WO2021159720A1 - 一种输出力可控的小型偏心式激振器 - Google Patents

一种输出力可控的小型偏心式激振器 Download PDF

Info

Publication number
WO2021159720A1
WO2021159720A1 PCT/CN2020/119805 CN2020119805W WO2021159720A1 WO 2021159720 A1 WO2021159720 A1 WO 2021159720A1 CN 2020119805 W CN2020119805 W CN 2020119805W WO 2021159720 A1 WO2021159720 A1 WO 2021159720A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric block
eccentric
vibration exciter
motor
present
Prior art date
Application number
PCT/CN2020/119805
Other languages
English (en)
French (fr)
Inventor
陈廷国
董官宁
高翔
刘子楠
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2021159720A1 publication Critical patent/WO2021159720A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • B06B1/162Making use of masses with adjustable amount of eccentricity
    • B06B1/164Making use of masses with adjustable amount of eccentricity the amount of eccentricity being automatically variable as a function of the running condition, e.g. speed, direction

Definitions

  • the invention belongs to the field of mechanical automation, and relates to a small eccentric vibration exciter with a controllable output force, which can be used for structural dynamics experiments in mechanics.
  • Structural dynamics is an important branch in the field of mechanics, and has important applications in civil engineering, mechanical engineering, aerospace and other fields. "Resonance" is the most basic knowledge point in structural dynamics. Taking the basic single-degree-of-freedom system as an example, it can be expressed as: when the single-degree-of-freedom system is subjected to dynamic loads of different parameters, if the dynamic load amplitude remains unchanged, When the load frequency increases from zero to the basic frequency of the structure, the dynamic displacement amplitude of the structure increases with the increase of the load frequency, and reaches the maximum at the resonance point. After that, the dynamic displacement amplitude of the structure decreases with the increase of the load frequency until it approaches zero.
  • the demonstration experiment of the relationship between the dynamic displacement amplitude of the structure and the frequency of the dynamic load is divided into the following steps: firstly specify the amplitude of a dynamic load, such as 5N; secondly, measure the basic frequency of the structure; then measure the size of the structure as The displacement under a static load of 5N is taken as the displacement when the dynamic load frequency is zero; after that, keeping the dynamic load amplitude unchanged, gradually increase the load frequency to infinity (generally 5 times the natural frequency of the structure), and measure the structure at The dynamic displacement amplitude of the same load amplitude and different load frequencies; finally, the ratio of the load frequency to the basic frequency of the structure is taken as the abscissa, and the dynamic displacement amplitude of the structure under different load frequencies is taken as the ordinate to draw the dynamic displacement amplitude of the structure The relationship between the value and the frequency of the load.
  • the loading equipment used includes vibration table, electromagnetic exciter, etc. Although these loading equipment can output fixed frequency dynamic load, they all It is impossible to precisely control the amplitude of the output dynamic load.
  • the dynamic load amplitude can only be obtained through subsequent measurements and then converted proportionally.
  • the traditional electromagnetic exciter has a limited stroke and cannot be excited at any point of the structure, so These loading devices are not sufficiently intuitive in teaching demonstration experiments.
  • the present invention provides a small eccentric vibration exciter with controllable output force to demonstrate the relationship between the dynamic displacement amplitude of the structure and the frequency of the dynamic load.
  • the present invention is an eccentric vibration exciter that can adjust the load frequency while ensuring the constant dynamic load amplitude.
  • the vibration exciter adjusts the load amplitude by changing the eccentric distance and the eccentric mass of the eccentric mass. the size of.
  • a small eccentric vibration exciter with controllable output force which is mainly composed of a stepping motor 1, a motor frame 2, an eccentric block a4, an eccentric block b5, a sleeve 6, a thumb screw 8 and a dial 9;
  • stepper motors 1 There are two stepper motors 1 in total, which are symmetrically fixed on the bottom of the motor frame 2 by fixing screws 3.
  • the motor shaft of the stepper motor 1 vertically passes through the motor frame 2, and the motor shaft is located in the motor frame 2;
  • sleeves 6 There are two sleeves 6 in total.
