WO2021159343A1 - 一种测量方法及装置 - Google Patents

一种测量方法及装置 Download PDF

Info

Publication number
WO2021159343A1
WO2021159343A1 PCT/CN2020/074939 CN2020074939W WO2021159343A1 WO 2021159343 A1 WO2021159343 A1 WO 2021159343A1 CN 2020074939 W CN2020074939 W CN 2020074939W WO 2021159343 A1 WO2021159343 A1 WO 2021159343A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
serving cell
terminal device
cell
information
Prior art date
Application number
PCT/CN2020/074939
Other languages
English (en)
French (fr)
Inventor
谢宗慧
陈磊
王宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20918217.9A priority Critical patent/EP4096271A4/en
Priority to PCT/CN2020/074939 priority patent/WO2021159343A1/zh
Priority to CN202080094542.3A priority patent/CN115004749A/zh
Publication of WO2021159343A1 publication Critical patent/WO2021159343A1/zh
Priority to US17/884,314 priority patent/US20220386161A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a measurement method and device.
  • Mobility management is an important part of wireless mobile communication. It refers to the general term for related operations involved in order to ensure that the communication link between the network and the terminal device is not interrupted due to the movement of the terminal device.
  • mobility management can be roughly divided into two parts: radio resource control (radio resource control, RRC) idle state (RRC_idle state) mobility management and RRC connected state (RRC_connected state) mobility management.
  • RRC idle state radio resource control
  • RRC_idle state radio resource control
  • RRC_connected state RRC connected state
  • mobility management mainly refers to the process of cell selection/reselection
  • RRC connected state mobility management mainly refers to the process of cell handover (handover). Whether it is cell selection/reselection or cell handover, it is all based on the measurement results of the terminal equipment. Therefore, the measurement of terminal equipment is the basis of mobility management.
  • the measurement of terminal equipment includes measuring the serving cell of the terminal equipment, and also measuring the neighboring cells (also referred to as neighboring cells) of the serving cell, for example, measuring neighboring cells belonging to the same communication system as the serving cell, or measuring the neighboring cells of the same communication system as the serving cell, or The cell belongs to the neighboring cell of the different system.
  • the measurement process of the terminal device on the serving cell is always performed, and the measurement on the neighboring cell is started only when certain conditions are met.
  • a neighboring cell measurement relaxation condition is also set for the neighboring cell measurement. If the neighboring cell measurement relaxation condition is met, the terminal device may not perform the neighboring cell measurement. In these ways, the power consumption of the terminal equipment due to measurement can be reduced.
  • the probability of performing cell reselection or cell handover is low.
  • the measurement process of the terminal equipment on the serving cell is always in progress, and such terminal equipment continues to measure the serving cell, and the utilization rate of the measurement results is not high. It can be regarded as unnecessary measurement process, which also leads to the function of the terminal equipment. Higher consumption.
  • the embodiments of the present application provide a measurement method and device, which are used to reduce the power consumption of terminal equipment.
  • a first measurement method includes: determining that a first measurement report condition is satisfied; sending first information to a network device; receiving second information from the network device, where the second information is used to indicate Enter the measurement relaxed state of the serving cell.
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the first communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the first communication device is a terminal device.
  • the terminal device can determine whether the first measurement report condition is satisfied. If the first measurement report condition is satisfied, it indicates that the terminal device is less likely to perform cell switching or reselection.
  • the terminal device may be in the serving cell. The center of the city, or the mobility is low, or the range of activities is small. For such terminal equipment, if frequent measurements are performed on the serving cell, it is equivalent to an unnecessary measurement process and consumes a lot of power. Therefore, for such a terminal device, the network device can instruct it to enter the measurement relaxed state of the serving cell, reducing the measurement process on the serving cell, so as to achieve the purpose of power saving.
  • the first measurement report condition includes the signal quality of the serving cell (or the measurement result obtained by measuring the serving cell, or the signal received by the terminal device on the serving cell). Intensity) meets the first threshold within the first time period.
  • the measurement result of the serving cell satisfies the first threshold, which may include that the measurement result obtained by the terminal device measuring the serving cell in the fourth time period (or, the measurement result may also be referred to as the measurement value) meets the first threshold .
  • the measurement result obtained by the terminal device measuring the serving cell in the fourth time period satisfies the first threshold, which may mean that the N measurement results obtained by the terminal device measuring the serving cell in the fourth time period satisfy the first threshold.
  • the N measurement results may be all or part of the measurement results obtained by the terminal device within the fourth time period.
  • the signal quality of the serving cell meets the first threshold, which may include that the N measurement results (or, referred to as measurement values) obtained by the terminal device measuring the serving cell meet the first Threshold.
  • the N measurement results at this time can be understood as a set of N measurement results. Wherein, N can be an integer greater than or equal to 1.
  • the N measurement results may be N measurement results corresponding to the N consecutive measurements, or the N measurements corresponding to the N measurement results may not be performed continuously. If N is greater than 1, for example, the measurement result obtained by the terminal device measuring the serving cell in the fourth time period satisfies the first threshold may include implementation manner 1.
  • Implementation mode 1 is, for example, among the N measurement values, the difference (or variance, etc.) between each adjacent K measurement values is less than or equal to the first sub-threshold; or, implementation mode 1 is, for example, every adjacent The difference (or variance, etc.) between the K measurement values and the sum (or, the difference) of the first hysteresis parameter is less than or equal to the first sub-threshold; or, the implementation mode 1 is, for example, among the N measurement values The difference (or variance, etc.) between any K measurement values is less than or equal to the first sub-threshold; or, implementation mode 1 is, for example, the difference between any K measurement values (or The sum (or, the difference) of the variance and the first hysteresis parameter is less than or equal to the first sub-threshold.
  • the first threshold may be a first sub-threshold, and meeting the first threshold means that it is less than or equal to the first threshold.
  • K is an integer greater than or equal to 2
  • K is less than or equal to N.
  • the measurement result obtained by the terminal device measuring the serving cell within the fourth period of time satisfies the first threshold may include implementation manner 2.
  • Implementation manner 2 is, for example, N measurement values and the first reference value (or, also It can be called the second hysteresis parameter) that satisfies the first threshold. In this case, N can be equal to 1 or greater than 1.
  • implementation 2 may be specifically implemented as: the difference between each of the N measured values and the first reference value (or the variance of all the differences, etc.) is greater than or equal to the second sub-threshold; or, N The difference between each of the two measurement values and the first reference value (or the variance of all the differences, etc.) is greater than or equal to the second sub-threshold.
  • the first threshold may be a second sub-threshold, and meeting the first threshold means that it is greater than or equal to the first threshold.
  • the measurement result obtained by the terminal device measuring the serving cell within the fourth time period satisfying the first threshold may include implementation manner 1, or implementation manner 2, or implementation manner 1 and implementation manner 2.
  • the method further includes:
  • the terminal device After the terminal device enters the measurement relaxed state of the serving cell, it can also determine whether the second measurement report condition is satisfied. If the second measurement report condition is satisfied, it indicates that the terminal device is more likely to perform cell switching or reselection. For example, the terminal device may Being at the edge of the serving cell, or having high mobility, or having a large range of activity, for such a terminal device, if the measurement of the serving cell is too sparse, it may cause the terminal device to miss the opportunity of cell reselection or cell handover. Therefore, for such a terminal device, the network device can instruct it to enter the normal measurement state of the serving cell and increase the measurement process for the serving cell to achieve the purpose of cell reselection or cell handover in time.
  • the second measurement report condition includes the signal quality of the serving cell (or the measurement result obtained by measuring the serving cell, or the signal received by the terminal device on the serving cell). Intensity) meets the second threshold within the second time period.
  • the measurement result of the serving cell that satisfies the second threshold may include the measurement result obtained by the terminal device measuring the serving cell in the fifth time period (or, if the measurement result is RSRP, RSRQ, or SINR, etc., it may also be The measurement result is referred to as a measurement value) that satisfies the second threshold.
  • the measurement result obtained by the terminal device measuring the serving cell in the fifth time period satisfies the second threshold, which may mean that the N measurement results obtained by the terminal device measuring the serving cell in the fifth time period satisfy the first threshold.
  • the N measurement results may be all the measurement results or part of the measurement results obtained by the terminal device within the fifth time period.
  • the signal quality of the serving cell meets the second threshold, which may include that the N measurement results (or, referred to as measurement values) obtained by the terminal device measuring the serving cell meet the second Threshold.
  • the N measurement results at this time can be understood as a set of N measurement results. Wherein, N can be an integer greater than or equal to 1.
  • the N measurement results may be N measurement results corresponding to the N consecutive measurements, or the N measurements corresponding to the N measurement results may not be performed continuously. If N is greater than 1, for example, the measurement result obtained by the terminal device measuring the serving cell in the fifth time period satisfies the second threshold may include implementation manner 3.
  • Implementation mode 3 is, for example, in the N measurement values, the difference (or variance, etc.) between each adjacent K measurement values is greater than or equal to the third sub-threshold; or, implementation mode 3 is, for example, every adjacent The difference (or variance, etc.) between the K measurement values and the sum (or, the difference) of the third hysteresis parameter is greater than or equal to the third sub-threshold; or, the implementation mode 3 is, for example, among the N measurement values The difference (or variance, etc.) between any K measurement values is greater than or equal to the third sub-threshold; or, the implementation mode 3 is, for example, the difference between any K measurement values in the N measurement values (or The sum (or, the difference) of the variance and the third hysteresis parameter is greater than or equal to the third sub-threshold.
  • the second threshold is a third sub-threshold, and meeting the second threshold means that it is greater than or equal to the second threshold.
  • K is an integer greater than or equal to 2
  • K is less than or equal to N.
  • the measurement result obtained by the terminal device measuring the serving cell within the fifth time period may satisfy the second threshold may include implementation manner 4.
  • Implementation manner 4 is, for example, N measurement values and a second reference value (or, also It can be called the fourth hysteresis parameter) to meet the second threshold. At this time, N can be equal to 1 or greater than 1.
  • Implementation mode 4 can be specifically implemented as follows: the difference between each of the N measurement values and the second reference value (or the variance of all the differences, etc.) is less than or equal to the fourth sub-threshold; or, N measurements The difference between each of the measured values and the second reference value (or the variance of all the differences, etc.) is less than or equal to the fourth sub-threshold.
  • the second threshold is the fourth sub-threshold, and meeting the second threshold means that it is less than or equal to the second threshold.
  • the measurement result obtained by the terminal device measuring the serving cell within the fifth time period that satisfies the second threshold may include implementation manner 3, or implementation manner 4, or implementation manner 3 and implementation manner 4.
  • the method further includes:
  • the terminal device After the terminal device enters the measurement relaxed state of the serving cell, it can determine whether to exit the measurement relaxed state of the serving cell by judging whether the second measurement report condition is satisfied, or the terminal device may not need to judge the second measurement report condition, but the terminal device After staying in the measuring relaxed state of the serving cell for the third period of time, in order to reduce the probability of missing the cell reselection opportunity, the normal measurement state of the serving cell can be re-entered to measure the serving cell normally. In this way, the terminal device can resume normal measurement of the serving cell without the instruction of the network device, which helps to save signaling overhead.
  • the second information is also used to indicate the third duration.
  • the third duration may be configured by the network device to the terminal device.
  • the network device may indicate the third duration through the third information; or, the third duration may be determined by the terminal device itself; or, the third duration may also be stipulated by agreement.
  • a second measurement method includes: receiving first information from a terminal device; and sending second information to the terminal device, where the second information is used to indicate to enter a measurement relaxed state of a serving cell.
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the second communication device is a network device, or a chip set in the network device for realizing the function of the network device, or other component used for realizing the function of the network device.
  • the second communication device is a network device.
  • the method further includes:
  • the second information is further used to indicate a third duration, where the third duration is used for the terminal device to enter the serving cell for normal measurement after the third duration has elapsed. state.
  • a third measurement method includes: determining that it is in a measurement relaxed state of a serving cell; determining that the neighboring cell measurement relaxed condition is satisfied according to a first configuration parameter, wherein the first configuration parameter is different from the second configuration parameter
  • the second configuration parameter is used to determine the neighbor cell measurement relaxation condition when the serving cell is in the normal measurement state.
  • the method may be executed by a third communication device, and the third communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the third communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the third communication device is a terminal device.
  • the measuring relaxed state of the serving cell is set.
  • the terminal device measures the serving cell less frequently, or the number of measurements on the serving cell is less, which can save terminal equipment. Power consumption.
  • the terminal device when the terminal device is in the measurement relaxed state of the serving cell, it may also enter the neighboring cell measurement relaxed state, and the frequency at which the terminal device measures the neighboring cell may also be reduced accordingly.
  • the terminal device may continue to determine whether to stay in the neighboring cell measurement relaxed state. If the neighboring cell measurement relaxation condition is not met, the terminal device will exit the neighboring cell measurement relaxed state and perform normal operations on the neighboring cell. Measurement, and if the neighboring cell measurement relaxation condition is met, the terminal device will continue to stay in the neighboring cell measurement relaxation state. If the terminal device cannot exit the neighboring cell measurement relaxed state, the terminal device cannot measure the neighboring cell normally, which may cause the terminal device to miss the opportunity to perform cell reselection.
  • two sets of parameters can be configured for the terminal device, namely the first configuration parameter and the second configuration parameter.
  • the first configuration parameter is used for the terminal device to determine whether the neighbor cell measurement relaxation is satisfied when the serving cell measurement relaxation state is satisfied.
  • the second configuration parameter is used for the terminal device to determine whether the neighbor cell measurement relaxation condition is satisfied under the normal measurement state of the serving cell.
  • the terminal device can be in the serving cell measurement relaxation state and the neighbor cell measurement relaxation state , As far as possible to easily exit the neighboring cell measurement relaxed state, to ensure the neighboring cell measurement, so that the terminal equipment can reselect the appropriate cell in time.
  • using the first configuration parameter to determine whether the neighbor cell measurement relaxation condition is satisfied includes: determining that the neighbor cell measurement relaxation condition is satisfied when the following conditions are met:
  • the relaxed monitoring standard is met within the first time period
  • the first configuration parameter includes information of the first duration.
  • the relaxation monitoring standard is met within the first time period, which can be understood as all measurement results obtained during the first time period satisfying the relaxation monitoring standard. It is less than the fourth time period since the last time the cell reselection measurement was performed. It can be understood that the time since the last measurement performed for the cell reselection is less than the fourth time period.
  • the fourth duration is, for example, 24 hours, or other durations may also be used.
  • the first configuration parameter includes a first threshold, and the first threshold, a reference value, and the current quality of the serving cell are used to determine that the relaxed listening standard is satisfied.
  • the difference between the current quality of the serving cell and the reference value is less than the first threshold, it indicates that the relaxed listening standard is met; otherwise, it indicates that the relaxed listening standard is not met.
  • the method further includes:
  • the corresponding relationship between the measurement result and the measurement period can be established in advance, for example, the corresponding relationship between RSRP and the measurement period, or the corresponding relationship between RSRQ and the measurement period, or the relationship between the SINR and the measurement period can be established in advance.
  • the corresponding relationship can be established by the network device, and the network device can send the corresponding relationship to the terminal device; or, the corresponding relationship can be established by the terminal device itself, and the terminal device can also send the corresponding relationship to the network after the corresponding relationship is established.
  • Device; or, the corresponding relationship can also be pre-configured in the terminal device, or stipulated by agreement.
  • the terminal device After the terminal device determines the corresponding measurement period according to the corresponding relationship between the measurement result and the measurement period and the obtained measurement result, the terminal device can measure the serving cell of the terminal device according to the measurement period.
  • the measurement period is determined according to the measurement result of the terminal device, which is more in line with the current state of the terminal device, so that the terminal device's measurement of the serving cell can meet the needs of the terminal device, and the purpose of energy saving can be achieved as much as possible.
  • the measurement result is used to indicate the received signal strength of the serving cell.
  • the received signal strength of the serving cell is, for example, the received signal strength of the terminal device to the serving cell.
  • the larger the value of the measurement result the longer the length of the corresponding measurement period, or the smaller the value of the measurement result, the shorter the length of the corresponding measurement period.
  • the measurement result can be used to characterize the signal quality of the serving cell, for example, the better the signal quality of the serving cell, the greater the value of the measurement result, or the worse the signal quality of the serving cell, the greater the value of the measurement result. The smaller. Therefore, it can also be considered that the better the signal quality of the serving cell, the longer the length of the corresponding measurement period, or the worse the signal quality of the serving cell, the shorter the length of the corresponding measurement period.
  • the measurement result can be used to characterize the received signal strength of the serving cell. For example, the better the received signal strength of the serving cell is, the greater the value of the measurement result will be, or the worse the received signal strength of the serving cell is, the measurement result will be The value of will be smaller. Therefore, it can also be considered that the better the received signal strength of the serving cell, the longer the length of the corresponding measurement period, or the worse the received signal strength of the serving cell, the shorter the length of the corresponding measurement period.
  • a fourth measurement method includes: determining a first configuration parameter and a second configuration parameter, wherein the first configuration parameter is used to determine a neighboring cell measurement relaxation condition when the serving cell is in a measurement relaxation state
  • the second configuration parameter is used to determine the neighboring cell measurement relaxation condition when the serving cell is in the normal measurement state, and the first configuration parameter is different from the second configuration parameter; and the first configuration parameter is sent to the terminal device And the second configuration parameter.
  • the method may be executed by a fourth communication device, and the fourth communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the fourth communication device is a network device, or a chip set in the network device for realizing the function of the network device, or other component used for realizing the function of the network device.
  • the fourth communication device is a network device.
  • a fifth communication method includes: measuring a serving cell and determining a measurement result; determining a measurement period corresponding to the measurement result; and measuring the serving cell according to the measurement period.
  • the method may be executed by a fifth communication device, and the fifth communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the fifth communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the fifth communication device is a terminal device.
  • the corresponding relationship between the measurement result and the measurement period is set, and the terminal device can determine the corresponding measurement period according to the measurement result, so as to measure the serving cell according to the determined measurement period.
  • the measurement result is RSRP.
  • the length of the measurement period can be gradually increased, so that the terminal equipment can measure the serving cell more sparsely, saving the power consumption of the terminal equipment; and the smaller the value of RSRP, it may indicate that the terminal equipment is on the edge of the serving cell.
  • the measurement period can be gradually reduced, so that the terminal equipment tends to measure the serving cell more frequently to meet the requirements of the terminal equipment. Mobility management.
  • the measurement result is used to indicate the received signal strength of the serving cell.
  • the measurement result can be used to characterize the signal quality of the serving cell, for example, the better the signal quality of the serving cell, the greater the value of the measurement result, or the worse the signal quality of the serving cell, the greater the value of the measurement result. The smaller. Therefore, it can also be considered that the better the signal quality of the serving cell, the longer the length of the corresponding measurement period, or the worse the signal quality of the serving cell, the shorter the length of the corresponding measurement period.
  • the measurement result can be used to characterize the received signal strength of the serving cell.
  • a communication device is provided, for example, the communication device is the first communication device as described above.
  • the first communication device is configured to execute the method in the foregoing first aspect or any possible implementation manner.
  • the first communication device may include a module for executing the method in the first aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the first communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the first communication device is a terminal device, and the processing module and the transceiver module are used as examples for the introduction. in,
  • the processing module is configured to determine that the first measurement report condition is satisfied
  • the transceiver module is configured to send first information to a network device
  • the transceiver module is further configured to receive second information from the network device, where the second information is used to instruct to enter the measurement relaxed state of the serving cell.
  • the first measurement report condition includes that the signal quality of the serving cell satisfies a first threshold within a first time period.
  • the processing module is further configured to determine that the second measurement report condition is satisfied
  • the transceiver module is also used to send third information to the network device;
  • the transceiver module is further configured to receive fourth information from the network device, where the fourth information is used to indicate the normal measurement state of the serving cell.
  • the second measurement report condition includes that the signal quality of the serving cell meets a second threshold within a second time period.
  • the processing module is further configured to determine that the serving cell enters the normal measurement state after the third time period has elapsed.
  • the second information is also used to indicate the third duration.
  • a communication device is provided, for example, the communication device is the second communication device as described above.
  • the second communication device is used to execute the method in the above-mentioned second aspect or any possible implementation manner.
  • the second communication device may include a module for executing the method in the second aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the second communication device is a network device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the second communication device is continued to be a terminal device, and the processing module and the transceiver module are used as examples for the introduction.
  • the transceiver module is configured to receive first information from a terminal device
  • the transceiver module is further configured to send second information to the terminal device, where the second information is used to instruct to enter the measurement relaxed state of the serving cell.
  • the transceiver module is configured to receive first information from a terminal device
  • the processing module is configured to determine, according to the first information, that the terminal device can enter the measurement relaxed state of the serving cell;
  • the transceiver module is further configured to send second information to the terminal device, where the second information is used to instruct to enter the measurement relaxed state of the serving cell.
  • the transceiver module is further configured to:
  • the second information is further used to indicate a third duration, where the third duration is used for the terminal device to enter the serving cell for normal measurement after the third duration has elapsed. state.
  • a communication device is provided, for example, the communication device is the third communication device as described above.
  • the third communication device is used to execute the method in the third aspect or any possible implementation manner.
  • the third communication device may include a module for executing the method in the third aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the third communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the third communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be realized by a transmitter, and the receiving module may be realized by a receiver.
  • the sender and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the third communication device is continued to be a terminal device, and the processing module and the transceiver module are used as examples for the introduction. in,
  • the transceiver module is used to communicate with other communication devices
  • the processing module is used to determine that it is in a measurement relaxed state of the serving cell
  • the processing module is further configured to determine that the neighbor cell measurement relaxation condition is satisfied according to the first configuration parameter, wherein the first configuration parameter is different from the second configuration parameter, and the second configuration parameter is used for normal measurement in the serving cell. When in the state, determine the neighboring area to measure the relaxation conditions.
  • the processing module is configured to use the first configuration parameter to determine whether the neighbor cell measurement relaxation condition is satisfied in the following manner: when the following conditions are met, it is determined that the neighbor cell measurement relaxation condition is satisfied:
  • the relaxed monitoring standard is met within the first time period
  • the first configuration parameter includes information of the first duration.
  • the first configuration parameter includes a first threshold, and the first threshold, a reference value, and the current quality of the serving cell are used to determine that the relaxed listening standard is satisfied.
  • processing module is further configured to:
  • the measurement result is used to indicate the received signal strength of the serving cell.
  • a communication device is provided, for example, the communication device is the fourth communication device as described above.
  • the fourth communication device is used to execute the method in the foregoing fourth aspect or any possible implementation manner.
  • the fourth communication device may include a module for executing the method in the fourth aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or the same functional module, but can implement different functions.
  • the fourth communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the fourth communication device is a network device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the fourth communication device is a chip set in the communication device
  • the transceiver (or, the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the fourth communication device is continued to be a network device, and the processing module and the transceiver module are used as examples for the introduction. in,
  • the processing module is used to determine a first configuration parameter and a second configuration parameter, wherein the first configuration parameter is used to determine a neighboring cell measurement relaxation condition when the serving cell is in a measurement relaxation state, and the second configuration parameter is used Determining the neighboring cell measurement relaxation condition when the serving cell is in a normal measurement state, and the first configuration parameter is different from the second configuration parameter;
  • the transceiver module is configured to send the first configuration parameter and the second configuration parameter to a terminal device.
  • a communication device is provided, for example, the communication device is the fifth communication device as described above.
  • the fifth communication device is used to execute the method in the fifth aspect or any possible implementation manner.
  • the fifth communication device may include a module for executing the method in the fifth aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the fifth communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the fifth communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be realized by a transmitter, and the receiving module may be realized by a receiver.
  • the sender and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the fifth communication device is continued to be a terminal device, and the processing module and the transceiver module are used as examples for the introduction. in,
  • the transceiver module is used to communicate with other communication devices
  • the processing module is used to measure the serving cell and determine the measurement result
  • the processing module is also used to determine the measurement period corresponding to the measurement result
  • the processing module is further configured to measure the serving cell according to the measurement period.
  • the measurement result is used to indicate the received signal strength of the serving cell.
  • a communication device is provided.
  • the communication device is, for example, the first communication device as described above.
  • the communication device includes a processor and a communication interface, and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the first communication device may not include a memory, and the memory may be located outside the first communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the first communication device when the processor executes the computer instructions stored in the memory, the first communication device is caused to execute the method in the foregoing first aspect or any one of the possible implementation manners.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by a transceiver (or a transmitter and a receiver) in the communication device, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as input/output pins, etc., and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the second communication device as described above.
  • the communication device includes a processor and a communication interface, and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the second communication device may not include a memory, and the memory may be located outside the second communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the second communication device when the processor executes the computer instructions stored in the memory, the second communication device is caused to execute the method in the second aspect or any one of the possible implementation manners.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the communication interface is realized by, for example, a transceiver (or transmitter and receiver) in the communication device.
  • the transceiver is realized by the antenna, feeder, and Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the aforementioned third communication device.
  • the communication device includes a processor and a communication interface, and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the third aspect or various possible implementation manners.
  • the third communication device may not include a memory, and the memory may be located outside the third communication device.
  • the processor, the memory, and the communication interface are coupled with each other to implement the methods described in the third aspect or various possible implementation manners.
  • the third communication device when the processor executes the computer instructions stored in the memory, the third communication device is caused to execute the method in the foregoing third aspect or any one of the possible implementation manners.
  • the third communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by a transceiver (or a transmitter and a receiver) in the communication device, for example, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the fourth communication device as described above.
  • the communication device includes a processor and a communication interface, and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the fourth aspect or various possible implementation manners.
  • the fourth communication device may not include a memory, and the memory may be located outside the fourth communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the fourth aspect or various possible implementation manners.
  • the fourth communication device when the processor executes the computer instructions stored in the memory, the fourth communication device is caused to execute the method in the fourth aspect or any one of the possible implementation manners.
  • the fourth communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the communication interface is realized by, for example, a transceiver (or a transmitter and a receiver) in the communication device.
  • the transceiver is realized by the antenna, feeder, and Codec and other implementations.
  • the fourth communication device is a chip set in a communication device, the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the fifth communication device described above.
  • the communication device includes a processor and a communication interface, and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the fifth aspect or various possible implementation manners.
  • the fifth communication device may not include a memory, and the memory may be located outside the fifth communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the fifth aspect or various possible implementation manners.
  • the fifth communication device when the processor executes the computer instructions stored in the memory, the fifth communication device is caused to execute the method in the fifth aspect or any one of the possible implementation manners.
  • the fifth communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by, for example, a transceiver (or a transmitter and a receiver) in the communication device, for example, the transceiver is realized by an antenna, a feeder, and a Codec and other implementations.
  • the fifth communication device is a chip set in a communication device
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a chip in a sixteenth aspect, includes a processor and a communication interface, the processor is coupled with the communication interface, and is used to implement the above-mentioned first aspect or any one of the optional implementation manners. method.
  • the chip may further include a memory.
  • the processor may read and execute a software program stored in the memory to implement the above-mentioned first aspect or any one of the optional implementation manners. method.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the first aspect or Any of the methods provided by the alternative implementations.
  • a chip in a seventeenth aspect, includes a processor and a communication interface, and the processor is coupled to the communication interface and configured to implement the above-mentioned second aspect or any one of the optional implementation manners. method.
  • the chip may also include a memory.
  • the processor may read and execute a software program stored in the memory to implement the above-mentioned second aspect or any one of the optional implementation manners. method.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the second aspect or Any of the methods provided by the alternative implementations.
  • a chip in an eighteenth aspect, includes a processor and a communication interface, the processor is coupled with the communication interface, and is configured to implement the above-mentioned third aspect or any one of the optional implementation manners. method.
  • the chip may also include a memory.
  • the processor may read and execute a software program stored in the memory to implement the third aspect or any one of the optional implementation manners. method.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the third aspect or Any of the methods provided by the alternative implementations.
  • a chip in a nineteenth aspect, includes a processor and a communication interface, the processor is coupled with the communication interface, and is configured to implement the above-mentioned fourth aspect or any one of the optional implementation manners. method.
  • the chip may also include a memory.
  • the processor may read and execute a software program stored in the memory to implement the above-mentioned fourth aspect or any one of the optional implementation manners. method.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the fourth aspect or Any of the methods provided by the alternative implementations.
  • a chip in a twentieth aspect, includes a processor and a communication interface.
  • the processor is coupled to the communication interface and configured to implement what is provided in the fifth aspect or any of the optional implementation manners. method.
  • the chip may also include a memory.
  • the processor may read and execute a software program stored in the memory to implement the fifth aspect or any one of the optional implementation manners provided method.
  • the memory may not be included in the chip, but located outside the chip, which is equivalent to that the processor can read and execute the software program stored in the external memory to implement the fifth aspect or Any of the methods provided by the alternative implementations.
  • a first communication system including the communication device according to the sixth aspect, the communication device according to the eleventh aspect, or the communication device according to the sixteenth aspect, and including the seventh aspect
  • a second communication system including the communication device according to the eighth aspect, the communication device according to the thirteenth aspect, or the communication device according to the eighteenth aspect, and the communication device including the ninth aspect
  • a third communication system which includes the communication device according to the tenth aspect, the communication device according to the fifteenth aspect, or the communication device according to the twentieth aspect.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store computer instructions.
  • the computer instructions When the computer instructions are executed on a computer, the computer executes the first aspect or any of the above. The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the second aspect or any of the above The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the third aspect or any of the above The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the fourth aspect or any of the above The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the fifth aspect or any of the above The method described in one possible implementation.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the first aspect or any of the above The method described in one possible implementation.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the second aspect or any one of the foregoing.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the third aspect or any of the above The method described in one possible implementation.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the fourth aspect or any of the above The method described in one possible implementation.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, when the computer instructions run on a computer, the computer executes the fifth aspect or any of the above The method described in one possible implementation.
  • the network device can instruct it to enter the measurement relaxed state of the serving cell, reducing the measurement process on the serving cell, so as to achieve the purpose of power saving.
  • Figure 1 is a flow chart of the measurement process of a terminal device in an RRC connected state
  • Figure 2 is a flowchart of cell reselection performed by a terminal device in an RRC idle state
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the application.
  • FIG. 4 is a flowchart of the first measurement method provided by an embodiment of the application.
  • FIG. 5 is a flowchart of a second measurement method provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a corresponding relationship between RSRP and measurement period in an embodiment of this application.
  • FIG. 7 is a flowchart of a third measurement method provided by an embodiment of the application.
  • FIG. 8 is a schematic block diagram of a first terminal device provided by an embodiment of this application.
  • FIG. 9 is a schematic block diagram of a first network device provided by an embodiment of this application.
  • FIG. 10 is a schematic block diagram of a second type of terminal device provided by an embodiment of this application.
  • FIG. 11 is a schematic block diagram of a second type of network device provided by an embodiment of this application.
  • FIG. 12 is a schematic block diagram of a third terminal device provided by an embodiment of this application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 15 is still another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 16 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity Sexual equipment.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, light UE, subscriber unit ( subscriber unit), subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), User terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be implemented without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • the device for realizing the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal device as an example to describe the technical solutions provided in the embodiments of the present application.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • V2X vehicle-to-everything
  • the base station can be used to convert the received air frame and IP packet to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution-advanced (LTE-A) system, Or it can also include the next generation node B (gNB) in the new radio (NR) system (also referred to as the NR system) in the 5th generation (5G) mobile communication technology (the 5th generation, 5G), or it can also Including a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system, which is not limited in the embodiment of the present application.
  • LTE long term evolution
  • NodeB or eNB or e-NodeB, evolutional NodeB evolutional NodeB
  • LTE-A long term evolution-advanced
  • gNB next generation node B
  • NR new radio
  • 5G 5th generation
  • 5G 5th generation
  • CU centralized
  • the network equipment may also include core network equipment.
  • the core network equipment includes, for example, access and mobility management functions (AMF) or user plane functions (UPF).
  • AMF access and mobility management functions
  • UPF user plane functions
  • the network equipment mentioned refers to the access network equipment.
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • RRC state terminal equipment has 3 RRC states: RRC connected state, RRC idle state and RRC inactive state.
  • RRC connected state (or, can also be referred to as connected state for short.
  • connected state and “RRC connected state” are the same concept, and the two terms can be interchanged): the terminal device establishes an RRC connection with the network, and it can Perform data transfer.
  • RRC idle state (or, can also be referred to as idle state for short.
  • idle state and “RRC idle state” are the same concept, and the two terms can be interchanged): the terminal device does not establish an RRC connection with the network, and the base station The context of the terminal device is not stored. If the terminal device needs to enter the RRC connected state from the RRC idle state, it needs to initiate an RRC connection establishment process.
  • RRC inactive state (or, can also be referred to as inactive state for short.
  • inactive state “inactive state”, “deactivated state”, “inactive state”, “RRC inactive state” or “RRC deactivated state” Etc. are the same concept, and these names can be interchanged): the terminal device entered the RRC connection state at the anchor base station before, and then the anchor base station released the RRC connection, but the anchor base station saved the context of the terminal device. If the terminal device needs to enter the RRC connected state again from the RRC inactive state, it needs to initiate the RRC connection recovery process (or called the RRC connection re-establishment process) at the base station where it currently resides.
  • RRC connection recovery process or called the RRC connection re-establishment process
  • the base station where the terminal device currently resides and the anchor base station of the terminal device may be the same base station or different base stations.
  • the RRC recovery process has shorter time delay and lower signaling overhead.
  • the base station needs to save the context of the terminal device, which will occupy the storage overhead of the base station.
  • At least one means one or more, and "plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character "/” generally indicates that the associated objects before and after are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first information and the second information are only for distinguishing different signaling, but do not indicate the difference in content, priority, sending order, or importance of the two types of information.
  • Mobility management is an important part of wireless mobile communication. It refers to the general term for related content involved in order to ensure that the communication link between the network and the terminal device is not interrupted due to the movement of the terminal device. According to the state of the terminal equipment, it can be roughly divided into two parts: RRC idle state mobility management and RRC connected state mobility management. In the RRC idle state, mobility management mainly refers to the cell selection/reselection process, and in the RRC connected state, mobility management mainly refers to the cell handover process. Whether it is cell selection/reselection or cell handover, it is all based on the measurement results. Therefore, measurement is the basis of mobility management.
  • the measurement of the terminal equipment includes measuring the serving cell of the terminal equipment, and also includes measuring the neighboring cell, for example, measuring the neighboring cell of the same communication system, or measuring the neighboring cell of a different system.
  • the measurement can be divided into two types: physical layer measurement (layer 1 measurement) and RRC layer measurement (layer 3 measurement).
  • layer 1 measurement physical layer measurement
  • RRC layer measurement layer 3 measurement
  • the measurement process can refer to Figure 1.
  • the base station sends an RRC connection reconfiguration (RRC connection reconfigurtion) message to the terminal device, and the terminal device receives the RRC connection reconfiguration message from the base station.
  • the base station is, for example, a base station that provides a serving cell of terminal equipment.
  • the RRC connection reconfiguration message includes a measurement configuration (measConfig) cell, the measurement configuration cell includes measurement configuration information, and the terminal device obtains the measurement configuration information from the measurement configuration cell.
  • the measurement configuration information includes, for example, the measurement object of the terminal device.
  • the terminal device measures the serving cell of the terminal device.
  • the terminal device also judges whether it is necessary to perform measurement on neighboring cells according to the information included in the s-measurement configuration (MeasureConfig) cell in the RRC connection reconfiguration message.
  • the s-MeasureConfig information element may include measurement control thresholds (related to performing neighbor cell measurements).
  • the terminal device can receive the reference signal from the serving cell, so as to measure the serving cell.
  • the reference signal includes, for example, synchronization/physical broadcast channel block (SSB) or channel state information reference signal (channel state information-reference signal, CSI-RS), etc.
  • SSB synchronization/physical broadcast channel block
  • CSI-RS channel state information reference signal
  • the terminal device sends a measurement report message to the base station, and the base station receives the measurement report message from the terminal device. Wherein, when the trigger condition of the measurement report is met, the terminal device adds the measurement result to the measurement report (measurement report) message, and sends the measurement report message with the measurement result added to the base station.
  • the trigger condition of the measurement report is divided into periodic trigger condition and event trigger condition. If it is a periodic trigger condition, the terminal device sends a measurement report message to the base station according to the corresponding period. If the report is triggered by an event, for example, the measurement configuration message will indicate the corresponding event, and the terminal device can send a measurement report message to the base station when these events are met.
  • the measurement configuration message may also include parameters corresponding to the corresponding event, such as threshold or hysteresis parameters, for subsequent calculations.
  • Table 1 The definitions of various events are shown in Table 1:
  • Ms represents the measurement result of the serving cell by the terminal device, and the measurement result can characterize the service quality of the serving cell.
  • the measurement result can be reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), or signal to interference plus noise ratio (SINR).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • Hys represents the hysteresis parameter, which can be an integer between 0 and 30.
  • the network device can configure Hys through the RRC connection reconfiguration message.
  • Thresh represents the threshold (threshold parameter), and the network device can also configure Thresh through the RRC connection reconfiguration message. It should be noted that this paragraph takes the event A1 in Table 1 as an example.
  • the Ms introduced in this paragraph is a parameter configured for the event A1 to characterize the measurement results of the terminal equipment on the serving cell, and Hys is for the event A1.
