WO2021159549A1 - 一种用于交通安全路况感知评估的方法 - Google Patents

一种用于交通安全路况感知评估的方法 Download PDF

Info

Publication number
WO2021159549A1
WO2021159549A1 PCT/CN2020/075810 CN2020075810W WO2021159549A1 WO 2021159549 A1 WO2021159549 A1 WO 2021159549A1 CN 2020075810 W CN2020075810 W CN 2020075810W WO 2021159549 A1 WO2021159549 A1 WO 2021159549A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
road condition
traffic safety
warning
data
Prior art date
Application number
PCT/CN2020/075810
Other languages
English (en)
French (fr)
Inventor
许剑明
范振灿
刘国旭
钟诗富
曹志颖
Original Assignee
深圳市美舜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市美舜科技有限公司 filed Critical 深圳市美舜科技有限公司
Priority to JP2021520593A priority Critical patent/JP2022523890A/ja
Publication of WO2021159549A1 publication Critical patent/WO2021159549A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the embodiments of the present application relate to the field of traffic safety technology, in particular to the field of safety early warning, and in particular to a method for traffic safety road condition perception assessment.
  • the speed of passing vehicles is generally very fast (greater than 80 kilometers per hour or 25 meters per second), in order to strengthen the personnel of the operators.
  • the warning zone should generally be set to more than 200 meters in order to ensure sufficient warning and avoidance time (5-8 seconds) for traffic engineering construction personnel.
  • the traditional method was for traffic safety officers to deploy ice cream cones. Ice cream cones with a length of more than 200-300 meters were deployed on the occupied lanes as a warning line to remind incoming vehicles not to collide with the construction area.
  • this method consumes more manpower and material resources, and is relatively inefficient, especially in temporary parking construction and small-scale rapid construction is very inconvenient.
  • Lidar detection technology is applied to the field of automotive intelligent transportation, such as Lidar, millimeter wave radar and so on.
  • Lidar belongs to the SLAM modeling technology for short-range omnidirectional detection and point cloud data output, but the straight-line detection of SLAM technology is currently unable to reach 200 meters; while the detection range of millimeter-wave radar is directly restricted by frequency loss, and long-distance detection must use high frequency bands. Electromagnetic waves.
  • the millimeter wave radar is not accurate enough for long-distance detection. When the millimeter wave lobe amplitude is 70 meters away, it is often larger than two lanes (about 6 meters). The rate will be very large, and other technologies need to be used for correction, so it is not easy to apply to long-distance vehicle identification and collision avoidance warning in traffic occupation projects.
  • the purpose of the embodiments of the present application is to provide a method for the perception and assessment of traffic safety and road conditions, so as to solve the problems of the existing traffic early warning and monitoring system that the monitoring distance is short, the monitoring range is inaccurate, and the reliability is low.
  • a method for perception and assessment of traffic safety and road conditions including the following steps:
  • Acquiring monitoring data of a monitoring range of the lidar system the data including radar ranging data of moving objects within the monitoring range, and the monitoring range covering the monitoring lane and part of its adjacent lanes;
  • the lidar system has a distance measuring module with a coaxial optical channel, and each of the distance measuring modules measures independently.
  • the plurality of ranging modules with coaxial optical channels are not completely arranged in parallel.
  • At least two of the distance measuring modules form an included angle of 0.5-5°.
  • the monitoring range of the lidar system is 200-300 meters.
  • the method for traffic safety and road condition perception assessment further includes:
  • the method for traffic safety and road condition perception assessment further includes:
  • the acquired data monitored by the lidar system further includes image data of the monitoring range, which is used to display the actual monitoring status.
  • the manners of the alarm pre-warning include voice prompt pre-warning, display pre-warning, and flashing light pre-warning.
  • the display early warning displays the actual status of the early warning information through a display device, and the early warning information includes a real-time image and/or an early warning description that triggers the early warning.
  • the display device is a miniature display device with a wearing structure.
  • the display device is AR glasses or a display with a wristband, armband or waist wearing structure.
  • the method before acquiring the monitoring data of the monitoring range of the lidar system, the method further includes the following steps:
  • the detection range of the lidar system is adjusted according to the image data of the lidar system.
  • the method for traffic safety and road condition perception assessment includes: acquiring monitoring data of a monitoring range of a lidar system, the data including radar ranging data of moving objects within the monitoring range, and the monitoring range covering a monitoring lane And some of its adjacent lanes, according to the radar ranging data, calculate the moving speed of the moving object in the monitoring range and the distance from the detection point; analyze the movement according to the moving speed and the distance The degree of danger formed by the object to the detection point and the setting of an early warning level; when the movement of the moving object triggers a corresponding level of early warning alarm, an alarm of the corresponding level is issued.
  • the data obtained by the method for traffic safety and road condition perception evaluation includes all the data of the monitored lane and the monitoring range of some adjacent lanes.
  • the data in the monitored lane range is used to calculate the moving speed and distance of the moving objects in the monitored lane, and analyze the moving objects The level of risk.
  • the straight-line monitoring distance of this application can reach 200-300 meters. The monitoring distance is extended so that after an early warning is made based on the analysis results, sufficient reaction time can still be provided for the staff to make an escape. Furthermore, the situational awareness of moving objects in adjacent lanes can be analyzed, the analysis data is complete, and the reliability is higher.
  • Fig. 1 is a schematic structural diagram of an implementation manner of a method for traffic safety road condition perception assessment provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an implementation manner of the method for traffic safety and road condition perception assessment provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another implementation manner of the method for traffic safety road condition perception assessment provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an application scenario of an implementation manner of the method for traffic safety road condition perception assessment provided by an embodiment of the application.
  • module means, “part” or “unit” used to denote elements is only used to facilitate the description of the present invention, and has no specific meaning in itself. Therefore, “module”, “part” or “unit” can be used in a mixed manner.
  • FIG. 1 is a schematic structural diagram of a method for traffic safety road condition perception assessment according to various embodiments of the present invention.
  • the method for traffic safety road condition perception assessment may include the following steps:
  • S2 According to the monitoring data, calculate the moving speed of the moving object within the monitoring range and the distance from the detection point;
  • S3 According to the moving speed and distance, analyze the degree of danger of the moving object to the detection point and set the early warning level;
  • the monitoring data includes radar ranging data of moving objects within the monitoring range, and the monitoring range of the lidar system exceeds one lane but less than two lanes, that is, its monitoring range covers monitoring The lane and part of its adjacent lanes.
  • the data obtained by the method for traffic safety and road condition perception assessment includes all the data of the monitored lane and the monitoring range of some adjacent lanes.
  • the lidar system adopts a ranging module with a coaxial optical channel, and each of the measurement The distance module measures the distance independently to ensure that the detection lane is detected by at least one of the distance measurement modules.
  • the multiple ranging modules with coaxial optical channels are not completely arranged in parallel, so that the detection range of the lidar system covers the monitored lane and part of its adjacent lanes.
  • At least two of the ranging modules form an included angle of 0.5-5°, so that the detection range of the lidar system covers the monitored lane and a small part of adjacent lanes.
  • the linear detection distance of the lidar system is 200-300 meters, and the monitoring distance is extended so that after an early warning is made based on the analysis result, sufficient reaction time can still be provided for the staff to make an avoidance.
  • the method for traffic safety road condition perception assessment described in the embodiments of the present application can analyze the situation perception of moving objects in adjacent lanes according to the monitoring range of a small part of the adjacent lanes, evaluate the road safety situation, and perceive When it is in danger, an alarm can be used to warn the construction personnel.
  • the method for traffic safety and road condition perception assessment described in the embodiment of the present application has complete data analysis and higher reliability.
  • the monitored moving objects include but are not limited to vehicles, pedestrians, or other moving objects.
  • step S2 further includes the following steps:
  • step S3 the degree of danger and the warning level of the moving object can be set according to a preset threshold.
  • an early warning can be carried out according to various forms of early warning methods, and the staff are notified to avoid.
  • the early warning methods in the embodiment of the present application include, but are not limited to, voice prompt early warning, display early warning, and flashing light early warning.
  • the display warning displays the real-time warning information through a display device, and the warning information includes a real-time image and/or warning description that triggers the warning.
  • the display device may be a display device with a wearing structure, including but not limited to AR glasses or a display with a wristband, armband or waist wearing structure.
  • the smart AR glasses display and identify dangerous information.
  • the AR glasses are wirelessly connected to the controller 20, and the controller 20 wirelessly transmits the processed real-time road condition images to the AR glasses.
  • the images can display the current road condition safety index, vehicle distance and speed, and in case of an alarm.
  • the user can quickly view the real-time image, can make more specific judgments on the danger, and can effectively improve the efficiency of avoidance. In the absence of warning, the disappearance of the screen does not affect the normal work of the user.
  • the method for traffic safety and road condition perception assessment further includes the following steps:
  • the lidar system includes a plurality of laser ranging modules with coaxial optical video capabilities, and each module is connected by a high-precision optical adjustment structure, which can precisely adjust the emission angle of each laser.
  • the laser covers the current monitoring lane and only covers the current monitoring lane, ensuring that vehicles at any position on the monitoring lane are detected by at least one laser ranging module and are not affected by vehicles in adjacent lanes. Influence.
  • the lidar system is provided with an adjustment device, such as an electric stage.
  • the electric stage is connected with a display device and a control device to realize intelligent control of the laser.
  • the detection angle of the radar system adjust the detection range. For example, you can manually adjust the position and angle of the motor stage of the laser device through the control button of the AR glasses, without standing next to the equipment, and observe through the real-time image displayed by the AR glasses to ensure the safety of the user during operation.
  • the distance measurement module and the display device work together, and the recognition range angle of the display device is larger than that of the laser detection alone, which can make up for the recognition blind area of the laser.
  • the optical path and the circuit dual information source transmission any way triggers the early warning will sound an alarm , Increase the system redundancy to ensure the accuracy of the road safety assessment under various weather and road conditions.
  • FIG. 2 shows a schematic structural diagram of an application system according to an embodiment of the present application.
