating layer away from the upper part body is an inorganic layer
  • the hardness of the inorganic layer is high and smooth, so the upper plating layer has better lubricating performance as a whole, which can effectively reduce the gap between the support and the upper part.
  • the friction force makes the stroke control accuracy of the SMA motor better.
  • the inorganic layer can also play an insulating role, thereby effectively isolating the support and the upper part electrically, and reducing the risk of a short circuit between the support and the upper part.
  • the metal layer has higher flexibility and is not easy to crack, so the upper plating layer can be better fixed to the upper part body, and has better flexibility and reliability. high.
  • the intermediate layer between the metal layer and the inorganic layer of the upper plating layer is a metal inorganic compound layer
  • the metal inorganic compound layer and the metal layer have the same elements, and also have the same elements as the inorganic layer, so the metal inorganic compound layer can be smooth
  • the transition metal layer and the inorganic layer improve the bonding performance between the metal layer and the inorganic layer, so that the upper plating layer has higher integrity and higher structural reliability.
  • the inorganic layer of the upper plating layer is a carbon layer
  • the surface structure of the inorganic layer of the upper plating layer away from the metal inorganic compound layer of the upper plating layer is a diamond-like structure. That is, the surface layer of the upper plating layer forms a diamond-like carbon film.
  • the inorganic layer of the upper plating layer makes the upper plating layer good in wear resistance, and can effectively reduce the friction between the support and the upper part.
  • the metal layer of the upper plating layer is a chromium layer
  • the metal inorganic compound layer of the upper plating layer is a carbon-chromium compound layer.
  • the metal material of the upper plating layer and the metal inorganic compound layer is made of chromium, so that the carbon layer with the diamond-like carbon structure on the surface has better adhesion to the carbon chromium compound layer at the bottom, and the overall structure of the upper plating layer Higher reliability.
  • the upper part body includes a bottom surface facing the lower part, and the upper plating layer may cover all or a partial area of the bottom surface of the upper part body.
  • the upper plating layer covers a partial area of the bottom surface of the upper part body, the partial area is mainly the contact area of the support.
  • the upper part may not be provided with an upper plating layer, and the lubricating plating layer of the support directly contacts the body of the upper part. At this time, although the friction force between the support and the upper part is worse than that of the upper part with the upper plating layer, the lubricating coating on the support can still greatly reduce the friction between the support and the upper part. Power needs.
  • the lower part includes a lower part body and a lower plating layer, the lower plating layer is fixed on a side of the lower part body close to the support, and the lower plating layer is an insulating plating layer.
  • the lower plating layer of the lower part can insulate the support and the lower part, so as to reduce the risk of a short circuit between the upper part and the lower part.
  • the lower plating layer includes a metal layer, a metal inorganic compound layer, and an inorganic layer that are sequentially stacked, and the metal layer of the lower plating layer is fixed to the lower component body.
  • the inorganic layer can play an insulating role, thereby effectively isolating the support and the lower part, and reducing the short-circuit between the support and the lower part. risk.
  • the bottom layer of the lower plating layer fixed to the lower part body is a metal layer, the metal layer has higher flexibility and is not easy to crack, so the lower plating layer can be better fixed to the lower part body, and has better flexibility and reliability. high.
  • the metal inorganic compound layer of the lower plating layer and the metal layer of the lower plating layer have the same elements, and the metal inorganic compound layer of the lower plating layer and the inorganic layer of the lower plating layer have the same elements.
  • the intermediate layer between the metal layer and the inorganic layer of the lower plating layer is a metal inorganic compound layer
  • the metal inorganic compound layer and the metal layer have the same elements, and also have the same elements as the inorganic layer, so The metal-inorganic compound layer can smoothly transition between the metal layer and the inorganic layer, thereby improving the bonding performance between the metal layer and the inorganic layer, so that the integrity of the lower plating layer is higher and the structural reliability is higher.
  • the inorganic layer of the lower plating layer is a carbon layer
  • the metal layer of the lower plating layer is a chromium layer
  • the metal inorganic compound layer of the lower plating layer is a carbon-chromium compound layer.
  • the inorganic layer of the lower plating layer is a carbon layer
  • the metal layer of the lower plating layer is a titanium layer
  • the metal inorganic compound layer of the lower plating layer is a carbon titanium compound layer.
  • the inorganic layer of the lower plating layer is a silicon layer.
  • the metal layer of the lower plating layer may be a titanium layer or a chromium layer, and the metal inorganic compound layer is correspondingly a silicon-titanium compound layer or a silicon-chromium compound layer.
  • the inorganic layer of the lower plating layer may also be made of other inorganic materials capable of achieving insulation, and the metal layer of the lower plating layer may also be made of other materials, which is not strictly limited in this application.
  • the lower plating layer can also be plated with organic polymer materials as a whole.
  • the lower part body includes a bottom surface facing the upper part, and the lower plating layer may cover all or a partial area of the top surface of the lower part body.
  • the lower plating layer covers a partial area of the top surface of the lower component body, the partial area is mainly the contact area of the support.
  • the lower part may not be provided with a lower plating layer, the support body directly contacts the lower part body, and the lubrication plating layer of the support and/or the upper plating layer of the upper part can realize the connection between the upper part and the lower part. insulation.
  • the lower part is not provided with a lower plating layer
  • the upper part is not provided with an upper plating layer
  • the support body of the support contacts the lower part
  • the lubrication plating layer of the support contacts the upper part. Insulation between components.
  • the lubricating coating is lubricating oil, grease or solid lubricant.
  • the lubricating coating can reduce the friction between the upper part and the support, improve the stroke control accuracy of the SMA motor, and reduce the amount of lens shake of the camera module.
  • the upper part includes an upper part body and an upper plating layer, the upper plating layer is fixed on a side of the upper part body close to the support, and the upper plating layer is an insulating plating layer.
  • lubrication is achieved between the support and the upper part through a lubricating coating, and insulation between the support and the upper part is achieved through the upper plating.
  • the lower part includes a lower part body and a lower plating layer, the lower plating layer is fixed on a side of the lower part body close to the support, and the lower plating layer is an insulating plating layer.
  • lubrication is achieved between the support and the upper part through a lubricating plating layer, and the support and the lower part are insulated through a lower plating layer.
  • the upper part includes an upper part body and an upper plating layer, the upper plating layer is fixed on a side of the upper part body close to the support, and the upper plating layer is an insulating plating layer.
  • the lower part includes a lower part body and a lower plating layer, the lower plating layer is fixed on the side of the lower part body close to the support, and the lower plating layer is an insulating plating layer.
  • lubrication is achieved between the support and the upper part through a lubricating plating layer, and the upper part and the lower part are insulated through an upper plating layer and a lower plating layer.
  • the insulating plating layer includes a metal layer, a metal inorganic compound layer, and an inorganic layer that are sequentially stacked.
  • the inorganic layer of the edge plating layer is a carbon layer.
  • the metal layer of the insulating plating layer is a titanium layer, and the metal inorganic compound layer of the insulating plating layer is a carbon titanium compound layer; or, the metal layer of the insulating plating layer is a chromium layer, and the metal inorganic compound layer of the insulating plating layer is a carbon chromium compound layer.
  • the insulating coating has a thin thickness, high flexibility, high hardness, insulation and high overall structural reliability.
  • the inorganic layer of the insulating plating layer may also be a silicon layer.
  • the metal layer of the insulating plating layer may be a titanium layer or a chromium layer, and the metal inorganic compound layer is a silicon-titanium compound layer or a silicon-chromium compound layer correspondingly.
  • the insulating coating can also be plated with organic polymer materials as a whole.
  • the SMA motor further includes a buffer glue, which is located between the upper part and the lower part, and one end of the buffer glue is fixedly connected to the upper part and the other end is fixedly connected to the upper part.
  • the buffer glue can be damping glue, shock-absorbing glue, and the like.
  • the SMA motor reduces the jitter amplitude of the upper part during movement through the buffer glue, thereby effectively reducing the jitter of the lens of the camera module, and improving the low-frequency water ripple-like jitter phenomenon when the shooting preview interface is stationary.
  • one end of the buffer glue may be fixed to the movable jaw of the upper component. Since the pulling force of the SMA wire acts on the movable jaws, when the buffer glue is fixed to the movable jaws, it is beneficial to form a resultant force at the movable jaws, ensuring the structural reliability of the upper part when the force is applied.
  • the cushion glue can also be fixed to other positions of the upper part.
  • the number of buffers may be more than one, and the centers of the plurality of buffer glues are arranged symmetrically, and the center of symmetry is the intersection line of the first reference plane and the second reference plane.
  • the SMA motor further includes two spring arms, the spring arms are L-shaped, the spring arms include a fixed end and a movable end, the movable end of the spring arm is fixed to the upper part, and the fixed end of the spring arm The part is fixed to the lower part, the centers of the two spring arms are symmetrically arranged, and the center of symmetry is the intersection line of the first reference plane and the second reference plane.
  • the spring arm of the SMA motor can balance and buffer the force of the upper part when the SMA wire is energized to drive the upper part to carry the lens to move, so that the upper part moves more smoothly.
  • the spring arm of the SMA motor can also drive the upper part to carry the lens and move back to the original position through the elastic force formed by the deformation generated during the movement of the upper part when the SMA line is energized when the SMA line is powered off.
  • the SMA cable is energized and contracted, and the pulling force of the SMA cable drives the upper part to carry the lens to produce a precise anti-shake displacement. After the SMA cable is powered off, the restoring force of the spring arm drives the upper part to carry and the lens to move back to the natural center.
  • the movable end of the spring arm is fixed to the upper part
  • the fixed end of the spring arm is fixed to the lower part
  • the upper part is located above the lower part, so the movable end of the spring arm is connected to the fixed end of the spring arm.
  • a height difference is formed between the parts to form a pre-pressure.
  • the preload of the spring arm can press the upper part on the support, thereby reducing the difference of the SMA motor in different postures and improving the control accuracy of the SMA motor.
  • the support is provided with a lubricating coating that contacts the upper part, even if the spring arm forms a pre-pressure to press the upper part on the support, the friction between the upper part and the support can still be controlled to be very small to ensure Control accuracy of SMA motor.
  • the SMA motor further includes four spring arms.
  • the spring arm includes a fixed end and a movable end.
  • the movable end of the spring arm is fixed to the upper part, and the fixed end of the spring arm is fixed to the lower part.
  • the four spring arms are paired in pairs, the two pairs of spring arms are arranged symmetrically with respect to the first reference plane, and the two spring arms of the same pair are arranged symmetrically with respect to the second reference plane.
  • the SMA motor is equipped with a spring arm, which can not only balance and buffer the force of the upper part when the SMA wire is energized to drive the upper part to carry the lens, so that the upper part moves more smoothly, but also
  • the elastic force generated by the deformation generated when the SMA wire is energized to drive the upper part to move drives the upper part to carry the lens and move back to the original position.
  • the arrangement relationship of the four spring arms corresponds to the arrangement relationship of the SMA wire, so the four spring arms can better achieve the balancing and restoring effects.
  • the movable end of the spring arm is fixed to the upper part
  • the fixed end of the spring arm is fixed to the lower part
  • the upper part is located above the lower part, so the movable end of the spring arm is connected to the fixed end of the spring arm.
  • a height difference is formed between the parts to form a pre-pressure.
  • the preload of the spring arm can press the upper part on the support, thereby reducing the difference of the SMA motor in different postures and improving the control accuracy of the SMA motor.
  • the support is provided with a lubricating coating that contacts the upper part, even if the spring arm forms a pre-pressure to press the upper part on the support, the friction between the upper part and the support can still be controlled to be very small to ensure Control accuracy of SMA motor.
  • the spring arm further includes a bending portion, the bending portion is located between the fixed end portion and the movable end portion, and the bending portion protrudes in a direction away from the lower part of the motor.
  • the bent portion is used to make the spring arm form a pre-pressure.
  • the preload of the spring arm can press the upper part on the support, thereby reducing the difference of the SMA motor in different postures and improving the control accuracy of the SMA motor.
  • the present application also provides a camera module including a module bracket, a lens, an image sensor, and any one of the aforementioned SMA motors mounted on the inner side of the module bracket.
  • the lower part of the SMA motor is fixedly connected to the module bracket, and the lens is mounted on the upper part of the SMA motor.
  • the SMA motor includes a light-transmitting area.
  • the lens of the lens is facing the light-transmitting area.
  • the image sensor is located on the side of the SMA motor away from the lens. To receive the light passing through the lens and the light-transmitting area.
  • the camera module using the aforementioned SMA motor can achieve optical anti-shake, and the SMA motor improves the stroke control accuracy of the SMA motor by reducing the friction coefficient between the support and the upper part, and reduces the upper part and the lens.
  • the amount of shaking to improve the low-frequency water ripple-like shaking phenomenon when the shooting preview interface is stationary.
  • the present application also provides an electronic device including a housing, a processor, and the aforementioned camera module.
  • the processor and the camera module are housed in the housing, and the camera module is electrically connected to the processor.
  • the electronic device using the aforementioned camera module can improve the low-frequency water ripple-like shaking phenomenon when the shooting preview interface is stationary.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of the electronic device shown in Fig. 1 from another angle;
  • Fig. 3 is a schematic structural diagram of a camera module provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure of the voice coil motor and the lens of the camera module shown in FIG. 3;
  • FIG. 5 is a schematic diagram of the structure of the SMA motor of the camera module shown in FIG. 3;
  • Figure 6 is a top view of the SMA motor shown in Figure 5 in some embodiments.
  • FIG. 7 is a schematic structural diagram of the spring arm of the SMA motor shown in FIG. 6 in some embodiments.
  • Fig. 8 is a schematic structural diagram of the spring arm of the SMA motor shown in Fig. 6 in other embodiments;
  • Figure 9 is a top view of the SMA motor shown in Figure 5 in other embodiments.
  • Fig. 10 is a partial structural diagram of the SMA motor shown in Fig. 5;
  • 11 is a schematic diagram of the influence of the friction between the upper part of the SMA motor and the support on the lens movement process
  • Fig. 12 is a schematic structural diagram of the support of the SMA motor shown in Fig. 10 in some embodiments;
  • Figure 13 is a schematic diagram of the basic structure of a reaction device for preparing a lubricating coating
  • Fig. 14 is a partial structural diagram of the upper part of the SMA motor shown in Fig. 10 in some embodiments;
  • Fig. 15 is a partial structural diagram of the lower part of the SMA motor shown in Fig. 10 in some embodiments;
  • Fig. 16 is a partial structural diagram of the upper part, the support and the lower part of the SMA motor shown in Fig. 10 in other embodiments;
  • Fig. 17 is a schematic diagram of the structure of the SMA motor shown in Fig. 3 in other embodiments.
  • the embodiments of the present application provide a shape memory alloy (SMA) motor, a camera module using the SMA motor, and an electronic device using the camera module.
  • SMA motor As an anti-shake motor, SMA motor has the advantages of simple structure, small size, heavy load, low power consumption, no magnetic interference and low cost.
  • the camera module uses an SMA motor to drive the lens to move to achieve optical anti-shake, thereby reducing the loss of image quality and ensuring image quality.
  • the electronic device can be a mobile phone, a tablet computer, a notebook computer, a camera, a wearable device, a TV, and so on. Among them, the wearable device may be a smart bracelet, smart watch, smart head display, smart glasses, etc.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of the electronic device 1000 shown in FIG. 1 from another angle.
  • the electronic device 1000 is a mobile phone as an example for description.
  • the electronic device 1000 includes a housing 100, a display screen 200, a front camera assembly 300, a rear camera assembly 400, a motherboard 500, a processor 600, a memory 700, and a battery 800.
  • the display screen 200 is used to display images, and the display screen 200 may also integrate a touch function.
  • the display screen 200 is installed on the housing 100.
  • the housing 100 may include a frame 1001 and a back cover 1002.
  • the display screen 200 and the back cover 1002 are respectively installed on opposite sides of the frame 1001.
  • the space to which the display screen 200 faces is defined as the front of the electronic device 1000
  • the space to which the rear cover 1002 faces to the back of the electronic device 1000 is defined.
  • the front camera assembly 300 is located inside the housing 100 and under the display screen 200.
  • the display screen 200 is provided with a light-transmitting part 2001, and the front camera assembly 300 collects the light in front of the electronic device 1000 through the light-transmitting part 2001 to realize shooting.
  • the front camera assembly 300 may include the camera module described in the following embodiments, or may include camera modules of other structures.
  • the rear cover 1002 is provided with at least one camera hole 1003.
  • the rear camera assembly 400 is located inside the housing 100, and the rear camera assembly 400 collects light behind the electronic device 1000 through at least one camera hole 1003 to achieve shooting.
  • “at least one” includes one and more than two cases, and the number is more than two, and “above” includes the number.
  • the rear camera assembly 400 includes at least one camera module 4001. For example, it may include one or more of a standard camera module, a telephoto camera module, a wide-angle camera module, an ultra-telephoto camera module, and an ultra-wide-angle camera module.
  • the rear camera assembly 400 includes a standard camera, a wide-angle camera, and a periscope telephoto camera.
  • the camera module 4001 of the rear camera assembly 400 may include the camera module described in the following embodiments, or may include camera modules of other structures.
  • the rear camera assembly 400 may further include a flash module 4002.
  • the back cover 1002 is provided with a flash hole 1004, and the flash module 4002 is located inside the housing 100 and emits light through the flash hole 1004.
  • the main board 500 is located inside the casing 100, and the processor 600 and the memory 700 are fixed on the main board 500.
  • the display screen 200, the front camera assembly 300 and the rear camera assembly 400 are coupled to the processor 600.
  • the memory 700 is used to store computer program codes.
  • the computer program code includes computer instructions.
  • the processor 600 is used to invoke computer instructions to make the electronic device 1000 perform corresponding operations, for example, make the display screen 200 display a target image, and make the front camera assembly 300 and the rear camera assembly 400 capture the target image, and so on.
  • the battery 800 is used to power the electronic device 1000.
  • the electronic device 1000 may further include one or more of functional modules such as an antenna module, a mobile communication module, a sensor module, a motor, a microphone module, and a speaker module.
  • the function module is coupled to the processor 600.
  • the antenna module is used to transmit and receive electromagnetic wave signals.
  • the antenna module can include multiple antennas, and each antenna can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the mobile communication module can provide wireless communication solutions including 2G/3G/4G/5G and other wireless communication solutions applied to the electronic device 1000.
  • the sensor module may include one or more of a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, or an ambient light sensor.
  • the motor can generate vibration prompts.
  • the motor can be used for incoming call vibrating reminders, and it can also be used for touch vibration feedback.
  • the microphone module is used to convert sound signals into electrical signals.
  • the speaker module is used to convert electrical signals into sound signals.
  • FIG. 3 is a schematic structural diagram of a camera module 10 provided by an embodiment of the present application.
  • the width direction of the camera module 10 is defined as the X direction in the figure
  • the length direction of the camera module 10 is the direction Y in the figure
  • the thickness direction of the camera module 10 is shown in the figure.
  • Indicating the direction Z, the width direction X, the length direction Y, and the thickness direction Z of the camera module 10 are perpendicular to each other.
  • FIG. 3 shows the structure of the camera module 10 more clearly, and a partial structure of the camera module 10 is filled in schematically.
  • the camera module 10 includes a module bracket 1, a motor bracket 2, a lens 3, a voice coil motor 4, an SMA motor 5, an image sensor 6 and a circuit board 7.
  • the module bracket 1 is used to fix, support and protect other components of the camera module 10.
  • the module bracket 1 may be an integrally formed structure, or a plurality of parts may be fixed into an integrated structure by an assembly method (for example, bonding, etc.).
  • the motor bracket 2 is installed inside the module bracket 1 and is fixedly connected to the module bracket 1.
  • the motor bracket 2 may be a hollow structure with open ends.
  • the lens 3, the voice coil motor 4 and the SMA motor 5 are installed inside the motor bracket 2. That is, the lens 3, voice coil motor 4, and SMA motor 5 are all installed inside the module bracket 1.
  • the SMA motor 5 is fixed to the motor bracket 2, the voice coil motor 4 is fixed above the SMA motor 5, the lens 3 is installed inside the voice coil motor 4, and the light emitting side of the lens 3 is arranged close to the SMA motor 5.
  • the light enters the lens 3 from the light entrance side of the lens 3, and exits the lens 3 from the light exit side of the lens 3.
  • the lens 3 has a light converging function.
  • the lens 3 has an optical axis 30, and the direction of the optical axis of the lens 3 is the same as the thickness direction Z of the camera module 10.
  • the voice coil motor 4 is used to drive the lens 3 to move along the optical axis direction of the lens 3 to realize auto focus (AF).
  • the SMA motor is used to drive the voice coil motor 4 and the lens 3 to move on a plane perpendicular to the optical axis direction of the lens 3, that is, to move on the XY plane of the camera module 10 to achieve optical anti-shake.
  • the circuit board 7 is installed on the inner side of the module bracket 1 and is located on the side of the SMA motor 5 away from the lens 3. Exemplarily, a part of the circuit board 7 is fixedly connected to the module support 1, and a part (not shown in the figure) extends to the outside of the module support 1. The portion of the circuit board 7 located outside the module support 1 can be electrically connected to the main board 500 of the electronic device 1000 so that the camera module 10 is coupled to the processor 600. The circuit board 7 is used to transmit control signals and image signals of the camera module 10.
  • an electrical connector is provided at the end of the circuit board 7 for connecting to the main board 500, and the electrical connector is connected to the electrical connector on the main board 500, so that the camera module 10 and the circuits and devices on the circuit board 7 (such as the processor 600) is electrically connected.
  • the circuit board 7 can be a flexible and hard circuit board, a flexible circuit board, or an integrated circuit board formed by connecting a rigid circuit board and a flexible circuit board. The specific structure of the circuit board 7 is not affected by this application. Qualify.
  • the electrical connector on the circuit board 7 may be a board-to-board (BTB) connector or others.
  • the camera module 10 and the circuits and devices on the motherboard 500 may also be coupled through a wireless connection.
  • the circuit board 7 may also be fixed on the outside of the module support 1. At this time, one end of the module bracket 1 can be fixed to one side of the circuit board 7.
  • the image sensor 6 is installed inside the module bracket 1 and located on the side of the SMA motor 5 away from the lens 3.
  • the image sensor 6 is fixed on the side of the circuit board 7 facing the SMA motor 5.
  • the image sensor 6 may be fixed to the circuit board 7 by means of adhesion (for example, glue dispensing).
  • the image sensor 6 can also be fixed to the circuit board 7 by welding, snap-fitting and other fixing methods.
  • the image sensor 6 uses the photoelectric conversion function of the photoelectric device to convert the light image on its photosensitive surface into an electrical signal proportional to the light image.
  • the photosensitive surface of the image sensor 6 is arranged facing the lens 3.
  • the image sensor 6 may be a charge coupled device (CCD), a complementary metal-oxide-semiconductor (CMOS) phototransistor, or a thin film transistor (TFT), etc.
  • the image sensor 6 may be electrically connected to the circuit board 7 through multiple bonding wires.
  • the bonding wires can be gold wires or others.
  • the image sensor 6 may also be packaged on the circuit board 7 by a ball grid array (BGA).
  • BGA ball grid array
  • the camera module 10 may further include an infrared cut filter (IR cut filter) 8.
  • the infrared cut filter 8 is installed inside the module bracket 1 and located between the lens 3 and the image sensor 6. In the thickness direction Z of the camera module 10, the infrared cut filter 8 and the lens 3 and the image sensor 6 are stacked and spaced apart from each other.
  • the infrared cut filter 8 is used to filter infrared light to improve the imaging quality of the camera module 10.
  • the infrared cut filter 8 may be blue glass.
  • the camera module 10 may not be provided with the infrared cut filter 8.
  • FIG. 4 is a structural diagram of the voice coil motor 4 and the lens 3 of the camera module 10 shown in FIG. 3.
  • the lens 3 includes a lens barrel 31 and at least one lens 32 fixed inside the lens 3.
  • the number of lenses 32 may be multiple, and the optical axes of the multiple lenses 32 overlap to form a lens group, thereby having better optical performance.
  • the lens group may include at least one convex lens and at least one concave lens.
  • the lens group may also include its own curved lens.
  • the number of lenses 32 can also be one to simplify the structure of the lens 3.
  • the lens 32 may be a convex lens to condense light.
  • the optical axis 30 of the lens 3 is the optical axis of the lens or lens group.
  • the voice coil motor 4 includes a fixing frame 41, a magnet assembly 42, a voice coil 43, an upper spring 44 and a lower spring 45.
  • the fixing frame 41 is a hollow structure with open ends.
  • the magnet assembly 42 is fixed inside the fixing frame 41.
  • the lens 3 is located inside the magnet assembly 42.
  • the voice coil 43 is located between the lens barrel 31 and the magnet assembly 42 and is fixedly connected to the lens barrel 31. When the voice coil 43 is energized, the lens 3 is driven to move in a direction parallel to the optical axis of the lens 3.
  • One side of the upper spring 44 is fixedly connected to the upper end of the lens barrel 31, and the other side is fixedly connected to the fixing frame 41.
  • One side of the lower spring 45 is fixedly connected to the lower end of the lens barrel 31 and the other side is fixedly connected to the fixing frame 41.
  • FIG. 5 is a schematic structural diagram of the SMA motor 5 of the camera module 10 shown in FIG. 3.
  • the SMA motor 5 includes an upper part 51, a lower part 52, a plurality of bearings 53 and four SMA wires 54.
  • the lower part 52 and the upper part 51 are stacked.