  • the configured hysteresis parameter, Thresh is the threshold configured for event A1.
  • the parameters configured for different events may be different.
  • the inequality A1-1 indicates that if the difference between the quality of service and the hysteresis parameter represented by the measurement result of the terminal device on the serving cell is greater than the threshold, the event A1 is entered, or in other words, the event A1 is satisfied; the inequality A1-2 indicates If the sum of the service quality and the hysteresis parameter represented by the measurement result of the terminal device on the serving cell is less than the threshold, the event A1 is left, or in other words, the event A1 is not met.
  • mobility management mainly refers to the process of cell selection/reselection.
  • process of cell reselection performed by the terminal equipment refer to FIG. 2.
  • the terminal device measures the current serving cell and neighboring cells of the terminal device according to the measurement start standard.
  • the neighboring cell may include one or more of a cell with the same frequency as the serving cell, a cell with a different frequency from the serving cell, or a cell with a different communication system from the serving cell.
  • the terminal device may receive the system message from the first cell. If the first cell does not have conditions such as restricted access, the terminal device can camp in the first cell.
  • the terminal device cannot camp on the first cell, Then the terminal equipment continues to reside in the current serving cell.
  • the base station will configure the SMTC.
  • an SMTC is configured for a frequency.
  • the SMTC can be understood as a time window for measurement.
  • An SMTC can include the frequency corresponding to the SMTC in the time domain.
  • SSB sent by each cell For example, for frequency f1, the base station configures a corresponding SMTC, and the terminal device only measures the SSB in the SMTC. Therefore, the SMTC includes the SSB sent by each cell under frequency f1 that the base station wants the terminal device to measure in the time domain.
  • the terminal device directly starts the measurement of all neighboring cells (indicated by the serving cell) (at this time, it does not consider whether the neighboring cell measurement conditions are met).
  • the terminal device measures the neighboring cells, it measures the same-frequency neighboring cells, different-frequency neighboring cells, and different-system neighboring cells indicated by the system information (that is, the neighboring cells indicated by the inter-RAT information). That is to say, within 10s, if the terminal device does not find any available cells after measuring these neighboring cells, the terminal device will measure more cells under the selected PLMN.
  • a relaxed monitoring condition of the neighbor cell measurement is also specified in the LTE system. If the neighbor cell measurement relaxation conditions are met, the terminal device may choose not to perform intra-frequency measurement or inter-frequency measurement, or in other words, the terminal device may not perform neighbor cell measurement.
  • the relaxation conditions of the neighboring area measurement are as follows:
  • the relaxed monitoring standard is met within a period of T SearchDeltaP.
  • the terminal device In at least T SearchDeltaP time after selecting or reselecting a new cell, the terminal device has performed intra-frequency measurement or inter-frequency measurement.
  • the relaxed monitoring standard can be expressed by Formula 1:
  • S rxlev represents the cell selection RX level value (cell selection RX level value), in dB, and S rxlev can be used to evaluate the current signal quality of the serving cell.
  • S SearchDeltaP represents a threshold.
  • S rxlevRef represents the reference value of the serving cell of the terminal equipment (unit: dB).
  • S rxlevRef can have an initial value and can be updated later. The update method is as follows:
  • the terminal device After the terminal device selects or reselects a new cell, or if (S rxlev -S rxlevRef )>0, or if the loose listening standard of T SearchDeltaP has not been met, the terminal device should set the value of S rxlevRef to the terminal The current S rxlev value of the service cell of the device.
  • T SearchDeltaP represents a duration, which is generally 5 minutes. Or, if enhanced DRX (enhanced DRX, eDRX) is configured for the terminal device and the length of the eDRX cycle is greater than 5 minutes, then T SearchDeltaP is the length of the eDRX cycle.
  • enhanced DRX enhanced DRX, eDRX
  • S rxlev can be used to indicate the quality of the serving cell of the terminal device.
  • Srxlev satisfies formula 2:
  • Q rxlevmeas represents the RSRP of the candidate cell.
  • Both Q rxlevmin and Q rxlevminoffset are configured in the system information block (system information block, SIB) to reside in the minimum receiving level of the cell (for example, configured in SIB1), only when the terminal device resides in the visit PLMN (visit PLMN) Q rxlevminoffset is only used in the cell.
  • SIB system information block
  • P compensation takes max (PEMAX-PUMAX, 0), and the unit is dB.
  • max(x,y) means to take the maximum value of x and y.
  • PEMAX represents the maximum usable uplink transmit power of the terminal equipment
  • PUMAX represents the maximum RF output power of the terminal equipment.
  • a neighbor cell measurement relaxation condition is also set for neighbor cell measurement. If the neighbor cell measurement relaxation condition is met, the terminal device may not perform neighbor cell measurement. In these ways, the power consumption of the terminal equipment due to measurement can be reduced.
  • the probability of cell reselection or cell handover is low of.
  • the measurement process of the terminal equipment on the serving cell is always in progress, and such terminal equipment continues to measure the serving cell, and the utilization rate of the measurement results is not high. It can be regarded as unnecessary measurement process, which also leads to the function of the terminal equipment. Higher consumption.
  • the terminal device can determine whether the first measurement report condition is satisfied. If the first measurement report condition is satisfied, it indicates that the terminal device is less likely to perform cell switching or reselection. For example, the terminal device may be in the serving cell. For such a terminal device, if the serving cell is frequently measured, it is equivalent to an unnecessary measurement process and consumes a lot of power. Therefore, for such a terminal device, the network device can instruct it to enter the measurement relaxed state of the serving cell, reducing the measurement process on the serving cell, so as to achieve the purpose of power saving.
  • the technical solutions provided in the embodiments of this application can be applied to the 4th generation (4G) mobile communication technology (the 4th generation, 4G) system, such as the LTE system, or can be applied to the 5G system, such as the NR system, or can also be applied to the next generation
  • the 4G mobile communication technology such as the 4th generation, 4G
  • the 5G system such as the NR system
  • the next generation For mobile communication systems or other similar communication systems, as long as there is one entity that can perform measurements based on signals from another entity, there is no specific limitation.
  • the air interface communication process between the network device and the terminal device is taken as an example.
  • the technical solution provided by the embodiment of this application can also be applied to a sidelink (SL). As long as one terminal device can measure the signal from another terminal device.
  • SL sidelink
  • the technical solutions provided by the embodiments of this application can be applied to device-to-device (D2D) scenarios, can be NR D2D scenarios, LTE D2D scenarios, etc., or can be applied to vehicle-to-everything (vehicle to everything) scenarios.
  • everything (V2X) scenario it can be NR V2X scenario or LTE V2X scenario, etc., for example, it can be applied to the Internet of Vehicles, such as V2X, LTE-V, vehicle-to-vehicle (V2V), etc., or can be used for Intelligent driving, intelligent networked vehicles and other fields.
  • the network device serves the terminal device through wireless transmission.
  • the terminal device can receive the reference signal from the network device, so as to perform measurement based on the received reference signal.
  • the network device in FIG. 3 is, for example, a base station.
  • the base station corresponds to different devices in different systems.
  • the base station in a 4G system, it may correspond to a base station in 4G, such as an eNB, and in a 5G system, it may correspond to a base station in 5G, such as gNB.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems. Therefore, the network equipment in FIG. 3 can also correspond to the access network equipment in the future mobile communication system.
  • Figure 3 takes the network device as a base station as an example.
  • the network device can also be a device such as an RSU.
  • the terminal device in FIG. 3 uses a mobile phone as an example.
  • the terminal device in the embodiment of the present application is not limited to the mobile phone.
  • the embodiment of the present application provides a first measurement method. Please refer to FIG. 4, which is a flowchart of the method.
  • the first measurement method can be applied to terminal equipment in the RRC connected state.
  • the application of this method to the network architecture shown in FIG. 3 is taken as an example.
  • the method executed by the network device and the terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 3 as an example, the network device described below may be the network device in the network architecture shown in FIG. 3, and the terminal device described below may be Figure 3 shows the terminal equipment in the network architecture.
  • the terminal device determines that the first measurement report condition is satisfied.
  • the first measurement report condition may be configured by the network device to the terminal device, or determined by the terminal device itself, or may also be specified through a protocol.
  • the first measurement report condition includes, for example, that the measurement result obtained by measuring the serving cell (or the signal quality of the serving cell, or the received signal strength of the terminal device to the serving cell) satisfies the first threshold, or the first measurement report
  • the condition includes, for example, that the measurement result obtained by measuring the serving cell (or the signal quality of the serving cell, or the received signal strength of the terminal device to the serving cell) meets the first threshold within the first time period.
  • the terminal device can measure the serving cell, and the obtained measurement result can be used to determine the first measurement report condition.
  • the measurement result is used to characterize the communication quality of the serving cell.
  • the measurement result of the serving cell may characterize the signal quality of the serving cell, or characterize the received signal strength of the terminal device to the serving cell.
  • the measurement result may include RSRP and RSRQ. , Or one or more of SINR. If the first measurement report condition includes that the signal quality of the serving cell meets the first threshold within the first time period, it means that the measurement result of the serving cell always meets the first threshold during the first time period.
  • the first duration may be configured by the network device to the terminal device, or determined by the terminal device itself, or may also be specified through an agreement.
  • the terminal device If the terminal device satisfies the first measurement report condition, it indicates that the signal quality of the serving cell measured by the terminal device and/or the signal strength of the terminal device to the serving cell meets a certain threshold, which can indicate that the terminal device is located close to the cell center.
  • the signal quality of the serving cell measured by the terminal device and/or the signal strength received by the terminal device to the serving cell fluctuates little, which can indicate that the terminal device’s mobility is weak (for example, the terminal device is stationary, or the terminal device is in a small range). Internal movement, or the terminal device moves slowly), such a terminal device is less likely to perform cell reselection or cell handover.
  • the signal quality of the serving cell satisfies the first threshold, it may include the measurement result obtained by the terminal device measuring the serving cell within the fourth time period (for example, the measurement result may be RSRP, RSRQ, or SINR, etc.).
  • the measurement result may be referred to as a measurement value) that satisfies the first threshold.
  • the measurement result obtained by the terminal device measuring the serving cell in the fourth time period satisfies the first threshold, which may mean that the N measurement results obtained by the terminal device measuring the serving cell in the fourth time period satisfy the first threshold.
  • the N measurement results may be all or part of the measurement results obtained by the terminal device within the fourth time period.
  • the signal quality of the serving cell meets the first threshold, which may include that the N measurement results (or, referred to as measurement values) obtained by the terminal device measuring the serving cell meet the first Threshold.
  • the N measurement results at this time can be understood as a set of N measurement results. Wherein, N can be an integer greater than or equal to 1.
  • the N measurement results may be N measurement results corresponding to the N consecutive measurements, or the N measurements corresponding to the N measurement results may not be performed continuously. If N is greater than 1, for example, the measurement result obtained by the terminal device measuring the serving cell in the fourth time period satisfies the first threshold may include implementation manner 1.
  • Implementation mode 1 is, for example, among the N measurement values, the difference (or variance, etc.) between each adjacent K measurement values is less than or equal to the first sub-threshold; or, implementation mode 1 is, for example, every adjacent The difference (or variance, etc.) between the K measurement values and the sum (or, the difference) of the first hysteresis parameter is less than or equal to the first sub-threshold; or, the implementation mode 1 is, for example, among the N measurement values The difference (or variance, etc.) between any K measurement values is less than or equal to the first sub-threshold; or, implementation mode 1 is, for example, the difference between any K measurement values (or The sum (or, the difference) of the variance and the first hysteresis parameter is less than or equal to the first sub-threshold.
  • the first threshold may be a first sub-threshold, and meeting the first threshold means that it is less than or equal to the first threshold.
  • K is an integer greater than or equal to 2
  • K is less than or equal to N.
  • the measurement result obtained by the terminal device measuring the serving cell within the fourth period of time satisfies the first threshold may include implementation manner 2.
  • Implementation manner 2 is, for example, N measurement values and the first reference value (or, also It can be called the second hysteresis parameter) that satisfies the first threshold. In this case, N can be equal to 1 or greater than 1.
  • implementation 2 may be specifically implemented as: the difference between each of the N measured values and the first reference value is greater than or equal to the second sub-threshold; or, each of the N measured values The difference from the first reference value is greater than or equal to the second sub-threshold value.
  • the first threshold may be a second sub-threshold, and meeting the first threshold means that it is greater than or equal to the first threshold.
  • the measurement result obtained by the terminal device measuring the serving cell in the fourth time period satisfying the first threshold may include implementation manner 1, or implementation manner 2, or implementation manner 1 and implementation manner 2.
  • the value of the first hysteresis parameter can be greater than 0, less than 0, or equal to 0.
  • first hysteresis parameter is equal to 0, it can also be considered that the first hysteresis parameter does not exist, that is, the first hysteresis parameter does not exist in the implementation method 1. .
  • the value of the second hysteresis parameter can be greater than 0, less than 0 or equal to 0. If the second hysteresis parameter is equal to 0, it can also be regarded as the second hysteresis parameter does not exist, that is, the second hysteresis parameter does not exist in the implementation manner 2.
  • the first reference value may be configured by the network device to the terminal device, or determined by the terminal device itself, or may also be specified through a protocol.
  • the first sub-threshold value and the second sub-threshold value may be equal or not equal, and if the first sub-threshold value and the second sub-threshold value are not equal, the first sub-threshold value may be greater than the second sub-threshold value, or the first sub-threshold value may also be Less than the second sub-threshold.
  • the terminal device performs 4 consecutive measurements on the serving cell, and these 4 measurements may or may not be performed continuously.
  • the measurement value of the first measurement is measurement value 1
  • the measurement value of the second measurement is measurement value 2
  • the measurement value of the third measurement is measurement value 3
  • the measurement value of the fourth measurement is measurement value 4.
  • the terminal device may determine that the measurement result obtained by the terminal device by measuring the serving cell within the fourth time period satisfies the first threshold.
  • the terminal device can determine that the terminal device measures the serving cell within the fourth time period The obtained measurement result does not meet the first threshold.
  • the difference between the continuously measured measurement values is used to determine whether the measurement result obtained by the terminal device measuring the serving cell in the fourth time period satisfies the first threshold. Multiple measurement results can be considered to make the determination result more accurate. Meet the current state of the terminal device.
  • the measurement result obtained by the terminal device measuring the serving cell in the fourth time period satisfies the first threshold only includes implementation mode 2.
  • the terminal device performs three measurements on the serving cell, and these three measurements may or may not be performed continuously.
  • the measurement value of the first measurement is measurement value 1
  • the measurement value of the second measurement is measurement value 2
  • the measurement value of the third measurement is measurement value 3.
  • the terminal device can determine that the measurement result obtained by the terminal device for measuring the serving cell within the fourth time period satisfies the first threshold; and if one or more of the three differences are less than the second sub-threshold , The terminal device can determine that the measurement result obtained by the terminal device measuring the serving cell in the fourth time period does not meet the first threshold. It is determined by the first reference value whether the measurement result obtained by the terminal device measuring the serving cell in the fourth time period meets the first threshold, so that the determination process is relatively simple.
  • the measurement result obtained by the terminal device measuring the serving cell in the fourth time period that satisfies the first threshold includes implementation manner 1 and implementation manner 2. If the terminal device determines that the measurement result obtained by the terminal device measuring the serving cell in the fourth time period satisfies the first threshold through both implementation 1 and implementation 2, it can be considered to meet the first threshold; and if the terminal device is implemented Method 1 determines that the measurement result obtained by the terminal device measuring the serving cell in the fourth time period meets the first threshold, or implements method 2 determines the measurement result obtained by the terminal device measuring the serving cell in the fourth time period If the first threshold is not met, or if it is determined by both implementation manner 1 and implementation manner 2 that the measurement result obtained by the terminal device measuring the serving cell within the fourth time period does not meet the first threshold, the terminal device can consider that the terminal device is in The measurement result obtained by measuring the serving cell in the fourth time period does not meet the first threshold.
  • the measurement result obtained by the terminal device measuring the serving cell within the fourth time period meeting the first threshold may also include other implementation manners, or the terminal device may perform the measurement within the fourth time period.
  • the measurement result obtained by the measurement performed by the serving cell that satisfies the first threshold may also not include the foregoing implementation manner, but include other implementation manners. As long as the corresponding implementation can indicate that the terminal equipment is less likely to perform cell reselection or cell handover.
  • the terminal device can continuously determine whether the terminal device meets the first measurement report condition. For example, the terminal device continuously measures the serving cell, and the terminal device can determine whether the terminal device meets the first measurement report condition according to the measurement value of the serving cell, or the terminal device It may be periodically determined whether the terminal device satisfies the first measurement report condition according to the measurement result of the serving cell.
  • the terminal device sends the first information to the network device.
  • the network device receives the first information from the terminal device.
  • the terminal device if the terminal device satisfies the first measurement report condition, the terminal device is less likely to perform cell reselection or cell handover. For example, for a terminal device that is in a static state, or a terminal device that moves slowly, or a terminal device that is only active within a certain range, the possibility of cell reselection or cell handover is small, such a terminal device It is easier to meet the first measurement report condition. Since the possibility of cell reselection or cell handover is small, it means that the terminal device does not need to perform too many measurements on the serving cell, so the terminal device can be considered to meet the conditions for loosening the measurement of the serving cell.
  • the terminal device may send the first information to the network device.
  • the first information is used to indicate that the terminal device satisfies the measurement relaxation condition of the serving cell.
  • the first information indicates that the terminal device satisfies the measurement relaxation condition of the serving cell, either an implicit indication mode or an explicit indication mode may be used.
  • the first information may include a measurement report.
  • the first information does not directly indicate that the terminal device satisfies the measurement relaxation conditions of the serving cell, but the terminal can be deduced based on the content of the measurement report included in the first information.
  • the device satisfies the measurement relaxation condition of the serving cell. Therefore, after receiving the measurement report, the network device can determine that the terminal device meets the measurement relaxation condition of the serving cell according to the content of the measurement report included in the first information.
  • This method can be considered as The way of implicit indication; or, the first information may indicate that the report meets the first measurement report condition, and the network device can determine that the terminal device meets the first measurement report condition, that is, satisfies the measurement relaxation condition of the serving cell.
  • the network device can indirectly determine that the terminal device meets the measurement relaxation condition of the serving cell according to the first information, which is equivalent to implicitly indicating that the terminal device meets the measurement relaxation condition of the serving cell through the first information, so this method is also an implicit indication method
  • the first information may include first indication information, and the first indication information may be used to indicate that the terminal device satisfies the measurement relaxation condition of the serving cell, for example, the first indication information includes the measurement report event corresponding to the first measurement report condition ID, the measurement report event is an event in which the terminal device meets the measurement relaxation condition of the serving cell, and the network device can determine that the terminal device meets the measurement relaxation condition of the serving cell according to the first indication information.
  • This method is an explicit indication.
  • the first information may include the measurement report, or may not include the measurement report, or the first information may be included in the measurement report.
  • the terminal device may have a measurement relaxed state of the serving cell and a normal measurement state of the serving cell.
  • the measurement relaxed state of the serving cell and the normal measurement state of the serving cell can meet but not limited to at least one of the following conditions:
  • Case 1 In the relaxed state of the serving cell measurement, the number of time domain resources used by the terminal device to measure the serving cell is less than or equal to the first number threshold, while in the normal measurement state of the serving cell, the terminal device measures the serving cell The number of time domain resources used may be greater than the first number threshold;
  • Case 3 In the relaxed state of serving cell measurement, the number of times the terminal device measures the serving cell is less than or equal to the first threshold, while in the normal measurement state of the serving cell, the number of times the terminal device measures the serving cell is greater than the first Times threshold
  • Case 5 In the measurement relaxed state of the serving cell, the terminal device does not perform measurement on the serving cell, while in the normal measurement state of the serving cell, the terminal device needs to perform measurement on the serving cell.
  • the reference signal such as SSB or CSI-RS
  • the reference signal has multiple transmission opportunities in the time domain period.
  • each SSB can have a corresponding number, and the SSB can correspond to the beam. Therefore, if the number of reference signals measured by the terminal device is greater than or less than the second number threshold, it can be understood that the number of beams measured by the terminal device is greater than or less than the second number threshold.
  • the terminal device measures the serving cell relatively sparsely, and may even not perform measurement at all, which can save the power consumption of the terminal device. For example, for a terminal device that is in a static state, or a terminal device that moves slowly, or a terminal device that is only active within a certain range of the cell center, the probability of cell reselection or cell handover is low. Such a terminal device continuously measures the serving cell, and the utilization rate of the measurement result is not high, which can be regarded as an unnecessary measurement process, and also leads to high power consumption of the terminal device.
  • the terminal device For such a terminal device, it is possible to enter the measurement relaxed state of the serving cell, reducing the measurement of the serving cell, so as to save the power consumption of the terminal device.
  • the terminal device In the normal measurement state of the serving cell, the terminal device can perform normal measurements on the serving cell. For example, for terminal equipment in a high-speed moving state, or terminal equipment with a large moving range, or terminal equipment at the edge of a cell, the probability of cell reselection or cell handover is high.
  • Such terminal equipment needs to continuously measure the serving cell . Therefore, for such terminal equipment, it can be in the normal measurement state of the serving cell, keep the measurement on the serving cell, and obtain the measurement result in time, so as to perform cell reselection or cell handover and other processes.
  • the network device sends second information to the terminal device, and the terminal device receives the second information from the network device, where the second information is used to indicate to enter the measurement relaxed state of the serving cell.
  • the network device After the network device receives the first information, it can determine whether the terminal device can enter the measurement relaxed state of the serving cell. If the network device determines that the terminal device can enter the measurement relaxation state of the serving cell, the network device may send second information to the terminal device to instruct the terminal device to enter the measurement relaxation state of the serving cell. In the embodiment of the present application, the network device can determine whether the terminal device enters the measurement relaxed state of the serving cell, so that the network device and the terminal device maintain the same cognition of the state of the terminal device, and the network device can also better control the terminal device the behavior of.
  • the network device may send the second information through the RRC connection reconfiguration message, or through the media access control control element (MAC CE), or through the downlink control information (downlink control information, DCI) Send second information, etc.
  • MAC CE media access control control element
  • DCI downlink control information
  • the terminal device enters the measurement relaxed state of the serving cell.
  • the terminal device After receiving the second information, the terminal device can enter the measurement relaxed state of the serving cell.
  • the measurement of the serving cell is relaxed, the measurement of the serving cell is sparse, which can save the power consumption of the terminal equipment.
  • S44 is only an optional step and is not necessary to be performed, so it is represented by a dotted line in FIG. 4.
  • the terminal device determines that the second measurement report condition is satisfied.
  • the second measurement report condition may be configured by the network device to the terminal device, or determined by the terminal device itself, or may also be specified through a protocol.
  • the second measurement report condition includes, for example, that the measurement result obtained by measuring the serving cell (or the signal quality of the serving cell, or the received signal strength of the terminal device to the serving cell) meets the second threshold, or the second measurement report
  • the condition includes, for example, that the measurement result obtained by measuring the serving cell (or the signal quality of the serving cell, or the received signal strength of the terminal device to the serving cell) meets the second threshold within the second time period.
  • the terminal device can measure the serving cell, and the obtained measurement result can be used to determine the first measurement reporting condition.
  • the obtained measurement result can characterize the signal quality of the serving cell, or characterize the reception of the terminal device on the serving cell. Signal strength, etc.
  • the second measurement report condition includes that the signal quality of the serving cell meets the second threshold within the second time period, it means that the measurement result of the serving cell always meets the second threshold during the second time period.
  • the second duration may be configured by the network device to the terminal device, or determined by the terminal device itself, or may also be specified through an agreement. If the terminal device satisfies the second measurement report condition, it indicates that the signal quality of the serving cell measured by the terminal device and/or the signal strength of the terminal device to the serving cell meets a certain threshold, which can indicate that the terminal device is located near the edge of the cell.
  • the signal quality of the serving cell measured by the terminal device and/or the signal strength of the terminal device to the serving cell fluctuates greatly, which can indicate that the terminal device has strong mobility (for example, the terminal device moves in a large area, or the terminal device The moving speed is faster), so such terminal equipment is more likely to perform cell reselection or cell handover.
  • the signal quality of the serving cell satisfies the second threshold, it may include the measurement result obtained by the terminal device measuring the serving cell within the fifth period of time (for example, the measurement result may be RSRP, RSRQ, or SINR, etc.).
  • the measurement result can be referred to as a measurement value) that satisfies the second threshold.
  • the measurement result obtained by the terminal device measuring the serving cell in the fifth time period satisfies the second threshold, which may mean that the N measurement results obtained by the terminal device measuring the serving cell in the fifth time period satisfy the first threshold.
  • the N measurement results may be all the measurement results or part of the measurement results obtained by the terminal device within the fifth time period.
  • the signal quality of the serving cell meets the second threshold, which may include that the N measurement results (or, referred to as measurement values) obtained by the terminal device measuring the serving cell meet the second Threshold.
  • the N measurement results at this time can be understood as a set of N measurement results. Wherein, N can be an integer greater than or equal to 1.
  • the N measurement results may be N measurement results corresponding to the N consecutive measurements, or the N measurements corresponding to the N measurement results may not be performed continuously. If N is greater than 1, for example, the measurement result obtained by the terminal device measuring the serving cell in the fifth time period satisfies the second threshold may include implementation manner 3.
  • Implementation mode 3 is, for example, in the N measurement values, the difference (or variance, etc.) between each adjacent K measurement values is greater than or equal to the third sub-threshold; or, implementation mode 3 is, for example, every adjacent The difference (or variance, etc.) between the K measurement values and the sum (or, the difference) of the third hysteresis parameter is greater than or equal to the third sub-threshold; or, the implementation mode 3 is, for example, among the N measurement values The difference (or variance, etc.) between any K measurement values is greater than or equal to the third sub-threshold; or, the implementation mode 3 is, for example, the difference between any K measurement values in the N measurement values (or The sum (or, the difference) of the variance and the third hysteresis parameter is greater than or equal to the third sub-threshold.
  • the second threshold is a third sub-threshold, and meeting the second threshold means that it is greater than or equal to the second threshold.
  • K is an integer greater than or equal to 2
  • K is less than or equal to N.
  • the measurement result obtained by the terminal device measuring the serving cell within the fifth time period may satisfy the second threshold may include implementation manner 4.
  • Implementation manner 4 is, for example, N measurement values and a second reference value (or, also It can be called the fourth hysteresis parameter) to meet the second threshold. At this time, N can be equal to 1 or greater than 1.
  • Implementation manner 4 may be specifically implemented as follows: the difference between each of the N measured values and the second reference value is less than or equal to the fourth sub-threshold; or, each of the N measured values is different from the first The difference between the two reference values is less than or equal to the fourth sub-threshold value.
  • the second threshold is the fourth sub-threshold, and meeting the second threshold means that it is less than or equal to the second threshold.
  • the measurement result obtained by the terminal device measuring the serving cell within the fifth time period that satisfies the second threshold may include implementation manner 3, or implementation manner 4, or implementation manner 3 and implementation manner 4.
  • the value of the third hysteresis parameter can be greater than 0, less than 0 or equal to 0.
  • the third hysteresis parameter is equal to 0, it can also be regarded as the third hysteresis parameter does not exist, that is, the third hysteresis parameter does not exist in the implementation mode 3. .
  • the value of the fourth hysteresis parameter can be greater than 0, less than 0, or equal to 0. If the fourth hysteresis parameter is equal to 0, it can also be considered that the fourth hysteresis parameter does not exist, that is, the fourth hysteresis parameter does not exist in the implementation manner 4.
  • the second reference value may be configured by the network device to the terminal device, or determined by the terminal device itself, or may also be specified through a protocol.
  • the third sub-threshold value and the fourth sub-threshold value may be equal or not equal, and if the third sub-threshold value and the fourth sub-threshold value are not equal, the first sub-threshold value may be greater than the fourth sub-threshold value, or the third sub-threshold value may also be Less than the fourth sub-threshold.
  • the third sub-threshold value may be greater than the first sub-threshold value, or smaller than the first sub-threshold value, or equal to the first sub-threshold value.
  • the fourth sub-threshold value may be greater than the second sub-threshold value, or smaller than the second sub-threshold value, or equal to the second sub-threshold value.
  • the measurement result obtained by the terminal device measuring the serving cell in the fifth time period that satisfies the second threshold only includes implementation mode 3.
  • the terminal device performs 4 consecutive measurements on the serving cell, and these 4 measurements may or may not be performed continuously.
  • the measurement value of the first measurement is measurement value 1
  • the measurement value of the second measurement is measurement value 2
  • the measurement value of the third measurement is measurement value 3
  • the measurement value of the fourth measurement is measurement value 4.
  • the terminal device may determine that the measurement result obtained by the terminal device by measuring the serving cell within the fifth time period satisfies the second threshold.
  • the terminal device can determine that the terminal device is serving the service within the fifth time period.
  • the measurement result obtained by the cell measurement does not meet the second threshold.
  • the difference between the continuously measured measurement values is used to determine whether the measurement result obtained by the terminal device measuring the serving cell within the fifth time period meets the second threshold. Multiple measurement results can be considered to make the determination result more accurate. Meet the current state of the terminal device.
  • the measurement result obtained by the terminal device measuring the serving cell in the fifth time period satisfies the second threshold only includes implementation manner 4.
  • the terminal device performs three measurements on the serving cell, and these three measurements may or may not be performed continuously.
  • the measurement value of the first measurement is measurement value 1
  • the measurement value of the second measurement is measurement value 2
  • the measurement value of the third measurement is measurement value 3.
  • the terminal device can determine that the measurement result obtained by the terminal device for measuring the serving cell within the fifth time period meets the second threshold; and if one or more of the three differences are greater than the fourth sub-threshold , The terminal device can determine that the measurement result obtained by the terminal device for measuring the serving cell within the fifth time period does not meet the second threshold.
  • the first reference value is used to determine whether the measurement result obtained by the terminal device for measuring the serving cell within the fifth time period meets the second threshold, so that the determination process is relatively simple.
  • the measurement result obtained by the terminal device measuring the serving cell within the fifth time period that satisfies the second threshold includes implementation manner 3 and implementation manner 4. If the terminal device determines that the measurement result obtained by the terminal device to measure the serving cell within the fifth time period meets the second threshold value through Implementation Mode 3 and Implementation Mode 4, it can be considered that the second threshold value is met; and if the terminal device passes implementation Manner 3 determines that the measurement result obtained by the terminal device measuring the serving cell in the fifth time period does not meet the second threshold, or implements Manner 4 to determine the measurement obtained by the terminal device measuring the serving cell in the fifth time period If the result does not meet the second threshold, or it is determined by both Implementation Mode 3 and Implementation Mode 4 that the measurement result obtained by the terminal device measuring the serving cell within the fifth time period does not meet the second threshold, the terminal device can be considered as a terminal device The measurement result obtained by measuring the serving cell in the fifth time period does not meet the second threshold.
  • the measurement result obtained by the terminal device measuring the serving cell within the fifth time period meeting the second threshold may also include other implementation manners, or the terminal device may perform the measurement within the fifth time period.
  • the measurement result obtained by the measurement performed by the serving cell that satisfies the second threshold may also not include the foregoing implementation manner, but include other implementation manners. As long as the corresponding implementation can indicate that the terminal device is more likely to perform cell reselection or cell handover.
  • the terminal device can continuously determine whether the terminal device meets the second measurement report condition. For example, the terminal device continuously measures the serving cell, and the terminal device can determine whether the terminal device meets the second measurement report condition according to the measurement value of the serving cell, or the terminal device It may be periodically determined whether the terminal device satisfies the second measurement report condition according to the measurement result of the serving cell.
  • the terminal device sends the third information to the network device, and the network device receives the third information from the terminal device.
  • the third information may indicate that the measurement relaxation condition of the serving cell is not satisfied, and the network device can determine that the terminal device does not meet the measurement relaxation condition of the serving cell according to the third information; or the third information may indicate that the normal measurement condition of the serving cell is satisfied, and the network device According to the third information, it can be determined that the terminal device meets the conditions for normal measurement of the serving cell.
  • the terminal device if the terminal device satisfies the second measurement report condition, the terminal device is more likely to perform cell reselection or cell handover. For example, for a terminal device in a high-speed moving state, or a terminal device with a large moving range, or a terminal device at the edge of a cell, the possibility of cell reselection or cell handover is greater. Such a terminal device is easier to meet the requirements of the first 2. Measurement reporting conditions. Since the possibility of cell reselection or cell handover is relatively high, it means that the terminal device needs to perform normal measurements on the serving cell. Therefore, the terminal device can be considered to meet the conditions for normal measurement of the serving cell, or that it does not meet the measurement of the serving cell. Relaxed conditions.
  • the terminal device may send the third information to the network device.
  • the third information may indicate that the terminal device does not meet the conditions for the measurement relaxation of the serving cell, or indicates that the terminal device meets the conditions for the normal measurement of the serving cell.
  • the third information indicates that the terminal device does not meet the conditions for loosening the measurement of the serving cell or the conditions for the normal measurement of the serving cell, either an implicit indication mode or an explicit indication mode can be used.
  • the network device can determine that the terminal device meets the condition for normal measurement of the serving cell according to the third information as an example.
  • the third information may include a measurement report.
  • the third information does not directly indicate that the terminal device meets the conditions for normal measurement of the serving cell, but the terminal can be deduced based on the content of the measurement report included in the third information.
  • the device satisfies the conditions for normal measurement of the serving cell. Therefore, after receiving the measurement report, the network device can determine that the terminal device meets the conditions for normal measurement of the serving cell according to the content of the measurement report included in the third information.
  • the third information can indicate that the report meets the second measurement report condition, and the network device can determine that the terminal device meets the second measurement report condition, that is, it meets the normal measurement condition of the serving cell. Therefore, the network device can indirectly determine that the terminal device satisfies the normal measurement condition of the serving cell according to the third information, which is equivalent to implicitly indicating that the terminal device satisfies the normal measurement condition of the serving cell through the third information, so this method is also an implicit indication method
  • the third information may include second indication information, and the second indication information may be used to indicate that the terminal device meets the conditions for normal measurement of the serving cell, for example, the second indication information includes the measurement report event corresponding to the second measurement report condition ID, the measurement report event is an event in which the terminal device meets the normal measurement condition of the serving cell, and the network device can determine that the terminal device meets the normal measurement condition of the serving cell according to the second indication information.
  • This method is an explicit indication.
  • the third information may include
  • the network device sends fourth information to the terminal device, and the terminal device receives the fourth information from the network device, where the fourth information is used to indicate the normal measurement state of the serving cell.
  • the network device can determine whether the terminal device can enter the normal measurement state of the serving cell. If the network device determines that the terminal device can enter the normal measurement state of the serving cell, the network device may send fourth information to the terminal device to instruct the terminal device to enter the normal measurement state of the serving cell. In the embodiments of the present application, the network device can determine whether the terminal device enters the normal measurement state of the serving cell, so that the network device and the terminal device maintain the same cognition of the state of the terminal device, and the network device can also better control the terminal device the behavior of.
  • the network device may send the fourth information through the RRC connection reconfiguration message, or send the fourth information through the MAC CE, or may also send the fourth information through the DCI.
  • the terminal device enters the normal measurement state of the serving cell.
  • the terminal device After receiving the fourth information, the terminal device can enter the normal measurement state of the serving cell.
  • the terminal equipment measures the serving cell more intensively, so that more measurement results can be obtained to meet the needs of tasks such as cell reselection or cell handover.
  • S45 to S48 are only optional steps and are not necessary to be performed, so they are represented by dashed lines in FIG. 4.
  • the terminal device determines that after the third time period has elapsed, it enters the normal measurement state of the serving cell.
  • S49 and S45-S48 are in a parallel relationship, that is, S49 can be executed after S44 is executed, or S45-S48 can be executed, but S49 and S45-S48 will not be executed, and only one of them can be executed.
  • S49 is only an optional step and is not required to be performed, so it is represented by a dashed line in FIG. 4.
  • the third duration may be configured by the network device to the terminal device, or determined by the terminal device itself, or may also be stipulated through an agreement.
  • the terminal device After the terminal device stays in the measurement relaxed state of the serving cell for a period of time, in order to reduce the probability of missing the cell handover opportunity and reduce the impact on the cell handover, it can re-enter the normal measurement state of the serving cell. Therefore, the terminal device can automatically enter the normal measurement state of the serving cell after entering the measurement relaxed state of the serving cell for the third period of time, so as to measure the serving cell normally. In this way, the terminal device can resume normal measurement of the serving cell without the instruction of the network device, which helps to save signaling overhead.
  • the terminal device can also enter the normal measurement state of the serving cell from the measurement relaxed state of the serving cell by other means. For example, if the network device performs any step before S45 (for example, through the RRC connection reconfiguration message, or through the second information, etc.), it indicates that the terminal device may not need to report to the network device when it determines that it needs to perform normal measurements on the serving cell.
  • the protocol stipulates that the terminal device can directly restore the serving cell without reporting to the network equipment when it determines that it needs to perform normal measurements on the serving cell Normal measurement status, then, if the terminal device determines that it needs to perform normal measurements on the serving cell, for example, the terminal device believes that cell handover is required, or the terminal device determines that the signal quality or received signal strength is poor, etc., the terminal device does not need to report to the network device , There is no need to wait for the third time period, but the normal measurement state of the serving cell can be directly restored.
  • This solution can coexist with the solutions of S45 to S48, or can coexist with the solution of S49, or this solution can also be executed separately, that is, if this solution is executed, S45 to S49 are not executed.
  • the signaling overhead can be reduced, and the delay caused by the network device sending the fourth information, or the delay caused by the terminal device waiting for the third time period can be reduced, and the cell handover can be guaranteed. Timeliness.
  • the terminal device can determine whether the first measurement report condition is satisfied. If the first measurement report condition is satisfied, it indicates that the terminal device is less likely to perform cell switching or reselection. For example, the terminal device may be in the serving cell. For such a terminal device, if the serving cell is frequently measured, it is equivalent to an unnecessary measurement process and consumes a lot of power. Therefore, for such a terminal device, the network device can instruct it to enter the measurement relaxed state of the serving cell, reducing the measurement process on the serving cell, so as to achieve the purpose of power saving.
  • FIG. 5 is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 3 is taken as an example.
  • the method executed by the network device and the terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 3 as an example, the network device described below may be the network device in the network architecture shown in FIG. 3, and the terminal device described below may be Figure 3 shows the terminal equipment in the network architecture.
  • the network device determines the first configuration parameter and the second configuration parameter.
  • the first configuration parameter is used to determine whether the neighbor cell measurement relaxation condition is met when the serving cell is in the measurement relaxation state
  • the second configuration parameter is used to determine whether the neighbor cell measurement relaxation condition is met when the serving cell is in the normal measurement state
  • the first configuration parameter is The first configuration parameter is different from the second configuration parameter.
  • the terminal device may have two states of the serving cell measurement relaxed state and the serving cell normal measurement state.
  • the terminal device may have two states of the serving cell measurement relaxed state and the serving cell normal measurement state.
  • the terminal device can also have a neighboring cell measurement relaxed state.
  • the neighboring cell measurement relaxed state can satisfy one or more of the following cases 6, case 7, case 8, case 9 or case 10:
  • the terminal device may not measure the neighboring cell for a period of time
  • the terminal device When the terminal device is in the measurement relaxation state of the serving cell, it will also judge whether the measurement relaxation condition of the neighboring cell is satisfied. Therefore, when the terminal device is in the measuring relaxed state of the serving cell, it is likely that it will also enter the relaxed measuring state of the neighboring cell. Then, if the terminal device enters the neighboring cell measurement relaxed state when it is in the serving cell measurement relaxed state, the frequency of the terminal device measuring the neighboring cell may be reduced accordingly, and may not even measure the neighboring cell. When in the neighbor cell measurement relaxed state, the terminal device may continue to determine whether to stay in the neighbor cell measurement relaxed state based on the measurement result of the serving cell.
  • the terminal device will exit the neighboring cell measurement relaxation state, and perform normal measurements on the neighboring cells, and if the measurement results of the serving cell, such as cell reselection, the received signal level/strength indicates that it is satisfied
  • the terminal device will continue to stay in the neighboring cell to measure the relaxed state. If the terminal device is in the measurement relaxed state of the serving cell, the obtained measurement results of the serving cell will be less, which will affect the judgment of the measurement relaxation condition of the neighboring cell.
