WO2021156988A1 - グリース阻集器、及び当該グリース阻集器を備える油脂回収システム - Google Patents
グリース阻集器、及び当該グリース阻集器を備える油脂回収システム Download PDFInfo
- Publication number
- WO2021156988A1 WO2021156988A1 PCT/JP2020/004440 JP2020004440W WO2021156988A1 WO 2021156988 A1 WO2021156988 A1 WO 2021156988A1 JP 2020004440 W JP2020004440 W JP 2020004440W WO 2021156988 A1 WO2021156988 A1 WO 2021156988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- tank
- wastewater
- fat
- pcm
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/40—Devices for separating or removing fatty or oily substances or similar floating material
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03F—SEWERS; CESSPOOLS
- E03F5/00—Sewerage structures
- E03F5/14—Devices for separating liquid or solid substances from sewage, e.g. sand or sludge traps, rakes or grates
Definitions
- the present invention relates to a grease interceptor installed in a store or the like that discharges oil-containing wastewater, and an oil-and-fat recovery system that efficiently recovers oil from oil-containing wastewater.
- Kitchen wastewater in small businesses such as restaurants, fast food restaurants, restaurants, hotels, and food processing plants contains various water pollutants. If such wastewater is drained without any treatment, oil in the wastewater adheres to the drain pipe and hardens, causing clogging. As a result, it may be difficult to purify water in the merged treatment tank or sewage treatment plant, adversely affect the environment, and be subject to legal restrictions, which may make it impossible to continue business. Therefore, various methods and devices for treating wastewater containing solids such as oil, sediment, and suspended matter at each discharge business site have been proposed.
- One of the methods is a method or device for physically removing oil in wastewater by pooling oil-containing wastewater, pumping out floating oil in the upper layer, adsorbing it with an adsorbent, and filtering it. ..
- a foul odor is generated from (pool) of wastewater, the separation and removal of oil tends to be incomplete, and a large system and equipment are required.
- a grease trap or grease trap
- the grease interceptor separates and collects oils and fats, leftover food, vegetable waste and other residues contained in the drainage, clogs the drainage port and water pipes, and prevents oils and residues from flowing directly into the sewage.
- the current grease interceptor has the following problems. That is, in the grease interceptor currently installed in stores in commercial facilities, the floating oil in the interceptor is washed away by the amount of water flowing in, such as when the water accumulated in the sink is flushed at once, and flows out into the sewage. A phenomenon occurs. In particular, most of the grease interceptors currently in use are shallow type with a water depth of about 5 to 15 cm, and this shallow type grease interceptor tends to allow floating oil to flow out. As a result, as a practical matter, water leakage accidents due to pipe clogging caused by oil outflow from the grease interceptor frequently occur. For example, in March 2015, a water leak accident occurred at Ecute, Omiya Station, Saitama Prefecture, and measures to prevent or prevent the occurrence of this water leak accident have become social issues.
- Wastewater fats and oils which are biomass resources discharged from restaurants and food factories, amount to more than 300,000 tons per year throughout Japan, which is even greater when the world is taken into consideration.
- a system has been developed in which a unique biomass fuel is produced from wastewater oils and fats that had to be disposed of as sludge, and biomass power generation is performed by a diesel generator. Providing this biomass power generation system can bring about CO2 reduction, recycling, and water purification. That is, there is an urgent need to establish a technology for efficiently collecting wastewater oils and fats discharged from restaurants and food factories and using them as a new renewable energy source.
- the present invention is a grease interceptor for separating oil and fat from oil-impregnated wastewater, which is an oil-impregnated wastewater storage tank for temporarily storing oil-containing wastewater flowing from the upstream side, and the oil-impregnated wastewater storage tank.
- Latent heat storage material (PCM: Phase Change Material) composition that is connected to the downstream side of the It is characterized by including a PCM tank filled with an object.
- the oil-impregnated wastewater storage tank has a substantially rectangular parallelepiped shape with an open upper surface, and the PCM tank is arranged so as to surround at least the bottom surface and the long side surface of the oil-impregnated wastewater storage tank from the outside, and is vertical.
- An outer frame having a concave cross section, a concave surface formed so as to extend inward on both end sides of the outer frame in the longitudinal direction, an upper edge of the outer frame, and the oil-impregnated wastewater storage tank.