  • the lower part 52 and the upper part 51 are stacked in the thickness direction Z of the camera module 10 with an interval from each other.
  • a plurality of supports 53 are located between the lower part 52 and the upper part 51. One end of each support 53 is fixedly connected to the lower part 52, and the other end is slidably connected to the upper part 51.
  • the multiple supports 53 are used to form a physical gap between the upper part 51 and the lower part 52.
  • the lower part 52 of the SMA motor 5 is fixedly connected to the motor support 2, and the motor support 2 is fixedly connected to the module support 1, so the lower part 52 of the SMA motor 5 is fixedly connected to the module support 1 indirectly.
  • the lower part 52 of the SMA motor 5 can be directly adhered to the motor bracket 2 so that the structural stability of the camera module 10 is relatively high.
  • the lower part 52 can also be fixed to the motor bracket 2 by other methods such as snapping, welding, etc. The embodiment of the present application does not strictly limit the connection mode of the lower part 52 and the motor bracket 2.
  • the lens 3 is mounted on the voice coil motor 4, and the voice coil motor 4 is fixed on the upper part 51 of the SMA motor 5, so the lens 3 is indirectly mounted on the upper part 51 of the SMA motor 5, and the lens 3 moves with the upper part 51 of the SMA motor 5.
  • the camera module 10 may not be provided with the motor bracket 2, and the lower part 52 of the SMA motor 5 is directly fixedly connected to the module bracket 1.
  • the camera module 10 may not be provided with the voice coil motor 4, and the barrel 31 of the lens 3 is directly mounted on the upper part 51 of the SMA motor 5. At this time, the camera module 10 is a fixed focus and anti-shake module.
  • Each SMA wire 54 has one end fixedly connected to the upper part 51 and the other end fixedly connected to the lower part 52.
  • the SMA wire 54 shrinks when it is energized and heated.
  • the SMA wire 54 uses a shape memory alloy (Shape Memory Alloy, SMA) material, such as a nickel-titanium alloy material.
  • shape memory alloy is a general term for a class of metals with shape memory effect. Generally, after the metal material is subjected to an external force, the first elastic deformation occurs. At this time, if the external force is removed, the metal will return to its original shape. If the external force continues to increase, when the metal's own yield point is reached, plastic deformation will occur.
  • the shape memory alloy is a kind of alloy material that can completely eliminate its deformation at a lower temperature after heating up and restore its original shape before deformation.
  • the basic principle of the work of shape memory alloy materials is to heat the material above a certain critical temperature for shape memory heat treatment (training) and cause it to undergo a certain deformation. After cooling to form the martensite phase, when it is heated above the critical temperature again, the low-temperature martensite phase reverses to the high-temperature austenite phase (that is, reverse transformation occurs), thereby returning to the state memorized before deformation .
  • the heat generated by the energization causes the temperature of the SMA wire 54 to rise, realizing the reverse transformation from the low-temperature martensite phase to the high-temperature austenite phase, returning to the memory before denaturation, so that The SMA wire 54 shrinks.
  • the length change caused by the shrinkage of the SMA wire 54 is essentially caused by the transformation of the crystal phase structure of the material, that is, the transformation between martensite and austenite.
  • the gravitational force between the microscopic particles due to the change of the crystal structure makes the tensile force of the macro SMA wire 54 when it is contracted to be much larger than the electromagnetic force between the general magnet coils, so the SMA wire 54
  • the contraction of the SMA motor can drive a heavier load, that is, a large load can be achieved, so the SMA motor 5 can achieve a larger driving force with a smaller size.
  • the camera module 10 can control the electrical signals of the four SMA wires 54 to make the four SMA wires 54 pair
  • the resultant force exerted by the upper part 51 faces the expected direction, thereby driving the upper part 51 to move the voice coil motor 4 and the lens 3 to the expected direction and position, so that the camera module 10 can realize anti-shake by translating the lens 3.
  • FIG. 6 is a top view of the SMA motor 5 shown in FIG. 5 in some embodiments.
  • the SMA motor 5 includes a light-transmitting area 50, and the light-transmitting area 50 allows light to pass through.
  • the SMA motor 5 corresponds to a part of the light-transmitting area 50 hollowed out, or provided with a light-transmitting structure.
  • the upper part 51 of the SMA motor 5 is provided with a through hole located in the light-transmitting area 50
  • the lower part 52 is provided with a through hole located in the light-transmitting area 50
  • the support 53 and the SMA wire 54 are both located outside the light-transmitting area 50.
  • the lens 32 of the lens 3 faces the light-transmitting area 50 of the SMA motor 5, and the image sensor 6 is used to receive light passing through the lens 3 and the light-transmitting area 50.
  • the image sensor 6 when the image sensor 6 is used to collect visible light, the light-transmitting area 50 of the SMA motor 5 at least allows the visible light to pass.
  • the image sensor 6 when the image sensor 6 is used to collect invisible light, the light-transmitting area 50 of the SMA motor 5 at least allows the corresponding invisible light to pass.
  • the SMA motor 5 has a first reference surface 5a and a second reference surface 5b, and the first reference surface 5a and the second reference surface 5b intersect.
  • the first reference surface 5a and the second reference surface 5b both pass through the optical axis 30 of the lens 3 (as shown in FIG. 3).
  • the first reference surface 5a and the second reference surface 5b are perpendicular to each other.
  • the angle between the first reference surface 5a and the second reference surface 5b may also be other angles, which is not strictly limited in this application.
  • the four SMA wires 54 are paired in pairs, the two pairs of SMA wires 54 are arranged symmetrically with respect to the first reference plane 5a, and the two SMA wires 54 of the same pair are arranged symmetrically with respect to the second reference plane 5b.
  • the four SMA wires 54 include a first SMA wire 541, a second SMA wire 542, a third SMA wire 543, and a fourth SMA wire 544.
  • the first SMA wire 541 and the second SMA wire 542 constitute a first pair of SMA wires
  • the third SMA wire 543 and the fourth SMA wire 544 constitute a second pair of SMA wires.
  • the first pair of SMA wires and the second pair of SMA wires are symmetrically arranged with respect to the first reference plane 5a.
  • the first SMA wire 541 and the second SMA wire 542 are arranged symmetrically with respect to the second reference plane 5b, and the third SMA wire 543 and the fourth SMA wire 544 are arranged symmetrically with respect to the second reference plane 5b.
  • the camera module 10 can control the electrical signals in the four SMA wires 54 so that the resultant force of the four SMA wires 54 on the upper component 51 is along the first
  • the reference surface 5a moves or moves along the second reference surface 5b, and the combined displacement of the displacement on the first reference surface 5a and the displacement on the second reference surface 5b allows the upper part 51 to move the lens 3 to the camera module.
  • Any position on the XY plane of the group 10 that is, the vertical plane of the optical axis of the lens 3), thereby realizing optical image stabilization.
  • the upper part 51 forms a circuit
  • the lower part 52 forms a circuit
  • the circuit of the lower part 52 is electrically connected to the circuit board 7 of the camera module 10 so that a driving path is formed between the SMA wire 54 and the circuit board 7.
  • the lower part 52 includes a plurality of driving pins 521, and the plurality of driving pins 521 may be electrically connected to the circuit board 7 through conductive structures such as wires.
  • the circuit of the upper part 51 and the circuit of the lower part 52 can be formed by electroplating, or by bonding the flexible circuit board 7, or by embedding the metal by insert molding. The application is not strictly limited.
  • the upper component 51 includes a movable crimp 511, and the movable crimp 511 is used to fix the SMA wire 54.
  • the lower part 52 includes a fixed claw 522, and the fixed claw 522 is used to fix the SMA wire 54.
  • One end of the SMA wire 54 is fixed to the upper part 51 by a movable claw 511, and the other end is fixed to the lower part 52 by a fixed claw 522.
  • the fixed claw 522 and the movable claw 511 can be made of conductive materials, or formed a conductive structure, so that the SMA wire 54 is electrically connected to the upper part 51 and the lower part 52.
  • the four SMA wires 54 of the camera module 10 can have a variety of specific connection methods under the condition that the above position relationship requirements are met, and this embodiment takes one of them as an example for description.
  • the upper member 51 has a substantially rectangular plate shape.
  • the upper part 51 includes an upper plate surface 512 facing the lens 3 and a peripheral side surface connected to the periphery of the upper plate surface 512.
  • the lens 3 is mounted on the upper plate surface 512 of the upper member 51.
  • the peripheral side surface includes a first side surface 513, a second side surface 514, a third side surface 515, and a fourth side surface 516 that are sequentially connected.
  • the first side surface 513 and the second side surface 514 are symmetrically arranged with respect to the second reference surface 5b.
  • the third side surface 515 and the second side surface 514 are symmetrically arranged with respect to the first reference surface 5a.
  • the fourth side surface 516 and the third side surface 515 are symmetrically arranged with respect to the second reference surface 5b.
  • the first side surface 513 and the fourth side surface 516 are symmetrically arranged with respect to the first reference surface 5a.
  • the upper member 51 may also have other shapes, such as a rounded rectangular plate shape, a circular plate shape, and the like. It can be understood that when each side surface of the peripheral side of the upper part 51 changes adaptively as the shape of the upper part 51 changes.
  • the lower part 52 includes a middle area 523 facing the upper part 51 and an edge area provided around the middle area 523.
  • a plurality of supports 53 are fixed to the middle area 523. At this time, the support of the upper member 51 by the plurality of supports 53 is more stable.
  • the number of the supports 53 is four, the four supports 53 are respectively supported on the four diagonal corners of the upper part 51, and the four supports 53 can be located on the first reference plane 5a and the second reference plane, respectively. 5b.
  • a certain distance is formed between the plurality of supports 53 and the edge of the upper part 51, so that when the upper part 51 is moved, the plurality of supports 53 can keep in contact with the upper part 51 to realize the support for the upper part 51.
  • the edge area of the lower part 52 includes a first edge area 524, a second edge area 525, a third edge area 526, and a fourth edge area 527.
  • the first edge area 524 is corresponding to the first side surface 513
  • the second edge area 525 is corresponding to the second side surface 514
  • the third edge area 526 is corresponding to the third side surface 515
  • the fourth edge area 527 is corresponding to the fourth side surface 516. set up.
  • the first edge area 524 and the fourth edge area 527 are symmetrically arranged with respect to the first reference plane 5a.
  • the third edge area 526 and the second edge area 525 are symmetrically arranged with respect to the first reference plane 5a.
  • the fourth edge area 527 and the third edge area 526 are symmetrically arranged with respect to the second reference plane 5b.
  • the first edge area 524 and the fourth edge area 527 are symmetrically arranged with respect to the first reference plane 5a.
  • the lower member 52 is substantially in the shape of a rectangular plate.
  • the shape of the lower part 52 may also be adaptively changed with the change of the shape of the upper part 51.
  • the shape of the lower part 52 may also be different from the shape of the upper part 51, which is not strictly limited in this application.
  • first edge area 524, the second edge area 525, the third edge area 526, and the fourth edge area 527 are sequentially connected to form a continuous edge area.
  • first edge area 524, the second edge area 525, the third edge area 526, and the fourth edge area 527 can also be arranged at intervals, or partly spaced apart or partly continuously arranged, which is not strictly limited in this application. .
  • One end of the first SMA wire 541 is fixed to an end of the first side surface 513 of the upper member 51 close to the second side surface 514, and the other end of the first SMA wire 541 is fixed to the first edge area 524 of the lower member 52 close to the fourth edge area 527 One end.
  • the second SMA wire 542 and the first SMA wire 541 are symmetrically arranged with respect to the second reference plane 5b.
  • One end of the second SMA wire 542 is fixed to an end of the second side surface 514 of the upper member 51 close to the first side surface 513, and the other end of the second SMA wire 542 is fixed to the second edge area 525 of the lower member 52 close to the third edge area 526 One end.
  • the third SMA wire 543 and the second SMA wire 542 are symmetrically arranged with respect to the first reference plane 5a.
  • One end of the third SMA wire 543 is fixed to an end of the third side surface 515 of the upper member 51 close to the fourth side surface 516, and the other end of the third SMA wire 543 is fixed to the third edge area 526 of the lower member 52 close to the second edge area 525 One end.
  • the fourth SMA wire 544 and the third SMA wire 543 are symmetrically arranged with respect to the second reference plane 5b.
  • One end of the fourth SMA wire 544 is fixed to an end of the fourth side surface 516 of the upper member 51 close to the third side surface 515, and the other end of the fourth SMA wire 544 is fixed to the fourth edge area 527 of the lower member 52 close to the first edge area 524 One end.
  • one end of the SMA wire 54 is fixed at the diagonal position of the upper part 51, and the other end is fixed at the diagonal position of the lower part 52, so that the SMA wire 54 can have a comparatively high value when the internal space of the SMA motor 5 is limited.
  • the SMA motor 5 can have a larger driving stroke range, so that the anti-shake performance of the camera module 10 is better.
  • one end of the first SMA wire 541 may also be fixed to an end of the first side surface 513 of the upper member 51 close to the fourth side surface 516, and the other end of the first SMA wire 541 is fixed to the first side surface of the lower member 52.
  • the edge area 524 is close to one end of the second edge area 525, and the second SMA wire 542, the third SMA wire 543, and the fourth SMA wire 544 change adaptively with the position of the first SMA wire 541.
  • the positions of the two ends of the SMA wire 54 can be set by the movable claws 511 of the upper part 51 and the fixed claws 522 of the lower part 52.
  • the positions of the movable claw 511 and the fixed claw 522 are set according to the position requirements of the SMA wire 54, which is not strictly limited in this application.
  • the height of the four SMA wires 54 can be the same, that is, the height of the end of the SMA wire 54 connected to the upper part 51 and the end of the lower part 52 is the same for convenience
  • the four SMA wires 54 drive the upper part 51 to move.
  • FIG. 5 in order to conveniently illustrate the structure and position difference of multiple SMA wires 54, the SMA wires 54 are drawn obliquely.
  • the structure and position of the claws (such as the fixed claws 522 and the movable claws 511 in FIG. 5) for fixing the SMA wire 54 can be designed so that the position of the SMA wire 54 meets the requirements.
  • the volume of the fixed claw 522 in FIG. 5 can be made larger, or it can be designed as a small boss structure, so that the height of the two ends of the SMA wire 54 is the same.
  • the jaws may also have other implementation structures, which is not strictly limited in this application.
  • the SMA motor 5 may further include two spring arms 55.
  • the spring arm 55 is more prominently displayed, and the structure of the spring arm 55 is filled with hatching.
  • the spring arm 55 is L-shaped.
  • Each of the spring arms 55 includes a fixed end 551 and a movable end 552.
  • the movable end 552 of the spring arm 55 is fixed to the upper part 51, and the fixed end 551 of the spring arm 55 is fixed to the lower part 52, for example, it may be fixed to the middle area 523 of the lower part 52.
  • the two spring arms 55 are centered symmetrically, and the center of symmetry is the intersection line of the first reference plane 5a and the second reference plane 5b.
  • the two spring arms 55 that are symmetrical in the center produce the same deformation when the upper part 51 moves.
  • the spring arm 55 of the SMA motor 5 can balance and buffer the force of the upper member 51 when the SMA wire 54 is energized to drive the upper member 51 to move the voice coil motor 4 and the lens 3, so that the upper member 51 The movement is more stable.
  • the spring arm 55 of the SMA motor 5 can also generate elastic force formed by deformation when the SMA wire 54 is powered off, and drive the upper member 51 to carry the voice coil motor 4 and The lens 3 moves back to the initial position.
  • the SMA wire 54 is energized and contracted, and the pulling force of the SMA wire 54 drives the upper part 51 to carry the voice coil motor 4 and the lens 3 to produce a precise anti-shake displacement.
  • the spring arm 55 recovers The force driving the upper part 51 carries the voice coil motor 4 and the lens 3 to move back to the natural center.
  • the movement space of the spring arm 55 is staggered from the movement space of the SMA wire 54, so that the spring arm 55 and the SMA wire 54 can be avoided in the upper part. Interference occurred during 51's movement.
  • the fixed end 551 of the spring arm 55 may also be fixed to the peripheral area of the lower part 52, and the fixing position of the fixed end 551 of the spring arm 55 is not strictly limited in the present application.
  • the two spring arms 55 may be integrally formed on the upper part 51 to simplify the assembly structure of the SMA motor 5, so that the structural stability of the SMA motor 5 is better.
  • the spring arm 55 and the upper part 51 may be integrally formed by etching or other methods.
  • the movable end 552 of the spring arm 55 may also be fixed to the upper member 51 by welding or the like, which is not strictly limited in this application.
  • the fixed end 551 of the spring arm 55 can be fixed to the lower part 52 by welding or the like, which is not strictly limited in this application.
  • the spring arm 55 includes a first branch 55 a and a second branch 55 b connected to the first branch 55 a.
  • the end of the first branch 55a away from the second branch 55b is a movable end 552, which is fixed to the upper part 51; the end of the second branch 55b away from the first branch 55a is a fixed end 551, which is fixed to the lower part 52.
  • the first branch 55 a of one of the two spring arms 55 is parallel to the first side surface 513, and the second branch 55 b is parallel to the fourth side surface 516.
  • the first branch 55 a of the other spring arm 55 of the two spring arms 55 is parallel to the third side 515, and the second branch 55 b is parallel to the second side 514.
  • the shape and position of the two spring arms 55 are adapted to the upper part 51, so the two spring arms 55 have a better balance and cushioning effect on the upper part 51.
  • the first branch 55 a of one of the two spring arms 55 is parallel to the first side 513, and the second branch 55 b is parallel to the fourth side 516.
  • the end of the first branch 55a of the spring arm 55 away from the second branch 55b is the fixed end 551, which is fixed to the lower part 52; the end of the second branch 55b away from the first branch 55a is the movable end 552, which is fixed to the upper part 51.
  • the peripheral side surface of the upper member 51 is partially recessed to form two L-shaped escape grooves 517.
  • Each escape groove 517 extends from one side surface of the upper member 51 to the other side surface.
  • the two spring arms 55 are respectively arranged corresponding to the two avoiding grooves 517.
  • the movable end 552 of the spring arm 55 is fixed to the side wall of the avoiding groove 517, and the groove side wall of the avoiding groove 517 is connected to the peripheral side surface of the upper member 51.
  • the SMA motor 5 uses the relief groove 517 of the upper part 51 and the space below the relief groove 517 as the installation space and the movable space of the spring arm 55, so that the arrangement of the spring arm 55 and the upper part 51 is more compact.
  • the SMA motor 5 is easier to achieve miniaturization.
  • the movable end 552 of the spring arm 55 may also be fixed to the surface of the upper part 51 facing the lower part 52.
  • the upper part 51 may not be provided with the avoiding groove 517, the structure of the upper part 51 is relatively complete, and the upper part 51 is easier to process.
  • the spring arm 55 has a pre-pressure to press the upper member 51 on the support 53 so as to reduce the difference between the SMA motor 5 in different postures and improve the control accuracy of the SMA motor 5. It is understandable that when the SMA motor 5 has a downward posture on the lens 3, due to its own weight, the support 53 and the upper part 51 may be separated, resulting in a change in the relative position of the lens 3 with respect to the motor bracket 2 (that is, under different postures). , The relative position of the lens 3 will change, which is called the effect of posture difference), which leads to differences in the performance of the motor in different postures.
  • FIG. 7 is a structural diagram of the spring arm 55 of the SMA motor 5 shown in FIG. 6 in some embodiments.
  • FIG. 7 also shows the structure of the upper part 51, the lower part 52 and the support 53 of the SMA motor 5 to facilitate the description of the spring arm 55.
  • a height difference is formed between the movable end 552 of the spring arm 55 and the fixed end 551 of the spring arm 55 to form a pre-pressure.
  • the height of the movable end 552 of the spring arm 55 can be understood as the distance between the center of the movable end 552 of the spring arm 55 and the top surface of the lower part 52 (that is, the surface facing the upper part 51); the spring arm
  • the height of the fixed end 551 of the spring arm 55 can be understood as the distance between the center of the fixed end 551 of the spring arm 55 and the top surface of the lower part 52.
  • the height difference between the movable end 552 of the spring arm 55 and the fixed end 551 of the spring arm 55 may be formed by the height difference between the fixed position of the movable end 552 and the fixed position of the fixed end 551.
  • the fixed end 551 of the spring arm 55 is fixed to the lower part 52
  • the movable end 552 of the spring arm 55 is fixed to the upper part 51
  • the upper part 51 is located above the lower part 52
  • the movable end 552 of the spring arm 55 is connected to
  • the fixed ends 551 of the spring arms 55 form a height difference.
  • the height difference between the movable end 552 of the spring arm 55 and the fixed end 551 of the spring arm 55 may also be generated by the shape of the spring arm 55.
  • FIG. 8 is a structural diagram of the spring arm 55 of the SMA motor 5 shown in FIG. 6 in other embodiments.
  • FIG. 8 also shows the structure of the upper part 51, the lower part 52 and the support 53 of the SMA motor 5 to facilitate the description of the spring arm 55.
  • the spring arm 55 may further include a bent portion 553 located between the fixed end portion 551 and the movable end portion 552, and the bent portion 553 protrudes in a direction away from the motor lower part 52.
  • the bent portion 553 is used to make the spring arm 55 form a pre-pressure.
  • the movable end 552 of the spring arm 55 and the fixed end 551 It is not necessary to form a height difference between the end portions 551.
  • the shape, size, position and other factors of the bending portion 553 can be structured as shown in FIG. 8, or other design solutions, for example, changing the position of the upward bending inflection point and/or the downward bending inflection point of the bending portion , Changing the shape of the bending part, etc., this application does not strictly limit the specific shape, size, position and other factors of the bending part.
  • the spring arm 55 may not include the bent portion 553, and the spring arm 55 is pre-stressed by the height difference between the movable end portion 552 and the fixed end portion 551 or other design solutions.
  • the method of forming the pre-pressure is not strictly limited.
  • FIG. 9 is a top view of the SMA motor 5 shown in FIG. 5 in other embodiments.
  • this embodiment includes most of the technical features of the embodiment in FIG. 5 (including the features further described in the following description of the embodiment in FIG. 5). The main differences between this embodiment and the previous embodiment are:
  • the SMA motor 5 further includes four spring arms 55.
  • the spring arm 55 has a long strip shape.
  • Each of the spring arms 55 includes a fixed end 551 and a movable end 552.
  • the movable end 552 of the spring arm 55 is fixed to the upper member 51, and the fixed end 551 of the spring arm 55 is fixed to the lower member 52, for example, to the middle area 523 of the lower member 52.
  • the four spring arms 55 are paired in pairs, the two pairs of spring arms 55 are arranged symmetrically with respect to the first reference surface 5a, and the two spring arms 55 of the same pair are arranged symmetrically with respect to the second reference surface 5b.
  • the four spring arms 55 may be parallel to the four sides of the upper part 51 respectively.
  • the SMA motor 5 is provided with a spring arm 55, which can not only balance and buffer the force of the upper member 51 when the SMA wire 54 is energized to drive the upper member 51 to carry the voice coil motor 4 and the lens 3 to move
  • the movement of the upper part 51 is more stable, and when the SMA wire 54 is de-energized, the elastic force formed by the deformation generated during the movement of the upper part 51 when the SMA wire 54 is energized can drive the upper part 51 to carry the voice coil motor. 4 and lens 3 move back to the initial position.
  • the arrangement relationship of the four spring arms 55 corresponds to the arrangement relationship of the SMA wire 54, so the four spring arms 55 can better achieve the balance and recovery effects.
  • the movement space of the spring arm 55 is staggered from the movement space of the SMA wire 54, so that the spring arm 55 and the SMA wire 54 can be avoided in the upper part. Interference occurred during 51's movement.
  • the spring arm 55 shown in FIG. 9 may also have a pre-pressure
  • the solution for setting the pre-pressure may be the solution in FIG. 7 or the solution in FIG. 8.
  • FIG. 10 is a partial structural diagram of the SMA motor 5 shown in FIG. 5. Among them, FIG. 10 shows the structure of the SMA motor 5 more clearly, and a part of the structure of the SMA motor 5 is filled in.
  • each support 53 of the SMA motor 5 includes a lubricating coating 531, and the lubricating coating 531 is provided on the end of the support 53 close to the upper part 51 and in contact with the upper part 51.
  • the lubricating coating 531 can reduce the coefficient of friction between the upper part 51 and the support 53. Therefore, the SMA wire 54 of the SMA motor 5 pulls the upper part 51 and the lens 3 to move relative to the support 53 to achieve anti-shake During the process, the friction between the upper part 51 and the support 53 is small, and the stroke control accuracy of the SMA motor 5 is higher, thereby reducing the amount of shake of the upper part 51 and the lens 3, and improving the low-frequency water when the shooting preview interface is stationary. Ripple jitter phenomenon. In addition, since the lubricating coating 531 is provided, the friction force between the upper part 51 and the support 53 can still be controlled to be small in the solution of forming the pre-pressure of the spring arm 55 (see FIG. 7 or FIG. 8).
  • FIG. 11 is a schematic diagram of the influence of the friction between the upper part of the SMA motor and the support on the lens movement process.
  • the moving process of the lens shown in the upper part of Fig. 11 corresponds to the situation where there is no or little friction between the upper part and the support (for example, the structure of the SMA motor 5 shown in Fig. 10); the lower part of Fig. 11
  • the illustrated movement of the lens corresponds to a situation where the friction between the upper part and the support is relatively large.
  • the position control is realized by the actual length difference of two opposite SMA wires, and the length of the SMA wire is directly related to the resistance.
  • the length of the SMA wire has a linear relationship with the resistance, that is, the longer the SMA wire, the greater the resistance. Therefore, when the four SMA wires are given different drive control signals, the resistance difference of the two SMA wires in the relative position can be used as the feedback signal of the length difference of the SMA wire (that is, the actual position of the motor), and the real-time feedback of the upper part and the lens Location.
  • the control system reads the resistance feedback parameters in real time, combined with the environmental jitter signal fed back by the gyroscope (this application mainly relates to the lens jitter situation of the camera module in a static state, so the gyroscope signal is not considered), and the real-time output drive
  • the control signal is used to realize the position control of the upper part and the lens.
  • the SMA motor feeds back the movement position of the upper part in real time through the resistance of the SMA wire (the movement position of the upper part is the movement position of the lens), and continuously travel feedback-compensation, which is closed-loop feedback. Therefore, when there is a large frictional force opposite to the direction of movement, the lens should have moved to a certain position accurately due to resistance, but it is actually a little bit worse (that is, the control accuracy is reduced).
  • the control system detects through the resistance that the lens has not moved to the theoretical position, and then increases the drive signal (that is, compensation) to increase the pulling force of the SMA cable a little, so that the lens moves to the theoretical position, and due to the friction force, this compensation phase Compensation is greater than when there is no friction.
  • the compensation may be over-compensated (that is, the compensation accuracy is limited).
  • the compensation is too large, the driving force of the SMA line will be reduced.
