WO2021157738A1 - 光学装置 - Google Patents

光学装置 Download PDF

Info

Publication number
WO2021157738A1
WO2021157738A1 PCT/JP2021/004468 JP2021004468W WO2021157738A1 WO 2021157738 A1 WO2021157738 A1 WO 2021157738A1 JP 2021004468 W JP2021004468 W JP 2021004468W WO 2021157738 A1 WO2021157738 A1 WO 2021157738A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
wavelength conversion
optical
optical device
Prior art date
Application number
PCT/JP2021/004468
Other languages
English (en)
French (fr)
Inventor
裕介 横林
康之 川上
要介 前村
山本 英明
啓次郎 ▲高▼島
涼介 鎌倉
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Priority to JP2021576208A priority Critical patent/JP7357082B2/ja
Priority to CN202180012485.4A priority patent/CN115038997A/zh
Priority to US17/797,885 priority patent/US11933489B2/en
Publication of WO2021157738A1 publication Critical patent/WO2021157738A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/39Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • F21V9/35Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material at focal points, e.g. of refractors, lenses, reflectors or arrays of light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials

Definitions

  • the present invention relates to an optical device, and more particularly to an optical device including a phosphor member that emits fluorescence by excitation light.
  • Japanese Patent Application Laid-Open No. 2014-082401 irradiates a wavelength conversion member having a phosphor with excitation light from a laser diode, and the excitation light receiving surface of the wavelength conversion member has a periodic structure and suppresses backward scattering of excitation light.
  • a capable light source device is disclosed.
  • Japanese Patent Application Laid-Open No. 2019-006967 describes heat-conducting particles obtained by firing inorganic phosphor particles such as YAG: Ce (yttrium aluminum garnet to which cerium is added) and inorganic transparent fine particles such as alumina at high density.
  • inorganic phosphor particles such as YAG: Ce (yttrium aluminum garnet to which cerium is added) and inorganic transparent fine particles such as alumina at high density.
  • a high phosphor layer (wavelength conversion member) is disclosed.
  • the metal reflective layer containing the metal material, the first translucent layer arranged on the metal reflective layer, and the first transmissive layer arranged on the first transmissive layer have different refractive indexes.
  • an optical device having an optical multilayer reflective film in which a plurality of layers are laminated, and a wavelength conversion layer arranged on the optical multilayer reflective film and containing a fluorescent material.
  • FIG. 1 is a side view showing the structure of a lighting device using a laser light source.
  • FIG. 2a is a cross-sectional view showing a wavelength conversion element according to a reference example
  • FIG. 2b is a wavelength dispersion (spectrum) of the light reflectance of a laminate composed of a metal reflective layer and an optical multilayer reflective film constituting the wavelength conversion element. ) Is a graph.
  • FIG. 3a is a cross-sectional view showing a wavelength conversion element according to the first embodiment
  • FIG. 3b is a laminate composed of a metal reflective layer, a first translucent layer, and an optical multilayer reflective film constituting the wavelength conversion element. It is a graph which shows the wavelength dispersion (spectrum) of the light reflectance of.
  • FIG. 4 is a graph showing the emitted luminous flux (light extraction efficiency) with respect to the excitation light intensity of the wavelength conversion element according to the reference example and the first embodiment.
  • 5a to 5c are cross-sectional views showing a manufacturing process of the wavelength conversion element according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a wavelength conversion element according to the second embodiment.
  • FIG. 1 schematically shows a configuration example of a lighting device using a laser light source.
  • lighting devices are used, for example, in vehicle headlights, projectors, floodlights, and the like.
  • the lighting device 100 includes a laser light source 93 that emits a laser beam 93L, a wavelength conversion element 10 that reflects the laser beam 93L, absorbs the laser beam 93L, and emits a fluorescence 93C having a wavelength different from the wavelength of the laser beam.
  • An optical system 95 including a projection lens or the like that magnifies and projects the combined light 93R, which is the combined light of the laser light 93L and the fluorescent 93C, onto a virtual image plane.
  • the laser light source 93 for example, a semiconductor laser diode such as GaN or InGaN that emits blue light having a light intensity of 1 W or more is used.
  • the number of laser light sources is not limited to one, and two or more laser light sources may be provided.
  • the wavelength conversion element 10 includes, for example, a fluorescent member that absorbs blue light and emits yellow light.
  • the wavelength conversion element 10 reflects blue light 93L, emits yellow light 93C, and emits white light 93R as a composite light thereof. Since the wavelength conversion element 10 absorbs blue light (light energy h ⁇ 1) and dissipates the difference energy (h ⁇ 1-h ⁇ 2) when emitting yellow light (light energy h ⁇ 2), a heat radiating plate 97 such as a heat sink is usually used. Is fixed to.
  • An optical system such as a condenser lens or a collimating lens may be arranged between the laser light source 93 and the wavelength conversion element 10. Further, the wavelength conversion element 10 may be irradiated with the laser light 93L emitted from the laser light source 93 by using an optical fiber or the like.
