WO2021157331A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2021157331A1
WO2021157331A1 PCT/JP2021/001533 JP2021001533W WO2021157331A1 WO 2021157331 A1 WO2021157331 A1 WO 2021157331A1 JP 2021001533 W JP2021001533 W JP 2021001533W WO 2021157331 A1 WO2021157331 A1 WO 2021157331A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
electric machine
rotary electric
spacer
stator frame
Prior art date
Application number
PCT/JP2021/001533
Other languages
English (en)
French (fr)
Inventor
勇介 浅海
博洋 床井
暁史 高橋
三好 努
亮平 税所
海洋 于
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2021157331A1 publication Critical patent/WO2021157331A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges

Definitions

  • the present invention relates to a rotary electric machine.
  • abduction type rotary electric machine As one of the means for miniaturization (high torque density) of the rotary electric machine.
  • the rotor is arranged on the outer peripheral side of the stator, the radius of the gap between the rotor and the stator can be increased, and the rotor is on the outside, so that one pole is used. It has the feature that the circumference length is long and a large magnet can be placed, which makes it possible to reduce the size (high torque density) of the adduction type rotary electric machine.
  • Patent Document 1 is known for technology related to abduction type rotary electric machines.
  • the coil and the stator frame are integrally molded with a non-conductive member, and improvement in cooling performance is expected.
  • the coil which is the main heat generating source of the rotary electric machine, is located on the inner diameter side.
  • the magnet temperature and the coil temperature rise, which leads to a decrease in the efficiency of the rotary electric machine. Therefore, it is necessary to increase the shaft length and the amount of magnets to compensate for this, and it is difficult to reduce the size and weight. Therefore, for a compact and lightweight rotary electric machine, it is necessary to improve the cooling performance of the abduction type rotary electric machine.
  • Patent Document 1 a jig for molding is required in order to integrally mold the coil and the stator frame into a non-conductive member as a measure for improving the cooling performance of a rotary electric machine.
  • a large motor such as an elevator drive hoisting machine motor
  • the cooling performance deteriorates because the stator frame has parts such as a board between the coil and the stator frame and the stator frame is composed of a plurality of parts.
  • An object of the present invention is to provide a rotary electric machine having an improved cooling performance with a structure that is low in cost and easy to mass-produce.
  • a stator having a plurality of slots and coils arranged in the slots, a rotor rotatable with respect to the stator through a gap, and a stator holding the stator are preferred.
  • It is a rotary electric machine equipped with a child frame and The coil It has a coil end that protrudes in the axial direction from the axial end of the rotor.
  • the stator frame It has a recess that faces the coil end in the axial direction and is recessed in the direction away from the coil end.
  • a rotary electric machine in which a non-conductive member is arranged so as to be in close contact with both the coil end and the recess.
  • FIG. 1 It is a block diagram in the radial direction of the abduction type rotary electric machine of Example 1.
  • FIG. The perspective view of the abduction type rotary electric machine during assembly is shown.
  • the perspective view of the abduction type rotary electric machine after assembly is shown.
  • It is a block diagram in the axial direction of the abduction type rotary electric machine as a comparative example.
  • FIG. 2A It is a perspective view of the abduction type rotary electric machine of Example 2.
  • FIG. It is a block diagram in the axial direction of the abduction type rotary electric machine of Example 2.
  • FIG. 3B It is an enlarged view of a part of FIG. 3B.
  • FIG. It is a block diagram in the axial direction of the abduction type rotary electric machine of Example 3.
  • FIG. It is an enlarged view of a part of FIG. 4A.
  • FIG. It is a perspective view in the process of assembling the abduction type rotary electric machine in Example 4.
  • FIG. It is a block diagram in the axial direction after assembling the abduction type rotary electric machine in Example 4.
  • FIG. 5B It is a block diagram in the axial direction after assembling the abduction type rotary electric machine of Example 5.
  • It is a front view of the integrated spacer.
  • FIG. 1A to 1C show the abduction type rotary electric machine of the first embodiment.
  • FIG. 1A is a radial configuration diagram in the central portion of the abduction type rotary electric machine 100 of the first embodiment. The radial direction is indicated by R.
  • the abduction type rotary electric machine 100 is arranged with a rotor 3 composed of a rotor core 1 and a permanent magnet 2 and a predetermined gap on the inner diameter side of the rotor 3, and is composed of a stator core 4 and a coil 5.
  • the stator 6 is provided.
  • the rotor 3 is rotatably arranged with respect to the stator 6 with the rotation shaft 90 as the central axis via a gap.
  • the coil 5 is attached to the stator core 4 by centralized winding. As a result, the length of the short portion in the axial direction of the coil 5 is shortened, the length in the axial direction of the abduction type rotary electric machine 100 is shortened, and the size can be reduced. Further, it is desirable that the portion (slot 7) in which the coil 5 of the stator core 4 is arranged is an open slot. This facilitates the insertion of the coil 5 and improves the assembleability. Further, it is desirable that the vicinity of the gap (tip of the teeth) of the stator core 4 has a curvature smaller than the radius. As a result, the rate of change of the magnetic resistance in the circumferential direction can be reduced, and the torque ripple can be reduced.
  • the coil 5 has a coil end 13 that protrudes in the axial direction from the end portion in the axial direction of the rotor 3.
  • FIG. 1B shows a perspective view of the abduction type rotary electric machine 100 during assembly.
  • FIG. 1C shows a perspective view of the abduction type rotary electric machine 100 after assembly.
  • the rotor 3 and the stator 6 have a fully closed structure housed inside the rotor frame 8 and the stator frame 9, and the wind is directly applied to the rotor 3 and the stator 6. Cannot be air-cooled.
  • FIG. 1D shows a configuration diagram in the axial direction of the abduction type rotary electric machine 100 as a comparative example.
  • the axial direction is indicated by X.
  • the stator core 4 and the stator frame 9 are in contact with each other on the contact surface 4a shown by the diagonal line, and the main heat dissipation path of the heat generated by the coil 5 is shown by an arrow in FIG. 1D.
  • FIG. 2A and 2B show the configuration of the abduction type rotary electric machine of the first embodiment.
  • FIG. 2A is a configuration diagram of the abduction type rotary electric machine 100 in the axial direction.