  • the system 100 includes an alarm 30, a laser distance measuring device 10, a controller 20, and an early warning display device 50.
  • the warning display device 50 includes a camera 51 and a display 52.
  • the detection range of the laser ranging device 10 covers the monitored lane and part of its adjacent lanes.
  • the controller 20 is used to collect and obtain the monitoring data of the moving object detected by the laser ranging device 10, and the controller 20 is also used to Calculate the moving speed of the moving objects within the monitoring lane and the distance from the detection point, and analyze the degree of danger and set the warning level.
  • the alarm 30 is used to issue an alarm according to the analysis result of the controller 20.
  • the controller 20 is the control center of the traffic early warning monitoring system, which uses various interfaces and lines to connect various parts of the entire traffic early warning monitoring system, such as the alarm 30, the laser distance measuring device 10, the camera 51 and the display 52.
  • the controller 20 executes various functions of the traffic early warning monitoring system and processing data by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory, so as to perform overall monitoring of the traffic early warning monitoring system .
  • the controller 20 may include one or more processing units; preferably, the controller 20 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc., the modem
  • the processor mainly deals with wireless communication. It can be understood that the above-mentioned modem processor may not be integrated into the controller 20.
  • the controller 20 may also include a wireless connection module, etc., which will not be repeated here.
  • the traffic early warning monitoring system 100 is connected to other terminal devices such as the alarm 30, the laser distance measuring device 10, the camera 51, and the display 52 through wireless connection methods such as Bluetooth to realize communication and information interaction.
  • the laser distance measuring device 10 includes a plurality of distance measuring modules with coaxial optical channels.
  • the distance measuring module with coaxial optical channels can detect a linear distance of 200-300 meters, and has a large monitoring range, which can improve the response time of safety early warning. Provide sufficient early warning and avoidance time (5-8 seconds) for traffic engineering construction personnel.
  • each distance measurement module performs independent distance measurement to ensure that the monitored lane is monitored by at least one distance measurement module, which further improves the reliability of the traffic early warning monitoring system in this embodiment.
  • the controller 20 obtains and analyzes the ranging data of the ranging module, and triggers the alarm 30 to give an early warning when it is analyzed that there is a risk.
  • the controller 20 when the controller 20 calculates that the speed of the vehicle within the monitoring range exceeds a preset threshold, it controls the alarm 30 to issue an alarm.
  • the autonomous alarm of the traffic early warning monitoring system provided in this application is triggered by the signal of its own laser ranging device 10, and its work efficiency and reliability are high.
  • the traffic early warning monitoring system 100 is applied in highway maintenance engineering to monitor the collision avoidance and early warning of the construction area by passing vehicles or other moving objects in the maintenance lane.
  • the distance measurement module includes a plurality of detection heads, the distance measurement module is arranged in the detection head, and the plurality of distance measurement modules with coaxial optical channels are not completely arranged in parallel to enlarge the laser emission angle, thereby ensuring The detection range of the ranging module can completely cover the monitored lane, ensuring that all moving objects in the monitored lane can be detected.
  • the two distance measurement modules form an included angle of 0.5-5° to ensure that the laser detection range of the laser distance measurement device 10 at least covers the boundary of the monitored lane and its adjacent lanes, but is less than two lanes wide. Avoid monitoring moving objects in adjacent lanes to cause interference.
  • the camera 51 is connected to one of the distance measuring modules for collecting images of the monitoring range of the laser distance measuring device 10, and after being processed by the controller 20, the dangerous information is notified to the staff through video images, so that The staff observe and understand the situation.
  • the controller 20 is integrated with an image processing chip, which includes an image recognition algorithm, such as an AR recognition algorithm, which is used to process and analyze the image acquired by the camera 51, identify and monitor Whether the range of the lane is accurate, and detect the moving speed and distance of the vehicle or other moving objects in the monitored lane, and determine whether it will cause a risk.
  • an image recognition algorithm such as an AR recognition algorithm
  • the real-time picture acquired by the camera 51 is displayed through the display 52, and the monitoring range of the laser distance measuring device 10 is directly observed, achieving the effect of "what you see is what you see".
  • the traffic early warning monitoring system 100 includes an alarm 30, a laser distance measuring device 10, a controller 20, and an early warning display device 50.
  • the early warning display device 50 includes a camera 51 and a display 52.
  • the display 52 adopts AR glasses, which is convenient for workers to wear without hindering their construction work.
  • the alarm 30, the laser distance measuring device 10, the AR glasses, and the camera 51 are electrically or wirelessly connected to the controller 20.
  • the laser distance measuring device 10 includes two distance measuring modules with coaxial optical channels, and two They form an angle of 0.5°, and the two use laser technology to detect moving objects within the boundary of the monitoring lane 300 meters, the monitoring lane and its adjacent lanes, and this range is the early warning area.
  • the controller 20 calculates the moving speed of the detected moving object in the warning zone. When the moving object is within the warning area and the moving speed is greater than 20 km/h, the controller 20 feeds back the risk signal of the alarm 30 to issue an alarm warning. At the same time, the controller 20 sends the monitoring image to the AR glasses display, so that the staff can observe and understand the actual monitoring situation and avoid in time.
  • the controller 20 does not detect a risk
  • the AR glasses are like ordinary glasses, and the monitoring screen is not displayed, so as to avoid interference by construction personnel.
  • the laser distance measuring device 10 further includes an optical adjustment structure connected to each of the distance measuring modules for adjusting the laser emission angle. By adjusting the laser emission angle of the distance measuring module, ensure that the monitoring lane Vehicles at any position are detected by at least one laser ranging module, and the laser detection capability is fixed at the level of the range of a lane.
  • the alarm device 30 includes a hand-held alarm device and a hand-held alarm device 31, wherein the hand-held alarm device 31 is wirelessly connected to the controller 20, and the non-hand-held alarm device 31 is set in the controller 20 or the laser The distance measuring device 10 is on.
  • the alarm 30 may be provided with a light warning module, a sound warning module, and a display warning module, which notify the staff to realize the warning by means of light, sound, text, or video, respectively.
  • the light warning module includes at least one or more colors of indicator lights or flashing lights, which can be lit or flashing lights of failing colors according to different warning levels.
  • the sound warning module sets at least one warning sound, and plays different warning sound according to different warning levels.
  • the display and early warning module includes a display screen, etc., which can be used for early warning by text or images, and display specific risk conditions through the display screen and other displays, and pass it to the construction personnel to understand the specific risk items.
  • the light warning module and the display warning module are not essential components of the alarm 30, and can be omitted as needed without changing the essence of the invention.
  • the alarm 30 can realize the early warning through the sound early warning module alone, and the embodiment of the present invention is not limited to this.
  • the sound early warning module directly plays a corresponding level of early warning prompt sound according to the signal sent by the controller 20 to remind the construction personnel that there is a risk.
  • the display and early warning module displays the risk situation in text mode, such as "vehicle XXX distance 100m, speed 40Km/h, high danger level", through text mode to let the construction personnel understand the specific situation, and generally take defense in time.
  • the display when the display does not use AR glasses and uses other displays, such as a display screen, the display can be integrated into the hand-held alarm by wearing a structure, such as a bracelet , Armbands, belts and other wearing methods for the staff to carry.
  • a structure such as a bracelet , Armbands, belts and other wearing methods for the staff to carry.
  • the traffic early warning monitoring system 100 may also include a power source (such as a battery) for supplying power to various components.
  • a power source such as a battery
  • the power source may be logically connected to the controller 20 through a power management system, so as to manage charging through the power management system. , Discharge, and power management and other functions.
  • the traffic early warning monitoring system 100 further includes an electric moving platform 80 that carries the laser ranging device 10 and is used to adjust the ranging angle of the ranging module .
  • the electric stage 80 further includes a driver and a remote controller, and the driver and the driver are electrically or wirelessly connected to the controller.
  • the remote controller sends a signal to the controller 20 to control the driver to drive the electric stage to move to adjust the angle of the laser distance measuring device 10.
  • the traffic early warning and monitoring system further includes a gyroscope, which is connected to the controller for detecting the vibration of the laser distance measuring device 10 under external vibrations such as wind disturbance.
  • the controller controls the automatic adjustment of the electric stage to maintain the stability of the posture of the laser distance measuring device 10 and the stability of the monitoring range, and compensate for the influence of vibration such as wind disturbance.
  • the traffic early warning monitoring system 100 further includes a supplementary light 60, such as an infrared LED supplementary light 60, etc., and the supplementary light 60 is electrically connected to the controller 20.
  • the controller 20 turns on the infrared LED supplementary light 60 to enhance the video image quality and ensure that the image analyzer 40 can accurately identify the object.
  • the camera 51 is equipped with an infrared lamp, which has an infrared night vision function. During construction at night, even if there is no light or the light is weak, a clear picture can be formed to ensure that the image analyzer 40 can accurately identify object.
  • the traffic early warning system 100 works collaboratively with image recognition through laser ranging, and the image recognition range angle increases the detection angle to compensate for the laser’s recognition blind spot.
  • the optical path and the circuit dual information source transmission any way triggers the early warning will send out an alarm, increase System redundancy.
  • FIG. 3 is a schematic diagram of the specific structure of the system for implementing the traffic early warning method provided by the present application.
  • the traffic early warning monitoring system 100 shown in FIG. 3 includes: an alarm 31, a handheld alarm 32. MCU controller 20, laser distance measuring device 10, camera 51, AR glasses 52, and image analyzer 40.
  • the alarm 30, the laser distance measuring device 10, the camera 51, and the image analyzer 40 can be connected to the MCU controller 20 in a wireless manner or an electrical connection manner.
  • the laser ranging device 10 is used to detect movement data of a moving object in a monitored lane, and the camera 51 is connected to a ranging module in the laser ranging device 10, and the laser ranging module
  • the real-time image within the monitoring range is acquired by the axial light path; the MCU controller 20 receives the real-time image acquired by the camera 51 and transmits it to the image analyzer 40; the image analyzer 40 monitors the monitoring range according to the acquired real-time image Perform risk analysis on the moving object in the image analyzer, and feed back a risk signal to the MCU controller 20.