- a cover plate attached to the upper side surface of the outer frame body is provided to cover a slit-shaped opening formed between the long side surface of the PCM tank, and the latent heat storage material of the PCM tank is the oil-impregnated wastewater storage tank. It is preferable that the internal space formed between the outer frame and the concave surface is filled.
- the cover plate has a substantially L-shaped vertical cross section, and the cover plate has a PCM injection port for injecting PCM on one end side of the upper surface thereof and water supply on the other end side. It is preferable to provide a water supply port of.
- the grease interceptor further includes a water flow pipe arranged so as to be adjacent to the outside of the oil-impregnated wastewater storage tank.
- the water flow pipe is arranged in the internal space of the PCM tank, and the water flow pipe has a concave shape in a side view and is arranged so as to face each other with a pair of header pipes. It is preferable that the header pipes are composed of a plurality of water pipes arranged side by side in a direction orthogonal to the header pipes.
- the PCM tank is a plate-shaped PCM tank filled with PCM inside, and the plate-shaped PCM tank is arranged in the oil-impregnated wastewater storage tank.
- the present invention is an oil / fat recovery system for recovering oil / fat from oil-containing wastewater, via a pipe on the downstream side of the grease interceptor and the trap pipe of the grease interceptor. Separation and recovery of floating oil from at least one of the oil and fat outflow prevention tank that is connected and temporarily re-storing the wastewater from the trap pipe and the oil-containing wastewater stored in the grease interceptor and the oil and fat outflow prevention tank. It is characterized by including a device.
- the oil / fat outflow prevention tank has a substantially rectangular parallelepiped shape with an open upper surface, a pipe connection port for connecting to the pipe is formed on the upstream side surface, and a drainage pipe is formed on the downstream side surface. It is preferable that a discharge pipe connected to is arranged.
- the oil / fat separation / recovery device stores a schema for sucking oil-containing wastewater from the oil-containing wastewater storage tank or the oil-fat outflow prevention tank provided in the grease interceptor, and the oil-containing wastewater sucked by the schema.
- a fat separation and recovery unit arranged inside the water separation and recovery device, and a return unit that discharges wastewater from which fats and oils have been separated in the oil and fat separation and recovery unit to the oil-containing wastewater storage tank or the oil and fat outflow prevention tank. It is preferable to prepare.
- the present invention is a plate-shaped PCM tank which is arranged in an oil-impregnated wastewater storage tank provided in a grease interceptor for separating oils and fats from oil-impregnated wastewater and is filled with PCM inside.
- a grease interceptor for separating oils and fats from oil-impregnated wastewater according to the present invention which is connected to an oil-impregnated wastewater storage tank for temporarily storing oil-impregnated wastewater flowing from the upstream side and an oil-containing wastewater storage tank for oil components. It is provided with a trap pipe for discharging the wastewater after the wastewater is separated, and a PCM tank filled with a latent heat storage material composition capable of heat exchange with the oil-impregnated wastewater stored in the oil-impregnated wastewater storage tank.
- A Reference view showing the arrangement of header pipes and water pipes constituting the water supply pipe provided in the grease interceptor, (b) Right side view of the water supply pipe, (c) Front view of the water supply pipe, (d). It is an enlarged reference figure of the water supply port connected to the water supply pipe of the same as above. It is a perspective view of the grease interceptor and the oil and fat outflow prevention tank of the same as above.
- A A reference plan view of the grease interceptor and the oil / fat outflow prevention tank as above, and (b) a front view of the grease interceptor and the oil / fat outflow prevention tank of the same as above.
- Embodiment 1 The grease interceptor according to the first embodiment of the present invention and the oil / fat recovery system including the grease interceptor will be described with reference to FIGS. 1 to 8.
- High-temperature oil-impregnated wastewater flowing from a kitchen or the like impedes the oil-water separation function of a grease interceptor, and is one of the main causes of oil flowing out to a drainage pipe or the like to cause pipe clogging. Therefore, the grease interceptor according to the first embodiment is provided with a function of efficiently lowering the temperature of high-temperature oil-containing wastewater to minimize oil outflow.
- the grease interceptor 1 is a device that temporarily pools oil-containing wastewater, separates and collects oils and fats, residual rice, vegetable waste, and other residues contained in wastewater, clogs drains and water pipes, and clogs oils and residues. Prevents water from flowing directly into the sewage.
