WO2022022591A1 - 一种测量方法及装置 - Google Patents

一种测量方法及装置 Download PDF

Info

Publication number
WO2022022591A1
WO2022022591A1 PCT/CN2021/109025 CN2021109025W WO2022022591A1 WO 2022022591 A1 WO2022022591 A1 WO 2022022591A1 CN 2021109025 W CN2021109025 W CN 2021109025W WO 2022022591 A1 WO2022022591 A1 WO 2022022591A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
terminal device
information
measurement
cycle
Prior art date
Application number
PCT/CN2021/109025
Other languages
English (en)
French (fr)
Inventor
张健
薛祎凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022022591A1 publication Critical patent/WO2022022591A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a measurement method and device.
  • the terminal equipment in the connected state can communicate with the cell (including the service area and neighbors) through the synchronization signal block (SSB). area) radio resource management (RRM) measurements.
  • SSB synchronization signal block
  • RRM radio resource management
  • a bandwidth part (BWP) is introduced.
  • BWP bandwidth part
  • GAP gap
  • the network device delivers configuration information related to GAP measurement to the terminal device, and the configuration information includes a fixed GAP cycle.
  • the terminal device will stop receiving and sending cell data during the GAP period, and the network device will not schedule data for the terminal device. That is to say, during the GAP measurement process, the uplink and downlink services between the network devices of the terminal device will be interrupted. . Therefore, if the GAP period is too short, the normal service throughput of the cell will be affected and power consumption will be increased. If the GAP period is configured too long, the terminal equipment may be disconnected from the network. Therefore, how to configure the GAP period is a problem that needs to be solved.
  • the embodiments of the present application provide a measurement method and apparatus, which are used to configure a reasonable GAP period for terminal equipment, increase the throughput of cell services, reduce power consumption, and avoid the occurrence of the risk of terminal equipment dropping from the network.
  • an embodiment of the present application provides a measurement method.
  • the method includes: a network device sends a first signaling to a terminal device, where the first signaling includes GAP cycle configuration information, and the GAP cycle configuration information is used for all
  • the terminal device performs GAP measurement, and the GAP cycle configuration information includes a first GAP cycle;
  • the network device sends first information to the terminal device, where the first information is used to instruct the terminal device to use the second GAP cycle
  • the GAP measurement is performed at a GAP period; wherein the first GAP period is different from the second GAP period.
  • the network device can indicate to the terminal device a second GAP cycle that is different from the first GAP cycle through the first information, and can realize dynamic adjustment of the GAP cycle. It can improve service throughput, reduce power consumption, and reduce the risk of network drop of terminal equipment, ensuring the success rate and efficiency of terminal equipment measurement.
  • the network device may further determine the first information according to the state-related information of the terminal device; the terminal device
  • the status related information includes one or more of the following information: the type and application scenario of the terminal device, the amount of data to be scheduled, the moving speed of the terminal device, the frequency offset, the historical cell information of the terminal device or the The desired GAP period of the terminal device.
  • the network device can refer to the state-related information of the terminal device to determine how to dynamically adjust the GAP cycle, and can configure the GAP cycle for the terminal device more accurately.
  • the first information includes downlink control information DCI or downlink medium access control MAC control element CE.
  • DCI downlink control information
  • CE downlink medium access control MAC control element
  • the first information includes GAP cycle modification indication information
  • the GAP cycle modification indication information is used to instruct the terminal device to modify to the second GAP cycle
  • the GAP cycle modification indication information is used to instruct the terminal device to skip N GAP cycles T, where N is an integer greater than 1, T is the GAP cycle indicated by the first signaling, and T is greater than 0.
  • the network device can flexibly configure the GAP cycle by modifying the GAP cycle of the terminal device to a certain cycle or skipping one or more cycles.
  • the N is preset in the terminal device, or the N is sent by the network device to the terminal device before the first information.
  • the first signaling further includes a low-priority GAP period and a high-priority GAP period.
  • the priority of the GAP cycle is used by the terminal device to determine the processing priority of the GAP measurement and scheduling tasks.
  • the network device may also send a scheduling task to the terminal device, wherein the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority, and not to skip the GAP measurement.
  • the GAP measurement of high priority may also send a scheduling task to the terminal device, wherein the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority, and not to skip the GAP measurement.
  • the GAP measurement of high priority may also send a scheduling task to the terminal device, wherein the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority, and not to skip the GAP measurement.
  • the GAP measurement of high priority may also send a scheduling task to the terminal device, wherein the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority, and not to skip the GAP measurement.
  • the GAP measurement of high priority may also send a scheduling task to the terminal device, wherein the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority, and not to skip the GAP measurement.
  • the priority of the scheduling task can be defaulted or negotiated to be higher than the low-priority GAP period and lower than the high-priority GAP period, that is, the default scheduling task can interrupt the GAP measurement of the low-priority without interrupting the high-priority GAP measurement.
  • Priority GAP measurement so that the network device can realize dynamic configuration of GAP measurement and flexible scheduling of tasks by sending scheduling tasks. In this case, the priority of the scheduling task may not be set.
  • the network device may further configure the priority of the scheduling task, and configure the priority of the scheduling task to be higher than the low-priority GAP period and lower than the high-priority GAP period.
  • the first information further includes the scheduled task.
  • the low-priority GAP period includes T1
  • the network device may further receive second information, where the second information includes a desired GAP period of the terminal device.
  • the terminal device can report the expected GAP cycle, and the network device can dynamically configure the GAP cycle for the terminal device more accurately by referring to the expected GAP cycle.
  • the second information is assistance information UEAssistanceInformation of the terminal device, or uplink MAC CE, or uplink control information UCI.
  • the second information includes an initial cyclic shift value and/or an expected GAP period, and a mapping relationship exists between the initial cyclic shift value and the expected GAP period.
  • an embodiment of the present application provides a measurement method.
  • the method includes: a terminal device receives first signaling from a network device, where the first signaling includes GAP cycle configuration information, and the GAP cycle configuration information is used for The terminal device performs GAP measurement, and the GAP cycle configuration information includes a first GAP cycle; the terminal device receives first information from the network device, where the first information is used to instruct the terminal device to use The GAP measurement is performed in a second GAP period; wherein the first GAP period is different from the second GAP period; the terminal device uses the second GAP period to perform the GAP measurement according to the indication of the first information.
  • the first information includes downlink control information DCI or downlink medium access control MAC control element CE.
  • the first information includes GAP cycle modification indication information
  • the GAP cycle modification indication information is used to instruct the terminal device to modify to the second GAP cycle
  • the GAP cycle modification indication information is used to instruct the terminal device to skip N GAP cycles T, where N is an integer greater than 1, T is the GAP cycle indicated by the first signaling, and T is greater than 0.
  • the terminal device uses the second GAP period to perform GAP measurement according to the indication of the first information, including:
  • the terminal device adjusts the first GAP period to the second GAP period, and uses the second GAP period to perform GAP measurement; or
  • the terminal device skips the GAP measurement of the first GAP cycle, and continues to use the first GAP cycle to perform GAP measurement in the N+1th GAP cycle.
  • the N is preset in the terminal device, or the N is sent by the network device to the terminal device before the first information.
  • the first signaling further includes a low-priority GAP cycle and a high-priority GAP cycle, and the priority of the GAP cycle is used by the terminal device to determine the processing priority of GAP measurement and scheduling tasks class.
  • the terminal device may also receive a scheduling task from the network device; wherein, the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority and not to skip The GAP measurement of too high priority.
  • the first information further includes the scheduled task.
  • the low-priority GAP period includes T1
  • the terminal device may further send second information, where the second information includes a desired GAP period of the terminal device.
  • the second information is assistance information UEAssistanceInformation of the terminal device, or uplink MAC CE, or uplink control information UCI.
  • the second information includes an initial cyclic shift value and/or an expected GAP period, and a mapping relationship exists between the initial cyclic shift value and the expected GAP period.
  • an embodiment of the present application provides a measurement apparatus, for example, the measurement apparatus is the aforementioned network device.
  • the measuring device is used to perform the method in the above first aspect or any possible implementation.
  • the measuring apparatus may include a module for performing the method in the first aspect or any possible implementation, for example including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module, and the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the measurement device is a network device, or a chip or other components provided in the network device.
  • the transceiver module can also be implemented by a transceiver, and the processing module can also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver
  • the transmitter and the receiver may be different functional modules, or may be the same functional module but capable of implementing different functions.
  • the transceiver is implemented by, for example, an antenna, a feeder, a codec and the like in the network device.
  • the transceiver (or the transmitter and the receiver) is, for example, a communication interface in the chip, which is connected with the radio frequency transceiver component in the network device to transmit radio frequency
  • the transceiver component realizes the sending and receiving of information.
  • the introduction process of the third aspect continue to take the measurement device as a network device, and take the processing module and the transceiver module as examples for introduction. in,
  • the processing module is configured to send first signaling to the terminal device through the transceiver module, where the first signaling includes GAP cycle configuration information, and the GAP cycle configuration information is used for the terminal device to perform GAP measurement, and , the GAP cycle configuration information includes the first GAP cycle;
  • the processing module is further configured to send first information to the terminal device through the transceiver module, where the first information is used to instruct the terminal device to use the second GAP cycle to perform the GAP measurement; wherein the The first GAP period is different from the second GAP period.
  • the processing module is further configured to determine the first information according to the state-related information of the terminal device;
  • the state-related information of the terminal device includes one or more of the following information: the type and application scenario of the terminal device, the amount of data to be scheduled, the moving speed of the terminal device, the frequency offset, and the history of the terminal device Cell information or the desired GAP period of the terminal device.
  • the first information includes downlink control information DCI or downlink medium access control MAC control element CE.
  • the first information includes GAP cycle modification indication information
  • the GAP cycle modification indication information is used to instruct the terminal device to modify to the second GAP cycle
  • the GAP cycle modification indication information is used to instruct the terminal device to skip N GAP cycles T, where N is an integer greater than 1, T is the GAP cycle indicated by the first signaling, and T is greater than 0.
  • the N is preset in the terminal device, or the N is sent by the network device to the terminal device before the first information.
  • the first signaling further includes a low-priority GAP cycle and a high-priority GAP cycle, and the priority of the GAP cycle is used by the terminal device to determine the processing priority of GAP measurement and scheduling tasks class.
  • the transceiver module is further configured to send a scheduling task to the terminal device;
  • the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority and not to skip the GAP measurement of high priority.
  • the first information further includes the scheduled task.
  • the low-priority GAP period includes T1
  • the transceiver module is further configured to receive second information, where the second information includes a desired GAP period of the terminal device.
  • the second information is assistance information UEAssistanceInformation of the terminal device, or uplink MAC CE, or uplink control information UCI.
  • the second information includes an initial cyclic shift value and/or an expected GAP period, and a mapping relationship exists between the initial cyclic shift value and the expected GAP period.
  • an embodiment of the present application provides a measurement apparatus, for example, the measurement apparatus is the aforementioned terminal device.
  • the measuring device is used to perform the method in the above second aspect or any possible implementation.
  • the measurement device may include modules for performing the method in the second aspect or any possible implementation, for example including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module, and the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the measurement device is a terminal device, or a chip or other components provided in the terminal device.
  • the transceiver module can also be implemented by a transceiver, and the processing module can also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver
  • the transmitter and the receiver may be different functional modules, or may be the same functional module but capable of implementing different functions.
  • the transceiver is implemented by, for example, an antenna, a feeder, a codec and the like in the terminal device.
  • the transceiver (or the transmitter and the receiver) is, for example, a communication interface in the chip, which is connected with the radio frequency transceiver component in the terminal device to transmit radio frequency
  • the transceiver component realizes the sending and receiving of information.
  • the transceiver module is configured to receive first signaling from a network device, where the first signaling includes GAP cycle configuration information, the GAP cycle configuration information is used for the terminal device to perform GAP measurement, and the GAP
  • the cycle configuration information includes a first GAP cycle; receiving first information from the network device, the first information is used to instruct the terminal device to use the second GAP cycle to perform the GAP measurement; wherein the first GAP cycle different from the second GAP period;
  • the processing module is configured to use the second GAP period to perform GAP measurement according to the indication of the first information.
  • the first information includes downlink control information DCI or downlink medium access control MAC control element CE.
  • the first information includes GAP cycle modification indication information
  • the GAP cycle modification indication information is used to instruct the terminal device to modify to the second GAP cycle
  • the GAP cycle modification indication information is used to instruct the terminal device to skip N GAP cycles T, where N is an integer greater than 1, T is the GAP cycle indicated by the first signaling, and T is greater than 0.
  • the processing module is specifically configured to adjust the first GAP period to the second GAP period, and use the second GAP period to perform GAP measurement; or skip the first GAP period For GAP measurement in the GAP period, in the N+1th GAP period, continue to use the first GAP period to perform GAP measurement.
  • the N is preset in the terminal device, or the N is sent by the network device to the terminal device before the first information.
  • the first signaling further includes a low-priority GAP cycle and a high-priority GAP cycle, and the priority of the GAP cycle is used by the terminal device to determine the processing priority of GAP measurement and scheduling tasks class.
  • the transceiver module is further configured to receive a scheduling task from the network device; wherein the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority, The GAP measurements of high priority are not skipped.
  • the first information further includes the scheduled task.
  • the low-priority GAP period includes T1
  • the transceiver module is further configured to send second information before receiving the first information from the network device, where the second information includes a desired GAP period of the terminal device.
  • the second information is assistance information UEAssistanceInformation of the terminal device, or uplink MAC CE, or uplink control information UCI.
  • the second information includes an initial cyclic shift value and/or an expected GAP period, and a mapping relationship exists between the initial cyclic shift value and the expected GAP period.
  • a measurement device is provided, and the measurement device is, for example, the aforementioned network device.
  • the measurement device includes a processor and a communication interface that can be used to communicate with other devices or devices.
  • the measurement device may further include a memory for storing computer instructions.
  • the processor and the memory are coupled to each other for implementing the above-mentioned first aspect or the method in various possible implementations.
  • the measurement device may not include a memory, and the memory may be external to the measurement device.
  • the processor, the memory and the communication interface are coupled to each other for implementing the method in the above first aspect or various possible implementations.
  • the measurement device when the processor executes the computer instructions stored in the memory, the measurement device is caused to perform the method of the first aspect or any of the possible implementations described above.
  • the measurement device is a network device, or a chip or other components provided in the network device.
  • the communication interface is implemented by, for example, a transceiver (or a transmitter and a receiver) in the network device, for example, the transceiver is implemented by an antenna, a feeder and a codec in the network device implement etc.
  • the communication interface is, for example, an input/output interface of the chip, such as input/output pins, etc.
  • the transceiver component realizes the sending and receiving of information.
  • a measurement device is provided, and the measurement device is, for example, the aforementioned terminal equipment.
  • the measurement device includes a processor and a communication interface that can be used to communicate with other devices or devices.
  • the measurement device may further include a memory for storing computer instructions.
  • the processor and the memory are coupled to each other for implementing the above second aspect or the method in various possible implementations.
  • the measurement device may not include a memory, and the memory may be external to the measurement device.
  • the processor, the memory and the communication interface are coupled to each other for implementing the method in the above second aspect or various possible implementations.
  • the measurement device is caused to perform the method of the second aspect or any of the possible implementations described above.
  • the measurement device is a terminal device, or a chip or other components provided in the terminal device.
  • the communication interface is realized by, for example, a transceiver (or a transmitter and a receiver) in the terminal device, for example, the transceiver is implemented by an antenna, a feeder and a codec in the terminal device implement etc.
  • the communication interface is, for example, an input/output interface of the chip, such as input/output pins, etc., and the communication interface is connected with the radio frequency transceiver component in the terminal device to transmit radio frequency
  • the transceiver component realizes the sending and receiving of information.
  • a communication system comprising the measurement device of the third aspect or the measurement device of the fourth aspect.
  • the measurement apparatus described in the third aspect may be a network device, and the measurement apparatus described in the fourth aspect may be a terminal device.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer is made to execute the first aspect or any one of the above possible implementations of the methods described in.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer is made to execute the second aspect or any one of the above possible implementations of the methods described in.
  • a tenth aspect provides a computer program product comprising instructions, the computer program product is used to store a computer program, and when the computer program is run on a computer, the computer is made to execute the above-mentioned first aspect or any one of the possibilities implementation of the method described in .
  • a computer program product comprising instructions, the computer program product is used to store a computer program, and when the computer program runs on a computer, causes the computer to execute the second aspect or any one of the above possible implementations of the methods described in.
  • 1a is a schematic diagram of a GAP measurement provided by an embodiment of the present application.
  • FIG. 1b is a schematic diagram of a GAP measurement provided by an embodiment of the present application.
  • FIG. 2a is a schematic flowchart of a GAP measurement provided by an embodiment of the present application.
  • 2b is a schematic diagram of a GAP measurement provided by an embodiment of the present application.
  • FIG. 3a is an architectural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3b is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • FIG. 3c is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • FIG. 3d is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • FIG. 3e is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a measurement provided by an embodiment of the present application.
  • FIG. 7a is a schematic diagram of a measurement configuration provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram of a measurement configuration provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a GAP measurement provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a measurement provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a measurement provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a measurement device provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a measurement device provided by an embodiment of the present application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity sexual equipment.
  • it may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, light terminal equipment (light UE), subscriber units ( subscriber unit), subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), User terminal, user agent, or user device, etc.
  • UE user equipment
  • D2D device-to-device
  • V2X vehicle to everything
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • light UE light UE
  • subscriber units subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • these may include mobile telephones (or "cellular" telephones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, and the like.
  • mobile telephones or "cellular" telephones
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing power, etc.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as on-board terminal equipment.
  • the on-board terminal equipment is also called on-board unit (OBU). ).
  • the terminal device may further include a relay (relay).
  • a relay relay
  • any device capable of data communication with the base station can be regarded as a terminal device.
  • the terminal device in this embodiment of the present application may be a low-capability terminal device, and the low-capability terminal device may also be referred to as an NR-light terminal device or a reduced capability terminal device.
  • the data transmission bandwidth of a non-low-capability terminal device on one carrier may be a maximum of 100 megahertz (MHz), while the data transmission bandwidth of a low-capacity terminal device on a carrier may be a maximum of 20 MHz.
  • the low-capability terminal device may include smart bracelets, industrial sensors, security cameras, and the like.
  • the apparatus for implementing the function of the terminal device may be the terminal device, or may be an apparatus capable of supporting the terminal device to implement the function, such as a chip system, and the apparatus may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (for example, an access point), which may refer to a device in the access network that communicates with wireless terminal equipment through one or more cells over the air interface , or, for example, a network device in a vehicle-to-everything (V2X) technology is a roadside unit (RSU).
  • the base station may be used to convert received air frames to and from IP packets, acting as a router between the terminal equipment and the rest of the access network, which may include the IP network.
  • the RSU can be a fixed infrastructure entity supporting V2X applications and can exchange messages with other entities supporting V2X applications.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (long term evolution, LTE) system or long term evolution-advanced (LTE-A), Or it may also include the next generation node B (gNB) in the 5th generation mobile communication technology (the 5th generation, 5G) NR system (also referred to as the NR system for short), or may also include a cloud access network (cloud access network).
  • the embodiment of the present application is not limited to a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) in a radio access network, Cloud RAN) system.
  • the network equipment may also include core network equipment, and the core network equipment includes, for example, an access and mobility management function (AMF) or a user plane function (UPF), and the like.
  • AMF access and mobility management function
  • UPF user plane function
  • the apparatus for implementing the function of the network device may be the network device, or may be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
  • each network device is responsible for managing at least one cell.
  • Each cell uses the corresponding carrier frequency to provide access services for terminal equipment.
  • the frequency points used by different cells may be the same or different.
  • Neighbor cell measurement in a wireless communication system, in order to ensure service continuity, terminal equipment obtains continuous wireless network services by switching or reselection in cells with different coverage areas.
  • the network device will issue measurement and control tasks such as intra-frequency, inter-frequency, or inter-system, so that the terminal device switches from the service area to the neighboring cell.
  • the service area refers to the cell currently serving the terminal device
  • the neighbor cell refers to the cell to be measured, which can be understood as other cells except the service area where the terminal device can search for signals in the service service.
  • Intra-frequency measurement means that the service area of the terminal equipment and the cell to be measured are on the same carrier frequency (center frequency).
  • Inter-frequency measurement means that the service area of the terminal equipment and the cell to be measured are not on the same carrier frequency.
  • the radio resource control (RRC) state of the terminal device includes a connected (RRC_CONNECTED) state, a deactivated (RRC_INACTIVE) state and an idle (RRC_IDLE) state.