  • the MCU controller 20 triggers the alarm 30 to give an alarm based on the risk signal fed back by the image analyzer 40, and uses the AR glasses 52 Display the monitoring status.
  • the image analyzer 40 includes a touch screen, a display screen, etc. as its display module, which is used to display the image frame acquired by the camera 51. It is understandable that the detection angle of the laser monitoring device 10 can be adjusted according to the image frame before construction to adjust the monitoring range.
  • the image analyzer 40 further includes a video processing chip, etc., as the main component of its analysis module, the video processing chip is used to analyze the image acquired by the camera 51 and calculate the status of the moving objects within the monitoring range.
  • the moving speed is evaluated according to the preset threshold value of the risk level that the moving object may cause danger, and the risk signal is fed back to the MCU controller 20 to control the alarm 30 to issue a corresponding level of alarm.
  • the image analyzer 40 can be integrated in the MCU controller 20, or can be set independently. Preferably, the image analyzer 40 is set independently. On the one hand, it improves the data processing speed and analysis accuracy, analyzes and monitors the risks of the road in time, and further improves the reliability. On the other hand, if the image analyzer 40 is damaged during use, the use of the MCU controller 20 is not affected, and the traffic early warning monitoring system 100 still continues to monitor.
  • the analysis module includes a lane recognition sub-module and an object recognition sub-module.
  • the lane recognition sub-module is used to recognize a lane in the monitoring range
  • the object recognition sub-module is used to recognize a lane in the monitoring range.
  • Vehicles The video processing chip uses an intelligent recognition algorithm to first identify the detected lane and adjacent lanes. After the lane is confirmed, the lane and distance of the vehicle are detected. When the vehicle enters the construction monitoring lane, the processing chip frequently sends different levels of alarm signals according to the distance of the vehicle. To the MCU controller 20, and then the MCU controller 20 sends a signal to the alarm device 30 to issue an alarm according to the alarm priority level strategy.
  • the image analyzer 40 has a posture perception function, which further improves the reliability of the traffic early warning and monitoring system 100.
  • the analysis module can analyze vehicles or other moving objects entering the monitored lane across the border of adjacent lanes according to real-time images, calculate the distance and moving speed from the construction area, analyze the risk level caused to the construction area; or monitor the early warning range Disable the alarm if the vehicle moves out of the monitoring lane.
  • the laser ranging device 10 and the image analyzer 40 work together.
  • the traffic early warning monitoring system recognizes the range angle than simply using the laser ranging device 10 to monitor the angle. Larger, it can make up for the blind spot of the laser, the optical path and the circuit dual information source transmission, any way of triggering an early warning will send an alarm, increase the redundancy of the device, and improve the accuracy of the identification of invading vehicles.
  • the AR glasses 52 are wirelessly connected to the image analyzer 40.
  • the image analyzer 40 wirelessly transmits the processed real-time road condition images to the AR glasses 52.
  • the AR glasses 52 can display the current road condition safety index, vehicle distance and speed. Display images and AR glasses come with audio to display early warning and danger information for users. Users can quickly view real-time images, which can make more specific judgments on dangers and effectively improve the efficiency of avoidance. In the absence of warning, the disappearance of the screen does not affect the normal work of the user. It is also possible to manually remotely adjust the position and angle of the motor moving stage of the laser device through the control button of the AR glasses, without standing next to the equipment, and observe the real-time image displayed by the AR glasses to ensure the safety of the user during operation.
  • the image analyzer 40 may also include a storage module, which compresses and encodes video data at work, stores real-time traffic monitoring images during project implementation, and serves as a risk record for monitoring lanes during construction. Some cases are used as evidence or other records.
  • a storage module which compresses and encodes video data at work, stores real-time traffic monitoring images during project implementation, and serves as a risk record for monitoring lanes during construction. Some cases are used as evidence or other records.
  • the traffic early warning and monitoring system 100 further includes an electric moving platform 80, the electric moving platform 80 carries the laser ranging device 10, and the laser ranging is adjusted by controlling the electric moving platform 80 The direction and position of the device 10 are used to adjust the laser emission angle.
  • the electric stage 80 may further include a driver 70 connected to the MCU controller 20; the image analyzer 40 includes an angle adjustment module 44 for monitoring the lane range and analyzing Whether the monitoring position corresponds to the monitoring lane, and feedback a signal to the MCU controller 20 to control the driver 70 to drive the electric stage 80 to move to adjust the monitoring range of the laser distance measuring device 10.
  • the angle adjustment module 44 controls the driver 70 to automatically adjust the electric stage 80
  • the direction and position of the laser beam can be adjusted to adjust the exit angle of the laser.
  • the image analyzer 40 analyzes whether the monitoring range of the laser ranging device 10 covers the monitored lane through lane recognition, and evaluates the laser ranging range.
  • the laser ranging module is located on the electric moving stage, and is controlled by video analysis and electric moving stage. , Can accurately control the laser ranging range, and control the electric moving table to adjust the angle of the laser ranging module, so that the laser ranging monitoring range covers the entire monitoring lane, ensuring the stability of the entire system on the road condition monitoring under the influence of wind disturbance and other vibrations .
  • the video analysis module will issue an alarm. Remind the user to pay attention to the abnormal state of the equipment, and manually remove the abnormality of the equipment.
  • the traffic early warning monitoring system 100 further includes a supplementary light 60, such as an infrared LED supplementary light 60, etc., and the supplementary light 60 is electrically connected to the MCU controller 20.
  • the controller 20 turns on the infrared LED fill light 60 to enhance the image quality of the video image and ensure that the image analyzer 40 can accurately identify the object.
  • the camera 51 is equipped with an infrared lamp and has an infrared night vision function. During construction at night, even if there is no light or the light is weak, a clear picture can be formed to ensure that the image analyzer 40 can accurately identify object.
  • the traffic early warning and monitoring system 100 further includes a gyroscope 90, and the gyroscope 90 is connected to the MCU controller 20.
  • the gyroscope 90 Under vibrations such as wind disturbance, the gyroscope 90 will detect the vibration condition of the entire laser ranging device 10, and the MCU controller 20 controls the electric moving stage 80 to maintain the stability of the laser ranging device 10, and the image analyzer 40 By identifying the lane, analyzing the laser emission direction, judging whether the laser is aimed at the monitoring lane, evaluating the laser aiming, and controlling the electric moving table 80 to adjust the angle of the laser ranging module to ensure that the device compensates for the influence of vibration such as wind disturbance.
  • the traffic early warning monitoring system 100 provided in the embodiment of the application is applied to highway maintenance scenarios.
  • the traffic early warning monitoring system 100 provided in the embodiment of the application includes a bracket, a multi-syllable waterproof alarm 32, a handheld alarm 31, and a laser
  • the distance measuring device 10, the camera 51, the image analyzer 40 and the controller 20 is independent of the traffic early warning monitoring system 100 and is carried and configured by construction personnel, and is wirelessly connected to the controller 20.
  • the multi-syllable waterproof alarm 32, the laser ranging device 10, the camera 51 and the controller 20 are carried on the bracket, and the multi-syllable waterproof alarm 32 and the laser ranging device 10 communicate with the control in a wired or wireless manner. ⁇ 20 ⁇ Device 20 is connected.
  • the laser ranging device 10 includes two sets of ranging modules with coaxial optical paths, the angle between the two sets of ranging modules is 1°, the width of the monitored lane is greater than one lane but less than 1.5 lanes, and the straight-line warning area is 200 meters, that is, The linear radiation range of the laser distance measuring device 10 is 200 meters.
  • the camera 51 is connected to one of the distance measuring modules, and the image analyzer 40 is wirelessly or electrically connected to the controller 20, which displays the picture captured by the camera 51 and recognizes moving objects in the picture, such as Pedestrians, animals and vehicles, etc., and analyze the distance and speed of moving objects from the construction site.
  • the moving speed of the moving object in the early warning area exceeds 20 km/h or other preset thresholds
  • different levels of early warning signals are issued according to the distance of the moving object.
  • multiple early warning areas of different levels can be divided, corresponding to each early warning area and early warning level, the multi-syllable waterproof alarm 32 and the hand-held alarm 31 have different early warning methods. For example, within 200m is a level 3 alarm, within 150m is a level 2 alarm, and within 100m is a level 1 alarm.
  • the laser ranging device 10 and the camera 51 are used as sensors for detecting moving objects in the early warning area in the traffic early warning monitoring system, and each laser ranging module needs to measure the distance of the moving objects at a high frequency, especially The vehicle, and sends the measured vehicle distance data to the controller 20, and the controller 20 calculates the vehicle speed and distance detected by each module through a large amount of vehicle distance data.
  • the multi-syllable waterproof alarm 32 and wireless alarm unit can send out audible and visual alarms to remind the construction personnel to pay attention to avoidance .
  • the laser distance measuring device 10 and the camera 51 can be independently monitored respectively, or can be monitored together.
  • the laser distance measuring device 10 is a point-shaped monitoring, which cannot solve vehicle intrusion in adjacent lanes, and cannot adapt to vehicle monitoring in a curve situation.
  • the data processing capability of the controller 20 generally can only cope with simple calculations. , The monitoring results are rough.
  • the image analyzer 40 has advanced computing and processing capabilities. By analyzing the image, in addition to judging the risk of moving objects in the monitored lane, it can also judge the risk of vehicles entering the monitored lane or other moving objects entering the warning area in the adjacent lanes. , The risk judgment is more accurate and reliable.
  • the bracket is also provided with an electric moving table 80 and its driver 70.
  • the electric moving table 80 carries the laser distance measuring device 10, and the electric moving table 80 can be controlled mechanically in this application.
  • the direction and position of the laser distance measuring device 10 can also be intelligently adjusted by the driver 70 connected to the controller 20 to adjust the laser emission angle.
  • the angle adjustment module 44 therein sends a signal to the controller 20 to control the driver 70 to drive the electric moving table 80 to The monitoring range of the laser distance measuring device 10 is adjusted.
  • a gyroscope 90 is also provided on the nail, and the gyroscope 90 is connected to the controller 20.
  • the gyroscope 90 will detect the vibration condition of the entire laser ranging device 10, and the controller 20 controls the electric moving stage 80 to keep the posture of the laser ranging device 10 stable, while the image analyzer 40 passes Identify the lane, analyze the laser emission direction, determine whether the laser is aimed at the monitoring lane, evaluate the laser sight, and control the electric moving table 80 to adjust the angle of the laser ranging module to ensure that the device compensates for the influence of vibration such as wind disturbance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种用于交通安全路况感知评估的方法,包括:获取激光雷达系统监测范围的监测数据,数据包括监控范围内的移动物体的雷达测距数据,监测范围覆盖监控车道及其部分相邻车道,根据监测数据,计算移动物体在监控范围内的移动速度以及距离探测点的相距距离;根据移动速度以及相距距离,分析移动物体对探测点形成的危险度数和设置预警等级;当移动物体移动情况触发相应等级预警警报时,发出对应等级的警报预警。