  • the lens will move in the reverse direction and approach the theoretical position.
  • the effect of the effect will be greater than without friction.
  • the presence of friction will reduce the control accuracy and compensation accuracy, because the resistance feedback-compensation is carried out in real time, that is, the above compensation action is carried out continuously, and the final result is that the actual lens position will be in the theoretical position.
  • the back and forth fluctuations result in weak jitter in the preview screen of the camera module. Due to friction, this degree of jitter is more serious than frictionless or small friction.
  • the SMA motor 5 in the embodiment of the present application is provided with a lubricating coating 531, which can greatly reduce the friction between the upper part 51 and the support 53 bracket, thereby improving the control accuracy and reducing the amount of shake of the lens 3 (such as shaking amplitude, number of times, etc.).
  • the camera module 10 adopting the SMA motor 5 of the embodiment of the present application has a significantly improved jitter in the static shooting preview interface compared to the traditional solution.
  • the SMA motor 5 in the embodiment of the present application is provided with a lubricating coating 531 on the support 53 to reduce the friction between the support 53 and the upper part 51, so that the anti-shake performance can be reduced without affecting the anti-shake performance.
  • Improve the stroke control accuracy of the SMA motor 5 reduce the amount of jitter through hardware measures, and avoid the influence of the length of the SMA wire 54 or the software drive. It has technical versatility and does not increase new reliability risks.
  • the SMA motor 5 can Mass production does not significantly increase manufacturing costs.
  • FIG. 12 is a structural diagram of the support 53 of the SMA motor 5 shown in FIG. 10 in some embodiments.
  • each support 53 further includes a support body 532, one end of the support body 532 is fixed to the lower part 52, and the lubricating plating layer 531 is fixed to the other end of the support body 532.
  • the material of the support body 532 may be metal.
  • the material of the support body 532 may also be an organic polymer material, such as polyformaldehyde (POM), or other types of materials.
  • the lubricating plating layer 531 includes a metal layer 531a, a metal inorganic compound layer 531b, and an inorganic layer 531c that are sequentially stacked.
  • the metal layer 531 a of the lubricating plating layer 531 is fixed to the support body 532.
  • the inorganic layer 531 c of the lubricating plating layer 531 contacts the upper member 51.
  • the metal layer 531a and the metal inorganic compound layer 531b include the same element, and the metal inorganic compound layer 531b and the inorganic layer 531c include the same element.
  • the inorganic layer 531c since the top layer of the lubricating coating 531 away from the support body 532 is the inorganic layer 531c, the inorganic layer 531c has high hardness and smoothness, so the lubricating coating 531 has better lubricating performance as a whole, which can effectively reduce the support 53 and the support body 532.
  • the friction between the upper parts 51 makes the stroke control accuracy of the SMA motor 5 better.
  • the inorganic layer 531c can also play an insulating role, thereby effectively isolating the support 53 and the upper part 51 electrically, and reduce the risk of a short circuit between the support 53 and the upper part 51.
  • the metal layer 531a has high flexibility and is not easy to crack, so the lubricating plating layer 531 can be better fixed to the support body 532 and is flexible Better and higher reliability.
  • the metal inorganic compound layer 531b and the metal layer 531a have the same elements, and also have the same elements as the inorganic layer 531c, Therefore, the metal-inorganic compound layer 531b can smoothly transition between the metal layer 531a and the inorganic layer 531c, thereby improving the bonding performance between the metal layer 531a and the inorganic layer 531c, so that the lubricating plating layer 531 has higher integrity and higher structural reliability.
  • the inorganic layer 531c is a carbon layer
  • the surface structure of the inorganic layer 531c away from the metal inorganic compound layer 531b is a diamond-like structure. That is, the surface layer of the lubricating plating layer 531 forms a diamond-like carbon (DLC) film.
  • the diamond-like carbon film is composed of carbon elements, which is similar in nature to diamond, and at the same time has a structure composed of graphite atoms.
  • the diamond-like carbon film is an amorphous film with high hardness and high elastic modulus, low friction factor, wear resistance and good vacuum tribological characteristics, which makes the lubricating coating 531 wear-resistant and can effectively reduce the support 53 The friction between the upper part 51.
  • the metal layer 531a is a chromium layer
  • the metal inorganic compound layer 531b is a carbon-chromium compound layer.
  • the metal material of the metal layer 531a and the metal inorganic compound layer 531b of the lubricating plating layer 531 is made of chromium, so that the carbon layer with the diamond-like carbon structure on the surface has better adhesion to the carbon chromium compound layer at the bottom, and the lubricating plating layer The overall structure of the 531 is more reliable.
  • the lubricating coating 531 may be formed on the surface of the support body 532 through a physical vapor deposition (PVD) process and a chemical vapor deposition (CVD) to make the lubricating coating 531 has thin thickness, high strength and low friction coefficient.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the physical vapor deposition technology uses high-energy plasma particles to bombard the material source (target) atoms or groups of atoms from the target under approximate vacuum conditions, and deposit them on the surface of the substrate (ie, the object to be plated) under the action of an electric field.
  • the technology of forming thin films is sputtering coating.
  • the basic principle of sputtering coating is to use high-energy electric field to ionize the cavity gas (conventional gas uses argon) into a plasma state under vacuum conditions, and accelerate it under the electric field Make it bombard the surface of the target material at a high speed, so that the atoms on the surface of the target material get enough energy to escape and sputter out of the target material surface.
  • the sputtered target particles are deposited on the surface of the substrate and gradually accumulate to form a film, which is called sputter coating.
  • the high-energy particles in the sputtering coating are generally obtained by glow discharge from the ambient gas of the equipment cavity.
  • the high-energy particles are accelerated under the electric field, bombarding the target material, and sputtered.
  • the target particles fly to the substrate, they are easy to collide with the gas molecules in the vacuum chamber, so that the moving direction is random, and the deposited film is easy to be uniform.
  • the sputtering method of more than one target material is called co-sputtering, and the method in which the ambient gas of the cavity participates in the chemical reaction of the sputtered particles is called reactive sputtering.
  • PVD technology is used to grow metal thin films or metal inorganic compound thin films.
  • CVD chemical vapor deposition
  • the lubricating coating 531 is formed by three stages of conventional physical vapor deposition sputtering, physical vapor deposition reactive sputtering, and chemical vapor deposition sputtering.
  • a metal target such as chromium
  • the metal layer 531a of the lubricating coating 531 is plated on the support body 532 by a traditional physical vapor deposition sputtering method.
  • This process is a conventional physical vapor deposition sputtering method. The shooting process.
  • a chemical gas such as acetylene (C 2 H 2 ), methane (CH 4 ) and other C-containing gases
  • C 2 H 2 acetylene
  • CH 4 methane
  • other C-containing gases a chemical gas
  • metal ions such as carbon chromium compounds
  • the third stage gradually reduce the rate of reactive sputtering, increase the rate of chemical vapor deposition sputtering, and then transition to the complete chemical vapor deposition sputtering stage.
  • the inorganic insulator produced by chemical vapor deposition continues to cover the lubricating coating 531
  • an inorganic layer 531c (such as a carbon layer) is formed, and finally a lubricating plating layer 531 having a three-layer stacked structure shown in FIG. 12 is formed.
  • FIG. 13 is a schematic diagram of the basic structure of the reaction device 20 for preparing the lubricating coating 531.
  • the reaction device 20 includes a cavity wall 201, an air inlet 202, a discharge port 203, two target installation ports 204 and a bearing turntable 205.
  • the inside of the cavity wall 201 forms a reaction chamber 206, the air inlet 202 communicates with the reaction chamber 206 and the outside of the reaction device 20, the discharge port 203 communicates with the reaction chamber 206 and the outside of the reaction device 20, and the target mounting port 204 communicates with the reaction chamber 206 for installation
  • the target, the carrying turntable 205 is used to install the substrate to be coated. Among them, the number of target mounting ports 204 can also be more.
  • the support body 532 is installed on the load-bearing turntable 205, and two metal targets 207 (for example, chromium) are installed on the two targets respectively.
  • the material installation port 204 allows an organic gas (for example, acetylene) to be introduced from the air inlet 202.
  • the support body 532 rotates between the two metal targets 207, and the plasma particles (such as argon (Ar) ions, as indicated by the hollow circles in the figure) of the reaction chamber 206 first bombard the metal targets 207, making the targets Particles (indicated by the filled circle in the figure) are sputtered out, the metal layer 531a of the lubricating coating 531 is formed on the support body 532, and then the reflection of the body is passed in at the same time, and the reactive sputtering is started, and the conventional metal sputtering and reactive sputtering are controlled.
  • the plasma particles such as argon (Ar) ions, as indicated by the hollow circles in the figure
  • the sputtering ratio of the two gradually reduces the deposition amount of the metal target 207, and the transition layer generated by reactive sputtering, that is, the metal inorganic compound layer 531b gradually increases, and the metal inorganic compound layer 531b is formed on the metal layer 531a of the lubricating plating layer 531 .
  • the metal sputtering is controlled to stop, and the chemical vapor deposition stage is transitioned to the chemical vapor deposition stage where only the reaction gas is reacted, and the inorganic layer 531c is formed on the metal inorganic compound layer 531b of the lubricating plating layer 531.
  • the multilayer structure of the lubricating coating 531 is actually an integral structure, that is, an integral coating structure.
  • the metal layer 531a, the metal inorganic compound layer 531b, and the inorganic layer 531c are gradually transitioned.
  • the metal layer 531a and the metal inorganic are all fuzzy interfaces, and they are in a state where the two layer materials are doped with each other.
  • the thickness of the lubricating plating layer 531 can be controlled to the micrometer (um) level.
  • the overall thickness of the lubricating coating 531 may be in the range of 5 micrometers to 10 micrometers, and the thickness of the surface diamond-like structure of the inorganic layer 531c of the lubricating coating 531 may be in the range of 1 micrometers to 3 micrometers.
  • the thickness of each layer and the overall thickness of the lubricating plating layer 531 may also have other values or ranges, which are not strictly limited in this application.
  • the inorganic layer 531c of the lubricating plating layer 531 can also be a carbon layer with a surface structure other than a diamond-like carbon structure. At this time, the inorganic layer 531c of the lubricating plating layer 531 still has lubricity, but the lubricity The solution of the diamond-like carbon surface structure is poor.
  • the inorganic layer 531c of the lubricating plating layer 531 is a carbon layer, and the surface structure of the inorganic layer 531c of the lubricating plating layer 531 away from the metal inorganic compound layer 531b of the lubricating plating layer 531 is a diamond-like structure.
  • the metal layer 531a of the lubricating plating layer 531 is a titanium (Ti) layer, and the metal inorganic compound layer 531b is a carbon-titanium compound layer.
  • the inorganic layer 531c of the lubricating plating layer 531 is a silicon (Si) layer.
  • the metal layer 531a of the lubricating plating layer 531 may be a titanium layer or a chromium layer, and the metal inorganic compound layer 531b is a silicon-titanium compound layer or a silicon-chromium compound layer, respectively.
  • the chemical gas passed into the reaction chamber 206 of the reaction device 20 may be silane.
  • the inorganic layer 531c of the lubricating plating layer 531 may also be made of other inorganic materials that can achieve lubrication, and the metal layer 531a of the lubricating plating layer 531 may also be made of other materials, which is not strictly limited in this application.
  • the lubricating plating layer 531 may also extend to the peripheral side of the support body 532.
  • the support body 532 includes a top surface facing the upper part 51, a bottom surface facing the lower part 52, and a peripheral side surface connected between the top surface and the bottom surface.
  • the lubricating plating layer 531 covers the entire top surface, and may also cover part of the peripheral side surface or the entire peripheral side surface at the same time.
  • the upper part 51 includes an upper part body 518 and an upper plating layer 519, and the upper plating layer 519 is fixed to a side of the upper part body 518 close to the support 53.
  • the upper plating layer 519 may be a lubricating plating layer.
  • the upper plating layer 519 contacts the lubricating plating layer 531 of the support 53 to further reduce the friction between the upper part 51 and the support 53, so that the stroke control accuracy of the SMA motor 5 is higher, and the lens 3 of the camera module 10 shakes less.
  • the upper plating layer 519 includes a metal layer 519a, a metal inorganic compound layer 519b, and an inorganic layer 519c that are sequentially stacked.
  • the metal layer 519a is fixed to the upper body 518, the metal layer 519a and the metal inorganic compound layer 519b include the same element, and the metal inorganic compound layer 519b and the inorganic layer 519c include the same element.
  • the inorganic layer 519c since the top layer of the upper plating layer 519 away from the upper component body 518 is the inorganic layer 519c, the inorganic layer 519c has high hardness and smoothness, so the upper plating layer 519 has better lubricating performance as a whole, which can effectively reduce the support 53.
  • the friction with the upper part 51 makes the stroke control accuracy of the SMA motor 5 better.
  • the inorganic layer 519c can also play an insulating role, thereby effectively isolating the support 53 and the upper part 51 electrically and reducing the risk of a short circuit between the support 53 and the upper part 51.
  • the metal layer 519a has high flexibility and is not easy to crack, so the upper plating layer 519 can be better fixed to the upper part body 518 and is flexible Better and higher reliability.
  • the metal inorganic compound layer 519b and the metal layer 519a have the same elements, and also have the same elements as the inorganic layer 519c, Therefore, the metal-inorganic compound layer 531b can smoothly transition the metal layer 519a and the inorganic layer 519c, thereby improving the bonding performance between the metal layer 519a and the inorganic layer 519c, so that the upper plating layer 519 has higher integrity and higher structural reliability.
  • the inorganic layer 519c of the upper plating layer 519 is a carbon layer
  • the surface structure of the inorganic layer 519c of the upper plating layer 519 away from the metal inorganic compound layer 519b of the upper plating layer 519 is a diamond-like structure. That is, the surface layer of the upper plating layer 519 forms a diamond-like carbon (DLC) film.
  • DLC diamond-like carbon
  • the metal layer 519a of the upper plating layer 519 is a chromium layer
  • the metal inorganic compound layer 519b of the upper plating layer 519 is a carbon-chromium compound layer.
  • the metal layer 519a of the upper plating layer 519 and the metal inorganic compound layer 519b are made of chromium, so that the carbon layer with a diamond-like structure on the surface has better adhesion to the carbon chromium compound layer at the bottom. The overall structure of the 519 is more reliable.
  • the inorganic layer 519c of the upper plating layer 519 may also be a carbon layer with a surface structure other than a diamond-like carbon structure. At this time, the inorganic layer 519c of the upper plating layer 519 still has lubricity, but the lubricity The solution of the diamond-like carbon surface structure is poor.
  • the inorganic layer 519c of the upper plating layer 519 is a carbon layer, and the surface structure of the inorganic layer 519c of the upper plating layer 519 away from the metal inorganic compound layer 519b of the upper plating layer 519 is a diamond-like structure.
  • the metal layer 519a of the upper plating layer 519 is a titanium (Ti) layer, and the metal inorganic compound layer 519b is a carbon-titanium compound layer.
  • the inorganic layer 519c of the upper plating layer 519 is a silicon (Si) layer.
  • the metal layer 519a of the upper plating layer 519 may be a titanium layer or a chromium layer, and the metal inorganic compound layer 519b is a silicon-titanium compound layer or a silicon-chromium compound layer, respectively.
  • the chemical gas passed into the reaction chamber 206 of the reaction device 20 may be silane.
  • the inorganic layer 519c of the upper plating layer 519 can also be made of other inorganic materials that can achieve lubrication, and the metal layer 519a of the upper plating layer 519 can also be made of other materials, which is not strictly limited in this application.
  • the upper plating layer 519 when the upper plating layer 519 does not require lubrication and is an insulating plating layer, the upper plating layer 519 may also be plated with organic polymer materials as a whole.
  • the upper part body 518 includes a bottom surface facing the lower part 52, and the upper plating layer 519 may cover all or a partial area of the bottom surface of the upper part body 518.
  • the upper plating layer 519 covers a partial area of the bottom surface of the upper component body 518, the partial area is mainly the contact area of the support 53.
  • the upper part 51 may not be provided with the upper plating layer 519, and the lubricating plating layer 531 of the support 53 directly contacts the upper part body 518. At this time, although the friction force between the support 53 and the upper part 51 is worse than that of the upper part 51 with the upper plating layer 519, the lubricating coating 531 on the support 53 can still meet the requirements of greatly reducing the support 53. The friction between the upper part 51 and the demand.
  • the lower part 52 includes a lower part body 528 and a lower plating layer 529, and the lower plating layer 529 is fixed to a side of the lower part body 528 close to the support 53.
  • the lower plating layer 529 is an insulating plating layer.
  • the lower plating layer 529 of the lower part 52 can insulate the support 53 and the lower part 52 to reduce the risk of a short circuit between the upper part 51 and the lower part 52.
  • FIG. 15 is a partial structural diagram of the lower part 52 of the SMA motor 5 shown in FIG. 10 in some embodiments.
  • the lower plating layer 529 includes a metal layer 529a, a metal inorganic compound layer 529b, and an inorganic layer 529c stacked in sequence.
  • the metal layer 529a of the lower plating layer 529 is fixed to the lower part body 528, and the metal layer 529a of the lower plating layer 529 and the lower plating layer
  • the metal inorganic compound layer 529b of 529 includes the same element, and the metal inorganic compound layer 529b of the lower plating layer 529 and the inorganic layer 529c of the lower plating layer 529 include the same element.
  • the inorganic layer 529c can play an insulating role, thereby effectively isolating the support 53 and the lower part 52 electrically, and lowering the support 53 and the lower part 52. There is a risk of a short circuit between the lower parts 52.
  • the metal layer 529a since the bottom layer of the lower plating layer 529 fixed to the lower part body 528 is the metal layer 529a, the metal layer 529a has high flexibility and is not easy to crack, so the lower plating layer 529 can be better fixed to the lower part body 528 and is flexible Better and higher reliability.
  • the metal inorganic compound layer 529b and the metal layer 529a have the same elements, and also have the same elements as the inorganic layer 529c, Therefore, the metal-inorganic compound layer 529b can smoothly transition between the metal layer 529a and the inorganic layer 529c, thereby improving the bonding performance between the metal layer 529a and the inorganic layer 529c, so that the lower plating layer 529 has higher integrity and higher structural reliability.
  • the inorganic layer 529c of the lower plating layer 529 is a carbon layer
  • the metal layer 529a of the lower plating layer 529 is a chromium layer
  • the metal inorganic compound layer 529b of the lower plating layer 529 is a carbon-chromium compound layer.
  • the inorganic layer 529c of the lower plating layer 529 is a carbon layer
  • the metal layer 529a of the lower plating layer 529 is a titanium layer
  • the metal inorganic compound layer 529b of the lower plating layer 529 is a carbon titanium compound layer.
  • the inorganic layer 529c of the lower plating layer 529 is a silicon (Si) layer.
  • the metal layer 529a of the lower plating layer 529 may be a titanium layer or a chromium layer, and the metal inorganic compound layer 529b is a silicon-titanium compound layer or a silicon-chromium compound layer, respectively.
  • the chemical gas passed into the reaction chamber 206 of the reaction device 20 may be silane.
  • the inorganic layer 529c of the lower plating layer 529 may also be made of other inorganic materials that can achieve insulation, and the metal layer 529a of the lower plating layer 529 may also be made of other materials, which is not strictly limited in this application.
  • the lower plating layer 529 may also be entirely plated with organic polymer materials.
  • the lower part body 528 includes a bottom surface facing the upper part 51, and the lower plating layer 529 may cover all or a partial area of the top surface of the lower part body 528.
  • the partial area is mainly the contact area of the support 53.
  • the lower part 52 may not be provided with the lower plating layer 529, the support body 532 directly contacts the lower part body 528, and the upper part is realized by the lubricating plating layer 531 of the support 53 and/or the upper plating layer 519 of the upper part 51 Insulation between 51 and the lower part 52.
  • the lower part 52 is not provided with a lower plating layer 529, the upper part 51 is not provided with an upper plating layer 519, the support body 532 of the support 53 contacts the lower part 52, and the lubricating coating 531 of the support 53 contacts the upper part 51,
  • the lubrication plating layer 531 achieves insulation between the upper part 51 and the lower part 52.
  • the support 53 can be fixed by glue or other fixing methods.
  • the support 53 when the support 53 is made of a metal material, it can be fixed to the lower part 52 by bonding.
  • the support 53 is made of an organic polymer material, such as polyformaldehyde (POM), it can be fixed to the lower part 52 by thermoforming bonding.
  • the support 53 may also be made of other materials, or may be fixed to the lower part 52 by other fixing methods, which is not strictly limited in the embodiment of the present application.
  • FIG. 16 is a partial structural diagram of the upper part 51, the support 53 and the lower part 52 of the SMA motor 5 shown in FIG. 10 in other embodiments.
  • the lubricating coating 531 is lubricating oil, grease or solid lubricant. At this time, the lubricating coating 531 can reduce the friction between the upper part 51 and the support 53, improve the stroke control accuracy of the SMA motor 5, and reduce the amount of shake of the lens 3 of the camera module 10.
  • the upper part 51 includes an upper part body 518 and an upper plating layer 519, the upper plating layer 519 is fixed to a side of the upper part body 518 close to the support 53, and the upper plating layer 519 is an insulating plating layer.
  • the lower part 52 includes a lower part body 528 and a lower plating layer 529. The lower plating layer 529 is fixed to a side of the lower part body 528 close to the support 53. The lower plating layer 529 is an insulating plating layer.
  • the upper part 51 and the lower part 52 are insulated by the upper plating layer 519 and the lower plating layer 529.
  • the insulating plating layer includes a metal layer, a metal inorganic compound layer, and an inorganic layer that are sequentially stacked.
  • the inorganic layer of the insulating coating is a carbon layer, which is used to achieve insulation.
  • the metal layer of the insulating plating layer is a titanium layer, and the metal inorganic compound layer of the insulating plating layer is a carbon titanium compound layer; or, the metal layer of the insulating plating layer is a chromium layer, and the metal inorganic compound layer of the insulating plating layer is a carbon chromium compound layer.
  • the upper plating layer 519 includes a metal layer 519a, a metal inorganic compound layer 519b, and an inorganic layer 519c that are sequentially stacked.
  • the lower plating layer 529 includes a metal layer 529a, a metal inorganic compound layer 529b, and an inorganic layer 529c stacked in this order.
  • the insulating coating has a thin thickness, high flexibility, high hardness, insulation and high overall structural reliability.
  • the inorganic layer of the insulating plating layer may also be a silicon layer.
  • the metal layer of the insulating plating layer may be a titanium layer or a chromium layer, and the metal inorganic compound layer is a silicon-titanium compound layer or a silicon-chromium compound layer correspondingly.
  • the insulating coating can also be plated with organic polymer materials as a whole. This application does not strictly limit the specific structure, material and production method of the insulating coating.
  • the upper part 51 may not be provided with an upper plating layer 519
  • the lower part 52 is provided with an insulating lower plating layer 529
  • the upper part 51 and the lower part 52 are insulated by the lower plating layer 529.
  • the upper part 51 is provided with an insulating upper plating layer 519
  • the lower part 52 may not be provided with a lower plating layer 529
  • the upper part 51 and the lower part 52 are insulated by the upper plating layer 519.
  • FIG. 17 is a structural diagram of the SMA motor 5 shown in FIG. 3 in other embodiments. Among them, FIG. 17 shows the structure of the SMA motor 5 more clearly, and a part of the structure of the SMA motor 5 is filled in.
  • the SMA motor 5 of this embodiment may include all or most of the features of the SMA motor 5 of the foregoing embodiment.
  • the main difference between the SMA motor 5 of this embodiment and the SMA motor 5 of the foregoing embodiment is the following:
  • the SMA motor 5 further includes a cushion rubber 56 located between the upper part 51 and the lower part 52, and one end of the cushion rubber 56 is fixedly connected to the upper part 51 and the other end is fixedly connected to the upper part 51.
  • the cushion glue 56 may be damping glue, shock-absorbing glue, or the like.
  • the SMA motor 5 reduces the jitter amplitude of the upper part 51 during movement through the buffer rubber 56, thereby effectively reducing the jitter amount of the lens 3 of the camera module 10, and improving the low-frequency water ripple when the shooting preview interface is stationary. Shape jitter phenomenon.
  • one end of the cushion rubber 56 may be fixed to the movable claw 511 of the upper component 51. Since the pulling force of the SMA wire 54 acts on the movable claw 511, when the cushion glue 56 is fixed to the movable claw 511, it is beneficial to form a resultant force at the movable claw 511, ensuring the structural reliability of the upper member 51 when the force is applied. In other embodiments, the cushion rubber 56 can also be fixed to other positions of the upper component 51.
  • the number of buffer members 56 may be multiple, and the plurality of buffer glues 56 are arranged symmetrically with the center of symmetry being the intersection line of the first reference plane and the second reference plane.
  • the SMA motor 5 is further provided with a lubricating coating 531 on the support 53, and both the buffer rubber 56 and the lubricating coating 531 of the support 53 are used to reduce jitter.
  • the upper part 51 of the SMA motor 5 may further include an upper plating layer 519 (for related description, refer to the foregoing embodiment), and the lower part 52 of the SMA motor 5 may further include a lower plating layer 529 (for related description, refer to the foregoing embodiment).
  • the SMA motor 5 can also use the cushion rubber 56 alone to reduce jitter.
  • the SMA motor 5 can also be combined with a software control method to reduce jitter.
  • the electronic device 1000 uses a photosensitive member and a gyroscope to detect environmental conditions. When high illuminance and stillness are detected, when the electronic device 1000 is measured to be still and the camera module 10 is opened in the preview state, the system automatically reduces the driving power consumption of the SMA line 54 (such as voltage amplitude, pulse width modulation, PWM) duty cycle, etc.), so the wire shrinkage is lower, the feedback sensitivity is reduced, and the corresponding jitter is reduced.
  • the driving power consumption of the SMA line 54 such as voltage amplitude, pulse width modulation, PWM
  • the electronic device 1000 detects the scene in the same method, and when it detects a scene with high illumination and stillness, it switches to the optimal frequency through an algorithm. Due to different pulse width modulation driving frequencies, the amount of jitter is different, so switching the optimal frequency can reduce jitter to a certain extent.
  • the SMA motor 5 realizes drive control through the resistance feedback of the SMA wire 54.
  • the SMA wire 54 When it is not powered on, the SMA wire 54 is in a relaxed state, and when the SMA wire 54 is energized without displacement, it is in a straightened state. The difference in resistance between the relaxed and the straightened state is called slack resistance, which can not be characterized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)
  • Lens Barrels (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