  • a terminal device in a connected state can perform RRM measurement of a cell (including a service area and/or a neighboring cell) through an SSB signal.
  • RRM measurement is used to support handover of cells and ensure service continuity when terminal equipment moves.
  • GAP measurement when a terminal device has only a single receiving channel, it can only receive signals on one frequency point at the same time, that is, it can only receive signals from one cell at the same time.
  • the terminal equipment when the terminal equipment is receiving data sent from its service area, if it needs to perform measurement operations such as inter-frequency measurement or inter-system measurement on other cells, the receiver needs to leave the current frequency point to the need to measure. The frequency point is measured for a period of time, and the inter-frequency measurement or inter-system measurement within this period is the GAP measurement.
  • the terminal equipment In order to ensure the quality of the wireless link between the terminal equipment and the service area, the terminal equipment usually stops receiving signals and data in its service area during a specified time period (uplink and downlink services are interrupted), and receives signals from other cells for inter-frequency measurement or inter-frequency measurement. System measurement. When the time period ends, the terminal device starts to receive the signal and data of the service area again.
  • the GAP measurement process involves one or more of the following parameters (hereinafter referred to as GAP parameters): measurement GAP length (measurement GAP length, MGL), measurement GAP repetition period (measurement GAP repetition period, MGRP), or GAP offset (offset).
  • the terminal device may determine the system frame number (system frame number, SFN) and subframe (subframe) corresponding to the starting position of the GAP measurement according to the above-mentioned GAP parameters.
  • the above-mentioned GAP parameters may be indicated by one or more pieces of information/signaling, for example, the network device may indicate the above-mentioned GAP parameters to the terminal equipment through RRC signaling.
  • the measurement GAP length that is, the duration of the GAP, refers to the length of time required by the terminal device to perform a GAP measurement (such as the time period specified above).
  • the measurement GAP length may be 6 milliseconds (ms).
  • the measurement GAP repetition period means that the terminal device periodically performs GAP measurement according to the GAP period.
  • the GAP period may be 40ms, 80ms or 160ms, etc., or the GAP period may be T, where T is greater than 0 (for example, T is 20ms or 40ms, etc.), of course, the GAP period may also be an integer multiple of T, such as 2T, 4T or 8T etc.
  • the GAP period may be the first GAP period or the second GAP period indicated by the network device.
  • GAP offset is used to indicate where to start GAP measurement in the GAP cycle, that is, the starting position of GAP measurement. For example, if the GAP period is 40ms, the value range of the GAP offset is [0, 39], if the GAP period is 80ms, the value range of the GAP offset is [0, 79], etc.
  • the service area quality is above an absolute threshold, which can be used to turn off ongoing inter-frequency scan measurements and deactivate GAP;
  • the quality of the service area is below a critical threshold, which can be used to turn on ongoing inter-frequency scan measurements and activate GAP;
  • the adjacent cell quality is higher than the cell quality by a threshold, which can be used for coverage-based handover between intra-frequency and inter-frequency;
  • the quality of adjacent cells is higher than an absolute threshold, which can be used for load-based handover between intra-frequency and inter-frequency;
  • the quality of adjacent cells is lower than an absolute threshold 1 and higher than an absolute threshold 2, which can be used for coverage-based switching between intra-frequency and inter-frequency;
  • the BWP where the terminal equipment is located does not contain SSB signals.
  • the active BWP supported by the non-low-capacity terminal device is relatively large (such as 100MHz), and generally includes the initial (initial) BWP (the SSB signal on the initial BWP), so non-low-capacity terminal equipment can use the SSB signal for measurement on the active BWP.
  • the active BWP supported by low-capacity terminal devices is small (such as 20MHz), and may not include the initial BWP.
  • the active BWP of the low-capacity terminal device is on the The SSB signal may not be included.
  • the low-capacity terminal equipment needs to perform frequency switching measurement in its service area, that is, switch to other BWPs that include the SSB signal for measurement. Therefore, when the BWP where the terminal equipment is located does not contain the SSB signal, the terminal equipment also needs to perform GAP measurement.
  • the measurement method provided by the embodiment of the present application can be used for GAP measurement of neighboring cells of inter-frequency/inter-system, and can also be used for GAP measurement of service cells without SSB signal in active BWP.
  • the network device sends RRC signaling to the terminal device, where the RRC signaling includes GAP parameters.
  • the GAP parameters include measured GAP length and GAP period.
  • the measurement GAP length is 6 milliseconds (ms)
  • the GAP period is 20 ms or 80 ms.
  • S202 The terminal equipment in the connected state performs RRM measurement of the cell through the SSB signal.
  • the SSB signal is included on the initial BWP, and the terminal equipment in the connected state can perform RRM measurement of the cell through the SSB signal included in the initial BWP where it is located. But the active BWP may not contain the SSB signal. If the active BWP where the terminal device is located does not contain the SSB signal, the network device may perform S203 to perform GAP measurement.
  • the execution sequence of S201 and S202 may not be limited.
  • S203 The terminal device performs GAP measurement according to the GAP parameter, and the uplink and downlink services are interrupted during the GAP measurement.
  • the GAP period is 20ms
  • the terminal device performs a GAP measurement every 20ms
  • the duration of each GAP measurement is 6ms.
  • the terminal device adopts a relaxed (relaxed) GAP measurement method in the active BWP, the GAP period is 80ms, the terminal device performs a GAP measurement every 80ms, and the duration of each GAP measurement is 6ms.
  • GAP measurement involved in the embodiments of the present application may be understood as using GAP parameters to perform RRM measurement of inter-frequency/inter-system.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • the first data packet and the second data packet are only for distinguishing different data packets, but do not indicate the difference in content, priority, sending order, or importance of the two data packets.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example, the fifth generation (The 5th Generation, 5G) communication system, the future sixth generation communication system and other evolved communication systems, Long Term Evolution (Long Term Evolution) , LTE) communication system, vehicle to everything (V2X), long-term evolution-vehicle (LTE-vehicle, LTE-V), vehicle-to-vehicle (V2V), vehicle networking, machine type communication ( Machine Type Communications, MTC), Internet of Things (IoT), Long Term Evolution-Machine to Machine (LTE-machine to machine, LTE-M), Machine to Machine (Machine to machine, M2M) and other communication scenarios.
  • 5G Fifth Generation
  • 5G Fifth Generation
  • 5G Fifth Generation
  • LTE Long Term Evolution
  • LTE-V long-term evolution-vehicle
  • V2V2V vehicle-to-vehicle
  • MTC Machine Type Communications
  • IoT Internet of Things
  • FIG. 3a shows a possible communication system architecture applicable to the embodiments of the present application, and the communication system architecture can be applied to the above-mentioned various communication systems.
  • the communication system includes a base station and a terminal device.
  • the number and types of base stations and terminal devices in the communication system are not limited here.
  • the base station is responsible for providing wireless access-related services for the terminal equipment, implementing wireless physical layer functions, resource scheduling and wireless resource management, quality of service (Quality of Service, QoS) management, wireless access control and mobility management (eg cell reselection and handover) functions.
  • the base station and the terminal device may be connected through a Uu interface, so as to realize the communication between the terminal device and the base station.
  • the network device may provide services for multiple terminal devices.
  • the frequency of GAP measurement may also be different.
  • the user is in a high-speed moving scenario (such as the user takes a bus, high-speed rail and other high-speed moving vehicles), and the location of the terminal device used by the user moves frequently, for example, the terminal device is currently located in the service of base station 1 Within the range, as the vehicle moves, the signal between the terminal device and base station 1 gradually deteriorates. At this time, the terminal device needs to perform GAP measurement frequently. Such as access from base station 1 to base station 2) to ensure service continuity.
  • the user is in a relatively open environment, and the user moves slowly (for example, walking), and the position of the terminal device moves relatively slowly. The signal is relatively good. At this time, the terminal device does not need to perform GAP measurement frequently, and the GAP period can be set to be longer without affecting the use of the user.
  • the user is watching live video or playing online games through the terminal device.
  • These applications have relatively high network requirements.
  • the terminal device needs to perform GAP measurement frequently, and the GAP period can be set to be shorter. to ensure business continuity.
  • the user is taking pictures through the terminal device or using instant messaging software to chat, etc. These applications have relatively low network requirements.
  • the terminal device does not need to perform GAP measurement frequently, and the GAP period can be set to be longer. Will not affect the user's use.
  • the GAP cycle is generally statically configured by the network device through RRC signaling, that is, the network device configures a fixed GAP cycle for the terminal device.
  • the GAP period is too short, it means that the GAP measurement is frequent, and the service transmission between the terminal device and the service area is frequently interrupted, which affects the normal communication of the service and increases the power consumption; in some scenarios as shown in Figure 3b and Figure 3d, the terminal equipment and network equipment generally determine whether to perform cell handover or reselection according to the cell frequency and the network conditions of the adjacent cells. If the GAP period is too long, it is necessary to repeat the measurement between the terminal equipment and the network equipment. , which may cause the terminal equipment to lose contact with the network equipment before it is too late to re-measure and switch cells during the movement process, resulting in the risk of network drop and affecting the user experience.
  • an embodiment of the present application provides a measurement method.
  • the measurement method provided by the embodiment of the present application is applicable to the communication system as shown in FIG. 3a, and can be used for various kinds of measurement that require inter-frequency/inter-system measurement through the GAP measurement method.
  • it can also be used in the scenario of GAP measurement in the service area where there is no SSB signal in the active BWP.
  • the network device can dynamically adjust the GAP period during GAP measurement of the terminal device, increase service throughput, reduce power consumption, reduce the risk of network drop of the terminal device, and improve the measurement success rate and efficient.
  • the network device can dynamically configure the GAP cycle through downlink control information (DCI) or downlink media access control (media access control, MAC) control element (control element, CE).
  • DCI downlink control information
  • MAC media access control
  • CE control element
  • the network device indicates through RRC signaling whether to use the dynamic GAP cycle.
  • the network device may use static (static) or dynamic (dynamic) to indicate whether to use the dynamic GAP cycle.
  • the RRC signaling includes GAP cycle configuration information
  • the GAP cycle configuration information can be used to indicate whether to use the dynamic GAP cycle, that is, the GAP cycle configuration information can be used to instruct the terminal device to use the dynamic GAP cycle to perform GAP measurement , or used to instruct the terminal device to use the static GAP cycle to perform GAP measurement.
  • the GAP cycle configuration information may be static or dynamic. If the GAP cycle configuration information is static, the terminal device determines to use a static GAP cycle. If the GAP cycle configuration information is dynamic, the terminal device determines to use the dynamic GAP cycle.
  • the RRC signaling may also configure a first GAP period T, for example, the GAP period configuration information includes the first GAP period T.
  • the value of the T may be 40ms, that is, the specific time corresponding to the T may be 40ms, that is, the first GAP period may be 40ms. It can be understood that the specific time of T is not limited in this application, that is, the specific time of the first GAP cycle is not limited in this application.
  • the default value of the GAP cycle configuration information is static, that is, the dynamic GAP cycle is not used by default. If the RRC signaling is configured with dynamic, the terminal device may consider that the dynamic GAP cycle is used.
  • the process of S401 can be understood as enabling configuration of whether to use the dynamic GAP period through RRC signaling.
  • the RRC signaling involved in this S401 may be understood as enabling RRC signaling.
  • the use of the dynamic GAP period may be indicated by adding RRC signaling, or the use of the dynamic GAP period may be indicated by a new item in the GAP configuration information in the RRC signaling.
  • the newly added item in the GAP configuration information in RRC signaling is gap-measurement-config ENUMERATED ⁇ static, dynamic ⁇ , if the gap-measurement-config ENUMERATED includes static, it means that the dynamic GAP cycle is not used.
  • -measurement-config ENUMERATED includes dynamic, which means the dynamic GAP cycle is used.
  • the network device may determine whether to use the dynamic GAP cycle according to the state-related information of the terminal device.
  • the state-related information of the terminal device includes one or more of the following information: the type and application scenario of the terminal device, the amount of data to be scheduled, the moving speed of the terminal device, the frequency offset, and the history of the terminal device Cell information or the desired GAP period of the terminal device.
  • the types of the terminal equipment may include stationary terminal equipment and mobile terminal equipment.
  • Class terminal devices are devices that can follow the user's movement or move according to the user's control, such as mobile phones, smart wearable devices, drones, or vehicles.
  • the type of the terminal device may include a low-capacity terminal device and a non-low-capacity terminal device, the low-capacity terminal device is allocated a narrowband BWP and supports narrowband data processing, and the non-low-capability terminal device is allocated a larger BWP ( compared to the narrowband BWP).
  • the application scenario of the terminal device may be a usage scenario that requires signal quality/strength, such as live video or online games as shown in Figure 3d, which require higher signal quality/strength, such as taking pictures or chatting as shown in Figure 3e. Lower requirements for signal quality/strength, etc.
  • the amount of data to be scheduled may be the amount of service data that the terminal device expects to interact with the service area.
  • the amount of data to be scheduled is very large in the scenario shown in FIG.
  • the number is relatively small.
  • the moving speed of the terminal device may be determined according to the communication between the terminal device and base stations with different coverages, or the moving speed of the terminal device may be determined according to a plurality of global positioning system (global positioning system, GPS) position information of the terminal device Sure.
  • the frequency offset is the frequency offset between the terminal device and the network device.
  • the historical cell information of the terminal device is information of other cells that the terminal device has camped on before the current service area. For the process of reporting the expected GAP period of the terminal device, reference may be made to the process of the subsequent manner 4.
  • the network device when it determines to use the dynamic GAP cycle, it may also determine how to dynamically adjust the GAP cycle.
  • the process of dynamically adjusting the GAP cycle of the terminal device by the network device reference may be made to the following S402.
  • the RRC signaling may also carry the configuration information of the GAP period.
  • the network device dynamically modifies the GAP cycle through DCI or MAC CE.
  • the DCI or MAC CE carries the parameter M, which is used to instruct the terminal device to modify the GAP cycle to the GAP cycle corresponding to the M value.
  • the M is a positive integer, for example, the value of M may be 1, 2, 4, or 8.
  • the terminal device can modify the GAP cycle to 1T, 2T, 4T or 8T, etc., to perform GAP measurement.
  • the T is indicated by the RRC signaling in S401, and the T is the first GAP period.
  • the terminal device may determine the value/specific time of the corresponding GAP cycle according to the value of T. For example, when M is 2 and T is 40ms, the terminal device determines that the value/specific time of the corresponding GAP period is 80ms.
  • M and the value of T are not limited in this application, and the value of M is 1, 2, 4 or 8, and the value of T is 40ms is only an example made in this application.
  • the value of M can be indicated by a field, so that the GAP cycle can be dynamically adjusted.
  • the terminal device stores a predefined correspondence between M (different M values) and the GAP period.
  • M different M values
  • the corresponding relationship between the M and the GAP period may be shown in Table 1 below.
  • the DCI or MAC CE carries the parameter M, and the terminal device can search for the corresponding GAP cycle in the corresponding relationship according to the value of M, and then determine the specific time of the corresponding GAP cycle according to the value of T.
  • the M may be represented in binary, for example, the value of M may be 00, 01, 10, or 11.
  • the value of M is not limited in this application, and the value of M is 00, 01, 10 or 11 is only an example made in this application.
  • the RRC signaling in S401 may include a set of GAP cycle configuration information.
  • Table 1 when the value of M is 00 (the binary representation of 0), the terminal device can determine that the corresponding GAP period is T. If T is 40ms, the value of the GAP period can be 40ms. When the value is 01 (the binary representation of 1), the terminal device can determine that the corresponding GAP period is 2T, and if T is 40ms, the value of the GAP period can be 80ms. When the value of M is 10 (the binary representation of 2), the terminal device can determine that the corresponding GAP period is 4T, and if T is 40ms, the value of the GAP period can be 160ms.
  • the terminal device can determine that the corresponding GAP period is 8T, and if T is 40ms, the value of the GAP period can be 320ms.
  • the T is indicated by the RRC signaling in S401.
  • the value of T is not limited in this application, and T being 40 ms is only an example made in this application.
  • the network device may carry a corresponding value of M in the DCI or MAC CE, that is, the dynamic configuration of the GAP period can be implemented.
  • the DCI or MAC CE carries a parameter index (index), which is used to instruct the terminal device to modify the GAP cycle to the GAP cycle corresponding to the index value.
  • index a parameter index
  • the RRC signaling in S401 may include multiple sets of GAP cycle configuration information, each set of GAP cycle configuration information is uniquely identified by an index, and each set of GAP cycle configuration information includes a GAP cycle corresponding to an index value.
  • Each set of GAP cycle configuration information may explicitly include an index value, or the index value may be implicitly indicated by the configuration sequence of each set of GAP cycle configuration information. For example, when the index value is 0, it corresponds to the first set of GAP cycle configuration information, and the GAP cycle included in the first set of GAP cycle configuration information is 40ms; when the index value is 1, it corresponds to the second set of GAP cycle configuration information information, the GAP cycle included in the second set of GAP cycle configuration information is 80ms.
  • the network device may carry the index of the corresponding value in the DCI or MAC CE, that is, the dynamic configuration of the GAP period can be implemented.
  • the network device may use scheduling (Scheduling) DCI or control DCI for dynamic configuration.
  • the DCI may be the existing DCI, or may be the multiplexing of the existing DCI, or may be the newly added DCI.
  • DCI is generally sent multiple times, and the network device can dynamically modify the GAP cycle each time DCI is sent.
  • the terminal device can parse the DCI received each time to determine whether the DCI has modified the GAP cycle, so the real-time performance is good, but the overhead is large.
  • the MAC CE may be a newly added MAC CE.
  • the terminal device performs GAP measurement according to the GAP period indicated by the DCI or the MAC CE.
  • the terminal device determines whether to use a static GAP period or a dynamic GAP period according to the indication of the RRC signaling in S401. If the terminal device determines to use the dynamic GAP cycle, the terminal device may parse the DCI or MAC CE received in S402, and determine the GAP cycle indicated by the DCI or the MAC CE. Optionally, if the terminal device determines to use a static GAP cycle, the terminal device may also perform GAP measurement according to the static first GAP cycle T configured by the RRC signaling in S401.
  • the DCI or MAC CE carries the parameter M
  • the terminal device can determine the GAP cycle corresponding to the value of M, and then determine the specific time corresponding to the GAP cycle according to the value of T, and perform GAP measurement.
  • the terminal device may determine the GAP period corresponding to the value of M, and then determine the specific time corresponding to the GAP period according to the value of T.
  • the terminal device may determine that the corresponding GAP cycle is 2T, and if T is 40ms, the terminal device may determine the value of the corresponding GAP cycle The value/specific time is 80ms, and the terminal device modifies the GAP cycle to 80ms, and performs GAP measurement.
  • a predefined correspondence between M and GAP period is stored in the terminal device.
  • the corresponding relationship between the M and the GAP period can be referred to as shown in Table 1 above.
  • the DCI or MAC CE carries the parameter M, and the terminal device searches for the corresponding GAP cycle in the corresponding relationship according to the value of M, and then determines the specific time of the corresponding GAP cycle according to the value of T, and performs GAP Measurement.
  • the RRC signaling in S401 may include a set of GAP cycle configuration information, as shown in Table 1 above.
  • the terminal device can determine that the corresponding GAP cycle is 4T, and if T is 40ms, the terminal device can determine the value/specific value of the corresponding GAP cycle The time is 160ms, the terminal device modifies the GAP cycle to 160ms, and performs GAP measurement.
  • the parameter index is carried in the DCI or MAC CE, and the terminal device may determine the GAP cycle configuration information corresponding to the index value, and determine the GAP cycle included in the corresponding GAP cycle configuration information.
  • the RRC signaling in S401 may include multiple sets of GAP cycle configuration information, each set of GAP cycle configuration information is uniquely identified by an index, and each set of GAP cycle configuration information includes a GAP cycle corresponding to an index.
  • the value of the parameter index carried in the DCI or MAC CE is 0, and the terminal device determines that the index value of 0 corresponds to the first set of GAP cycle configuration information, and the GAP included in the first set of GAP cycle configuration information
  • the period is 40ms, and the terminal device modifies the GAP period to 40ms, and performs GAP measurement.
  • the network device can modify the GAP cycle through DCI or MAC CE.
  • the terminal device can modify the GAP cycle to 2T, 4T or 8T through DCI or MAC CE, so the terminal device can
  • the dynamic modification of the GAP cycle can avoid the impact of a short GAP cycle on service communication, reduce power consumption, and prevent the terminal device from being disconnected from the network due to a long GAP cycle, and can also ensure the success rate and efficiency of the terminal device measurement.
  • the network device can dynamically modify the GAP cycle of the terminal device by skipping one or more cycles.
  • it includes the following processes:
  • S501 The network device indicates whether to use the dynamic GAP cycle through RRC signaling.
  • S502 The network device instructs the terminal device to skip N GAP periods T.
  • the network device instructs the terminal device to skip N GAP periods T through DCI or MAC CE.
  • the network device instructs the terminal device to skip N GAP cycles T, that is, within the time corresponding to the N GAP cycles T, the terminal device does not perform GAP measurements, and in the N+1th GAP cycle, the terminal device does not perform GAP measurements. GAP measurements were performed.
  • the DCI or MAC CE carries the parameter N, which is used to instruct the terminal device to skip N GAP periods T.
  • the N is a positive integer, for example, the value of N may be 1, 2, 4, or 8.
  • the terminal device may skip the time corresponding to 1T, 2T, 4T or 8T.
  • the T is indicated by the RRC signaling in S501.
  • the terminal device may determine the skipping time according to the value of T. For example, when N is 2 and T is 40ms, the terminal device determines that the skipping time is 80ms.
  • M and the value of T are not limited in this application, the value of M is 1, 2, 4 or 8, and the value of T is 40ms is only an example made in this application.
  • the value of M can be indicated by a field, so that the GAP cycle can be dynamically adjusted.
  • the terminal device stores a predefined correspondence between M (different M values) and the GAP period.
  • M different M values
  • the corresponding relationship between the M and the GAP period may be shown in Table 2 below.
  • the DCI or MAC CE carries the parameter M, and the terminal device can determine the skipped GAP period according to the value of M in the corresponding relationship, and then determine the skipped time according to the value of T.
  • the M may be represented in binary, for example, the value of M may be 00, 01, 10, or 11.
  • the value of M is not limited in this application, and the value of M is 00, 01, 10 or 11 is only an example made in this application.
  • the terminal device may determine to skip one GAP period T, and if T is 40ms, the specific skip time may be 40ms.
  • the terminal device can determine to skip 2 GAP periods T. If T is 40ms, the specific time for skipping can be 80ms.
  • the terminal The device can determine to skip 4 GAP cycles T. If T is 40ms, the specific time to skip can be 160ms. When the value of M is 11, the terminal device can determine to skip 8 GAP cycles T. If T is 40ms, the specific time for skipping can be 320ms.
  • the T is indicated by the RRC signaling in S501.
  • the value of T is not limited in this application, and T being 40 ms is only an example made in this application.
  • the terminal device uses the original GAP period to perform GAP measurement in the (N+1)th GAP period.
  • the original GAP period is a static first GAP period T.
  • the terminal device uses the first GAP period T to perform GAP measurement before receiving the indication shown in S502.
  • the parameter N is carried in the DCI or MAC CE, the terminal device skips N GAP cycles T, and performs GAP measurement in the N+1th GAP cycle.
  • the terminal device can determine to skip two GAP periods T, and if T is 40ms, the terminal device can determine the skip time is 80ms.
  • a predefined correspondence between M and GAP period is stored in the terminal device.
  • the corresponding relationship between the M and the GAP period can be referred to as shown in Table 2 above.
  • the DCI or MAC CE carries the parameter M, and the terminal device searches for the corresponding skipped GAP cycle in the corresponding relationship according to the value of M.
  • the terminal device can determine that the corresponding skipped GAP period is 4T, that is, the specific time skipped by the terminal device is 160ms, so The terminal equipment performs GAP measurement in the fifth GAP cycle.