  • the difference from the comparative example shown in FIG. 1D is that the coil end 13 is housed in the axial recess 19 of the stator frame provided in the stator frame 9, and the non-conductive member is housed in the axial recess 19 of the stator frame.
  • the non-conductive member 14 is arranged so as to be in close contact with both the coil end 13 and the axial recess 19 of the stator frame 9.
  • the coil 5 has a coil end 13 that protrudes axially from the axial end of the rotor 3.
  • FIG. 2B is an enlarged view of a part of FIG. 2A, showing an enlarged view of the coil end 13, the stator frame 9, the axial recess 19 of the stator frame, and the non-conductive member 14.
  • the shaded area is the portion filled with the non-conductive member 14.
  • the coil end 13 and the stator frame 9 have dimensional variations due to manufacturing errors, but by bringing them into close contact with each other in this way, heat conduction from the coil end 13 to the stator frame 9 is improved regardless of the manufacturing error.
  • the main heat dissipation path of the heat generated in the coil 5 is the path shown by the arrow in FIG. 2A. It becomes a heat dissipation path 12b transmitted through the coil end 13, the non-conductive member 14, and the stator frame 9, and the heat is directed to the outside in the axial direction. Since air circulates well on the outside in the axial direction, heat is not trapped and heat dissipation can be improved.
  • the non-conductive member 14 a resin such as epoxy may be used, or other than that, a resin having excellent fluidity, curability, and heat resistance may be used.
  • the non-conductive member 14 uses a material having a thermal conductivity higher than that of the atmosphere constituting the void before filling.
  • the heat dissipation is improved by using a high thermal conductive resin or the like having high thermal conductivity for the non-conductive member 14. If a filler that improves the thermal conductivity is blended with these, the heat dissipation can be further improved.
  • the abduction type rotary electric machine 100 is placed so that the direction of the arrow of the heat dissipation path 12b is vertically downward, and the abduction type rotary electric machine 100 is placed using a nozzle or the like.
  • the non-conductive member 14 By injecting the non-conductive member 14 from the gap G between the stator frame 9 and the rotor 3 in FIG. 2A, the coil and the stator frame 9 are brought into close contact with each other by the non-conductive member 14.
  • the existing mass production equipment can be used as it is, and the mass productivity is not impaired.
  • FIG. 2A is a configuration diagram in the axial direction, and only a part of the axial recess 19 of the stator frame is shown, but the axial recess 19 of the stator frame has a continuous shape over the entire circumference in the circumferential direction. It may be present, or it may have a shape divided so that the coil ends 13 can be accommodated one by one.
  • a non-conductive member 14 is filled between the coil end 13 and the axial recess 19 of the stator frame, and from the viewpoint of improving heat dissipation, the wider the filled portion of the non-conductive member 14, the better.
  • the material of the stator frame 9 may be a non-conductive member as well as a metal such as iron, but the metal has better heat dissipation. Further, although the heat dissipation is improved when the coil end 13 and the stator frame 9 are brought as close as possible to each other, it is necessary to set the distance in consideration of insulation.
  • the stator frame 9 has a recess 19 that faces the coil end 13 in the axial direction and is recessed in the direction away from the coil end 13, and includes the non-conductive member 14 and the stator frame 9.
  • the contact area with is larger than that of Patent Document 1. Therefore, the heat from the coil 5 is easily dissipated from the non-conductive member 14 toward the stator frame 9, and the cooling characteristics are improved.
  • the motor of the elevator drive hoist is installed in the hoistway without the dedicated machine room. Due to its structure, the inside of the hoistway is not airtight, and dust and dirt have entered. Dust and dust entering the sliding surface of the motor may cause a malfunction. Therefore, from the viewpoint of improving reliability and reducing the maintenance burden, the elevator motor installed in the hoistway is installed in the motor itself. It is necessary to have a fully closed structure with airtightness.
  • FIG. 3A, 3B, 3C, and 3D are diagrams illustrating the abduction type rotary electric machine in the second embodiment.
  • FIG. 3A is a perspective view of the abduction type rotary electric machine 100 according to the second embodiment
  • FIG. 3B is a configuration diagram in the axial direction of the abduction type rotary electric machine 100 according to the second embodiment.
  • FIG. 3C is an enlarged view of the coil end 13, the stator frame 9, the axial recess 19 of the stator frame, and the non-conductive member 14 in FIG. 3B.
  • FIG. 3D shows a modified example of the second embodiment. The shaded areas in FIGS. 3C and 3D are the locations filled with the non-conductive member 14.
  • the stator frame 9 has a plurality of holes 17a in the axial direction, and the holes 17a penetrate to the axial recess 19 of the inner stator frame.
  • the non-conductive member 14 can be injected through this hole. By injecting the non-conductive member 14 with the surface provided with the hole 17a vertically downward, the stator 6 and the stator frame 9, and the rotor 3 and the rotor frame 8 are all combined.
  • the conductive member 14 can be poured more easily, and mass productivity is improved.
  • the filling amount of the non-conductive member 14 can be obtained from the dimensions of the axial recess 19 of the stator frame. As shown in FIG. 3B, the hole 17a may penetrate from the outer surface 9a of the frame to the axial recess 19 of the stator frame, and the position of the hole 17a must be the center of the axial recess 19 of the stator frame. There is no.
  • the hole 17a penetrates the axial recess 19 of the stator frame from the outer surface 9a of the frame in the axial direction.
  • the axial recess 19 of the stator frame is penetrated from the hole 17b penetrating from the radial inner surface 9b of the stator frame and from the radial outer surface 9c of the stator frame.
  • the hole 17c may be used. Alternatively, it is conceivable to increase the flow rate of the non-conductive member and shorten the time required for production by making holes in all of these two or three directions.
  • FIG. 4A and 4B are diagrams illustrating the abduction type rotary electric machine of the third embodiment.
  • FIG. 4A is a configuration diagram of the abduction type rotary electric machine 100 in the axial direction.
  • FIG. 4B is an enlarged view of the coil end 13, the stator frame 9, the axial recess 19 of the stator frame, and the non-conductive member 14 in FIG. 4A, and the non-conductive member 14 is shown by diagonal lines. It is a filled part.
  • the stator frame 9 has a structure 20a in which a part of the inner side surface of the recess 19 bulges inward in the radial direction and a structure 20b in which a part of the inner side surface of the recess 19 bulges outward in the radial direction.