  • the lower part of the two sleeves 6 are respectively installed on the motor shafts of the two stepping motors 1, and the upper part is higher than the top of the motor shaft; each sleeve 6 is covered with an eccentric block a4 And an eccentric block b5; the scale 9 is fixedly installed on the upper surface of the eccentric block a4, the scale 9 is located above the eccentric block a4 and the eccentric block b5, and the circular scale 9 is coaxial with the motor shaft of the stepping motor 1 , Obtain the horizontal angle between the eccentric block a4 and the eccentric block b5 through the dial 9; the inner wall of the upper part of the sleeve 6 is provided with a thread, the thumb screw 8 is covered with a washer 7, and the thumb screw 8 is screwed in from the top In the sleeve 6, the sleeve 6, the eccentric block a4 and the eccentric block b5 are fixed as one body by the pressing friction force generated by tightening the thumb screw 8.
  • the present invention can change the size of the output dynamic load by adjusting the angle between the eccentric block a4 and the eccentric block b5, so that the output dynamic load can no longer change with the change of frequency, and it can be achieved by loosening-tightening the thumb screw 8. Purpose, convenient and fast.
  • the exciter of the present invention will be directly placed on the structure and not connected to other foundations, so as to ensure that the stroke at the loading point of the structure will not be restricted; compared with the traditional eccentric exciter
  • the present invention can control the amplitude of the output dynamic load, and overcomes the defect that the amplitude of the output dynamic load of the traditional eccentric vibration exciter increases as the frequency increases.
  • Fig. 1 is a front elevation view of a small eccentric vibration exciter with controllable output force of the present invention.
  • Fig. 2 is a top view of a small eccentric vibration exciter with controllable output force of the present invention.
  • a small eccentric vibration exciter with controllable output force of the present invention is mainly composed of a stepping motor 1, a motor frame 2, a fixing screw 3, an eccentric block a4, an eccentric block b5, and a sleeve. 6. It is composed of gasket 7, thumb screw 8 and dial 9.
  • the installation method of the device of the present invention is as follows:
  • the upper and lower sides of the washer 7 are in contact with the thumb screw 8 and the eccentric block respectively; screw the thumb screw 8 into the thread of the sleeve 6 and tighten it, and then tighten it by hand
  • the pressing friction force generated by the screw 8 fixes the sleeve 6, the eccentric block a4 and the eccentric block b5 together, and the gasket 7 plays a role in protecting the pressing surface.
  • the method of the present invention to control the output force is as follows:
  • F is the centrifugal force generated when the eccentric block rotates
  • is the angular velocity of the rotation of the eccentric block
  • r is the eccentricity of the eccentric block to the central axis.
  • the present invention adopts the design of two sets of motors plus the eccentric block: ,
  • the vibration exciter of the present invention will be directly placed on the structure.
  • adjust the two sets of eccentric blocks on the two stepping motors 1 to be completely symmetrical (the angles of the two sets of eccentric blocks are the same, and the initial phases are also the same ), and then make the two stepper motors 1 move in the opposite direction during work.
  • the two sets of eccentric blocks are symmetrical.
  • the symmetrical centrifugal force generated by the blocks cancels each other out in other directions, and only the force in the direction of the central axis of the two stepping motors 1 is retained.
  • the final dynamic load output by the vibration exciter of the present invention is a sine function that changes with time, the frequency is the same as the rotation frequency of the motor, and the amplitude is the sum of the centrifugal force generated by the two sets of eccentric blocks.
  • the present invention changes the eccentric distance of the eccentric block by loosening the thumb screw 8, and manually adjusting the included angle between the two eccentric blocks according to the dial 9, and the output of the eccentric block at different speeds and different eccentric block included angles can be obtained by calculation.
  • the motor frequency of 2Hz corresponds to the eccentric block angle of 114.5°
  • the motor frequency of 3Hz corresponds to the eccentric block angle of 152.2°
  • the motor frequency of 4Hz corresponds to the eccentric block clamp
  • the angle is 164.4°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本发明属于机械自动化领域,涉及一种输出力可控的小型偏心式激振器,可用于力学中结构动力学实验。本发明的激振器主要由两套对称的装置组成,每组包括步进电机、电机架、两个偏心块、套筒、垫片、手拧螺丝和刻度盘。本发明可以通过调节两个偏心块的夹角改变输出的动荷载的大小,使得输出的动荷载可以不再随频率的改变而改变,且通过放松-拧紧手拧螺丝即可达到目的,方便快捷。与传统的电磁式激振器相比,本发明的激振器将直接放置于结构上,并且不与其他基础相连,保证不会限制结构加载点处的行程;与传统的偏心式激振器相比,本发明可控制输出动荷载的幅值,克服了传统偏心式激振器的输出动荷载幅值随频率增大而增大的缺陷。