  • the network device can instruct the terminal device to skip N GAP cycles T, so it can realize dynamic modification of the GAP cycle of the terminal device, avoid the impact of too short GAP cycle on service communication, reduce power consumption, and avoid GAP cycles. If the period is too long, the terminal equipment will be disconnected from the network, which can also ensure the success rate and efficiency of the terminal equipment measurement. After skipping N GAP periods T, the terminal device can restore the original GAP period by itself without new indication information, which can further reduce signaling overhead.
  • Mode 3 The network device is configured with multiple sets of GAP cycles, and a corresponding priority is configured for each set of GAP cycles. As shown in Figure 6, the following processes are included:
  • the network device configures the low-priority GAP period and the high-priority GAP period through RRC signaling.
  • the priority of the GAP cycle can be used by the terminal device to determine the processing priority of the GAP measurement and scheduling tasks. For example, when there is a scheduling task, the GAP measurement of low priority can be skipped, and the GAP measurement of high priority can not be skipped. , that is, the processing priority of the scheduling task is higher than the GAP measurement of the low priority, and the processing priority of the scheduling task is lower than the GAP measurement of the high priority.
  • the RRC signaling includes a low-priority GAP period and a high-priority GAP period.
  • the low-priority GAP period includes T1
  • the low-priority GAP period may be one of T, 2T, or 4T
  • the high-priority GAP period may be 8T
  • the low-priority GAP period may be 40ms
  • the high-priority GAP period may be 40ms.
  • the period can be 160ms.
  • multiple GAP cycles and the priority corresponding to each GAP cycle may be configured through a piece of information, such as GapConfig as shown in FIG. 7a.
  • multiple GAP periods and the priority corresponding to each GAP period can be configured through multiple pieces of information, such as GapConfigHighPri (for configuring high-priority GAP periods) and GapConfigLowPri (for configuring low-priority GAP periods) as shown in Figure 7b ).
  • the network device sends a scheduling task to the terminal device.
  • the priority of the scheduling task may be implicit, for example, the priority of the default scheduling task of the network device and the terminal device is higher than the low-priority GAP period and lower than the high-priority GAP period. In this way, after receiving the scheduling task, the terminal device ignores/skips/interrupts/does not execute the low-priority GAP period, and does not ignore/skip/interrupt the high-priority GAP period.
  • the terminal device After receiving the scheduling task, the terminal device skips the GAP measurement with low priority and does not skip the GAP measurement with high priority, that is, the GAP measurement with high priority is not affected by scheduling.
  • Skip the low-priority GAP measurement refers to ignoring/not performing the GAP measurement in the next cycle. For example, the terminal device determines that the low-priority GAP measurement should be performed in slot 5, but determines that slot 5 needs to perform scheduling in slot 4. task, the terminal device performs the scheduling task in slot 5 without performing the low-priority GAP measurement.
  • the low-priority GAP period includes 20ms
  • the high-priority GAP period includes 80ms.
  • the priority of the scheduling task is higher than the low priority of the GAP period and lower than the high priority of the GAP period.
  • the low-priority GAP period when there is a scheduling task, the low-priority GAP measurement is skipped, the network device performs the scheduling task, and when there is no scheduling task, the low-priority GAP measurement is performed normally.
  • the high-priority GAP period regardless of whether there is a scheduling task, the high-priority GAP measurement is normally performed.
  • the scheduling control between the scheduling task and the GAP measurement can be implemented, and the dynamic scheduling of the GAP measurement can be implemented.
  • the terminal device may report the expected GAP period. As shown in Figure 9, it includes the following processes:
  • S901 The terminal device reports the expected GAP period.
  • the terminal device may determine the expected GAP period of the terminal device according to at least one of the type and application scenario of the terminal device, the moving speed of the terminal device, and the amount of data to be scheduled. For example, the terminal device may directly report the desired GAP cycle, or the terminal device may report N, where N is used to indicate that the desired GAP cycle is N GAP cycles T.
  • the terminal device may initially report the desired GAP period through the assistance information (UEAssistanceInformation) of the terminal device.
  • the overhead of using UEAssistanceInformation is small, but the flexibility is poor, and it is more suitable for static terminal equipment such as video surveillance cameras and industrial sensors.
  • the terminal device may report the expected GAP period through the uplink MAC CE.
  • the expected GAP period can be reported together with a buffer status report (buffer status report, BSR), which has good flexibility.
  • BSR buffer status report
  • the terminal device may report the expected GAP period through uplink control information (uplink control information, UCI).
  • uplink control information uplink control information, UCI.
  • the real-time performance of reporting through UCI is high, but the overhead is large.
  • the terminal device can report the expected GAP cycle through a physical uplink control channel (physical uplink control channel, PUCCH) 0 or PUCCH1, for example, the terminal device can implicitly report the expected GAP cycle by selecting different initial cyclic shift values m cs .
  • N Physical uplink control channel
  • m cs is the value of cyclic shift (cyclic shift, cs).
  • 0 represents a negative response (NACK) message
  • 1 represents an acknowledgment response (ACK) message. If m cs in the NACK message is 3, the corresponding expected GAP period is T, and if m cs in the ACK message is 9, the corresponding expected GAP period is T.
  • the corresponding expected GAP period is 2T, and if m cs in the ACK message is 10, the corresponding expected GAP period is 2T. If m cs in the NACK message is 5, the corresponding expected GAP period is 4T, and if m cs in the ACK message is 11, the corresponding expected GAP period is 4T.
  • the network device may issue a reporting indication of the expected GAP period to trigger aperiodic reporting of the expected GAP period.
  • a GapN request field is added to DCI0_1, and the GapN request field is used to instruct the terminal device to report the expected GAP cycle. After parsing the GapN request field, the terminal device can report the N value corresponding to the expected GAP cycle together with the UCI.
  • the network device determines whether to use a dynamic GAP period according to the expected GAP period.
  • the network device uses the expected GAP cycle as a reference and combines other state information of the terminal device (for the other state information, please refer to the state-related information of the terminal device in the above S401), determine whether to use dynamic GAP cycle.
  • S903 The network device dynamically modifies the GAP cycle.
  • S904 The network terminal device performs GAP measurement according to the GAP cycle indicated by the network device.
  • the terminal device can report the desired GAP cycle suitable for itself, and the network device can further accurately determine how to dynamically modify the GAP cycle by referring to the expected GAP cycle of the terminal device.
  • mode 1, mode 2, mode 3 and mode 4 can be used alone or in combination.
  • an embodiment of the present application provides a measurement method. Include the following steps:
  • a network device sends a first signaling to a terminal device, and the terminal device receives the first signaling, where the first signaling includes GAP cycle configuration information, and the GAP cycle configuration information is used by the terminal device to perform GAP measurement, and the GAP cycle configuration information includes the first GAP cycle.
  • the first GAP period may be denoted as T.
  • the first signaling is further used for instructing the terminal device to use a static GAP cycle, or for the terminal device to use a dynamic GAP cycle.
  • the GAP cycle configuration information is specifically used to instruct the terminal device to use a static GAP cycle to perform GAP measurement, or to instruct the terminal device to use a dynamic GAP cycle to perform GAP measurement.
  • the first signaling may further include a low-priority GAP period and a high-priority GAP period.
  • the low-priority GAP period includes T1
  • the priority of the GAP cycle is used by the terminal device to determine the processing priority of the GAP measurement and scheduling tasks.
  • the scheduling task may be used to instruct the terminal device to skip the GAP measurement of low priority and not to skip the GAP measurement of high priority. That is to say, for the low-priority GAP period, if there is a scheduling task, the terminal device can skip/ignore/interrupt/not perform the GAP measurement of the low-priority GAP period, and execute the scheduling task; for the high-priority GAP period Regarding the priority GAP period, if there is a scheduling task, the terminal device may ignore the scheduling task, and not skip/ignore/interrupt the GAP measurement of the high-priority GAP period.
  • the network device may also send a scheduling task to the terminal device, where the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority and not to skip the GAP measurement of high priority .
  • the network device sends first information to the terminal device, and the terminal device receives the first information, where the first information is used to instruct the terminal device to use the second GAP cycle to perform the GAP measurement; Wherein, the first GAP period is different from the second GAP period.
  • the first information may include DCI or downlink MAC CE.
  • the network device may also determine the first information according to the state-related information of the terminal device; the state-related information of the terminal device includes one or more of the following information: The type and application scenario of the terminal device, the amount of data to be scheduled, the moving speed of the terminal device, the frequency offset, the historical cell information of the terminal device, or the expected GAP period of the terminal device.
  • the process of determining the first information by the network device according to the state-related information of the terminal device may refer to the above S401, and repeated details are not repeated.
  • the terminal device Before the network device sends the first information to the terminal device, the terminal device may also send second information, the network device receives the second information, and the second information includes the expected GAP of the terminal device cycle.
  • the terminal device may also send second information, the network device receives the second information, and the second information includes the expected GAP of the terminal device cycle.
  • the second information may be UEAssistanceInformation, or uplink MAC CE, or UCI.
  • the second information includes the initial cyclic shift value and/or the expected GAP period, the initial cyclic shift value and the expected GAP period have a mapping relationship, and the mapping relationship between the initial cyclic shift value and the expected GAP period can refer to the above Table 3 shown.
  • the network device may instruct in an explicit manner to dynamically modify the GAP cycle of the terminal device.
  • the first information may include GAP period modification indication information, where the GAP period modification indication information is used to instruct the terminal device to modify to the second GAP period; or the GAP period modification indication information is used to indicate the
  • the terminal device skips N GAP cycles T, where N is an integer greater than 1, T may be the GAP cycle indicated by the first signaling, that is, the first GAP cycle, and T is greater than 0.
  • the N is preset in the terminal device, or the N is sent by the network device to the terminal device before the first information, or the N is carried in the first information .
  • the first information may further include the scheduling task.
  • the terminal device uses the second GAP period to perform GAP measurement according to the indication of the first information.
  • the terminal device adjusts the first GAP period to the second GAP period, and uses the second GAP period to perform GAP measurement.
  • the terminal device uses the second GAP period to perform GAP measurement. For this process, reference may be made to S403, and repeated descriptions are not repeated.
  • the terminal device skips the GAP measurement of N GAP periods T (that is, does not perform GAP measurement for N consecutive first GAP periods), and continues to use the GAP measurement in the N+1th period. GAP measurement is performed in the first GAP cycle. For this process, reference may be made to S503, and repeated descriptions are not repeated.
  • the terminal device may skip the GAP measurement of low priority and not skip the GAP measurement of high priority according to the indication of the scheduling task.
  • the network device can indicate to the terminal device a second GAP cycle that is different from the first GAP cycle through the first information, which can realize dynamic adjustment of the GAP cycle, improve service throughput, reduce power consumption, and also It can reduce the network drop risk of terminal equipment and ensure the success rate and efficiency of terminal equipment measurement.
  • FIG. 11 is a schematic block diagram of a measurement apparatus 1100 provided by an embodiment of the present application.
  • the measurement device 1100 includes a processing module 1110 and a transceiver module 1120 .
  • the measurement apparatus 1100 may be a network device or a terminal device, or a chip provided in the network device or the terminal device, or other combined devices or components having the functions of the above-mentioned network device or terminal device.
  • the transceiver module 1120 may be a transceiver, the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 1110 may be a processor, such as a baseband processor, and the baseband processor may include a or multiple central processing units (CPUs).
  • the transceiver module 1120 may be a radio frequency unit, and the processing module 1110 may be a processor, such as a baseband processor.
  • the transceiver module 1120 may be an input/output interface of a chip (eg, a baseband chip), and the processing module 1110 may be a processor of the chip system, which may include one or more central processing units.
  • processing module 1110 in this embodiment of the present application may be implemented by a processor or a circuit component related to the processor, and the transceiver module 1120 may be implemented by a transceiver or a circuit component related to the transceiver.
  • the processing module 1110 may be configured to perform all operations performed by the network device or the terminal device in the embodiment shown in FIG. 4 , FIG. 5 , FIG. 6 , FIG. 9 or FIG. 10 except for the transceiving operation, such as S902 , and/or Additional procedures for supporting the techniques described herein.
  • the transceiver module 1120 may be used to perform all transceiver operations performed by the network device or terminal device in the embodiments shown in FIG. 4, FIG. 5, FIG. 6, FIG. 9, or FIG. 10, and/or to support other techniques described herein. process.
  • the transceiver module 1120 may be a functional module, and the function module can complete both the sending operation and the receiving operation.
  • the transceiver module 1120 may be used to perform the operations shown in FIG. 4 , FIG. 5 , FIG. 6 , FIG. 9 or FIG. 10 . All the sending and receiving operations performed by the network device or the terminal device in the embodiment, for example, when performing a sending operation, the transceiver module 1120 can be considered as a sending module, and when performing a receiving operation, the transceiver module 1120 can be considered as a receiving operation.
  • the transceiver module 1120 can also be two functional modules, and the transceiver module 1120 can be regarded as a general term for these two functional modules, the two functional modules are respectively a sending module and a receiving module, the sending module is used to complete the sending operation,
  • the sending module may be used to perform all the sending operations by the network device or the terminal device in any of the embodiments shown in FIG. 4 , FIG. 5 , FIG. 6 , FIG. 9 or FIG. 10
  • the receiving module is used to complete the receiving operation,
  • the receiving module may be used to perform all the receiving operations by the network device or the terminal device in the embodiment shown in FIG. 4 , FIG. 5 , FIG. 6 , FIG. 9 or FIG. 10 .
  • the measuring apparatus 1100 is applied to network equipment.
  • the processing module 1110 is configured to send the first signaling to the terminal device through the transceiver module 1120, where the first signaling includes GAP cycle configuration information, and the GAP cycle configuration information is used for the terminal device to perform GAP measurement , and the GAP cycle configuration information includes the first GAP cycle.
  • the processing module 1110 is further configured to send first information to the terminal device through the transceiver module 1120, where the first information is used to instruct the terminal device to use the second GAP cycle to perform the GAP measurement; wherein, The first GAP period is different from the second GAP period.
  • the processing module 1110 is further configured to determine the first information according to the state-related information of the terminal device; the state-related information of the terminal device includes one or more of the following information : the type and application scenario of the terminal device, the amount of data to be scheduled, the moving speed of the terminal device, the frequency offset, the historical cell information of the terminal device, or the expected GAP period of the terminal device.
  • the first information includes CI or downlink MAC CE.
  • the first information includes GAP period modification indication information; the GAP period modification indication information is used to instruct the terminal device to modify the second GAP period; or the GAP period modification indication The information is used to instruct the terminal device to skip N GAP periods T, where N is an integer greater than 1, T is the GAP period indicated by the first signaling, and T is greater than 0.
  • the N is preset in the terminal device, or the N is sent by the network device to the terminal device before the first information.
  • the first signaling further includes a low-priority GAP cycle and a high-priority GAP cycle, and the priority of the GAP cycle is used by the terminal device to determine the processing priority of GAP measurement and scheduling tasks class.
  • the transceiver module 1120 is further configured to send a scheduling task to the terminal device; wherein the scheduling task is used to instruct the terminal device to skip the GAP measurement with low priority, The GAP measurements of high priority are not skipped.
  • the first information further includes the scheduled task.
  • the low-priority GAP period includes T1
  • the transceiver module 1120 is further configured to receive second information, where the second information includes a desired GAP period of the terminal device.
  • the second information is UEAssistanceInformation, or uplink MAC CE, or UCI.
  • the second information includes an initial cyclic shift value and/or an expected GAP period, and a mapping relationship exists between the initial cyclic shift value and the expected GAP period.
  • the measuring apparatus 1100 is applied to a terminal device.
  • the transceiver module 1120 is configured to receive first signaling from a network device, where the first signaling includes GAP cycle configuration information, and the GAP cycle configuration information is used for the terminal device to perform GAP measurement, and,
  • the GAP cycle configuration information includes a first GAP cycle; receiving first information from the network device, where the first information is used to instruct the terminal device to use the second GAP cycle to perform the GAP measurement; wherein the first A GAP period is different from the second GAP period;
  • the processing module 1110 is configured to use the second GAP period to perform GAP measurement according to the indication of the first information.
  • the first information includes DCI or downlink MAC CE.
  • the first information includes GAP period modification indication information; the GAP period modification indication information is used to instruct the terminal device to modify the second GAP period; or the GAP period modification indication The information is used to instruct the terminal device to skip N GAP periods T, where N is an integer greater than 1, T is the GAP period indicated by the first signaling, and T is greater than 0.
  • the processing module 1110 is specifically configured to adjust the first GAP cycle to the second GAP cycle, and use the second GAP cycle to perform GAP measurement; or skip the first GAP cycle For GAP measurement in one GAP cycle, the first GAP cycle is continued to be used for GAP measurement in the N+1th GAP cycle.
  • the N is preset in the terminal device, or the N is sent by the network device to the terminal device before the first information.
  • the first signaling further includes a low-priority GAP cycle and a high-priority GAP cycle, and the priority of the GAP cycle is used by the terminal device to determine the processing priority of GAP measurement and scheduling tasks class.
  • the transceiver module 1120 is further configured to receive a scheduling task from the network device; wherein the scheduling task is used to instruct the terminal device to skip the GAP measurement of low priority , the GAP measurement of high priority is not skipped.
  • the first information further includes the scheduled task.
  • the low-priority GAP period includes T1
  • the transceiver module 1120 is further configured to send second information before receiving the first information from the network device, where the second information includes the expected GAP period of the terminal device.
  • the second information is UEAssistanceInformation, or uplink MAC CE, or UCI.
  • the second information includes an initial cyclic shift value and/or an expected GAP period, and a mapping relationship exists between the initial cyclic shift value and the expected GAP period.
  • An embodiment of the present application further provides a measurement apparatus, where the measurement apparatus may be a network device or a terminal device.
  • the measuring apparatus may be used to perform the actions performed by the network device or the terminal device in the foregoing method embodiments.
  • an embodiment of the present application further provides a measurement device 1200 .
  • the measurement apparatus 1200 may be used to implement the method performed by a network device or a terminal device in the foregoing method embodiments, and reference may be made to the descriptions in the foregoing method embodiments, wherein the measurement apparatus 1200 may be a network device, a terminal device, or may be located in a network device or a terminal device. in the terminal device.
  • the Measurement device 1200 includes one or more processors 1201 .
  • the processor 1201 may be a general-purpose processor or a special-purpose processor, or the like.
  • it may be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control measurement devices (such as network equipment, terminal equipment, in-vehicle equipment or chips, etc.), execute software programs, and process software programs. data.
  • the measurement apparatus 1200 may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the measurement apparatus 1200 includes one or more processors 1201, and the one or more processors 1201 can implement the method performed by the network device or the terminal device in the above-mentioned embodiments.
  • the processor 1201 can also implement other functions in addition to implementing the methods in the above-described embodiments.
  • the processor 1201 may execute a computer program, so that the measurement apparatus 1200 executes the method executed by the network device or the terminal device in the foregoing method embodiments.
  • the computer program may be stored, in whole or in part, in the processor 1201, such as computer program 1203, or in whole or in part, in memory 1202 coupled to the processor 1201, such as computer program 1204, or by the combination of computer programs 1203 and 1204.
  • the measuring apparatus 1200 is caused to execute the method executed by the network device or the terminal device in the foregoing method embodiments.
  • the measuring apparatus 1200 may also include a circuit, and the circuit may implement the functions performed by the network device or the terminal device in the foregoing method embodiments.
  • the measurement device 1200 may include one or more memories 1202 on which a computer program 1204 is stored, and the computer program can be executed on the processor, so that the measurement device 1200 executes the above method implementation The measurement method described in the example.
  • data may also be stored in the memory.
  • computer programs and/or data may also be stored in the processor.
  • the above-mentioned one or more memories 1202 may store the associations or correspondences described in the above-mentioned embodiments, or related parameters or tables involved in the above-mentioned embodiments, and the like.
  • the processor and the memory can be provided separately, or can be integrated or coupled together.
  • the measurement device 1200 may further include a transceiver 1205 .
  • the processor 1201 may be referred to as a processing unit, and controls a measurement apparatus (eg, a base station or a terminal device).
  • the transceiver 1205 may be referred to as a transceiver, a transceiver circuit, or a transceiver unit, etc., and is used to implement the transceiver of data or control signaling.
  • the measurement apparatus 1200 may include a transceiver 1205 .
  • the measurement apparatus 1200 may further include a transceiver unit 1205 and an antenna 1206 .
  • the processor 1201 may be referred to as a processing unit, and controls a measurement apparatus (eg, a base station or a terminal device).
  • the transceiver unit 1205 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 1206 .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or a computer program in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other possible solutions.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the method steps disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, implements the method described in any of the foregoing method embodiments applied to a network device or a terminal device.
  • An embodiment of the present application further provides a computer program product, which implements the method described in any of the above method embodiments applied to a network device or a terminal device when the computer program product is executed by a computer.
  • a computer program product includes one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be transferred from a website site, computer, server or data center via wired (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to transmit to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)) )Wait.
  • An embodiment of the present application further provides a measurement apparatus, including a processor and an interface; the processor is configured to execute the method described in any of the foregoing method embodiments applied to a network device or a terminal device.
  • the above-mentioned processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor It can be a general-purpose processor, which can be realized by reading software codes stored in a memory, and the memory can be integrated in the processor or located outside the processor and exist independently.
  • Embodiments of the present application provide a communication system.
  • the communication system may include network equipment and terminal equipment for implementing any of the above embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a computer, the computer can implement the network and the network in the embodiments provided by the foregoing method embodiments.
  • Device or end device related process
  • Embodiments of the present application further provide a computer program product, where the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the network device or terminal in the embodiments provided in the foregoing method embodiments. Device-related processes.
  • processors mentioned in the embodiments of the present application may be a CPU, and may also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGA Field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • the computer-readable medium may include random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory) read only memory, EEPROM), compact disc read-only memory (CD-ROM), universal serial bus flash disk (universal serial bus flash disk), removable hard disk, or other optical disk storage, disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • universal serial bus flash disk universal serial bus flash disk
  • removable hard disk or other optical disk storage
  • disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种测量方法及装置,应用于通信技术领域,用于动态调整GAP周期,增加业务吞吐量,降低功耗,及减少终端设备的掉网风险。网络设备向终端设备发送第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期;所述网络设备向所述终端设备发送第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量; 其中,所述第一GAP周期与所述第二GAP周期不同。