Description

一种用于交通安全路况感知评估的方法 技术领域
本申请实施例涉及交通安全技术领域,具体涉及安全预警领域,尤其涉及一种用于交通安全路况感知评估的方法。
背景技术
在交通公路施工维修时,如路面修整、交通设施维护、故障车辆处理等,由于过往车辆的速度一般都非常快(大于80公里每小时或25米每秒的车速),为强化作业人员的人身安全保障,警戒区一般要设置到200米以上,才能保证给交通工程施工人员提供足够的预警和避让时间(5-8秒时间)。以往传统做法是由交通安全员来部署雪糕筒,是在所占车道上部署长达200-300多米的雪糕筒作为警戒线,用来提醒来车请勿冲撞施工区域。但该方法耗费的人力及物力较多,效率比较低,尤其是临时停车施工和小规模快速工程时非常不便。
目前,激光雷达探测技术应用于汽车智能交通领域,如Lidar,毫米波雷达等。Lidar属于近距离全方向型检测和点云数据输出SLAM建模技术,但SLAM技术直线探测目前还无法达到200米;而毫米波雷达探测距离受到频段损耗的直接制约,远距离探测必须使用高频段电磁波。另外,交通工程探测时,只探测施工车道上范围,毫米波雷达在远距离探测不够精准,其毫米波的波瓣幅度在70米外时往往会大于两 条车道(约6米),误检率会非常大,需要使用其他技术进行修正,所以也不易应用在交通占道工程远距离来车识别和防撞预警上。
发明内容
有鉴于此,本申请实施例的目的在于提供一种用于交通安全路况感知评估的方法,以解决现有交通预警监控系统监测直线距离短,而且监测范围不精确,可靠性低的问题。
本申请实施例解决上述技术问题所采用的技术方案如下:
一种用于交通安全路况感知评估的方法,包括以下步骤:
获取激光雷达系统监测范围的监测数据,所述数据包括监控范围内的移动物体的雷达测距数据,所述监测范围覆盖监控车道及其部分相邻车道;
根据所述雷达测距数据,计算所述移动物体在监控范围内的移动速度以及距离探测点的相距距离;
根据所述移动速度以及所述相距距离,分析所述移动物体对探测点形成的危险度数和设置预警等级;
当所述移动物体移动情况触发相应等级预警警报时,发出对应等级的警报预警。
在一种可选的实施的方式中,所述激光雷达系统具有同轴光学通道的测距模块,且各所述测距模块独立测距。
在一种可选的实施的方式中,所述多个具有同轴光学通道的测距模块不完全平行设置。
在一种可选的实施的方式中,至少两个所述测距模块形成0.5-5°夹角。
在一种可选的实施的方式中,所述激光雷达系统的监测范围为200-300米。
在一种可选的实施的方式中,所述用于交通安全路况感知评估的方法,还包括:
分析相邻车道移动物体移动到所述监控车道的态势感知。
在一种可选的实施的方式中,所述用于交通安全路况感知评估的方法,还包括:
对所述移动物体进行识别分析;以及
保存所述监测范围内的监测数据。
在一种可选的实施的方式中,获取的激光雷达系统监测的数据还包括监测范围的图像数据,用于显示监控实况。
在一种可选的实施的方式中,所述警报预警的方式包括声音提示预警、显示预警和闪烁灯预警。
在一种可选的实施的方式中,所述显示预警通过显示装置显示预警信息实况,所述预警信息包括所述触发预警的实时图像和/或预警描述。
在一种可选的实施的方式中,所述显示装置为微型的具有佩戴结构的显示装置。
在一种可选的实施的方式中,所述显示装置为AR眼镜或具有手环、臂环或者腰间佩戴结构的显示器。
在一种可选的实施的方式中,在所述获取激光雷达系统监测范围的监测数据前,还包括以下步骤:
调整所述激光雷达系统监测的探测范围。
在一种可选的实施的方式中,根据所述激光雷达系统的图像数据调整所述激光雷达系统的探测范围。
本申请实施例提供的用于交通安全路况感知评估的方法包括:获取激光雷达系统监测范围的监测数据,所述数据包括监控范围内的移动物体的雷达测距数据,所述监测范围覆盖监控车道及其部分相邻车道,根据所述雷达测距数据,计算所述移动物体在监控范围内的移动速度以及距离探测点的相距距离;根据所述移动速度以及所述相距距离,分析所述移动物体对探测点形成的危险度数和设置预警等级;当所述移动物体移动情况触发相应等级预警警报时,发出对应等级的警报预警。用于交通安全路况感知评估的方法获取的数据包括监控车道全部数据,以及部分相邻车道的监控范围,监控车道范围内的数据用于计算监控车道中移动物体的移动速度及相距距离,分析移动物体的风险等级。本申请直线监测距离可达到200-300米,延长监测距离,以便根据分析结果作出预警后,仍可提供足够反应时间给工作人员以作出避让。进一步地,可分析相邻车道的移动物体的态势感知,分析数据完全,可靠性更高。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的用于交通安全路况感知评估的方法的 一种实施方式的结构示意图;
图2为本发明实施例提供的应用本申请用于交通安全路况感知评估的方法的一种实施方式的结构示意图;
图3是本发明实施例提供的用于交通安全路况感知评估的方法的又一种实施方式的结构示意图;
图4为本申请实施例提供的用于交通安全路况感知评估的方法一种实施方式的应用场景示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
请参阅图1,其为实现本发明各个实施例的一种用于交通安全路况感知评估的方法的结构示意图,用于交通安全路况感知评估的方法可以包括以下步骤:
S1:获取激光雷达系统监测范围的监测数据。
S2:根据监测数据,计算移动物体在监控范围内的移动速度以及距离探测点的相距距离;
S3:根据移动速度以及相距距离,分析移动物体对探测点形成的危险度数和设置预警等级;
S4:当移动物体移动情况触发相应等级预警警报时,发出对应 等级的警报预警。
需要说明的是,在步骤S1中,所述监测数据包括监控范围内的移动物体的雷达测距数据,所述激光雷达系统的监控范围超过一车道,但小于两车道,即其监测范围覆盖监控车道及其部分相邻车道。该用于交通安全路况感知评估的方法获取的数据包括监控车道全部数据,以及部分相邻车道的监控范围。
在一种可实施的方式中,为保证所述激光雷达系统探测的范围覆盖监控车道及其部分相邻车道,所述激光雷达系统采用具有同轴光学通道的测距模块,并且各所述测距模块独立测距,以保证探测车道至少被一个所述测距模块探测到。
进一步地,所述多个具有同轴光学通道的测距模块不完全平行设置,以使所述激光雷达系统探测的范围覆盖监控车道及其部分相邻车道。
优选的,至少两个所述测距模块形成0.5-5°夹角,以使所述激光雷达系统探测的范围覆盖监控车道以及小部分相邻车道。
进一步地,所述激光雷达系统的直线探测距离为200-300米,延长监测距离,以便根据分析结果作出预警后,仍可提供足够反应时间给工作人员以作出避让。
进一步地,本申请实施例所述用于交通安全路况感知评估的方法可根据小部分的相邻车道的监测范围,分析相邻车道的移动物体的态势感知,对路况安全态势进行评估,感知到危险时,可以通过报警器警报,对施工人员发出警报,本申请实施例所述用于交通安全路况感知评估的方法分析数据完全,可靠性更高。
在步骤S2中,监测的移动物体包括但不限于车辆、行人、或者其他移动物体。
在一种可实施的方式中,步骤S2中,还包括以下步骤:
对移动物体进行识别,以及
保存所述监测范围内的监测数据。
在步骤S3中,可根据预设阈值,设置所述移动物体的危险度数和预警等级。
在步骤S4中,可根据多种形式预警方式进行预警,通知工作人员避让。本申请实施例预警方式包括但不限于声音提示预警、显示预警和闪烁灯预警等预警方式。
在一种可实施的方式中,所述显示预警通过显示装置显示预警信息实况,所述预警信息包括所述触发预警的实时图像和/或预警描述。具体地,所述显示装置可以为具有佩戴结构的显示装置,包括但不限于AR眼镜或具有手环、臂环或者腰间佩戴结构的显示器。
需要说明的是,当所述报警器30包括智能AR眼镜时,智能AR眼镜显示标识出危险信息。在一种具体实施方式中,AR眼镜通过无线连接控制器20,控制器20通过无线传输处理过的实时路况图像到AR眼镜,图像可显示当前路况安全指数、车辆距离和速度,在警报情况下,可通过显示图像和AR眼镜自带音频对使用人员进行预警和危险信息显示,使用人员可快速查看实时图像,能够对危险有更加具体的判断,能够有效提高避让的效率。在无预警情况下,画面消失不影响使用人员的正常工作。
在本申请实施例中,为保证步骤S1获取的数据更加准确,使得分析结果更加精确可靠,所述用于交通安全路况感知评估的方法还包括以下步骤:
调整所述激光雷达系统监测的探测范围。
在一种可实施的方式中,所述激光雷达系统包括多个具备同轴光学 视频能力的激光测距模块,各个模块之间由高精度光学调节结构连接,可精准调节每个激光器出射角度,通过调节激光测距模块之间出射夹角,使激光覆盖当前监控车道且仅覆盖当前监控车道,确保监控车道上任何位置的车辆至少被一个激光测距模块检测到,且不受相邻车道车辆影响。
在另一种可实施的方式中,所述激光雷达系统设置有调节装置,如电动移台,在一种优选的方式中,所述电动移台和显示装置和控制装置连接,实现智能控制激光雷达系统的探测角度,调整探测范围。如可通过AR眼镜的控制按钮对激光装置的电机移台进行人工远程调整位置和角度,无需站在设备旁边,并通过AR眼镜显示的实时图像进行观察,保证使用人员在操作时的安全。