  • FIG. 2a shows a wavelength conversion element 12 according to a conventional example.
  • the wavelength conversion element 12 according to the conventional example has a structure in which a metal reflective layer 20 made of a metal member such as silver, an optical multilayer reflective film 30 such as a distributed Bragg reflector (DBR), and a wavelength conversion layer 40 are laminated on a heat radiating plate 97. Is.
  • a metal reflective layer 20 made of a metal member such as silver
  • an optical multilayer reflective film 30 such as a distributed Bragg reflector (DBR)
  • DBR distributed Bragg reflector
  • a DBR layer that reflects light having a specific wavelength such as blue light or yellow light.
  • the DBR layer has a structure in which a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index are periodically alternately laminated.
  • the low refractive index layer for example, SiO 2 , MgF 2 , LiF, LaF 3, etc.
  • the high refractive index layer for example, Nb 2 O 5 , TiO 2 , Ta 2 O 3 , Al 2 O 3 , HfO 2 , Y 2 O 3, etc.
  • a dichroic mirror, a short pass filter (SPF), or the like in which a plurality of layers having different refractive indexes are laminated may be used.
  • the wavelength conversion layer 40 includes, for example, a base material 42 of inorganic transparent fine particles such as alumina, and inorganic phosphor particles (light emitting member) 44 such as YAG: Ce dispersed in the base material 42.
  • the phosphor particles 44 for example, absorb blue light 93L and emit yellow light 93C.
  • FIG. 2b shows the wavelength dependence of the reflectance exhibited by the laminate of the metal reflective layer 20 and the optical multilayer reflective film 30.
  • the horizontal axis of the graph in the figure shows the wavelength
  • the vertical axis shows the reflectance.
  • the reflection spectrum when light is incident perpendicularly to the surface of the laminated body (on the optical multilayer reflective film 30 side) (that is, at an incident angle of 0 °) is shown by a solid line
  • the reflection spectrum is shown by a solid line with respect to the normal of the surface.
  • the reflection spectrum when light is incident at 30 ° is shown by a dotted line, and the reflection spectrum when light is incident at 60 ° (incident angle 60 °) with respect to the normal of the surface is a broken line. It is indicated by.
  • the wavelength dependence of the reflectance of the light incident on the YAG: Ce phosphor-containing wavelength conversion layer 40, the metal reflective layer 20, and the optical multilayer reflective film laminate 30 was calculated by an optical thin film characteristic calculation program (Essential macleod).
  • SiO 2 was laminated as a low refractive index material on the YAG: Ce phosphor
  • Nb 2 O 5 was laminated as a high refractive index material, and 47 layers in total were alternately laminated, and the final layer was SiO 2. And said.
  • the optical film thickness of each layer is 1/4 of the center wavelength, 4 pairs (8 layers) are the same center wavelength, and the center wavelength is changed from 805 nm to 380 nm at a pitch of 85 nm to achieve high reflectance in the visible light region. (The final layer is supposed to be even more lacking).
  • Aluminum was laminated on this by 200 nm.
  • the refractive index of the YAG: Ce phosphor was set to 1.83.
  • the refractive index and extinction coefficient of SiO 2 and Nb 2 O 5 the reflectance of a thin film formed on a silicon wafer of about 100 nm was measured with an ion-assisted film forming apparatus, and the result calculated by the Forouhi-Bloomer model was obtained from this result. Using. For example, the refractive indexes of SiO 2 and Nb 2 O 5 at 805 nm are 1.47 and 2.31, respectively, and the extinction coefficient is 0.
  • the reflectance when light is incident at an incident angle of 0 °, the reflectance is reduced in a part of the wavelength range, but the high reflectance is maintained in the entire visible light region.
  • the reflectance when light is incident at incident angles of 30 ° and 60 °, the reflectance is remarkably lowered in a plurality of wavelength regions.
  • a part of the light 93L incident on the wavelength conversion element 12 is mainly reflected by the optical multilayer reflection film 30 or the metal reflection layer 20, and then emitted to the outside from the surface of the wavelength conversion layer 40.
  • the other part is absorbed by the phosphor particles 44.
  • Fluorescent particles that have absorbed light 93L emit light 93C A part of the light 93C emitted from the phosphor particles 44 is directly emitted to the outside from the surface of the wavelength conversion layer 40. The other part is reflected by the optical multilayer reflective film 30 or the metal reflective layer 20 and then emitted to the outside from the surface of the wavelength conversion layer 40.
  • silver is often used because it has high reflectance in the visible light region and low wavelength dependence.
  • silver is a material that is prone to migration.
  • migration may impair the long-term reliability of the wavelength conversion device.
  • the wavelength conversion element has high light extraction efficiency and high long-term reliability.
  • the present inventors have studied a wavelength conversion device having high light extraction efficiency and high long-term reliability (which can suppress the migration of silver used in a metal reflecting layer).
  • FIG. 3a shows the wavelength conversion element 14 according to the first embodiment.
  • the wavelength conversion element 14 has a structure in which a metal reflection layer 20, a first light-transmitting layer 50, an optical multilayer reflection film 30, and a wavelength conversion layer 40 are laminated.