Description

一种测量方法及装置
相关申请的交叉引用
本申请要求在2020年07月30日提交中国专利局、申请号为202010750882.9、申请名称为“一种测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种测量方法及装置。
背景技术
在第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)系统中,连接态的终端设备可以通过同步信号块(synchronization signal block,SSB)进行小区(包括服务区和邻区)的无线资源管理(radio resource management,RRM)测量。
在5G系统中引入了部分带宽(bandwidth part,BWP),当终端设备所在的BWP中不包含SSB信号时,终端设备需要对小区进行间隙(GAP)测量。
网络设备向终端设备下发与GAP测量相关的配置信息,配置信息中包括固定的GAP周期。终端设备在GAP周期内会停止对小区数据的接收和发送,网络设备也不会为终端设备调度数据,也就是说在GAP测量过程中,终端设备的网络设备之间的上下行业务都会进行中断。因此GAP周期过短会影响小区正常的业务吞吐量,增加功耗,而配置GAP周期过长可能存在终端设备掉网的风险,因此如何配置GAP周期是需要解决的问题。
发明内容
本申请实施例提供一种测量方法及装置,用于为终端设备配置合理的GAP周期,增加小区业务的吞吐量,降低功耗,避免终端设备掉网风险的发生。
第一方面,本申请实施例提供一种测量方法,该方法包括:网络设备向终端设备发送第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期;所述网络设备向所述终端设备发送第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量;其中,所述第一GAP周期与所述第二GAP周期不同。
通过上述方法,网络设备可以通过第一信息,向终端设备指示与第一GAP周期不同的第二GAP周期,可以实现GAP周期的动态调整。能够提高业务吞吐量,降低功耗,也可以减少终端设备的掉网风险,保证终端设备测量时的成功率和效率。
在一种可能的实现中,所述网络设备向所述终端设备发送第一信息之前,所述网络设备还可以根据所述终端设备的状态相关信息,确定所述第一信息;所述终端设备的状态相关信息包括以下一种或多种信息:所述终端设备的类型和应用场景、待调度的数据量、所述终端设备的移动速度、频偏、所述终端设备的历史小区信息或所述终端设备的期望GAP周期。在该实现中,网络设备可以参考终端设备的状态相关信息,确定如何动态调整GAP 周期,可以更加准确地为终端设备配置GAP周期。
在一种可能的实现中,所述第一信息包括下行控制信息DCI或下行媒体接入控制MAC控制单元CE。其中通过DCI动态配置GAP周期时,实时性较高,开销较大;通过下行MAC CE动态配置GAP周期时,实时性较低,开销较小。
在一种可能的实现中,所述第一信息包括GAP周期修改指示信息;
所述GAP周期修改指示信息用于指示所述终端设备修改为所述第二GAP周期;或者
所述GAP周期修改指示信息用于指示所述终端设备跳过N个GAP周期T,N为大于1的整数,T为所述第一信令指示的GAP周期,且T大于0。
在该实现中,网络设备可以通过将终端设备的GAP周期修改为某一个周期或者跳过一个或多个周期,可实现GAP周期的灵活配置。
在一种可能的实现中,所述N为在所述终端设备中预先设置的,或者所述N为所述网络设备在所述第一信息之前发送给所述终端设备的。
在一种可能的实现中,所述第一信令还包括低优先级GAP周期和高优先级GAP周期。所述GAP周期的优先级用于所述终端设备确定GAP测量和调度任务的处理优先级。
在一种可能的实现中,所述网络设备还可以向所述终端设备发送调度任务;其中,所述调度任务用于指示所述终端设备跳过低优先级的所述GAP测量,不跳过高优先级的所述GAP测量。
在该实现中,可以默认或协商好调度任务的优先级高于低优先级GAP周期,且低于高优先级GAP周期,即默认调度任务可以打断低优先级的GAP测量,不打断高优先级的GAP测量,从而网络设备可以通过发送调度任务,实现GAP测量的动态配置及任务的灵活调度。此时可以不设置调度任务的优先级。
或者,所述网络设备还可以配置调度任务的优先级,并配置调度任务的优先级高于低优先级GAP周期,且低于高优先级GAP周期。
在一种可能的实现中,所述第一信息还包括所述调度任务。
在一种可能的实现中,所述低优先级GAP周期包括T1,所述高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数。
在一种可能的实现中,所述网络设备向所述终端设备发送第一信息之前,所述网络设备还可以接收第二信息,所述第二信息包括所述终端设备的期望GAP周期。
在该实现中,终端设备可以上报期望GAP周期,网络设备通过参考所述期望GAP周期,可以更准确地为终端设备动态配置GAP周期。
在一种可能的实现中,所述第二信息为所述终端设备的辅助信息UEAssistanceInformation、或上行MAC CE、或上行控制信息UCI。
在一种可能的实现中,所述第二信息包含初始循环移位值和/或期望GAP周期,初始循环移位值和期望GAP周期存在映射关系。
第二方面,本申请实施例提供一种测量方法,该方法包括:终端设备接收来自网络设备的第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期;所述终端设备接收来自所述网络设备的第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量;其中所述第一GAP周期与所述第二GAP周期不同;所述终端 设备根据所述第一信息的指示,使用所述第二GAP周期进行GAP测量。
在一种可能的实现中,所述第一信息包括下行控制信息DCI或下行媒体接入控制MAC控制单元CE。
在一种可能的实现中,所述第一信息包括GAP周期修改指示信息;
所述GAP周期修改指示信息用于指示所述终端设备修改为所述第二GAP周期;或者
所述GAP周期修改指示信息用于指示所述终端设备跳过N个GAP周期T,N为大于1的整数,T为所述第一信令指示的GAP周期,且T大于0。
在一种可能的实现中,所述终端设备根据所述第一信息的指示,使用所述第二GAP周期进行GAP测量,包括:
所述终端设备将所述第一GAP周期调整为所述第二GAP周期,采用所述第二GAP周期进行GAP测量;或者
所述终端设备跳过所述第一GAP周期的GAP测量,在第N+1个GAP周期继续采用所述第一GAP周期进行GAP测量。
在一种可能的实现中,所述N为在所述终端设备中预先设置的,或者所述N为所述网络设备在所述第一信息之前发送给所述终端设备的。
在一种可能的实现中,所述第一信令还包括低优先级GAP周期和高优先级GAP周期,所述GAP周期的优先级用于所述终端设备确定GAP测量和调度任务的处理优先级。
在一种可能的实现中,所述终端设备还可以接收来自所述网络设备的调度任务;其中,所述调度任务用于指示所述终端设备跳过低优先级的所述GAP测量,不跳过高优先级的所述GAP测量。
在一种可能的实现中,所述第一信息还包括所述调度任务。
在一种可能的实现中,所述低优先级GAP周期包括T1,所述高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数。
在一种可能的实现中,所述终端设备接收来自所述网络设备的第一信息之前,所述终端设备还可以发送第二信息,所述第二信息包括所述终端设备的期望GAP周期。
在一种可能的实现中,所述第二信息为所述终端设备的辅助信息UEAssistanceInformation、或上行MAC CE、或上行控制信息UCI。
在一种可能的实现中,所述第二信息包含初始循环移位值和/或期望GAP周期,初始循环移位值和期望GAP周期存在映射关系。
第三方面,本申请实施例提供一种测量装置,例如该测量装置为如前所述的网络设备。所述测量装置用于执行上述第一方面或任一可能的实现中的方法。具体地,所述测量装置可以包括用于执行第一方面或任一可能的实现中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述测量装置为网络设备,或者为设置在网络设备中的芯片或其他部件。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果测量装置为网络设备,收发器例如通过网络设备中的天线、馈线和编解码器等实现。或者,如果测量装置为设置在网络 设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与网络设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第三方面的介绍过程中,继续以所述测量装置是网络设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于通过所述收发模块向终端设备发送第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期;
所述处理模块,还用于通过所述收发模块向所述终端设备发送第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量;其中,所述第一GAP周期与所述第二GAP周期不同。
在一种可能的实现中,所述处理模块,还用于根据所述终端设备的状态相关信息,确定所述第一信息;
所述终端设备的状态相关信息包括以下一种或多种信息:所述终端设备的类型和应用场景、待调度的数据量、所述终端设备的移动速度、频偏、所述终端设备的历史小区信息或所述终端设备的期望GAP周期。
在一种可能的实现中,所述第一信息包括下行控制信息DCI或下行媒体接入控制MAC控制单元CE。
在一种可能的实现中,所述第一信息包括GAP周期修改指示信息;
所述GAP周期修改指示信息用于指示所述终端设备修改为所述第二GAP周期;或者
所述GAP周期修改指示信息用于指示所述终端设备跳过N个GAP周期T,N为大于1的整数,T为所述第一信令指示的GAP周期,且T大于0。
在一种可能的实现中,所述N为在所述终端设备中预先设置的,或者所述N为所述网络设备在所述第一信息之前发送给所述终端设备的。
在一种可能的实现中,所述第一信令还包括低优先级GAP周期和高优先级GAP周期,所述GAP周期的优先级用于所述终端设备确定GAP测量和调度任务的处理优先级。
在一种可能的实现中,所述收发模块,还用于向所述终端设备发送调度任务;
其中,所述调度任务用于指示所述终端设备跳过低优先级的所述GAP测量,不跳过高优先级的所述GAP测量。
在一种可能的实现中,所述第一信息还包括所述调度任务。
在一种可能的实现中,所述低优先级GAP周期包括T1,所述高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数。
在一种可能的实现中,所述收发模块,还用于接收第二信息,所述第二信息包括所述终端设备的期望GAP周期。
在一种可能的实现中,所述第二信息为所述终端设备的辅助信息UEAssistanceInformation、或上行MAC CE、或上行控制信息UCI。
在一种可能的实现中,所述第二信息包含初始循环移位值和/或期望GAP周期,初始循环移位值和期望GAP周期存在映射关系。
第四方面,本申请实施例提供一种测量装置,例如该测量装置为如前所述的终端设备。所述测量装置用于执行上述第二方面或任一可能的实现中的方法。具体地,所述测量装置 可以包括用于执行第二方面或任一可能的实现中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述测量装置为终端设备,或者为设置在终端设备中的芯片或其他部件。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果测量装置为终端设备,收发器例如通过终端设备中的天线、馈线和编解码器等实现。或者,如果测量装置为设置在终端设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与终端设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第三方面的介绍过程中,继续以所述测量装置是终端设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述收发模块,用于接收来自网络设备的第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期;接收来自所述网络设备的第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量;其中所述第一GAP周期与所述第二GAP周期不同;
所述处理模块,用于根据所述第一信息的指示,使用所述第二GAP周期进行GAP测量。
在一种可能的实现中,所述第一信息包括下行控制信息DCI或下行媒体接入控制MAC控制单元CE。
在一种可能的实现中,所述第一信息包括GAP周期修改指示信息;
所述GAP周期修改指示信息用于指示所述终端设备修改为所述第二GAP周期;或者
所述GAP周期修改指示信息用于指示所述终端设备跳过N个GAP周期T,N为大于1的整数,T为所述第一信令指示的GAP周期,且T大于0。
在一种可能的实现中,所述处理模块,具体用于将所述第一GAP周期调整为所述第二GAP周期,采用所述第二GAP周期进行GAP测量;或者跳过所述第一GAP周期的GAP测量,在第N+1个GAP周期继续采用所述第一GAP周期进行GAP测量。
在一种可能的实现中,所述N为在所述终端设备中预先设置的,或者所述N为所述网络设备在所述第一信息之前发送给所述终端设备的。
在一种可能的实现中,所述第一信令还包括低优先级GAP周期和高优先级GAP周期,所述GAP周期的优先级用于所述终端设备确定GAP测量和调度任务的处理优先级。
在一种可能的实现中,所述收发模块,还用于接收来自所述网络设备的调度任务;其中,所述调度任务用于指示所述终端设备跳过低优先级的所述GAP测量,不跳过高优先级的所述GAP测量。
在一种可能的实现中,所述第一信息还包括所述调度任务。
在一种可能的实现中,所述低优先级GAP周期包括T1,所述高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数。
在一种可能的实现中,所述收发模块,还用于接收来自所述网络设备的第一信息之前,发送第二信息,所述第二信息包括所述终端设备的期望GAP周期。
在一种可能的实现中,所述第二信息为所述终端设备的辅助信息UEAssistanceInformation、或上行MAC CE、或上行控制信息UCI。
在一种可能的实现中,所述第二信息包含初始循环移位值和/或期望GAP周期,初始循环移位值和期望GAP周期存在映射关系。
第五方面,提供一种测量装置,该测量装置例如为如前所述的网络设备。该测量装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,该测量装置还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第一方面或各种可能的实现中的方法。或者,测量装置也可以不包括存储器,存储器可以位于测量装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第一方面或各种可能的实现中的方法。例如,当处理器执行所述存储器存储的计算机指令时,使测量装置执行上述第一方面或任意一种可能的实现中的方法。示例性地,所述测量装置为网络设备,或者为设置在网络设备中的芯片或其他部件。
其中,如果测量装置为网络设备,通信接口例如通过所述网络设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述网络设备中的天线、馈线和编解码器等实现。或者,如果测量装置为设置在网络设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与网络设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第六方面,提供一种测量装置,该测量装置例如为如前所述的终端设备。该测量装置包括处理器和通信接口,通信接口可用于与其他装置或设备进行通信。可选的,该测量装置还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第二方面或各种可能的实现中的方法。或者,测量装置也可以不包括存储器,存储器可以位于测量装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第二方面或各种可能的实现中的方法。例如,当处理器执行所述存储器存储的计算机指令时,使测量装置执行上述第二方面或任意一种可能的实现中的方法。示例性地,所述测量装置为终端设备,或者为设置在终端设备中的芯片或其他部件。
其中,如果测量装置为终端设备,通信接口例如通过所述终端设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述终端设备中的天线、馈线和编解码器等实现。或者,如果测量装置为设置在终端设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与终端设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第七方面,提供一种通信系统,该通信系统包括第三方面所述的测量装置或以及第四方面所述的测量装置。
可选的,所述第三方面所述的测量装置可以为网络设备,所述第四方面所述的测量装置可以为终端设备。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或任意一种可能的实现中所述的方法。
第九方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或任意一种可能的实现中所述的方法。
第十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或任意一种可能的实现中所述的方法。
第十一方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或任意一种可能的实现中所述的方法。
上述第二方面至第十一方面中任一方面及其任一方面中任意一种可能的实现可以达到的技术效果,请参照上述第一方面及其第一方面中相应实现可以带来的技术效果描述,这里不再重复赘述。
附图说明
图1a为本申请实施例提供的一种GAP测量的示意图;
图1b为本申请实施例提供的一种GAP测量的示意图;
图2a为本申请实施例提供的一种GAP测量的流程示意图;
图2b为本申请实施例提供的一种GAP测量的示意图;
图3a为本申请实施例提供的一种通信系统的架构图;
图3b为本申请实施例提供的一种通信场景示意图;
图3c为本申请实施例提供的一种通信场景示意图;
图3d为本申请实施例提供的一种通信场景示意图;
图3e为本申请实施例提供的一种通信场景示意图;
图4为本申请实施例提供的一种测量的流程示意图;
图5为本申请实施例提供的一种测量的流程示意图;
图6为本申请实施例提供的一种测量的流程示意图;
图7a为本申请实施例提供的一种测量配置示意图;
图7b为本申请实施例提供的一种测量配置示意图;
图8为本申请实施例提供的一种GAP测量的示意图;
图9为本申请实施例提供的一种测量的流程示意图;
图10为本申请实施例提供的一种测量的流程示意图;
图11为本申请实施例提供的一种测量装置的结构示意图;
图12为本申请实施例提供的一种测量装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信, 与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、轻型终端设备(light UE)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
可选的,本申请实施例中所述终端设备可以为低能力终端设备,所述低能力终端设备也可以称为NR-light终端设备或降低性能(reduced capability)终端设备。例如非低能力终端设备在一个载波上的数据传输带宽最大可以为100兆赫(MHz),而低能力终端设备在一个载波上的数据传输带宽最大可以为20MHz。所述低能力终端设备可以包括智能手环、工业传感器、安保摄像头等。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side  unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)或用户面功能(user plane function,UPF)等。因为本申请实施例主要涉及的是接入网设备,因此在后文中,如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
其中,每个网络设备负责管理至少一个小区。每个小区均使用相应的载波频点为终端设备提供接入服务。不同小区使用的频点可能相同,也可能不同。
3)邻区测量,无线通信系统中,为了保证业务连续性,终端设备通过在具有不同覆盖范围的小区切换或重选,从而获得无线网络持续不断的服务。一般当终端设备移动到小区边缘时,网络设备会下发同频、异频或异系统等测量控制任务,以使终端设备从服务区向邻区切换。所述服务区指当前为终端设备提供服务的小区,所述邻区指待测量小区,可以理解为终端设备在服务服内能够搜索到信号的除去所述服务区之外的其他小区。
同频测量(intra-frequency measurement),指终端设备的服务区和待测量小区在同一个载波频点(中心频点)上。异频测量(inter-frequency measurement),指终端设备的服务区和待测量小区不在一个载波频点上。
4)终端设备的无线资源控制(radio resource control,RRC)状态,在NR系统中,终端设备的RRC状态包括连接(RRC_CONNECTED)态,去激活(RRC_INACTIVE)态和空闲(RRC_IDLE)态。
在NR系统中,连接态的终端设备可以通过SSB信号进行小区(包括服务区和/或邻区)的RRM测量。RRM测量用于支持小区的切换,保证终端设备移动时的业务连续性。
5)GAP测量,在一个终端设备只有单个接收通路时,同一时刻只能在一个频点上接收信号,即同一时刻只能接收一个小区的信号。如图1a所示,当终端设备在接收其服务区发送数据的过程中,如果需要对其他小区进行异频测量或异系统测量等测量操作时,接收机需要离开当前的频点到需要测量的频点测量一段时间段,在该时间段内的异频测量或异系统测量即为GAP测量。
为了保证终端设备和服务区的无线链路质量,终端设备通常在指定的时间段,停止接收其服务区的信号以及数据(上下行业务中断),并接收其他小区的信号进行异频测量或异系统测量。当该时间段结束后,终端设备再开始接收服务区的信号以及数据。
如图1b所示,GAP测量过程中涉及以下一个或多个参数(以下称为GAP参数):测量GAP长度(measurement GAP length,MGL)、测量GAP重复周期(measurement GAP repetition period,MGRP)、或GAP偏移(offset)。终端设备根据上述GAP参数可以确定GAP测量的起始位置对应的系统帧号(system frame number,SFN)和子帧(subframe)。上述GAP参数可以通过一条或多条信息/信令进行指示,例如网络设备可以通过RRC信令向所述终端设备指示上述GAP参数。