本申请实施例通过测距模块与显示装置协同工作,显示装置识别范围角度比单纯使用激光检测角度更大,能够弥补激光器的识别盲区,光路和电路双信息源传输,任何一路触发预警都会发出警报,增加系统冗余度,保证在各种天气和路况下,对路况安全评估的准确性。
在一种可实施的方式中,如图2所示,其示出本申请实施例一种应用系统的结构示意图。该系统100包括:报警器30、激光测距装置10、控制器20和预警显示装置50。其中,所述预警显示装置50包括摄像头51和显示器52。激光测距装置10的探测范围覆盖监控车道及其部分相邻车道,控制器20用于采集和获取激光测距装置10探测到移动物体的监测数据,控制器20还用于根据所述监测数据计算监测车道范围内移动物体的移动速度和距离探测点的相距距离,并分析其危 险度数和设置预警等级。报警器30用于根据控制器20的分析结果发出警报。
控制器20是交通预警监控系统的控制中心,利用各种接口和线路连接整个交通预警监控系统的各个部分,如报警器30、激光测距装置10、摄像头51和显示器52。控制器20通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,执行交通预警监控系统的各种功能和处理数据,从而对交通预警监控系统进行整体监控。控制器20可包括一个或多个处理单元;优选的,控制器20可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到控制器20中。
控制器20还可以包括无线连接模块等,在此不再赘述。交通预警监控系统100通过蓝牙等无线连接方式,与报警器30、激光测距装置10、摄像头51和显示器52等其他终端设备连接,实现通信以及信息的交互。
所述激光测距装置10包括多个具有同轴光学通道的测距模块,具有同轴光学通道的测距模块检测直线距离可达到200-300米,监测范围大,可提高安全预警反应时间,为交通工程施工人员提供足够的预警和避让时间(5-8秒时间)。并且各所述测距模块独立测距,以保证监测车道至少被一个所述测距模块监测到,进一步提高本实施例所述交通预警监控系统的可靠性。所述控制器20获取所述测距模块的测距数据并分析,并在分析出有风险时触发所述报警器30警报进行预警。 如当所述控制器20计算出监控范围内车辆行驶速度超出预设阈值时,就控制报警器30发出警报预警。本申请提供的交通预警监控系统的自主报警是受自身的激光测距装置10的信号触发,其工作效能和可靠性高。
在一种实施方式中,所述交通预警监控系统100应用于公路维修工程中,用于监控维修车道的过往车辆或者其他移动物体对施工区域的防撞预警。其中,所述测距模块包括多个探测头,所述测距模块设置于所述探测头中,多个具有同轴光学通道的测距模块不完全平行设置,以扩大激光发射角度,进而保证所述测距模块的检测范围能完全覆盖所监控的车道,确保在监控车道的移动物体均能检测到。
优选的,两个所述测距模块形成0.5-5°夹角,确保所述激光测距装置10激光检测范围至少覆盖监控车道及其相邻车道的边界,但又不到两个车道宽度,避免监控到相邻车道上的移动物体造成干扰。
进一步地,所述摄像头51连接其中一个所述测距模块,用于采集激光测距装置10监测范围的图像,经过所述控制器20处理后,将危险息通过视频图像方式通知工作人员,以便工作人员观察了解实况。
在一种可实施的方式中,所述控制器20集成有图像处理芯片,其中包括图像识别算法,如AR识别算法,用于对所述摄像头51获取的图像进行处理和分析,识别和检测监控范围车道是否准确,以及检测监控车道的车辆或其他移动物体的移动速度、相距距离等,并判断是否会造成风险。
进一步地,通过所述显示器52显示所述摄像头51获取的实时画 面,直接观察到激光测距装置10的监控范围,达到“所见即所测”的效果。
在一个优选的实施例中,所述交通预警监控系统100包括报警器30、激光测距装置10、控制器20、预警显示装置50。其中,预警显示装置50包括摄像头51和显示器52,显示器52采用AR眼镜,便于工作人员佩戴,同时不妨碍其施工工作。所述报警器30、激光测距装置10、AR眼镜和摄像头51电连接或无线连接所述控制器20,所述激光测距装置10包括两个具有同轴光学通道的测距模块,并且二者形成0.5°夹角,二者通过激光技术检测监控车道300米、监控车道及其相邻车道边界范围内的移动物体,该范围为预警区域。并通过控制器20计算检测到的移动物体在预警区内的移动速度。当运动物体在预警区域以内且运动速度大于20km/h时,所述控制器20反馈所述报警器30风险信号,发出警报预警。同时,控制器20将监控图像发送至AR眼镜显示,以使工作人员观察了解监控实况,及时避让。
可以理解的是,在控制器20未检测到风险时,所述AR眼镜如同普通眼镜,不显示监控画面,避免造成施工人员干扰。
进一步的,所述激光测距装置10还包括光学调节结构,所述光学调节结构连接各个所述测距模块,用于调节激光器出射角度,通过调节测距模块的激光出射角度,确保监控车道上任何位置的车辆至少被一个激光测距模块检测到,将激光检测能力固定在一个车道的范围水平。
所述报警器30包括非手持报警器和手持报警器31,其中,所述手 持报警器31无线连接所述控制器20,所述非手持报警器31设置在所述控制器20或者所述激光测距装置10上。
进一步的,所述报警器30可设置有灯光预警模块、声音预警模块和显示预警模块,分别通过灯光、声音、文字或者视频等方式通知工作人员实现预警。具体的,灯光预警模块包括至少一种颜色以上指示灯或者闪烁灯,可根据不同的预警等级发亮或者闪烁不通过颜色的灯光。声音预警模块,设置至少一种警报提示音,根据不同的预警等级,播放不同的预警提示音。所述显示预警模块,包括显示屏等,可用文字或者图像进行预警,将存在的具体风险情况通过显示屏等显示器显示出来,传递至施工人员了解具体风险事项。
可以理解的是,灯光预警模块和显示预警模块并不属于报警器30的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。报警器30可以单独通过声音预警模块来实现预警,本发明实施例并不以此为限。
进一步地,所述声音预警模块直接根据控制器20发送的信号播放相应等级的预警提示音,提示施工人员有风险。所述显示预警模块通过文字方式显示风险情况,如“车辆XXX距离100m,时速40Km/h,危险等级高”,通过文字方式让施工人员了解具体情况,一般及时作出防御。
需要理解的是,在本发明实施例中,当所述显示器不采用AR眼镜,使用其他显示器时,如显示屏,可将所述显示器集成所述手持报警器中,通过佩戴结构,如手环、臂环、腰带等穿戴方式,以便工作人员 携带。
尽管图2未示出,交通预警监控系统100还可以包括给各个部件供电的电源(比如电池),优选的,电源可以通过电源管理系统与控制器20逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
在一种可实施的方式中,所述交通预警监控系统100还包括电动移台80,所述电动移台80承载所述激光测距装置10,并用于调节所述测距模块的测距角度。
在一种可实施的方式中,所述电动移台80还包括驱动器和遥控器,所述驱动器和所述驱动器与所述控制器电连接或无线连接。具体地,根据显示器52的显示图像,通过所述遥控器发送信号至所述控制器20控制驱动器驱动所述电动移台移动以调节所述激光测距装置10的角度。
在一种可实施的方式中,所述交通预警监控系统还包括陀螺仪,所述陀螺仪连接所述控制器,用于在风扰等外界振动下,检测所述激光测距装置10的振动状况,并通过所述控制器控制所述电动移台自动调节,以保持所述激光测距装置10姿态的稳定及监测范围的稳定,补偿风扰等振动的影响。
在一种实施方式中,所述交通预警监控系统100还包括补光灯60,如红外LED补光灯60等,所述补光灯60电连接所述控制器20。在光线不足时,所述控制器20开启红外LED补光灯60,以增强视频图像画质,确保图像分析仪40能够准确识别物体。
在一种实施方式中,所述摄像头51设有红外灯,具有红外夜视功能,在夜晚施工时,即使无灯光或光线较弱,也能形成清晰的画面, 确保图像分析仪40能够准确识别物体。
本申请提供的交通预警系统100通过激光测距与图像识别协同工作,图像识别范围角度提高检测角度,以弥补激光器的识别盲区,光路和电路双信息源传输,任何一路触发预警都会发出警报,增加系统冗余度。并通过电动移台及其驱动器、陀螺仪等自动调整监控角度,保证在各种天气和路况下,对路况安全评估的准确性。
如图3所示,在另一个实施例中,图3是本申请实现所提供的交通预警方法的系统的具体结构示意图,图3所示交通预警监控系统100包括:报警器31、手持报警器32、MCU控制器20、激光测距装置10、摄像头51、AR眼镜52和图像分析仪40。其中,所述报警器30、激光测距装置10、摄像头51、图像分析仪40可通过无线方式或者电连接方式连接MCU控制器20。
具体的,所述激光测距装置10用于探测监控车道移动物体的移动数据,所述摄像头51和所述激光测距装置10中的一个测距模块连接,从所述激光测距模块的同轴光路获取监控范围内实时图像;所述MCU控制器20接收所述摄像头51获取的实时图像并传输至所述图像分析仪40;所述图像分析仪40根据获取的实时图像对所述监控范围的移动物体进行风险分析,并反馈风险信号至所述MCU控制器20,所述MCU控制器20根据所述图像分析仪40反馈的风险信号触发所述报警器30警报预警,并通过AR眼镜52显示监控实况。