  • the metal reflective layer 20, the optical multilayer reflective film 30, and the wavelength conversion layer 40 are members similar to the corresponding members of the wavelength conversion element 12 described above.
  • the first translucent layer 50 is formed of, for example, a self-holding sapphire substrate having a thickness of 100 ⁇ m.
  • a sapphire substrate having few grain boundaries and dislocations is used as the first light-transmitting layer 50, the silver mitigation constituting the metal reflective layer 20 can be suppressed. This improves the long-term reliability of the wavelength conversion element 14.
  • FIG. 3b shows the wavelength dependence of the reflectance exhibited by the laminate of the metal reflective layer 20, the first light transmitting layer 50, and the optical multilayer reflective film 30.
  • the reflection spectra when light is incident at incident angles of 0 °, 30 °, and 60 ° are shown by solid lines, dotted lines, and broken lines, respectively.
  • the wavelength dependence of the reflectance of light incident on the YAG: Ce phosphor, the metal reflective layer, and the optical multilayer reflective film laminate was calculated by an optical thin film characteristic calculation program (Essential macleod).
  • SiO 2 was laminated as a low refractive index material on the YAG: Ce phosphor
  • Nb 2 O 5 was laminated as a high refractive index material, and 47 layers in total were alternately laminated, and the final layer was SiO 2.
  • the optical film thickness (refractive index x physical film thickness) of each layer is 1/4 of the center wavelength, 4 pairs (8 layers) are the same center wavelength, and the center wavelength is changed from 805 nm to 380 nm at a pitch of 85 nm to make visible light.
  • the wavelength dependence of the reflectance was calculated as a stack structure in which this was arranged on one side of a sapphire substrate having a thickness of not interfering with each other, for example, a thickness of 430 ⁇ m, and aluminum was arranged on the other side at 200 nm.
  • the graph shows that high reflectance is maintained over the entire visible light region regardless of the angle of incidence.
  • the insertion of the first light-transmitting layer 50 between the metal reflective layer 20 and the optical multilayer reflective film 30 improves the decrease in reflectance when the incident angle is large. There is.
  • the thickness of the first light transmitting layer 50 is preferably equal to or larger than the coherence length of the light 93L and 93C. If the thickness of the first light transmitting layer 50 is 1.5 ⁇ m or more, it is considered that light interference can be suppressed in the entire visible light region.
  • the coherence time T of light is expressed by the following equation.
  • T ⁇ ⁇ 2 / ⁇ c ⁇ ⁇ > ⁇ : Center wavelength
  • Half width
  • Possible interference distance lc is obtained by multiplying the possible interference time by the speed of light C.
  • the present invention deals with an optical device in the visible light region. Therefore, if the center wavelength is 550 nm and the half width is 100 nm, the coherent distance is 3 ⁇ m. Therefore, if the thickness is 1.5 ⁇ m or more, which is half of this, interference can be suppressed.
  • the thickness of the first light transmitting layer 50 is 100 ⁇ m or more, interference can be sufficiently suppressed, and mechanical support (self-holding ability) of the wavelength conversion element 14 is also provided, which is preferable.
  • FIG. 4 shows the light extraction efficiency of the wavelength conversion element 14 according to the first embodiment shown in FIG. 3b as compared with the wavelength conversion element 12 according to the conventional example shown in FIG. 2b.
  • the horizontal axis of the graph in the figure shows the light intensity (excitation intensity) of the incident excitation light 93L incident on the wavelength conversion element, and the vertical axis is the combined light 93R of the excitation light emitted from the wavelength conversion element and fluorescence. Indicates the brightness (luminous flux) of.
  • the light intensity obtained by integrating the combined light in the visible light region is shown as a luminous flux.
  • the luminous flux of the wavelength conversion element 12 according to the conventional example is shown by a dotted line
  • the luminous flux of the wavelength conversion element 14 according to the first embodiment is shown by a solid line.
  • the half width of the light emitted from the laser diode is narrow and is expressed by the normal intensity (W).
  • Luminous flux is obtained by multiplying the intensity wavelength distribution by the luminosity factor and integrating with the wavelength.
  • the luminous flux of the wavelength conversion element 14 according to the first embodiment has a larger inclination with respect to the horizontal axis than the luminous flux of the wavelength conversion element 12 according to the conventional example, particularly when the incident light intensity is high, and the light extraction efficiency. Is high.
  • the incident angle of the incident light on the optical multilayer reflective film 30 changes, the components having a large incident angle are efficiently reflected, and the light intensity of the synthetic light (reflected light) is reduced. It is thought that it was suppressed.
  • YAG The incident is from the Ce phosphor to the laminated body, which is the incident on the "optical multilayer reflective film”.
  • 5a to 5c show the steps of manufacturing the wavelength conversion element according to the first embodiment.
  • a sapphire substrate is prepared as the first light transmitting layer 50.
  • a member having high light transmittance and high thermal conductivity in the visible light region for example, SiO 2 , SiC, AlN, GaN, diamond, or the like can be used.