测量GAP长度,即GAP的持续时长,指终端设备进行一次GAP测量时所需的时间长度(如上述指定的时间段)。例如所述测量GAP长度可以为6毫秒(ms)。
测量GAP重复周期,即GAP周期,指终端设备按照所述GAP周期,周期性的进行GAP测量。例如所述GAP周期可以为40ms、80ms或160ms等,或者所述GAP周期可以为T,T大于0(如T为20ms或40ms等),当然所述GAP周期也可能为T的整数倍,如2T、4T或8T等。本申请实施例中,所述GAP周期可以为网络设备指示的第一GAP周期或第二GAP周期。
GAP offset用于指示在所述GAP周期何处启动GAP测量,即GAP测量的起始位置。例如,若所述GAP周期为40ms,所述GAP offset的取值范围为[0,39],若所述GAP周期为80ms,所述GAP offset的取值范围为[0,79]等。
下面为几种常用的测量事件:
服务区质量高于一个绝对门限,可用于关闭正在进行的频间扫描测量和去激活GAP;
服务区质量低于一个绝限门限,可用于打开正在进行的频间扫描测量和激活GAP;
邻区质量比小区质量高于一个门限,可用于频内频间的基于覆盖的切换;
邻区质量高于一个绝对门限,可用于频内频间基于负荷的切换;
邻区质量低于一个绝对门限1且高于一个绝对门限2,可用于频内频间基于覆盖的切换;
终端设备所在的BWP中不包含SSB信号。
其中针对终端设备所在的BWP中不包含SSB信号的场景:对于非低能力终端设备来说,非低能力终端设备支持的激活(active)BWP较大(如100MHz),一般会包含初始(initial)BWP(initial BWP上有SSB信号),所以非低能力终端设备可以在active BWP上使用SSB信号进行测量。而对于低能力终端设备(如手环、工业传感器等)来说,低能力终端设备所能支持的active BWP较小(如20MHz),可能不包含initial BWP,因此低能力终端设备的active BWP上就可能不包含SSB信号,这时低能力终端设备就需要在其服务区内进行切频测量,即切换到包含SSB信号的其他BWP上进行测量。故在终端设备所在的BWP中不包含SSB信号时,终端设备也需要进行GAP测量。
也就是说,本申请实施例所提供的测量方法既可以用于异频/异系统的邻区GAP测量,也可以用于active BWP中没有SSB信号的服务区GAP测量。
示例性的,GAP测量的过程如图2a所示,包括以下过程:
S201:网络设备向终端设备发送RRC信令,所述RRC信令包括GAP参数。
所述GAP参数包括测量GAP长度和GAP周期。例如所述测量GAP长度为6毫秒(ms),GAP周期为20ms或80ms。
S202:连接态的终端设备通过SSB信号进行小区的RRM测量。
如图2b所示,initial BWP上包含SSB信号,所述连接态的终端设备可以通过其所在 的initial BWP中包含的SSB信号进行小区的RRM测量。但是active BWP中可能不包含SSB信号。若终端设备所在的active BWP中不包含SSB信号,所述网络设备可以执行S203,进行GAP测量。
S201和S202的执行先后顺序可以不做限定。
S203:所述终端设备根据所述GAP参数,进行GAP测量,GAP测量期间上下行业务中断。
例如所述终端设备所在active BWP,GAP周期为20ms,所述终端设备每隔20ms进行一次GAP测量,每次GAP测量的持续时长为6ms。或者所述终端设备在active BWP采用放松(relaxed)的GAP测量方式,GAP周期为80ms,所述终端设备每隔80ms进行一次GAP测量,每次GAP测量的持续时长为6ms。
本申请实施例中所涉及到的“GAP测量”可以理解为采用GAP参数,进行异频/异系统的RRM测量。
6)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一数据包和第二数据包,只是为了区分不同的数据包,而并不是表示这两个数据包的内容、优先级、发送顺序或者重要程度等的不同。
本申请实施例的技术方案可以应用于各种通信系统,例如,第五代(The 5th Generation,5G)通信系统、未来的第六代通信系统和演进的其他通信系统、长期演进(Long Term Evolution,LTE)通信系统、车到万物(vehicle to everything,V2X)、长期演进-车联网(LTE-vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)、车联网、机器类通信(Machine Type Communications,MTC)、物联网(internet of things,IoT)、长期演进-机器到机器(LTE-machine to machine,LTE-M)、机器到机器(machine to machine,M2M)等通信场景中。
为了便于理解本申请实施例,图3a示出了本申请实施例适用的一种可能的通信系统架构,该通信系统架构可以应用于上述各种通信系统。参阅图3a所示,在该通信系统中包括基站和终端设备。这里对通信系统中对基站和终端设备的数量、类型不做限定。
所述基站,负责为所述终端设备提供无线接入有关的服务,实现无线物理层功能、资源调度和无线资源管理、服务质量(Quality of Service,QoS)管理、无线接入控制以及移动性管理(例如小区的重选和切换)功能。所述基站和所述终端设备之间可以通过Uu接口连接,从而实现所述终端设备和所述基站之间的通信。在实际应用中,所述网络设备可以为多个终端设备提供服务。
可选的,用户使用终端设备所处的场景不同时,进行GAP测量的频繁程度也可能有 所区别。
例如,参阅图3b所示,用户处于高速移动的场景中(如用户乘坐公交车、高铁等高速移动的车辆),用户所使用的终端设备的位置移动频繁,例如终端设备当前位于基站1的服务范围内,随着车辆的移动,终端设备与基站1之间的信号逐渐变差,此时终端设备就需要频繁进行GAP测量,GAP周期可以设置的较短,接入信号更好的邻区(如从基站1接入到基站2),以保证业务的连续性。参阅图3c所示,用户处于比较空旷的环境中,且用户移动速度较慢(如散步),终端设备的位置移动也会相应较慢,这样在一定时间段内,终端设备与基站之间的信号比较好,此时终端设备可以不需要经常性地进行GAP测量,GAP周期可以设置的较长,而不会影响用户的使用。
又如,参阅图3d所示,用户正在通过终端设备观看视频直播或者玩在线游戏等,这些应用对网络要求比较高,此时终端设备就需要频繁进行GAP测量,GAP周期可以设置的较短,以保证业务的连续性。参阅图3e所示,用户正在通过终端设备拍照或者采用即时通讯软件聊天等,这些应用对网络要求比较低,此时终端设备可以不需要经常性地进行GAP测量,GAP周期可以设置的较长,不会影响用户的使用。
现有技术中,GAP周期一般由网络设备通过RRC信令静态配置,即网络设备为终端设备配置固定的GAP周期。在一些场景中如图3c和图3e,若GAP周期太短,意味着GAP测量频繁,且频繁打断终端设备与服务区的业务传输,影响业务的正常通信,并增加功耗;在一些场景中如图3b和图3d,终端设备和网络设备一般根据小区频点和邻区的网络情况确定是否进行小区切换或重选,若GAP周期太长,则需要终端设备和网络设备之间重复测量,可能导致终端设备移动过程中来不及重新测量和切换小区,而和网络设备失去联系,存在掉网风险,影响用户的使用体验。
基于此,本申请实施例提供一种测量方法,本申请实施例提供的测量方法适用于如图3a所示的通信系统,可以用于需要通过GAP测量方法进行异频/异系统测量的各种场景中,也可以用于active BWP中没有SSB信号的服务区GAP测量的场景中。该方法中,网络设备可以对终端设备的GAP测量时的GAP周期进行动态调整,增加业务吞吐量、降低功耗,也可以减少终端设备的掉网风险,能够提高终端设备测量时的成功率和效率。
方式一,网络设备可以通过下行控制信息(downlink control information,DCI)或下行媒体接入控制(media access control,MAC)控制单元(control element,CE)动态配置GAP周期。如图4所示,包括以下过程:
S401:网络设备通过RRC信令指示是否使用动态GAP周期。
所述网络设备可以采用静态(static)或者动态(dynamic)来指示是否使用动态GAP周期。例如,所述RRC信令中包括GAP周期配置信息,所述GAP周期配置信息可以用来指示是否使用动态GAP周期,即所述GAP周期配置信息可以用于指示终端设备使用动态GAP周期进行GAP测量,或者用于指示终端设备使用静态GAP周期进行GAP测量。所述GAP周期配置信息可以取值为static或者dynamic。若所述GAP周期配置信息为static,终端设备确定使用静态GAP周期。若所述GAP周期配置信息为dynamic,终端设备确定使用动态GAP周期。
所述RRC信令还可以配置第一GAP周期T,例如所述GAP周期配置信息包括所述第一GAP周期T。例如,所述T的取值可以为40ms,即所述T所对应的具体时间可以为40ms,也就是说所述第一GAP周期可以为40ms。可以理解的是,本申请中对T的具体时间不做 限定,即本申请中对所述第一GAP周期的具体时间不做限定。
可选的,所述GAP周期配置信息默认取值为static,即默认不使用动态GAP周期。若RRC信令配置了dynamic,终端设备可以认为使用动态GAP周期。
该S401的过程可以理解为通过RRC信令进行是否使用动态GAP周期的使能配置。
该S401中涉及到的RRC信令可以理解为使能RRC信令。可以通过新增RRC信令指示使用动态GAP周期,或者可以通过RRC信令中GAP配置信息中的新增项,指示使用动态GAP周期。如RRC信令中GAP配置信息中的新增项为gap-measurement-config ENUMERATED{static,dynamic},若所述gap-measurement-config ENUMERATED中包括static,表示不使用动态GAP周期,若所述gap-measurement-config ENUMERATED中包括dynamic,表示使用动态GAP周期。
可选的,在S401之前,所述网络设备可以根据终端设备的状态相关信息,来确定是否使用动态GAP周期。所述终端设备的状态相关信息包括以下一种或多种信息:所述终端设备的类型和应用场景、待调度的数据量、所述终端设备的移动速度、频偏、所述终端设备的历史小区信息或所述终端设备的期望GAP周期。所述终端设备的类型可以包括静止类终端设备和移动类终端设备,所述静止类终端设备为固定在某一处,位置基本不变的设备,如视频监控摄像头、工业传感器等,所述移动类终端设备为可跟随用户移动或根据用户控制移动的设备,如手机、智能穿戴设备、无人机或车辆等。或者所述终端设备的类型可以包括低能力终端设备和非低能力终端设备,所述低能力终端设备分配有窄带BWP,支持窄带数据的处理,所述非低能力终端设备分配的BWP较大(相比于所述窄带BWP)。所述终端设备的应用场景可以为对信号质量/强度存在要求的使用场景,如图3d所示的视频直播或在线游戏等对信号质量/强度要求较高,如图3e所示的拍照或聊天对信号质量/强度要求较低等。所述待调度的数据量可以为所述终端设备预期与服务区交互的业务数据的数据量,图3d所示场景中所述待调度的数据量非常多,而图3e所示场景中待调度的数量比较少。所述终端设备的移动速度可以根据所述终端设备与不同覆盖范围的基站的通信确定,或者所述终端设备的移动速度可以根据终端设备的多个全球定位系统(global positioning system,GPS)位置信息确定。所述频偏即所述终端设备与所述网络设备之间的频率偏差。所述终端设备的历史小区信息为所述终端设备在当前服务区之前驻留过的其他小区的信息。所述终端设备的期望GAP周期的上报过程具体可以参见后续方式四的过程。
可选的,所述网络设备确定使用动态GAP周期时,还可以确定如何动态调整GAP周期。所述网络设备对终端设备的GAP周期进行动态调整的过程可以参见下述S402。
若所述S401中的RRC信令指示使用动态GAP周期,执行下述S402和S403。
可以理解的是,RRC信令中还可以携带GAP周期的配置信息。
S402:所述网络设备通过DCI或MAC CE动态修改GAP周期。
在一个示例中,所述DCI或MAC CE中携带参数M,用于指示终端设备将GAP周期修改为M值对应的GAP周期。所述M为正整数,例如M的取值可以为1、2、4或8等。终端设备可以将GAP周期修改为1T、2T、4T或8T等,进行GAP测量。
其中所述T通过S401中的RRC信令指示,所述T为第一GAP周期。所述终端设备可以根据T的取值,确定对应GAP周期的取值/具体时间。例如当M取值为2,T为40ms时,所述终端设备确定对应的GAP周期的取值/具体时间为80ms。
在本申请中对M的取值和T的取值不做限定,M的取值为1、2、4或8、T为40ms 仅为本申请做出的一个示例。M的值可以通过一个字段进行指示,从而实现动态调整GAP周期。
在另一个示例中,所述终端设备中保存有预定义的M(不同的M值)和GAP周期的对应关系。所述M和GAP周期的对应关系可以参见下述表1所示。所述DCI或MAC CE中携带参数M,终端设备可以根据M的取值,在所述对应关系中查找对应的GAP周期,然后根据T的取值,确定对应GAP周期的具体时间。
所述M可以采用二进制的表示方式,例如M的取值可以为00、01、10或11等。在本申请中对M的取值不做限定,M的取值为00、01、10或11仅为本申请做出的一个示例。
例如在S401中的RRC信令中可以包括一套GAP周期配置信息。如表1所示,当M取值为00(0的二进制表示方式)时,终端设备可以确定对应的GAP周期为T,若T为40ms,则GAP周期的取值可以为40ms,当M的取值为01(1的二进制表示方式)时,终端设备可以确定对应的GAP周期为2T,若T为40ms,则GAP周期的取值可以为80ms。当M的取值为10(2的二进制表示方式)时,终端设备可以确定对应的GAP周期为4T,若T为40ms,则GAP周期的取值可以为160ms。当M的取值为11(3的二进制表示方式)时,终端设备可以确定对应的GAP周期为8T,若T为40ms,则GAP周期的取值可以为320ms。其中,所述T通过S401中的RRC信令指示。在本申请中对T的取值不做限定,T为40ms仅为本申请做出的一个示例。
表1
Figure PCTCN2021109025-appb-000001
在该示例中,所述网络设备可以在DCI或MAC CE中携带对应取值的M,即能够实现GAP周期的动态配置。
在又一个示例中,所述DCI或MAC CE中携带参数索引(index),用于指示终端设备将GAP周期修改为index值对应的GAP周期。
例如在S401中的RRC信令中可以包括多套GAP周期配置信息,每套GAP周期配置信息通过index唯一标识,所述每套GAP周期配置信息中包括一个index值对应的GAP周期。其中所述每套GAP周期配置信息中可以显式的包括一个index值,或者可以由每套GAP周期配置信息的配置顺序隐式的指示index值。如当index取值为0时,对应第一套GAP周期配置信息,所述第一套GAP周期配置信息中包括的GAP周期为40ms;当index取值为1时,对应第二套GAP周期配置信息,所述第二套GAP周期配置信息中包括的GAP周期为80ms。
在该示例中,所述网络设备可以在DCI或MAC CE中携带对应取值的index,即能够实现GAP周期的动态配置。
若通过DCI动态修改GAP周期,所述网络设备可以采用调度(Scheduling)DCI或控制DCI进行动态配置。所述DCI可以为现有DCI、或者可以为复用现有DCI,或者可以为新增DCI。在实际通信过程中一般多次发送DCI,网络设备每次发送DCI都可以对GAP周期进行动态修改。当S401中的RRC信令指示使用动态GAP周期时,终端设备可以对每次接收到的DCI都进行解析,确定DCI是否对GAP周期进行了修改,因此实时性好,但是开销较大。
若通过MAC CE动态修改GAP周期,实时性比DCI差,但是开销较小。所述MAC CE可以为新增MAC CE。
S403:所述终端设备根据DCI或MAC CE指示的GAP周期,进行GAP测量。
所述终端设备根据S401中的RRC信令的指示,确定使用静态GAP周期还是使用动态GAP周期。若所述终端设备确定使用动态GAP周期,所述终端设备可以对S402中接收到的DCI或MAC CE进行解析,确定DCI或MAC CE指示的GAP周期。可选的,若所述终端设备确定使用静态GAP周期,所述终端设备还可以根据S401中RRC信令配置的静态的第一GAP周期T,进行GAP测量。
在一个示例中,所述DCI或MAC CE中携带参数M,所述终端设备可以确定M值对应的GAP周期,然后根据T的取值,确定对应GAP周期的具体时间,进行GAP测量。所述终端设备可以确定M值对应的GAP周期,然后根据T的取值,确定对应GAP周期的具体时间。
例如,当所述DCI或MAC CE中携带的参数M的取值为2时,所述终端设备可以确定对应的GAP周期为2T,若T为40ms,所述终端设备可以确定对应GAP周期的取值/具体时间为80ms,所述终端设备将GAP周期修改为80ms,进行GAP测量。
在另一个示例中,所述终端设备中保存有预定义的M和GAP周期的对应关系。所述M和GAP周期的对应关系可以参见上述表1所示。所述DCI或MAC CE中携带参数M,所述终端设备根据M的取值,在所述对应关系中查找对应的GAP周期,然后根据T的取值,确定对应GAP周期的具体时间,进行GAP测量。
例如在S401中的RRC信令中可以包括一套GAP周期配置信息,如上述表1所示。当所述DCI或MAC CE中携带的参数M的取值为10,所述终端设备可以确定对应的GAP周期为4T,若T为40ms,所述终端设备可以确定对应GAP周期的取值/具体时间为160ms,所述终端设备将GAP周期修改为160ms,进行GAP测量。
在又一个示例中,所述DCI或MAC CE中携带参数index,所述终端设备可以确定index值对应的GAP周期配置信息,并确定对应GAP周期配置信息中包括的GAP周期。
例如在S401中的RRC信令中可以包括多套GAP周期配置信息,每套GAP周期配置信息通过index唯一标识,所述每套GAP周期配置信息中包括一个index对应的GAP周期。例如,所述DCI或MAC CE中携带的参数index的取值为0,所述终端设备确定index值为0对应第一套GAP周期配置信息,所述第一套GAP周期配置信息中包括的GAP周期为40ms,所述终端设备将GAP周期修改为40ms,进行GAP测量。
值得注意的是,S401和S402中的所有信息都需要在进行GAP测量之前指示给终端设备,这是因为终端设备在进行GAP测量的过程中,无法接收到业务数据,也无法接收到RRC信令、DCI和MAC CE。
在该方式中,网络设备可以通过DCI或MAC CE修改GAP周期,例如当前GAP周 期为T时,终端设备可以通过DCI或MAC CE将GAP周期修改为2T、4T或8T,因此可以实现终端设备的GAP周期的动态修改,避免GAP周期过短对业务通信的影响,减少功耗,也可以避免GAP周期过长导致终端设备掉网,也可以保证终端设备测量时的成功率和效率。
方式二,网络设备可以通过跳过一个或多个周期,动态修改终端设备的GAP周期。如图5所示,包括以下过程:
S501:网络设备通过RRC信令指示是否使用动态GAP周期。
S501的实现过程可以参见上述S401,相似之处不再赘述。
S502:所述网络设备指示终端设备跳过N个GAP周期T。
在该S502中,所述网络设备通过DCI或MAC CE指示终端设备跳过N个GAP周期T。所述网络设备指示终端设备跳过N个GAP周期T,即在N个GAP周期T所对应的时间内,所述终端设备不进行GAP测量,在第N+1个GAP周期,所述终端设备进行GAP测量。
在一个示例中,所述DCI或MAC CE中携带参数N,用于指示终端设备跳过N个GAP周期T。所述N为正整数,例如N的取值可以为1、2、4或8等。所述终端设备可以跳过1T、2T、4T或8T所对应的时间。
其中所述T通过S501中的RRC信令指示。所述终端设备可以根据T的取值,确定跳过的时间。例如当N取值为2,T为40ms时,所述终端设备确定跳过的时间为80ms。
在本申请中对M的取值和T的取值不做限定,M的取值为1、2、4或8、T为40ms仅为本申请做出的一个示例。M的值可以通过一个字段进行指示,从而实现动态调整GAP周期。
在另一个示例中,所述终端设备中保存有预定义的M(不同的M值)和GAP周期的对应关系。所述M和GAP周期的对应关系可以参见下述表2所示。所述DCI或MAC CE中携带参数M,终端设备可以根据M的取值,在所述对应关系中对应的跳过的GAP周期,然后根据T的取值,确定跳过的时间。
所述M可以采用二进制的表示方式,例如M的取值可以为00、01、10或11等。在本申请中对M的取值不做限定,M的取值为00、01、10或11仅为本申请做出的一个示例。
如表2所示,当M的取值为00时,所述终端设备可以确定跳过1个GAP周期T,若T为40ms,则跳过的具体时间可以为40ms。当M的取值为01时,所述终端设备可以确定跳过2个GAP周期T,若T为40ms,则跳过的具体时间可以为80ms,当M的取值为10时,所述终端设备可以确定跳过4个GAP周期T,若T为40ms,则跳过的具体时间可以为160ms,当M的取值为11时,终端设备可以确定跳过8个GAP周期T,若T为40ms,则跳过的具体时间可以为320ms。其中,所述T通过S501中的RRC信令指示。在本申请中对T的取值不做限定,T为40ms仅为本申请做出的一个示例。
表2
Figure PCTCN2021109025-appb-000002
S503:所述终端设备在第N+1个GAP周期T,恢复原GAP周期进行GAP测量。
终端设备在N个GAP周期T之后,在第(N+1)个GAP周期,采用原GAP周期进行GAP测量。所述原GAP周期为静态的第一GAP周期T。可选的,所述终端设备在未接收到S502中所示的指示之前,采用所述第一GAP周期T进行GAP测量。
在一个示例中,所述DCI或MAC CE中携带参数N,所述终端设备跳过N个GAP周期T,在第N+1个GAP周期进行GAP测量。
例如,当所述DCI或MAC CE中携带的参数N的取值为2时,所述终端设备可以确定跳过2个GAP周期T,若T为40ms,所述终端设备可以确定跳过的时间为80ms。
在另一个示例中,所述终端设备中保存有预定义的M和GAP周期的对应关系。所述M和GAP周期的对应关系可以参见上述表2所示。所述DCI或MAC CE中携带参数M,所述终端设备根据M的取值,在所述对应关系中查找对应的跳过的GAP周期。
例如,当所述DCI或MAC CE中携带的参数M的取值为10,所述终端设备可以确定对应的跳过的GAP周期为4T,即所述终端设备跳过的具体时间为160ms,所述终端设备在第5个GAP周期进行GAP测量。
在该方式中,网络设备可以指示终端设备跳过N个GAP周期T,因此可以实现终端设备的GAP周期的动态修改,避免GAP周期过短对业务通信的影响,减少功耗,也可以避免GAP周期过长导致终端设备掉网,也可以保证终端设备测量时的成功率和效率。所述终端设备在跳过N个GAP周期T后,无需新的指示信息,即可自行恢复原GAP周期,可以进一步减少信令开销。
方式三,网络设备配置多套GAP周期,并为每套GAP周期配置对应的优先级。如图6所示,包括以下过程:
