WO2021158395A1 - Systèmes de matériaux composites - Google Patents

Systèmes de matériaux composites Download PDF

Info

Publication number
WO2021158395A1
WO2021158395A1 PCT/US2021/015098 US2021015098W WO2021158395A1 WO 2021158395 A1 WO2021158395 A1 WO 2021158395A1 US 2021015098 W US2021015098 W US 2021015098W WO 2021158395 A1 WO2021158395 A1 WO 2021158395A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
graphene
implementations
particles
composite material
Prior art date
Application number
PCT/US2021/015098
Other languages
English (en)
Inventor
Michael W. Stowell
Bryce H. Anzelmo
Bruce Lanning
Daniel Cook
Elena Rogojina
Karel Vanheusden
Margaret Hines
John Baldwin
Chandra B. KC
Original Assignee
Lyten, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/784,146 external-priority patent/US11352481B2/en
Application filed by Lyten, Inc. filed Critical Lyten, Inc.
Priority to CN202180016953.5A priority Critical patent/CN115175959B/zh
Priority to KR1020227029156A priority patent/KR20220139905A/ko
Priority to JP2022547952A priority patent/JP2023512804A/ja
Priority to EP21750002.4A priority patent/EP4100468A4/fr
Publication of WO2021158395A1 publication Critical patent/WO2021158395A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • the carbon particles that are used as starting materials for the present composite materials may include graphene, spherical carbons (carbon nano-onions (CNOs), which may also be referred to as multi -walled spherical fullerenes (MWSF) or multi-shell fullerenes), and/or carbon nanotubes (CNTs).
  • CNOs carbon nano-onions
  • the carbon particles may have a unique 3-dimensional (3D) structure in X, Y and Z dimensions, such as graphene structures that form a pore matrix (such as, void spaces, cavities or openings) and that include sub-particles of single layer graphene (SLG), few layer graphene (FLG) and/or many layer graphene (MLG).
  • the pore matrix and high surface area of the present 3D structures enhance interlocking of the resin with the carbon materials, improving the interfacial strength and adhesion between the resin and carbon materials and thus improving properties of the resulting composite material.
  • the interconnected sub-particles 1110 form a 3D assembled structure that has open spaces (such as, pores) between the sub-particles 1110 as described previously in relation to FIG. 3.
  • the sub-particles 1110 and interconnections are formed in a plasma reactor as described herein.
  • the innate mechanical properties (such as, elastic modulus, tensile strength) of the single layer graphene (such as, layers 1112) are uncompromised or maintained - that is, having minimal basal plane defects - during creation of the particle 1100.
  • Purposely engineered-in defects result from tuning the growth of the carbon structure. Such tuning can be accomplished by controlling reactor process conditions such as gas flow rate, residence time, flow velocity, Mach number, hydrocarbon concentration and the like, to name but a few.
  • Other process conditions that can be controlled so as to tune the growth of a lattice include plasma specific conditions such as plasma concentration, heat profile gradients, disorientation within the plasma energy, ionization energy potential, collision frequency, microwave wave modulations, and microwave frequencies.
  • FIG. 13 shows a flowchart 1300 representing methods of producing a composite material, according to some implementations.
  • Methods include producing a plurality of carbon particles in a plasma reactor in step 1310; functionalizing, in the plasma reactor, the plurality of carbon particles to promote chemical bonding with a resin in step 1320; and combining, within the plasma reactor, the functionalized plurality of carbon particles with the resin to form a composite material in step 1330.
  • the carbon particles may be directly combined with the resin in the reactor, without contact from an external resource or without the need for human contact of the resin or carbon particles.
  • the aspect of being impurity -free can be quantified. Specifically, the techniques such as are disclosed herein can produce impurity-free carbons to the extent that the carbon purity is 99% or greater. In some cases, the remaining 1% may contain various impurities and yet are quantifiably impurity free, at least to the 99% level of purity.
  • One possible test to determine the total amount of impurities is to fully oxidize the sample and evaluate the affluent stream. This is further described in ASTM E2550 as well as ASTM D1619.
  • specific active area (SAA) of a carbon is the percentage of a corresponding SSA that is available for interaction (such as, interaction with the polymer, etc.)
  • the figure depicts a desired region 1630 that lies above the shown graphene surface area limit 1610 and to the right of the shown graphite surface area limit 1620.
  • FIG. 16C1 it represents a set of crinkled morphology graphene materials (CrinkleA, CrinkleB, CrinkleC) with different degrees of graphene sheet roughness obtained by tuning of production conditions as described above. It shows that D/G ratio drops linearly with increases in crystallite size indicating formation of fewer folds on the platelet for CrinkleA material as compared to others.
  • resistance to oxidation might be a dominant parameter when selecting a thermoplastic or thermoset for use in making corrosion-resistant valves.
  • mechanical attributes such as a strength-to-weight ratio might be a dominating mechanical attribute.
  • the component might also need to exhibit a very high resistance to system fatigue.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Matériau composite comprenant un polymère et un matériau contenant du graphène. Le polymère comprend une charge conçue pour répartir une ou plusieurs zones de concentration de force du matériau composite à travers une ou plusieurs zones respectives plus grandes du matériau composite. Le matériau contenant du graphène peut être au moins partiellement mélangé dans le polymère sur la base d'un frisage du matériau contenant du graphène en une ou plusieurs surfaces exposées du polymère. Dans certains modes de réalisation, le frisage peut augmenter la liaison entre le polymère et le matériau contenant du graphène. Dans certains cas, la charge peut comprendre une pluralité de couches de fibres de carbone croisées par un matériau organométallique pour former une matrice interconnectée conçue pour renforcer le matériau composite.
PCT/US2021/015098 2020-02-06 2021-01-26 Systèmes de matériaux composites WO2021158395A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180016953.5A CN115175959B (zh) 2020-02-06 2021-01-26 复合材料系统
KR1020227029156A KR20220139905A (ko) 2020-02-06 2021-01-26 복합 물질 시스템
JP2022547952A JP2023512804A (ja) 2020-02-06 2021-01-26 複合材料システム
EP21750002.4A EP4100468A4 (fr) 2020-02-06 2021-01-26 Systèmes de matériaux composites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/784,146 2020-02-06
US16/784,146 US11352481B2 (en) 2018-02-28 2020-02-06 Composite materials systems