  • the network device can configure two sets of parameters for the terminal device, namely the first configuration parameter and the second configuration parameter. Measurement relaxation conditions.
  • the second configuration parameter is used for the terminal device to determine whether the neighbor cell measurement relaxation conditions are met under the normal measurement state of the serving cell.
  • the terminal device can also enter the measurement relaxation state when the serving cell is in the measurement relaxation state. In the relaxed state of neighboring cell measurement, you can exit from the relaxed state of neighboring cell measurement as much as possible to ensure the measurement of the neighboring cell, so that the terminal device can reselect a suitable cell in time.
  • the configuration parameters include, for example, the aforementioned T SearchDeltaP , or S SearchDeltaP , or T SearchDeltaP and S SearchDeltaP .
  • the first configuration parameter and the second configuration parameter may include the same parameter (the values may be the same or different), or may also include different parameters.
  • the first configuration parameter and the second configuration parameter both include T SearchDeltaP and S SearchDeltaP ; or, the first configuration parameter includes T SearchDeltaP and the second configuration parameter includes S SearchDeltaP ; or, the first configuration parameter includes T SearchDeltaP and S SearchDeltaP ,
  • the second configuration parameter includes S SearchDeltaP and so on.
  • both the first configuration parameter and the second configuration parameter include T SearchDeltaP and S SearchDeltaP .
  • T SearchDeltaP included in the first configuration parameter is called T SearchDeltaPrelax
  • S SearchDeltaP included in the first configuration parameter is called S SearchDeltaPrelax
  • T SearchDeltaP included in the second configuration parameter is called T SearchDeltaPnormal
  • the second configuration parameter includes S SearchDeltaP is called S SearchDeltaPnormal .
  • T SearchDeltaPnormal can be equal to T SearchDeltaP currently used by terminal equipment in the LTE system to determine whether the neighboring cell measurement relaxation conditions are met
  • S SearchDeltaPnormal can be equal to the current LTE system used by terminal equipment to determine whether the neighboring cell measurement is met.
  • the S SearchDeltaP used when relaxing the condition, that is, the second configuration parameter can continue to use the existing parameter used when judging whether the neighboring cell measurement relaxing condition is satisfied.
  • T SearchDeltaPrelax can be greater than T SearchDeltaPnormal ; or, S SearchDeltaPrelax can be less than S SearchDeltaPnormal ; or, T SearchDeltaPrelax can be greater than T SearchDeltaPnormal , and S SearchDeltaPrelax can be less than S SearchDeltaPnormal .
  • the above three situations can make the terminal equipment in the measurement relaxed state of the serving cell and the relaxed state of the neighboring cell measurement as much as possible to exit the neighboring cell measurement relaxed state as easily as possible, and try to ensure the terminal when cell reselection is possible.
  • the device measures the neighboring cells, thereby reducing the impact on cell reselection.
  • the size relationship between T SearchDeltaPrelax and T SearchDeltaPnormal is not limited to the situation described above.
  • the second configuration parameter includes The size relationship between S SearchDeltaPnormal , S SearchDeltaPrelax and S SearchDeltaPnormal is not limited to the situation described above.
  • the network device sends the first configuration parameter and the second configuration parameter to the terminal device, and the terminal device receives the first configuration parameter and the second configuration parameter from the network device.
  • the first configuration parameter and the second configuration parameter may be included in one message, for example, may be included in two fields of one message; or, the first configuration parameter and the second configuration parameter may also be included in two messages . If the first configuration parameter and the second configuration parameter are included in two messages, the network device may send the first configuration parameter first and then send the second configuration parameter, or may send the second configuration parameter first and then the first configuration parameter, or It is also possible to send the first configuration parameter and the second configuration parameter at the same time.
  • the network device when the network device sends the first configuration parameter, it may also indicate that the first configuration parameter is used by the terminal device to determine whether the neighboring cell measurement relaxation condition is satisfied when the terminal device is in the measurement relaxation state of the serving cell.
  • the network device sends the second configuration parameter it may also indicate that the second configuration parameter is used by the terminal device to determine whether the neighbor cell measurement relaxation condition is satisfied when the terminal device is in the normal measurement state of the serving cell.
  • the terminal device can determine that the first configuration parameter is used to determine whether the terminal device satisfies the neighbor cell measurement relaxation condition when it is in the service cell measurement relaxation state, and after receiving the second configuration parameter, It may be determined that the second configuration parameter is used for the terminal device to determine whether the neighbor cell measurement relaxation condition is satisfied when the terminal device is in the normal measurement state of the serving cell.
  • S51 and S52 are based on the example in which the network device configures the first configuration parameter and the second configuration parameter for the terminal device.
  • the first configuration parameter and the second configuration parameter may not be configured by the network device, for example, may be pre-configured in the terminal device, or may also be specified by the protocol, etc., so that the network device does not need to determine the first configuration parameter and the second configuration Parameters, there is no need to send the first configuration parameter and the second configuration parameter to the terminal device, so S51 and S52 do not need to be executed, which helps to save signaling overhead. It can be seen that S51 and S52 are only optional steps and do not have to be performed, so they are represented by dashed lines in FIG. 5.
  • the terminal device determines that the terminal device is in a measurement relaxation state of the serving cell, or the terminal device determines that the terminal device satisfies the measurement relaxation condition of the serving cell.
  • the measurement relaxation condition of the serving cell is that the terminal device sets the reference value and threshold.
  • the terminal device measures the serving cell (or, for example, the measurement result can be RSRP, RSRQ, or SINR, etc., the measurement result can also be The result is called the measured value) and the reference value is less than or equal to the threshold, the terminal device determines that the terminal device is in the measurement relaxed state of the serving cell, otherwise, the terminal device determines that the terminal device is in the normal measurement state of the serving cell, or, It is determined that the terminal device is not in the measurement relaxed state of the serving cell.
  • the reference value and threshold may also be issued by the network device to the terminal device.
  • the terminal device may also use the method provided in the embodiment shown in FIG. 4 to determine that the terminal device is in the measurement relaxed state of the serving cell. For example, if the terminal device determines that the terminal device meets the first measurement report condition, it can be considered that the terminal device meets the measurement relaxation condition of the serving cell, or it can be considered that the terminal device enters the measurement relaxation state of the serving cell.
  • the terminal device From the time the terminal device enters the measurement relaxation state of the serving cell, until the terminal device exits the measurement relaxation state, during this period, the terminal device can determine that the terminal device is in the measurement relaxation state of the serving cell; or, determine the terminal device from the terminal device The first measurement report condition is met, and until the terminal device withdraws from the measurement relaxation state of the serving cell, during this period, the terminal device can determine that the terminal device is in the measurement relaxation state of the serving cell.
  • the introduction of the measurement relaxed state of the serving cell and the normal measurement state of the serving cell, etc. reference may be made to the description of the embodiment shown in FIG. 4.
  • the terminal device determines, according to the first configuration parameter, that the neighboring cell measurement relaxation condition is satisfied. For example, the terminal device determines whether the neighbor cell measurement relaxation condition is satisfied according to the first configuration parameter, and S54 is an example in which the terminal device determines that the neighbor cell measurement relaxation condition is satisfied.
  • the terminal device is configured with the first configuration parameter and the second configuration parameter. If the terminal device is in the service cell measurement relaxed state, the terminal device can use the first configuration parameter to determine whether the terminal device satisfies the neighbor cell measurement relaxed condition.
  • the terminal device can determine that the terminal device satisfies the neighbor cell measurement relaxation conditions: the relaxation monitoring criterion is met within the first time period, and the fourth time period since the last time the cell reselection measurement was performed, and, At least the first time period after selecting or reselecting a new cell, neighbor cell measurements have been performed.
  • the relaxation monitoring standard is met within the first time period, which can be understood as the relaxation monitoring standard is always met within the first time period.
  • the terminal device may determine whether the relaxed listening standard is satisfied multiple times during the first time period, and within the first time period, each determination result indicates that the relaxed listening standard is satisfied; or, the terminal device may only meet the relaxed listening standard during the first time period.
  • the relaxation monitoring standard is met once, and the result of this determination indicates that the relaxation monitoring standard is met. It has been less than the fourth time period since the last time the cell reselection measurement was performed. It can be understood that the time since the last measurement process for cell reselection was performed is less than the fourth time period.
  • the fourth duration is, for example, 24 hours, or other values may also be used.
  • the neighboring cell measurement has been performed for at least the first time period. It can be understood that the neighboring cell measurement has been performed during the third time period after entering the new cell through cell selection or cell reselection. It is measured that the third duration is greater than or equal to the first duration.
  • the first configuration parameter may include the information of the first duration, and the first duration is, for example, the aforementioned T SearchDeltaPrelax .
  • the first configuration parameter may further include a first threshold, and the first threshold, reference value, and current signal quality of the serving cell may be used to determine whether the loose monitoring standard is met.
  • the relaxed listening standard can satisfy the aforementioned formula 1, wherein S SearchDeltaP in formula 1 can be replaced with S SearchDeltaPrelax , and S SearchDeltaPrelax represents the first threshold.
  • the terminal device can determine whether it is necessary to perform measurement on the neighboring cell according to the information contained in the s-MeasureConfig cell in the RRC connection reconfiguration message. There is no need to perform measurement on the neighboring cell, and the terminal device does not perform the measurement on the neighboring cell. Or, if the terminal device determines that the terminal device satisfies the neighbor cell measurement relaxation condition, the terminal device may enter the neighbor cell measurement relaxation state. In the neighboring cell measurement relaxed state, the terminal device may not perform the measurement of the neighboring cell, or may also measure the neighboring cell at a lower frequency.
  • the terminal device determines that the terminal device is in the normal measurement state of the serving cell, or the terminal device determines that the terminal device does not meet the relaxation measurement condition of the serving cell.
  • the terminal device can set reference values and thresholds.
  • the terminal device determines that the terminal device is in the normal measurement state of the serving cell; otherwise, the terminal device determines that the terminal device is in the measurement relaxed state of the serving cell, or determines that the terminal device is not in the serving cell. Normal measurement state.
  • the reference value here and the reference value described in S53 may be the same reference value or different reference values, and the threshold here and the threshold described in S53 may be the same threshold or different thresholds.
  • the terminal device may also use the method provided in the embodiment shown in FIG. 4 to determine that the terminal device is in the normal measurement state of the serving cell. For example, if the terminal device determines that the terminal device satisfies the second measurement report condition, it can be considered that the terminal device does not meet the measurement relaxation condition of the serving cell, or it can be considered that the terminal device enters the normal state of measuring the serving cell. From the time the terminal device enters the normal measurement state of the serving cell until the terminal device exits the normal measurement state of the serving cell, during this period, the terminal device can determine that the terminal device is in the normal measurement state of the serving cell; or, the terminal device determines the The terminal device satisfies the second measurement report condition and starts until the terminal device exits from the normal measurement state.
  • the terminal device can determine that the terminal device is in the normal measurement state of the serving cell.
  • the terminal device determines whether the second measurement report condition is satisfied and the introduction of the measurement status of the serving cell and the normal measurement status of the serving cell, refer to the description of the embodiment shown in FIG. 4.
  • the terminal device determines, according to the second configuration parameter, that the neighbor cell measurement relaxation condition is satisfied. For example, the terminal device determines whether the neighbor cell measurement relaxation condition is satisfied according to the second configuration parameter, and S56 is an example in which the terminal device determines that the neighbor cell measurement relaxation condition is satisfied.
  • the terminal device can use the second configuration parameter to determine whether the terminal device satisfies the neighbor cell measurement relaxation condition.
  • the terminal device can determine that the terminal device satisfies the neighbor cell measurement relaxation conditions: the relaxation monitoring criterion is met within the second time period, less than 24 hours since the last cell reselection measurement was performed, and, After selecting or reselecting a new cell, at least a second time period has passed, and neighbor cell measurements have been performed.
  • the relaxation monitoring criterion is met within the second time period, less than 24 hours since the last cell reselection measurement was performed, and, After selecting or reselecting a new cell, at least a second time period has passed, and neighbor cell measurements have been performed.
  • the second configuration parameter may include information about the second duration, and the second duration is, for example, the aforementioned T SearchDeltaPnormal .
  • the second configuration parameter may also include a second threshold, and the second threshold, reference value, and current signal quality of the serving cell may be used to determine whether the relaxed monitoring standard is met.
  • the relaxed listening standard can satisfy the aforementioned formula 1, where S SearchDeltaP in formula 1 can be replaced with S SearchDeltaPnormal , and S SearchDeltaPnormal represents the second threshold.
  • the relaxed monitoring standard can satisfy the aforementioned formula 1, where S SearchDeltaP in formula 1 can be replaced with S SearchDeltaPnormal .
  • the terminal device can use two sets of parameters to determine whether the neighbor cell measurement relaxation conditions are met, namely, the first configuration parameter and the second configuration parameter.
  • the first configuration parameter is used for the terminal device in the measurement relaxation state of the serving cell. It is determined whether the neighbor cell measurement relaxation condition is met, and the second configuration parameter is used for the terminal device to determine whether the neighbor cell measurement relaxation condition is met under the normal measurement state of the serving cell.
  • the terminal device can easily exit from the neighboring cell measurement relaxed state when it is in the measuring relaxed state of the serving cell, so as to ensure the measurement of the neighboring cell as much as possible. , So that the terminal equipment can reselect the appropriate cell in time.
  • S55 and S56 are only optional steps and are not necessary to be performed, so they are represented by dashed lines in FIG. 5.
  • the terminal device measures the serving cell and determines the measurement result.
  • the measurement result can be used to characterize the received signal strength of the terminal device to the serving cell (or described as the signal strength of the terminal device receiving the serving cell, that is, the signal strength of the signal from the serving cell received by the terminal device) and/or the serving cell Signal quality.
  • the terminal device can be in the measurement relaxed state of the serving cell or in the normal measurement state of the serving cell. If it is in the measurement relaxed state of the serving cell, the terminal device is required to continue to measure the serving cell when it is in the measurement relaxed state of the serving cell. That is to say, if it is specified that the terminal device does not measure the serving cell when it is in the measurement relaxed state of the serving cell, it is not necessary to perform S57 and subsequent steps. It can also be seen that S57 and S58 and S59 which will be introduced later are only optional steps and are not required to be performed, so they are represented by dashed lines in FIG. 5. In addition, S57-S59 may occur before or after any one of the steps in the embodiment shown in FIG. 5, that is, the timing of occurrence of S57-S59 is not limited.
  • the measurement result is, for example, one or more of RSRP, RSRQ, or SINR.
  • the terminal device determines the measurement period corresponding to the measurement result.
  • the corresponding relationship between the measurement result and the measurement period can be established in advance, for example, the corresponding relationship between RSRP and the measurement period, or the corresponding relationship between RSRQ and the measurement period, or the relationship between the SINR and the measurement period can be established in advance.
  • the corresponding relationship can be established by the network device, and the network device can send the corresponding relationship to the terminal device; or, the corresponding relationship can be established by the terminal device itself, and the terminal device can also send the corresponding relationship to the network after the corresponding relationship is established.
  • Device; or, the corresponding relationship can also be pre-configured in the terminal device, or stipulated by agreement.
  • the measurement result can be used to characterize the signal quality of the serving cell and/or the received signal strength of the terminal device to the serving cell, for example, the better the signal quality of the serving cell and/or the received signal strength of the terminal device to the serving cell, the measurement result The larger the value of, or the worse the signal quality of the serving cell and/or the worse the received signal strength of the terminal device to the serving cell, the smaller the value of the measurement result.
  • the better the signal quality of the serving cell and/or the terminal equipment’s received signal strength to the serving cell the longer the length of the corresponding measurement period, or the signal quality of the serving cell and/or the terminal equipment’s strength to the serving cell.
  • the worse the received signal strength the shorter the length of the corresponding measurement period.
  • the length of the measurement period can be gradually increased, so that the terminal equipment can measure the serving cell more sparsely; and when the RSRP drops, it may indicate that the terminal equipment is moving to the edge of the serving cell, and the terminal equipment performs cell reset.
  • the probability of selection or handover is high, and the serving cell needs to be measured. Therefore, the measurement period can be gradually reduced, so that the terminal device tends to measure the serving cell more frequently.
  • the relationship between the value of the measurement result and the length of the measurement period is not limited to this.
  • the relationship between the value of the measurement result and the length of the measurement period may change.
  • the terminal device measures the serving cell of the terminal device according to the measurement period.
  • the terminal device After the terminal device determines the corresponding measurement period according to the corresponding relationship between the measurement result and the measurement period and the obtained measurement result, the terminal device can measure the serving cell of the terminal device according to the measurement period.
  • the measurement period is determined according to the measurement result of the terminal device, which is more in line with the current state of the terminal device, so that the terminal device's measurement of the serving cell can meet the needs of the terminal device, and the purpose of energy saving can be achieved as much as possible.
  • the corresponding relationship between the measurement result and the measurement period can only be applied when the terminal device is in the measuring relaxed state of the serving cell.
  • the premise is that the frequency of the terminal device measuring the network device when in the measuring relaxed state of the serving cell needs to be greater than 0. That is, the terminal device should continue to measure the serving cell when it is in the measurement relaxed state of the serving cell.
  • the corresponding relationship between the measurement result and the measurement period can be applied to both when the terminal device is in the measurement relaxed state of the serving cell, and can also be applied when the terminal device is in the normal measurement state of the serving cell. If this is the case, it is considered that the measurement period and the measurement result have a corresponding relationship, but for the terminal device, there may be no clear boundary between the measurement relaxed state of the serving cell and the normal measurement state of the serving cell, but a relative concept.
  • a measurement relaxed state of the serving cell is set for the terminal device to save the power consumption of the terminal device.
  • the terminal device when it is in the measurement relaxed state of the serving cell, it may also enter the neighboring cell measurement relaxed state, and the frequency at which the terminal device measures the neighboring cell may also be reduced accordingly.
  • the terminal device may continue to determine whether to stay in the neighboring cell measurement relaxed state. If the neighboring cell measurement relaxation condition is not met, the terminal device will exit the neighboring cell measurement relaxed state and perform normal operations on the neighboring cell. Measurement, and if the neighboring cell measurement relaxation condition is met, the terminal device will continue to stay in the neighboring cell measurement relaxation state.
  • the network device can configure two sets of parameters for the terminal device, namely the first configuration parameter and the second configuration parameter. Measurement relaxation conditions.
  • the second configuration parameter is used for the terminal device to determine whether the neighbor cell measurement relaxation conditions are met under the normal measurement state of the serving cell.
  • the terminal device can be in the measurement relaxation state of the serving cell and the neighbor cell measurement relaxation state. In the state, it is possible to exit the neighboring cell measurement relaxed state as easily as possible to ensure the measurement of the neighboring cell, so that the terminal device can reselect a suitable cell in time.
  • FIG. 7 is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 3 is taken as an example.
  • the method executed by the network device and the terminal device is taken as an example. Because this embodiment is applied to the network architecture shown in FIG. 3 as an example, the network device described below may be the network device in the network architecture shown in FIG. 3, and the terminal device described below may be Figure 3 shows the terminal equipment in the network architecture.
  • the terminal device measures the serving cell and determines the measurement result.
  • the measurement result can be used to characterize the received signal strength of the terminal device to the serving cell and/or the signal quality of the serving cell.
  • the terminal device can be in the measurement relaxed state of the serving cell or in the normal measurement state of the serving cell.
  • the measurement relaxed state of the serving cell and the normal measurement state of the serving cell reference may be made to the introduction of the embodiment shown in FIG. 4.
  • the terminal device is required to continue to measure the serving cell while in the measuring relaxed state of the serving cell. That is to say, if it is specified that the terminal device does not measure the serving cell when it is in the measuring relaxed state of the serving cell, it is not necessary to perform S71 and subsequent steps.
  • the measurement result is, for example, one or more of RSRP, RSRQ, or SINR.
  • the terminal device determines the measurement period corresponding to the measurement result.
  • the corresponding relationship between the measurement result and the measurement period can be established in advance, for example, the corresponding relationship between RSRP and the measurement period, or the corresponding relationship between RSRQ and the measurement period, or the relationship between the SINR and the measurement period can be established in advance.
  • the corresponding relationship can be established by the network device, and the network device can send the corresponding relationship to the terminal device; or, the corresponding relationship can be established by the terminal device itself, and the terminal device can also send the corresponding relationship to the network after the corresponding relationship is established.
  • Device; or, the corresponding relationship can also be pre-configured in the terminal device, or stipulated by agreement.
  • the measurement result can be used to characterize the signal quality of the serving cell and/or the received signal strength of the terminal device to the serving cell, for example, the better the signal quality of the serving cell and/or the received signal strength of the terminal device to the serving cell, the measurement result The larger the value of, or the worse the signal quality of the serving cell and/or the worse the received signal strength of the terminal device to the serving cell, the smaller the value of the measurement result.
  • the better the signal quality of the serving cell and/or the terminal equipment’s received signal strength to the serving cell the longer the length of the corresponding measurement period, or the signal quality of the serving cell and/or the terminal equipment’s strength to the serving cell.
  • the worse the received signal strength the shorter the length of the corresponding measurement period.
  • the terminal device measures the serving cell of the terminal device according to the measurement period.
  • the terminal device After the terminal device determines the corresponding measurement period according to the corresponding relationship between the measurement result and the measurement period and the obtained measurement result, the terminal device can measure the serving cell of the terminal device according to the measurement period.
  • the measurement period is determined according to the measurement result of the terminal device, which is more in line with the current state of the terminal device, so that the terminal device's measurement of the serving cell can meet the needs of the terminal device, and the purpose of energy saving can be achieved as much as possible.
  • the corresponding relationship between the measurement result and the measurement period can only be applied when the terminal device is in the measuring relaxed state of the serving cell.
  • the premise is that the frequency of the terminal device measuring the network device when in the measuring relaxed state of the serving cell needs to be greater than 0. That is, the terminal device should continue to measure the serving cell when it is in the measurement relaxed state of the serving cell.
  • the corresponding relationship between the measurement result and the measurement period can be applied to both when the terminal device is in the measurement relaxed state of the serving cell, and can also be applied when the terminal device is in the normal measurement state of the serving cell. If this is the case, it is considered that the measurement period and the measurement result have a corresponding relationship, but for the terminal device, there may be no clear boundary between the measurement relaxed state of the serving cell and the normal measurement state of the serving cell, but a relative concept.
  • S51 to S56 in the embodiment shown in FIG. 5 can also be executed.
  • S51 to S56 can be executed before S71, or can be executed after S71, or S71 to S73 can also occur in S51 to S56. Before or after any step. Among them, S51 to S56 are only optional steps, not mandatory.
  • the corresponding relationship between the measurement result and the measurement period is set, and the terminal device can determine the corresponding measurement period according to the measurement result, so as to measure the serving cell according to the determined measurement period.
  • the measurement result is RSRP.
  • the length of the measurement period can be gradually increased, so that the terminal equipment can measure the serving cell more sparsely, saving the power consumption of the terminal equipment; and the smaller the value of RSRP, it may indicate that the terminal equipment is on the edge of the serving cell.
  • the measurement period can be gradually reduced, so that the terminal equipment tends to measure the serving cell more frequently to meet the requirements of the terminal equipment. Mobility management.
  • FIG. 8 is a schematic block diagram of a communication device 800 provided by an embodiment of the application.
  • the communication device 800 is a terminal device 800, for example.
  • the terminal device 800 includes a processing module 810 and a transceiver module 820.
  • the terminal device 800 may be a terminal device, or may be a chip applied to the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 820 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 810 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more Central processing unit (central processing unit, CPU).
  • the transceiver module 820 may be a radio frequency unit, and the processing module 810 may be a processor, such as a baseband processor.
  • the transceiver module 820 may be an input/output interface of a chip (such as a baseband chip), and the processing module 810 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 810 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 820 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 810 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 7 except for the transceiving operations, such as S71, S74, S75, S78, and S79, and/or to support the text Other processes of the described technique.
  • the transceiver module 820 may be used to perform all the transceiver operations performed by the terminal device in the embodiment shown in FIG. 7, such as S72, S73, S76, and S77, and/or other processes used to support the technology described herein.
  • the transceiver module 820 can be a functional module that can complete both sending and receiving operations.
  • the transceiver module 820 can be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 7 And receiving operation, for example, when performing a sending operation, the transceiver module 820 can be considered as a sending module, and when performing a receiving operation, the transceiver module 820 can be considered as a receiving module; or, the transceiver module 820 can also be two functional modules, The transceiver module 820 can be regarded as a collective term for these two functional modules.
  • the two functional modules are respectively a sending module and a receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform the functions of the embodiment shown in FIG.
  • the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 7.
  • processing module 810 is configured to determine that the first measurement report condition is satisfied
  • the transceiver module 820 is configured to send the first information to the network device
  • the transceiver module 820 is further configured to receive second information from the network device, where the second information is used to instruct to enter the measurement relaxed state of the serving cell.
  • the first measurement report condition includes that the measurement result of the serving cell satisfies a first threshold within a first time period.
  • the processing module 810 is further configured to determine that the second measurement report condition is satisfied
  • the transceiver module 820 is also used to send third information to the network device;
  • the transceiver module 820 is further configured to receive fourth information from the network device, where the fourth information is used to indicate the normal measurement state of the serving cell.
  • the second measurement report condition includes that the measurement result of the serving cell meets a second threshold within a second time period.
  • the processing module 810 is further configured to determine that the serving cell enters the normal measurement state after the third time period has elapsed.
  • the second information is further used to indicate the third duration.
  • terminal device 800 For other functions that can be implemented by the terminal device 800, reference may be made to the related introduction of the embodiment shown in FIG. 7 and will not be described in detail.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the application.
  • the communication device 900 is a network device 900, for example.
  • the network device 900 includes a processing module 910 and a transceiver module 920.
  • the network device 900 may be a network device, or may be a chip applied to the network device or other combination devices or components having the functions of the above-mentioned network device.
  • the transceiver module 920 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 910 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more CPU.
  • the transceiver module 920 may be a radio frequency unit, and the processing module 910 may be a processor, such as a baseband processor.
  • the transceiver module 920 may be an input/output interface of a chip (such as a baseband chip), and the processing module 910 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 910 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 920 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 910 may be used to perform all operations performed by the network device in the embodiment shown in FIG. 7 except for the transceiving operation, for example, the operation of determining that the terminal device can enter the serving cell measurement relaxed state according to the first information, And/or other processes used to support the technology described herein.
  • the transceiving module 920 may be used to perform all the transceiving operations performed by the network device in the embodiment shown in FIG. 7, such as S72, S73, S76, and S77, and/or other processes used to support the technology described herein.
  • transceiver module 920 for the implementation of the transceiver module 920, reference may be made to the introduction of the implementation of the transceiver module 820.
  • the transceiver module 920 is configured to receive first information from a terminal device
  • the transceiver module 920 is further configured to send second information to the terminal device, where the second information is used to instruct to enter the measurement relaxed state of the serving cell.
  • the transceiver module 920 is configured to receive first information from a terminal device
  • the processing module 910 is configured to determine, according to the first information, that the terminal device can enter the measurement relaxed state of the serving cell;
  • the transceiver module 920 is further configured to send second information to the terminal device, where the second information is used to instruct to enter the measurement relaxed state of the serving cell.
  • the transceiver module 920 is also used to:
  • the second information is further used to indicate a third time period, where the third time period is used to enter the serving cell normal measurement state after the third time period has elapsed. .
  • FIG. 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the application.
  • the communication apparatus 1000 is, for example, a terminal device 1000.
  • the terminal device 1000 includes a processing module 1010 and a transceiver module 1020.
  • the terminal device 1000 may be a terminal device, or a chip applied in the terminal device, or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 1020 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 1010 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more CPU.
  • the transceiver module 1020 may be a radio frequency unit, and the processing module 1010 may be a processor, such as a baseband processor.
  • the transceiver module 1020 may be an input/output interface of a chip (such as a baseband chip), and the processing module 1010 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 1010 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 1020 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 1010 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 4 except for the transceiving operations, such as S43 to S49, and/or other operations used to support the technology described herein. process.
  • the transceiving module 1020 may be used to perform all the transceiving operations performed by the terminal device in the embodiment shown in FIG. 4, such as S42, and/or other processes used to support the technology described herein.
  • transceiver module 1020 for the implementation of the transceiver module 1020, reference may be made to the introduction of the implementation of the transceiver module 820.
  • the transceiver module 1020 is used to communicate with other communication devices;
  • the processing module 910 is configured to determine that it is in a measurement relaxed state of the serving cell
  • the processing module 910 is further configured to determine that the neighboring cell measurement relaxation condition is satisfied according to the first configuration parameter, where the first configuration parameter is different from the second configuration parameter, and the second configuration parameter is used for normal measurement in the serving cell. When determining the neighboring area to measure relaxation conditions.
  • the processing module 910 is configured to use the first configuration parameter to determine whether the neighbor cell measurement relaxation condition is satisfied in the following manner: when the following conditions are met, determine that the neighbor cell measurement relaxation condition is satisfied:
  • the relaxed monitoring standard is met within the first time period
  • the first configuration parameter includes information of the first duration.
  • the first configuration parameter includes a first threshold, and the first threshold, a reference value, and the current quality of the serving cell are used to determine that the relaxed monitoring standard is satisfied.
  • processing module 910 is further configured to:
  • the measurement result is used to indicate the received signal strength of the serving cell.
  • FIG. 11 is a schematic block diagram of a communication device 1100 according to an embodiment of the application.
  • the communication device 1100 is, for example, a network device 1100.
  • the network device 1100 includes a processing module 1110 and a transceiver module 1120.
  • the network device 1100 may be a network device, or may be a chip applied in the network device or other combination devices, components, etc. having the functions of the network device described above.
  • the transceiver module 1120 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 1110 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more CPU.
  • the transceiver module 1120 may be a radio frequency unit, and the processing module 1110 may be a processor, such as a baseband processor.
  • the transceiver module 1120 may be an input/output interface of a chip (such as a baseband chip), and the processing module 1110 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 1110 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 1120 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 1110 may be used to perform all operations other than the transceiving operation performed by the network device in the embodiment shown in FIG. 4, such as S41, and/or other processes used to support the technology described herein.
  • the transceiver module 1120 may be used to perform all the transceiver operations performed by the network device in the embodiment shown in FIG. 4, such as S91, S93, S42, and/or other processes used to support the technology described herein.
  • transceiver module 1120 reference may be made to the introduction of the implementation of the transceiver module 820.
  • the processing module 1110 is configured to determine a first configuration parameter and a second configuration parameter, where the first configuration parameter is used to determine a neighboring cell measurement relaxation condition when the serving cell is in a measurement relaxation state, and the second configuration parameter Used to determine the neighbor cell measurement relaxation condition when the serving cell is in a normal measurement state, and the first configuration parameter is different from the second configuration parameter;
  • the transceiver module 1120 is configured to send the first configuration parameter and the second configuration parameter to a terminal device.
  • FIG. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the application.
  • the communication apparatus 1200 is, for example, a terminal device 1200.
  • the terminal device 1200 includes a processing module 1210 and a transceiver module 1220.
  • the terminal device 1200 may be a terminal device, or may be a chip applied to the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 1220 may be a transceiver.
  • the transceiver may include an antenna and a radio frequency circuit.
  • the processing module 1210 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more CPU.
  • the transceiver module 1220 may be a radio frequency unit, and the processing module 1210 may be a processor, such as a baseband processor.
  • the transceiver module 1220 may be an input/output interface of a chip (such as a baseband chip), and the processing module 1210 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 1210 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 1220 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 1210 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 6 except for the transceiving operations, such as S61 to S63, and/or other operations used to support the technology described herein. process.
  • the transceiving module 1220 can be used to perform all the transceiving operations performed by the terminal device in the embodiment shown in FIG. 6, such as receiving reference signals from the serving device (so that the processing module 1210 can measure the serving cell), and/ Or other processes used to support the technology described in this article.
  • transceiver module 1220 reference may be made to the introduction of the implementation of the transceiver module 1520.
  • the transceiver module 1220 is used to communicate with other communication devices;
  • the processing module 1210 is used to measure the serving cell and determine the measurement result
  • the processing module 1210 is further configured to determine the measurement period corresponding to the measurement result
  • the processing module 1210 is further configured to measure the serving cell according to the measurement period.
  • the measurement result is used to indicate the received signal strength of the serving cell.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 13 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 13 only one memory and processor are shown in FIG. 13. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with transceiving functions can be regarded as the transceiving unit of the terminal device (the transceiving unit can be a functional unit that can realize the sending and receiving functions; or the transceiving unit can also be It includes two functional units, namely a receiving unit capable of realizing the receiving function and a transmitting unit capable of realizing the transmitting function), and the processor with the processing function is regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1310 and a processing unit 1320.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1310 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1310 as the sending unit, that is, the transceiver unit 1310 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1310 is configured to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1320 is configured to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the processing unit 1320 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 7 except for receiving and sending operations, such as S71, S74, S75, S78, and S79. And/or other processes used to support the technology described herein.
  • the transceiving unit 1310 may be used to perform all the transceiving operations performed by the terminal device in the embodiment shown in FIG. 7, such as S72, S73, S76, and S77, and/or other processes used to support the technology described herein.
  • the processing unit 1320 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 4 except for the receiving and sending operations, such as S43 to S49, and/or for Other processes that support the technology described in this article.
  • the transceiving unit 1310 may be used to perform all the transceiving operations performed by the terminal device in the embodiment shown in FIG. 4, such as S42, and/or other processes used to support the technology described herein.
  • the processing unit 1320 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 6 except for receiving and sending operations, such as S61 to S63, and/or for Other processes that support the technology described in this article.
  • the transceiving unit 1310 may be used to perform all the transceiving operations performed by the terminal device in the embodiment shown in FIG. 6, such as receiving reference signals from the serving device (so that the processing module 1210 can measure the serving cell), and/ Or other processes used to support the technology described in this article.
  • the device may include a transceiver unit and a processing unit.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the device shown in FIG. 14 can be referred to.
  • the device can perform functions similar to the processing module 810 in FIG. 8.
  • the device can perform functions similar to the processing module 1010 in FIG. 10.
  • the device can perform functions similar to the processing module 1210 in FIG. 12.
  • the device includes a processor 1410, a data sending processor 1420, and a data receiving processor 1430.
  • the processing module 810 in the foregoing embodiment may be the processor 1410 in FIG. 14 and complete corresponding functions;
  • the transceiving module 820 in the foregoing embodiment may be the sending data processor 1420 in FIG. 14 and/or receiving data Processor 1430, and complete the corresponding functions.
  • the processing module 1010 in the foregoing embodiment may be the processor 1410 in FIG. 14 and complete corresponding functions; the transceiver module 1020 in the foregoing embodiment may be the sending data processor 1420 in FIG. 14, and/or Receive data processor 1430 and complete corresponding functions.
  • the processing module 1210 in the foregoing embodiment may be the processor 1410 in FIG. 14 and complete corresponding functions; the transceiving module 1220 in the foregoing embodiment may be the sending data processor 1420 in FIG. 14, and/or Receive data processor 1430 and complete corresponding functions.
  • the channel encoder and the channel decoder are shown in FIG. 14, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1500 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1503 and an interface 1504.
  • the processor 1503 completes the function of the aforementioned processing module 810
  • the interface 1504 completes the function of the aforementioned transceiver module 820.
  • the processor 1503 completes the function of the aforementioned processing module 1010
  • the interface 1504 completes the function of the aforementioned transceiver module 1020.
  • the processor 1503 completes the function of the aforementioned processing module 1210, and the interface 1504 completes the function of the aforementioned transceiver module 1220.
  • the modulation subsystem includes a memory 1506, a processor 1503, and a program stored in the memory 1506 and running on the processor. When the processor 1503 executes the program, the terminal device side in the above method embodiment is implemented. Methods. It should be noted that the memory 1506 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1500, as long as the memory 1506 can be connected to the The processor 1503 is fine.
  • the device 1600 includes one or more radio frequency units, such as a remote radio unit (RRU) 1610 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1620 .
  • RRU 1610 may be referred to as a transceiver module, and the transceiver module may include a transmitting module and a receiving module, or the transceiver module may be a module capable of implementing functions of transmitting and receiving.
  • the transceiver module may correspond to the transceiver module 920 in FIG. 9. Alternatively, the transceiver module may correspond to the transceiver module 1120 in FIG. 11.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1611 and a radio frequency unit 1612.
  • the RRU 1610 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 1610 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 1610 and the BBU 1620 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1620 is the control center of the base station, and may also be called a processing module. It may correspond to the processing module 910 in FIG. 9 or the processing module 1110 in FIG. 11, and is mainly used to complete baseband processing functions, such as channel coding. , Multiplexing, modulation, spread spectrum and so on.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1620 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1620 also includes a memory 1621 and a processor 1622.
  • the memory 1621 is used to store necessary instructions and data.
  • the processor 1622 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1621 and the processor 1622 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the embodiment of the present application provides a first communication system.
  • the first communication system may include the terminal device involved in the embodiment shown in FIG. 7 and the network device involved in the embodiment shown in FIG. 7.
  • the terminal device is, for example, the terminal device 800 in FIG. 8.
  • the network device is, for example, the network device 900 in FIG. 9.
  • the embodiment of the present application provides a second communication system.
  • the second communication system may include the terminal device involved in the embodiment shown in FIG. 4 and the network device involved in the embodiment shown in FIG. 4.
  • the terminal device is, for example, the terminal device 1000 in FIG. 10.
  • the network device is, for example, the network device 1100 in FIG. 11.
  • the embodiment of the present application provides a third communication system.
  • the third communication system may include the terminal device involved in the embodiment shown in FIG. 6 described above.
  • the third communication system may further include the network device described in the embodiment shown in FIG. 6.
  • the terminal device is, for example, the terminal device 1200 in FIG. 12.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a computer, the computer can implement the method shown in FIG. 7 provided by the foregoing method embodiment. The process related to the network device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 7 provided by the foregoing method embodiment.
  • the process related to the terminal device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a computer, the computer can implement the method shown in FIG. 4 provided by the foregoing method embodiment. The process related to the network device in the embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 4 provided by the foregoing method embodiment.
  • the process related to the terminal device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a computer, the computer can implement the method shown in FIG. 6 provided by the above-mentioned method embodiment. The process related to the terminal device in the embodiment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 7 provided by the above method embodiment Processes related to network equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 7 provided by the above method embodiment Processes related to terminal equipment.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 4 provided by the above method embodiment Processes related to network equipment.
  • the embodiment of the present application also provides a computer program product, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 4 provided by the foregoing method embodiment. Processes related to terminal equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 6 provided by the above method embodiment Processes related to terminal equipment.
  • processors mentioned in the embodiments of this application may be a CPU, or other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium may be any available medium that can be accessed by a computer.
  • computer-readable media can include random access memory (RAM), read-only memory (ROM), and electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • USB flash disk universal serial bus flash disk
  • mobile hard disk or other optical disk storage
  • disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种测量方法及装置。终端设备如果确定满足第一测量上报条件,则向网络设备发送第一信息。网络设备接收第一信息后向终端设备发送第二信息,终端设备接收来自网络设备的第二信息,第二信息用于指示进入服务小区测量放松状态。在本申请实施例中,如果终端设备满足第一测量上报条件,则表明终端设备进行小区切换或重选的可能性较小,例如终端设备可能处于服务小区的中心,或者移动性较低,或者活动范围较小等。对于这样的终端设备,如果对服务小区进行频繁的测量,相当于是不必要的测量过程,耗电较大。因此对于这样的终端设备,网络设备可以指示其进入服务小区测量放松状态,减少对服务小区的测量过程,以达到节电的目的。