Description

一种输出力可控的小型偏心式激振器 技术领域
本发明属于机械自动化领域,涉及一种输出力可控的小型偏心式激振器,可用于力学中结构动力学实验。
背景技术
结构动力学是力学领域中的一个重要分支,在土木工程、机械工程、航空航天等领域有着重要的应用。“共振”是结构动力学中最基本的知识点,以基础的单自由度体系为例,其可以表述为:单自由度体系受到不同参数动荷载作用时,如果动荷载幅值不变,在荷载频率从零增大到结构基本频率过程中,结构动位移幅值随荷载频率的增加而增加,在共振点达到最大,此后结构动位移幅值随荷载频率的增加而减小直至趋近于零。
结构动位移幅值与动荷载频率的关系的演示实验分为下面几个步骤:首先规定一个动荷载的幅值,比如规定为5N;其次测得结构的基本频率;然后测得结构在大小为5N的静荷载下的位移作为动荷载频率为零时的位移;此后保持动荷载幅值不变,逐渐增加荷载频率至无穷大(一般达到结构固有频率的5倍即可),分别测得结构在相同荷载幅值不同荷载频率下的动位移幅值;最后以荷载频率与结构的基本频率的比值为横坐标,以结构在不同荷载频率下的动位移幅值为纵坐标,绘制结构动位移幅值与荷载频率的关系曲线。
为了达到实验目的,需要一种能够在调节荷载频率的同时保证动荷载幅值不变的一种加载装置。目前普遍进行结构动位移幅值与动荷载频率的关系的演示实验时,采用的加载设备有振动台、电磁式激振器等,这些加载设备虽然都可以输出固定频率的动荷载,但是它们都无法精确控制输出的动荷载的幅值,只能通过后续的测量得到动荷载幅值再按比例进行换算,并且传统的电磁式激振器行程有限,无法在结构的任意一点进行激振,所以这些加载设备在教学演示实验中都达不到足够直观的效果。
技术问题
为解决上述加载设备无法精确控制动荷载幅值和行程不足的问题,本发明提供一种输出力可控的小型偏心式激振器,以演示结构动位移幅值与动荷载频率的关系这一实验,本发明为一种能够在调节荷载频率的同时,保证动荷载幅值不变的一种偏心式激振器,该激振器通过改变偏心块的偏心距和偏心质量来调节荷载幅值的大小。
技术解决方案
本发明的技术方案:
一种输出力可控的小型偏心式激振器,主要由步进电机1、电机架2、偏心块a4、偏心块b5、套筒6、手拧螺丝8和刻度盘9组成;
所述的步进电机1共两台,通过固定螺丝3对称固定在电机架2的底部,步进电机1的电机轴竖直向上穿过电机架2,电机轴位于电机架2内;所述的套筒6共两个,两个套筒6的下部分别安装在两个步进电机1的电机轴上,上部高于电机轴的顶端;每个套筒6上均套有一个偏心块a4和一个偏心块b5;所述的刻度盘9固定安装在偏心块a4上表面,刻度盘9位于偏心块a4和偏心块b5上方,且圆形刻度盘9与步进电机1的电机轴同轴,通过刻度盘9获取偏心块a4与偏心块b5在水平方向的夹角;套筒6上部的内壁上设有螺纹,手拧螺丝8上套有垫片7,手拧螺丝8从顶部拧入套筒6内,通过拧紧手拧螺丝8产生的挤压摩擦力将套筒6、偏心块a4和偏心块b5固定为一体。
调整偏心块a4和偏心块b5的夹角时,松开手拧螺丝8,并根据刻度盘9的示数将偏心块a4和偏心块b5的夹角调整至需要的角度,再拧紧手拧螺丝8。
本发明可以通过调节偏心块a4和偏心块b5的夹角改变输出的动荷载的大小,使得输出的动荷载可以不再随频率的改变而改变,且通过放松-拧紧手拧螺丝8即可达到目的,方便快捷。