S601:网络设备通过RRC信令配置低优先级GAP周期和高优先级GAP周期。
其中GAP周期的优先级可以用于所述终端设备确定GAP测量和调度任务的处理优先级,如在存在调度任务时,可以跳过低优先级的GAP测量,不跳过高优先级的GAP测量,即调度任务的处理优先级高于低优先级的GAP测量,调度任务的处理优先级低于高优先级的GAP测量。
RRC信令中包括低优先级GAP周期和高优先级GAP周期。所述低优先级GAP周期包括T1、高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数,T1大于0,所述T1可以为第一GAP周期。例如所述低优先级GAP周期可以为T、2T、或4T中的一个,所述高优先级GAP周期可以为8T,又如所述低优先级GAP周期可以为40ms,所述高优 先级GAP周期可以为160ms。
可选的,多个GAP周期及每个GAP周期对应的优先级可以通过一条信息进行配置,如图7a所示的GapConfig。或者多个GAP周期及每个GAP周期对应的优先级可以通过多条信息进行配置,如图7b所示的GapConfigHighPri(用于配置高优先级GAP周期)和GapConfigLowPri(用于配置低优先级GAP周期)。
S602:所述网络设备向终端设备发送调度任务。
调度任务的优先级可以是隐式的,如网络设备和终端设备默认调度任务的优先级高于低优先级GAP周期,且低于高优先级GAP周期。这样,终端设备在接收到调度任务后,忽略/跳过/打断/不执行低优先级GAP周期,不忽略/不跳过/不打断高优先级GAP周期。
S603:若当前GAP测量的GAP周期为低优先级,且在此GAP周期内有调度任务,所述终端设备跳过低优先级的GAP测量;若当前GAP测量的GAP周期为高优先级,且在此GAP周期内有调度任务,所述终端设备忽略所述调度任务,继续进行所述高优先级的GAP测量。
所述终端设备接收到调度任务后,跳过低优先级的GAP测量,不跳过高优先的GAP测量,即高优先级的GAP测量不受调度影响。其中跳过低优先级的GAP测量指忽略/不执行下个周期的GAP测量,例如终端设备确定应该在时隙(slot)5进行低优先级的GAP测量,但是在slot4时确定slot5需要执行调度任务,则所述终端设备在slot5执行调度任务,而不执行低优先级的GAP测量。
如图8所示,低优先级GAP周期包括20ms,高优先级GAP周期包括80ms。例如调度任务的优先级高于GAP周期的低优先级,且低于GAP周期的高优先级。针对低优先级GAP周期,在有调度任务时,跳过低优先级GAP测量,所述网络设备执行调度任务,在没有调度任务时,低优先级GAP测量正常进行。而针对高优先级GAP周期,无论是否有调度任务,高优先级GAP测量均正常进行。
在该方式中,所述网络设备和终端设备之间无需额外的信令开销,即可实现调度任务和GAP测量之间的调度控制,实现GAP测量的动态调度。
方式四,终端设备可以上报期望GAP周期。如图9所示,包括以下过程:
S901:终端设备上报期望GAP周期。
可选的,在S901中,终端设备可以根据终端设备的类型和应用场景、终端设备的移动速度和待调度的数据量中的至少一项,确定终端设备的期望GAP周期。例如,所述终端设备可以直接将所述期望GAP周期进行上报,或者所述终端设备可以上报N,N用于指示所述期望GAP周期为N个GAP周期T。
在一个示例中,终端设备可以通过所述终端设备的辅助信息(UEAssistanceInformation)进行期望GAP周期的初始上报。其中采用UEAssistanceInformation的开销小,但是灵活性差,更适用于视频监控摄像头、工业传感器等静止类终端设备。
在另一个示例中,终端设备可以通过上行MAC CE上报所述期望GAP周期。例如所述期望GAP周期可以和缓冲状态报告(buffer status report,BSR)一起上报,灵活性好。
在又一个示例中,终端设备可以通过上行控制信息(uplink control information,UCI)上报所述期望GAP周期。通过UCI进行上报的实时性高,但是开销较大。
例如,终端设备可以通过物理上行控制信道(physical uplink control channel,PUCCH) 0或PUCCH1上报期望GAP周期,例如所述终端设备通过选择不同的初始循环移位值m cs,来隐式上报期望GAP周期N(Wanted Gap N),m cs为循环移位(cyclic shift,cs)的取值。如表3所示,0表示否定响应(NACK)消息,1表示确认响应(ACK)消息。若NACK消息中的m cs为3,对应的期望GAP周期为T,若ACK消息中的m cs为9,对应的期望GAP周期为T。若NACK消息中的m cs为4,对应的期望GAP周期为2T,若ACK消息中的m cs为10,对应的期望GAP周期为2T。若NACK消息中的m cs为5,对应的期望GAP周期为4T,若ACK消息中的m cs为11,对应的期望GAP周期为4T。
表3
Wanted Gap N 0 1
1 m cs=3 m cs=9
2 m cs=4 m cs=10
4 m cs=5 m cs=11
又如,所述网络设备可以下发期望GAP周期的上报指示,来触发期望GAP周期的非周期性上报。例如在DCI0_1中新增GapN request字段,该GapN request字段用于指示终端设备上报期望GAP周期,终端设备可以在解析到该GapN request字段后,将期望GAP周期对应的N值随UCI一起上报。
S902:网络设备根据所述期望GAP周期,确定是否使用动态GAP周期。
在S902中,所述网络设备以所述期望GAP周期作为参考,结合终端设备的其他状态信息(所述其他状态信息可以参见上述S401中所述终端设备的状态相关信息),确定是否使用动态GAP周期。
S903:所述网络设备动态修改GAP周期。
S904:网络终端设备根据所述网络设备指示的GAP周期,进行GAP测量。
S902~S904可以参见上述方式一、方式二和方式三中的相应描述,重复之处不做赘述。
在该方式中,终端设备可以上报适合自己的期望GAP周期,网络设备参考终端设备的期望GAP周期,可以进一步准确地确定如何动态修改GAP周期。
上述方式一、方式二、方式三和方式四可以单独使用,也可以组合使用。
结合上述实施例及附图,如图10所示,本申请实施例提供一种测量方法。包括以下步骤:
S1001:网络设备向终端设备发送第一信令,所述终端设备接收所述第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期。
所述第一GAP周期可以表示为T。
可选的,所述第一信令还用于指示所述终端设备使用静态GAP周期,或用于所述终端设备使用动态GAP周期。如所述GAP周期配置信息具体用于指示所述终端设备采用静态GAP周期进行GAP测量,或者指示所述终端设备采用动态GAP周期进行GAP测量。
所述第一信令指示是否使用动态GAP周期的过程可以参见上述S401,重复之处不做 赘述。
一种可能的实现中,所述第一信令还可以包括低优先级GAP周期和高优先级GAP周期。示例性的,所述低优先级GAP周期包括T1,所述高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数。关于低优先级GAP周期和高优先级GAP周期的更多示例可以参见上述S601,重复之处不做赘述。
所述GAP周期的优先级用于所述终端设备确定GAP测量和调度任务的处理优先级。例如调度任务可以用于指示所述终端设备跳过低优先级的GAP测量,不跳过高优先级的GAP测量。也就是说,对于低优先级GAP周期来说,若存在调度任务,所述终端设备可以跳过/忽略/打断/不执行低优先级GAP周期的GAP测量,执行所述调度任务;对于高优先级GAP周期来说,若存在调度任务,所述终端设备可以忽略所述调度任务,不跳过/不忽略/不打断所述高优先级GAP周期的GAP测量。
例如,所述网络设备还可以向所述终端设备发送调度任务,其中,所述调度任务用于指示所述终端设备跳过低优先级的所述GAP测量,不跳过高优先级的GAP测量。
S1002:所述网络设备向所述终端设备发送第一信息,所述终端设备接收所述第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量;其中,所述第一GAP周期与所述第二GAP周期不同。
所述第一信息可以包括DCI或下行MAC CE。
可选的,在该S1002之前,所述网络设备还可以根据所述终端设备的状态相关信息,确定所述第一信息;所述终端设备的状态相关信息包括以下一种或多种信息:所述终端设备的类型和应用场景、待调度的数据量、所述终端设备的移动速度、频偏、所述终端设备的历史小区信息或所述终端设备的期望GAP周期。其中所述网络设备根据所述终端设备的状态相关信息,确定所述第一信息的过程可以参见上述S401,重复之处不做赘述。
所述网络设备向所述终端设备发送第一信息之前,所述终端设备还可以发送第二信息,所述网络设备接收所述第二信息,所述第二信息包括所述终端设备的期望GAP周期。该过程可以参见上述方式四,重复之处不做赘述。
所述第二信息可以为UEAssistanceInformation、或上行MAC CE、或UCI。所述第二信息包含初始循环移位值和/或期望GAP周期,初始循环移位值和期望GAP周期存在映射关系,所述初始循环移位值和期望GAP周期的映射关系可以参见上述表3所示。
所述网络设备可以通过显式的方式指示动态修改终端设备的GAP周期。例如所述第一信息可以包括GAP周期修改指示信息,所述GAP周期修改指示信息用于指示所述终端设备修改为所述第二GAP周期;或者所述GAP周期修改指示信息用于指示所述终端设备跳过N个GAP周期T,N为大于1的整数,T可以为所述第一信令指示的GAP周期,即第一GAP周期,且T大于0。所述N为在所述终端设备中预先设置的,或者所述N为所述网络设备在所述第一信息之前发送给所述终端设备的,或者所述N携带在所述第一信息中。
可选的,所述第一信息中还可以包括所述调度任务。
S1003:所述终端设备根据所述第一信息的指示,使用所述第二GAP周期进行GAP测量。
在一种可能的实现中,所述终端设备将所述第一GAP周期调整为所述第二GAP周期,采用所述第二GAP周期进行GAP测量。该过程可以参见S403,重复之处不做赘述。
在另一种可能的实现中,所述终端设备跳过N个GAP周期T的GAP测量(即连续N个第一GAP周期不进行GAP测量),在第N+1个周期,继续采用所述第一GAP周期进行GAP测量。该过程可以参见S503,重复之处不做赘述。
若所述第一信息中包括调度任务,所述终端设备可以根据所述调度任务的指示,跳过低优先级的GAP测量,不跳过高优先级的GAP测量。
在本申请实施例,网络设备可以通过第一信息,向终端设备指示与第一GAP周期不同的第二GAP周期,可以实现GAP周期的动态调整,并且能够提高业务吞吐量,降低功耗,也可以减少终端设备的掉网风险,保证终端设备测量时的成功率和效率。
本申请实施例中图10所示的具体实现方式可以参见上述相关实施例的介绍。
本申请实施例中各个实施例可以相互结合使用,也可以单独使用。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图11为本申请实施例提供的测量装置1100的示意性框图。
测量装置1100包括处理模块1110和收发模块1120。示例性地,测量装置1100可以是网络设备或终端设备,也可以是设置于网络设备或终端设备中的芯片或者其他具有上述网络设备或终端设备功能的组合器件、部件等。当测量装置1100是网络设备或终端设备时,收发模块1120可以是收发器,收发器可以包括天线和射频电路等,处理模块1110可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当测量装置1100是具有上述网络设备或终端设备功能的部件时,收发模块1120可以是射频单元,处理模块1110可以是处理器,例如基带处理器。当测量装置1100是芯片系统时,收发模块1120可以是芯片(例如基带芯片)的输入输出接口、处理模块1110可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1110可以由处理器或处理器相关电路组件实现,收发模块1120可以由收发器或收发器相关电路组件实现。
例如,处理模块1110可以用于执行图4、图5、图6、图9或图10所示的实施例中由网络设备或终端设备除了收发操作之外的全部操作,例如S902,和/或用于支持本文所描述的技术的其它过程。收发模块1120可以用于执行图4、图5、图6、图9或图10所示的实施例中由网络设备或终端设备全部收发操作,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块1120可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块1120可以用于执行图4、图5、图6、图9或图10所示的实施例中由网络设备或终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块1120是发送模块,而在执行接收操作时,可以认为收发模块1120是接收模块;或者,收发模块1120也可以是两个功能模块,收发模块1120可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图4、图5、图6、图9或图10所示的实施例的任一个实施例中由网络设备或终端设备全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图4、图5、图6、图9或图10所示的实施例由网络设备或终端设备全部接收操作。
在一个实施例中,所述测量装置1100应用于网络设备。
其中,处理模块1110,用于通过所述收发模块1120向终端设备发送第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期。
所述处理模块1110,还用于通过所述收发模块1120向所述终端设备发送第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量;其中,所述第一GAP周期与所述第二GAP周期不同。
在一种可能的实现中,所述处理模块1110,还用于根据所述终端设备的状态相关信息,确定所述第一信息;所述终端设备的状态相关信息包括以下一种或多种信息:所述终端设备的类型和应用场景、待调度的数据量、所述终端设备的移动速度、频偏、所述终端设备的历史小区信息或所述终端设备的期望GAP周期。
在一种可能的实现中,所述第一信息包括CI或下行MAC CE。
在一种可能的实现中,所述第一信息包括GAP周期修改指示信息;所述GAP周期修改指示信息用于指示所述终端设备修改为所述第二GAP周期;或者所述GAP周期修改指示信息用于指示所述终端设备跳过N个GAP周期T,N为大于1的整数,T为所述第一信令指示的GAP周期,且T大于0。
在一种可能的实现中,所述N为在所述终端设备中预先设置的,或者所述N为所述网络设备在所述第一信息之前发送给所述终端设备的。
在一种可能的实现中,所述第一信令还包括低优先级GAP周期和高优先级GAP周期,所述GAP周期的优先级用于所述终端设备确定GAP测量和调度任务的处理优先级。
在一种可能的实现中,所述收发模块1120,还用于向所述终端设备发送调度任务;其中,所述调度任务用于指示所述终端设备跳过低优先级的所述GAP测量,不跳过高优先级的所述GAP测量。
在一种可能的实现中,所述第一信息还包括所述调度任务。
在一种可能的实现中,所述低优先级GAP周期包括T1,所述高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数。
在一种可能的实现中,所述收发模块1120,还用于接收第二信息,所述第二信息包括所述终端设备的期望GAP周期。
在一种可能的实现中,所述第二信息为UEAssistanceInformation、或上行MAC CE、或UCI。
在一种可能的实现中,所述第二信息包含初始循环移位值和/或期望GAP周期,初始循环移位值和期望GAP周期存在映射关系。
在一个实施例中,所述测量装置1100应用于终端设备。
其中,所述收发模块1120,用于接收来自网络设备的第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期;接收来自所述网络设备的第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量;其中所述第一GAP周期与所述第二GAP周期不同;
所述处理模块1110,用于根据所述第一信息的指示,使用所述第二GAP周期进行GAP测量。
在一种可能的实现中,所述第一信息包括DCI或下行MAC CE。
在一种可能的实现中,所述第一信息包括GAP周期修改指示信息;所述GAP周期修改指示信息用于指示所述终端设备修改为所述第二GAP周期;或者所述GAP周期修改指示信息用于指示所述终端设备跳过N个GAP周期T,N为大于1的整数,T为所述第一信令指示的GAP周期,且T大于0。
在一种可能的实现中,所述处理模块1110,具体用于将所述第一GAP周期调整为所述第二GAP周期,采用所述第二GAP周期进行GAP测量;或者跳过所述第一GAP周期的GAP测量,在第N+1个GAP周期继续采用所述第一GAP周期进行GAP测量。
在一种可能的实现中,所述N为在所述终端设备中预先设置的,或者所述N为所述网络设备在所述第一信息之前发送给所述终端设备的。
在一种可能的实现中,所述第一信令还包括低优先级GAP周期和高优先级GAP周期,所述GAP周期的优先级用于所述终端设备确定GAP测量和调度任务的处理优先级。
在一种可能的实现中,所述收发模块1120,还用于接收来自所述网络设备的调度任务;其中,所述调度任务用于指示所述终端设备跳过低优先级的所述GAP测量,不跳过高优先级的所述GAP测量。
在一种可能的实现中,所述第一信息还包括所述调度任务。
在一种可能的实现中,所述低优先级GAP周期包括T1,所述高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数。
在一种可能的实现中,所述收发模块1120,还用于接收来自所述网络设备的第一信息之前,发送第二信息,所述第二信息包括所述终端设备的期望GAP周期。
在一种可能的实现中,所述第二信息为UEAssistanceInformation、或上行MAC CE、或UCI。
在一种可能的实现中,所述第二信息包含初始循环移位值和/或期望GAP周期,初始循环移位值和期望GAP周期存在映射关系。
关于测量装置1100所能实现的其他功能,可参考图4、图5、图6、图9或图10所示的实施例的相关介绍,不多赘述。
本申请实施例还提供一种测量装置,该测量装置可以是网络设备或终端设备。该测量装置可以用于执行上述方法实施例中由网络设备或终端设备所执行的动作。
基于与上述测量方法相同的构思,如图12所示,本申请实施例还提供一种测量装置1200。测量装置1200可用于实现上述方法实施例中由网络设备或终端设备所执行的方法,可以参见上述方法实施例中的说明,其中测量装置1200可以为网络设备、终端设备,或者可以位于网络设备或终端设备中。
测量装置1200包括一个或多个处理器1201。处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对测量装置(如,网络设备、终端设备、车载设备或芯片等)进行控制,执行软件程序,处理软件程序的数据。测量装置1200可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,收发单元可以为收发器,射频芯片等。
测量装置1200包括一个或多个处理器1201,一个或多个处理器1201可实现上述所示 的实施例中网络设备或终端设备执行的方法。
可选的,处理器1201除了可以实现上述所示的实施例中的方法,还可以实现其他功能。可选的,一种实现方式中,处理器1201可以执行计算机程序,使得测量装置1200执行上述方法实施例中网络设备或终端设备所执行的方法。该计算机程序可以全部或部分存储在处理器1201内,如计算机程序1203,也可以全部或部分存储在与处理器1201耦合的存储器1202中,如计算机程序1204,也可以通过计算机程序1203和1204共同使得测量装置1200执行上述方法实施例中网络设备或终端设备所执行的方法。
在又一种可能的实现方式中,测量装置1200也可以包括电路,该电路可以实现前述方法实施例中网络设备或终端设备所执行的功能。
在又一种可能的实现方式中,测量装置1200中可以包括一个或多个存储器1202,其上存储有计算机程序1204,该计算机程序可在处理器上被运行,使得测量装置1200执行上述方法实施例中描述的测量方法。可选的,存储器中还可以存储有数据。可选的,处理器中也可以存储计算机程序和/或数据。例如,上述一个或多个存储器1202可以存储上述实施例中所描述的关联或对应关系,或者上述实施例中所涉及的相关的参数或表格等。其中,处理器和存储器可以单独设置,也可以集成或耦合在一起。
在又一种可能的实现方式中,测量装置1200还可以包括收发器1205。处理器1201可以称为处理单元,对测量装置(例如,基站或终端设备)进行控制。收发器1205可以称为收发机、收发电路、或者收发单元等,用于实现数据或控制信令的收发。
例如,如果测量装置1200为应用于通信设备中的芯片或者其他具有上述通信设备功能的组合器件、部件等,测量装置1200中可以包括收发器1205。
在又一种可能的实现方式中,测量装置1200还可以包括收发单元1205以及天线1206。处理器1201可以称为处理单元,对测量装置(例如,基站或终端设备)进行控制。收发单元1205可以称为收发机、收发电路、或者收发器等,用于通过天线1206实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的计算机程序完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例公开的方法步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于网络设备或终端设备的任一方法实施例所述的方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于网络设备或终端设备的任一方法实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种测量装置,包括处理器和接口;处理器,用于执行上述应用于网络设备或终端设备的任一方法实施例所述的方法。
应理解,上述处理装置可以是一个芯片,处理器可以通过硬件实现也可以通过软件实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码实现,该存储器可以集成在处理器中,也可以位于处理器之外,独立存在。
本申请实施例提供一种通信系统。该通信系统可以包括用于实现上述任一实施例的网络设备和终端设备。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的实施例中与网络设备或终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的实施例中与网络设备或终端设备相关的流程。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编 程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (27)