Description

一种测量方法及装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种测量方法及装置。
背景技术
移动性管理是无线移动通信中的重要组成部分。它指的是为了保证网络与终端设备之间的通信链路不因终端设备的移动而中断所涉及到的相关操作的统称。根据终端设备的状态,移动性管理大致上可以分为无线资源控制(radio resource control,RRC)空闲态(RRC_idle state)移动性管理和RRC连接态(RRC_connected state)移动性管理两部分。在RRC空闲态下,移动性管理主要指的是小区选择/重选(cell selection/reselection)的过程,在RRC连接态下,移动性管理主要指的是小区切换(handover)过程。不论是小区选择/重选还是小区切换,都是基于终端设备的测量结果进行的。因此,终端设备的测量是移动性管理的基础。
终端设备的测量,包括测量终端设备的服务小区,还包括测量该服务小区的相邻小区(也简称为邻区),例如测量与该服务小区属于同一通信系统的邻区,或者测量与该服务小区属于异系统的邻区。目前,终端设备对服务小区的测量过程是始终进行的,对邻区的测量是需要在满足一定条件的前提下才启动。且针对邻区测量还设置了邻区测量放松条件,如果满足邻区测量放松条件,则终端设备可以不执行对邻区的测量。通过这些方式,可以减小终端设备因测量所带来的功耗。
对于一些终端设备来说,例如对于处于静止状态的终端设备,或者移动速度较慢的终端设备,或者处于小区中心的终端设备,进行小区重选或小区切换的几率是较低的。但终端设备对服务小区的测量过程始终在进行,而这样的终端设备持续对服务小区进行测量,对于测量结果的利用率不高,可以认为都是不必要的测量过程,还导致终端设备的功耗较高。
发明内容
本申请实施例提供一种测量方法及装置,用于减小终端设备的功耗。
第一方面,提供第一种测量方法,该方法包括:确定满足第一测量上报条件;向网络设备发送第一信息;接收来自所述网络设备的第二信息,所述第二信息用于指示进入服务小区测量放松状态。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第一通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。在下文的介绍过程中,以第一通信装置是终端设备为例。
在本申请实施例中,终端设备可以确定是否满足第一测量上报条件,如果满足第一测量上报条件,则表明终端设备进行小区切换或重选的可能性较小,例如终端设备可能处于服务小区的中心,或者移动性较低,或者活动范围较小等。对于这样的终端设备,如果对 服务小区进行频繁的测量,相当于是不必要的测量过程,耗电较大。因此对于这样的终端设备,网络设备可以指示其进入服务小区测量放松状态,减少对服务小区的测量过程,以达到节电的目的。
在一种可选的实施方式中,所述第一测量上报条件包括,所述服务小区的信号质量(或者,对服务小区进行测量所获得的测量结果,或者,终端设备对服务小区的接收信号强度)在第一时长内满足第一阈值。
例如,服务小区的测量结果满足第一阈值,可以包括,终端设备在第四时长内对该服务小区进行测量所得到的测量结果(或者,也可以将测量结果称为测量值)满足第一阈值。例如,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值,可以是指终端设备在第四时长内对该服务小区进行测量所得到的N个测量结果满足第一阈值,N个测量结果可以是在第四时长内终端设备获得的全部测量结果或部分测量结果。或者,也可以没有第四时长的概念,服务小区的信号质量满足第一阈值,可以包括,终端设备对该服务小区进行测量所得到的N个测量结果(或者,称为测量值)满足第一阈值。此时的N个测量结果可以理解为是数量为N的测量结果集合。其中,N可以是大于或等于1的整数。
如果N大于1,则这N个测量结果可以是连续的N次测量对应的N个测量结果,或者这N个测量结果对应的N次测量也可以不是连续进行的。如果N大于1,例如,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值可以包括实现方式1。实现方式1例如为,这N个测量值中,每相邻的K个测量值之间的差值(或方差等)小于或等于第一子阈值;或者,实现方式1例如为,每相邻的K个测量值之间的差值(或方差等)与第一迟滞参数的和值(或,差值)小于或等于第一子阈值;或者,实现方式1例如为,N个测量值中任意的K个测量值之间的差值(或方差等)小于或等于第一子阈值;或者,实现方式1例如为,N个测量值中任意的K个测量值之间的差值(或方差等)与第一迟滞参数的和值(或,差值)小于或等于第一子阈值。其中,在实现方式1中,第一阈值可以是第一子阈值,满足第一阈值是指,小于或等于第一阈值。K为大于或等于2的整数,且K小于或等于N。又例如,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值可以包括实现方式2,实现方式2例如为,N个测量值和第一参考值(或者,也可以称为第二迟滞参数)满足第一阈值,此时N可以等于1也可以大于1。例如,实现方式2可以具体实现为,N个测量值中的每个测量值与第一参考值之间的差值(或所有差值的方差等)大于或等于第二子阈值;或者,N个测量值中的每个测量值与第一参考值之间的差值(或所有差值的方差等)大于或等于第二子阈值。在实现方式2中,第一阈值可以是第二子阈值,满足第一阈值是指,大于或等于第一阈值。其中,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值可以包括实现方式1,或者包括实现方式2,或者包括实现方式1和实现方式2。在一种可选的实施方式中,所述方法还包括:
确定满足第二测量上报条件;
向网络设备发送第三信息;
接收来自所述网络设备的第四信息,所述第四信息用于指示进入服务小区正常测量状态。
终端设备在进入服务小区测量放松状态后,还可以确定是否满足第二测量上报条件, 如果满足第二测量上报条件,则表明终端设备进行小区切换或重选的可能性较大,例如终端设备可能处于服务小区的边缘,或者移动性较高,或者活动范围较大等,对于这样的终端设备,如果对服务小区的测量过于稀疏,可能会导致终端设备错过小区重选或小区切换的时机。因此对于这样的终端设备,网络设备可以指示其进入服务小区正常测量状态,增加对服务小区的测量过程,以达到及时进行小区重选或小区切换的目的。
在一种可选的实施方式中,所述第二测量上报条件包括,所述服务小区的信号质量(或者,对服务小区进行测量所获得的测量结果,或者,终端设备对服务小区的接收信号强度)在第二时长内满足第二阈值。
例如,服务小区的测量结果满足第二阈值,可以包括,终端设备在第五时长内对该服务小区进行测量所得到的测量结果(或者,如果测量结果为RSRP、RSRQ或SINR等,则也可以将测量结果称为测量值)满足第二阈值。例如,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值,可以是指终端设备在第五时长内对该服务小区进行测量所得到的N个测量结果满足第二阈值,N个测量结果可以是在第五时长内终端设备获得的全部测量结果或部分测量结果。或者,也可以没有第五时长的概念,服务小区的信号质量满足第二阈值,可以包括,终端设备对该服务小区进行测量所得到的N个测量结果(或者,称为测量值)满足第二阈值。此时的N个测量结果可以理解为是数量为N的测量结果集合。其中,N可以是大于或等于1的整数。
如果N大于1,则这N个测量结果可以是连续的N次测量对应的N个测量结果,或者这N个测量结果对应的N次测量也可以不是连续进行的。如果N大于1,例如,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值可以包括实现方式3。实现方式3例如为,这N个测量值中,每相邻的K个测量值之间的差值(或方差等)大于或等于第三子阈值;或者,实现方式3例如为,每相邻的K个测量值之间的差值(或方差等)与第三迟滞参数的和值(或,差值)大于或等于第三子阈值;或者,实现方式3例如为,N个测量值中任意的K个测量值之间的差值(或方差等)大于或等于第三子阈值;或者,实现方式3例如为,N个测量值中任意的K个测量值之间的差值(或方差等)与第三迟滞参数的和值(或,差值)大于或等于第三子阈值。在实现方式3中,第二阈值为第三子阈值,满足第二阈值是指,大于或等于第二阈值。其中,K为大于或等于2的整数,且K小于或等于N。又例如,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值可以包括实现方式4,实现方式4例如为,N个测量值和第二参考值(或者,也可以称为第四迟滞参数)满足第二阈值,此时N可以等于1也可以大于1。实现方式4可以具体实现为,N个测量值中的每个测量值与第二参考值之间的差值(或所有差值的方差等)小于或等于第四子阈值;或者,N个测量值中的每个测量值与第二参考值之间的差值(或所有差值的方差等)小于或等于第四子阈值。在实现方式4中,第二阈值为第四子阈值,满足第二阈值是指,小于或等于第二阈值。其中,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值可以包括实现方式3,或者包括实现方式4,或者包括实现方式3和实现方式4。
在一种可选的实施方式中,所述方法还包括:
确定经过第三时长后,进入服务小区正常测量状态。
终端设备在进入服务小区测量放松状态后,可以通过判断是否满足第二测量上报条件来确定是否退出服务小区测量放松状态,或者,终端设备也可以无需判断第二测量上报条 件,而是,终端设备在服务小区测量放松状态停留第三时长后,为了减少错过小区重选机会的概率,可以重新进入服务小区正常测量状态,以正常对服务小区进行测量。通过这种方式,无需网络设备的指示,终端设备就能恢复对服务小区的正常测量,有助于节省信令开销。
在一种可选的实施方式中,所述第二信息还用于指示所述第三时长。
第三时长可以由网络设备配置给终端设备,例如网络设备可以通过第三信息指示第三时长;或者,第三时长可以由终端设备自行确定;或者,第三时长也可以通过协议规定等。
第二方面,提供第二种测量方法,该方法包括:接收来自终端设备的第一信息;向所述终端设备发送第二信息,所述第二信息用于指示进入服务小区测量放松状态。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第二通信装置为网络设备,或者为设置在网络设备中的用于实现网络设备的功能的芯片,或者为用于实现网络设备的功能的其他部件。在下文的介绍过程中,以第二通信装置是网络设备为例。
在一种可选的实施方式中,所述方法还包括:
接收来自所述终端设备的第三信息;
向所述终端设备发送第四信息,所述第四信息用于指示进入服务小区正常测量状态。
在一种可选的实施方式中,所述第二信息还用于指示第三时长,其中,所述第三时长用于在经过所述第三时长后,所述终端设备进入服务小区正常测量状态。
关于第二方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供第三种测量方法,该方法包括:确定处于服务小区测量放松状态;根据第一配置参数确定满足邻区测量放松条件,其中,所述第一配置参数与第二配置参数不同,所述第二配置参数用于在处于服务小区正常测量状态时确定邻区测量放松条件。
该方法可由第三通信装置执行,第三通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第三通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。在下文的介绍过程中,以第三通信装置是终端设备为例。
在本申请实施例中,设置了服务小区测量放松状态,在服务小区测量放松状态下,终端设备对服务小区进行测量的频率较低,或者对服务小区的测量次数较少,这样可以节省终端设备的功耗。
另外,终端设备在处于服务小区测量放松状态时,也可能会进入邻区测量放松状态,则终端设备对邻区进行测量的频率可能也会相应降低。在处于邻区测量放松状态时,终端设备可能会继续确定是否要停留在邻区测量放松状态,如果不满足邻区测量放松条件,则终端设备会退出邻区测量放松状态,对邻区进行正常测量,而如果满足邻区测量放松条件,则终端设备会继续停留在邻区测量放松状态。如果终端设备无法退出邻区测量放松状态,则终端设备对邻区无法正常测量,可能导致终端设备错过进行小区重选的时机。因此在本申请实施例中,可以为终端设备配置两套参数,即第一配置参数和第二配置参数,第一配置参数用于终端设备在服务小区测量放松状态下确定是否满足邻区测量放松条件,第二配置参数用于终端设备在服务小区正常测量状态下确定是否满足邻区测量放松条件,通过第一配置参数,可以使得终端设备在处于服务小区测量放松状态和邻区测量放松状态时,尽 量能够较为容易地退出邻区测量放松状态,保证对邻区的测量,使得终端设备能够及时重选到合适的小区。
在一种可选的实施方式中,使用第一配置参数确定是否满足邻区测量放松条件,包括:在满足以下条件时,确定满足所述邻区测量放松条件:
放松监听标准在第一时长内得到满足;
自从上次执行小区重选测量以来不到第四时长;以及,
在选择或重选新小区之后至少所述第一时长内,已经执行过邻区测量;
其中,所述第一配置参数包括所述第一时长的信息。
其中,放松监听标准在第一时长内得到满足,可以理解为,在第一时长内获得的所有的测量结果均满足放松监听标准。自从上次执行小区重选测量以来不到第四时长,可以理解为,距离最近一次执行用于小区重选的测量的时间小于第四时长。第四时长例如为24小时,或者也可以是其他时长。在选择或重选新小区之后至少第一时长内,已经执行过邻区测量,可以理解为,在通过小区重选或小区选择进入新小区后,至少在第一时长内已执行过邻区测量。这里给出了一种判断邻区测量放松条件的方式,除此之外其他的判断邻区测量放松条件的方式也在本申请实施例的保护范围内。
在一种可选的实施方式中,所述第一配置参数包括第一阈值,所述第一阈值、参考值以及所述服务小区当前的质量用于确定满足所述放松监听标准。
例如,服务小区当前的质量与参考值之间的差值小于第一阈值,就表明满足放松监听标准,否则,就表明不满足放松监听标准。
在一种可选的实施方式中,所述方法还包括:
对所述服务小区进行测量,确定测量结果;
确定所述测量结果对应的测量周期;
根据所述测量周期对所述服务小区进行测量。
例如,可以事先建立测量结果与测量周期之间的对应关系,例如事先建立RSRP与测量周期之间的对应关系,或者建立RSRQ与测量周期之间的对应关系,或者建立SINR与测量周期之间的对应关系,等等。该对应关系可以由网络设备建立,网络设备可以将该对应关系发送给终端设备;或者,该对应关系可以由终端设备自行建立,终端设备在建立该对应关系后也可以将该对应关系发送给网络设备;或者,该对应关系也可以预配置在终端设备中,或者通过协议规定等。终端设备在根据测量结果与测量周期的对应关系以及获得的测量结果确定对应的测量周期后,就可以根据该测量周期对终端设备的服务小区进行测量。该测量周期是根据终端设备的测量结果确定的,较为符合终端设备当前的状态,使得终端设备对服务小区的测量能够满足终端设备的需求,且可以尽量实现节能的目的。
在一种可选的实施方式中,
所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的信号质量;和/或,
所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的接收信号强度。
其中,服务小区的接收信号强度,例如为终端设备对服务小区的接收信号强度。例如, 测量结果的取值越大,对应的测量周期的长度越长,或,测量结果的取值越小,对应的测量周期的长度越短。因为测量结果可以用于表征服务小区的信号质量,例如,服务小区的信号质量越好,则测量结果的取值会越大,或,服务小区的信号质量越差,则测量结果的取值会越小。因此也可以认为,服务小区的信号质量越好,对应的测量周期的长度越长,或,服务小区的信号质量越差,对应的测量周期的长度越短。或者,测量结果可以用于表征服务小区的接收信号强度,例如,服务小区的接收信号强度越好,则测量结果的取值会越大,或,服务小区的接收信号强度越差,则测量结果的取值会越小。因此也可以认为,服务小区的接收信号强度越好,对应的测量周期的长度越长,或,服务小区的接收信号强度越差,对应的测量周期的长度越短。
第四方面,提供第四种测量方法,该方法包括:确定第一配置参数和第二配置参数,其中,所述第一配置参数用于在处于服务小区测量放松状态时确定邻区测量放松条件,所述第二配置参数用于在处于服务小区正常测量状态时确定所述邻区测量放松条件,且所述第一配置参数与第二配置参数不同;向终端设备发送所述第一配置参数和所述第二配置参数。
该方法可由第四通信装置执行,第四通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第四通信装置为网络设备,或者为设置在网络设备中的用于实现网络设备的功能的芯片,或者为用于实现网络设备的功能的其他部件。在下文的介绍过程中,以第四通信装置是网络设备为例。
关于第四方面的一些可选的实施方式所带来的技术效果,也可参考对于第三方面或相应的实施方式的技术效果的介绍。
第五方面,提供第五种通信方法,该方法包括:对服务小区进行测量,确定测量结果;确定所述测量结果对应的测量周期;根据所述测量周期对所述服务小区进行测量。
该方法可由第五通信装置执行,第五通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第五通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。在下文的介绍过程中,以第五通信装置是终端设备为例。
在本申请实施例中,设置了测量结果与测量周期之间的对应关系,终端设备可以根据测量结果来确定对应的测量周期,以根据确定的测量周期对服务小区进行测量。例如测量结果为RSRP,RSRP的取值越大,则可能表明终端设备在向服务小区的中心位置移动,此时终端设备进行小区重选或切换的概率较小,因此无需对服务小区进行过多的测量,此时测量周期的长度可以逐渐增大,使得终端设备对服务小区的测量较为稀疏,节省终端设备的功耗;而RSRP的取值越小,可能表明终端设备在向服务小区的边缘位置移动,此时终端设备进行小区重选或切换的概率较高,需要对服务小区进行测量,因此测量周期可以逐渐减小,使得终端设备对服务小区的测量趋于频繁,以满足终端设备的移动性管理。
在一种可选的实施方式中,
所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的信号质量;和/或,
所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指 示所述服务小区的接收信号强度。
例如,测量结果的取值越大,对应的测量周期的长度越长,或,测量结果的取值越小,对应的测量周期的长度越短。因为测量结果可以用于表征服务小区的信号质量,例如,服务小区的信号质量越好,则测量结果的取值会越大,或,服务小区的信号质量越差,则测量结果的取值会越小。因此也可以认为,服务小区的信号质量越好,对应的测量周期的长度越长,或,服务小区的信号质量越差,对应的测量周期的长度越短。或者,测量结果可以用于表征服务小区的接收信号强度,例如,服务小区的接收信号强度越好,则测量结果的取值会越大,或,服务小区的接收信号强度越差,则测量结果的取值会越小。因此也可以认为,服务小区的接收信号强度越好,对应的测量周期的长度越长,或,服务小区的接收信号强度越差,对应的测量周期的长度越短。
第六方面,提供一种通信装置,例如该通信装置为如前所述的第一通信装置。所述第一通信装置用于执行上述第一方面或任一可能的实施方式中的方法。具体地,所述第一通信装置可以包括用于执行第一方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为网络设备。下面以第一通信装置是终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第六方面的介绍过程中,继续以所述第一通信装置是终端设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于确定满足第一测量上报条件;
所述收发模块,用于向网络设备发送第一信息;
所述收发模块,还用于接收来自所述网络设备的第二信息,所述第二信息用于指示进入服务小区测量放松状态。
在一种可选的实施方式中,所述第一测量上报条件包括,所述服务小区的信号质量在第一时长内满足第一阈值。
在一种可选的实施方式中,
所述处理模块,还用于确定满足第二测量上报条件;
所述收发模块,还用于向网络设备发送第三信息;
所述收发模块,还用于接收来自所述网络设备的第四信息,所述第四信息用于指示进入服务小区正常测量状态。
在一种可选的实施方式中,所述第二测量上报条件包括,所述服务小区的信号质量在第二时长内满足第二阈值。
在一种可选的实施方式中,所述处理模块,还用于确定经过第三时长后,进入服务小区正常测量状态。
在一种可选的实施方式中,所述第二信息还用于指示所述第三时长。
关于第六方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第七方面,提供一种通信装置,例如该通信装置为如前所述的第二通信装置。所述第二通信装置用于执行上述第二方面或任一可能的实施方式中的方法。具体地,所述第二通信装置可以包括用于执行第二方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为网络设备。下面以第二通信装置是网络设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第二通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第七方面的介绍过程中,继续以所述第二通信装置是终端设备,以及,以所述处理模块和所述收发模块为例进行介绍。
其中,
所述收发模块,用于接收来自终端设备的第一信息;
所述收发模块,还用于向所述终端设备发送第二信息,所述第二信息用于指示进入服务小区测量放松状态。
或者,
所述收发模块,用于接收来自终端设备的第一信息;
所述处理模块,用于根据所述第一信息确定所述终端设备能够进入服务小区测量放松状态;
所述收发模块,还用于向所述终端设备发送第二信息,所述第二信息用于指示进入服务小区测量放松状态。
在一种可选的实施方式中,所述收发模块还用于:
接收来自所述终端设备的第三信息;
向所述终端设备发送第四信息,所述第四信息用于指示进入服务小区正常测量状态。
在一种可选的实施方式中,所述第二信息还用于指示第三时长,其中,所述第三时长用于在经过所述第三时长后,所述终端设备进入服务小区正常测量状态。
关于第七方面或各种可选的实施方式所带来的技术效果,可参考对于第二方面或相应的实施方式的技术效果的介绍。
第八方面,提供一种通信装置,例如该通信装置为如前所述的第三通信装置。所述第三通信装置用于执行上述第三方面或任一可能的实施方式中的方法。具体地,所述第三通信装置可以包括用于执行第三方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例 性地,所述第三通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。下面以第三通信装置是终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第三通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第八方面的介绍过程中,继续以所述第三通信装置是终端设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述收发模块,用于与其他通信装置进行通信;
所述处理模块,用于确定处于服务小区测量放松状态;
所述处理模块,还用于根据第一配置参数确定满足邻区测量放松条件,其中,所述第一配置参数与第二配置参数不同,所述第二配置参数用于在处于服务小区正常测量状态时确定邻区测量放松条件。
在一种可选的实施方式中,所述处理模块用于通过如下方式使用第一配置参数确定是否满足邻区测量放松条件:在满足以下条件时,确定满足所述邻区测量放松条件:
放松监听标准在第一时长内得到满足;
自从上次执行小区重选测量以来不到第四时长;以及,
在选择或重选新小区之后至少所述第一时长内,已经执行过邻区测量;
其中,所述第一配置参数包括所述第一时长的信息。
在一种可选的实施方式中,所述第一配置参数包括第一阈值,所述第一阈值、参考值以及所述服务小区当前的质量用于确定满足所述放松监听标准。
在一种可选的实施方式中,所述处理模块还用于:
对所述服务小区进行测量,确定测量结果;
确定所述测量结果对应的测量周期;
根据所述测量周期对所述服务小区进行测量。
在一种可选的实施方式中,
所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的信号质量;和/或,
所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的接收信号强度。
关于第八方面或各种可选的实施方式所带来的技术效果,可参考对于第三方面或相应的实施方式的技术效果的介绍。
第九方面,提供一种通信装置,例如该通信装置为如前所述的第四通信装置。所述第四通信装置用于执行上述第四方面或任一可能的实施方式中的方法。具体地,所述第四通信装置可以包括用于执行第四方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模 块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第四通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为网络设备。下面以第四通信装置是网络设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第四通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第四通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第九方面的介绍过程中,继续以所述第四通信装置是网络设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于确定第一配置参数和第二配置参数,其中,所述第一配置参数用于在处于服务小区测量放松状态时确定邻区测量放松条件,所述第二配置参数用于在处于服务小区正常测量状态时确定所述邻区测量放松条件,且所述第一配置参数与第二配置参数不同;
所述收发模块,用于向终端设备发送所述第一配置参数和所述第二配置参数。
关于第九方面或各种可选的实施方式所带来的技术效果,可参考对于第四方面或相应的实施方式的技术效果的介绍。
第十方面,提供一种通信装置,例如该通信装置为如前所述的第五通信装置。所述第五通信装置用于执行上述第五方面或任一可能的实施方式中的方法。具体地,所述第五通信装置可以包括用于执行第五方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第五通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。下面以第五通信装置是终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第五通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第五通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第十方面的介绍过程中,继续以所述第五通信装置是终端设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述收发模块,用于与其他通信装置进行通信;
所述处理模块,用于对服务小区进行测量,确定测量结果;
所述处理模块,还用于确定所述测量结果对应的测量周期;
所述处理模块,还用于根据所述测量周期对所述服务小区进行测量。
在一种可选的实施方式中,
所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服 务小区的信号质量;和/或,
所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的接收信号强度。
关于第十方面或各种可选的实施方式所带来的技术效果,可参考对于第五方面或相应的实施方式的技术效果的介绍。
第十一方面,提供一种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。或者,第一通信装置也可以不包括存储器,存储器可以位于第一通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第一通信装置执行上述第一方面或任意一种可能的实施方式中的方法。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。
其中,如果第一通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十二方面,提供一种通信装置,该通信装置例如为如前所述的第二通信装置。该通信装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。或者,第二通信装置也可以不包括存储器,存储器可以位于第二通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第二通信装置执行上述第二方面或任意一种可能的实施方式中的方法。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为网络设备。
其中,如果第二通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十三方面,提供一种通信装置,该通信装置例如为如前所述的第三通信装置。该通信装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第三方面或各种可能的实施方式所描述的方法。或者,第三通信装置也可以不包括存储器,存储器可以位于第三通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第三方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机 指令时,使第三通信装置执行上述第三方面或任意一种可能的实施方式中的方法。示例性地,所述第三通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。
其中,如果第三通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十四方面,提供一种通信装置,该通信装置例如为如前所述的第四通信装置。该通信装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第四方面或各种可能的实施方式所描述的方法。或者,第四通信装置也可以不包括存储器,存储器可以位于第四通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第四方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第四通信装置执行上述第四方面或任意一种可能的实施方式中的方法。示例性地,所述第四通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为网络设备。
其中,如果第四通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第四通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十五方面,提供一种通信装置,该通信装置例如为如前所述的第五通信装置。该通信装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第五方面或各种可能的实施方式所描述的方法。或者,第五通信装置也可以不包括存储器,存储器可以位于第五通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第五方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第五通信装置执行上述第五方面或任意一种可能的实施方式中的方法。示例性地,所述第五通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。
其中,如果第五通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第五通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十六方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信接口耦合,用于实现上述第一方面或任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第一方面或任一种可选的实施方式所提供的方法。或者, 所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第一方面或任一种可选的实施方式所提供的方法。
第十七方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信接口耦合,用于实现上述第二方面或任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第二方面或任一种可选的实施方式所提供的方法。或者,所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第二方面或任一种可选的实施方式所提供的方法。
第十八方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信接口耦合,用于实现上述第三方面或任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第三方面或任一种可选的实施方式所提供的方法。或者,所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第三方面或任一种可选的实施方式所提供的方法。
第十九方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信接口耦合,用于实现上述第四方面或任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第四方面或任一种可选的实施方式所提供的方法。或者,所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第四方面或任一种可选的实施方式所提供的方法。
第二十方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器与所述通信接口耦合,用于实现上述第五方面或任一种可选的实施方式所提供的方法。
可选的,所述芯片还可以包括存储器,例如,所述处理器可以读取并执行所述存储器所存储的软件程序,以实现上述第五方面或任一种可选的实施方式所提供的方法。或者,所述存储器也可以不包括在所述芯片内,而是位于所述芯片外部,相当于,所述处理器可以读取并执行外部存储器所存储的软件程序,以实现上述第五方面或任一种可选的实施方式所提供的方法。
第二十一方面,提供第一通信系统,该通信系统包括第六方面所述的通信装置、第十一方面所述的通信装置或第十六方面所述的通信装置,以及包括第七方面所述的通信装置、第十二方面所述的通信装置或第十七方面所述的通信装置。
第二十二方面,提供第二通信系统,该通信系统包括第八方面所述的通信装置、第十三方面所述的通信装置或第十八方面所述的通信装置,以及包括第九方面所述的通信装置、第十四方面所述的通信装置或第十九方面所述的通信装置。
第二十三方面,提供第三通信系统,该通信系统包括第十方面所述的通信装置、第十五方面所述的通信装置或第二十方面所述的通信装置。
第二十四方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计 算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或任意一种可能的实施方式中所述的方法。
第二十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或任意一种可能的实施方式中所述的方法。
第二十六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第三方面或任意一种可能的实施方式中所述的方法。
第二十七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第四方面或任意一种可能的实施方式中所述的方法。
第二十八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第五方面或任意一种可能的实施方式中所述的方法。
第二十九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或的任意一种可能的实施方式中所述的方法。
第三十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或的任意一种可能的实施方式中所述的方法。
第三十一方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第三方面或的任意一种可能的实施方式中所述的方法。
第三十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第四方面或的任意一种可能的实施方式中所述的方法。
第三十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第五方面或的任意一种可能的实施方式中所述的方法。
通过本申请实施例提供的测量方法,对于满足第一测量上报条件的终端设备,网络设备可以指示其进入服务小区测量放松状态,减少对服务小区的测量过程,以达到节电的目的。
附图说明
图1为处于RRC连接态的终端设备的测量过程的流程图;
图2为处于RRC空闲态的终端设备进行小区重选的流程图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的第一种测量方法的流程图;
图5为本申请实施例提供的第二种测量方法的流程图;
图6为本申请实施例中RSRP与测量周期的一种对应关系的示意图;
图7为本申请实施例提供的第三种测量方法的流程图;
图8为本申请实施例提供的第一种终端设备的示意性框图;
图9为本申请实施例提供的第一种网络设备的示意性框图;
图10为本申请实施例提供的第二种终端设备的示意性框图;
图11为本申请实施例提供的第二种网络设备的示意性框图;
图12为本申请实施例提供的第三种终端设备的示意性框图;
图13为本申请实施例提供的通信装置的一种示意性框图;
图14为本申请实施例提供的通信装置的另一示意性框图;
图15为本申请实施例提供的通信装置的再一示意性框图;
图16为本申请实施例提供的通信装置的又一示意性框图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、轻型终端设备(light UE)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如: 智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)或用户面功能(user plane function,UPF)等。
因为本申请实施例主要涉及接入网设备,因此在下文中,如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)RRC状态,终端设备有3种RRC状态:RRC连接态、RRC空闲态和RRC非激活态。
RRC连接态(或,也可以简称为连接态。在本文中,“连接态”和“RRC连接态”,是同一概念,两种称呼可以互换):终端设备与网络建立了RRC连接,可以进行数据传输。
RRC空闲态(或,也可以简称为空闲态。在本文中,“空闲态”和“RRC空闲态”,是同一概念,两种称呼可以互换):终端设备没有与网络建立RRC连接,基站没有存储该终端设备的上下文。如果终端设备需要从RRC空闲态进入RRC连接态,则需要发起RRC连接建立过程。
RRC非激活态(或,也可以简称为非激活态。在本文中,“去活动态”、“去激活态”、“非激活态”、“RRC非激活态”或“RRC去激活态”等,是同一概念,这几种称呼可以互换):终端设备之前在锚点基站进入了RRC连接态,然后锚点基站释放了该RRC连接,但是锚点基站保存了该终端设备的上下文。如果该终端设备需要从RRC非激活态再次进入RRC连接态,则需要在当前驻留的基站发起RRC连接恢复过程(或者称为RRC连接重建立过程)。因为终端设备可能处于移动状态,因此终端设备当前驻留的基站与终端设备的锚点基站可能是同一基站,也可能是不同的基站。RRC恢复过程相对于RRC建立过程来说,时延更短,信令开销更小。但是基站需要保存终端设备的上下文,会占用基站的存储开销。
4)“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信令,而并不是表示这两种信息的内容、优先级、发送顺序或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
移动性管理是无线移动通信中的重要组成部分。它指的是为了保证网络与终端设备之间的通信链路不因终端设备的移动而中断所涉及到的相关内容的统称。根据终端设备的状态大致上可以分为RRC空闲态移动性管理和RRC连接态移动性管理两部分。在RRC空闲态下,移动性管理主要指的是小区选择/重选的过程,在RRC连接态下,移动性管理主要指的是小区切换过程。不论是小区选择/重选还是小区切换,都是基于测量结果进行的。因此,测量是移动性管理的基础。
终端设备的测量,包括测量终端设备的服务小区,还包括测量邻区,例如测量相同的通信系统的邻区,或者测量异系统的邻区。根据测量所涉及到的层,可以将测量划分为物理层测量(层1测量)和RRC层测量(层3测量)这两种。这里主要讨论层3测量。
终端设备处于RRC连接态时,测量过程可参考图1。
S11、基站向终端设备发送RRC连接重配置(RRC connection reconfigurtion)消息,终端设备接收来自基站的RRC连接重配置消息。该基站例如为提供终端设备的服务小区的基站。
在RRC连接重配置消息中包括测量配置(measConfig)信元,测量配置信元包括测量配置信息,终端设备从测量配置信元中获得测量配置信息。测量配置信息例如包括终端设备的测量对象等。
S12、终端设备对终端设备的服务小区进行测量。
另外,终端设备还根据RRC连接重配置消息中的s-测量配置(MeasureConfig)信元包括的信息来判断是否需要执行对相邻小区的测量。s-MeasureConfig信元可以包括(与执行邻区测量相关的)测量控制门限。
其中,终端设备可以接收来自服务小区的参考信号,从而对服务小区进行测量。参考信号例如包括同步(synchronization/physical broadcast channel block,SSB)或信道状态信息参考信号(channel state information-reference signal,CSI-RS)等。