在一种实施方式中,所述图像分析仪40包括触摸屏、显示屏等作为其显示模块,用于显示所述摄像头51所获取的图像画面。可以理解的,可根据该图像画面在施工前调整所述激光监测装置10的探测角度, 调节监测范围。
在一种实施方式中,所述图像分析仪40还包括视频处理芯片等,视频处理芯片作为其分析模块的主要元件,用于分析所述摄像头51获取的图像,计算监控范围内的移动物体的移动速度,根据预设阈值评估该移动物体可能造成危险的风险等级,并反馈风险信号至所述MCU控制器20,以控制报警器30发出相应等级的警报。
需要理解的是,所述图像分析仪40可集成在所述MCU控制器20中,也可以独立设置。优选的,所述图像分析仪40独立设置,一方面,其提高数据处理速度以及分析精确度,及时分析监控路面存在的风险,进一步提高可靠性。另一方面,假若所述图像分析仪40在使用过程中损坏时,不影响所述MCU控制器20的使用,所述交通预警监控系统100仍然继续监测。
进一步的,所述分析模块包括车道识别子模块和物体识别子模块,所述车道识别子模块用于识别所述监控范围内的车道,所述物体识别子模块,用于识别所述监控范围内的车辆。视频处理芯片通过智能识别算法,首先识别检测车道和邻近车道,确认车道之后,检测车辆所在的车道和距离,当车辆进入到施工监控车道后,根据车辆距离,频处理芯片发送不同等级的报警信号给所述MCU控制器20,然后MCU控制器20按报警优先等级策略,发送信号给所述报警器30发出警报。
需要说明的是,所述图像分析仪40具有姿态感知功能,进一步提高所述交通预警监控系统100的可靠性。所述分析模块可根据实时图像分析跨越相邻车道边界进入监控车道的车辆或者其他移动物体,计 算其与施工区域的距离与移动速度,分析其对施工区域造成的风险等级;或者监控到预警范围内移出监控车道的车辆,解除警报。
在本实施例中,所述激光测距装置10和所述图像分析仪40协同工作,通过所述图像分析仪40,所述交通预警监控系统识别范围角度比单纯使用激光测距装置10监测角度更大,其能够弥补激光器的识别盲区,光路和电路双信息源传输,任何一路触发预警都会发出警报,增加装置冗余度,提高对入侵车辆识别的准确性。
AR眼镜52无线连接图像分析仪40,图像分析仪40通过无线传输处理过的实时路况图像到AR眼镜52,AR眼镜52可显示当前路况安全指数、车辆距离和速度,在警报情况下,可通过显示图像和AR眼镜自带音频对使用人员进行预警和危险信息显示,使用人员可快速查看实时图像,能够对危险有更加具体的判断,能够有效提高避让的效率。在无预警情况下,画面消失不影响使用人员的正常工作。也可通过AR眼镜的控制按钮对激光装置的电机移台进行人工远程调整位置和角度,无需站在设备旁边,并通过AR眼镜显示的实时图像进行观察,保证使用人员在操作时的安全。
在一种实施方式中,所述图像分析仪40还可以包括存储模块,将工作时的视频数据压缩编码,存储工程实施时的交通监控实时图像,作为施工过程中监控车道的风险记录,可在一些情况作为证据或者其他记录使用。
在一种实施方式中,所述交通预警监控系统100还包括电动移台80,所述电动移台80承载所述激光测距装置10,通过控制所述电动移 台80调节所述激光测距装置10的方向及位置,进而调整激光出射角。
在一种实施方式中,所述电动移台80可以进一步包括驱动器70,所述驱动器70连接所述MCU控制器20;所述图像分析仪40包括角度调节模块44,用于监控车道范围,分析监控位置与监控车道是否对应,并反馈信号至所述MCU控制器20控制所述驱动器70驱动所述电动移台80移动以调整所述激光测距装置10的监控范围。
可以理解的是,本实施例可通过显示屏等观察所述激光测距装置10监测范围是否对应监测车道,并在通过所述角度调节模块44控制所述驱动器70自动调整所述电动移台80的方向及位置,从而调整激光的出射角度。
所述图像分析仪40通过车道识别,分析激光测距装置10监控范围是否覆盖监控车道,对激光测距范围进行评估,激光测距模块位于电动移台之上,通过视频分析和电动移台控制,可以准确控制激光的测距范围,并控制电动移台调整激光测距模块角度,使激光测距监控范围覆盖整个监控车道,保证整个系统在风扰等振动的影响下对路况监控的稳定性。同时如果激光测距模块处于电动移台可调节范围之外,例如设备在倾倒等极端情况下,无法通过控制电动移台使激光测距模块回到正常工作位置,那么视频分析模块将发出警报,提醒使用人员注意设备的不正常状态,并人工解除设备的异常。
在一种实施方式中,所述交通预警监控系统100还包括补光灯60,如红外LED补光灯60等,所述补光灯60电连接所述MCU控制器20。在光线不足时,所述控制器20开启红外LED补光灯60,以增强视频图 像画质,确保图像分析仪40能够准确识别物体。
在一种实施方式中,所述摄像头51设有红外灯,具有红外夜视功能,在夜晚施工时,即使无灯光或光线较弱,也能形成清晰的画面,确保图像分析仪40能够准确识别物体。
在一种实施方式中,所述交通预警监控系统100还包括陀螺仪90,所述陀螺仪90连接所述MCU控制器20。在风扰等振动下,所述陀螺仪90会检测整个激光测距装置10的振动状况,通过MCU控制器20控制电动移台80,保持激光测距装置10姿态的稳定,同时图像分析仪40通过识别车道,分析激光出射方向,判断激光是否瞄准监控车道,对激光瞄准进行评估,并控制电动移台80调整激光测距模块角度,保证装置补偿风扰等振动的影响。
在又一实施例中,本申请实施例提供交通预警监控系统100应用于公路维修场景中,本申请实施例提供交通预警监控系统100包括支架、多音节防水报警器32、手持报警器31、激光测距装置10、摄像头51、图像分析仪40和控制器20,所述手持报警器31独立于所述交通预警监控系统100,由施工人员携带配置,其与所述控制器20无线连接。所述多音节防水报警器32、激光测距装置10、摄像头51和控制器20承载在所述支架上,多音节防水报警器32和激光测距装置10通过有线或者无线的方式与所述控制器20连接。
所述激光测距装置10包括具有同轴光路的两组测距模块,两组测距模块夹角为1°,监测车道宽度大于一个车道,但小于1.5车道,直 线预警区域为200米,即所述激光测距装置10直线辐射范围为200米。所述摄像头51连接其中一组测距模块,所述图像分析仪40无线或者电连接所述控制器20,其显示所述摄像头51捕获的画面,并对所述画面内移动物体进行识别,如行人、动物及车辆等,并分析移动物体与施工地点的距离和行驶速度。当所述移动物体在预警区域内的移动速度超过20km/h或者其他预设阈值时,根据移动物体的距离发出不同等级的预警信号。如图4所示,可划分多个不同等级的预警区域,对应每个预警区域和预警等级,多音节防水报警器32、手持报警器31的预警方式不同。如在200m以内为3级警报,150m以内为2级警报,100m以内为1级警报。
需要理解的是,所述激光测距装置10和包括摄像头51作为交通预警监控系统中检测预警区域移动物体的传感器,需要每个所述激光测距模块高频率地测量移动物体的距离,尤其是车辆,并将测量出的车辆距离数据发送给所述控制器20,控制器20通过大量车辆距离数据计算出各个模块检测的车辆速度和距离。通过对监控的高速交通干道上的车辆进行激光测距和图像识别检测,当检测并预判到危险时,可以通过多音节防水报警器32和无线报警单元发出声光警报,提醒施工人员注意避让。
需要说明的是,所述激光测距装置10和摄像头51可以分别独立监测,也可以共同监测。但所述激光测距装置10测距为点状监测,不能解决邻近车道的车辆入侵,也无法适应弯道情况下的车辆监控,所述控制器20的数据处理能力一般只能应付简单的计算,监测结果较粗 略。而所述图像分析仪40具有高级的计算处理能力,通过对图像进行分析,除判断监控车道的移动物体的风险,还可判断相邻车道进入监控车道的车辆或者其他移动物体进入预警区域的风险,风险判断精确度更高,可靠性更强。
在一种实施方式中,所述支架上还设有电动移台80及其驱动器70,所述电动移台80承载所述激光测距装置10,本申请可通过机械控制所述电动移台80调节,也可通过与控制器20连接的驱动器70智能调节所述激光测距装置10的方向及位置,以调整激光出射角。如在所述图像分析仪40监控分析到监控范围与监控车道范围不对应时,通过其内的角度调节模块44发送信号至所述控制器20控制所述驱动器70驱动所述电动移台80来调整所述激光测距装置10的监控范围。
进一步地,所述指甲上还设有陀螺仪90,所述陀螺仪90连接所述控制器20。在风扰等振动下,所述陀螺仪90会检测整个激光测距装置10的振动状况,通过控制器20控制电动移台80,保持激光测距装置10姿态的稳定,同时图像分析仪40通过识别车道,分析激光出射方向,判断激光是否瞄准监控车道,对激光瞄准进行评估,并控制电动移台80调整激光测距模块角度,保证装置补偿风扰等振动的影响。
以上参照附图说明了本申请的优选实施例,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (10)