  1. 一种测量方法,其特征在于,包括:
    网络设备向终端设备发送第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期;
    所述网络设备向所述终端设备发送第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量;其中,所述第一GAP周期与所述第二GAP周期不同。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备向所述终端设备发送第一信息之前,还包括:
    所述网络设备根据所述终端设备的状态相关信息,确定所述第一信息;
    所述终端设备的状态相关信息包括以下一种或多种信息:所述终端设备的类型和应用场景、待调度的数据量、所述终端设备的移动速度、频偏、所述终端设备的历史小区信息或所述终端设备的期望GAP周期。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信息包括下行控制信息DCI或下行媒体接入控制MAC控制单元CE。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一信息包括GAP周期修改指示信息,
    所述GAP周期修改指示信息用于指示所述终端设备修改为所述第二GAP周期;或者
    所述GAP周期修改指示信息用于指示所述终端设备跳过N个GAP周期T,N为大于1的整数,T为所述第一信令指示的GAP周期,且T大于0。
  5. 如权利要求4所述的方法,其特征在于,所述N为在所述终端设备中预先设置的,或者所述N为所述网络设备在所述第一信息之前发送给所述终端设备的。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一信令还包括低优先级GAP周期和高优先级GAP周期,所述GAP周期的优先级用于所述终端设备确定GAP测量和调度任务的处理优先级。
  7. 如权利要求6所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送调度任务;
    其中,所述调度任务用于指示所述终端设备跳过低优先级的所述GAP测量,不跳过高优先级的所述GAP测量。
  8. 如权利要求7所述的方法,其特征在于,所述第一信息还包括所述调度任务。
  9. 如权利要求6-8任一项所述的方法,其特征在于,所述低优先级GAP周期包括T1,所述高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数。
  10. 如权利要求2-9任一项所述的方法,其特征在于,所述网络设备向所述终端设备发送第一信息之前,还包括:
    所述网络设备接收第二信息,所述第二信息包括所述终端设备的期望GAP周期。
  11. 如权利要求10所述的方法,其特征在于,所述第二信息为所述终端设备的辅助信息UEAssistanceInformation、或上行MAC CE、或上行控制信息UCI。
  12. 如权利要求10或11所述的方法,其特征在于,所述第二信息包含初始循环移位值 和/或期望GAP周期,初始循环移位值和期望GAP周期存在映射关系。
  13. 一种测量方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信令,所述第一信令包括GAP周期配置信息,所述GAP周期配置信息用于所述终端设备进行GAP测量,且,所述GAP周期配置信息包括第一GAP周期;
    所述终端设备接收来自所述网络设备的第一信息,所述第一信息用于指示所述终端设备使用第二GAP周期进行所述GAP测量;其中所述第一GAP周期与所述第二GAP周期不同;
    所述终端设备根据所述第一信息的指示,使用所述第二GAP周期进行GAP测量。
  14. 如权利要求13所述的方法,其特征在于,所述第一信息包括下行控制信息DCI或下行媒体接入控制MAC控制单元CE。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一信息包括GAP周期修改指示信息,
    所述GAP周期修改指示信息用于指示所述终端设备修改为所述第二GAP周期;或者
    所述GAP周期修改指示信息用于指示所述终端设备跳过N个GAP周期T,N为大于1的整数,T为所述第一信令指示的GAP周期,且T大于0。
  16. 如权利要求15所述的方法,其特征在于,所述终端设备根据所述第一信息的指示,使用所述第二GAP周期进行GAP测量,包括:
    所述终端设备将所述第一GAP周期调整为所述第二GAP周期,采用所述第二GAP周期进行GAP测量;或者
    所述终端设备跳过所述第一GAP周期的GAP测量,在第N+1个GAP周期继续采用所述第一GAP周期进行GAP测量。
  17. 如权利要求15或16所述的方法,其特征在于,所述N为在所述终端设备中预先设置的,或者所述N为所述网络设备在所述第一信息之前发送给所述终端设备的。
  18. 如权利要求13-17任一项所述的方法,其特征在于,所述第一信令还包括低优先级GAP周期和高优先级GAP周期,所述GAP周期的优先级用于所述终端设备确定GAP测量和调度任务的处理优先级。
  19. 如权利要求18所述的方法,其特征在于,还包括:
    所述终端设备接收来自所述网络设备的调度任务;
    其中,所述调度任务用于指示所述终端设备跳过低优先级的所述GAP测量,不跳过高优先级的所述GAP测量。
  20. 如权利要求19所述的方法,其特征在于,所述第一信息还包括所述调度任务。
  21. 如权利要求17-19任一项所述的方法,其特征在于,所述低优先级GAP周期包括T1,所述高优先级GAP周期包括T2,其中T2=KT1,K为大于1的整数。
  22. 如权利要求13-19任一项所述的方法,其特征在于,所述终端设备接收来自所述网络设备的第一信息之前,还包括:
    所述终端设备发送第二信息,所述第二信息包括所述终端设备的期望GAP周期。
  23. 如权利要求22所述的方法,其特征在于,所述第二信息为所述终端设备的辅助信息UEAssistanceInformation、或上行MAC CE、或上行控制信息UCI。
  24. 如权利要求22或23所述的方法,其特征在于,所述第二信息包含初始循环移位值和/或期望GAP周期,初始循环移位值和期望GAP周期存在映射关系。
  25. 一种测量装置,其特征在于,包括处理模块和收发模块,所述处理模块与所述收发模块耦合,用于执行如权利要求1~12中任一项所述的方法,或用于执行如权利要求13~24中任一项所述的方法。
  26. 一种测量装置,其特征在于,包括处理器和收发器,其中,所述处理器与所述收发器耦合,用于执行如权利要求1~12中任一项所述的方法,或用于执行如权利要求13~24中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~12中任一项所述的方法,或使得所述计算机执行如权利要求13~24中任一项所述的方法。
PCT/CN2021/109025 2020-07-30 2021-07-28 一种测量方法及装置 WO2022022591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010750882.9 2020-07-30
CN202010750882.9A CN114071722A (zh) 2020-07-30 2020-07-30 一种测量方法及装置