有益效果
本发明的有益效果:
与传统的电磁式激振器相比,本发明的激振器将直接放置于结构上,并且不与其他基础相连,保证不会限制结构加载点处的行程;与传统的偏心式激振器相比,本发明可控制输出动荷载的幅值,克服了传统偏心式激振器的输出动荷载幅值随频率增大而增大的缺陷。
附图说明
图1是本发明的一种输出力可控的小型偏心式激振器的正立面图。
图2是本发明的一种输出力可控的小型偏心式激振器的俯视图。
图中:1步进电机、2电机架、3固定螺丝、4偏心块a、5偏心块b、6套筒、7垫片、8手拧螺丝、9刻度盘。
本发明的实施方式
下面结合附图和技术方案,进一步说明本发明的具体实施方式。
如图1和图2所示,本发明的一种输出力可控的小型偏心式激振器主要由步进电机1、电机架2、固定螺丝3、偏心块a4、偏心块b5、套筒6、垫片7、手拧螺丝8和刻度盘9组成。
本发明装置的安装方式如下:
将两台步进电机1通过8颗固定螺丝3固定于电机架2的底部,将套筒6套在步进电机1的电机轴上,先将偏心块a4套在套筒6上,再将偏心块b5套在套筒6上,偏心块a4在下,偏心块b5在上,两个偏心块之间的夹角可自由调节。使用胶水或双面胶将刻度盘9粘结在偏心块a4上表面,刻度盘9与步进电机1的电机轴同轴,刻度盘9不与偏心块b5相粘结。
将垫片7套在手拧螺丝8上,垫片7上下两面所接触的分别为手拧螺丝8和偏心块;将手拧螺丝8拧进套筒6的螺纹中并拧紧,通过拧紧手拧螺丝8产生的挤压摩擦力将套筒6、偏心块a4和偏心块b5固定在一起,垫片7起到保护挤压面的作用。
调整两个偏心块之间的夹角时,松开手拧螺丝8,通过刻度盘9的读数将两个偏心块的夹角调整至需要的角度,再拧紧手拧螺丝8。
本发明控制输出力的方式如下:
根据牛顿第二定律,偏心块围绕中心轴转动会对中心轴施加一个从转轴指向偏心块质心的离心力,这个力的大小与偏心块的质量、偏心距、角速度有关;方向始终从转轴指向偏心块的质心。偏心块转动时产生的离心力大小可用公式表示为:
F=m ω 2 r
式中: F为偏心块转动时产生的离心力大小;
ω为偏心块转动的角速度;
r为偏心块对中心轴的偏心距。
由于单个电机加偏心块产生的离心力方向始终从转轴指向偏心块的质心,也就是平面内一周,而实验要求的动荷载为单一方向,故本发明采用两套电机加偏心块的设计:使用时,将本发明的激振器将直接放置于结构上,初始状态时,将两个步进电机1上的两套偏心块调整为完全对称(两套偏心块的夹角相同、初始相位也相同),之后令两个步进电机1在工作时反向运动,由于两套偏心块产生的动荷载大小相同、方向均时刻从转轴指向偏心块质心且关于两电机中轴线对称,使得两套偏心块产生的对称的离心力在其他方向上相互抵消,仅保留两步进电机1的中轴线方向的力。最终的本发明的激振器输出的动荷载是一个随时间变化的正弦函数,频率与电机转动频率相同,幅值为两套偏心块产生的离心力大小之和。
本发明通过松开手拧螺丝8,按照刻度盘9手动调节两个偏心块之间的夹角来改变偏心块的偏心距,通过计算即可得到不同转速、不同偏心块夹角下偏心块输出的偏心力大小,例如:控制输出的偏心力大小恒定为2N时,电机频率为2Hz对应偏心块夹角114.5°;电机频率为3Hz对应偏心块夹角152.2°;电机频率为4Hz对应偏心块夹角164.4°。