  • Example 3 has both a configuration 20a that bulges inward in the radial direction and a configuration 20b that bulges outward in the radial direction, but the same effect can be expected with only one of them.
  • a plurality of holes 17a, 17b, and 17c may be provided as in the second embodiment to improve mass productivity when injecting a non-conductive member. By filling the holes 17b and 17c with resin, the same effect as providing the structure 20a that swells inward in the radial direction and the structure 20b that swells outward in the radial direction can be expected.
  • FIGS. 5A, 5B, and 5C are diagrams illustrating the abduction type rotary electric machine of the fourth embodiment.
  • FIG. 5A is a perspective view during assembly of the abduction type rotary electric machine 100 according to the fourth embodiment.
  • FIG. 5B is a configuration diagram in the axial direction after assembly of the abduction type rotary electric machine 100 according to the fourth embodiment.
  • FIG. 5C is an enlarged view of the coil end 13, the stator frame 9, and the non-conductive member 14 in FIG. 5B, and the shaded area is the portion filled with the non-conductive member 14.
  • the abduction type rotary electric machine 100 has a cylindrical inner spacer 21 and an outer spacer 22 between the stator 6 and the stator frame 9.
  • the radial radius D1 of the inner spacer 21 is shorter than the radius D2 of the outer spacer 22.
  • the axial end face of the stator core 4 (stator) and the stator frame 9 are axially connected via a first spacer (inner spacer) and a second spacer (outer spacer) having different diameters from each other.
  • the coil end 13 is arranged between the first spacer and the second spacer, and is in a space surrounded by the coil end 13, the stator frame 9, the first spacer, and the second spacer.
  • the non-conductive member 14 is arranged.
  • the rotary electric machine of the present embodiment can be manufactured at low cost by having a step of closely contacting the and with the non-conductive member 14.
  • the coil end 13 and the stator are formed by injecting the non-conductive member 14 between the inner spacer 21 and the outer spacer 22 from the gap G between the stator frame 9 and the rotor 3 in the same manner as in the first embodiment.
  • the frame 9 can be brought into close contact.
  • This configuration is excellent in that it is not necessary to provide the axial recess 19 of the stator frame and the stator frame 9 having the structure shown in the comparative example can be used as it is.
  • a resin such as epoxy may be used, or other materials having excellent fluidity, curability, and heat resistance may be used.
  • the heat dissipation is improved by using a high thermal conductive resin having high thermal conductivity. It is also possible to use a metal such as iron, but the distance must be set in consideration of insulation.
  • the diameter can be adjusted according to the size of the inner circumference and the outer circumference of the coil end. It is also conceivable to fix the stator frame 9 by providing a groove in which the inner spacer 21 and the outer spacer 22 are accommodated. Alternatively, a structure in which the stator frame 9, the inner spacer 21 and the outer spacer 22 are integrated is also conceivable.
  • FIG. 6A and 6B are diagrams illustrating the abduction type rotary electric machine of the fifth embodiment.
  • FIG. 6A is a configuration diagram in the axial direction after assembly of the abduction type rotary electric machine 100 of the fifth embodiment.
  • the difference from the fourth embodiment is that the stator frame 9 is provided with the axial recess 19 of the stator frame.
  • FIG. 6B is an enlarged view of the coil end 13, the stator frame 9, the axial recess 19 of the stator frame, and the non-conductive member 14 in FIG. 6A, and the shaded area is filled with the non-conductive member 14. This is the place.
  • the axial recess 19 of the stator frame increases the contact area between the non-conductive member 14 and the stator frame 9. As a result, the frictional force on the contact surface is also increased, so that the non-conductive member 14 moves in the axial direction and is hard to be peeled off, so that the reliability is improved.
  • FIG. 7A and 7B are diagrams illustrating the abduction type rotary electric machine of the sixth embodiment.
  • FIG. 7A is a perspective view during assembly of the abduction type rotary electric machine 100 of the sixth embodiment.
  • the abduction type rotary electric machine 100 has an integrated spacer 25 in which a cylindrical inner spacer 21 and an outer spacer 22 are connected by a plurality of ribs 26 between the stator 6 and the stator frame 9. It is a point to have.
  • FIG. 7B is a front view of the integrated spacer 25 which is a component constituting the abduction type rotary electric machine 100. Since the rigidity is increased by using the integrated spacer 25, the reliability is improved.
  • a plurality of holes 17a, 17b, and 17c are provided as in the second embodiment to improve mass productivity when injecting the non-conductive member 14. May be.
  • a hole 17b or a hole 17c a hole may be made in the inner spacer 21 and the outer spacer 22 at a position corresponding to the hole 17b or the hole 17c.
  • the non-conductive member 14 may be prevented from peeling off to improve reliability.
  • the coil end 13 and the stator frame 9 are brought into close contact with each other by the non-conductive member 14, the coil end 13 and the stator frame 9 are fixed by cleaning the place where the coil end 13 and the stator frame 9 are in close contact with each other to remove oil. The close contact between the child frame 9 and the non-conductive member 14 becomes stronger.
  • the material of the rotor core 1 and the stator core 4 an electromagnetic steel sheet containing iron as a main component is considered, and the rotor core 1 and the stator core 4 are formed by laminating those obtained by punching out the core shape from the electromagnetic steel sheet. Can be configured.
  • the rotor core 1 and the stator core 4 may be an integrated core as shown in FIG. 1 or a core divided into several parts. If it is a split core, it can be punched without waste when punching from an electromagnetic steel sheet, and cost can be reduced. Will be done.
  • the abduction type rotary electric machine is targeted, but the present invention is not limited to this, and the same effect can be obtained with the adduction type rotary electric machine.
  • the coil may be wound either centrally or distributedly.
  • the rotor may be a surface magnet type formed by attaching a magnet to the surface of the rotor core, or the rotor core has a plurality of magnet insertion holes and is embedded by inserting a magnet into the magnet insertion hole. It may be a built-in magnet type rotor.
  • an induction motor that does not use a magnet, a synchronous reluctance motor, or a switched reluctance motor may be used.
  • Rotor core 3 Rotor 4 Stator core 6 Stator 8 Rotor frame 9 Stator frame 13 Coil end 14
  • Non-conductive member 19 Axial recess 100 Abduction type rotary electric machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