  1. 一种用于交通安全路况感知评估的方法,其特征在于,包括以下步骤:
    获取激光雷达系统监测范围的监测数据,所述数据包括监控范围内的移动物体的雷达测距数据,所述监测范围覆盖监控车道及其部分相邻车道;
    根据所述雷达测距数据,计算所述移动物体在监控范围内的移动速度以及距离探测点的相距距离;
    根据所述移动速度以及所述相距距离,分析所述移动物体对探测点形成的危险度数和设置预警等级;
    当所述移动物体移动情况触发相应等级预警警报时,发出对应等级的警报预警。
  2. 根据权利要1所述的用于交通安全路况感知评估的方法,其特征在于,所述激光雷达系统具有同轴光学通道的测距模块,且各所述测距模块独立测距。
  3. 根据权利要求2所述的用于交通安全路况感知评估的方法,其特征在于,所述多个具有同轴光学通道的测距模块不完全平行设置。
  4. 根据权利要1所述的用于交通安全路况感知评估的方法,其特征在于,所述激光雷达系统的监测范围为200-300米。
  5. 根据权利要1所述的用于交通安全路况感知评估的方法,其特征在于,所述用于交通安全路况感知评估的方法,还包括:
    分析相邻车道移动物体移动到所述监控车道的态势感知。
  6. 根据权利要1所述的用于交通安全路况感知评估的方法,其特征在于,所述用于交通安全路况感知评估的方法,还包括:
    对所述移动物体进行识别分析;以及
    保存所述监测范围内的监测数据。
  7. 根据权利要1所述的用于交通安全路况感知评估的方法,其特征在于,获取的激光雷达系统监测的数据还包括监测范围的图像数据,用于显示监控实况。
  8. 根据权利要8所述的用于交通安全路况感知评估的方法,其特征在于,所述警报预警的方式包括声音提示预警、显示预警和闪烁灯预警。
  9. 如权利要求1所述的用于交通安全路况感知评估的方法,其特征在于,还包括以下步骤:
    调整所述激光雷达系统监测的探测范围。
  10. 如权利要求9所述的用于交通安全路况感知评估的方法,其特征在于,根据所述激光雷达系统的图像数据调整所述激光雷达系统的探测范围。
PCT/CN2020/075810 2020-02-14 2020-02-19 一种用于交通安全路况感知评估的方法 WO2021159549A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520593A JP2022523890A (ja) 2020-02-14 2020-02-19 交通安全及び道路状況センス評価専用の方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010093845.5 2020-02-14
CN202010093845.5A CN111681426B (zh) 2020-02-14 2020-02-14 一种用于交通安全路况感知评估的方法

Publications (1)

Publication Number Publication Date
WO2021159549A1 true WO2021159549A1 (zh) 2021-08-19

Family

ID=72451270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075810 WO2021159549A1 (zh) 2020-02-14 2020-02-19 一种用于交通安全路况感知评估的方法

Country Status (3)