S13、终端设备将测量报告消息发送给基站,基站接收来自终端设备的测量报告消息。其中,当满足测量报告的触发条件时,终端设备将测量结果添加到测量报告(measurement report)消息中,并将添加了测量结果的测量报告消息发送给基站。
其中,测量报告的触发条件分为周期性触发条件和事件触发条件。如果是周期性触发条件,则终端设备按照相应的周期向基站发送测量报告消息。如果是事件触发上报,则例如测量配置消息中会指示相应的事件,在满足这些事件时终端设备可以向基站发送测量报告消息。另外,测量配置消息还可以包括对应于相应的事件的参数,例如门限或迟滞参数等,以用于后续的计算。各类事件的定义如表1:
表1
Figure PCTCN2020074939-appb-000001
表1中,“意义”表示相应的事件具体为何种事件,同时,每个事件有对应的“进入条件(entering condition)”和“离开条件(leaving condition)”。其中,“进入条件”表示进入该事件需要满足的条件,“离开条件”表示退出该事件需要满足的条件。以表1中的事件A1为例,事件A1是指服务小区的服务比门限要好的事件。A1事件的“进入条件”使用不等式A1-1表示,“离开条件”使用不等式A1-2表示。
Ms–Hys>Thresh      (A1-1)
Ms+Hys<Thresh      (A1-2)
对于事件A1来说,Ms表示终端设备对服务小区的测量结果,该测量结果可以表征服务小区的服务质量。该测量结果可以是参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)中的一种。Hys表示迟滞参数(hysteresis parameter),可以是一个0~30之间的整数,网络设备可以通过RRC连接重配置消息配置Hys。Thresh表示阈值(threshold parameter),网络设备也可以通过RRC连接重配置消息配置Thresh。需注意的是,这一段是以表1中的事件A1为例的,这一段所介绍的Ms是为事件A1配置的用于表征终端设备对服务小区的测量结果的参数,Hys是为事件A1配置的迟滞参数,Thresh是为事件A1配置的阈值。而为不同的事件所配置的参数(例如迟滞参数或阈值等)可能是不同的。
所以,不等式A1-1表示,如果终端设备对服务小区的测量结果所表征的服务质量与迟滞参数之间的差值大于门限,则进入事件A1,或者说,满足事件A1;不等式A1-2表示,如果终端设备对服务小区的测量结果所表征的服务质量与迟滞参数之间的和值小于门限,则离开事件A1,或者说,不满足事件A1。
终端设备处于RRC空闲态时,移动性管理主要指的是小区选择/重选的过程。其中,终端设备进行小区重选的过程可参考图2。
S21、终端设备根据测量启动标准,测量终端设备当前的服务小区和邻区。
其中,邻区可以包括与服务小区同频的小区,与服务小区异频的小区,或与服务小区所在的通信系统为异系统的小区中的一种或多种。
S22、判决邻区是否符合小区重选的标准。
S23、如果邻区符合小区重选的标准,则启动小区重选。
例如,如果邻区中的第一小区符合小区重选的标准,则终端设备可以接收来自第一小区的系统消息。如果第一小区没有接入受限等条件,则终端设备可以驻留在第一小区。
或者,如果第一区不符合小区重选的标准,或者虽然第一小区符合小区重选的标准,但第一小区设置了接入受限等条件,导致该终端设备无法驻留第一小区,则终端设备继续驻留在当前的服务小区。
目前,对于处于RRC空闲态或RRC非激活态的终端设备的移动性管理,有以下一些规定,这些规定是针对服务小区的测量过程的:
(1)至少每M1*N1非连续接收(discontinuous reception,DRX)周期(cycle)执行一次。
如果同步信号块测量时间配置信息(SS blocks measurement timing configuration,SMTC)周期(periodicity)(T SMTC)>20ms且DRX cycle≤0.64秒(second),则M1=2,否则M1=1。
其中,针对终端设备对SSB的测量,基站会配置SMTC,一般是为一个频率配置一个SMTC,SMTC可以理解为是用于测量的时间窗,一个SMTC在时域上可以包括该SMTC对应的频率下的各个小区所发送的SSB。例如针对频率f1,基站配置对应的SMTC,终端设备仅对于SMTC内的SSB进行测量,因此该SMTC在时域上就包括频率f1下基站想让终端设备测量的各个小区所发送的SSB。
(2)至少对每两次测量结果进行一次滤波,且多次测量结果中用于一次滤波的两次测量结果之间至少间隔1/2 DRX cycle。
(3)如果服务小区在连续Nserv个DRX周期中始终不满足小区选择S准则,终端设备直接启动(服务小区指示的)所有邻区的测量(此时不考虑是否满足邻区的测量条件)。
(4)在10s内,使用系统信息中指示的同频、异频和无线接入技术(radio access technology,RAT)间信息,没有搜索测量找到任何新的可用(suitable)小区,终端设备将启动针对所选的公共陆地移动网(public land mobile network,PLMN)的小区选择。
终端设备如果对邻区进行测量,就是对系统信息所指示的同频邻区、异频邻区和异系统邻区(即RAT间信息指示的邻区)进行测量。也就是说,在10s内,如果终端设备对这些邻区进行测量后,没有搜索到任何可用的小区,则终端设备将对所选择的PLMN下的更多小区进行测量。
为了节省终端设备的功耗,在LTE系统中还规定了邻区测量放松(relaxed monitoring) 条件。如果满足邻区测量放松条件,则终端设备可以选择不执行频率内测量或者频率间测量,或者说,终端设备可以不执行对邻区的测量。邻区测量放松条件如下:
放松监听标准在T SearchDeltaP的一段时间内得到满足;并且,
自从上次执行小区重选测量以来不到24小时;并且,
在选择或重选新小区之后的至少T SearchDeltaP时间内,终端设备已经执行过频率内测量或频率间测量。
其中,放松监听标准可以通过公式1表示:
(S rxlevRef–S rxlev)<S SearchDeltaP     (公式1)
S rxlev表示小区重选接收信号水平/强度(cell selection RX level value),单位为dB,S rxlev可以用于评估服务小区当前的信号质量。S SearchDeltaP表示一个阈值。S rxlevRef表示终端设备的服务小区的参考值(单位为dB),S rxlevRef可以有初始值,之后还可以更新,更新方式如下:
终端设备在选择或重选新的小区后,或者,如果(S rxlev-S rxlevRef)>0,或者,如果尚未满足T SearchDeltaP的宽松监听标准,则终端设备应将S rxlevRef的值设置为该终端设备的服务小区当前的S rxlev值。
T SearchDeltaP表示一个时长,该时长一般为5分钟。或者,如果为终端设备配置了增强的DRX(enhanced DRX,eDRX)并且eDRX周期的长度大于5分钟,则T SearchDeltaP为该eDRX周期的长度。
S rxlev可以用于指示终端设备的服务小区的质量。例如Srxlev满足公式2:
S rxlev=Q rxlevmeas-(Q rxlevmin+Q rxlevminoffset)–P compensation    (公式2)
公式2中,Q rxlevmeas表示候选小区的RSRP。Q rxlevmin和Q rxlevminoffset都是在系统信息块(system information block,SIB)中配置的小区驻留的最小接收电平(例如配置在SIB1中),仅当终端设备驻留在访问PLMN(visit PLMN)小区时才用到Q rxlevminoffset
P compensation取max(PEMAX-PUMAX,0),单位为dB。其中,max(x,y)表示取x和y中的最大值。PEMAX表示终端设备的上行最大可使用的发射功率,PUMAX表示终端设备的最大射频输出功率。
可见,目前终端设备对服务小区的测量过程是始终进行的,对邻区的测量是需要在满足一定条件的前提下才启动。且LTE系统中针对邻区测量还设置了邻区测量放松条件,如果满足邻区测量放松条件,则终端设备可以不执行对邻区的测量。通过这些方式,可以减小终端设备因测量所带来的功耗。
对于一些终端设备来说,例如对于处于静止状态的终端设备,或者移动速度较慢的终端设备,或者只在某个范围内进行活动的终端设备,进行小区重选或小区切换的几率是较低的。但终端设备对服务小区的测量过程始终在进行,而这样的终端设备持续对服务小区 进行测量,对于测量结果的利用率不高,可以认为都是不必要的测量过程,还导致终端设备的功耗较高。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,终端设备可以确定是否满足第一测量上报条件,如果满足第一测量上报条件,则表明终端设备进行小区切换或重选的可能性较小,例如终端设备可能处于服务小区的中心,或者移动性较低,或者活动范围较小等,对于这样的终端设备,如果对服务小区进行频繁的测量,相当于是不必要的测量过程,耗电较大。因此对于这样的终端设备,网络设备可以指示其进入服务小区测量放松状态,减少对服务小区的测量过程,以达到节电的目的。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如LTE系统,或可以应用于5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,只要存在一个实体可以根据来自另一个实体的信号进行测量即可,具体的不做限制。另外,本申请实施例在介绍过程中是以网络设备和终端设备之间的空口通信过程为例,实际上本申请实施例提供的技术方案也可以应用于侧行链路(sidelink,SL),只要一个终端设备能够对来自另一个终端设备的信号进行测量即可。例如,本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,可以是NR D2D场景也可以是LTE D2D场景等,或者可以应用于车到一切(vehicle to everything,V2X)场景,可以是NR V2X场景也可以是LTE V2X场景等,例如可应用于车联网,例如V2X、LTE-V、车与车(vehicle-to-vehicle,V2V)等,或可用于智能驾驶,智能网联车等领域。
请参见图3,为本申请实施例的一种应用场景。在图3中,网络设备通过无线传输方式服务于终端设备。终端设备可以接收来自网络设备的参考信号,从而根据接收的参考信号进行测量。
图3中的网络设备例如为基站。其中,基站在不同的系统对应不同的设备,例如在4G系统中可以对应4G中的基站,例如eNB,在5G系统中对应5G中的基站,例如gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图3中的网络设备也可以对应未来的移动通信系统中的接入网设备。图3以网络设备是基站为例,实际上参考前文的介绍,网络设备还可以是RSU等设备。另外,图3中的终端设备以手机为例,实际上根据前文对于终端设备的介绍可知,本申请实施例的终端设备不限于手机。
下面结合附图介绍本申请实施例提供的方法。
本申请实施例提供第一种测量方法,请参见图4,为该方法的流程图。第一种测量方法可以应用于处于RRC连接态的终端设备。在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本实施例是以应用在图3所示的网络架构为例,因此,下文中所述的网络设备可以是图3所示的网络架构中的网络设备,下文中所述的终端设备可以是图3所示的网络架构中的终端设备。
S41、终端设备确定满足第一测量上报条件。
第一测量上报条件例如可以由网络设备配置给终端设备,或者由终端设备自行确定,或者也可以通过协议规定等。第一测量上报条件例如包括,对服务小区进行测量所获得的测量结果(或者,服务小区的信号质量,或者,终端设备对服务小区的接收信号强度)满足第一阈值,或者,第一测量上报条件例如包括,对服务小区进行测量所获得的测量结果 (或者,服务小区的信号质量,或者,终端设备对服务小区的接收信号强度)在第一时长内满足第一阈值。其中,终端设备可以对服务小区进行测量,得到的测量结果就可以用于第一测量上报条件的判断。其中,测量结果用于表征服务小区的通信质量,具体的,服务小区的测量结果可以表征服务小区的信号质量,或表征终端设备对服务小区的接收信号强度,例如,测量结果可以包括RSRP、RSRQ、或SINR中的一种或多种。如果第一测量上报条件包括服务小区的信号质量在第一时长内满足第一阈值,则是指,在第一时长内,服务小区的测量结果始终满足第一阈值。第一时长可以由网络设备配置给终端设备,或者由终端设备自行确定,或者也可以通过协议规定等。如果终端设备满足第一测量上报条件,则表明终端设备所测量的服务小区的信号质量和/或终端设备对服务小区的信号强度满足某个门限,可以表明终端设备是处于靠近小区中心的位置,或者,终端设备所测量的服务小区的信号质量和/或终端设备对服务小区的接收信号强度的波动较小,可以表明终端设备的移动性较弱(例如终端设备静止,或终端设备在小范围内移动,或终端设备移动地较为缓慢),这样的终端设备进行小区重选或小区切换的可能性较小。
例如,服务小区的信号质量满足第一阈值,可以包括,终端设备在第四时长内对该服务小区进行测量所得到的测量结果(例如,测量结果可以为RSRP、RSRQ或SINR等,这时也可以将测量结果称为测量值)满足第一阈值。例如,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值,可以是指终端设备在第四时长内对该服务小区进行测量所得到的N个测量结果满足第一阈值,N个测量结果可以是在第四时长内终端设备获得的全部测量结果或部分测量结果。或者,也可以没有第四时长的概念,服务小区的信号质量满足第一阈值,可以包括,终端设备对该服务小区进行测量所得到的N个测量结果(或者,称为测量值)满足第一阈值。此时的N个测量结果可以理解为是数量为N的测量结果集合。其中,N可以是大于或等于1的整数。
如果N大于1,则这N个测量结果可以是连续的N次测量对应的N个测量结果,或者这N个测量结果对应的N次测量也可以不是连续进行的。如果N大于1,例如,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值可以包括实现方式1。实现方式1例如为,这N个测量值中,每相邻的K个测量值之间的差值(或方差等)小于或等于第一子阈值;或者,实现方式1例如为,每相邻的K个测量值之间的差值(或方差等)与第一迟滞参数的和值(或,差值)小于或等于第一子阈值;或者,实现方式1例如为,N个测量值中任意的K个测量值之间的差值(或方差等)小于或等于第一子阈值;或者,实现方式1例如为,N个测量值中任意的K个测量值之间的差值(或方差等)与第一迟滞参数的和值(或,差值)小于或等于第一子阈值。其中,在实现方式1中,第一阈值可以是第一子阈值,满足第一阈值是指,小于或等于第一阈值。K为大于或等于2的整数,且K小于或等于N。又例如,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值可以包括实现方式2,实现方式2例如为,N个测量值和第一参考值(或者,也可以称为第二迟滞参数)满足第一阈值,此时N可以等于1也可以大于1。例如,实现方式2可以具体实现为,N个测量值中的每个测量值与第一参考值之间的差值大于或等于第二子阈值;或者,N个测量值中的每个测量值与第一参考值之间的差值大于或等于第二子阈值。在实现方式2中,第一阈值可以是第二子阈值,满足第一阈值是指,大于或等于第一阈值。其中,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值可以包括实现方式1,或者包括实现方式2,或者包括实现方式1和实 现方式2。另外,第一迟滞参数的取值可以大于0、小于0或等于0,如果第一迟滞参数等于0,也可以视为第一迟滞参数不存在,即,实现方式1中不存在第一迟滞参数。第二迟滞参数的取值可以大于0、小于0或等于0,如果第二迟滞参数等于0,也可以视为第二迟滞参数不存在,即,实现方式2中不存在第二迟滞参数。
第一参考值例如可以由网络设备配置给终端设备,或者由终端设备自行确定,或者也可以通过协议规定等。第一子阈值和第二子阈值可以相等,也可以不相等,且如果第一子阈值和第二子阈值不相等,则第一子阈值可以大于第二子阈值,或者第一子阈值也可以小于第二子阈值。
例如,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值仅包括实现方式1,实现方式1为,N个测量值中,每相邻的2个测量值之间的差值与第一迟滞参数之间的和值小于或等于第一子阈值,N=4。终端设备对服务小区进行了连续的4次测量,这4次测量可能是连续进行的,也可能不是连续进行的。其中第一次测量的测量值为测量值1,第二次测量的测量值为测量值2,第三次测量的测量值为测量值3,第四次测量的测量值为测量值4。如果测量值1和测量值2之间的差值(例如称为差值1)与第一迟滞参数之和小于或等于第一子阈值,测量值2和测量值3之间的差值(例如称为差值2)与第一迟滞参数之和小于或等于第一子阈值,且测量值3和测量值4之间的差值(例如称为差值3)与第一迟滞参数之和小于或等于第一子阈值,则终端设备可以确定终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值。而差值1、差值2和差值3中,只要有一个差值与第一迟滞参数之和大于第一子阈值,终端设备就可以确定终端设备在第四时长内对该服务小区进行测量所得到的测量结果不满足第一阈值。通过连续测量的测量值之间的差值来确定终端设备在第四时长内对该服务小区进行测量所得到的测量结果是否满足第一阈值,可以考虑多次测量结果,使得确定的结果更为符合终端设备当前的状态。
又例如,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值仅包括实现方式2,实现方式2为,N个测量值中的每个测量值与第一参考值之间的差值大于或等于第二子阈值,N=3。例如终端设备对服务小区进行了3次测量,这3次测量可能是连续进行的,也可能不是连续进行的。其中第一次测量的测量值为测量值1,第二次测量的测量值为测量值2,第三次测量的测量值为测量值3,如果测量值1与第一参考值之间的差值大于或等于第二子阈值,测量值2与第一参考值之间的差值大于或等于第二子阈值,测量值3与第一参考值之间的差值大于或等于第二子阈值,终端设备就可以确定终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值;而如果这3个差值中,有一个或多个差值小于第二子阈值,终端设备就可以确定终端设备在第四时长内对该服务小区进行测量所得到的测量结果不满足第一阈值。通过第一参考值确定终端设备在第四时长内对该服务小区进行测量所得到的测量结果是否满足第一阈值,使得确定过程较为简单。
再例如,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值包括实现方式1和实现方式2。如果终端设备通过实现方式1和实现方式2均确定终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值,就可以认为满足第一阈值;而终端设备如果通过实现方式1确定终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值,或通过实现方式2确定终端设备在第四时长内对 该服务小区进行测量所得到的测量结果不满足第一阈值,或通过实现方式1和实现方式2均确定终端设备在第四时长内对该服务小区进行测量所得到的测量结果不满足第一阈值,则终端设备都可以认为终端设备在第四时长内对该服务小区进行测量所得到的测量结果不满足第一阈值。
当然除了如上的实现方式之外,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值还可以包括其他的实现方式,或者,终端设备在第四时长内对该服务小区进行测量所得到的测量结果满足第一阈值也可以不包括如上的实现方式,而是包括其他的实现方式。只要相应的实现方式能够表示终端设备进行小区重选或小区切换的可能性较小即可。
终端设备可以持续确定终端设备是否满足第一测量上报条件,例如终端设备持续对服务小区进行测量,则终端设备可以根据对服务小区的测量值确定终端设备是否满足第一测量上报条件,或者终端设备可以根据对服务小区的测量结果,周期性地确定终端设备是否满足第一测量上报条件。
S42、终端设备向网络设备发送第一信息。网络设备接收来自终端设备的第一信息。
可以认为,如果终端设备满足第一测量上报条件,则终端设备进行小区重选或小区切换的可能性较小。例如对于处于静止状态的终端设备,或者移动速度较慢的终端设备,或者只在某个范围内进行活动的终端设备,进行小区重选或小区切换的可能性是较小的,这样的终端设备较为容易满足第一测量上报条件。而既然进行小区重选或小区切换的可能性较小,也就表明终端设备无需对服务小区进行过多的测量,因此终端设备可以认为是满足服务小区测量放松的条件。
如果终端设备确定满足第一测量上报条件,则终端设备可以向网络设备发送第一信息。第一信息用于指示终端设备满足服务小区测量放松的条件。其中,通过第一信息指示终端设备满足服务小区测量放松的条件,可以采用隐式指示方式,也可以采用显式指示方式。
例如,第一信息可以包括测量报告,在这种方式下,可以认为第一信息并未直接指示终端设备满足服务小区测量放松的条件,但根据第一信息所包括的测量报告的内容可以推出终端设备满足服务小区测量放松的条件,因此网络设备在接收该测量报告后,根据第一信息所包括的测量报告的内容,就可以确定终端设备满足服务小区测量放松的条件,这种方式可以认为是隐式指示的方式;或者,第一信息可以指示是在满足第一测量上报条件下的上报,而网络设备能够确定,终端设备满足第一测量上报条件也就是满足了服务小区测量放松的条件,因此网络设备根据第一信息可以间接确定终端设备满足服务小区测量放松的条件,相当于通过第一信息隐式指示了终端设备满足服务小区测量放松的条件,因此这种方式也是隐式指示的方式;或者,第一信息可以包括第一指示信息,该第一指示信息可以用于指示终端设备满足服务小区测量放松的条件,例如,第一指示信息包括第一测量上报条件对应的测量上报事件的ID,该测量上报事件是终端设备满足服务小区测量放松条件的事件,则网络设备根据该第一指示信息就可以明确终端设备满足服务小区测量放松的条件,这种方式是显式指示的方式,另外在这种方式下,第一信息可以包括测量报告,或者也可以不包括测量报告,或者,第一信息可以包括在测量报告内。
例如,终端设备可以具有服务小区测量放松状态和服务小区正常测量状态。服务小区测量放松状态和服务小区正常测量状态,可以满足但不限于以下至少一种情况:
情况1,在服务小区测量放松状态下,终端设备对服务小区进行测量所使用的时域资 源的数量小于或等于第一数量阈值,而在服务小区正常测量状态下,终端设备对服务小区进行测量所使用的时域资源的数量可以大于第一数量阈值;
情况2,在服务小区测量放松状态下,终端设备对服务小区进行测量的频率小于或等于第一频率阈值,而在服务小区正常测量状态下,终端设备对服务小区进行测量的频率可以大于第一频率阈值;
情况3,在服务小区测量放松状态下,终端设备对服务小区进行测量的次数小于或等于第一次数阈值,而在服务小区正常测量状态下,终端设备对服务小区进行测量的次数大于第一次数阈值;
情况4,在服务小区测量放松状态下,终端设备测量的服务小区的参考信号的数量小于或等于第二数量阈值,而在服务小区正常测量状态下,终端设备测量的服务小区的参考信号的数量大于第二数量阈值;
情况5,在服务小区测量放松状态下,终端设备不对服务小区进行测量,而在服务小区正常测量状态下,终端设备要对服务小区进行测量。
其中,参考信号,例如SSB或CSI-RS等,在时域周期内有多次发送机会,以SSB为例,每个SSB可以有相应的编号,SSB与波束可以相对应。因此,终端设备测量的参考信号的数量大于或小于第二数量阈值,可以理解为是终端设备测量的波束数量大于或小于第二数量阈值。
可以认为,在服务小区测量放松状态下,终端设备对服务小区的测量较为稀疏,甚至可以完全不进行测量,这样可以节省终端设备的功耗。例如对于处于静止状态的终端设备,或者移动速度较慢的终端设备,或者只在小区中心某个范围内进行活动的终端设备,进行小区重选或小区切换的几率是较低的。这样的终端设备持续对服务小区进行测量,对于测量结果的利用率不高,可以认为都是不必要的测量过程,还导致终端设备的功耗较高。对于这样的终端设备,就可以进入服务小区测量放松状态,减少对服务小区的测量,以节省终端设备的功耗。而在服务小区正常测量状态下,终端设备可以对服务小区进行正常的测量。例如对于处于高速移动状态的终端设备,或者移动范围较大的终端设备,或者在小区边缘的终端设备,进行小区重选或小区切换的几率较高,这样的终端设备需要持续对服务小区进行测量。因此对于这样的终端设备,就可以处于服务小区正常测量状态,保持对服务小区的测量,以及时获得测量结果,从而进行小区重选或小区切换等过程。
S43、网络设备向终端设备发送第二信息,终端设备接收来自网络设备的第二信息,第二信息用于指示进入服务小区测量放松状态。
网络设备接收第一信息后,可以确定终端设备是否能够进入服务小区测量放松状态。如果网络设备确定终端设备能够进入服务小区测量放松状态,则网络设备可以向终端设备发送第二信息,以指示终端设备进入服务小区测量放松状态。在本申请实施例中,可以由网络设备确定终端设备是否进入服务小区测量放松状态,从而网络设备和终端设备对于终端设备的状态的认知保持一致,而且网络设备也可以更好地控制终端设备的行为。
例如网络设备可以通过RRC连接重配置消息发送第二信息,或者通过媒体接入控制控制元素(media access control control element,MAC CE)发送第二信息,或者也可以通过下行控制信息(downlink control information,DCI)发送第二信息等。
S44、终端设备进入服务小区测量放松状态。
终端设备在接收第二信息后,就可以进入服务小区测量放松状态。在服务小区测量放 松状态下,对服务小区的测量较为稀疏,从而能够节省终端设备的功耗。其中,S44只是可选的步骤,不是必须执行的,因此在图4中用虚线表示。
S45、终端设备确定满足第二测量上报条件。
第二测量上报条件例如可以由网络设备配置给终端设备,或者由终端设备自行确定,或者也可以通过协议规定等。第二测量上报条件例如包括,对服务小区进行测量所获得的测量结果(或者,服务小区的信号质量,或者,终端设备对服务小区的接收信号强度)满足第二阈值,或者,第二测量上报条件例如包括,对服务小区进行测量所获得的测量结果(或者,服务小区的信号质量,或者,终端设备对服务小区的接收信号强度)在第二时长内满足第二阈值。其中,终端设备可以对服务小区进行测量,得到的测量结果就可以用于第一测量上报条件的判断,例如,得到的测量结果可以表征服务小区的信号质量,或表征终端设备对服务小区的接收信号强度等。如果第二测量上报条件包括服务小区的信号质量在第二时长内满足第二阈值,则是指,在第二时长内,服务小区的测量结果始终满足第二阈值。第二时长可以由网络设备配置给终端设备,或者由终端设备自行确定,或者也可以通过协议规定等。如果终端设备满足第二测量上报条件,则表明终端设备所测量的服务小区的信号质量和/或终端设备对服务小区的信号强度满足某个门限,可以表明终端设备是处于靠近小区边缘的位置,或者,终端设备所测量的服务小区的信号质量和/或终端设备对服务小区的信号强度的波动较大,可以表明终端设备的移动性较强(例如终端设备在大范围内移动,或终端设备移动速度较快),因此这样的终端设备进行小区重选或小区切换的可能性较大。
例如,服务小区的信号质量满足第二阈值,可以包括,终端设备在第五时长内对该服务小区进行测量所得到的测量结果(例如,测量结果可以为RSRP、RSRQ或SINR等,这时也可以将测量结果称为测量值)满足第二阈值。例如,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值,可以是指终端设备在第五时长内对该服务小区进行测量所得到的N个测量结果满足第二阈值,N个测量结果可以是在第五时长内终端设备获得的全部测量结果或部分测量结果。或者,也可以没有第五时长的概念,服务小区的信号质量满足第二阈值,可以包括,终端设备对该服务小区进行测量所得到的N个测量结果(或者,称为测量值)满足第二阈值。此时的N个测量结果可以理解为是数量为N的测量结果集合。其中,N可以是大于或等于1的整数。
如果N大于1,则这N个测量结果可以是连续的N次测量对应的N个测量结果,或者这N个测量结果对应的N次测量也可以不是连续进行的。如果N大于1,例如,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值可以包括实现方式3。实现方式3例如为,这N个测量值中,每相邻的K个测量值之间的差值(或方差等)大于或等于第三子阈值;或者,实现方式3例如为,每相邻的K个测量值之间的差值(或方差等)与第三迟滞参数的和值(或,差值)大于或等于第三子阈值;或者,实现方式3例如为,N个测量值中任意的K个测量值之间的差值(或方差等)大于或等于第三子阈值;或者,实现方式3例如为,N个测量值中任意的K个测量值之间的差值(或方差等)与第三迟滞参数的和值(或,差值)大于或等于第三子阈值。在实现方式3中,第二阈值为第三子阈值,满足第二阈值是指,大于或等于第二阈值。其中,K为大于或等于2的整数,且K小于或等于N。又例如,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值可以包括实现方式4,实现方式4例如为,N个测量值和第二参考值(或 者,也可以称为第四迟滞参数)满足第二阈值,此时N可以等于1也可以大于1。实现方式4可以具体实现为,N个测量值中的每个测量值与第二参考值之间的差值小于或等于第四子阈值;或者,N个测量值中的每个测量值与第二参考值之间的差值小于或等于第四子阈值。在实现方式4中,第二阈值为第四子阈值,满足第二阈值是指,小于或等于第二阈值。其中,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值可以包括实现方式3,或者包括实现方式4,或者包括实现方式3和实现方式4。另外,第三迟滞参数的取值可以大于0、小于0或等于0,如果第三迟滞参数等于0,也可以视为第三迟滞参数不存在,即,实现方式3中不存在第三迟滞参数。第四迟滞参数的取值可以大于0、小于0或等于0,如果第四迟滞参数等于0,也可以视为第四迟滞参数不存在,即,实现方式4中不存在第四迟滞参数。
第二参考值例如可以由网络设备配置给终端设备,或者由终端设备自行确定,或者也可以通过协议规定等。第三子阈值和第四子阈值可以相等,也可以不相等,且如果第三子阈值和第四子阈值不相等,则第一子阈值可以大于第四子阈值,或者第三子阈值也可以小于第四子阈值。第三子阈值可以大于第一子阈值,或者小于第一子阈值,或者等于第一子阈值。第四子阈值可以大于第二子阈值,或者小于第二子阈值,或者等于第二子阈值。
例如,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值仅包括实现方式3,实现方式3为N个测量值中,每相邻的2个测量值之间的差值与第二迟滞参数之间的差值大于或等于第三子阈值,N=4。终端设备对服务小区进行了连续的4次测量,这4次测量可能是连续进行的,也可能不是连续进行的。其中第一次测量的测量值为测量值1,第二次测量的测量值为测量值2,第三次测量的测量值为测量值3,第四次测量的测量值为测量值4。如果测量值1和测量值2之间的差值(例如称为差值1)与第二迟滞参数之间的差值大于或等于第三子阈值,测量值2和测量值3之间的差值(例如称为差值2)与第二迟滞参数之间的差值大于或等于第三子阈值,且测量值3和测量值4之间的差值(例如称为差值3)与第二迟滞参数之间的差值大于或等于第三子阈值,则终端设备可以确定终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值。而差值1、差值2和差值3中,只要有一个差值与第二迟滞参数之间的差值小于第三子阈值,终端设备就可以确定终端设备在第五时长内对该服务小区进行测量所得到的测量结果不满足第二阈值。通过连续测量的测量值之间的差值来确定终端设备在第五时长内对该服务小区进行测量所得到的测量结果是否满足第二阈值,可以考虑多次测量结果,使得确定的结果更为符合终端设备当前的状态。
又例如,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值仅包括实现方式4,实现方式4为,N个测量值中的每个测量值与第二参考值之间的差值小于或等于第四子阈值,N=3。例如终端设备对服务小区进行了3次测量,这3次测量可能是连续进行的,也可能不是连续进行的。其中第一次测量的测量值为测量值1,第二次测量的测量值为测量值2,第三次测量的测量值为测量值3,如果测量值1与第二参考值之间的差值小于或等于第四子阈值,测量值2与第二参考值之间的差值小于或等于第四子阈值,测量值3与第二参考值之间的差值小于或等于第四子阈值,终端设备就可以确定终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值;而如果这3个差值中,有一个或多个差值大于第四子阈值,终端设备就可以确定终端设备在第五时长内对该服务小区进行测量所得到的测量结果不满足第二阈值。通过第而参考值确定终端 设备在第五时长内对该服务小区进行测量所得到的测量结果是否满足第二阈值,使得确定过程较为简单。
再例如,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值包括实现方式3和实现方式4。如果终端设备通过实现方式3和实现方式4均确定终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值,就可以认为满足第二阈值;而终端设备如果通过实现方式3确定终端设备在第五时长内对该服务小区进行测量所得到的测量结果不满足第二阈值,或通过实现方式4确定终端设备在第五时长内对该服务小区进行测量所得到的测量结果不满足第二阈值,或通过实现方式3和实现方式4均确定终端设备在第五时长内对该服务小区进行测量所得到的测量结果不满足第二阈值,则终端设备都可以认为终端设备在第五时长内对该服务小区进行测量所得到的测量结果不满足第二阈值。
当然除了如上的实现方式之外,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值还可以包括其他的实现方式,或者,终端设备在第五时长内对该服务小区进行测量所得到的测量结果满足第二阈值也可以不包括如上的实现方式,而是包括其他的实现方式。只要相应的实现方式能够表示终端设备进行小区重选或小区切换的可能性较大即可。
终端设备可以持续确定终端设备是否满足第二测量上报条件,例如终端设备持续对服务小区进行测量,则终端设备可以根据对服务小区的测量值确定终端设备是否满足第二测量上报条件,或者终端设备可以根据对服务小区的测量结果,周期性地确定终端设备是否满足第二测量上报条件。
S46、终端设备向网络设备发送第三信息,网络设备接收来自终端设备的第三信息。
第三信息可以指示不满足服务小区测量放松的条件,网络设备根据第三信息可以确定终端设备不满足服务小区测量放松的条件;或者,第三信息可以指示满足服务小区正常测量的条件,网络设备根据第三信息可以确定终端设备满足服务小区正常测量的条件。
可以认为,如果终端设备满足第二测量上报条件,则终端设备进行小区重选或小区切换的可能性较大。例如对于处于高速移动状态的终端设备,或者移动范围较大的终端设备,或者处于小区边缘的终端设备,进行小区重选或小区切换的可能性是较大的,这样的终端设备较为容易满足第二测量上报条件。而既然进行小区重选或小区切换的可能性较大,也就表明终端设备需要对服务小区进行正常测量,因此终端设备可以认为是满足服务小区正常测量的条件,或者认为是不满足服务小区测量放松的条件。
如果终端设备确定满足第二测量上报条件,则终端设备可以向网络设备发送第三信息。例如,第三信息可以指示终端设备不满足服务小区测量放松的条件,或者,指示终端设备满足服务小区正常测量的条件。其中,通过第三信息指示终端设备不满足服务小区测量放松的条件或满足服务小区正常测量的条件,可以采用隐式指示方式,也可以采用显式指示方式。
以第三信息指示满足服务小区正常测量的条件,网络设备根据第三信息可以确定终端设备满足服务小区正常测量的条件为例。例如,第三信息可以包括测量报告,在这种方式下,可以认为第三信息并未直接指示终端设备满足服务小区正常测量的条件,但根据第三信息所包括的测量报告的内容可以推出终端设备满足服务小区正常测量的条件,因此网络设备在接收该测量报告后,根据第三信息所包括的测量报告的内容,就可以确定终端设备 满足服务小区正常测量的条件,这种方式可以认为是隐式指示的方式;或者,第三信息可以指示是在满足第二测量上报条件下的上报,而网络设备能够确定,终端设备满足第二测量上报条件也就是满足了服务小区正常测量的条件,因此网络设备根据第三信息可以间接确定终端设备满足服务小区正常测量的条件,相当于通过第三信息隐式指示了终端设备满足服务小区正常测量的条件,因此这种方式也是隐式指示的方式;或者,第三信息可以包括第二指示信息,该第二指示信息可以用于指示终端设备满足服务小区正常测量的条件,例如,第二指示信息包括第二测量上报条件对应的测量上报事件的ID,该测量上报事件是终端设备满足服务小区正常测量条件的事件,则网络设备根据该第二指示信息就可以明确终端设备满足服务小区正常测量的条件,这种方式是显式指示的方式,另外在这种方式下,第三信息可以包括测量报告,或者也可以不包括测量报告,或者,第三信息也可以包括在测量报告内。
S47、网络设备向终端设备发送第四信息,终端设备接收来自网络设备的第四信息,第四信息用于指示进入服务小区正常测量状态。
网络设备接收第三信息后,可以确定终端设备是否能够进入服务小区正常测量状态。如果网络设备确定终端设备能够进入服务小区正常测量状态,则网络设备可以向终端设备发送第四信息,以指示终端设备进入服务小区正常测量状态。在本申请实施例中,可以由网络设备确定终端设备是否进入服务小区正常测量状态,从而网络设备和终端设备对于终端设备的状态的认知保持一致,而且网络设备也可以更好地控制终端设备的行为。
例如网络设备可以通过RRC连接重配置消息发送第四信息,或者通过MAC CE发送第四信息,或者也可以通过DCI发送第四信息等。
S48、终端设备进入服务小区正常测量状态。
终端设备在接收第四信息后,就可以进入服务小区正常测量状态。在服务小区正常测量状态下,终端设备对服务小区的测量较为密集,从而能够获得较多的测量结果,以满足小区重选或小区切换等任务的需求。其中,S45~S48只是可选的步骤,不是必须执行的,因此在图4中用虚线表示。
S49、终端设备确定经过第三时长后,进入服务小区正常测量状态。
其中,S49与S45~S48是并列关系,即,在执行S44之后可以执行S49,或者执行S45~S48,但S49和S45~S48不会都执行,只会执行其中一种。当然,S49也只是可选的步骤,不是必须执行的,因此在图4中用虚线表示。
第三时长可以由网络设备配置给终端设备,或者由终端设备自行确定,或者也可以通过协议规定等。终端设备在服务小区测量放松状态停留一段时间后,为了减少错过小区切换机会的概率,减小对小区切换的影响,可以重新进入服务小区正常测量状态。因此终端设备在进入服务小区测量放松状态的第三时长后,可以自动进入服务小区正常测量状态,以正常对服务小区进行测量。通过这种方式,无需网络设备的指示,终端设备就能恢复对服务小区的正常测量,有助于节省信令开销。
或者,终端设备还可以通过其他方式从服务小区测量放松状态进入服务小区正常测量状态。例如,如果网络设备在S45之前的任意步骤(例如通过RRC连接重配置消息,或通过第二信息等),指示了终端设备可以在确定需要对服务小区进行正常的测量时,无需向网络设备上报,而是可以直接恢复服务小区正常测量状态,或者无需网络设备指示,例如协议规定,终端设备可以在确定需要对服务小区进行正常的测量时,无需向网络设备上 报,而是可以直接恢复服务小区正常测量状态,那么,如果终端设备确定需要对服务小区进行正常的测量,例如终端设备认为需要进行小区切换,或终端设备确定信号质量或接收信号强度较差等,则终端设备无需向网络设备上报,也无需等待第三时长,而是可以直接恢复服务小区正常测量状态。这种方案可以与S45~S48的方案共存,或者可以与S49的方案共存,或者这种方案也可以单独执行,即,如果执行这种方案,则不执行S45~S49。
通过这种方案,可以减少信令开销,也减小因网络设备发送第四信息而带来的时延,或减小因终端设备等待第三时长而带来的时延,保证了小区切换的时效性。
在本申请实施例中,终端设备可以确定是否满足第一测量上报条件,如果满足第一测量上报条件,则表明终端设备进行小区切换或重选的可能性较小,例如终端设备可能处于服务小区的中心,或者移动性较低,或者活动范围较小等,对于这样的终端设备,如果对服务小区进行频繁的测量,相当于是不必要的测量过程,耗电较大。因此对于这样的终端设备,网络设备可以指示其进入服务小区测量放松状态,减少对服务小区的测量过程,以达到节电的目的。
为了解决相同的技术问题,本申请实施例提供第二种测量方法,请参见图5,为该方法的流程图。在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本实施例是以应用在图3所示的网络架构为例,因此,下文中所述的网络设备可以是图3所示的网络架构中的网络设备,下文中所述的终端设备可以是图3所示的网络架构中的终端设备。
S51、网络设备确定第一配置参数和第二配置参数。
其中,第一配置参数用于在处于服务小区测量放松状态时确定是否满足邻区测量放松条件,第二配置参数用于在处于服务小区正常测量状态时确定是否满足邻区测量放松条件,且第一配置参数与第二配置参数不同。换句话说,终端设备在处于服务小区测量放松状态时,可以根据第一配置参数确定终端设备是否满足邻区测量放松条件;而终端设备在处于服务小区正常测量状态时,可以根据第二配置参数确定终端设备是否满足邻区测量放松条件。
其中,终端设备可以具有服务小区测量放松状态和服务小区正常测量状态这两种状态,关于这两种状态的介绍,可参考图4所示的实施例。
另外,终端设备还可以具有邻区测量放松状态。其中,邻区测量放松状态可以满足如下的情况6、情况7、情况8、情况9或情况10中的一种或多种:
情况6,在邻区测量放松状态下,终端设备用于邻区测量的时域资源会相应减少;
情况7,在邻区测量放松状态下,终端设备会使用更长的时间间隔对邻区进行测量;
情况8,在邻区测量放松状态下,终端设备可能在一段时间内不测量邻区;
情况9,在邻区测量放松状态下,终端设备对邻区进行测量的频率可能降低;
情况10,在邻区测量放松状态下,终端设备测量的邻区/载波/参考信号(如SSB)的数量较少。同理,终端设备测量的参考信号的数量减少,相当于减少了所测量的波束的数量。
终端设备在处于服务小区测量放松状态时,同样会进行是否满足邻区测量放松条件的判断。因此,终端设备在处于服务小区测量放松状态时,很可能也会进入邻区测量放松状态。那么,如果终端设备在处于服务小区测量放松状态时也进入了邻区测量放松状态,则终端设备对邻区进行测量的频率可能也会相应降低,甚至可能不对邻区进行测量。在处于 邻区测量放松状态时,终端设备可能会继续通过服务小区的测量结果确定是否要停留在邻区测量放松状态,如果服务小区的测量结果,例如小区重选接收信号水平/强度(cell selection RX level value)表明不满足邻区测量放松条件,则终端设备会退出邻区测量放松状态,对邻区进行正常测量,而如果服务小区的测量结果,例如小区重选接收信号水平/强度表明满足邻区测量放松条件,则终端设备会继续停留在邻区测量放松状态。如果终端设备处于服务小区测量放松状态,获得的服务小区测量结果会较少,会影响对邻区测量放松条件的判断,例如导致终端设备无法及时退出邻区测量放松状态,则终端设备在邻区测量放松状态下获得的邻区的测量结果较少,可能导致终端设备错过进行小区重选的时机,无法及时重选到合适的小区。因此在本申请实施例中,网络设备可以为终端设备配置两套参数,即第一配置参数和第二配置参数,第一配置参数用于终端设备在服务小区测量放松状态下确定是否满足邻区测量放松条件,第二配置参数用于终端设备在服务小区正常测量状态下确定是否满足邻区测量放松条件,通过第一配置参数,可以使得终端设备在处于服务小区测量放松状态时如果也进入了邻区测量放松状态,则可以尽量从邻区测量放松状态中退出,以保证对邻区的测量,使得终端设备能够及时重选到合适的小区。