  • a single crystal substrate having high cap performance such as SiO 2 , SiC, AlN, GaN or diamond (low transition density) should be used. Is desirable.
  • the thickness of the first light transmitting layer 50 is preferably 100 ⁇ m or more.
  • a silver film having a thickness of about 200 nm is formed as the metal reflective layer 20 on one surface (lower surface in the drawing) of the first translucent layer 50 by an electron beam deposition method, a sputtering method, or the like.
  • the metal reflective layer 20 in addition to silver, a member having high reflectance in the entire visible light region, for example, aluminum or the like can be used.
  • An adhesion layer for improving the adhesion may be provided between the first translucent layer 50 and the metal reflection layer 20.
  • the adhesion layer for example, a Ni layer or a Ti layer having a thickness of about several angstroms can be used.
  • a DBR layer is formed as the optical multilayer reflective film 30 on the other surface (upper side surface in the drawing) of the first translucent layer 50.
  • a dichroic mirror, a short pass filter, or the like in which a plurality of layers having different refractive indexes are laminated may be formed.
  • the DBR layer is formed by alternately (periodically) laminating low refractive index layers and high refractive index layers by an electron beam deposition method, a sputtering method, a chemical vapor deposition method, or the like.
  • the low refractive index layer and the high refractive index layer are laminated with about 10 to 100 layers, and the thickness of each layer is about 20 nm to 100 nm.
  • the outermost layer is made of a material having a refractive index smaller than that of the YAG: Ce phosphor because the film thickness can be made thinner than when the outer layer is large.
  • SiO 2 is used for the low refractive index layer.
  • MgF 2 , LiF, LaF 3, and the like can be used.
  • Nb 2 O 5 is used for the high refractive index layer.
  • TiO 2 , Ta 2 O 3 , Al 2 O 3 , HfO 2 , Y 2 O 3, and the like can be used for the high refractive index layer.
  • the wavelength conversion layer 40 is formed on the optical multilayer reflective film 30.
  • the wavelength conversion layer 40 is formed by, for example, forming a fluid (green) in which alumina fine particles of the base material 42 and YAG: Ce of the phosphor particles 44 are mixed, formed into a plate shape, and then fired. ..
  • An optically transparent adhesive layer 41 such as a glass adhesive is formed on the optical multilayer reflective film 30, and the wavelength conversion layer 40 is attached onto the optically transparent adhesive layer 41.
  • Any wavelength conversion layer 40 may be used as long as it includes a light emitting member that emits light having a wavelength different from the wavelength of the incident light. It is desirable that the wavelength conversion layer 40 is a member having high heat resistance and heat transfer property.
  • the wavelength conversion element 14 according to the first embodiment is completed.
  • FIG. 6 shows the wavelength conversion element 16 according to the second embodiment.
  • the wavelength conversion element 16 has a structure in which a metal reflection layer 20, a first light-transmitting layer 50, an optical multilayer reflection film 30, a second light-transmitting layer 60, and a wavelength conversion layer 40 are laminated.
  • the metal reflective layer 20, the first translucent layer 50, the optical multilayer reflective film 30, and the wavelength conversion layer 40 have the same configuration as the wavelength conversion element 14 according to the first embodiment.
  • the second light-transmitting layer 60 is composed of a member having a refractive index smaller than that of the wavelength conversion layer 40, which is a mixture of alumina and a phosphor, for example, SiO 2.
  • the refractive index of the second translucent layer 60 smaller than the refractive index of the wavelength conversion layer 40, the light incident on the second translucent layer 60 can be totally reflected at a large incident angle.
  • the component having a large incident angle among the incident light is reflected more efficiently, and the reduction in the light intensity of the combined light (reflected light) can be further suppressed.
  • the second light-transmitting layer 60 can be formed by, for example, the following method.
  • a first translucent layer 50 which is a transparent substrate, is prepared, and a metal reflective layer 20 is formed on the lower side surface of the first transmissive layer 50, and an optical multilayer reflective film 30 is formed on the upper side surface.
  • a first bonding layer 62 made of SiO 2 is formed on the surface of the optical multilayer reflective film 30 by a sputtering method or the like.
  • a wavelength conversion layer 40 is prepared, and a second bonding layer 64 made of SiO 2 is formed on one surface of the wavelength conversion layer 40 by a sputtering method or the like.
  • the surface of the second bonding layer inherits the surface roughness of the wavelength conversion layer 40 as it is and does not become flat, the surface of the second bonding layer is flattened by performing a flattening treatment, for example, a CMP polishing treatment. Therefore, for the second bonding layer, for example, SiO 2 is laminated at 300 nm and polished to 100 nm.
  • the first bonding layer 62 and the second bonding layer 64 are bonded at the atomic level by a surface activation method or the like to form a second translucent layer 60 composed of the bonding layers 62 and 64.
  • the thermal resistance is increased. Is small, and the heat generated in the wavelength conversion layer 40 is effectively transferred.