本申请公开一种SMA马达、摄像头模组以及电子设备。SMA马达包括上部件、下部件、多个支座以及四根SMA线。下部件与上部件堆叠设置,多个支座位于下部件与上部件之间,各支座的一端固定连接下部件、另一端滑动连接上部件。各SMA线的一端固定连接上部件、另一端固定连接下部件,SMA线通电加热时产生收缩。各支座包括润滑镀层,润滑镀层设于支座靠近上部件的端部且接触上部件。前述SMA马达通过润滑镀层降低支座与上部件之间的摩擦系数,提高SMA马达的行程控制精度,降低上部件的抖动量,从而改善拍摄预览界面静止时的低频水波纹状抖动现象。

Description

SMA马达、摄像头模组及电子设备
本申请要求于2020年02月11日提交中国专利局、申请号为202010087300.3、申请名称为“SMA马达、摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及拍摄技术领域,尤其涉及一种SMA马达、摄像头模组及电子设备。
背景技术
随着智能手机摄像头(camera)拍照功能的日趋强大,光学防抖(optical image stabilizer,OIS)逐渐成为了手机摄像头的主要卖点与竞争力之一。光学防抖的作用是拍照时对一定频率和幅度范围内的手机抖动进行实时检测反馈并进行反向补偿,由于该补偿通常是通过光学镜头(lens)矫正光路得到的,较之用软件算法提升增益而言,画质上的损失非常小,因而很好地保证了图像质量。
目前的光学防抖技术正在逐渐由传统音圈马达(voice coil motor,VCM)的电磁力悬线式防抖技术发展为形状记忆合金(shape memory alloy,SMA)马达的记忆金属热电作用防抖技术。SMA马达是通过多根SMA线通电收缩产生的合力,驱动镜头发生移动,从而实现防抖。然而在目前的采用SMA马达的摄像头模组的拍照或摄像应用中,当打开拍摄预览界面,拍摄预览界面处于静止状态、不进行拍照时,也即开启了防抖功能但无防抖动作时,拍摄预览界面会出现低频水波纹状抖动(jitter),导致用户拍摄体验不佳。
发明内容
本申请的目的在于提供了一种SMA马达、摄像头模组及电子设备。SMA马达通过降低支座与上部件之间的摩擦系数,提高SMA马达的行程控制精度,降低抖动量,改善拍摄预览界面静止时的低频水波纹状抖动现象。
第一方面,本申请提供一种SMA马达,包括上部件、下部件、多个支座以及四根SMA线。下部件与上部件堆叠设置,多个支座位于下部件与上部件之间,各支座的一端固定连接下部件、另一端滑动连接上部件。各SMA线的一端固定连接上部件、另一端固定连接下部件,SMA线通电加热时产生收缩,四根SMA线两两成对,两对SMA线相对第一基准面对称设置,同一对的两根SMA线相对第二基准面对称设置,第二基准面与第一基准面相交。各支座包括润滑镀层,润滑镀层设于支座靠近上部件的端部且接触上部件。
在本申请中,由于SMA线通电加热时产生收缩,会对上部件产生对应的拉力,因此通过限定四根SMA线的位置关系,使得SMA马达可以通过控制四根SMA线内的电信号,使得四根SMA线对上部件的合力沿第一基准面移动或者沿第二基准面移动,并且可以通过在第一基准面上的位移和在第二基准面上的位移的合成位移,使得上部件相对下部件平移至任意位置。SMA马达应用于摄像头模组时,SMA马达的上部件用于承载摄像头模组的镜头,由于上部件能够相对下部件平移,故而SMA马达能够驱动镜头平移,使得摄像头模组实现光 学防抖。
由于润滑镀层能够降低上部件与支座之间的摩擦系数,因此在SMA马达的SMA线拉动上部件和镜头相对支座移动、以实现防抖的过程中,上部件与支座之间的摩擦力较小,SMA马达的行程控制精度较高,从而降低上部件和镜头的抖动量,改善拍摄预览界面静止时的低频水波纹状抖动现象。
一种可能的实现方式中,各支座还包括支座本体,支座本体的一端固定于下部件,润滑镀层固定于支座本体的另一端。润滑镀层包括依次层叠的金属层、金属无机化合物层及无机层,润滑镀层的金属层固定于支座本体,润滑镀层的金属层与润滑镀层的金属无机化合物层包括相同的元素,润滑镀层的金属无机化合物层与润滑镀层的无机层包括相同的元素。
在本实现方式中,由于润滑镀层远离支座本体的顶层是无机层,无机层的硬度高且光滑,故而润滑镀层整体具有较佳的润滑性能,能够有效降低支座与上部件之间的摩擦力,使得SMA马达的行程控制精度较佳。此外,无机层还能够起到绝缘作用,从而有效地电隔离支座与上部件,降低支座与上部件之间发生短路的风险。
此外,由于润滑镀层固定于支座本体的底层为金属层,金属层的柔韧性较高、不易裂开,因此润滑镀层能够更好地固定于支座本体,且柔韧性较佳、可靠性较高。由于位于润滑镀层的金属层与无机层之间的中间层为金属无机化合物层,金属无机化合物层与金属层具有相同的元素,且与无机层也具有相同的元素,因此金属无机化合物层能够顺利过渡金属层和无机层,从而提高金属层与无机层之间的结合性能,使得润滑镀层的整体性较高,结构可靠性更高。
其中,润滑镀层的多层结构为一体成型结构,也即为一体的镀层结构,金属层、金属无机化合物层及无机层是逐渐过渡的,金属层与金属无机化合物层之间的界面以及金属无机化合物层与无机层之间的界面均为模糊界面,是处于两种层材料相互掺杂的状态。
其中,润滑镀层的厚度可以控制到微米级。例如,润滑镀层的整体厚度可以在5微米至10微米的范围内,润滑镀层的无机层的表层类金刚石结构的厚度可以在1微米至3微米的范围内。
一种可能的实现方式中,润滑镀层的无机层为碳层,润滑镀层的无机层背离润滑镀层的金属无机化合物层的表层结构为类金刚石结构。也即,润滑镀层的表层形成类金刚石碳薄膜。类金刚石碳薄膜由碳元素构成、在性质上和钻石类似,同时又具有石墨原子组成结构的物质。类金刚石碳薄膜是一种非晶态薄膜,具有高硬度和高弹性模量,低摩擦因数,耐磨损以及良好的真空摩擦学特性,使得润滑镀层耐磨,且能够有效降低支座与上部件之间的摩擦力。
一种可能的实现方式中,润滑镀层的金属层为铬层,润滑镀层的金属无机化合物层为碳铬化合物层。在本实现方式中,润滑镀层的金属层和金属无机化合物层的金属材料采用铬,使得表层为类金刚石结构的碳层对其底部的碳铬化合物层的附着力较好,润滑镀层的整体结构可靠性更高。
在本申请中,润滑镀层可以通过物理气相沉积工艺和化学气相沉积在支座本体的表面上成型,以使润滑镀层厚度薄、强度大且摩擦系数小。
在其他一些可能的实现方式中,润滑镀层的无机层也可以为表层结构非类金刚石结构的碳层,此时,润滑镀层的无机层仍具有润滑性,但润滑性相较于前述具有类金刚石表层结构的方案较差。
在其他一些可能的实现方式中,润滑镀层的无机层为碳层,润滑镀层的无机层背离润滑镀层的金属无机化合物层的表层结构为类金刚石结构。润滑镀层的金属层为钛层,金属无机化合物层为碳钛化合物层。
在其他一些可能的实现方式中,润滑镀层的无机层为硅层。润滑镀层的金属层可以为钛层或铬层,金属无机化合物层对应地为硅钛化合物层或者硅铬化合物层。
在一种可能的实现方式中,润滑镀层也可以延伸至支座本体的周侧面。其中,支座本体包括面向上部件的顶面、面向下部件的底面、以及连接在顶面与底面之间的周侧面。润滑镀层覆盖全部顶面,还可以一并覆盖部分周侧面或者全部周侧面。
一种可能的实现方式中,上部件包括上部件本体及上镀层,上镀层固定于上部件本体靠近支座的一侧。其中,上镀层可以为润滑镀层。上镀层接触支座的润滑镀层,从而进一步降低上部件与支座之间的摩擦力,使得SMA马达的行程控制精度更高,摄像头模组的镜头抖动量降低。
一种可能的实现方式中,上镀层包括依次层叠的金属层、金属无机化合物层及无机层,上镀层的金属层固定于上部件本体,上镀层的金属层与上镀层的金属无机化合物层包括相同的元素,上镀层的金属无机化合物层与上镀层的无机层包括相同的元素。
在本实现方式中,由于上镀层的远离上部件本体的顶层是无机层,无机层的硬度高且光滑,故而上镀层整体具有较佳的润滑性能,能够有效降低支座与上部件之间的摩擦力,使得SMA马达的行程控制精度较佳。此外,无机层还能够起到绝缘作用,从而有效地电隔离支座与上部件,降低支座与上部件之间发生短路的风险。
此外,由于上镀层固定于上部件本体的底层为金属层,金属层的柔韧性较高、不易裂开,因此上镀层能够更好地固定于上部件本体,且柔韧性较佳、可靠性较高。由于位于上镀层的金属层与无机层之间的中间层为金属无机化合物层,金属无机化合物层与金属层具有相同的元素,且与无机层也具有相同的元素,因此金属无机化合物层能够顺利过渡金属层和无机层,从而提高金属层与无机层之间的结合性能,使得上镀层的整体性较高,结构可靠性更高。
一种可能的实现方式中,上镀层的无机层为碳层,上镀层的无机层背离上镀层的金属无机化合物层的表层结构为类金刚石结构。也即,上镀层的表层形成类金刚石碳薄膜。此时,上镀层的无机层使得上镀层的耐磨性能好,且能够有效降低支座与上部件之间的摩擦力。
一种可能的实现方式中,上镀层的金属层为铬层,上镀层的金属无机化合物层为碳铬化合物层。在本实现方式中,上镀层的金属层和金属无机化合物层的金属材料采用铬,使得表层为类金刚石结构的碳层对其底部的碳铬化合物层的附着力较好,上镀层的整体结构可靠性更高。
一些可能的实现方式中,上部件本体包括面向下部件的底面,上镀层可以覆盖上部件本体的底面的全部区域或者局部区域。上镀层覆盖上部件本体的底面的局部区域时,局部 区域主要为支座的接触范围区域。
在其他一些可能的实现方式中,上部件也可以不设置上镀层,支座的润滑镀层直接接触上部件本体。此时,虽然支座与上部件之间的摩擦力相较于上部件设有上镀层的结构较差,但支座上的润滑镀层仍然可以满足大幅度降低支座与上部件之间的摩擦力的需求。
一种可能的实现方式中,下部件包括下部件本体及下镀层,下镀层固定于下部件本体靠近支座的一侧,下镀层为绝缘镀层。在本实现方式中,下部件的下镀层能够绝缘支座与下部件,以降低上部件与下部件之间发生短路的风险。
一种可能的实现方式中,下镀层包括依次层叠的金属层、金属无机化合物层及无机层,下镀层的金属层固定于下部件本体。
在本实现方式中,由于下镀层的远离下部件本体的顶层是无机层,无机层能够起到绝缘作用,从而有效地电隔离支座与下部件,降低支座与下部件之间发生短路的风险。此外,由于下镀层固定于下部件本体的底层为金属层,金属层的柔韧性较高、不易裂开,因此下镀层能够更好地固定于下部件本体,且柔韧性较佳、可靠性较高。
一种可能的实现方式中,下镀层的金属无机化合物层与下镀层的金属层具有相同的元素,下镀层的金属无机化合物层与下镀层的无机层具有相同的元素。在本实现方式中,由于位于下镀层的金属层与无机层之间的中间层为金属无机化合物层,金属无机化合物层与金属层具有相同的元素,且与无机层也具有相同的元素,因此金属无机化合物层能够顺利过渡金属层和无机层,从而提高金属层与无机层之间的结合性能,使得下镀层的整体性较高,结构可靠性更高。
一些可能的实现方式中,下镀层的无机层为碳层,下镀层的金属层为铬层,下镀层的金属无机化合物层为碳铬化合物层。另一些可能的实现方式中,下镀层的无机层为碳层,下镀层的金属层为钛层,下镀层的金属无机化合物层为碳钛化合物层。
在其他一些可能的实现方式中,下镀层的无机层为硅层。下镀层的金属层可以为钛层或铬层,金属无机化合物层对应地为硅钛化合物层或者硅铬化合物层。
在其他一些可能的实现方式中,下镀层的无机层也可以采用其他能够实现绝缘的无机材料,下镀层的金属层也可以采用其他材料,本申请对此不作严格限定。在其他一些可能的实现方式中,下镀层也可以整体采用有机高分子材料镀成。
一些可能的实现方式中,下部件本体包括面向上部件的底面,下镀层可以覆盖下部件本体的顶面的全部区域或者局部区域。下镀层覆盖下部件本体的顶面的局部区域时,局部区域主要为支座的接触范围区域。
在其他一些可能的实现方式中,下部件也可以不设置下镀层,支座本体直接接触下部件本体,通过支座的润滑镀层和/或上部件的上镀层实现上部件与下部件之间的绝缘。在其他一些可能的实现方式中,下部件不设置下镀层,上部件不设置上镀层,支座的支座本体接触下部件,支座的润滑镀层接触上部件,通过润滑镀层实现上部件与下部件之间的绝缘。
一种可能的实现方式中,润滑镀层为润滑油、润滑脂或固体润滑剂。在本实现方式中,润滑镀层能够降低上部件与支座之间的摩擦力,提高SMA马达的行程控制精度,降低摄像头模组的镜头抖动量。
一种可能的实现方式中,上部件包括上部件本体及上镀层,上镀层固定于上部件本体 靠近支座的一侧,上镀层为绝缘镀层。在本实现方式中,支座与上部件之间通过润滑镀层实现润滑,支座与上部件之间通过上镀层实现绝缘。
一种可能的实现方式中,下部件包括下部件本体及下镀层,下镀层固定于下部件本体靠近支座的一侧,下镀层为绝缘镀层。在本实现方式中,支座与上部件之间通过润滑镀层实现润滑,支座与下部件之间通过下镀层实现绝缘。
一种可能的实现方式中,上部件包括上部件本体及上镀层,上镀层固定于上部件本体靠近支座的一侧,上镀层为绝缘镀层。下部件包括下部件本体及下镀层,下镀层固定于下部件本体靠近支座的一侧,下镀层为绝缘镀层。在本实现方式中,支座与上部件之间通过润滑镀层实现润滑,上部件与下部件之间通过上镀层及下镀层实现绝缘。
一种可能的实现方式中,绝缘镀层包括依次层叠的金属层、金属无机化合物层及无机层。缘镀层的无机层为碳层。绝缘镀层的金属层为钛层,绝缘镀层的金属无机化合物层为碳钛化合物层;或者,绝缘镀层的金属层为铬层,绝缘镀层的金属无机化合物层为碳铬化合物层。
在本实现方式中,绝缘镀层厚度薄、柔韧性高、硬度高、绝缘且整体的结构可靠性高。
其他一些可能的实现方式中,绝缘镀层的无机层也可以为硅层。绝缘镀层的金属层可以为钛层或铬层,金属无机化合物层对应地为硅钛化合物层或者硅铬化合物层。其他一些可能的实现方式中,绝缘镀层也可以整体采用有机高分子材料镀成。
一种可能的实现方式中,SMA马达还包括缓冲胶,缓冲胶位于上部件与下部件之间,且缓冲胶的一端固定连接上部件、另一端固定连接上部件。其中,缓冲胶可以为阻尼胶、减震胶水等。
在本实现方式中,SMA马达通过缓冲胶减小上部件在运动过程中的抖动幅度,从而有效降低摄像头模组的镜头的抖动量,改善拍摄预览界面静止时的低频水波纹状抖动现象。
一些实现方式中,缓冲胶的一端可以固接于上部件的活动卡爪。由于SMA线的拉力作用于活动卡爪,当缓冲胶固接活动卡爪时,有利于在活动卡爪处形成合力,确保上部件受力时的结构可靠性。在另一些实现方式中,缓冲胶也可以固定于上部件的其他位置。
其中,缓冲件的数量可以为多个,多个缓冲胶中心对称设置,对称中心为第一基准面与第二基准面的相交线。
一种可能的实现方式中,SMA马达还包括两个弹簧臂,弹簧臂呈L形,弹簧臂包括固定端部和活动端部,弹簧臂的活动端部固定于上部件,弹簧臂的固定端部固定于下部件,两个弹簧臂中心对称设置,且对称中心为第一基准面与第二基准面的相交线。
在本实现方式中,SMA马达的弹簧臂能够在SMA线通电驱动上部件携带镜头移动的过程中,平衡和缓冲上部件的受力,使得上部件的移动更为平稳。SMA马达的弹簧臂还能够在SMA线断电时,通过其在SMA线通电驱动上部件移动的过程中产生形变所形成的弹性力、驱动上部件携带镜头移回初始位置。换言之,在SMA马达中,SMA线通电收缩,SMA线的拉力驱动上部件携带镜头产生精准的防抖位移,SMA线断电后,弹簧臂的回复力驱动上部件携带及镜头移动回自然中心。
在本实现方式中,由于弹簧臂的活动端部固定于上部件,弹簧臂的固定端部固定与下部件,上部件位于下部件的上方,因此弹簧臂的活动端部与弹簧臂的固定端部之间形成高 度差,以形成预压力。弹簧臂的预压力能够将上部件按压在支座上,从而减小SMA马达在不同姿势下的差异,提高SMA马达的控制精度。
此外,由于支座设有接触上部件的润滑镀层,故而即使弹簧臂形成将上部件按压在支座上的预压力,上部件与支座之间的摩擦力仍可以控制到很小,以保证SMA马达的控制精度。
一种可能的实现方式中,SMA马达还包括四个弹簧臂,弹簧臂包括固定端部和活动端部,弹簧臂的活动端部固定于上部件,弹簧臂的固定端部固定于下部件,四个弹簧臂两两成对,两对弹簧臂相对第一基准面对称设置,同一对的两个弹簧臂相对第二基准面对称设置。
在本实现方式中,SMA马达通过设置弹簧臂,不仅能够在SMA线通电驱动上部件携带镜头移动的过程中,平衡和缓冲上部件的受力,使得上部件的移动更为平稳,而且能够在SMA线断电时,通过其在SMA线通电驱动上部件移动的过程中产生形变所形成的弹性力、驱动上部件携带镜头移回初始位置。此外,四个弹簧臂的排布关系与SMA线的排布关系相对应,因此四个弹簧臂能够更好地实现平衡作用和回复作用。
在本实现方式中,由于弹簧臂的活动端部固定于上部件,弹簧臂的固定端部固定与下部件,上部件位于下部件的上方,因此弹簧臂的活动端部与弹簧臂的固定端部之间形成高度差,以形成预压力。弹簧臂的预压力能够将上部件按压在支座上,从而减小SMA马达在不同姿势下的差异,提高SMA马达的控制精度。
此外,由于支座设有接触上部件的润滑镀层,故而即使弹簧臂形成将上部件按压在支座上的预压力,上部件与支座之间的摩擦力仍可以控制到很小,以保证SMA马达的控制精度。
一种可能的实现方式中,弹簧臂还包括折弯部,折弯部位于固定端部与活动端部之间,折弯部向远离马达下部件的方向凸起。
在本实现方式中,折弯部用于使弹簧臂形成预压力。弹簧臂的预压力能够将上部件按压在支座上,从而减小SMA马达在不同姿势下的差异,提高SMA马达的控制精度。此时,弹簧臂的活动端部与固定端部之间可以有高度差,并且形成预压力、或者不形成预压力、或者预压力较小,弹簧臂的活动端部与固定端部之间也可以不形成高度差。
第二方面,本申请还提供一种摄像头模组,包括模组支架、以及安装于模组支架内侧的镜头、图像传感器和前述任一项的SMA马达。SMA马达的下部件固定连接模组支架,镜头安装于SMA马达的上部件,SMA马达包括透光区域,镜头的镜片正对透光区域,图像传感器位于SMA马达背离镜头的一侧,图像传感器用于接收经过镜头及透光区域的光线。
在本申请中,应用前述SMA马达的摄像头模组能够实现光学防抖,并且SMA马达通过降低支座与上部件之间的摩擦系数,提高了SMA马达的行程控制精度,降低了上部件和镜头的抖动量,从而改善拍摄预览界面静止时的低频水波纹状抖动现象。
第三方面,本申请还提供一种电子设备,包括壳体、处理器及前述摄像头模组,处理器及摄像头模组收容于壳体,摄像头模组电连接处理器。在本申请中,应用前述摄像头模组的电子设备能够改善拍摄预览界面静止时的低频水波纹状抖动现象。
附图说明
图1是本申请实施例提供的电子设备的结构示意图;
图2是图1所示电子设备在另一角度的结构示意图;
图3是本申请实施例提供的摄像头模组的结构示意图;
图4是图3所示摄像头模组的音圈马达和镜头的结构示意图;
图5是图3所示摄像头模组的SMA马达的结构示意图;
图6是图5所示SMA马达在一些实施例中的俯视图;
图7是图6所示SMA马达的弹簧臂在一些实施例中的结构示意图;
图8是图6所示SMA马达的弹簧臂在另一些实施例中的结构示意图;
图9是图5所示SMA马达在另一些实施例中的俯视图;
图10是图5所示SMA马达的部分结构示意图;
图11是SMA马达的上部件与支座之间的摩擦力对镜头移动过程的影响的示意图;
图12是图10所示SMA马达的支座在一些实施例中的结构示意图;
图13是用于制备润滑镀层的反应设备的基本结构示意图;
图14是图10所示SMA马达的上部件在一些实施例中的部分结构示意图;
图15是图10所示SMA马达的下部件在一些实施例中的部分结构示意图;
图16是图10所示SMA马达的上部件、支座及下部件在另一些实施例中的部分结构示意图;
图17是图3所示SMA马达在另一些实施例中的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请以下各个实施例进行描述。
本申请实施例提供一种形状记忆合金(shape memory alloy,SMA)马达、应用该SMA马达的摄像头模组以及应用该摄像头模组的电子设备。SMA马达作为防抖马达,具有结构简单、尺寸小、载重大、低功耗、无磁干扰以及低成本等优点。摄像头模组采用SMA马达驱动镜头移动,以实现光学防抖,从而降低画质上的损失,很好地保证图像质量。电子设备可以是手机、平板电脑、笔记本电脑、相机、可穿戴设备、电视等。其中,可穿戴设备可以是智能手环、智能手表、智能头显、智能眼镜等。
请一并参阅图1和图2,图1是本申请实施例提供的电子设备1000的结构示意图;图2是图1所示电子设备1000在另一角度的结构示意图。在本实施例中,以电子设备1000是手机为例进行说明。