配置参数例如包括如前所述的T SearchDeltaP,或S SearchDeltaP,或T SearchDeltaP和S SearchDeltaP。第一配置参数和第二配置参数可以包括相同的参数(取值可能相同也可能不同),或者也可以包括不同的参数。例如,第一配置参数和第二配置参数都包括T SearchDeltaP和S SearchDeltaP;或者,第一配置参数包括T SearchDeltaP,第二配置参数包括S SearchDeltaP;或者,第一配置参数包括T SearchDeltaP和S SearchDeltaP,第二配置参数包括S SearchDeltaP,等等。
以第一配置参数和第二配置参数都包括T SearchDeltaP和S SearchDeltaP为例。例如,将第一配置参数包括的T SearchDeltaP称为T SearchDeltaPrelax,将第一配置参数包括的S SearchDeltaP称为S SearchDeltaPrelax,将第二配置参数包括的T SearchDeltaP称为T SearchDeltaPnormal,将第二配置参数包括的S SearchDeltaP称为S SearchDeltaPnormal。例如,T SearchDeltaPnormal可以等于目前在LTE系统中用于终端设备在判断是否满足邻区测量放松条件时使用的T SearchDeltaP,S SearchDeltaPnormal可以等于目前在LTE系统中用于终端设备在判断是否满足邻区测量放松条件时使用的S SearchDeltaP,也就是说,第二配置参数可以延用目前已有的在判断是否满足邻区测量放松条件时使用的参数。又例如,T SearchDeltaPrelax可以大于T SearchDeltaPnormal;或者,S SearchDeltaPrelax可以小于S SearchDeltaPnormal;或者,T SearchDeltaPrelax可以大于T SearchDeltaPnormal,且S SearchDeltaPrelax可以小于S SearchDeltaPnormal。如上的三种情况,都可以使得终端设备在处于服务小区测量放松状态和邻区测量放松状态时,能够尽量较为容易地退出邻区测量放松状态,在可能进行小区重选的情况下尽量保证终端设备对邻区的测量,从而减小对小区重选的影响。
当然,如果第一配置参数包括T SearchDeltaPrelax,第二配置参数包括T SearchDeltaPnormal,T SearchDeltaPrelax和T SearchDeltaPnormal之间的大小关系不限于如上介绍的情况,如果第一配置参数包括S SearchDeltaPrelax,第二配置参数包括S SearchDeltaPnormal,S SearchDeltaPrelax和S SearchDeltaPnormal之间的大小关系也不限于如上介绍的情况。只要第一配置参数能够使得终端设备在处于服务小区测量放松状态时如果也进入了邻区测量放松状态,则可以尽量较为容易地从邻区测量放松状态中退出即可。
S52、网络设备向终端设备发送第一配置参数和第二配置参数,终端设备接收来自网络设备的第一配置参数和第二配置参数。
第一配置参数和第二配置参数可以包括在一条消息中,例如可以包括在一条消息的两个域(field)中;或者,第一配置参数和第二配置参数也可以包括在两条消息中。如果第一配置参数和第二配置参数包括在两条消息中,那么网络设备可以先发送第一配置参数后发送第二配置参数,或者可以先发送第二配置参数后发送第一配置参数,或者也可以同时发送第一配置参数和第二配置参数。
另外,网络设备在发送第一配置参数时,也可以一并指示第一配置参数用于终端设备在处于服务小区测量放松状态时确定是否满足邻区测量放松条件。网络设备在发送第二配置参数时,也可以一并指示第二配置参数用于终端设备在处于服务小区正常测量状态时确定是否满足邻区测量放松条件。这样,终端设备在接收第一配置参数后,就可以确定第一配置参数用于该终端设备在处于服务小区测量放松状态时确定是否满足邻区测量放松条件,在接收第二配置参数后,就可以确定第二配置参数用于该终端设备在处于服务小区正常测量状态时确定是否满足邻区测量放松条件。
S51和S52,是以网络设备为终端设备配置第一配置参数和第二配置参数为例。或者,第一配置参数和第二配置参数也可以不通过网络设备配置,例如可以预配置在终端设备中,或者也可以通过协议规定等,这样网络设备就无需确定第一配置参数和第二配置参数,也无需向终端设备发送第一配置参数和第二配置参数,则S51和S52也就不必执行,有助于节省信令开销。可见,S51和S52只是可选的步骤,不是必须执行的,因此在图5中用虚线表示。
S53、终端设备确定该终端设备处于服务小区测量放松状态,或者,终端设备确定该终端设备满足服务小区测量放松条件。
例如,服务小区测量放松条件为,终端设备设置参考值和门限,在一段时间内,如果终端设备对服务小区的测量结果(或者,例如测量结果可以是RSRP、RSRQ或SINR等,也可以将测量结果称为测量值)与参考值之间的差值小于或等于门限,则终端设备确定该终端设备处于服务小区测量放松状态,否则,终端设备确定该终端设备处于服务小区正常测量状态,或者,确定该终端设备未处于服务小区测量放松状态。或者,参考值和门限也可以由网络设备下发给终端设备。
或者,终端设备还可以采用图4所示的实施例所提供的方法来确定该终端设备处于服务小区测量放松状态。例如,终端设备如果确定终端设备满足第一测量上报条件,则可以认为终端设备满足服务小区测量放松条件,或者可以认为终端设备进入服务小区测量放松状态。从终端设备进入服务小区测量放松状态开始,直到终端设备从测量放松状态中退出之前,在此期间,终端设备都可以确定该终端设备处于服务小区测量放松状态;或者,从终端设备确定该终端设备满足第一测量上报条件开始,直到终端设备从服务小区测量放松状态中退出之前,在此期间,终端设备都可以确定该终端设备处于服务小区测量放松状态。而关于终端设备如何确定是否满足第一测量上报条件、对服务小区测量放松状态和服务小区正常测量状态的介绍等内容,均可参考图4所示的实施例的描述。
S54、终端设备根据第一配置参数确定满足邻区测量放松条件。例如,终端设备是根据第一配置参数确定是否满足邻区测量放松条件,S54是以终端设备确定满足邻区测量放松条件为例。
终端设备被配置了第一配置参数和第二配置参数,如果终端设备处于服务小区测量放松状态,那么终端设备就可以使用第一配置参数来确定该终端设备是否满足邻区测量放松 条件。
例如,在满足以下条件时,终端设备可以确定该终端设备满足邻区测量放松条件:放松监听标准在第一时长内得到满足,自从上次执行小区重选测量以来不到第四时长,以及,在选择或重选新小区之后至少第一时长内,已经执行过邻区测量。其中,放松监听标准在第一时长内得到满足,可以理解为,在第一时长内始终满足放松监听标准。例如,终端设备在第一时长内可能会多次确定是否满足放松监听标准,而在第一时长内,每次的确定结果都表明满足放松监听标准;或者,终端设备在第一时长内可能只确定一次是否满足放松监听标准,该次的确定结果表明满足放松监听标准。自从上次执行小区重选测量以来不到第四时长,可以理解为,距离最近一次进行用于小区重选的测量过程的时间小于第四时长。第四时长例如为24小时,或者也可以是其他取值。在选择或重选新小区之后至少第一时长内,已经执行过邻区测量,可以理解为,在通过小区选择或小区重选进入新小区之后的第三时长内,已经执行过对邻区的测量,第三时长大于或等于第一时长。
其中,第一配置参数可以包括第一时长的信息,第一时长例如为如前所述的T SearchDeltaPrelax。另外,第一配置参数还可以包括第一阈值,第一阈值、参考值以及服务小区当前的信号质量可以用于确定是否满足放松监听标准。例如,放松监听标准可以满足如前的公式1,其中,公式1中的S SearchDeltaP可替换为S SearchDeltaPrelax,S SearchDeltaPrelax表示第一阈值。
关于终端设备确定终端设备是否满足邻区测量放松条件的更多介绍,可参考前文。
以LTE系统为例。终端设备可以根据RRC连接重配置消息中的s-MeasureConfig信元包括的信息来判断是否需要执行对相邻小区的测量,如果需要执行对邻区的测量,则终端设备对邻区进行测量,如果无需执行对邻区的测量,则终端设备不对邻区进行测量。或者,如果终端设备确定该终端设备满足邻区测量放松条件,则终端设备可以进入邻区测量放松状态。在邻区测量放松状态下,终端设备可以不执行对邻区的测量,或者也可以以较低的频率对邻区进行测量。
S55、终端设备确定该终端设备处于服务小区正常测量状态,或者,终端设备确定该终端设备不满足服务小区放松测量条件。
例如,终端设备可以设置参考值和门限,在一段时间内,如果终端设备对服务小区的测量结果(或者,例如测量结果可以是RSRP、RSRQ或SINR等,也可以将测量结果称为测量值)与参考值之间的差值大于门限,则终端设备确定该终端设备处于服务小区正常测量状态,否则,终端设备确定该终端设备处于服务小区测量放松状态,或者,确定该终端设备未处于服务小区正常测量状态。这里的参考值与S53所述的参考值可以是同一参考值,或者是不同的参考值,这里的门限与S53所述的门限可以是同一门限,或者是不同的门限。
或者,终端设备还可以采用图4所示的实施例所提供的方法来确定该终端设备处于服务小区正常测量状态。例如,终端设备如果确定终端设备满足第二测量上报条件,则可以认为终端设备不满足服务小区测量放松条件,或者可以认为终端设备进入服务小区测量正常状态。从终端设备进入服务小区测量正常状态开始,直到终端设备从服务小区正常测量状态中退出之前,在此期间,终端设备都可以确定该终端设备处于服务小区正常测量状态;或者,从终端设备确定该终端设备满足第二测量上报条件开始,直到终端设备从正常测量状态中退出之前,在此期间,终端设备都可以确定该终端设备处于服务小区正常测量状态。而关于终端设备如何确定是否满足第二测量上报条件、对服务小区测量状态和服务小区正 常测量状态的介绍,均可参考图4所示的实施例的描述。
S56、终端设备根据第二配置参数确定满足邻区测量放松条件。例如,终端设备是根据第二配置参数确定是否满足邻区测量放松条件,S56是以终端设备确定满足邻区测量放松条件为例。
如果终端设备处于服务小区正常测量状态,那么终端设备就可以使用第二配置参数来确定该终端设备是否满足邻区测量放松条件。
例如,在满足以下条件时,终端设备可以确定该终端设备满足邻区测量放松条件:放松监听标准在第二时长内得到满足,自从上次执行小区重选测量以来不到24小时,以及,在选择或重选新小区之后至少第二时长内,已经执行过邻区测量。关于对这几种条件的解释,可参考前文。
其中,第二配置参数可以包括第二时长的信息,第二时长例如为如前所述的T SearchDeltaPnormal。另外,第二配置参数还可以包括第二阈值,第二阈值、参考值以及服务小区当前的信号质量可以用于确定是否满足放松监听标准。例如,放松监听标准可以满足如前的公式1,其中,公式1中的S SearchDeltaP可替换为S SearchDeltaPnormal,S SearchDeltaPnormal表示第二阈值。
而放松监听标准可以满足如前的公式1,其中,公式1中的S SearchDeltaP可替换为S SearchDeltaPnormal
关于终端设备确定终端设备是否满足邻区测量放松条件的更多介绍,可参考前文。
在本申请实施例中,终端设备可以使用两套参数来确定是否满足邻区测量放松条件,即第一配置参数和第二配置参数,第一配置参数用于终端设备在服务小区测量放松状态下确定是否满足邻区测量放松条件,第二配置参数用于终端设备在服务小区正常测量状态下确定是否满足邻区测量放松条件。通过第一配置参数,可以使得终端设备在处于服务小区测量放松状态时如果也进入了邻区测量放松状态,则可以较为容易地从邻区测量放松状态中退出,以尽量保证对邻区的测量,使得终端设备能够及时重选到合适的小区。
其中,S55和S56只是可选的步骤,不是必须执行的,因此在图5中用虚线表示。
S57、终端设备对服务小区进行测量,确定测量结果。测量结果可以用于表征终端设备对服务小区的接收信号强度(或者描述为,终端设备接收服务小区的信号强度,即,终端设备所接收的来自服务小区的信号的信号强度)和/或服务小区的信号质量。
此时,终端设备可以处于服务小区测量放松状态,也可以处于服务小区正常测量状态。如果处于服务小区测量放松状态,那么要求终端设备在处于服务小区测量放松状态时也要继续对服务小区进行测量。也就是说,如果规定终端设备在处于服务小区测量放松状态时不对服务小区进行测量,则不必执行S57及之后的步骤。也可以看出,S57以及之后将介绍的S58和S59也只是可选的步骤,不是必须执行的,因此在图5中用虚线表示。另外,S57~S59可能发生在图5所示的实施例的任意一个步骤之前或之后,即,对于S57~S59的发生时机不作限制。
测量结果例如为RSRP、RSRQ或SINR中的一种或多种。
S58、终端设备确定该测量结果对应的测量周期。
例如,可以事先建立测量结果与测量周期之间的对应关系,例如事先建立RSRP与测量周期之间的对应关系,或者建立RSRQ与测量周期之间的对应关系,或者建立SINR与测量周期之间的对应关系,等等。该对应关系可以由网络设备建立,网络设备可以将该对 应关系发送给终端设备;或者,该对应关系可以由终端设备自行建立,终端设备在建立该对应关系后也可以将该对应关系发送给网络设备;或者,该对应关系也可以预配置在终端设备中,或者通过协议规定等。例如,测量结果的取值越大,对应的测量周期的长度越长,或,测量结果的取值越小,对应的测量周期的长度越短。因为测量结果可以用于表征服务小区的信号质量和/或终端设备对服务小区的接收信号强度,例如,服务小区的信号质量和/或终端设备对服务小区的接收信号强度越好,则测量结果的取值会越大,或,服务小区的信号质量和/或终端设备对服务小区的接收信号强度越差,则测量结果的取值会越小。因此也可以认为,服务小区的信号质量和/或终端设备对服务小区的接收信号强度越好,对应的测量周期的长度越长,或,服务小区的信号质量和/或终端设备对服务小区的接收信号强度越差,对应的测量周期的长度越短。
以建立RSRP与测量周期之间的对应关系为例。例如,RSRP的取值越大,则对应的测量周期的长度越长,或,RSRP的取值越小,对应的测量周期的长度越短。可参考图6,可以看到,当RSRP上升,则可能表明终端设备在向服务小区的中心位置移动,此时终端设备进行小区重选或切换的概率较小,因此无需对服务小区进行过多的测量,此时测量周期的长度可以逐渐增大,使得终端设备对服务小区的测量较为稀疏;而当RSRP下降,可能表明终端设备在向服务小区的边缘位置移动,此时终端设备进行小区重选或切换的概率较高,需要对服务小区进行测量,因此测量周期可以逐渐减小,使得终端设备对服务小区的测量趋于频繁。
当然,测量结果的取值和测量周期的长度之间的关系不限于此,当测量结果为不同的参数时,测量结果的取值和测量周期的长度之间的关系可能会有所变化。
S59、终端设备根据该测量周期对终端设备的服务小区进行测量。
终端设备在根据测量结果与测量周期的对应关系以及获得的测量结果确定对应的测量周期后,就可以根据该测量周期对终端设备的服务小区进行测量。该测量周期是根据终端设备的测量结果确定的,较为符合终端设备当前的状态,使得终端设备对服务小区的测量能够满足终端设备的需求,且可以尽量实现节能的目的。
其中,测量结果与测量周期之间的对应关系可以仅应用于终端设备处于服务小区测量放松状态时,当然前提是终端设备在处于服务小区测量放松状态时对网络设备进行测量的频率需要大于0,即终端设备在处于服务小区测量放松状态时还要继续保持对服务小区的测量。或者,测量结果与测量周期之间的对应关系可以既应用于终端设备处于服务小区测量放松状态时,也可以应用于终端设备处于服务小区正常测量状态时。如果是这种情况,则认为测量周期与测量结果具有对应关系,但是对于终端设备来说,服务小区测量放松状态和服务小区正常测量状态可以没有明确的界限,只是一个相对的概念。
在本申请实施例中,为终端设备设置了服务小区测量放松状态,以节省终端设备的功耗。另外,终端设备在处于服务小区测量放松状态时,也可能会进入邻区测量放松状态,则终端设备对邻区进行测量的频率可能也会相应降低。在处于邻区测量放松状态时,终端设备可能会继续确定是否要停留在邻区测量放松状态,如果不满足邻区测量放松条件,则终端设备会退出邻区测量放松状态,对邻区进行正常测量,而如果满足邻区测量放松条件,则终端设备会继续停留在邻区测量放松状态。如果终端设备处于服务小区测量放松状态,获得的服务小区测量结果会较少,会影响对邻区测量放松条件的判断,例如导致终端设备无法及时退出邻区测量放松状态,则终端设备在邻区测量放松状态下获得的邻区的测量结 果较少,可能导致终端设备错过进行小区重选的时机,无法及时重选到合适的小区。因此在本申请实施例中,网络设备可以为终端设备配置两套参数,即第一配置参数和第二配置参数,第一配置参数用于终端设备在服务小区测量放松状态下确定是否满足邻区测量放松条件,第二配置参数用于终端设备在服务小区正常测量状态下确定是否满足邻区测量放松条件,通过第一配置参数,可以使得终端设备在处于服务小区测量放松状态和邻区测量放松状态时,尽量能够较为容易地退出邻区测量放松状态,保证对邻区的测量,使得终端设备能够及时重选到合适的小区。
为了解决相同的技术问题,本申请实施例提供第三种测量方法,请参见图7,为该方法的流程图。在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本实施例是以应用在图3所示的网络架构为例,因此,下文中所述的网络设备可以是图3所示的网络架构中的网络设备,下文中所述的终端设备可以是图3所示的网络架构中的终端设备。
S71、终端设备对服务小区进行测量,确定测量结果。测量结果可以用于表征终端设备对服务小区的接收信号强度和/或服务小区的信号质量。
此时,终端设备可以处于服务小区测量放松状态,也可以处于服务小区正常测量状态。关于服务小区测量放松状态和服务小区正常测量状态,可参考图4所示的实施例的介绍。
如果终端设备处于服务小区测量放松状态,那么要求终端设备在处于服务小区测量放松状态时也要继续对服务小区进行测量。也就是说,如果规定终端设备在处于服务小区测量放松状态时不对服务小区进行测量,则不必执行S71及之后的步骤。
测量结果例如为RSRP、RSRQ或SINR中的一种或多种。
S72、终端设备确定该测量结果对应的测量周期。
例如,可以事先建立测量结果与测量周期之间的对应关系,例如事先建立RSRP与测量周期之间的对应关系,或者建立RSRQ与测量周期之间的对应关系,或者建立SINR与测量周期之间的对应关系,等等。该对应关系可以由网络设备建立,网络设备可以将该对应关系发送给终端设备;或者,该对应关系可以由终端设备自行建立,终端设备在建立该对应关系后也可以将该对应关系发送给网络设备;或者,该对应关系也可以预配置在终端设备中,或者通过协议规定等。例如,测量结果的取值越大,对应的测量周期的长度越长,或,测量结果的取值越小,对应的测量周期的长度越短。因为测量结果可以用于表征服务小区的信号质量和/或终端设备对服务小区的接收信号强度,例如,服务小区的信号质量和/或终端设备对服务小区的接收信号强度越好,则测量结果的取值会越大,或,服务小区的信号质量和/或终端设备对服务小区的接收信号强度越差,则测量结果的取值会越小。因此也可以认为,服务小区的信号质量和/或终端设备对服务小区的接收信号强度越好,对应的测量周期的长度越长,或,服务小区的信号质量和/或终端设备对服务小区的接收信号强度越差,对应的测量周期的长度越短。
关于S72的更多详细内容,可参考图5所示的实施例中的S58。
S73、终端设备根据该测量周期对终端设备的服务小区进行测量。
终端设备在根据测量结果与测量周期的对应关系以及获得的测量结果确定对应的测量周期后,就可以根据该测量周期对终端设备的服务小区进行测量。该测量周期是根据终端设备的测量结果确定的,较为符合终端设备当前的状态,使得终端设备对服务小区的测量能够满足终端设备的需求,且可以尽量实现节能的目的。
其中,测量结果与测量周期之间的对应关系可以仅应用于终端设备处于服务小区测量放松状态时,当然前提是终端设备在处于服务小区测量放松状态时对网络设备进行测量的频率需要大于0,即终端设备在处于服务小区测量放松状态时还要继续保持对服务小区的测量。或者,测量结果与测量周期之间的对应关系可以既应用于终端设备处于服务小区测量放松状态时,也可以应用于终端设备处于服务小区正常测量状态时。如果是这种情况,则认为测量周期与测量结果具有对应关系,但是对于终端设备来说,服务小区测量放松状态和服务小区正常测量状态可以没有明确的界限,只是一个相对的概念。
另外,还可以执行图5所示的实施例中的S51~S56,例如S51~S56可以在S71之前执行,或者也可以在S71之后执行,或者,S71~S73也可以发生在S51~S56中的任意一个步骤之前或之后。其中,S51~S56只是可选的步骤,不是必须执行的。
在本申请实施例中,设置了测量结果与测量周期之间的对应关系,终端设备可以根据测量结果来确定对应的测量周期,以根据确定的测量周期对服务小区进行测量。例如测量结果为RSRP,RSRP的取值越大,则可能表明终端设备在向服务小区的中心位置移动,此时终端设备进行小区重选或切换的概率较小,因此无需对服务小区进行过多的测量,此时测量周期的长度可以逐渐增大,使得终端设备对服务小区的测量较为稀疏,节省终端设备的功耗;而RSRP的取值越小,可能表明终端设备在向服务小区的边缘位置移动,此时终端设备进行小区重选或切换的概率较高,需要对服务小区进行测量,因此测量周期可以逐渐减小,使得终端设备对服务小区的测量趋于频繁,以满足终端设备的移动性管理。
图8为本申请实施例提供的通信装置800的示意性框图。示例性地,通信装置800例如为终端设备800。
终端设备800包括处理模块810和收发模块820。示例性地,终端设备800可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备800是终端设备时,收发模块820可以是收发器,收发器可以包括天线和射频电路等,处理模块810可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当终端设备800是具有上述终端设备功能的部件时,收发模块820可以是射频单元,处理模块810可以是处理器,例如基带处理器。当终端设备800是芯片系统时,收发模块820可以是芯片(例如基带芯片)的输入输出接口、处理模块810可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块810可以由处理器或处理器相关电路组件实现,收发模块820可以由收发器或收发器相关电路组件实现。
例如,处理模块810可以用于执行图7所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S71、S74、S75、S78和S79,和/或用于支持本文所描述的技术的其它过程。收发模块820可以用于执行图7所示的实施例中由终端设备所执行的全部收发操作,例如S72、S73、S76和S77,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块820可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块820可以用于执行图7所示的实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块820是发送模块,而在执行接收操作时,可以认为收发模块820是接收模块;或者,收发模块820也可以是两个功能模块,收发模块820可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图7所示的实施 例的任一个实施例中由终端设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图7所示的实施例由终端设备所执行的全部接收操作。
其中,处理模块810,用于确定满足第一测量上报条件;
收发模块820,用于向网络设备发送第一信息;
收发模块820,还用于接收来自所述网络设备的第二信息,所述第二信息用于指示进入服务小区测量放松状态。
作为一种可选的实施方式,所述第一测量上报条件包括,所述服务小区的测量结果在第一时长内满足第一阈值。
作为一种可选的实施方式,
处理模块810,还用于确定满足第二测量上报条件;
收发模块820,还用于向网络设备发送第三信息;
收发模块820,还用于接收来自所述网络设备的第四信息,所述第四信息用于指示进入服务小区正常测量状态。
作为一种可选的实施方式,所述第二测量上报条件包括,所述服务小区的测量结果在第二时长内满足第二阈值。
作为一种可选的实施方式,处理模块810,还用于确定经过第三时长后,进入服务小区正常测量状态。
作为一种可选的实施方式,所述第二信息还用于指示所述第三时长。
关于终端设备800所能实现的其他功能,可参考图7所示的实施例的相关介绍,不多赘述。
图9为本申请实施例提供的通信装置900的示意性框图。示例性地,通信装置900例如为网络设备900。
网络设备900包括处理模块910和收发模块920。示例性地,网络设备900可以是网络设备,也可以是应用于网络设备中的芯片或者其他具有上述网络设备功能的组合器件、部件等。当网络设备900是网络设备时,收发模块920可以是收发器,收发器可以包括天线和射频电路等,处理模块910可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当网络设备900是具有上述网络设备功能的部件时,收发模块920可以是射频单元,处理模块910可以是处理器,例如基带处理器。当网络设备900是芯片系统时,收发模块920可以是芯片(例如基带芯片)的输入输出接口、处理模块910可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块910可以由处理器或处理器相关电路组件实现,收发模块920可以由收发器或收发器相关电路组件实现。
例如,处理模块910可以用于执行图7所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如根据第一信息确定终端设备能够进入服务小区测量放松状态的操作,和/或用于支持本文所描述的技术的其它过程。收发模块920可以用于执行图7所示的实施例中由网络设备所执行的全部收发操作,例如S72、S73、S76和S77,和/或用于支持本文所描述的技术的其它过程。
另外,关于收发模块920的实现方式,可参考对于收发模块820的实现方式的介绍。
其中,
收发模块920,用于接收来自终端设备的第一信息;
收发模块920,还用于向所述终端设备发送第二信息,所述第二信息用于指示进入服务小区测量放松状态。
或者,
收发模块920,用于接收来自终端设备的第一信息;
处理模块910,用于根据所述第一信息确定所述终端设备能够进入服务小区测量放松状态;
收发模块920,还用于向所述终端设备发送第二信息,所述第二信息用于指示进入服务小区测量放松状态。
作为一种可选的实施方式,收发模块920还用于:
接收来自所述终端设备的第三信息;
向所述终端设备发送第四信息,所述第四信息用于指示进入服务小区正常测量状态。
作为一种可选的实施方式,所述第二信息还用于指示第三时长,其中,所述第三时长用于在经过所述第三时长后,所述终端设备进入服务小区正常测量状态。
关于网络设备900所能实现的其他功能,可参考图7所示的实施例的相关介绍,不多赘述。
图10为本申请实施例提供的通信装置1000的示意性框图。示例性地,通信装置1000例如为终端设备1000。
终端设备1000包括处理模块1010和收发模块1020。示例性地,终端设备1000可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备1000是终端设备时,收发模块1020可以是收发器,收发器可以包括天线和射频电路等,处理模块1010可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当终端设备1000是具有上述终端设备功能的部件时,收发模块1020可以是射频单元,处理模块1010可以是处理器,例如基带处理器。当终端设备1000是芯片系统时,收发模块1020可以是芯片(例如基带芯片)的输入输出接口、处理模块1010可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1010可以由处理器或处理器相关电路组件实现,收发模块1020可以由收发器或收发器相关电路组件实现。
例如,处理模块1010可以用于执行图4所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S43~S49,和/或用于支持本文所描述的技术的其它过程。收发模块1020可以用于执行图4所示的实施例中由终端设备所执行的全部收发操作,例如S42,和/或用于支持本文所描述的技术的其它过程。
另外,关于收发模块1020的实现方式,可参考对于收发模块820的实现方式的介绍。
其中,收发模块1020,用于与其他通信装置进行通信;
处理模块910,用于确定处于服务小区测量放松状态;
处理模块910,还用于根据第一配置参数确定满足邻区测量放松条件,其中,所述第一配置参数与第二配置参数不同,所述第二配置参数用于在处于服务小区正常测量状态时确定邻区测量放松条件。
作为一种可选的实施方式,处理模块910用于通过如下方式使用第一配置参数确定是否满足邻区测量放松条件:在满足以下条件时,确定满足所述邻区测量放松条件:
放松监听标准在第一时长内得到满足;
自从上次执行小区重选测量以来不到第四时长;以及,
在选择或重选新小区之后至少所述第一时长内,已经执行过邻区测量;
其中,所述第一配置参数包括所述第一时长的信息。
作为一种可选的实施方式,所述第一配置参数包括第一阈值,所述第一阈值、参考值以及所述服务小区当前的质量用于确定满足所述放松监听标准。
作为一种可选的实施方式,处理模块910还用于:
对所述服务小区进行测量,确定测量结果;
确定所述测量结果对应的测量周期;
根据所述测量周期对所述服务小区进行测量。
在一种可选的实施方式中,
所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的信号质量;和/或,
所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的接收信号强度。
关于终端设备1000所能实现的其他功能,可参考图4所示的实施例的相关介绍,不多赘述。
图11为本申请实施例提供的通信装置1100的示意性框图。示例性地,通信装置1100例如为网络设备1100。
网络设备1100包括处理模块1110和收发模块1120。示例性地,网络设备1100可以是网络设备,也可以是应用于网络设备中的芯片或者其他具有上述网络设备功能的组合器件、部件等。当网络设备1100是网络设备时,收发模块1120可以是收发器,收发器可以包括天线和射频电路等,处理模块1110可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当网络设备1100是具有上述网络设备功能的部件时,收发模块1120可以是射频单元,处理模块1110可以是处理器,例如基带处理器。当网络设备1100是芯片系统时,收发模块1120可以是芯片(例如基带芯片)的输入输出接口、处理模块1110可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1110可以由处理器或处理器相关电路组件实现,收发模块1120可以由收发器或收发器相关电路组件实现。
例如,处理模块1110可以用于执行图4所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如S41,和/或用于支持本文所描述的技术的其它过程。收发模块1120可以用于执行图4所示的实施例中由网络设备所执行的全部收发操作,例如S91、S93、S42,和/或用于支持本文所描述的技术的其它过程。
另外,关于收发模块1120的实现方式,可参考对于收发模块820的实现方式的介绍。
其中,处理模块1110,用于确定第一配置参数和第二配置参数,其中,所述第一配置参数用于在处于服务小区测量放松状态时确定邻区测量放松条件,所述第二配置参数用于在处于服务小区正常测量状态时确定所述邻区测量放松条件,且所述第一配置参数与第二配置参数不同;
收发模块1120,用于向终端设备发送所述第一配置参数和所述第二配置参数。
关于网络设备1100所能实现的其他功能,可参考图4所示的实施例的相关介绍,不多赘述。
图12为本申请实施例提供的通信装置1200的示意性框图。示例性地,通信装置1200例如为终端设备1200。
终端设备1200包括处理模块1210和收发模块1220。示例性地,终端设备1200可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备1200是终端设备时,收发模块1220可以是收发器,收发器可以包括天线和射频电路等,处理模块1210可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当终端设备1200是具有上述终端设备功能的部件时,收发模块1220可以是射频单元,处理模块1210可以是处理器,例如基带处理器。当终端设备1200是芯片系统时,收发模块1220可以是芯片(例如基带芯片)的输入输出接口、处理模块1210可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1210可以由处理器或处理器相关电路组件实现,收发模块1220可以由收发器或收发器相关电路组件实现。
例如,处理模块1210可以用于执行图6所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S61~S63,和/或用于支持本文所描述的技术的其它过程。收发模块1220可以用于执行图6所示的实施例中由终端设备所执行的全部收发操作,例如接收来自服务设备的参考信号(从而处理模块1210能够对服务小区进行测量)等操作,和/或用于支持本文所描述的技术的其它过程。
另外,关于收发模块1220的实现方式,可参考对于收发模块1520的实现方式的介绍。
其中,收发模块1220,用于与其他通信装置进行通信;
处理模块1210,用于对服务小区进行测量,确定测量结果;
处理模块1210,还用于确定所述测量结果对应的测量周期;
处理模块1210,还用于根据所述测量周期对所述服务小区进行测量。
在一种可选的实施方式中,
所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的信号质量;和/或,
所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的接收信号强度。
关于终端设备1200所能实现的其他功能,可参考图6所示的实施例的相关介绍,不多赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图13示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图13中,终端设备以手机作为例子。如图13所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频 信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图13中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图13所示,终端设备包括收发单元1310和处理单元1320。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1310中用于实现接收功能的器件视为接收单元,将收发单元1310中用于实现发送功能的器件视为发送单元,即收发单元1310包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1310用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1320用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1320可以用于执行图7所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S71、S74、S75、S78和S79,和/或用于支持本文所描述的技术的其它过程。收发单元1310可以用于执行图7所示的实施例中由终端设备所执行的全部收发操作,例如S72、S73、S76和S77,和/或用于支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,处理单元1320可以用于执行图4所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S43~S49,和/或用于支持本文所描述的技术的其它过程。收发单元1310可以用于执行图4所示的实施例中由终端设备所执行的全部收发操作,例如S42,和/或用于支持本文所描述的技术的其它过程。
再例如,在一种实现方式中,处理单元1320可以用于执行图6所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S61~S63,和/或用于支持本文所描述的技术的其它过程。收发单元1310可以用于执行图6所示的实施例中由终端设备所执行的全部收发操作,例如接收来自服务设备的参考信号(从而处理模块1210能够对服务小区进行测量)等操作,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图14所示的设备。作为一个例子,该设备可以完成类似于图8中处理模块810的功能。作为又一个例子,该设备可以完成类似于图10中处理模块1010的功能。作为再一个例子,该设备可以完成类似于图12中处理模块1210的功能。在图14中,该设备包括处理器1410,发送数据处理器1420,接收数据处理器1430。上述实施例中的处理模块810可以是图14中的该处理器1410,并完成相应的功能;上述实施例中的收发模块820可以是图14中的发送数据处理器1420,和/或接收数据处理器1430,并完成相应的功能。或者,上述实施例中的处理模块1010可以是图14中的该处理器1410,并完成相应的功能;上述实施例中的收发模块1020可以是图14中的发送数据处理器1420,和/或接收数据处理器1430,并完成相应的功能。或者,上述实施例中的处理模块1210可以是图14中的该处理器1410,并完成相应的功能;上述实施例中的收发模块1220可以是图14中的发送数据处理器1420,和/或接收数据处理器1430,并完成相应的功能。虽然图14中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图15示出本实施例的另一种形式。处理装置1500中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1503,接口1504。其中,处理器1503完成上述处理模块810的功能,接口1504完成上述收发模块820的功能。或者,处理器1503完成上述处理模块1010的功能,接口1504完成上述收发模块1020的功能。或者,处理器1503完成上述处理模块1210的功能,接口1504完成上述收发模块1220的功能。作为另一种变形,该调制子系统包括存储器1506、处理器1503及存储在存储器1506上并可在处理器上运行的程序,该处理器1503执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1506可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1500中,只要该存储器1506可以连接到所述处理器1503即可。
本申请实施例中的装置为网络设备时,该装置可以如图16所示。装置1600包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1610和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1620。所述RRU 1610可以称为收发模块,该收发模块可以包括发送模块和接收模块,或者,该收发模块可以是一个能够实现发送和接收功能的模块。该收发模块可以与图9中的收发模块920对应。或者,该收发模块可以与图11中的收发模块1120对应。可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1611和射频单元1612。所述RRU 1610部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1610部分主要用于进行基带处理,对基站进行控制等。所述RRU 1610与BBU 1620可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1620为基站的控制中心,也可以称为处理模块,可以与图9中的处理模块910对应,或者与图11中的处理模块1110对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1620可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网 (如LTE网络,5G网络或其他网络)。所述BBU 1620还包括存储器1621和处理器1622。所述存储器1621用以存储必要的指令和数据。所述处理器1622用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1621和处理器1622可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例提供第一通信系统。第一通信系统可以包括上述的图7所示的实施例所涉及的终端设备,以及包括图7所示的实施例所涉及的网络设备。终端设备例如为图8中的终端设备800。网络设备例如为图9中的网络设备900。
本申请实施例提供第二通信系统。第二通信系统可以包括上述的图4所示的实施例所涉及的终端设备,以及包括图4所示的实施例所涉及的网络设备。终端设备例如为图10中的终端设备1000。网络设备例如为图11中的网络设备1100。
本申请实施例提供第三通信系统。第三通信系统可以包括上述的图6所示的实施例所涉及的终端设备。可选的,第三通信系统还可以包括图6所示的实施例所述的网络设备。终端设备例如为图12中的终端设备1200。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图7所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图7所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图7所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图7所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序, 该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与终端设备相关的流程。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (34)