Publications (1)

Publication Number Publication Date
WO2022022591A1 true WO2022022591A1 (zh) 2022-02-03

Family

ID=80037198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109025 WO2022022591A1 (zh) 2020-07-30 2021-07-28 一种测量方法及装置

Country Status (2)

Country Link
CN (1) CN114071722A (zh)
WO (1) WO2022022591A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115529610A (zh) * 2022-09-15 2022-12-27 成都中科微信息技术研究院有限公司 一种NR系统基于Gap提高CGI测量可靠性的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043697A (zh) * 2006-03-21 2007-09-26 华为技术有限公司 一种异频、异系统测量中获取测量空隙的方法
CN101335975A (zh) * 2007-06-28 2008-12-31 华为技术有限公司 一种控制测量空隙的方法、装置及系统
CN101651877A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 一种配置测量间隙的方法、系统和设备
US20140341192A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
CN108541016A (zh) * 2013-04-03 2018-09-14 华为技术有限公司 一种进行异频小区测量的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043697A (zh) * 2006-03-21 2007-09-26 华为技术有限公司 一种异频、异系统测量中获取测量空隙的方法
CN101335975A (zh) * 2007-06-28 2008-12-31 华为技术有限公司 一种控制测量空隙的方法、装置及系统
CN101651877A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 一种配置测量间隙的方法、系统和设备
CN108541016A (zh) * 2013-04-03 2018-09-14 华为技术有限公司 一种进行异频小区测量的方法及装置
US20140341192A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment

Also Published As

Publication number Publication date
CN114071722A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2018076956A1 (zh) 免授权传输的方法、终端设备和网络设备
US10623981B2 (en) Information transmission method, apparatus, and system
US20210314935A1 (en) Resource allocation method and communications apparatus
US20230026953A1 (en) Drx control method and apparatus
US20220159523A1 (en) Method and device for measuring and reporting channel state information (csi)
WO2021249001A1 (zh) 一种小区测量方法及装置
WO2020143730A1 (zh) 一种通信方法和通信装置
CN111865536B (zh) 搜索空间的监测、配置方法及装置
JP2021518706A (ja) Pdcchの監視方法、端末装置及びネットワーク装置
KR20220038425A (ko) 전력 절감 신호 전송 방법, 기지국 및 단말 기기
WO2019076347A1 (zh) 通信方法和通信装置
WO2021204274A1 (zh) 一种测量对象指示方法与装置
WO2021197233A1 (zh) 一种通信方法及设备
WO2021208888A1 (zh) 一种通信方法和装置
WO2022022591A1 (zh) 一种测量方法及装置
WO2021258766A1 (zh) 一种配置终端设备的方法及设备
CN113810964B (zh) 一种通信方法及设备
CN113676922B (zh) 一种终端设备协作方法及装置
CN116057998A (zh) 一种通信方法、设备和装置
WO2023273743A1 (zh) 一种侧行通信方法及装置
WO2021213136A1 (zh) 一种通信方法和终端设备
WO2021036209A1 (zh) 一种通信方法、装置及计算机可读存储介质
JP2023524891A (ja) リソース決定方法及び装置
WO2021062796A1 (zh) 一种通信方法及装置
CN112770366B (zh) 一种通信方法与通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850116

Country of ref document: EP

Kind code of ref document: A1