複数のスロットと前記スロットに配置されるコイルとを有する固定子と、固定子に対してギャップを介して回転可能な回転子と、固定子を保持する固定子フレームと、を備えた回転電機であって、 コイルは、回転子の軸方向における端部よりも軸方向に突出したコイルエンドを有し、 固定子フレームは、軸方向においてコイルエンドに対向し、コイルエンドから遠ざかる方向に窪んだ凹部を有し、 非導電性部材が、コイルエンドと凹部の両方と密着するように配置された回転電機である。

Description

回転電機
 本発明は、回転電機に関する。
 回転電機の小型化(高トルク密度化)の手段の一つとして、外転型回転電機がある。外転型回転電機は、回転子が、固定子の外周側に配置されており、回転子-固定子間の間隙(ギャップ)の半径を大きくでき、また、回転子が外側にあるため1極分の周長が長くなり大きな磁石を配置できるという特徴があり、内転型回転電機に対し、小型化(高トルク密度化)が可能となる。
 外転型回転電機に関する技術について特許文献1が知られている。特許文献1に示された回転電機の構造は、コイルと固定子フレームを一体で非導電性部材モールドしており、冷却性能向上が期待される。
特開2018-198521
 外転型回転電機は、回転電機の主な発熱源であるコイルが内径側に位置するため、コイルの配置スペースが小さくなることで放熱面積も小さくなり、回転電機の機内温度が高くなる。これにより磁石温度やコイル温度が上昇し、回転電機効率の低下を招くため、これを補うための軸長や磁石量の増加が必要となり、小型・軽量化が困難である。よって、小型・軽量の回転電機のためには、外転型回転電機の冷却性能向上が必要となる。
 特許文献1では、回転電機の冷却性能向上策としてコイルと固定子フレームを一体で非導電性部材モールドをするために、モールド用の治具が必要となる。エレベータ駆動用巻上機のモータのような大型のモータでは、専用のモールド用の治具も大型のものを作成する必要があり、コスト増加につながることが考えられる。
 また、固定子と固定子フレームを組立て後、回転子及び回転子フレームと組み合わせる前に非導電性部材モールドの工程を入れる必要がある。このため、既存の量産設備を変更する必要が生じ、量産性の悪化を招く。
 また、コイルと固定子フレームの間に基板などのパーツを有することや、固定子フレームが複数のパーツにより構成されていることで、冷却性能は悪化する。
 本発明の目的は、低コストかつ量産が容易な構造で、冷却性能を向上した回転電機を提供することにある。
 本発明の好ましい一例としては、複数のスロットと前記スロットに配置されるコイルとを有する固定子と、前記固定子に対してギャップを介して回転可能な回転子と、前記固定子を保持する固定子フレームと、を備えた回転電機であって、
前記コイルは、
前記回転子の軸方向における端部よりも前記軸方向に突出したコイルエンドを有し、
前記固定子フレームは、
前記軸方向において前記コイルエンドに対向し、前記コイルエンドから遠ざかる方向に窪んだ凹部を有し、
非導電性部材が、前記コイルエンドと前記凹部の両方と密着するように配置された回転電機である。
 本発明によれば、低コストかつ量産が容易な構造で、冷却性能を向上した回転電機を得ることができる。
実施例1の外転型回転電機の径方向における構成図である。 組み立て中における外転型回転電機の斜視図を示す。 組み立て後における外転型回転電機の斜視図を示す。 比較例としての外転型回転電機の軸方向における構成図である。 実施例1の外転型回転電機の軸方向における構成図である。 図2Aの一部の拡大図である。 実施例2の外転型回転電機の斜視図である。 実施例2の外転型回転電機の軸方向における構成図である。 図3Bの一部の拡大図である。 実施例2の変形例を示す図である。 実施例3の外転型回転電機の軸方向における構成図である。 図4Aの一部の拡大図である。 実施例4における外転型回転電機の組立て途中の斜視図である。 実施例4における外転型回転電機の組立て後の軸方向における構成図である。 図5Bの一部の拡大図である。 実施例5の外転型回転電機の組立て後の軸方向における構成図である。 図6Aの一部の拡大図である。 実施例6の外転型回転電機の組立て途中の斜視図である。 一体型スペーサの正面図である。
 以下に、実施例を、図面を用いて説明する。
 図1Aから図1Cは、実施例1の外転型回転電機を示す。図1Aは、実施例1の外転型回転電機100の中心部における径方向の構成図である。径方向はRで示す。
 外転型回転電機100は、回転子コア1と永久磁石2により構成された回転子3と、回転子3の内径側に所定の間隙を設けて配置され、固定子コア4とコイル5により構成された固定子6を備える。回転子3は、固定子6に対してギャップを介して回転軸90を中心軸として回転可能に配置されている。