Abstract

光学装置は、実質的に金属材料で形成された金属反射層と、金属反射層上に配置された第1透光層と、第1透光層上に配置され、屈折率が異なる複数の層が積層された光学多層反射膜と、光学多層反射膜上に配置され、入射する励起光を吸収し、より低エネルギーの蛍光を発生しうる蛍光材料を含み、励起光の照射に基づき、励起光と蛍光の混成光を発生し得る波長変換層と、を有する。

Description

光学装置
 本発明は、光学装置に関し、特に励起光により蛍光を発する蛍光体部材を含む光学装置に関する。
 特開2014-082401号公報には、レーザダイオードからの励起光を蛍光体を有する波長変換部材に照射し、波長変換部材の励起光受光面は周期構造を有し、励起光の後方散乱を抑制できる光源装置が開示されている。
 特開2019-006967号公報には、YAG:Ce(セリウムが添加されたイットリウム・アルミニウム・ガーネット)等の無機蛍光体粒子と、アルミナ等の無機透明微粒子と、を高密度で焼成した伝熱性の高い蛍光体層(波長変換部材)が開示されている。
 国際公開第2011/126000号公報には、発光素子と波長変換部材との接合面をイオンビームやプラズマ等でスパッタエッチして活性化し、表面活性化法により直接接合する方法が開示されている。
 本発明の主な観点によれば、金属材料を含む金属反射層と、前記金属反射層上に配置される第1透光層と、前記第1透光層上に配置され、屈折率が異なる複数の層が積層された光学多層反射膜と、前記光学多層反射膜上に配置され、蛍光材料を含む波長変換層と、を有する光学装置、が提供される。
 図1は、レーザ光源を用いた照明装置の構造を示す側面図である。
 図2aは、参考例による波長変換素子を示す断面図であり、図2bは、該波長変換素子を構成する、金属反射層および光学多層反射膜からなる積層体の光反射率の波長分散(スペクトル)を示すグラフである。
 図3aは、第1の実施例による波長変換素子を示す断面図であり、図3bは、該波長変換素子を構成する、金属反射層、第1透光層および光学多層反射膜からなる積層体の光反射率の波長分散(スペクトル)を示すグラフである。
 図4は、参考例および第1の実施例による波長変換素子の励起光強度に対する出射光束(光取り出し効率)を示すグラフである。
 図5a~図5cは、第1の実施例による波長変換素子の製造プロセスを示す断面図である。
 図6は、第2の実施例による波長変換素子を示す断面図である。
 図1に、レーザ光源を用いた照明装置の構成例を概略的に示す。このような照明装置は、例えば車両用の前照灯、プロジェクタ、投光器等に利用される。
 照明装置100は、レーザ光93Lを出射するレーザ光源93、レーザ光93Lを反射するとともに、レーザ光93Lを吸収し、レーザ光の波長とは異なる波長の蛍光93Cを放出する波長変換素子10、および、レーザ光93Lと蛍光93Cとを合成した光である合成光93Rを仮想像面上に拡大投影するプロジェクションレンズ等を含む光学系95、を備える。
 レーザ光源93として、例えば、1W以上の光強度を有する青色光を出射する、GaN,InGaN等の半導体レーザダイオードが用いられる。なお、レーザ光源は、1つに限らず、2つ以上設けられる場合もある。
 波長変換素子10は、例えば、青色光を吸収して黄色光を放出する蛍光部材を含む。波長変換素子10は、青色光93Lを反射するとともに、黄色光93Cを放出し、それらの合成光として白色光93Rを出射する。波長変換素子10は、青色光(光エネルギーhν1)を吸収し、黄色光(光エネルギーhν2)を放出する際に差分のエネルギー(hν1-hν2)を放熱するため、通常、ヒートシンク等の放熱板97に固定される。
 なお、レーザ光源93と波長変換素子10との間に、集光レンズやコリメートレンズ等の光学系が配置される場合もある。また、光ファイバ等を用いて、レーザ光源93から出射されるレーザ光93Lを、波長変換素子10に照射する場合もある。
 図2aに、従来例による波長変換素子12を示す。従来例による波長変換素子12は、放熱板97上に、銀等の金属部材からなる金属反射層20、分布ブラッグ反射器(DBR)等の光学多層反射膜30および波長変換層40が積層した構造である。
 光学多層反射膜30には、例えば青色光や黄色光等の特定の波長の光を反射するDBR層が用いられる。DBR層は、相対的に低い屈折率を有する低屈折率層と、相対的に高い屈折率を有する高屈折率層と、が周期的に交互積層した構造である。低屈折率層には例えばSiO,MgF,LiF,LaF等が、高屈折率層には例えばNb,TiO,Ta,Al,HfO,Y等が、用いられる。なお、DBR層のほかにも、屈折率の異なる複数の層が積層するダイクロイックミラー、ショートパスフィルタ(SPF)等が用いられる場合もある。
 波長変換層40は、例えば、アルミナ等の無機透明微粒子の母材42と、母材42中に分散するYAG:Ce等の無機蛍光体粒子(発光部材)44と、を含む。蛍光体粒子44は、例えば、青色光93Lを吸収して、黄色光93Cを放出する。蛍光体粒子44をアルミナ等の高熱伝導率無機材料42で覆うことにより、蛍光体粒子44の光吸収に伴う発熱を効率的に拡散し、放熱板97等の他部材に伝熱する。
 図2bに、金属反射層20および光学多層反射膜30の積層体が示す反射率の波長依存性を示す。図中のグラフの横軸は波長を示し、縦軸は反射率を示す。グラフでは、積層体の表面(光学多層反射膜30側)に対して垂直に(つまり入射角0°で)光を入射したときの反射スペクトルが実線で示され、当該表面の法線に対して30°(入射角30°)で光を入射したときの反射スペクトルが点線で示され、当該表面の法線に対して60°(入射角60°)で光を入射したときの反射スペクトルが破線で示されている。