电子设备1000包括壳体100、显示屏200、前置摄像组件300、后置摄像组件400、主板500、处理器600、存储器700以及电池800。显示屏200用于显示图像,显示屏200还可以集成触摸功能。显示屏200安装于壳体100。壳体100可以包括边框1001和后盖1002。显示屏200和后盖1002分别安装于边框1001的相背两侧。在本实施例中,在电子设备1000的外部空间中,定义显示屏200朝向的空间为电子设备1000的前方,后盖1002朝向的空间电子设备1000的后方。
一些实施例中,前置摄像组件300位于壳体100内侧且位于显示屏200下方。显示屏 200设有透光部2001,前置摄像组件300经透光部2001采集电子设备1000前方的光线,以实现拍摄。前置摄像组件300可以包括后文实施例中描述的摄像头模组,也可以包括其他结构的摄像头模组。
一些实施例中,后盖1002设有至少一个摄像孔1003。后置摄像组件400位于壳体100内侧,后置摄像组件400经至少一个摄像孔1003采集电子设备1000后方的光线,以实现拍摄。本申请实施例中“至少一个”包括一个和多个两种情况,多个为两个以上,“以上”包括本数。后置摄像组件400包括至少一个摄像头模组4001,例如可以包括标准摄像头模组、长焦摄像头模组、广角摄像头模组、超长焦摄像头模组、超广角摄像头模组中的一者或多者。示例性的,后置摄像组件400包括标准摄像头、广角摄像头及潜望式长焦摄像头。后置摄像组件400的摄像头模组4001可以包括后文实施例中描述的摄像头模组,也可以包括其他结构的摄像头模组。
一些实施例中,后置摄像组件400还可以包括闪光灯模组4002。后盖1002设有闪光灯孔1004,闪光灯模组4002位于壳体100内侧,经闪光灯孔1004射出光线。
一些实施例中,主板500位于壳体100内侧,处理器600及存储器700固定于主板500。显示屏200、前置摄像组件300及后置摄像组件400耦合处理器600。存储器700用于存储计算机程序代码。计算机程序代码包括计算机指令。处理器600用于调用计算机指令以使电子设备1000执行相应的操作,例如,使显示屏200显示目标图像,使前置摄像组件300和后置摄像组件400采集目标图像等。电池800用于为电子设备1000供电。
一些实施例中,电子设备1000还可以包括天线模组、移动通信模组、传感器模组、马达、麦克风模组、扬声器模组等功能模组中的一者或多者。功能模组耦合处理器600。天线模组用于发射和接收电磁波信号,天线模组可以包括多个天线,每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。移动通信模组可以提供应用在电子设备1000上的包括2G/3G/4G/5G等无线通信的解决方案。传感器模组可以包括压力传感器、陀螺仪传感器、气压传感器、磁传感器、加速度传感器、距离传感器、接近光传感器、指纹传感器、温度传感器、触摸传感器或环境光传感器的一者或多者。马达可以产生振动提示。马达可以用于来电振动提示,也可以用于触摸振动反馈。麦克风模组用于将声音信号转换为电信号。扬声器模组用于将电信号转换为声音信号。
请参阅图3,图3是本申请实施例提供的摄像头模组10的结构示意图。其中,为方便后文对摄像头模组10的描述,定义摄像头模组10的宽度方向为图示X方向,摄像头模组10的长度方向为图示方向Y,摄像头模组10的厚度方向为图示方向Z,摄像头模组10的宽度方向X、长度方向Y及厚度方向Z彼此垂直。其中,图3为较为清楚地呈现摄像头模组10的结构,对摄像头模组10的部分结构进行了填充示意。
一些实施例中,摄像头模组10包括模组支架1、马达支架2、镜头3、音圈马达4、SMA马达5、图像传感器6以及电路板7。
模组支架1用于固定、支撑和保护摄像头模组10的其他部件。模组支架1可以是一体成型的结构,也可以是多个部分通过组装方式(例如粘接等)固定成一体化结构。
马达支架2安装于模组支架1内侧,且固定连接模组支架1。马达支架2可以为两端开口的中空结构。镜头3、音圈马达4以及SMA马达5安装于马达支架2内侧。也即,镜 头3、音圈马达4以及SMA马达5均安装于模组支架1内侧。在本实施例中,通过将马达支架2,将镜头3、音圈马达4及SMA马达5均安装于马达支架2,有利于这些部件组装形成模块化,从而简化摄像头模组10的组装工序,降低摄像头模组10的成本。
SMA马达5固定于马达支架2,音圈马达4固定于SMA马达5上方,镜头3安装于音圈马达4内侧,镜头3的出光侧靠近SMA马达5设置。光线自镜头3的入光侧进入镜头3,自镜头3的出光侧射出镜头3,镜头3具有光线汇聚作用。镜头3具有光轴30,镜头3的光轴方向与摄像头模组10的厚度方向Z相同。音圈马达4用于驱动镜头3沿镜头3的光轴方向移动,以实现自动对焦(auto focus,AF)。SMA马达用于驱动音圈马达4和镜头3在垂直于镜头3的光轴方向的平面上移动,也即在摄像头模组10的XY平面上移动,以实现光学防抖。
电路板7安装于模组支架1内侧,位于SMA马达5背离镜头3的一侧。示例性的,电路板7部分固定连接模组支架1,部分(图中未示出)伸出至模组支架1的外侧。其中,电路板7位于模组支架1外侧的部分可以电连接电子设备1000的主板500,以使摄像头模组10耦合处理器600。电路板7用于传输摄像头模组10的控制信号及图像信号。示例性的,电路板7用于连接主板500的端部处设有电连接器,该电连接器连接主板500上的电连接器,使得摄像头模组10与电路板7上的电路及器件(如处理器600)电连接。其中,电路板7可以是软硬结合电路板,也可以是柔性电路板,也可以是硬质电路板与柔性电路板相接成的一体化的电路板,本申请不对电路板7的具体架构进行限定。其中,电路板7上的电连接器可以是板对板(board to board,BTB)连接器或者其他。在其他一些实施例中,摄像头模组10与主板500上的电路及器件也可以通过无线连接的方式实现耦合。在其他一些实施例中,电路板7也可以固定于模组支架1的外侧。此时,模组支架1的一端可以固定于电路板7的一侧板面。
图像传感器6安装于模组支架1内侧,且位于SMA马达5背离镜头3的一侧。图像传感器6固定于电路板7朝向SMA马达5的一侧。示例性的,图像传感器6可以通过粘接方式(例如点胶)固定于电路板7。在其他一些实施例中,图像传感器6也可以采用焊接、扣合等其他固定方式与电路板7相固定。图像传感器6利用光电器件的光电转换功能,将其感光面上的光像转换为与光像成相应比例关系的电信号。图像传感器6的感光面面向镜头3设置。其中,图像传感器6可以是电荷耦合器件(charge coupled device,CCD)、互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管或者薄膜晶体管(thin film transistor,TFT)等。一些实施例中,图像传感器6可以通过多根键合线(bonding wire)电连接电路板7。键合线可以为金线或者其他。另一些实施例中,图像传感器6也可以通过球栅阵列(ball grid array,BGA)封装于电路板7。
如图3所示,一些实施例中,摄像头模组10还可以包括红外截止滤光片(IR cut filter)8。红外截止滤光片8安装于模组支架1内侧且位于镜头3与图像传感器6之间。在摄像头模组10的厚度方向Z上,红外截止滤光片8与镜头3及图像传感器6彼此间隔地堆叠设置。红外截止滤光片8用于过滤红外光,以提高摄像头模组10的成像质量。示例性的,红外截止滤光片8可以采用蓝玻璃(blue glass)。在其他一些实施例中,摄像头模组10也可以不设置红外截止滤光片8。
请参阅图4,图4是图3所示摄像头模组10的音圈马达4和镜头3的结构示意图。
一些实施例中,镜头3包括镜筒31及固定于镜头3内侧的至少一个镜片32。示例性的,镜片32的数量可以为多个,多个镜片32的光轴重合以组合成镜片组,从而具备更佳的光学性能。其中,镜片组可以包括至少一个凸透镜和至少一个凹透镜。一些实施例中,镜片组也可以包括自有曲面镜片。在其他一些实施例中,镜片32的数量也可以为一个,以简化镜头3结构。此时,镜片32可以为凸透镜,以汇聚光线。本申请实施例不对镜片32的具体数量及组合方式进行严格限定。其中,镜头3的光轴30为镜片或镜片组的光轴。
音圈马达4包括固定架41、磁铁组件42、音圈43、上弹簧44及下弹簧45。固定架41为两端开口的中空结构。磁铁组件42固定于固定架41内侧。镜头3位于磁铁组件42内侧。音圈43位于镜筒31与磁铁组件42之间且固定连接镜筒31。音圈43通电时,带动镜头3沿镜头3的光轴的平行方向移动。上弹簧44的一侧固定连接镜筒31的上端、另一侧固定连接固定架41。下弹簧45的一侧固定连接镜筒31的下端、另一侧固定连接固定架41。
请参阅图5,图5是图3所示摄像头模组10的SMA马达5的结构示意图。
一些实施例中,SMA马达5包括上部件51、下部件52、多个支座(bearing)53及四根SMA线54。下部件52与上部件51堆叠设置。示例性的,下部件52与上部件51彼此间隔地堆叠于摄像头模组10的厚度方向Z。多个支座53位于下部件52与上部件51之间。各支座53的一端固定连接下部件52、另一端滑动连接上部件51。多个支座53用于构成上部件51与下部件52之间的物理间隙。
结合参阅图3和图5,SMA马达5的下部件52固定连接马达支架2,马达支架2固定连接模组支架1,故而SMA马达5的下部件52间接地固定连接模组支架1。示例性的,SMA马达5的下部件52可以直接粘接于马达支架2,以使摄像头模组10的结构稳定性较高。在其他一些实施例中,下部件52也可以通过卡合、焊接等其他方式固定于马达支架2,本申请实施例不对下部件52与马达支架2的连接方式进行严格限定。
镜头3安装于音圈马达4,音圈马达4固定于SMA马达5的上部件51,故而镜头3间接地安装于SMA马达5的上部件51,镜头3随SMA马达5的上部件51移动。在其他一些实施例中,摄像头模组10也可以不设置马达支架2,SMA马达5的下部件52直接固定连接模组支架1。在其他一些实施例中,摄像头模组10也可以不设置音圈马达4,镜头3的镜筒31直接安装于SMA马达5的上部件51。此时,摄像头模组10为定焦、防抖模组。
请再次参阅图5,各SMA线54均一端固定连接上部件51,另一端固定连接下部件52。SMA线54通电加热时产生收缩。其中,SMA线54采用形状记忆合金(Shape Memory Alloy,SMA)材料,例如镍钛合金材料。形状记忆合金是一类具有形状记忆效应金属的总称。一般金属材料在受到外力作用后,首先发生的是弹性形变,此时若撤除外力作用,则金属将恢复原来形状,若继续增加外力,当达到金属的自身屈服点之后,会产生塑性形变,外力消除后就留下永久变形,即使加热也不会发生形状恢复。而形状记忆合金是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。形状记忆合金材料工作的基本原理,是将材料加热到某个临界温度以上进行形状记忆热处理(training),并使其发生一定的形变。冷却生成马氏体相后,再次将其加热到临界温度之上时,由低温马 氏体相逆相变为高温奥氏体相(即产生逆向转变),从而恢复到变形前所记忆的状态。
在本实施例中,SMA线54通电时,通电产生的热量使得SMA线54的温度升高,实现由低温马氏体相逆相变为高温奥氏体相,恢复到变性前记忆,从而使SMA线54产生收缩。由于SMA线54的收缩导致的长度变化,实质上是由于材料晶相结构转换时产生的,即马氏体与奥氏体之间的转换。而这种因晶体结构变化(即原子与原子之间的间隙变换)的微观粒子之间的引力,使得宏观SMA线54收缩时的拉力较一般磁铁线圈间的电磁力大很多,因此SMA线54的收缩可以驱动更重的负载,即可以实现大载重,故而SMA马达5能够以较小的尺寸实现较大的驱动力。
在本实施例中,由于SMA线54通电加热时产生收缩,会对上部件51产生对应的拉力,因此摄像头模组10可以通过控制四根SMA线54的电信号,使四根SMA线54对上部件51施加的合力朝向预期方向,从而驱动上部件51携带音圈马达4和镜头3向预期的方向和位置移动,使得摄像头模组10能够通过平移镜头3实现防抖。
请参阅图6,图6是图5所示SMA马达5在一些实施例中的俯视图。
SMA马达5包括透光区域50,透光区域50允许光线通过。SMA马达5对应于透光区域50的部分镂空设置,或者设置透光结构。示例性的,SMA马达5的上部件51设有位于透光区域50的通孔,下部件52设有位于透光区域50的通孔,支座53及SMA线54均位于透光区域50外侧。
结合参阅图3和图6,镜头3的镜片32正对SMA马达5的透光区域50,图像传感器6用于接收经过镜头3及透光区域50的光线。其中,图像传感器6用于采集可见光线时,SMA马达5的透光区域50至少允许可见光线通过。图像传感器6用于采集不可见光线时,SMA马达5的透光区域50至少允许对应的不可见光线通过。
请再次参阅图6,SMA马达5具有第一基准面5a和第二基准面5b,第一基准面5a与第二基准面5b相交。示例性的,第一基准面5a及第二基准面5b均经过镜头3的光轴30(如图3所示)。第一基准面5a与第二基准面5b相互垂直。在其他实施例中,第一基准面5a与第二基准面5b之间的角度也可以是其他角度,本申请对此不做严格限定。
四根SMA线54两两成对,两对SMA线54相对第一基准面5a对称设置,同一对的两根SMA线54相对第二基准面5b对称设置。示例性的,四根SMA线54包括第一SMA线541、第二SMA线542、第三SMA线543以及第四SMA线544。第一SMA线541和第二SMA线542组成第一对SMA线,第三SMA线543和第四SMA线544组成第二对SMA线。第一对SMA线与第二对SMA线相对第一基准面5a对称设置。第一SMA线541与第二SMA线542相对第二基准面5b对称设置,第三SMA线543与第四SMA线544相对第二基准面5b对称设置。
在本实施例中,通过限定四根SMA线54的位置关系,使得摄像头模组10可以通过控制四根SMA线54内的电信号,使得四根SMA线54对上部件51的合力沿第一基准面5a移动或者沿第二基准面5b移动,并且可以通过在第一基准面5a上的位移和在第二基准面5b上的位移的合成位移,使得上部件51携带镜头3移动至摄像头模组10的XY平面(也即镜头3的光轴的垂直平面)的任意位置,从而实现光学防抖。
在一些实施例中,上部件51形成电路,下部件52形成电路,下部件52的电路电连接摄像头模组10的电路板7,以使SMA线54与电路板7之间形成驱动通路。示例性的,如 图6所示,下部件52包括多个驱动引脚521,多个驱动引脚521可以通过导线等导电结构电连接至电路板7。其中,上部件51的电路及下部件52的电路可以通过电镀方式形成,也可以通过粘接柔性电路板7的方式形成,也可以通过嵌埋注塑成型(Insert Molding)埋设金属的方式形成,本申请对此不作严格限定。
如图5和图6所示,上部件51包括活动卡爪(crimp)511,活动卡爪511用于固定SMA线54。下部件52包括固定卡爪522,固定卡爪522用于固定SMA线54。SMA线54的一端通过活动卡爪511固定于上部件51,另一端通过固定卡爪522固定于下部件52。示例性的,固定卡爪522及活动卡爪511可采用导电材料,或者形成导电结构,以使SMA线54电连接上部件51及下部件52。
可以理解的是,摄像头模组10的四根SMA线54在满足上述位置关系要求的情况下,可以有多种具体的连接方式,本实施例以其中一种为例进行描述。
如图6所示,示例性的,上部件51大致呈矩形板状。上部件51包括面向镜头3的上板面512及连接于上板面512周缘的周侧面。镜头3安装于上部件51的上板面512。周侧面包括依次连接的第一侧面513、第二侧面514、第三侧面515及第四侧面516。第一侧面513与第二侧面514相对第二基准面5b对称设置。第三侧面515与第二侧面514相对第一基准面5a对称设置。第四侧面516与第三侧面515相对第二基准面5b对称设置。第一侧面513与第四侧面516相对第一基准面5a对称设置。在其他一些实施例中,上部件51也可以有其他形状,例如圆角矩形板状、圆形板状等形状。可以理解的是,当上部件51的周侧面的各个侧面随上部件51的形状变化而发生适应性变化。
下部件52包括正对上部件51的中间区域523以及围绕中间区域523设置的边缘区域。多个支座53固定于中间区域523。此时,多个支座53对上部件51的支撑更为平稳。示例性的,支座53的数量为四个,四个支座53分别支撑于上部件51的四个对角,四个支座53可以两两分别位于第一基准面5a和第二基准面5b。其中,多个支座53与上部件51的边缘之间形成一定距离,使得上部件51在移动时,多个支座53能够保持接触上部件51而实现对上部件51的支撑。
下部件52的边缘区域包括第一边缘区524、第二边缘区525、第三边缘区526以及第四边缘区527。第一边缘区524与第一侧面513对应设置,第二边缘区525与第二侧面514对应设置,第三边缘区526与第三侧面515对应设置,第四边缘区527与第四侧面516对应设置。其中,第一边缘区524与第四边缘区527相对第一基准面5a对称设置。第三边缘区526与第二边缘区525相对第一基准面5a对称设置。第四边缘区527与第三边缘区526相对第二基准面5b对称设置。第一边缘区524与第四边缘区527相对第一基准面5a对称设置。
可以理解的是,在本实施例中,下部件52大致呈矩形板状。在其他一些实施例中,下部件52的形状也可以随上部件51的形状变化发生适应性变化。在其他一些实施例中,下部件52的形状也可以与上部件51的形状不同,本申请对此不作严格限定。
可以理解的是,在本实施例中,第一边缘区524、第二边缘区525、第三边缘区526以及第四边缘区527依次连接成连续的边缘区域。在其他实施例中,第一边缘区524、第二边缘区525、第三边缘区526以及第四边缘区527也可以彼此间隔设置,或者部分间隔、 部分连续设置,本申请对此不作严格限定。
第一SMA线541的一端固定于上部件51的第一侧面513靠近第二侧面514的一端,第一SMA线541的另一端固定于下部件52的第一边缘区524靠近第四边缘区527的一端。第二SMA线542与第一SMA线541相对第二基准面5b对称设置。第二SMA线542的一端固定于上部件51的第二侧面514靠近第一侧面513的一端,第二SMA线542的另一端固定于下部件52的第二边缘区525靠近第三边缘区526的一端。第三SMA线543与第二SMA线542相对第一基准面5a对称设置。第三SMA线543的一端固定于上部件51的第三侧面515靠近第四侧面516的一端,第三SMA线543的另一端固定于下部件52的第三边缘区526靠近第二边缘区525的一端。第四SMA线544与第三SMA线543相对第二基准面5b对称设置。第四SMA线544的一端固定于上部件51的第四侧面516靠近第三侧面515的一端,第四SMA线544的另一端固定于下部件52的第四边缘区527靠近第一边缘区524的一端。
在本实施例中,SMA线54的一端固定于上部件51的对角位置、另一端固定于下部件52的对角位置,使得SMA线54能够在SMA马达5内部空间有限的情况下具有较为足够的长度,从而具有足够的伸缩量,SMA马达5能够具有更大的驱动行程区间,使得摄像头模组10的防抖性能更佳。
在其他一些实施例中,第一SMA线541的一端也可以固定于上部件51的第一侧面513靠近第四侧面516的一端,第一SMA线541的另一端固定于下部件52的第一边缘区524靠近第二边缘区525的一端,第二SMA线542、第三SMA线543以及第四SMA线544随第一SMA线541的位置变化发生适应性变化。
可以理解的是,SMA线54两端的位置可以通过上部件51的活动卡爪511及下部件52的固定卡爪522进行设置。换言之,活动卡爪511及固定卡爪522的位置随SMA线54的位置需求进行设置,本申请对此不作严格限定。
可以理解的是,在摄像头模组10的厚度方向Z上,四根SMA线54的高度可以一致,也即SMA线54连接上部件51的一端和连接下部件52的一端的高度一致,以方便四根SMA线54驱动上部件51移动。图5中为方便示意出多根SMA线54的结构及位置差异,将SMA线54绘制成倾斜。示例性的,可以通过设计用于固定SMA线54的卡爪(例如图5中固定卡爪522和活动卡爪511)结构和位置,使得SMA线54的位置满足需求。例如,可以使图5中固定卡爪522的体积较大,或者设计成小凸台结构,使得SMA线54两端的高度一致。当然,在其他实施例中,卡爪也可以有其他实现结构,本申请对此不作严格限定。