 コイル5は、集中巻により固定子コア4に取り付けられることが望ましい。これにより、コイル5の軸方向短部の長さが短くなり、外転型回転電機100の軸方向長さが短くなり、小型化できる。さらに、固定子コア4のコイル5が配置される部分(スロット7)はオープンスロットとすることが望ましい。これにより、コイル5の挿入が容易となり、組み立て性が向上する。さらに、固定子コア4の間隙付近(ティース先端)は半径より小さな曲率を持たせることが望ましい。これにより、周方向の磁気抵抗の変化率が低減でき、トルクリプルが低減できる。
 コイル5は、回転子3の軸方向における端部よりも軸方向に突出したコイルエンド13を有する。
 図1Bは、組み立て中における外転型回転電機100の斜視図を示す。図1Cは、組み立て後における外転型回転電機100の斜視図を示す。図1Cに示すように、回転子3及び固定子6は回転子フレーム8及び固定子フレーム9の内部に収められた全閉構造になっており、回転子3及び固定子6に風を直接当てて空冷することができない。
 図1Dは、比較例としての外転型回転電機100の軸方向における構成図を示す。軸方向は、Xで示す。固定子コア4と固定子フレーム9は、斜線で示す接触面4aで接触しており、コイル5で発生する熱の主な放熱経路は図1Dに矢印で示す。
 固定子コア4、固定子フレーム9を介して伝わる放熱経路12aであり、固定子フレーム9の内周部11に向かって熱が集まる。この内周部11において空気が循環しづらく、熱がこもることが、図1Dに示した構造における放熱性悪化の要因となっている。この課題を解決する手段としては、内周部11を固定子フレーム9と同素材あるいは別の素材で埋めることなども考えられるが、回転電機の重量化及びコスト増加につながる。
 図2Aおよび図2Bは、実施例1の外転型回転電機の構成を示す。図2Aは外転型回転電機100の軸方向における構成図である。図1Dに示す比較例との違いは、コイルエンド13が固定子フレーム9に設けられた固定子フレームの軸方向凹部19内に収まっており、固定子フレームの軸方向凹部19に非導電性部材14を注入することで、コイルエンド13と固定子フレーム9の軸方向凹部19の両方と密着するように非導電性部材14が配置されている点である。コイル5は、回転子3の軸方向における端部よりも軸方向に突出したコイルエンド13を有する。
 図2Bは、図2Aの一部の拡大図であり、コイルエンド13と固定子フレーム9と固定子フレームの軸方向凹部19と非導電性部材14の拡大図を示す図である。斜線で示すのが非導電性部材14で充填された箇所である。
 コイルエンド13および固定子フレーム9には製造誤差で寸法のバラツキが発生するが、このように密着させることで、製造誤差に関係なくコイルエンド13から固定子フレーム9への熱伝導が向上する。
 このような構成とすることで、コイル5で発生する熱の主な放熱経路は図2Aに矢印で示す経路となる。コイルエンド13、非導電性部材14、固定子フレーム9を介して伝わる放熱経路12bとなり、熱は軸方向の外側に向かう。軸方向の外側は空気が良く循環するため熱はこもらず、放熱性を改善することができる。
 非導電性部材14はエポキシなどの樹脂を用いても良いし、それ以外でも流動性、硬化性、耐熱性の複数またはいずれかに優れるものを用いても良い。非導電性部材14は、充填される前の空隙を構成する大気の熱伝導率より高い熱伝導率の材料を用いる。
 また、非導電性部材14には熱伝導性が高い高熱伝導樹脂などを用いた方が、放熱性は改善する。これらに熱伝導率を向上させるフィラを配合したものであれば、さらに放熱性を向上できる。
 固定子6と固定子フレーム9、回転子3と回転子フレーム8を組立て後に、放熱経路12bの矢印の向きが鉛直下向きとなるように外転型回転電機100を置き、ノズルなどを用いて、図2Aにおける固定子フレーム9と回転子3の隙間Gから非導電性部材14を注入することで、コイルと固定子フレーム9とを非導電性部材14で密着する。そのような工程を有することで、既存の量産設備をそのまま流用することが可能であり、量産性を損なわない。
 図2Aは軸方向における構成図であり、固定子フレームの軸方向凹部19の一部のみが図示されているが、固定子フレームの軸方向凹部19は周方向全周に渡る一つながりの形状であっても良いし、コイルエンド13が一つずつ収まるように区切られた形状であっても良い。コイルエンド13と固定子フレームの軸方向凹部19の間には非導電性部材14が充填されており、放熱性向上の観点では、非導電性部材14の充填箇所は広いほど良い。
 ただし、構造上の制約により充填箇所が限定される場合でも、空隙であるよりも放熱性向上の効果を得ることができる。固定子フレーム9の材質は、鉄などの金属製の他、非導電性部材製でも良いが、金属製の方が放熱性は優れる。また、コイルエンド13と固定子フレーム9はできるだけ近づけた方が放熱性は良くなるが、絶縁を考慮した距離とする必要がある。
 実施例1によれば、固定子フレーム9は、軸方向においてコイルエンド13に対向し、コイルエンド13から遠ざかる方向に窪んだ凹部19を有しており、非導電性部材14と固定子フレーム9との接触面積は、特許文献1の構成に比べて、大きくなる。そのため、コイル5からの熱を、非導電性部材14から固定子フレーム9に向かって、放熱しやすい構造となり冷却特性が向上する。