 YAG:Ce蛍光体を含む波長変換層40から金属反射層20、光学多層反射膜積層体30に入射する光の反射率の波長依存性は光学薄膜特性計算プログラム(Essential macleod)により計算した。YAG:Ce蛍光体に低屈折率材料としてSiOを積層し、次に高屈折率材料としてNbを積層し、これを交互に総層数47層を積層し、最終層はSiOとした。各層の光学膜厚はセンター波長の1/4とし、4ペア(8層)を同一センター波長とし、センター波長を805nmから380nmまで85nmピッチで変化させることにより可視光領域で高い反射率を実現するように設定した(最終層は一層足りないものとしている)。この上にアルミニウムを200nm積層した。YAG:Ce蛍光体の屈折率は1.83とした。SiO,Nbの屈折率、消衰係数はイオンアシスト成膜装置でシリコンウエハ上に100nm程度成膜した薄膜の反射率を測定し、この結果からForouhi-Bloomerモデルにより計算した結果を用いた。例えば805nmにおけるSiO、Nbの屈折率はそれぞれ1.47、2.31、消衰係数はどちらも0である。
 グラフによれば、入射角0°で光を入射した場合、一部の波長域で反射率が低下しているものの、可視光領域全域において高い反射率が維持されている。一方で、入射角30°および60°で光を入射した場合、複数の波長域で反射率が著しく低下している。
 以上から、金属反射層および光学多層反射膜からなる積層体において、入射光の入射角が小さい場合には反射率の低下が小さくできても、入射角が大きい場合には波長によって反射率の低下が大きくなり得ることがわかる。このような現象は、光学多層反射膜30表面(波長変換層40との界面)または膜内で反射される光と、光学多層反射膜30と金属反射層20との界面で反射される光との間の干渉による影響と考えられる。
 入射角が大きい場合には、光学長が長くなり反射率の高くなる1/4波長以外の干渉が起こり、結果として反射率が低減すると考えられる。
 再度、図2aを参照する。
 波長変換素子12に入射される光93Lの一部は、主に光学多層反射膜30または金属反射層20により反射されたのちに、波長変換層40の表面から外部に出射される。また、他の一部は、蛍光体粒子44に吸収される。
 光93Lを吸収した蛍光体粒子は、光93Cを放出する。蛍光体粒子44から放出される光93Cの一部は、直接、波長変換層40の表面から外部に出射される。また、他の一部は、光学多層反射膜30または金属反射層20により反射されたのちに、波長変換層40の表面から外部に出射される。
 図2bの反射率の波長依存性から、光93L,93Cが光学多層反射膜30または金属反射層20により反射される際、光学多層反射膜30への入射角が小さい成分は効率的に反射されるが、入射角が大きい成分は効率的に反射されず、波長によって反射光の強度が低減する。言い換えると、波長変換素子全体として、入射光の強度に対して外部に取り出される(反射される)光の強度の割合(光取出し効率)が低減する。
 光学反射層としては、可視光領域において反射率が高く、かつ、波長依存性が小さいことから、銀が多く用いられる。しかし、銀は、マイグレーションが発生しやすい材料である。金属反射層に銀を用いる場合、マイグレーションにより、波長変換素子の長期信頼性が損なわれる可能性がある。
 一般に、波長変換素子において、光取出し効率は高いことが望ましく、また、長期信頼性は高いことが望ましい。本発明者らは、光取出し効率が高く、長期信頼性も高い(金属反射層に用いられる銀のマイグレーションを抑制できる)波長変換素子について検討を行った。
 図3aに、第1の実施例による波長変換素子14を示す。波長変換素子14は、金属反射層20、第1透光層50、光学多層反射膜30および波長変換層40が積層した構造である。金属反射層20、光学多層反射膜30および波長変換層40は、上述の波長変換素子12の対応部材と同様の部材である。
 第1透光層50は、例えば自己保持力のある、厚み100μmのサファイア基板で形成される。第1透光層50として粒界や転位の少ないサファイア基板を用いると、金属反射層20を構成する銀のマイクレーションを抑制することができる。これにより、波長変換素子14の長期信頼性が向上する。
 図3bに、金属反射層20、第1透光層50および光学多層反射膜30の積層体が示す反射率の波長依存性を示す。グラフでは、入射角0°,30°,60°で光を入射したときの反射スペクトルが、それぞれ実線,点線,破線で示される。
 YAG:Ce蛍光体から金属反射層、光学多層反射膜積層体に入射する光の反射率の波長依存性は光学薄膜特性計算プログラム(Essential macleod)により計算した。YAG:Ce蛍光体に低屈折率材料としてSiOを積層し、次に高屈折率材料としてNbを積層し、これを交互に総層数47層を積層し、最終層はSiOとした。各層の光学膜厚(屈折率 x 物理膜厚)はセンター波長の1/4とし、4ペア(8層)を同一センター波長とし、センター波長を805nmから380nmまで85nmピッチで変化させることにより可視光領域で高い反射率を実現するように設定した(最終層は一層足りないものとしている)。これを干渉しない程度の厚さ、例えば430μm厚のサファイア基板の片面に配置し、もう一方の面にアルミニウムを200nm配置したスタック構造として反射率の波長依存性を計算した。
 グラフは、入射角によらず、可視光領域全域において高い反射率が維持されていることを示している。図2bに示すグラフと比較すると、金属反射層20と光学多層反射膜30との間に第1透光層50が挿入されることにより、入射角が大きい場合の反射率の低下が改善されている。
 第1透光層50の厚みは、光93L,93Cの可干渉距離(コヒーレンス長)以上であることが好ましいと考えられる。第1透光層50の厚みを1.5μm以上とすれば、可視光領域全域において光の干渉を抑制できると考えられる。
 光の可干渉時間Tは以下の式で表される。
 T = λ^2/〈c・Δλ〉
  λ:中心波長
  Δλ:半値幅
可干渉距離lcは可干渉時間に光速Cを乗じることで得られる。
 l_c = c・T = λ^2/Δλ
ここで、本発明においては可視光領域の光学装置を扱う。このため、中心波長を550nm、半値幅を100nmとすると可干渉距離は3μmとなるので、厚さがこの半分の1.5μm以上なら干渉を抑制することができる。
 第1透光層50の厚みを100μm以上とすれば十分に干渉を抑制できるに加え、波長変換素子14の機械的支持(自己保持能力)も与えられ、好ましい。