请再次参阅图6,一些实施例中,SMA马达5还可以包括两个弹簧臂(spring arm)55。图6中为较为突出显示弹簧臂55,对弹簧臂55的结构进行剖面线填充示意。弹簧臂55呈L形。弹簧臂55均包括固定端部551和活动端部552。弹簧臂55的活动端部552固定于上部件51,弹簧臂55的固定端部551固定于下部件52,例如可以固定于下部件52的中间区域523。两个弹簧臂55中心对称设置,且对称中心为第一基准面5a与第二基准面5b的相交线。中心对称的两个弹簧臂55在上部件51发生移动时,产生相同的形变。
在本实施例中,SMA马达5的弹簧臂55能够在SMA线54通电驱动上部件51携带音圈马达4及镜头3移动的过程中,平衡和缓冲上部件51的受力,使得上部件51的移动更为平稳。SMA马达5的弹簧臂55还能够在SMA线54断电时,通过其在SMA线54通电驱动上 部件51移动的过程中产生形变所形成的弹性力、驱动上部件51携带音圈马达4及镜头3移回初始位置。换言之,在SMA马达5中,SMA线54通电收缩,SMA线54的拉力驱动上部件51携带音圈马达4及镜头3产生精准的防抖位移,SMA线54断电后,弹簧臂55的回复力驱动上部件51携带音圈马达4及镜头3移动回自然中心。
此外,由于弹簧臂55的固定端部551固定于下部件52的中间区域523,因此弹簧臂55的活动空间与SMA线54的活动空间错开,从而可以避免弹簧臂55和SMA线54在上部件51的移动过程中发生干涉。
在其他一些实施例中,弹簧臂55的固定端部551也可以固定于下部件52的周缘区域,本申请对弹簧臂55的固定端部551的固定位置不作严格限定。
示例性的,两个弹簧臂55可以一体成型于上部件51,以简化SMA马达5的组装结构,使得SMA马达5的结构稳定性更佳。例如,弹簧臂55和上部件51可以通过蚀刻或其他方式一体成型。在其他实施例中,弹簧臂55的活动端部552也可以通过焊接等方式固定于上部件51,本申请对此不作严格限定。弹簧臂55的固定端部551可以通过焊接等方式固定于下部件52,本申请对此不作严格限定。
如图6所示,示例性的,弹簧臂55包括第一枝节55a和连接第一枝节55a的第二枝节55b。第一枝节55a远离第二枝节55b的一端为活动端部552,固接上部件51;第二枝节55b远离第一枝节55a的一端为固定端部551,固接下部件52。两个弹簧臂55中的其中一个弹簧臂55的第一枝节55a平行于第一侧面513,第二枝节55b平行于第四侧面516。两个弹簧臂55的另一个弹簧臂55的第一枝节55a平行于第三侧面515,第二枝节55b平行于第二侧面514。在本实施例中,两个弹簧臂55的形状及位置与上部件51相适配,故而两个弹簧臂55对上部件51的平衡和缓冲效果更佳。
在其他一些实施例中,两个弹簧臂55中的其中一个弹簧臂55的第一枝节55a平行于第一侧面513,第二枝节55b平行于第四侧面516。弹簧臂55的第一枝节55a远离第二枝节55b的一端为固定端部551,固接下部件52;第二枝节55b远离第一枝节55a的一端为活动端部552,固接上部件51。
如图6所示,一些实施例中,上部件51的周侧面部分凹陷形成两个L形的避让槽517。各避让槽517均自上部件51的一个侧面延伸至另一个侧面。两个弹簧臂55分别对应两个避让槽517设置。弹簧臂55的活动端部552固定于避让槽517的槽侧壁,避让槽517的槽侧壁连接上部件51的周侧面。
在本实施例中,SMA马达5通过上部件51的避让槽517及避让槽517下方的空间作为弹簧臂55的安装空间及活动空间,使得弹簧臂55与上部件51的排布更为紧凑,SMA马达5更易实现小型化。
在另一些实施例中,弹簧臂55的活动端部552也可以固定于上部件51面向下部件52的板面。此时,上部件51可以不设置避让槽517,上部件51的结构较为完整,上部件51更易加工。
在本申请的一些实施例中,弹簧臂55具有预压力,以将上部件51按压在支座53上,从而减小SMA马达5在不同姿势下的差异,提高SMA马达5的控制精度。可以理解的是,当SMA马达5在镜头3存在向下姿势时,由于自重,支座53与上部件51可能会分离,导 致镜头3相对马达支架2的相对位置会变化(即在不同姿势下,镜头3的相对位置会变化,称之为姿势差影响),由此导致马达在不同姿势下性能存在差异。
请参阅图7,图7是图6所示SMA马达5的弹簧臂55在一些实施例中的结构示意图。图7中还示意出SMA马达5的上部件51、下部件52及支座53结构,以方便对弹簧臂55进行说明。
一些实施例中,弹簧臂55的活动端部552与弹簧臂55的固定端部551之间形成高度差,以形成预压力。其中,弹簧臂55的活动端部552的高度可以理解为,弹簧臂55的活动端部552的中心与下部件52的顶面(也即朝向上部件51的表面)之间的距离;弹簧臂55的固定端部551的高度可以理解为,弹簧臂55的固定端部551的中心与下部件52的顶面之间的距离。
示例性的,弹簧臂55的活动端部552与弹簧臂55的固定端部551之间的高度差,可以由活动端部552的固定位置及固定端部551的固定位置存在高度差形成。例如,由于弹簧臂55的固定端部551固定于下部件52,弹簧臂55的活动端部552固定于上部件51,上部件51位于下部件52上方,故而弹簧臂55的活动端部552与弹簧臂55的固定端部551之间形成高度差。
在其他一些实施例中,弹簧臂55的活动端部552与弹簧臂55的固定端部551之间的高度差,也可以由弹簧臂55的形状所产生。
请参阅图8,图8是图6所示SMA马达5的弹簧臂55在另一些实施例中的结构示意图。图8中还示意出SMA马达5的上部件51、下部件52及支座53结构,以方便对弹簧臂55进行说明。
另一些实施例中,弹簧臂55还可以包括折弯部553,折弯部553位于固定端部551与活动端部552之间,折弯部553向远离马达下部件52的方向凸起。
在本实施例中,折弯部553用于使弹簧臂55形成预压力。此时,弹簧臂55的活动端部552与固定端部551之间可以有高度差,并且形成预压力、或者不形成预压力、或者预压力较小,弹簧臂55的活动端部552与固定端部551之间也可以不形成高度差。
其中,折弯部553的形状、尺寸、位置等因素可以如图8所示结构,也可以有其他设计方案,例如,改变折弯部的向上折弯拐点和/或向下折弯拐点的位置,改变折弯部的形状等,本申请不对折弯部的具体形状、尺寸、位置等因素做严格限定。
在其他一些实施例中,弹簧臂55也可以不包括折弯部553,弹簧臂55通过活动端部552与固定端部551的高度差或者其他设计方案实现预压力,本申请对弹簧臂55的形成预压力的方式不做严格限定。
请参阅图9,图9是图5所示SMA马达5在另一些实施例中的俯视图。在不冲突的情况下,本实施例包括图5实施例的大部分技术特征(包括后文中对图5实施例的进一步描述的特征),本实施例与前述实施例的主要区别在于:
一些实施例中,SMA马达5还包括四个弹簧臂55。示例性的,弹簧臂55呈长条形。弹簧臂55均包括固定端部551和活动端部552。弹簧臂55的活动端部552固定于上部件51,弹簧臂55的固定端部551固定于下部件52,例如固定于下部件52的中间区域523。四个弹簧臂55两两成对,两对弹簧臂55相对第一基准面5a对称设置,同一对的两个弹簧臂 55相对第二基准面5b对称设置。示例性的,四个弹簧臂55可以分别平行于上部件51的四个侧面。
在本实施例中,SMA马达5通过设置弹簧臂55,不仅能够在SMA线54通电驱动上部件51携带音圈马达4及镜头3移动的过程中,平衡和缓冲上部件51的受力,使得上部件51的移动更为平稳,而且能够在SMA线54断电时,通过其在SMA线54通电驱动上部件51移动的过程中产生形变所形成的弹性力、驱动上部件51携带音圈马达4及镜头3移回初始位置。此外,四个弹簧臂55的排布关系与SMA线54的排布关系相对应,因此四个弹簧臂55能够更好地实现平衡作用和回复作用。
此外,由于弹簧臂55的固定端部551固定于下部件52的中间区域523,因此弹簧臂55的活动空间与SMA线54的活动空间错开,从而可以避免弹簧臂55和SMA线54在上部件51的移动过程中发生干涉。
可以理解的是,图9所示弹簧臂55也可以具有预压力,设置预压力的方案可以图7方案或图8方案。
请参阅图10,图10是图5所示SMA马达5的部分结构示意图。其中,图10中为较为清楚地示意出SMA马达5的结构,对SMA马达5的部分结构进行了填充示意。
一些实施例中,SMA马达5的各支座53包括润滑镀层531,润滑镀层531设于支座53靠近上部件51的端部且接触上部件51。
在本实施例中,润滑镀层531能够降低上部件51与支座53之间的摩擦系数,因此在SMA马达5的SMA线54拉动上部件51和镜头3相对支座53移动、以实现防抖的过程中,上部件51与支座53之间的摩擦力较小,SMA马达5的行程控制精度较高,从而降低上部件51和镜头3的抖动量,改善拍摄预览界面静止时的低频水波纹状抖动现象。此外,由于设置有润滑镀层531,因此在弹簧臂55(可以参阅图7或图8)形成预压力的方案中,上部件51与支座53之间的摩擦力仍可以控制到很小。
请参阅图11,图11是SMA马达的上部件与支座之间的摩擦力对镜头移动过程的影响的示意图。图11上部分所示意的镜头(圆圈示意)的移动过程对应于上部件与支座之间无摩擦力或者摩擦力很小的情况(例如图10所示SMA马达5结构);图11下部分所示意的镜头的移动过程对应于上部件与支座之间摩擦力较大的情况。
在SMA马达中,通过相对的两根SMA线的实际长度差来实现位置控制,而SMA线的长度与电阻直接相关。在一定区间内,SMA线的长度与电阻呈线性关系,即SMA线越长、电阻越大。因此在给四根SMA线不同的驱动控制信号时,相对位置的两根SMA线的电阻差便可以作SMA线的长度差(也即马达实际位置)的反馈信号,实时反馈上部件与镜头的位置。同时控制系统实时读取电阻反馈参数,再结合陀螺仪(gyroscope)反馈的环境抖动信号(本申请中主要涉及摄像头模组处于静止状态的镜头抖动情况,故不考虑陀螺仪信号),实时输出驱动控制信号来实现上部件及镜头的位置控制。
在实际的SMA马达的制作与控制过程中,由于四根SMA线的原始长度存在偏差,即使给与相同的驱动电压信号,线材收缩的程度也不一致,同时由于支座与上部件之间存在摩擦,使得控制信号的目标位置与上部件的实际移动位置存在偏差(即控制精度有限),因此电阻反馈信号与驱动控制信号之间不断地进行反馈-补偿,因此而产生预览界面微小的实时 抖动。
SMA马达是通过SMA线的电阻实时反馈上部件的运动位置的(上部件的运动位置即为镜头的运动位置),并不断行程反馈-补偿,也就是闭环反馈。因此当存在与运动方向相反的摩擦力较大时,由于受到阻力,镜头本该移动精准的移动到某个位置,但实际还差一点(即控制精度降低)。此时控制系统通过电阻检测到镜头未移动到该理论位置,随即增加驱动信号(即补偿)使SMA线的拉力增大一点,使镜头移动到该理论位置,且由于存在摩擦力,此补偿相比无摩擦力时补偿更大。但补偿可能存在过度补偿(即补偿精度有限),当补偿过大时,又会降低SMA线的驱动力,此时镜头会反向移动、从而靠近理论位置,此时摩擦力方向改变,对补偿效果的影响会比无摩擦力大。如图11所示,摩擦力的存在会降低控制精度与补偿精度,因电阻反馈-补偿是实时进行的,即以上补偿动作时持续进行的,最终导致的结果就是实际的镜头位置会在理论位置来回波动、导致摄像头模组的预览画面存在微弱的抖动(jitter)。因摩擦力的存在,这种抖动程度相比于无摩擦或者摩擦很小时更为严重。而本申请实施例的SMA马达5通过设置润滑镀层531,能够大幅度降低上部件51与支座53支架的摩擦力,从而提高控制精度,降低镜头3抖动量(例如抖动幅度、次数等)。
申请人通过实验确认,在包括SMA马达的摄像头模组的拍摄应用(包括录像模式与拍照模式)中,当启动摄像头模组,拍摄预览界面静止、不进行拍照时,也即防抖功能开启(serve-on)但摄像头模组无防抖动作时,能够在拍摄预览界面观察到低频水波纹状抖动(jitter),且在对焦放大倍数增大时,抖动情况也被放大,且在高照度环境中更易被察觉。而采用本申请实施例SMA马达5的摄像头模组10在静止的拍摄预览界面中的抖动情况相较于传统方案得到明显改善。
请继续参阅图10,本申请实施例SMA马达5通过在支座53上设置润滑镀层531,降低支座53与上部件51之间的摩擦力,因此能够在不影响防抖性能的情况下,提升SMA马达5的行程控制精度,通过硬件措施降低抖动量,能够避免因SMA线54的长度或软件驱动而影响改善效果,具备技术通用性,且不增加新的可靠性风险,SMA马达5能够大批量生产且不明显增加制造成本。
请一并参阅图10和图12,图12是图10所示SMA马达5的支座53在一些实施例中的结构示意图。
一些实施例中,各支座53还包括支座本体532,支座本体532的一端固定于下部件52,润滑镀层531固定于支座本体532的另一端。示例性的,支座本体532的材料可以是金属。在其他一些实施例中,支座本体532的材料也可以是有机高分子材料,例如聚甲醛(polyformaldehyde,POM),或者其他类型的材料。
一些实施例中,润滑镀层531包括依次层叠的金属层531a、金属无机化合物层531b及无机层531c。润滑镀层531的金属层531a固定于支座本体532。润滑镀层531的无机层531c接触上部件51。金属层531a与金属无机化合物层531b包括相同的元素,金属无机化合物层531b与无机层531c包括相同的元素。
在本实施例中,由于润滑镀层531远离支座本体532的顶层是无机层531c,无机层531c的硬度高且光滑,故而润滑镀层531整体具有较佳的润滑性能,能够有效降低支座53与上部件51之间的摩擦力,使得SMA马达5的行程控制精度较佳。此外,无机层531c还能够 起到绝缘作用,从而有效地电隔离支座53与上部件51,降低支座53与上部件51之间发生短路的风险。
此外,由于润滑镀层531固定于支座本体532的底层为金属层531a,金属层531a的柔韧性较高、不易裂开,因此润滑镀层531能够更好地固定于支座本体532,且柔韧性较佳、可靠性较高。由于位于润滑镀层531的金属层531a与无机层531c之间的中间层为金属无机化合物层531b,金属无机化合物层531b与金属层531a具有相同的元素,且与无机层531c也具有相同的元素,因此金属无机化合物层531b能够顺利过渡金属层531a和无机层531c,从而提高金属层531a与无机层531c之间的结合性能,使得润滑镀层531的整体性较高,结构可靠性更高。
一些实施例中,无机层531c为碳层,无机层531c背离金属无机化合物层531b的表层结构为类金刚石结构。也即,润滑镀层531的表层形成类金刚石碳薄膜(diamond-like carbon,DLC)。类金刚石碳薄膜由碳元素构成、在性质上和钻石类似,同时又具有石墨原子组成结构的物质。类金刚石碳薄膜是一种非晶态薄膜,具有高硬度和高弹性模量,低摩擦因数,耐磨损以及良好的真空摩擦学特性,使得润滑镀层531耐磨,且能够有效降低支座53与上部件51之间的摩擦力。
一些实施例中,金属层531a为铬层,金属无机化合物层531b为碳铬化合物层。在本实施例中,润滑镀层531的金属层531a和金属无机化合物层531b的金属材料采用铬,使得表层为类金刚石结构的碳层对其底部的碳铬化合物层的附着力较好,润滑镀层531的整体结构可靠性更高。
示例性的,在本申请中,润滑镀层531可以通过物理气相沉积(physical vapour deposition,PVD)工艺和化学气相沉积(chemical vapor deposition,CVD)在支座本体532的表面上成型,以使润滑镀层531厚度薄、强度大且摩擦系数小。
示例性的,物理气相沉积技术是在近似真空条件下,采用高能等离子体粒子将材料源(靶材)原子或原子团轰击脱离靶材,在电场作用下沉积在基材表面(即被镀物体),形成薄膜的技术。物理气相沉积的主要方法之一是溅射镀膜,溅射镀膜的基本原理是指在真空条件下,利用高能电场使腔体气体电离(常规气体采用氩气)成等离子状态,并在电场下加速使其高速轰击靶材表面,使靶材表面原子获得足够的能量而逃逸溅射出靶材表面。被溅射的靶材粒子沉积到基材表面,逐渐累积成膜,称作溅射镀膜。其中溅射镀膜中的高能粒子,一般是设备腔体环境气体通过辉光放电获得,在10 -2-10 -4Pa气压范围,高能粒子在电场下加速运动,轰击靶材,溅射出来的靶材粒子在飞向基体过程中,易和真空室中的气体分子发生碰撞,使运动方向随机,沉积的膜易于均匀。通常将多于一种靶材的溅射方法称之为共溅射(co-sputtering),将腔体环境气体参与溅射粒子发生化学反应的方法称之为反应溅射(reactive sputtering)。一般PVD技术用于生长金属薄膜或者金属无机化合物薄膜。
而化学气相淀积(CVD)原理则相对简单,其电离腔体气体,使等离子气体之间相互发生化学反应生成化合物或者单质。一般CVD用于沉积无机非金属薄膜。
在本实施例中,润滑镀层531采用分阶段的常规物理气相沉积溅射方式、物理气相沉积反应溅射以及化学气相沉积溅射三种工艺方式成型。示例性的,在第一阶段采用金属靶 材(例如铬),用传统的物理气相沉积溅射方式在支座本体532上镀出润滑镀层531的金属层531a,此过程为常规物理气相沉积溅射过程。随后,在第二阶段向蒸镀腔体内通入化学气体(例如乙炔(C 2H 2)、甲烷(CH 4)等含C元素的气体),并使化学气体电离为等离子体,该等离子体同时参与沉积过程,并与金属离子发生化学反应,生成金属无机化合物(例如碳铬化合物)、堆叠在润滑镀层531的金属层531a的表面,形成润滑镀层531的金属无机化合物层531b,此过程为物理气相沉积反应溅射过程。之后,在第三阶段,逐渐降低反应溅射的速率,提升化学气相沉积溅射的速率,再过渡到完全的化学气相沉积溅射阶段,化学气相沉沉生成的无机绝缘物继续覆盖在润滑镀层531的金属无机化合物层531b上,形成无机层531c(例如碳层),最终形成图12所示具有三层堆叠结构的润滑镀层531。
请参阅图13,图13是用于制备润滑镀层531的反应设备20的基本结构示意图。
反应设备20包括腔壁201、进气口202、出料口203、两个靶材安装口204以及承载转台205。腔壁201内侧形成反应腔206,进气口202连通反应腔206与反应设备20外部,出料口203连通反应腔206与反应设备20外部,靶材安装口204连通反应腔206、用于安装靶材(target),承载转台205用于安装待镀层的底材(substrate)。其中,靶材安装口204的数量也可以有更多个。
一些实施例中,图12所示润滑镀层531采用图13所示反应设备20制备时,将支座本体532安装于承载转台205,两个金属靶材207(例如铬)分别安装于两个靶材安装口204,从进气口202通入有机气体(例如乙炔)。镀膜过程中,支座本体532在两个金属靶材207之间旋转,反应腔206的等离子粒子(例如氩(Ar)离子,图中由空心圆示意)先轰击金属靶材207,使得靶材粒子(图中由填充圆示意)溅射出,支座本体532上先形成润滑镀层531的金属层531a,再同时通入反映其体,开始反应溅射,并且调控常规金属溅射和反应溅射二者溅射比率,让金属靶材207的沉积量逐渐减少,反应溅射生成的过渡层、也即金属无机化合物层531b逐渐增加,在润滑镀层531的金属层531a上形成金属无机化合物层531b。最后控制停止金属溅射,过渡到仅反应气体之间反应的化学气相淀积阶段,在润滑镀层531的金属无机化合物层531b上形成无机层531c。
可以理解的是,润滑镀层531的多层结构实际为一体成型结构,也即为一体的镀层结构,金属层531a、金属无机化合物层531b及无机层531c是逐渐过渡的,金属层531a与金属无机化合物层531b之间的界面以及金属无机化合物层531b与无机层531c之间的界面均为模糊界面,是处于两种层材料相互掺杂的状态。
在本实施例中,润滑镀层531的厚度可以控制到微米(um)级。例如,润滑镀层531的整体厚度可以在5微米至10微米的范围内,润滑镀层531的无机层531c的表层类金刚石结构的厚度可以在1微米至3微米的范围内。润滑镀层531的各层厚度及整体厚度也可以有其他数值或范围,本申请对此不做严格限定。
在其他一些实施例中,润滑镀层531的无机层531c也可以为表层结构非类金刚石结构的碳层,此时,润滑镀层531的无机层531c仍具有润滑性,但润滑性相较于前述具有类金刚石表层结构的方案较差。
在其他一些实施例中,润滑镀层531的无机层531c为碳层,润滑镀层531的无机层531c背离润滑镀层531的金属无机化合物层531b的表层结构为类金刚石结构。润滑镀层 531的金属层531a为钛(Ti)层,金属无机化合物层531b为碳钛化合物层。
在其他一些实施例中,润滑镀层531的无机层531c为硅(Si)层。润滑镀层531的金属层531a可以为钛层或铬层,金属无机化合物层531b对应地为硅钛化合物层或者硅铬化合物层。此时,通入反应设备20的反应腔206的化学气体可以是硅烷。