  1. 一种测量方法,其特征在于,包括:
    确定满足第一测量上报条件;
    向网络设备发送第一信息;
    接收来自所述网络设备的第二信息,所述第二信息用于指示进入服务小区测量放松状态。
  2. 根据权利要求1所述的方法,其特征在于,所述第一测量上报条件包括,所述服务小区的测量结果在第一时长内满足第一阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    确定满足第二测量上报条件;
    向网络设备发送第三信息;
    接收来自所述网络设备的第四信息,所述第四信息用于指示进入服务小区正常测量状态。
  4. 根据权利要求3所述的方法,其特征在于,所述第二测量上报条件包括,所述服务小区的测量结果在第二时长内满足第二阈值。
  5. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    确定经过第三时长后,进入服务小区正常测量状态。
  6. 根据权利要求5所述的方法,其特征在于,所述第二信息还用于指示所述第三时长。
  7. 一种测量方法,其特征在于,包括:
    接收来自终端设备的第一信息;
    向所述终端设备发送第二信息,所述第二信息用于指示进入服务小区测量放松状态。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第三信息;
    向所述终端设备发送第四信息,所述第四信息用于指示进入服务小区正常测量状态。
  9. 根据权利要求7所述的方法,其特征在于,所述第二信息还用于指示第三时长,其中,所述第三时长用于在经过所述第三时长后,所述终端设备进入服务小区正常测量状态。
  10. 一种测量方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    确定处于服务小区测量放松状态;
    根据第一配置参数确定满足邻区测量放松条件,其中,所述第一配置参数与第二配置参数不同,所述第二配置参数用于在处于服务小区正常测量状态时确定邻区测量放松条件。
  11. 根据权利要求10所述的方法,其特征在于,使用第一配置参数确定是否满足邻区测量放松条件,包括:在满足以下条件时,确定满足所述邻区测量放松条件:
    放松监听标准在第一时长内得到满足;
    自从上次执行小区重选测量以来不到第四时长;以及,
    在选择或重选新小区之后至少所述第一时长内,已经执行过邻区测量;
    其中,所述第一配置参数包括所述第一时长的信息。
  12. 根据权利要求11所述的方法,其特征在于,所述第一配置参数包括第一阈值,所述第一阈值、参考值以及所述服务小区当前的质量用于确定满足所述放松监听标准。
  13. 根据权利要求10~12任一项所述的方法,其特征在于,所述方法还包括:
    对所述服务小区进行测量,确定测量结果;
    确定所述测量结果对应的测量周期;
    根据所述测量周期对所述服务小区进行测量。
  14. 根据权利要求13所述的方法,其特征在于,
    所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的信号质量;和/或,
    所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的接收信号强度。
  15. 一种测量方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    对服务小区进行测量,确定测量结果;
    确定所述测量结果对应的测量周期;
    根据所述测量周期对所述服务小区进行测量。
  16. 根据权利要求15所述的方法,其特征在于,
    所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的信号质量;和/或,
    所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的接收信号强度。
  17. 一种通信装置,其特征在于,包括:
    处理模块,用于确定满足第一测量上报条件;
    收发模块,用于向网络设备发送第一信息;
    所述收发模块,还用于接收来自所述网络设备的第二信息,所述第二信息用于指示进入服务小区测量放松状态。
  18. 根据权利要求17所述的通信装置,其特征在于,所述第一测量上报条件包括,所述服务小区的测量结果在第一时长内满足第一阈值。
  19. 根据权利要求17或18所述的通信装置,其特征在于,
    所述处理模块,还用于确定满足第二测量上报条件;
    所述收发模块,还用于向网络设备发送第三信息;
    所述收发模块,还用于接收来自所述网络设备的第四信息,所述第四信息用于指示进入服务小区正常测量状态。
  20. 根据权利要求19所述的通信装置,其特征在于,所述第二测量上报条件包括,所述服务小区的测量结果在第二时长内满足第二阈值。
  21. 根据权利要求17或18所述的通信装置,其特征在于,所述处理模块,还用于确定经过第三时长后,进入服务小区正常测量状态。
  22. 根据权利要求21所述的通信装置,其特征在于,所述第二信息还用于指示所述第三时长。
  23. 一种通信装置,其特征在于,包括:
    收发模块,用于接收来自终端设备的第一信息;
    处理模块,用于生成第二信息,所述第二信息用于指示进入服务小区测量放松状态;
    所述收发模块,还用于向所述终端设备发送第二信息。
  24. 根据权利要求23所述的通信装置,其特征在于,所述收发模块还用于:
    接收来自所述终端设备的第三信息;
    向所述终端设备发送第四信息,所述第四信息用于指示进入服务小区正常测量状态。
  25. 根据权利要求23所述的通信装置,其特征在于,所述第二信息还用于指示第三时长,其中,所述第三时长用于在经过所述第三时长后,所述终端设备进入服务小区正常测量状态。
  26. 一种通信装置,其特征在于,包括:
    收发模块,用于与其他通信装置进行通信;
    处理模块,用于确定处于服务小区测量放松状态;
    所述处理模块,还用于根据第一配置参数确定满足邻区测量放松条件,其中,所述第一配置参数与第二配置参数不同,所述第二配置参数用于在处于服务小区正常测量状态时确定邻区测量放松条件。
  27. 根据权利要求26所述的通信装置,其特征在于,所述处理模块用于通过如下方式使用第一配置参数确定是否满足邻区测量放松条件:在满足以下条件时,确定满足所述邻区测量放松条件:
    放松监听标准在第一时长内得到满足;
    自从上次执行小区重选测量以来不到第四时长;以及,
    在选择或重选新小区之后至少所述第一时长内,已经执行过邻区测量;
    其中,所述第一配置参数包括所述第一时长的信息。
  28. 根据权利要求27所述的通信装置,其特征在于,所述第一配置参数包括第一阈值,所述第一阈值、参考值以及所述服务小区当前的质量用于确定满足所述放松监听标准。
  29. 根据权利要求26~28任一项所述的通信装置,其特征在于,所述处理模块还用于:
    对所述服务小区进行测量,确定测量结果;
    确定所述测量结果对应的测量周期;
    根据所述测量周期对所述服务小区进行测量。
  30. 根据权利要求29所述的通信装置,其特征在于,
    所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的信号质量;和/或,
    所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的接收信号强度。
  31. 一种通信装置,其特征在于,包括:
    收发模块,用于与其他通信装置进行通信;
    处理模块,用于对服务小区进行测量,确定测量结果;
    所述处理模块,还用于确定所述测量结果对应的测量周期;
    所述处理模块,还用于根据所述测量周期对所述服务小区进行测量。
  32. 根据权利要求31所述的通信装置,其特征在于,
    所述服务小区的信号质量越好,对应的所述测量周期的长度越长,或,所述服务小区的信号质量越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的信号质量;和/或,
    所述服务小区的接收信号强度越好,对应的所述测量周期的长度越长,或,所述服务小区的接收信号强度越差,对应的所述测量周期的长度越短,其中,所述测量结果用于指示所述服务小区的接收信号强度。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~6中任意一项所述的方法,或者使得所述计算机执行如权利要求7~9中任意一项所述的方法,或者使得所述计算机执行如权利要求10~14中任意一项所述的方法,或者使得所述计算机执行如权利要求15~16中任意一项所述的方法。
  34. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行权利要求1~6中任意一项所述的方法,或者执行权利要求7~9中任意一项所述的方法,或者执行权利要求10~14中任意一项所述的方法,或者执行权利要求15~16中任意一项所述的方法。
PCT/CN2020/074939 2020-02-12 2020-02-12 一种测量方法及装置 WO2021159343A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20918217.9A EP4096271A4 (en) 2020-02-12 2020-02-12 MEASUREMENT METHOD AND DEVICE
PCT/CN2020/074939 WO2021159343A1 (zh) 2020-02-12 2020-02-12 一种测量方法及装置
CN202080094542.3A CN115004749A (zh) 2020-02-12 2020-02-12 一种测量方法及装置
US17/884,314 US20220386161A1 (en) 2020-02-12 2022-08-09 Measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074939 WO2021159343A1 (zh) 2020-02-12 2020-02-12 一种测量方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/884,314 Continuation US20220386161A1 (en) 2020-02-12 2022-08-09 Measurement method and apparatus