 エレベータ駆動用巻上機のモータは、建築レイアウトの自由度向上の観点から、専用の機械室を無くして、昇降路内に設置することが望ましい。昇降路内は、その構造上、気密性は無く、ほこりや塵が入り込んでいる。ほこりや塵が、モータ摺動面等に入り込むことは、故障の原因となるため、信頼性の向上と保守負担軽減の観点から、昇降路内に設置されるエレベータ用のモータは、モータ自体に気密性を持たせた、全閉構造にする必要がある。
 そこで、実施例1では、回転子3及び固定子6は回転子フレーム8及び固定子フレーム9の内部に収められた全閉構造およびエレベータ駆動用巻上機のモータに適用する例を示している。
 図3A、図3B、図3C、および図3Dは、実施例2における外転型回転電機を説明する図である。図3Aは実施例2における外転型回転電機100の斜視図であり、図3Bは、実施例2の外転型回転電機100の軸方向における構成図である。
 また、図3Cは、図3Bにおける、コイルエンド13と固定子フレーム9と固定子フレームの軸方向凹部19と非導電性部材14の拡大図である。図3Dは、実施例2の変形例を示す。図3Cと図3Dにおいて斜線で示すのが非導電性部材14で充填された箇所である。
 固定子フレーム9は軸方向に複数個の穴17aを有しており、この穴17aは内側の固定子フレームの軸方向凹部19まで貫通している。この穴から非導電性部材14を注入することができる。穴17aを設けた面を鉛直下向きに設置した状態で非導電性部材14を注入することで、固定子6と固定子フレーム9、回転子3と回転子フレーム8のすべてを組み合わせた後の非導電性部材14の流し込みがより容易に実施でき、量産性が改善する。
 非導電性部材14の充填量は固定子フレームの軸方向凹部19の寸法から求めることができる。穴17aは、図3Bに示すようにフレーム外表面9aから固定子フレームの軸方向凹部19に貫通していれば良く、穴17aの位置は必ずしも固定子フレームの軸方向凹部19の中央である必要はない。
 また、穴17aはフレーム外表面9aから固定子フレームの軸方向凹部19を軸方向に貫通している。この構造に限られず、図3Dに示すように、固定子フレームの軸方向凹部19を固定子フレームの径方向の内側面9bから貫通する穴17bや固定子フレームの径方向の外側面9cから貫通する穴17cでも良い。あるいは、これらのうちの2方向、または3方向の全てに穴をあけることで、非導電性部材の流量を増やして、生産にかかる時間を短縮することも考えられる。
 図4Aおよび図4Bは、実施例3の外転型回転電機を説明する図である。図4Aは外転型回転電機100の軸方向における構成図である。また、図4Bは、図4Aにおける、コイルエンド13と固定子フレーム9と固定子フレームの軸方向凹部19と非導電性部材14の拡大図であり、斜線で示すのが非導電性部材14で充填された箇所である。
 固定子フレーム9は凹部19の内側面の一部が径方向の内側に膨らむ構成20aと、凹部19の内側面の一部が径方向の外側に膨らむ構成20bを有している。これにより、非導電性部材14が軸方向に動いて剥がれることを防ぐことができるため、信頼性が向上する。
 実施例3では、径方向の内側に膨らむ構成20aと径方向の外側に膨らむ構成20bの両方を有しているが、どちらか一方のみでも同様の効果が期待できる。実施例3においても、実施例2のように複数個の穴17a、穴17b、穴17cを設けて、非導電性部材を注入する際の量産性を改善させても良い。穴17bや穴17c内に樹脂を充填させることで、径方向の内側に膨らむ構成20aと径方向の外側に膨らむ構成20bを設けるのと同様の効果も期待できる。
 図5A、図5B、および図5Cは、実施例4の外転型回転電機を説明する図である。図5Aは、実施例4における外転型回転電機100の組立て途中の斜視図である。図5Bは、実施例4における外転型回転電機100の組立て後の軸方向における構成図である。
 また、図5Cは、図5Bにおいて、コイルエンド13と固定子フレーム9と非導電性部材14の拡大図であり、斜線で示すのが非導電性部材14で充填された箇所である。
 外転型回転電機100は固定子6と固定子フレーム9の間に円筒形状の内側スペーサ21と外側スペーサ22を有している。内側スペーサ21の径方向の半径D1は外側スペーサ22の半径D2より短い。
 固定子コア4(固定子)の軸方向端面と固定子フレーム9は、互いに異なる径を有する第1のスペーサ(内側スペーサ)と第2のスペーサ(外側スペーサ)を介して軸方向で接続されており、径方向において、コイルエンド13は、第1のスペーサと第2のスペーサの間に配置され、コイルエンド13と固定子フレーム9と第1のスペーサと第2のスペーサとで囲まれる空間に、非導電性部材14が配置されている。
 回転子3、回転子フレーム8、固定子6、固定子フレーム9、および第1のスペーサと第2のスペーサを組み立てた後に、コイル5と固定子フレーム9と第1のスペーサと第2のスペーサとを非導電性部材14で密着する工程を有することにより低コストで本実施例の回転電機を製造することが出来る。