Publications (1)

Publication Number Publication Date
WO2021158395A1 true WO2021158395A1 (fr) 2021-08-12

Family

ID=77200289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/015098 WO2021158395A1 (fr) 2020-02-06 2021-01-26 Systèmes de matériaux composites

Country Status (5)

Country Link
EP (1) EP4100468A4 (fr)
JP (1) JP2023512804A (fr)
KR (1) KR20220139905A (fr)
CN (1) CN115175959B (fr)
WO (1) WO2021158395A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309545B2 (en) 2019-10-25 2022-04-19 Lyten, Inc. Carbonaceous materials for lithium-sulfur batteries
US11462728B2 (en) 2017-12-22 2022-10-04 Lyten, Inc. Structured composite materials
US11489161B2 (en) 2019-10-25 2022-11-01 Lyten, Inc. Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes
US11680012B2 (en) 2020-08-04 2023-06-20 Lyten, Inc. Methods for manufacturing or strengthening carbon-containing glass materials
WO2023192794A1 (fr) * 2022-03-30 2023-10-05 Lyten, Inc. Matériau composite comprenant du graphène tridimensionnel (3d)
US11813774B2 (en) 2022-03-30 2023-11-14 Lyten, Inc. Method of producing a composite material including three-dimensional (3D) graphene
US12006388B2 (en) 2022-03-30 2024-06-11 Lyten, Inc. Composite material including three-dimensional (3D) graphene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100301212A1 (en) * 2009-05-18 2010-12-02 The Regents Of The University Of California Substrate-free gas-phase synthesis of graphene sheets
US9190667B2 (en) * 2008-07-28 2015-11-17 Nanotek Instruments, Inc. Graphene nanocomposites for electrochemical cell electrodes
US9812295B1 (en) * 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
US20180058782A1 (en) * 2013-01-07 2018-03-01 Nanotek Instruments, Inc. Unitary graphene-based composite material
US20190264004A1 (en) * 2018-02-28 2019-08-29 Lyten, Inc. Composite materials systems containing carbon and resin

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143405A2 (fr) * 2008-05-22 2009-11-26 The University Of North Carolina At Chapel Hill Synthèse de feuillets de graphène et composites nanoparticulaires en comprenant
KR101337867B1 (ko) * 2012-02-08 2013-12-16 (주)고딘테크 탄소나노물질-고분자 복합체 및 그 제조 방법
MX2015014631A (es) * 2013-04-18 2016-09-29 Univ Rutgers Metodo de exfoliacion in situ para fabricar un compuesto de la matriz reforzados con grafeno.
CN105482435B (zh) * 2014-09-29 2018-03-20 中国科学院苏州纳米技术与纳米仿生研究所 三维褶皱状石墨烯散热浆料、其制备方法及应用
EP3320036A4 (fr) * 2015-07-08 2018-12-26 Niagara Bottling, LLC Polyéthylène téréphtalate renforcé de graphène
WO2018169889A1 (fr) * 2017-03-16 2018-09-20 Lyten, Inc. Intégration de carbone et d'élastomère