- the grease interceptor 1 is a device for separating oils and fats from oil-impregnated wastewater, and includes an oil-impregnated wastewater storage tank 11, a trap pipe 12, and a PCM (Phase Change Material) tank 13.
- the oil-impregnated wastewater storage tank 11 temporarily stores the oil-impregnated wastewater that has flowed in from the upstream side of a kitchen or the like.
- the trap pipe 12 is connected to the downstream side of the oil-impregnated wastewater storage tank 11 and discharges the wastewater after the oil is separated.
- the PCM tank 13 is filled with a latent heat storage material composition capable of heat exchange with the oil-impregnated wastewater stored in the oil-impregnated wastewater storage tank 11.
- the oil-impregnated wastewater storage tank 11 has a substantially rectangular parallelepiped shape with an open upper surface, and a wire mesh basket B for removing kitchen garbage, leftover food, etc. is arranged in the internal space of the first tank 1a.
- the first tank 1a has a second tank 1b partitioned by a partition plate 11a to separate water and oils and fats, and the second tank 1b has a third tank 1c partitioned by a partition plate 11b.
- a trap pipe 12 is arranged in the third tank 1c, and water having a low oil content is flowed to the downstream side.
- the grease interceptor 1 has a size of, for example, a width dimension of 1380 (mm) ⁇ a width dimension of 500 (mm) ⁇ a height dimension of 200 (mm), and has a capacity of 138 L.
- the PCM tank 13 includes an outer frame body 13a, a concave surface 13a', and a cover plate 13b.
- the outer frame body 13a is arranged so as to surround at least the bottom surface and the long side surface of the oil-impregnated wastewater storage tank 11 from the outside, and has a concave vertical cross section.
- the concave surface 13a' is formed so as to extend inward on both end sides of the outer frame body 13a in the longitudinal direction.
- the cover plate 13b is attached to the upper side surface of the outer frame body 13a by welding or the like to cover the slit-shaped opening formed between the upper edge of the outer frame body 13a and the long side surface of the oil-impregnated wastewater storage tank 11.
- the latent heat storage material of the PCM tank 13 is filled in the internal space formed between the oil-impregnated wastewater storage tank 11 and the outer frame body 13a and the concave surface 13a'. Further, the oil-impregnated wastewater storage tank 11 is fitted from the upper surface of the outer frame body 13a.
- the cover plate 13b has a substantially L-shaped vertical cross section due to bending, and the PCM injection port 13c for injecting PCM on one end side of the upper surface (one surface) and the water supply port 13d for water supply on the other end side.
- the PCM injection port 13c for injecting PCM on one end side of the upper surface (one surface) and the water supply port 13d for water supply on the other end side.
- Has. Sockets are used for the PCM inlet 13c and the water supply port 13d.
- the latent heat storage material is a substance that utilizes the release / absorption of heat accompanying the phase change of the substance, and when it changes to the solid / liquid state toward the melting point / freezing point (phase transition temperature).
- the latent heat storage material maintains an almost constant temperature.
- the latent heat storage material has a characteristic that it can retain a heat storage amount many times larger than that of water or concrete at room temperature.
- the latent heat storage material PCM filled in the internal space of the PCM tank 13 in the first embodiment it is preferable to use a heat storage material whose phase changes mainly in the range of 40 to 45 ° C.
- the latent heat storage material exchanges heat with the oil-impregnated wastewater that has flowed into the oil-impregnated wastewater storage tank 11 of the grease interceptor 1, and the oil-impregnated wastewater storage tank is kept at 40 to 45 ° C. to suppress the temperature rise of the oil-impregnated wastewater storage tank. , Oil-containing wastewater can be cooled quickly.
- Each latent heat storage material has its own unique phase change temperature, and the phase change temperature can be adjusted by blending a melting point adjuster of the latent heat storage material so as to match the target temperature in the manufacturing process.
- the latent heat storage material composition used in the grease interceptor 1 according to the first embodiment has, for example, sodium sulfate 10-hydrate, calcium chloride 6-hydrate, and carbonate as main raw materials (actually undergoing phase change to absorb and dissipate heat).
- Inorganic hydrates such as sodium monohydrate, disodium hydrogen phosphate 10 hydroxide, sodium thiosulfate 5 salt, sodium acetate trihydrate, and organic materials such as paraffin wax and polyethylene glycol can be used. ..