 また、この内側スペーサ21と外側スペーサ22の間に非導電性部材14を、実施例1と同様に、固定子フレーム9と回転子3の隙間Gから注入することで、コイルエンド13と固定子フレーム9を密着できる。
 この構成は、固定子フレームの軸方向凹部19を設ける必要がなく、比較例に示した構造の固定子フレーム9をそのまま使うことができる点において優れる。内側スペーサ21と外側スペーサ22の材料としては、エポキシなどの樹脂を用いても良いし、それ以外でも流動性、硬化性、耐熱性の複数またはいずれかに優れるものを用いても良い。熱伝導性が高い高熱伝導樹脂などを用いた方が、放熱性は改善する。また、鉄などの金属を用いることも考えられるが、絶縁を考慮した距離とする必要がある。
 内側スペーサ21と外側スペーサ22の固定方法としては、コイルエンドの内周と外周の大きさに合わせた径とすることで固定ができる。また、固定子フレーム9に内側スペーサ21と外側スペーサ22が収まる溝を設けることで固定することも考えられる。あるいは、固定子フレーム9と内側スペーサ21と外側スペーサ22が一体となった構造も考えられる。
 図6Aおよび図6Bは、実施例5の外転型回転電機を説明する図である。図6Aは、実施例5の外転型回転電機100の組立て後の軸方向における構成図である。実施例4と異なる点は、固定子フレームの軸方向凹部19を設けた固定子フレーム9としていることにある。
 図6Bは、図6Aにおいて、コイルエンド13と固定子フレーム9と固定子フレームの軸方向凹部19と非導電性部材14の拡大図であり、斜線で示すのが非導電性部材14で充填された箇所である。
 固定子フレームの軸方向凹部19により非導電性部材14と固定子フレーム9との接触面積が大きくなる。これにより、この接触面における摩擦力も大きくなるため、非導電性部材14が軸方向に動いて剥がれづらくなるため、信頼性が向上する。
 図7Aおよび図7Bは、実施例6の外転型回転電機を説明する図である。図7Aは、実施例6の外転型回転電機100の組立て途中の斜視図である。実施例4と異なる点は、外転型回転電機100は固定子6と固定子フレーム9の間に円筒形状の内側スペーサ21と外側スペーサ22が複数本のリブ26でつながった一体型スペーサ25を有している点である。
 図7Bは、外転型回転電機100を構成する部品である一体型スペーサ25の正面図である。一体型スペーサ25とすることで剛性が増すため、信頼性が向上する。
 実施例4、実施例5、実施例6においても、実施例2のように複数個の穴17a、穴17b、穴17cを設けて、非導電性部材14を注入する際の量産性を改善させても良い。穴17bや穴17cを開ける場合は、内側スペーサ21及び外側スペーサ22の、穴17bや穴17cと一致する箇所に穴を開ければ良い。
 また、実施例5、実施例6においても、実施例3のように、固定子フレームの軸方向凹部19の内部に、固定子フレームの径方向の内側凹部20aと固定子フレームの径方向の外側凹部20bを設けることで、非導電性部材14が剥がれるのを防止して信頼性を向上させても良い。
 コイルエンド13と固定子フレーム9を非導電性部材14で密着する前に、コイルエンド13と固定子フレーム9の密着する個所を洗浄して油分を取る工程を入れることで、コイルエンド13及び固定子フレーム9と非導電性部材14との密着がより強固なものとなる。
 回転子コア1及び固定子コア4の材質としては、鉄が主成分の電磁鋼板が考えられ、電磁鋼板からコア形状を打ち抜いたものを積層することで、回転子コア1及び固定子コア4を構成できる。回転子コア1及び固定子コア4は、図1で示すような一体型コアでも良いし、いくつかに分割したコアでも良い。分割コアであれば、電磁鋼板から打ち抜く際に無駄なく打ち抜くことができ、コストの低減を図ることができるが、一体型コアと比べて、分割部の隙間による磁束漏れにより、効率の低下が懸念される。コイル5の材質としては、銅やアルミを用いることが考えられる。
 実施例では外転型回転電機を対象としているが、これに限定されるものではなく、内転型回転電機でも同様の効果を得られる。コイルの巻き方は集中巻でも分布巻でも良い。回転子は磁石を回転子コア表面に貼り付けることで形成した表面磁石型でも良いし、回転子コアが複数の磁石挿入孔を有し、磁石増入孔に磁石を挿入することで形成した埋込磁石型の回転子であっても良い。
 また、磁石を用いない誘導モータや、シンクロナスリラクタンスモータ、スイッチドリラクタンスモータでも良い。
 実施例では、磁石の極数40、コイル数48の3相駆動回転電機のときの説明をしたが、その他の極数・スロット数の組み合わせであっても良い。
1   回転子コア
3   回転子
4   固定子コア
6   固定子
8   回転子フレーム
9   固定子フレーム
13  コイルエンド
14  非導電性部材
19  軸方向凹部
100 外転型回転電機