Claims (2)

  1. 一种输出力可控的小型偏心式激振器,其特征在于,所述的输出力可控的小型偏心式激振器主要由步进电机(1)、电机架(2)、偏心块a(4)、偏心块b(5)、套筒(6)、手拧螺丝(8)和刻度盘(9)组成;
    所述的步进电机(1)共两台,通过固定螺丝(3)对称固定在电机架(2)的底部,步进电机(1)的电机轴竖直向上穿过电机架(2),电机轴位于电机架(2)内;所述的套筒(6)共两个,两个套筒(6)的下部分别安装在两个步进电机(1)的电机轴上,上部高于电机轴的顶端;每个套筒(6)上均套有一个偏心块a(4)和一个偏心块b(5);所述的刻度盘(9)固定安装在偏心块a(4)上表面,刻度盘(9)位于偏心块a(4)和偏心块b(5)上方,且圆形刻度盘(9)与步进电机(1)的电机轴同轴,通过刻度盘(9)获取偏心块a(4)与偏心块b(5)在水平方向的夹角;套筒(6)上部的内壁上设有螺纹,手拧螺丝(8)上套有垫片(7),手拧螺丝(8)从顶部拧入套筒(6)内,通过拧紧手拧螺丝(8)产生的挤压摩擦力将套筒(6)、偏心块a(4)和偏心块b(5)固定为一体。
  2. 根据权利要求1所述的一种输出力可控的小型偏心式激振器,其特征在于,调整偏心块a(4)和偏心块b(5)的夹角时,松开手拧螺丝(8),并根据刻度盘(9)的示数将偏心块a(4)和偏心块b(5)的夹角调整至需要的角度,再拧紧手拧螺丝(8)。
PCT/CN2020/119805 2020-02-11 2020-10-05 一种输出力可控的小型偏心式激振器 WO2021159720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010085952.3A CN111195586A (zh) 2020-02-11 2020-02-11 一种输出力可控的小型偏心式激振器
CN202010085952.3 2020-02-11

Publications (1)

Publication Number Publication Date
WO2021159720A1 true WO2021159720A1 (zh) 2021-08-19

Family

ID=70742428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119805 WO2021159720A1 (zh) 2020-02-11 2020-10-05 一种输出力可控的小型偏心式激振器

Country Status (2)