在其他一些实施例中,润滑镀层531的无机层531c也可以采用其他能够实现润滑的无机材料,润滑镀层531的金属层531a也可以采用其他材料,本申请对此不作严格限定。
请再次参阅图10,润滑镀层531也可以延伸至支座本体532的周侧面。具体的,支座本体532包括面向上部件51的顶面、面向下部件52的底面、以及连接在顶面与底面之间的周侧面。润滑镀层531覆盖全部顶面,还可以一并覆盖部分周侧面或者全部周侧面。
请参阅图10,一些实施例中,上部件51包括上部件本体518及上镀层519,上镀层519固定于上部件本体518靠近支座53的一侧。示例性的,上镀层519可以为润滑镀层。上镀层519接触支座53的润滑镀层531,从而进一步降低上部件51与支座53之间的摩擦力,使得SMA马达5的行程控制精度更高,摄像头模组10的镜头3抖动量降低。
请参阅图14,图14是图10所示SMA马达5的上部件51在一些实施例中的部分结构示意图。一些实施例中,上镀层519包括依次层叠的金属层519a、金属无机化合物层519b及无机层519c。金属层519a固定于上部件本体518,金属层519a与金属无机化合物层519b包括相同的元素,金属无机化合物层519b与无机层519c包括相同的元素。
在本实施例中,由于上镀层519的远离上部件本体518的顶层是无机层519c,无机层519c的硬度高且光滑,故而上镀层519整体具有较佳的润滑性能,能够有效降低支座53与上部件51之间的摩擦力,使得SMA马达5的行程控制精度较佳。此外,无机层519c还能够起到绝缘作用,从而有效地电隔离支座53与上部件51,降低支座53与上部件51之间发生短路的风险。
此外,由于上镀层519固定于上部件本体518的底层为金属层519a,金属层519a的柔韧性较高、不易裂开,因此上镀层519能够更好地固定于上部件本体518,且柔韧性较佳、可靠性较高。由于位于上镀层519的金属层519a与无机层519c之间的中间层为金属无机化合物层519b,金属无机化合物层519b与金属层519a具有相同的元素,且与无机层519c也具有相同的元素,因此金属无机化合物层531b能够顺利过渡金属层519a和无机层519c,从而提高金属层519a与无机层519c之间的结合性能,使得上镀层519的整体性较高,结构可靠性更高。
一些实施例中,上镀层519的无机层519c为碳层,上镀层519的无机层519c背离上镀层519的金属无机化合物层519b的表层结构为类金刚石结构。也即,上镀层519的表层形成类金刚石碳薄膜(diamond-like carbon,DLC)。此时,上镀层519的无机层519c使得上镀层519的耐磨性能好,且能够有效降低支座53与上部件51之间的摩擦力。
一些实施例中,上镀层519的金属层519a为铬层,上镀层519的金属无机化合物层519b为碳铬化合物层。在本实施例中,上镀层519的金属层519a和金属无机化合物层519b的金属材料采用铬,使得表层为类金刚石结构的碳层对其底部的碳铬化合物层的附着力较好,上镀层519的整体结构可靠性更高。
在其他一些实施例中,上镀层519的无机层519c也可以为表层结构非类金刚石结构的 碳层,此时,上镀层519的无机层519c仍具有润滑性,但润滑性相较于前述具有类金刚石表层结构的方案较差。
在其他一些实施例中,上镀层519的无机层519c为碳层,上镀层519的无机层519c背离上镀层519的金属无机化合物层519b的表层结构为类金刚石结构。上镀层519的金属层519a为钛(Ti)层,金属无机化合物层519b为碳钛化合物层。
在其他一些实施例中,上镀层519的无机层519c为硅(Si)层。上镀层519的金属层519a可以为钛层或铬层,金属无机化合物层519b对应地为硅钛化合物层或者硅铬化合物层。此时,通入反应设备20的反应腔206的化学气体可以是硅烷。
在其他一些实施例中,上镀层519的无机层519c也可以采用其他能够实现润滑的无机材料,上镀层519的金属层519a也可以采用其他材料,本申请对此不作严格限定。
在其他一些实施例中,上镀层519无润滑需求、为绝缘镀层时,上镀层519也可以整体采用有机高分子材料镀成。
一些实施例中,上部件本体518包括面向下部件52的底面,上镀层519可以覆盖上部件本体518的底面的全部区域或者局部区域。上镀层519覆盖上部件本体518的底面的局部区域时,局部区域主要为支座53的接触范围区域。
在其他一些实施例中,上部件51也可以不设置上镀层519,支座53的润滑镀层531直接接触上部件本体518。此时,虽然支座53与上部件51之间的摩擦力相较于上部件51设有上镀层519的结构较差,但支座53上的润滑镀层531仍然可以满足大幅度降低支座53与上部件51之间的摩擦力的需求。
请再次参阅图10,一些实施例中,下部件52包括下部件本体528及下镀层529,下镀层529固定于下部件本体528靠近支座53的一侧。下镀层529为绝缘镀层。在本实施例中,下部件52的下镀层529能够绝缘支座53与下部件52,以降低上部件51与下部件52之间发生短路的风险。
请参阅图15,图15是图10所示SMA马达5的下部件52在一些实施例中的部分结构示意图。
一些实施例中,下镀层529包括依次层叠的金属层529a、金属无机化合物层529b及无机层529c,下镀层529的金属层529a固定于下部件本体528,下镀层529的金属层529a与下镀层529的金属无机化合物层529b包括相同的元素,下镀层529的金属无机化合物层529b与下镀层529的无机层529c包括相同的元素。
在本实施例中,由于下镀层529的远离下部件本体528的顶层是无机层529c,无机层529c能够起到绝缘作用,从而有效地电隔离支座53与下部件52,降低支座53与下部件52之间发生短路的风险。此外,由于下镀层529固定于下部件本体528的底层为金属层529a,金属层529a的柔韧性较高、不易裂开,因此下镀层529能够更好地固定于下部件本体528,且柔韧性较佳、可靠性较高。由于位于下镀层529的金属层529a与无机层529c之间的中间层为金属无机化合物层529b,金属无机化合物层529b与金属层529a具有相同的元素,且与无机层529c也具有相同的元素,因此金属无机化合物层529b能够顺利过渡金属层529a和无机层529c,从而提高金属层529a与无机层529c之间的结合性能,使得下镀层529的整体性较高,结构可靠性更高。
一些实施例中,下镀层529的无机层529c为碳层,下镀层529的金属层529a为铬层,下镀层529的金属无机化合物层529b为碳铬化合物层。另一些实施例中,下镀层529的无机层529c为碳层,下镀层529的金属层529a为钛层,下镀层529的金属无机化合物层529b为碳钛化合物层。
在其他一些实施例中,下镀层529的无机层529c为硅(Si)层。下镀层529的金属层529a可以为钛层或铬层,金属无机化合物层529b对应地为硅钛化合物层或者硅铬化合物层。此时,通入反应设备20的反应腔206的化学气体可以是硅烷。
在其他一些实施例中,下镀层529的无机层529c也可以采用其他能够实现绝缘的无机材料,下镀层529的金属层529a也可以采用其他材料,本申请对此不作严格限定。在其他一些实施例中,下镀层529也可以整体采用有机高分子材料镀成。
一些实施例中,下部件本体528包括面向上部件51的底面,下镀层529可以覆盖下部件本体528的顶面的全部区域或者局部区域。下镀层529覆盖下部件本体528的顶面的局部区域时,局部区域主要为支座53的接触范围区域。
在其他一些实施例中,下部件52也可以不设置下镀层529,支座本体532直接接触下部件本体528,通过支座53的润滑镀层531和/或上部件51的上镀层519实现上部件51与下部件52之间的绝缘。在其他一些实施例中,下部件52不设置下镀层529,上部件51不设置上镀层519,支座53的支座本体532接触下部件52,支座53的润滑镀层531接触上部件51,通过润滑镀层531实现上部件51与下部件52之间的绝缘。
一些实施例中,支座53与下部件52之间的固定方式有多种,根据支座53的不同材质而定。其中,支座53可以采用粘胶固定方式,也可以采用其他固定方式。例如,支座53采用金属材质时,可以采用粘接方式固定至下部件52。例如,支座53采用有机高分子材料,如聚甲醛(polyformaldehyde,POM)时,可以采用热成型粘接方式固定至下部件52。在其他一些实施例中,支座53也可以采用其他材质,也可以采用其他固定方式固定至下部件52,本申请实施例对此不作严格限定。
请参阅图16,图16是图10所示SMA马达5的上部件51、支座53及下部件52在另一些实施例中的部分结构示意图。
一些实施例中,润滑镀层531为润滑油、润滑脂或固体润滑剂。此时,润滑镀层531能够降低上部件51与支座53之间的摩擦力,提高SMA马达5的行程控制精度,降低摄像头模组10的镜头3抖动量。
一些实施例中,上部件51包括上部件本体518及上镀层519,上镀层519固定于上部件本体518靠近支座53的一侧,上镀层519为绝缘镀层。下部件52包括下部件本体528及下镀层529,下镀层529固定于下部件本体528靠近支座53的一侧,下镀层529为绝缘镀层。上部件51与下部件52之间通过上镀层519和下镀层529实现绝缘。
一些实施例中,绝缘镀层包括依次层叠的金属层、金属无机化合物层及无机层。绝缘镀层的无机层为碳层,用于实现绝缘。绝缘镀层的金属层为钛层,绝缘镀层的金属无机化合物层为碳钛化合物层;或者,绝缘镀层的金属层为铬层,绝缘镀层的金属无机化合物层为碳铬化合物层。换言之,上镀层519包括依次层叠的金属层519a、金属无机化合物层519b及无机层519c。下镀层529包括依次层叠的金属层529a、金属无机化合物层529b及无机 层529c。在本实施例中,绝缘镀层厚度薄、柔韧性高、硬度高、绝缘且整体的结构可靠性高。
其他一些实施例中,绝缘镀层的无机层也可以为硅层。绝缘镀层的金属层可以为钛层或铬层,金属无机化合物层对应地为硅钛化合物层或者硅铬化合物层。其他一些实施例中,绝缘镀层也可以整体采用有机高分子材料镀成。本申请不对绝缘镀层的具体结构、材料及制作方法做严格限定。
另一些实施例中,上部件51可以不设置上镀层519,下部件52设置绝缘的下镀层529,上部件51与下部件52之间通过下镀层529实现绝缘。再一些实施例中,上部件51设置绝缘的上镀层519,下部件52可以不设置下镀层529,上部件51与下部件52之间通过上镀层519实现绝缘。
请参阅图17,图17是图3所示SMA马达5在另一些实施例中的结构示意图。其中,图17中为较为清楚地示意出SMA马达5的结构,对SMA马达5的部分结构进行了填充示意。
本实施例的SMA马达5可以包括前述实施例的SMA马达5的全部特征或大部分特征,本实施例的SMA马达5与前述实施例的SMA马达5的主要区别在与:
一些实施例中,SMA马达5还包括缓冲胶56,缓冲胶56位于上部件51与下部件52之间,且缓冲胶56的一端固定连接上部件51、另一端固定连接上部件51。示例性的,缓冲胶56可以为阻尼胶、减震胶水等。
在本实施例中,SMA马达5通过缓冲胶56减小上部件51在运动过程中的抖动幅度,从而有效降低摄像头模组10的镜头3的抖动量,改善拍摄预览界面静止时的低频水波纹状抖动现象。
一些实施例中,缓冲胶56的一端可以固接于上部件51的活动卡爪511。由于SMA线54的拉力作用于活动卡爪511,当缓冲胶56固接活动卡爪511时,有利于在活动卡爪511处形成合力,确保上部件51受力时的结构可靠性。在另一些实施例中,缓冲胶56也可以固定于上部件51的其他位置。
其中,缓冲件56的数量可以为多个,多个缓冲胶56中心对称设置,对称中心为第一基准面与第二基准面的相交线。
可以理解的是,在本实施例中,SMA马达5还在支座53设有润滑镀层531,缓冲胶56与支座53的润滑镀层531均用于降低抖动。SMA马达5的上部件51还可以包括上镀层519(相关描述参阅前述实施例),SMA马达5的下部件52还可以包括下镀层529(相关描述参阅前述实施例)。在其他一些实施例中,SMA马达5也可以单独通过缓冲胶56降低抖动。
可以理解的是,在其他一些实施例中,SMA马达5也可以结合软件控制方法实现降低抖动。例如,电子设备1000采用感光件和陀螺仪检测环境状况。当检测到高照度和静止时,测到电子设备1000处于静止且打开摄像头模组10处于预览状态时,系统自动降低SMA线54驱动功耗(如电压幅值,脉冲宽度调制(pulse width modulation,PWM)占空比等),因而线材收缩程度较低,反馈灵敏度降低,从而相应的抖动量降低。
或者,电子设备1000以相同的方法检测场景,当检测到高照度和静止的场景,通过算法切换至降最优频率。因不同的脉冲宽度调制的驱动频率下,抖动量有差异,因此切换最优频率一定程度上可以降低抖动。
或者,调节SMA线54的松弛线长,通过对比不同松弛度线长下(实际以松弛电阻来调节)抖动量的大小来确认最优松弛线长,以实现降低抖动改善。可以理解的是,SMA马达5通过SMA线54的电阻反馈实现驱动控制。在未上电时,SMA线54处于松弛状态,SMA线54通电无位移时处于拉直状态,松弛与拉直状态时电阻差,称之为松弛度电阻(slack resistance),以此表征不上电时SMA线54的线长的松弛程度。一般认为,相同驱动参数下,松弛度电阻越大,对应不上电时的线长越长。在相同驱动控制参数下,针对不同的线长,收缩率不一样,相应的电阻反馈精度也不一致。在一定范围内,相同驱动控制参数下,松弛度电阻越大(即松弛线长越长)抖动量越小。
以上,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种SMA马达,其特征在于,包括上部件、下部件、多个支座以及四根SMA线;
    所述下部件与所述上部件堆叠设置,所述多个支座位于所述下部件与所述上部件之间,各所述支座的一端固定连接所述下部件、另一端滑动连接所述上部件;
    各所述SMA线的一端固定连接所述上部件、另一端固定连接所述下部件,所述SMA线通电加热时产生收缩,四根所述SMA线两两成对,两对所述SMA线相对第一基准面对称设置,同一对的两根所述SMA线相对第二基准面对称设置,所述第二基准面与所述第一基准面相交;
    各所述支座包括润滑镀层,所述润滑镀层设于所述支座靠近所述上部件的端部且接触所述上部件。
  2. 根据权利要求1所述的SMA马达,其特征在于,各所述支座还包括支座本体,所述支座本体的一端固定于下部件,所述润滑镀层固定于所述支座本体的另一端;
    所述润滑镀层包括依次层叠的金属层、金属无机化合物层及无机层,所述润滑镀层的金属层固定于所述支座本体,所述润滑镀层的金属层与所述润滑镀层的金属无机化合物层包括相同的元素,所述润滑镀层的金属无机化合物层与所述润滑镀层的无机层包括相同的元素。
  3. 根据权利要求2所述的SMA马达,其特征在于,所述润滑镀层的无机层为碳层,所述润滑镀层的无机层背离所述润滑镀层的金属无机化合物层的表层结构为类金刚石结构。
  4. 根据权利要求3所述的SMA马达,其特征在于,所述润滑镀层的金属层为铬层,所述润滑镀层的金属无机化合物层为碳铬化合物层。
  5. 根据权利要求1至4中任一项所述的SMA马达,其特征在于,所述上部件包括上部件本体及上镀层,所述上镀层固定于所述上部件本体靠近所述支座的一侧;
    所述上镀层包括依次层叠的金属层、金属无机化合物层及无机层,所述上镀层的金属层固定于所述上部件本体,所述上镀层的金属层与所述上镀层的金属无机化合物层包括相同的元素,所述上镀层的金属无机化合物层与所述上镀层的无机层包括相同的元素。
  6. 根据权利要求5所述的SMA马达,其特征在于,所述上镀层的无机层为碳层,所述上镀层的无机层背离所述上镀层的金属无机化合物层的表层结构为类金刚石结构。
  7. 根据权利要求6所述的SMA马达,其特征在于,所述上镀层的金属层为铬层,所述上镀层的金属无机化合物层为碳铬化合物层。
  8. 根据权利要求1至7中任一项所述的SMA马达,其特征在于,所述下部件包括下部件本体及下镀层,所述下镀层固定于所述下部件本体靠近所述支座的一侧,所述下镀层为绝缘镀层。
  9. 根据权利要求8所述的SMA马达,其特征在于,所述下镀层包括依次层叠的金属层、金属无机化合物层及无机层,所述下镀层的金属层固定于所述下部件本体;
    所述下镀层的无机层为碳层;
    所述下镀层的金属层为铬层,所述下镀层的金属无机化合物层为碳铬化合物层;或者,所述上镀层的金属层为钛层,所述下镀层的金属无机化合物层为碳钛化合物层。
  10. 根据权利要求1所述的SMA马达,其特征在于,所述润滑镀层为润滑油、润滑脂或固体润滑剂。
  11. 根据权利要求10所述的SMA马达,其特征在于,所述上部件包括上部件本体及上镀层,所述上镀层固定于所述上部件本体靠近所述支座的一侧,所述上镀层为绝缘镀层;和/或,
    所述下部件包括下部件本体及下镀层,所述下镀层固定于所述下部件本体靠近所述支座的一侧,所述下镀层为绝缘镀层。
  12. 根据权利要求11所述的SMA马达,其特征在于,所述绝缘镀层包括依次层叠的金属层、金属无机化合物层及无机层;
    所述绝缘镀层的无机层为碳层;
    所述绝缘镀层的金属层为钛层,所述绝缘镀层的金属无机化合物层为碳钛化合物层;或者,所述绝缘镀层的金属层为铬层,所述绝缘镀层的金属无机化合物层为碳铬化合物层。
  13. 根据权利要求1至12中任一项所述的SMA马达,其特征在于,所述SMA马达还包括缓冲胶,所述缓冲胶位于所述上部件与所述下部件之间,且所述缓冲胶的一端固定连接所述上部件、另一端固定连接所述上部件。
  14. 根据权利要求1至13中任一项所述的SMA马达,其特征在于,所述SMA马达还包括两个弹簧臂,所述弹簧臂呈L形,所述弹簧臂包括固定端部和活动端部,所述弹簧臂的活动端部固定于所述上部件,所述弹簧臂的固定端部固定于所述下部件,两个所述弹簧臂中心对称设置,且对称中心为所述第一基准面与所述第二基准面的相交线。
  15. 根据权利要求1至13中任一项所述的SMA马达,其特征在于,所述SMA马达还包括四个弹簧臂,所述弹簧臂包括固定端部和活动端部,所述弹簧臂的活动端部固定于所述上部件,所述弹簧臂的固定端部固定于所述下部件,四个所述弹簧臂两两成对,两对所述弹簧臂相对所述第一基准面对称设置,同一对的两个所述弹簧臂相对所述第二基准面对称设置。
  16. 根据权利要求14或15所述的SMA马达,其特征在于,所述弹簧臂还包括折弯部,所述折弯部位于所述固定端部与所述活动端部之间,所述折弯部向远离所述马达下部件的方向凸起。
  17. 一种摄像头模组,其特征在于,包括模组支架、以及安装于所述模组支架内侧的镜头、图像传感器和权利要求1至16中任一项所述的SMA马达,所述SMA马达的下部件固定连接所述模组支架,所述镜头安装于所述SMA马达的上部件,所述SMA马达包括透光区域,所述镜头的镜片正对所述透光区域,所述图像传感器位于所述SMA马达背离所述镜头的一侧,所述图像传感器用于接收经过所述镜头及所述透光区域的光线。
  18. 一种电子设备,其特征在于,包括壳体、处理器及权利要求17所述的摄像头模组,所述处理器及所述摄像头模组收容于所述壳体,所述摄像头模组电连接所述处理器。
PCT/CN2021/071415 2020-02-11 2021-01-13 Sma马达、摄像头模组及电子设备 WO2021159905A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180013410.8A CN115053177B (zh) 2020-02-11 2021-01-13 Sma马达、摄像头模组及电子设备
EP21753774.5A EP4089477A4 (en) 2020-02-11 2021-01-13 SMA MOTOR, CAMERA MODULE AND ELECTRONIC DEVICE
BR112022015885A BR112022015885A2 (pt) 2020-02-11 2021-01-13 Motor de sma, módulo de câmera e dispositivo eletrônico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010087300.3 2020-02-11
CN202010087300.3A CN113259547B (zh) 2020-02-11 2020-02-11 Sma马达、摄像头模组及电子设备