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190667B2 (en) * 2008-07-28 2015-11-17 Nanotek Instruments, Inc. Graphene nanocomposites for electrochemical cell electrodes
US20100301212A1 (en) * 2009-05-18 2010-12-02 The Regents Of The University Of California Substrate-free gas-phase synthesis of graphene sheets
US20180058782A1 (en) * 2013-01-07 2018-03-01 Nanotek Instruments, Inc. Unitary graphene-based composite material
US9812295B1 (en) * 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
US20190264004A1 (en) * 2018-02-28 2019-08-29 Lyten, Inc. Composite materials systems containing carbon and resin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4100468A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462728B2 (en) 2017-12-22 2022-10-04 Lyten, Inc. Structured composite materials
US11309545B2 (en) 2019-10-25 2022-04-19 Lyten, Inc. Carbonaceous materials for lithium-sulfur batteries
US11489161B2 (en) 2019-10-25 2022-11-01 Lyten, Inc. Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes
US11680012B2 (en) 2020-08-04 2023-06-20 Lyten, Inc. Methods for manufacturing or strengthening carbon-containing glass materials
US11773014B2 (en) 2020-08-04 2023-10-03 Lyten, Inc. Toughened carbon-containing glass materials
US11999649B2 (en) 2020-08-04 2024-06-04 Lyten, Inc. Methods for manufacturing or reinforcing carbon-containing glass materials
WO2023192794A1 (fr) * 2022-03-30 2023-10-05 Lyten, Inc. Matériau composite comprenant du graphène tridimensionnel (3d)
US11813774B2 (en) 2022-03-30 2023-11-14 Lyten, Inc. Method of producing a composite material including three-dimensional (3D) graphene
US12006388B2 (en) 2022-03-30 2024-06-11 Lyten, Inc. Composite material including three-dimensional (3D) graphene

Also Published As

Publication number Publication date
CN115175959B (zh) 2024-08-09
CN115175959A (zh) 2022-10-11
EP4100468A4 (fr) 2024-02-28
EP4100468A1 (fr) 2022-12-14
KR20220139905A (ko) 2022-10-17
JP2023512804A (ja) 2023-03-29

Similar Documents

Publication Publication Date Title
US10907031B2 (en) Composite materials systems containing carbon and resin
US11767414B2 (en) Composite materials systems
EP4100468A1 (fr) Systèmes de matériaux composites
Papageorgiou et al. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites
Feng et al. Toward highly thermally conductive all-carbon composites: Structure control
Hilding et al. Dispersion of carbon nanotubes in liquids
Njuguna et al. Epoxy‐based fibre reinforced nanocomposites
US9362018B2 (en) Impregnated continuous graphitic fiber tows and composites containing same
Tjong Polymer composites with carbonaceous nanofillers: properties and applications
Khan et al. Physiochemical evaluations, mechanical attenuations and thermal stability of graphene nanosheets and functionalized nanodiamonds loaded pitch derived carbon foam composites
Randjbaran et al. Reasons of Adding Carbon Nanotubes into Composite Systems-Review Paper.
Nouranian Vapor-grown carbon nanofiber/vinyl ester nanocomposites: Designed experimental study of mechanical properties and molecular dynamics simulations
US20240010818A1 (en) Composite materials systems
Gong Literature study of graphene modified polymeric composites
Lafdi et al. Effect of carbon nanofiber heat treatment on physical properties of polymeric nanocomposites—part I
Zanjani et al. Effect of nanomaterials/nanofibers on the structure and properties of fiber-reinforced composites
Okada et al. Dry drawability of few-walled carbon nanotubes grown by alcohol chemical vapor deposition
Sharma et al. Carbon nanotube composites: critical issues
Chowdary et al. Characterizations of Polymer–Carbonaceous Composites
Fulmali et al. Functionalization of Carbon Nanotube
Mansoor et al. Strengthening of Bisphenol-A Epoxy Resin by the Addition of Multi-Wall Carbon Nanotubes
Hu et al. Carbon Nanostructures and Nanocomposites
Ansari et al. Effect of stepped microwave irradiation to develop carbon nanotubes on carbon fiber for enhanced performance
AU2020392537A1 (en) Use of carbon networks comprising carbon nanofibers
Mukhopadhyay et al. Carbon Nanofibers: Preparation, Properties, and Applications in Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547952

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227029156

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021750002

Country of ref document: EP

Effective date: 20220906