Publications (1)

Publication Number Publication Date
WO2021159343A1 true WO2021159343A1 (zh) 2021-08-19

Family

ID=77291337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074939 WO2021159343A1 (zh) 2020-02-12 2020-02-12 一种测量方法及装置

Country Status (4)

Country Link
US (1) US20220386161A1 (zh)
EP (1) EP4096271A4 (zh)
CN (1) CN115004749A (zh)
WO (1) WO2021159343A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151089A1 (zh) * 2022-02-14 2023-08-17 北京小米移动软件有限公司 测量方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108333A (zh) * 2011-11-10 2013-05-15 中兴通讯股份有限公司 一种异频和异系统测量的方法及移动终端
US20190223073A1 (en) * 2018-01-12 2019-07-18 FG Innovation Company Limited Conditional handover procedures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672965B (zh) * 2017-05-12 2019-09-21 聯發科技股份有限公司 優化喚醒和相鄰小區測量方法及其使用者設備
CN111937434B (zh) * 2018-04-04 2021-12-28 华为技术有限公司 小区测量的方法、终端设备和网络设备
WO2020204463A1 (ko) * 2019-04-01 2020-10-08 한국전자통신연구원 통신 시스템에서 채널 품질의 측정 방법 및 장치
US20220338124A1 (en) * 2019-09-30 2022-10-20 Nokia Technologies Oy Measurement Relaxation Change Based on Total Received Power
CN114982272A (zh) * 2020-01-15 2022-08-30 Oppo广东移动通信有限公司 测量放松的方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108333A (zh) * 2011-11-10 2013-05-15 中兴通讯股份有限公司 一种异频和异系统测量的方法及移动终端
US20190223073A1 (en) * 2018-01-12 2019-07-18 FG Innovation Company Limited Conditional handover procedures

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Criteria of serving cell measurement relaxation for WUS-capable UE", 3GPP DRAFT; R4-1807329 CRITERIA OF SERVING CELL MEASUREMENT RELAXATION FOR WUS-CAPABLE UE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051446917 *
QUALCOMM INCORPORATED: "Serving cell RRM relaxation for WUS-capable UE", 3GPP DRAFT; R4-1801960 SERVING CELL RRM RELAXATION FOR WUS-CAPABLE UE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051402283 *
See also references of EP4096271A4 *
VIVO: "RRM measurement relaxation criteria", 3GPP DRAFT; R2-1912334_RRM MEASUREMENT RELAXATION CRITERIA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051790381 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151089A1 (zh) * 2022-02-14 2023-08-17 北京小米移动软件有限公司 测量方法及装置

Also Published As

Publication number Publication date
CN115004749A (zh) 2022-09-02
US20220386161A1 (en) 2022-12-01
EP4096271A1 (en) 2022-11-30
EP4096271A4 (en) 2023-02-01

Similar Documents

Publication Publication Date Title
US11399361B2 (en) V2X sidelink communication
US20220330133A1 (en) Cell Reselection Method, Terminal Device, and Network Device
US20190150014A1 (en) Early measurement reporting for cell access
WO2021175126A1 (zh) 一种测量方法、装置及系统
WO2021213217A1 (zh) 一种放松测量方法和通信装置
WO2021249001A1 (zh) 一种小区测量方法及装置
US20230199619A1 (en) Communication method and apparatus
US11102685B2 (en) Method of switching measurement mode and device thereof
WO2022007647A1 (zh) 通信方法、设备和存储介质
WO2021226761A1 (zh) 测量放松的方法及装置、终端设备、网络设备
CN113498165A (zh) 一种通信方法及设备
WO2021208888A1 (zh) 一种通信方法和装置
US11963048B2 (en) Measurement configuration determining method, message processing method, and apparatus
WO2021197233A1 (zh) 一种通信方法及设备
US20220386161A1 (en) Measurement method and apparatus
WO2021174427A1 (zh) 测量方法和终端设备
CN116057998A (zh) 一种通信方法、设备和装置
WO2021102707A1 (zh) 一种终端设备接入网络的方法、通信装置
CN112399497A (zh) 通信方法和通信装置
US20220182863A1 (en) Communications method and apparatus
WO2021213136A1 (zh) 一种通信方法和终端设备
CN111565413A (zh) 一种测量的方法和通信装置
WO2022022591A1 (zh) 一种测量方法及装置
WO2021046812A1 (zh) 无线通信方法、终端设备和网络设备
WO2020082368A1 (zh) 小区的测量方法、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020918217

Country of ref document: EP

Effective date: 20220822

NENP Non-entry into the national phase

Ref country code: DE