Publications (1)

Publication Number Publication Date
WO2021159905A1 true WO2021159905A1 (zh) 2021-08-19

Family

ID=77219618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071415 WO2021159905A1 (zh) 2020-02-11 2021-01-13 Sma马达、摄像头模组及电子设备

Country Status (4)

Country Link
EP (1) EP4089477A4 (zh)
CN (2) CN113259547B (zh)
BR (1) BR112022015885A2 (zh)
WO (1) WO2021159905A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020222722A1 (ru) * 2019-05-02 2020-11-05 Антон Валэрийовыч РЭМИЗ Сигнализационное устройство
CN117560553A (zh) * 2022-08-02 2024-02-13 华为技术有限公司 一种sma马达、摄像模组及电子设备
CN117639423A (zh) * 2022-10-31 2024-03-01 华为技术有限公司 摄像马达、摄像模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100293940A1 (en) * 2008-01-23 2010-11-25 Konica Minolta Opto., Inc. Drive mechanism and drive device
CN102346352A (zh) * 2010-07-29 2012-02-08 索尼公司 透镜模块和相机
WO2019086855A2 (en) * 2017-10-30 2019-05-09 Cambridge Mechatronics Limited Shape memory alloy actuator bearings
CN109791282A (zh) * 2016-09-30 2019-05-21 卡尔蔡司显微镜有限责任公司 调整可移动的元件的致动器、调整的用途和方法
CN109856891A (zh) * 2019-03-21 2019-06-07 上海信迈电子科技有限公司 防抖结构、防抖系统及摄像装置
CN109975972A (zh) * 2017-12-28 2019-07-05 宁波舜宇光电信息有限公司 驱动方法、驱动结构及其装配方法、马达以及摄像模组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10144269A1 (de) * 2001-09-08 2003-03-27 Bosch Gmbh Robert Sensorelement zur Erfassung einer physikalischen Messgröße zwischen tribologisch hoch beanspruchten Körpern
DE10144271A1 (de) * 2001-09-08 2003-03-27 Bosch Gmbh Robert Sensorelement zur Erfassung einer physikalischen Messgröße zwischen tribologisch hoch beanspruchten Körpern
JP4735060B2 (ja) * 2005-06-06 2011-07-27 コニカミノルタオプト株式会社 駆動装置および手振れ補正システム
US11187916B2 (en) * 2015-10-28 2021-11-30 Cambridge Mechatronics Limited Camera assembly providing optical image stabilization
CN207802158U (zh) * 2018-01-31 2018-08-31 上海信迈电子科技有限公司 防抖结构、防抖系统及具有其的摄像装置
CN109585566B (zh) * 2018-11-14 2021-05-18 惠科股份有限公司 一种阵列基板、阵列基板的制作方法和显示面板
CN109495679A (zh) * 2018-11-30 2019-03-19 上海信迈电子科技有限公司 防抖结构、防抖系统及具有其的摄像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100293940A1 (en) * 2008-01-23 2010-11-25 Konica Minolta Opto., Inc. Drive mechanism and drive device
CN102346352A (zh) * 2010-07-29 2012-02-08 索尼公司 透镜模块和相机
CN109791282A (zh) * 2016-09-30 2019-05-21 卡尔蔡司显微镜有限责任公司 调整可移动的元件的致动器、调整的用途和方法
WO2019086855A2 (en) * 2017-10-30 2019-05-09 Cambridge Mechatronics Limited Shape memory alloy actuator bearings
CN109975972A (zh) * 2017-12-28 2019-07-05 宁波舜宇光电信息有限公司 驱动方法、驱动结构及其装配方法、马达以及摄像模组
CN109856891A (zh) * 2019-03-21 2019-06-07 上海信迈电子科技有限公司 防抖结构、防抖系统及摄像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089477A4

Also Published As

Publication number Publication date
CN115053177B (zh) 2024-01-05
CN113259547B (zh) 2022-11-11
EP4089477A1 (en) 2022-11-16
BR112022015885A2 (pt) 2022-10-04
CN115053177A (zh) 2022-09-13
EP4089477A4 (en) 2023-07-05
CN113259547A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2021159905A1 (zh) Sma马达、摄像头模组及电子设备
WO2021104013A1 (zh) 摄像头模组及电子设备
WO2021104017A1 (zh) 摄像头模组及电子设备
JP7153746B2 (ja) 電子機器
WO2020093820A1 (zh) 成像模组、摄像头组件及电子装置
CN110650274B (zh) 摄像模组及终端设备
CN110445972B (zh) 摄像头模组及电子设备
WO2022262697A1 (zh) 摄像模组和电子设备
US7978421B2 (en) Camera module
WO2020093819A1 (zh) 成像模组、摄像头组件及电子装置
WO2022105748A1 (zh) Sma马达、摄像模组及电子设备
WO2021104402A1 (zh) 一种摄像头模组及电子设备
CN112911092A (zh) 摄像头模组及电子设备
US20060244859A1 (en) Small form factor camera module with mechanical iris and shutter
WO2020093821A1 (zh) 成像模组、摄像头组件及电子装置
CN209497532U (zh) 驱动机构组合件及云台拍摄装置
WO2020093822A1 (zh) 电子装置及其控制方法
CN217508858U (zh) 摄像机构及电子设备
CN114640771B (zh) 感光组件及摄像头模组
WO2023005650A1 (zh) 转动机构及其摄像模组、驱动装置及其电子设备
CN115550535A (zh) 防抖组件、摄像模组及电子设备
CN113467043B (zh) 一种活动件、马达、镜头模组及电子设备
CN209390195U (zh) Ois簧片、防抖结构、防抖系统以及摄像装置
WO2023072133A1 (zh) 光学防抖装置、摄像头模组及电子设备
TWI797006B (zh) 潛望式攝像模組及電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753774

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022015885

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021753774

Country of ref document: EP

Effective date: 20220811

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022015885

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220811