Country Link
CN (1) CN111195586A (zh)
WO (1) WO2021159720A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195586A (zh) * 2020-02-11 2020-05-26 大连理工大学 一种输出力可控的小型偏心式激振器
CN113385412A (zh) * 2021-07-21 2021-09-14 山东理工大学 激振力在线可调节的圆振动弛张筛及激振力调节方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410449A1 (de) * 1984-03-22 1985-09-26 Uhde Gmbh, 4600 Dortmund Unwucht-schwingantrieb
EP0199922A2 (de) * 1985-05-02 1986-11-05 Gebr. Lindenmeyer GmbH & Co. Maschinenfabrik Vibrationsbär mit Umwuchtverstellung
CN2239298Y (zh) * 1995-04-11 1996-11-06 包头市永磁电机研究所 新型激振器
CN2413805Y (zh) * 1999-12-03 2001-01-10 西安建筑科技大学 变向激振器
CN2616310Y (zh) * 2003-03-07 2004-05-19 江群峰 一种反向同步振动装置
CN201699516U (zh) * 2010-05-27 2011-01-05 卧龙电气集团股份有限公司 振动电机激振力调整装置
CN104259084A (zh) * 2014-07-31 2015-01-07 中国船舶重工集团公司第七一一研究所 一种主动减振装置用激振器
CN111195586A (zh) * 2020-02-11 2020-05-26 大连理工大学 一种输出力可控的小型偏心式激振器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410449A1 (de) * 1984-03-22 1985-09-26 Uhde Gmbh, 4600 Dortmund Unwucht-schwingantrieb
EP0199922A2 (de) * 1985-05-02 1986-11-05 Gebr. Lindenmeyer GmbH & Co. Maschinenfabrik Vibrationsbär mit Umwuchtverstellung
CN2239298Y (zh) * 1995-04-11 1996-11-06 包头市永磁电机研究所 新型激振器
CN2413805Y (zh) * 1999-12-03 2001-01-10 西安建筑科技大学 变向激振器
CN2616310Y (zh) * 2003-03-07 2004-05-19 江群峰 一种反向同步振动装置
CN201699516U (zh) * 2010-05-27 2011-01-05 卧龙电气集团股份有限公司 振动电机激振力调整装置
CN104259084A (zh) * 2014-07-31 2015-01-07 中国船舶重工集团公司第七一一研究所 一种主动减振装置用激振器
CN111195586A (zh) * 2020-02-11 2020-05-26 大连理工大学 一种输出力可控的小型偏心式激振器

Also Published As

Publication number Publication date
CN111195586A (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2021159720A1 (zh) 一种输出力可控的小型偏心式激振器
Zhang et al. Stability and Sommerfeld effect of a vibrating system with two vibrators driven separately by induction motors
CN107628272B (zh) 卫星旋转部件动静不平衡干扰力矩自补偿装置
US20090293613A1 (en) System and Method for Active Detection of Asymmetry In Rotating Structures
CN102564685B (zh) 一种基于稳态正弦激振力的多维力传感器动态实验装置
CN106586034A (zh) 卫星旋转部件动静不平衡干扰力矩自补偿方法
CN102539833A (zh) 加速度计低频性能校准平台
Peng et al. Synchronization analysis of the anti-resonance system with three exciters
CN111458241B (zh) 一种伺服同轴双驱动惯性激振器
Boikov et al. Experimental study of unbalanced rotors synchronization of the mechatronic vibration setup
CN109143861B (zh) 一种基于力矩器的变速倾侧动量轮系统主动振动抑制方法
CN211802190U (zh) 一种输出力可控的小型偏心式激振器
RU2426976C2 (ru) Способ и устройство для автоматической балансировки ротора
Parkinson et al. Residual vibration in modal balancing
WO2021135096A1 (zh) 拼接锁合装置
CN204924527U (zh) 一种用于微型拉扭疲劳试验机的扭矩测量装置
JP4140380B2 (ja) 動不釣合算定法及び動釣合試験装置
RU2689896C1 (ru) Дебалансный вибровозбудитель
Kimball et al. Vibration phenomena of a loaded unbalanced shaft while passing through its critical speed
CN106768850B (zh) 一种悬臂回转常平装置
Mendes et al. Tuning of parametric excitation for rotor balancing
RU205712U1 (ru) Установка для испытаний длинных образцов материалов
CN104251774A (zh) 一种用于热、振动环境中基本结构件动力学实验装置及其静载加载方法
CN211681962U (zh) 一种电子试验机夹持装置
Panovko et al. On the Synchronization of Unbalance Vibration Exciters, Mounted on a Resiliently Supported Rigid Body, Near Resonance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918300

Country of ref document: EP

Kind code of ref document: A1