 図4は、図2bに示した従来例による波長変換素子12と比較した、図3bに示した第1の実施例による波長変換素子14の光取出し効率を示す。図中のグラフの横軸は、波長変換素子に入射される入射励起光93Lの光強度(励起強度)を示し、縦軸は、波長変換素子から出射される励起光と蛍光との合成光93Rの明るさ(光束)を示す。可視光領域の合成光を積分した光強度を光束として示す。グラフでは、従来例による波長変換素子12の光束が点線で示され、第1の実施例による波長変換素子14の光束が実線で示されている。
 レーザダイオードから放射される光の半値幅は狭く、通常強度(W)で表現する。強度波長分布に視感度をかけて波長で積分すると光束になる。
 グラフを参照すると、特に入射光強度が大きい状態で、従来例による波長変換素子12の光束よりも、第1の実施例による波長変換素子14の光束が、横軸に対する傾きが大きく、光取出し効率が高い。
 第1透光層50を設けることで、光学多層反射膜30への入射光の入射角が変わり、入射角が大きい成分が効率的に反射され、合成光(反射光)の光強度の低減が抑制されたためと考えられる。
 YAG:Ce蛍光体から積層体への入射である“光学多層反射膜”への入射となる。
 図5a~図5cに、第1の実施例による波長変換素子を作製する工程を示す。
 図5aに示すように、第1透光層50として、サファイア基板を用意する。サファイアのほかにも、可視光領域における光透過率が高く、熱伝導率が高い部材、例えばSiO,SiC,AlN,GaNまたはダイヤモンド等を用いることができる。また、金属反射層20に銀等、マイグレーションが発生しやすい材料を用いる場合には、キャップ性能が高い、SiO,SiC,AlN,GaNまたはダイヤモンド等の(低転移密度)単結晶基板を用いることが望ましい。物理的強度も考えると、第1透光層50の厚みは、100μm以上あることが好ましい。 
 第1透光層50の一方の面(図における下側面)に、電子ビーム蒸着法やスパッタ法等により、金属反射層20として銀膜を厚さ200nm程度形成する。金属反射層20には、銀のほかにも、可視光領域全般で反射率が高い部材、例えばアルミニウム等を用いることができる。
 なお、第1透光層50と金属反射層20との間に、密着性を向上させるための密着層を設けてもかまわない。密着層には、例えば、数オングストローム程度の厚みのNi層またはTi層を用いることができる。
 図5bに示すように、第1透光層50の他方の面(図における上側面)に、光学多層反射膜30として、DBR層を形成する。なお、DBR層のほかにも、屈折率が異なる複数の層が積層するダイクロイックミラーやショートパスフィルタ等を形成してもよい。
 DBR層は、電子ビーム蒸着法やスパッタ法、化学気相成長法等により、低屈折率層および高屈折率層を交互に(周期的に)積層することで形成される。低屈折率層および高屈折率層は10層~100層程度積層され、各層の厚みは20nm~100nm程度である。
 最外層はYAG:Ce蛍光体より屈折率の小さい材料とすると、大きい場合より膜厚を薄くできるので好ましい。
 低屈折率層には、例えば、SiOが用いられる。SiOのほかにも、MgF,LiF,LaF等を用いることができる。
 高屈折率層には、例えば、Nbが用いられる。Nbのほかにも、TiO,Ta,Al,HfO,Y等を用いることができる。
 図5cに示すように、光学多層反射膜30上に、波長変換層40を形成する。波長変換層40は、例えば、母材42のアルミナ微粒子と、蛍光体粒子44のYAG:Ceと、を混合した流体(グリーン)を形成し、板状に成形した後、焼成することにより形成する。光学多層反射膜30上にガラス接着剤等の光学的に透明な接着層41を形成し、その上に波長変換層40を貼り付ける。
 波長変換層40は、入射光の波長とは異なる波長の光を放出する発光部材を含むものであれば、どのようなものを用いてもよい。波長変換層40は、耐熱性および伝熱性が高い部材であることが望ましい。
 以上により、第1の実施例による波長変換素子14が完成する。
 図6に、第2の実施例による波長変換素子16を示す。波長変換素子16は、金属反射層20、第1透光層50、光学多層反射膜30、第2透光層60および波長変換層40が積層した構造である。金属反射層20、第1透光層50、光学多層反射膜30および波長変換層40は、第1の実施例による波長変換素子14と同様の構成である。
 第2透光層60は、アルミナと蛍光体の混合物である波長変換層40よりも屈折率が小さい部材、例えばSiOから構成される。第2透光層60の屈折率を波長変換層40の屈折率よりも小さくすることで、大きい入射角で第2透光層60に入射する光が全反射され得る。これにより、入射光のうち入射角が大きい成分がより効率的に反射され、合成光(反射光)の光強度の低減がさらに抑制され得る。
 第2透光層60は、例えば、以下の方法により形成することができる。透明基板である第1透光層50を用意し、第1透光層50の下側面上に金属反射層20、上側面上に光学多層反射膜30を形成する。光学多層反射膜30の表面上に、スパッタ法等により、SiOからなる第1接合層62を形成する。別途、波長変換層40を用意し、波長変換層40の一方の表面に、スパッタ法等により、SiOからなる第2接合層64を形成する。第2接合層の表面は、そのままでは波長変換層40の表面粗さを引き継ぎ、平坦にならないため、第2接合層表面に対して平坦化処理、例えばCMP研磨処理を行い、平坦化する。このため、第2接合層は、例えばSiOを300nm積層し、100nmまで研磨する処理を行う。
 第1接合層62と第2接合層64とを、表面活性化法等により原子レベルで接合し、接合層62,64からなる第2透光層60を形成する。第2透光層60は、第1接合層62と第2接合層64とが、樹脂やガラス材料等の熱伝導率の低い材料を介さずに、原子レベルで接合しているため、熱抵抗が小さく、波長変換層40で生じる熱を効果的に伝熱する。
 以上、実施例に沿って本発明を説明したが、本発明はこれらに限定されるものではない。種々の変更、改良、組み合わせ等が可能なことは当業者には自明であろう。