Claims (12)

  1. 複数のスロットと前記スロットに配置されるコイルとを有する固定子と、
    前記固定子に対してギャップを介して回転可能な回転子と、
    前記固定子を保持する固定子フレームと、を備えた回転電機であって、
    前記コイルは、
    前記回転子の軸方向における端部よりも前記軸方向に突出したコイルエンドを有し、
    前記固定子フレームは、
    前記軸方向において前記コイルエンドに対向し、前記コイルエンドから遠ざかる方向に窪んだ凹部を有し、
    非導電性部材が、
    前記コイルエンドと前記凹部の両方と密着するように配置された回転電機。
  2. 複数のスロットと前記スロットに配置されるコイルとを有する固定子と、
    前記固定子に対してギャップを介して回転可能な回転子と、
    前記固定子を保持する固定子フレームと、
    を備えた回転電機であって、
    前記コイルは、
    前記回転子の軸方向端部よりも軸方向に突出したコイルエンドを有し、
    前記固定子の軸方向端面と前記固定子フレームは、
    互いに異なる径を有する第1のスペーサと第2のスペーサを介して軸方向で接続されており、
    径方向において、前記コイルエンドは、前記第1のスペーサと前記第2のスペーサの間に配置され、
    前記コイルエンドと前記固定子フレームと前記第1のスペーサと前記第2のスペーサとで囲まれる空間に、非導電性部材が配置されている回転電機。
  3. 請求項2に記載の回転電機において、
    前記第1のスペーサと前記第2のスペーサとは径方向に延びたリブで接続されている回転電機。
  4. 請求項2に記載の回転電機において、
    前記固定子フレームは、
    前記コイルエンドから遠ざかる方向に窪んだ凹部を有する回転電機。
  5. 請求項1に記載の回転電機において、
    前記固定子フレームは、
    前記軸方向に貫通する複数個の穴を有する回転電機。
  6. 請求項1に記載の回転電機において、
    前記固定子フレームは径方向の内側方向に貫通する穴を有する回転電機。
  7. 請求項1に記載の回転電機において、
    前記固定子フレームは径方向の外側方向に貫通する穴を有する回転電機。
  8. 請求項1に記載の回転電機において、
    前記凹部は、
    前記凹部の内側面の一部が径方向の内側方向に膨らむ構成を有するか、
    前記凹部の内側面の一部が径方向の外側方向に膨らむ構成を有するか、
    またはその両方の構成を有する回転電機。
  9. 請求項1に記載の回転電機は、
    全閉型の外転型である回転電機。
  10. 請求項1に記載の回転電機を有するエレベータ用巻上機。
  11. 複数のスロットと前記スロットに配置されるコイルとを有する固定子と、
    前記固定子に対してギャップを介して回転可能な回転子と、
    前記固定子を保持する固定子フレームと、前記回転子と回転軸とを接続する回転子フレームとを有する回転電機の製造方法であって、
    前記回転子、前記回転子フレーム、前記固定子、および前記固定子フレームを組み立てた後に、前記コイルと前記固定子フレームとを非導電性部材で密着する工程を有する回転電機の製造方法。
  12. 請求項11に記載の回転電機の製造方法において、
    前記固定子の軸方向端面と前記固定子フレームは、互いに異なる径を有する第1のスペーサと第2のスペーサを介して軸方向で接続されており、
    前記回転子、前記回転子フレーム、前記固定子、前記固定子フレーム、および前記第1のスペーサと前記第2のスペーサを組み立てた後に、前記コイルと前記固定子フレームと前記第1のスペーサと前記第2のスペーサとを非導電性部材で密着する工程を有する回転電機の製造方法。
PCT/JP2021/001533 2020-02-07 2021-01-18 回転電機 WO2021157331A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020019631A JP2021126007A (ja) 2020-02-07 2020-02-07 回転電機
JP2020-019631 2020-02-07

Publications (1)

Publication Number Publication Date
WO2021157331A1 true WO2021157331A1 (ja) 2021-08-12

Family

ID=77199956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001533 WO2021157331A1 (ja) 2020-02-07 2021-01-18 回転電機

Country Status (2)

Country Link
JP (1) JP2021126007A (ja)
WO (1) WO2021157331A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198500A (ja) * 2005-03-28 2005-07-21 Hitachi Ltd 回転機
JP2008259383A (ja) * 2007-04-09 2008-10-23 Mitsuba Corp ブラシレスモータ
JP2014207817A (ja) * 2013-04-15 2014-10-30 マツダ株式会社 回転電機
JP2016140148A (ja) * 2015-01-26 2016-08-04 株式会社デンソー 回転電機
JP2017153230A (ja) * 2016-02-24 2017-08-31 株式会社荏原製作所 キャンドモータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5238473B2 (ja) * 2008-12-16 2013-07-17 株式会社日立産機システム エレベータ用巻上機及びその駆動モータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198500A (ja) * 2005-03-28 2005-07-21 Hitachi Ltd 回転機
JP2008259383A (ja) * 2007-04-09 2008-10-23 Mitsuba Corp ブラシレスモータ
JP2014207817A (ja) * 2013-04-15 2014-10-30 マツダ株式会社 回転電機
JP2016140148A (ja) * 2015-01-26 2016-08-04 株式会社デンソー 回転電機
JP2017153230A (ja) * 2016-02-24 2017-08-31 株式会社荏原製作所 キャンドモータ

Also Published As

Publication number Publication date
JP2021126007A (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
JP7344807B2 (ja) コイルボビン、分布巻ラジアルギャップ型回転電機の固定子コア及び分布巻ラジアルギャップ型回転電機
JP5096705B2 (ja) クローティース型同期機
JP5274738B2 (ja) 回転電気装置及びその製造方法
US20090015094A1 (en) Electrical rotary machine and method of manufacturing the same
JP6832935B2 (ja) コンシクエントポール型の回転子、電動機および空気調和機
JP5928602B2 (ja) コイル、回転電機、及びリニアモータ
JP6372562B2 (ja) 回転電機
JP2009100531A (ja) インナーロータブラシレスモータ及びその製造方法
JPH11146617A (ja) ブラシレスdcモータ構造
CN108028558B (zh) 旋转电机以及旋转电机的制造方法
KR100706193B1 (ko) 모터 고정자용 인슐레이터
TWI646758B (zh) 軸向間隙型旋轉電機
WO2021157331A1 (ja) 回転電機
KR101079050B1 (ko) 분할 스큐 코어 구조의 스테이터, 이를 이용한 bldc 모터 및 배터리 쿨링장치
CN109196754A (zh) 永磁体电动机
CN111543893A (zh) 电动机以及使用它的电动风机和使用它的电动吸尘器
JP6595033B2 (ja) アキシャルエアギャップ型回転電機
TW202032586A (zh) 電樞的線圈架構造
CN113765323B (zh) 用于无槽永磁同步电动机的开放式定子绕组和定子芯布置
KR102538380B1 (ko) 전기기기
KR102065267B1 (ko) 3d 프린팅을 이용하여 제조된 코어리스 전동기용 고정자 및 이를 포함하는 코어리스 전동기
CN112186922B (zh) 外转型表面磁铁旋转电机
WO2001013494A1 (en) Insulated winding stack for winding phase coils used in electromotive devices
KR102623855B1 (ko) 고정자유닛 및 이를 구비한 발전기
KR20050075461A (ko) 축 방향 자속 영구자석형 코어리스 기기의 전기자 권선의제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21751304

Country of ref document: EP

Kind code of ref document: A1