Country Link
JP (1) JP2022523890A (zh)
CN (1) CN111681426B (zh)
WO (1) WO2021159549A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114155726A (zh) * 2021-12-01 2022-03-08 浙江机电职业技术学院 公路车辆故障报警巡检机器人
CN114255569A (zh) * 2021-11-09 2022-03-29 云南电网有限责任公司 一种融合5g的输电线路自然灾害智能预警方法
CN114884981A (zh) * 2022-03-23 2022-08-09 国网浙江省电力有限公司湖州供电公司 特高压廊道通道环境全景监测方法及系统
CN114973713A (zh) * 2022-05-23 2022-08-30 交通运输部科学研究院 一种用于公路改扩建工程的防误闯智能预警系统及方法
CN115063953A (zh) * 2022-05-23 2022-09-16 国网河北省电力有限公司保定供电分公司 输电线路智能防护预警方法、装置、系统以及电子设备
CN116564111A (zh) * 2023-07-10 2023-08-08 中国电建集团昆明勘测设计研究院有限公司 一种交叉口的车辆预警方法、装置、设备及存储介质
CN116824869A (zh) * 2023-08-31 2023-09-29 国汽(北京)智能网联汽车研究院有限公司 车路云一体化交通融合感知测试方法、装置、系统及介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112702571B (zh) * 2020-12-18 2022-10-25 福建汇川物联网技术科技股份有限公司 一种监控方法及装置
JP7373524B2 (ja) * 2021-06-08 2023-11-02 本田技研工業株式会社 制御装置、移動体、制御方法及びプログラム
CN113256983B (zh) * 2021-06-21 2021-10-08 陕西易合交通科技有限公司 一种基于毫米波雷达的道路防侵入预警方法和系统
CN114944046A (zh) * 2022-04-21 2022-08-26 中山市易路美道路养护科技有限公司 一种道路风险预估分析方法及防撞告警装置
CN115047390B (zh) * 2022-06-23 2024-05-24 中科微影(泰州)医疗科技有限公司 一种基于雷达测距的磁共振成像组件的磁场安全区确定装置
CN115063058B (zh) * 2022-08-19 2022-12-09 东方电子股份有限公司 一种基于模型驱动和数据驱动的综合能源态势感知系统
CN115985109B (zh) * 2022-10-17 2023-11-07 上海伯镭智能科技有限公司 一种无人驾驶矿车环境感知方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242126A (zh) * 2018-03-20 2018-07-03 四川大学 一种可主动探测和识别危险并警报的智能可穿戴设备
CN109461325A (zh) * 2018-10-29 2019-03-12 交通运输部公路科学研究所 一种公路施工区安全联控系统及方法
CN110386152A (zh) * 2019-06-17 2019-10-29 江铃汽车股份有限公司 基于l2级智能领航驾驶的人机交互显示控制方法及系统
CN209859301U (zh) * 2019-01-03 2019-12-27 常州机电职业技术学院 一种路政夜间施工车辆闯入预警系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2332320B (en) * 1997-12-13 2003-03-05 Arnold Jameson Warning system
KR100435654B1 (ko) * 2001-06-20 2004-06-12 현대자동차주식회사 자동차의 차선 이탈 방지를 위한 제어 방법
JP2009251637A (ja) * 2008-04-01 2009-10-29 Nishi Nihon Kosoku Doro Maintenance Kansai Kk 車両事故防止ロボット及び車両事故防止システム
CA2805701C (en) * 2010-07-22 2018-02-13 Renishaw Plc Laser scanning apparatus and method of use
CN203225009U (zh) * 2012-12-12 2013-10-02 北京万集科技股份有限公司 一种激光式交通情况调查系统
JP5627048B1 (ja) * 2013-05-31 2014-11-19 阪神高速技術株式会社 道路作業領域の警告システム及び警告方法
CN103914983A (zh) * 2014-04-17 2014-07-09 西安飞达电子科技有限公司 一种交通卡口管理雷达装置及实现方法
JP6250891B2 (ja) * 2015-01-26 2017-12-20 トヨタ自動車株式会社 移動体用情報出力装置
JPWO2017159382A1 (ja) * 2016-03-16 2019-01-24 ソニー株式会社 信号処理装置および信号処理方法
CN208384826U (zh) * 2018-03-27 2019-01-15 上海浦江桥隧运营管理有限公司 基于远程感应原理的交通安全报警装置
CN208520990U (zh) * 2018-07-13 2019-02-19 深圳市速腾聚创科技有限公司 激光雷达
CN109410646A (zh) * 2018-12-22 2019-03-01 江苏宁沪高速公路股份有限公司 一种智能防撞预警系统
CN109559560A (zh) * 2019-01-16 2019-04-02 淮阴师范学院 道路养护作业自主式防闯入预警系统
KR102062774B1 (ko) * 2019-08-27 2020-02-11 장경식 도플러 레이더 센서를 이용한 입출차 경고시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242126A (zh) * 2018-03-20 2018-07-03 四川大学 一种可主动探测和识别危险并警报的智能可穿戴设备
CN109461325A (zh) * 2018-10-29 2019-03-12 交通运输部公路科学研究所 一种公路施工区安全联控系统及方法
CN209859301U (zh) * 2019-01-03 2019-12-27 常州机电职业技术学院 一种路政夜间施工车辆闯入预警系统
CN110386152A (zh) * 2019-06-17 2019-10-29 江铃汽车股份有限公司 基于l2级智能领航驾驶的人机交互显示控制方法及系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114255569A (zh) * 2021-11-09 2022-03-29 云南电网有限责任公司 一种融合5g的输电线路自然灾害智能预警方法
CN114155726A (zh) * 2021-12-01 2022-03-08 浙江机电职业技术学院 公路车辆故障报警巡检机器人
CN114155726B (zh) * 2021-12-01 2023-03-03 浙江机电职业技术学院 公路车辆故障报警巡检机器人
CN114884981A (zh) * 2022-03-23 2022-08-09 国网浙江省电力有限公司湖州供电公司 特高压廊道通道环境全景监测方法及系统
CN114973713A (zh) * 2022-05-23 2022-08-30 交通运输部科学研究院 一种用于公路改扩建工程的防误闯智能预警系统及方法
CN115063953A (zh) * 2022-05-23 2022-09-16 国网河北省电力有限公司保定供电分公司 输电线路智能防护预警方法、装置、系统以及电子设备
CN114973713B (zh) * 2022-05-23 2023-11-14 交通运输部科学研究院 一种用于公路改扩建工程的防误闯智能预警系统及方法
CN116564111A (zh) * 2023-07-10 2023-08-08 中国电建集团昆明勘测设计研究院有限公司 一种交叉口的车辆预警方法、装置、设备及存储介质
CN116564111B (zh) * 2023-07-10 2023-09-29 中国电建集团昆明勘测设计研究院有限公司 一种交叉口的车辆预警方法、装置、设备及存储介质
CN116824869A (zh) * 2023-08-31 2023-09-29 国汽(北京)智能网联汽车研究院有限公司 车路云一体化交通融合感知测试方法、装置、系统及介质
CN116824869B (zh) * 2023-08-31 2023-11-24 国汽(北京)智能网联汽车研究院有限公司 车路云一体化交通融合感知测试方法、装置、系统及介质

Also Published As

Publication number Publication date
CN111681426A (zh) 2020-09-18
CN111681426B (zh) 2021-06-01
JP2022523890A (ja) 2022-04-27

Similar Documents

Publication Publication Date Title
WO2021159549A1 (zh) 一种用于交通安全路况感知评估的方法
WO2021159548A1 (zh) 交通安全预警监控报警装置
CA2904456C (en) Advanced warning and risk evasion system and method
CN109461325B (zh) 一种公路施工区安全联控系统及方法
KR101030763B1 (ko) 이미지 획득 유닛, 방법 및 연관된 제어 유닛
CN110133573A (zh) 一种基于多元传感器信息融合的自主低空无人机防御系统
US9214084B2 (en) Smart traffic sign system and method
US20070291985A1 (en) Intelligent railyard monitoring system
CN108297058A (zh) 智能安防机器人及其自动巡检方法
CN103606236B (zh) 一种基于分布式光纤入侵报警单元的实时安全监测系统
US11170221B2 (en) Object search system, object search device, and object search method
CN104599443A (zh) 一种基于信息融合的驾驶行为预警车载终端及其预警方法
KR102033858B1 (ko) 교통사고 예보 시스템
CN102592457A (zh) 基于物联网技术的复合型区间测速系统及方法
CN111717243B (zh) 一种轨道交通监控系统及方法
KR102262384B1 (ko) 송배전 설비 감시용 드론 운용 시스템 및 운용 방법
CN107808534A (zh) 一种隧道安全防护装置以及系统
CN111477011A (zh) 一种用于道路路口预警的检测装置及检测方法
KR102008403B1 (ko) 중앙분리대 및 가드레일에 설치된 교통정보 감지기를 이용한 안전운전 지원 시스템
CN211087477U (zh) 交通安全预警监控报警装置
CN207458346U (zh) 一种隧道安全防护装置以及系统
KR102439487B1 (ko) 드론을 이용한 송전선로설비 상태점검 시스템 제공방법
CN114582085A (zh) 预警设备
CN115100802A (zh) 一种双鉴围界探测系统及入侵报警方法
CN211181058U (zh) 一种智能视频记录分析车辆识别装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021520593

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919330

Country of ref document: EP

Kind code of ref document: A1