Claims (10)

  1.  実質的に金属材料で形成された金属反射層と、
     前記金属反射層上に配置された第1透光層と、
     前記第1透光層上に配置され、屈折率が異なる複数の層が積層された光学多層反射膜と、
     前記光学多層反射膜上に配置され、入射する励起光を吸収し、より低エネルギーの蛍光を発生しうる蛍光材料を含み、励起光の照射に基づき、励起光と蛍光の混成光を発生し得る波長変換層と、
     を有する光学装置。
  2.  前記第1透光層は、1.5μm以上の厚みを有する、請求項1に記載の光学装置。
  3.  前記第1透光層は、互いに平行な第1表面、第2表面を有し、自己保持能力を有する透明基板であり、前記金属反射層が前記第1表面上に配置され、前記光学多層反射膜が前記第2表面上に配置されている請求項1に記載の光学装置。
  4.  前記透明基板は、実質的にSiO,SiC,GaN,サファイアまたはダイヤモンドで形成された、請求項3に記載の光学装置。
  5.  前記金属反射層は実質的に銀で形成された、請求項3に記載の光学装置。
  6.  前記光学多層反射膜と前記波長変換層との間に配置され、前記波長変換層の屈折率よりも低い屈折率を有する第2透光層、をさらに有する請求項3に記載の光学装置。
  7.  前記第2表面上方に配置され、前記波長変換層に励起光を照射し得る励起光源と、
     前記波長変換素子から発生する混成光の光路上に配置された光学系と、
     をさらに有する請求項3に記載の光学装置。
  8.  前記励起光源が半導体レーザを含む請求項7に記載の光学装置。
  9.  第1透光層の裏面に金属反射層を形成する第1の工程と、
     前記前記第1透光層の表面に光学多層反射膜を形成する第2の工程と、
     波長変換層を前記光学多層反射膜上面に光学的に透明な接着層を介して接合する第3の工程と、
     を備える光学装置の製造方法。
  10.  前記第3の工程は、前記光学多層反射膜上面に第1接合層を形成する第1のサブ工程と、
     前記波長変換層下面に第2接合層を形成する第2のサブ工程と、
     前記第2接合層下面を平坦化する第3のサブ工程と、
     前記第1接合層上面と前記第2接合層下面とを表面活性化法で接合し、前記第1接合層と前記第2接合層が一体化して第2透光層を形成する第4のサブ工程と、を備え、
     前記波長変換層の屈折率より前記第2透光層の屈折率の方が低い請求項9に記載の光学装置の製造方法。
PCT/JP2021/004468 2020-02-07 2021-02-05 光学装置 WO2021157738A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021576208A JP7357082B2 (ja) 2020-02-07 2021-02-05 光学装置および光学装置の製造方法
CN202180012485.4A CN115038997A (zh) 2020-02-07 2021-02-05 光学装置
US17/797,885 US11933489B2 (en) 2020-02-07 2021-02-05 Optical device, and method of fabricating optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-019833 2020-02-07
JP2020019833 2020-02-07

Publications (1)

Publication Number Publication Date
WO2021157738A1 true WO2021157738A1 (ja) 2021-08-12

Family

ID=77199596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004468 WO2021157738A1 (ja) 2020-02-07 2021-02-05 光学装置

Country Status (4)

Country Link
US (1) US11933489B2 (ja)
JP (1) JP7357082B2 (ja)
CN (1) CN115038997A (ja)
WO (1) WO2021157738A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199510A (ja) * 2011-03-07 2012-10-18 Sumitomo Electric Ind Ltd 複合基体および複合基板
JP2013258373A (ja) * 2012-06-14 2013-12-26 Sumitomo Electric Ind Ltd 複合基板およびその製造方法
JP2016058638A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 波長変換部材、発光装置、プロジェクタ、及び、波長変換部材の製造方法
WO2018180658A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 波長変換素子及び発光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130029387A (ko) 2010-04-08 2013-03-22 니치아 카가쿠 고교 가부시키가이샤 발광 장치 및 그 제조 방법
JP2014082401A (ja) 2012-10-18 2014-05-08 Ushio Inc 蛍光光源装置
DE102015113692A1 (de) 2014-09-11 2016-03-24 Panasonic Intellectual Property Management Co., Ltd. Wellenlängen-Umwandlungs-Element, Licht-emittierende Vorrichtung, Projektor und Verfahren zur Herstellung eines Wellenlängen-Umwandlungs-Elements
JP6989307B2 (ja) 2016-07-08 2022-01-05 クアーズテック株式会社 セラミックス複合体、並びにこれを含むプロジェクター用蛍光体及び発光デバイス
JP7088218B2 (ja) * 2020-01-22 2022-06-21 セイコーエプソン株式会社 波長変換素子、波長変換素子の製造方法、光源装置およびプロジェクター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199510A (ja) * 2011-03-07 2012-10-18 Sumitomo Electric Ind Ltd 複合基体および複合基板
JP2013258373A (ja) * 2012-06-14 2013-12-26 Sumitomo Electric Ind Ltd 複合基板およびその製造方法
JP2016058638A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 波長変換部材、発光装置、プロジェクタ、及び、波長変換部材の製造方法
WO2018180658A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 波長変換素子及び発光装置

Also Published As

Publication number Publication date
JP7357082B2 (ja) 2023-10-05
JPWO2021157738A1 (ja) 2021-08-12
CN115038997A (zh) 2022-09-09
US20230080194A1 (en) 2023-03-16
US11933489B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
JP5257420B2 (ja) 光源装置
TWI415294B (zh) 發光二極體晶片
US20200012022A1 (en) Ceramic Wavelength Converter Having a High Reflectivity Reflector
US10481474B2 (en) Wavelength conversion filter module and illumination system
KR102393853B1 (ko) 광학적으로 강화된 고체-상태 광 컨버터
US10101645B2 (en) Wavelength conversion element, light source device, and projector
JP7114489B2 (ja) 光変換パッケージ
JP6089686B2 (ja) 発光装置
US10488566B2 (en) Ceramic wavelength converter having a high reflectivity reflector
JP2019164258A (ja) 波長変換素子、波長変換素子の製造方法、光源装置及びプロジェクター
WO2009107056A2 (en) Light emitting diode device
TW201013985A (en) LED module
US20150138643A1 (en) Optical component
WO2021157738A1 (ja) 光学装置
TWI677648B (zh) 光波長轉換裝置
JP2015014701A (ja) 反射膜、反射鏡、及び投射光学系
JP6916073B2 (ja) 光デバイス
US10808893B2 (en) Optoelectronic semiconductor light source and Bragg mirror
CN113495421B (zh) 波长转换元件、光源装置以及投影仪
JP2021152615A (ja) 光学装置
WO2019107100A1 (ja) 蛍光体部材及び光源装置
JP2020502569A (ja) 光変換装置
TWI761855B (zh) 波長轉換元件
JP2005266211A (ja) 多層膜反射鏡
US11360374B2 (en) Light source device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021576208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750448

Country of ref document: EP

Kind code of ref document: A1