- Examples of the melting point adjusting material (material for adjusting the phase change of the main raw material at a target temperature) include water, urea, ammonium chloride, ammonium sulfate, ammonium bromide, sodium chloride, potassium chloride, and sodium bromide. One type or a mixture of two or more types of the above can be used.
- examples of the supercooling preventive material (material for reliably precipitating crystals at a temperature near the freezing point) include sodium tetraborate, sodium pyrophosphate, disodium phosphate, lithium fluoride, barium chloride, and strontium chloride. One or a mixture of two or more of the above can be used.
- phase separation preventing material a material for preventing phase separation due to a difference in specific gravity
- a phase separation preventing material for example, one or more of sodium polyacrylate, polyacrylamide, carboxymethyl cellulose, attapulsite, sepiolite and the like are mixed. Can be used.
- the degree of deterioration is less than 10% when the phase change is 10,000 times or more, and it depends on the usage conditions, but in the PCM tank 13 provided in the grease interceptor 1.
- the latent heat storage material to be filled is expected to be usable for 30 years.
- a water flow pipe 14 is arranged so as to be adjacent to the outside (here, the bottom surface and the long side surface) of the oil-impregnated wastewater storage tank 11.
- the water flow pipe 14 is composed of a header pipe 14a and a water supply pipe 14b.
- the header pipe 14b is connected to the water supply port 13d and is arranged so as to have a concave shape in a side view and face each other in order to supply tap water to a plurality of water pipes 14b (for example, a flexible pipe) by a header method. ..
- the water pipes 14b are connected to the header pipes 14a, and a plurality of water pipes 14b are arranged side by side between the pair of header pipes 14a in a direction orthogonal to the header pipes 14a.
- One header pipe 14a is arranged on the water supply side, and the other header pipe 14a is arranged on the drainage side, and the oil-impregnated wastewater storage tank 11 of the grease interceptor 1 is stored while tap water or the like passes through the running water pipe 14.
- Circulating water (warm water) warmed by high-temperature wastewater is discharged from the water supply port 13d on the drain side.
- the distance between the water pipes 14b arranged side by side is, for example, 50 mm, and with this configuration, tap water flowing inside the water pipes 14b can be efficiently made into hot water.
- the arrangement of the header pipe 14a and the water supply pipe 14b constituting the water supply pipe 14 shown in FIG. 4 is an example, and may have a structure capable of water supply with high heat exchange efficiency (large surface area, etc.).
- the material of the flexible tube is preferably aluminum or copper, or SUS (austenitic) 304 or 316, which has corrosion resistance, in terms of thermal conductivity.
- Flexible tubes are generally thin products and can also be used as heat exchange materials.
- the oil and fat outflow prevention tank 2 is connected to the downstream side of the trap pipe 12 of the grease interceptor 1 via a pipe 4, and has a function of temporarily re-storing the wastewater from the trap pipe 12 and causes an oil outflow. Ensure prevention of.
- the oil and fat outflow prevention tank 2 is a storage tank smaller than the grease interceptor 1 located below the manhole 5, and is, for example, a width dimension 410 (mm) ⁇ width dimension 500 (mm) ⁇ height dimension. It has a size of about 240 (mm) and a capacity of 50 L.
- the oil / fat outflow prevention tank 2 has a substantially rectangular parallelepiped shape with an open upper surface, a pipe connection port 2a for connecting to the pipe 4 is formed on the upstream side surface, and the downstream side surface has a pipe connection port 2a.
- a discharge pipe 2b connected to the sewer pipe is arranged.
- the mouth of the discharge pipe 2b is directed diagonally downward, and the wastewater is surely discharged to the sewer pipe.
- the oil / fat recovery system S is a system for efficiently recovering oil / fat from oil-containing wastewater, and includes a grease interceptor 1, an oil / fat outflow prevention tank 2, and an oil / fat separation / recovery device 3 shown in FIG. The details of the oil / fat separation / recovery device 3 will be described with reference to FIG.
- the oil / fat separation / recovery device 3 (trade name: Kankichi-kun Jr. (registered trademark)) is a device that is retrofitted to at least one of the existing grease interceptor 1 and the oil / fat outflow prevention tank 2 to recover floating oil. , Maintain and prolong the performance of the grease interceptor 1.
- the oil / fat separation / recovery device 3 does not operate during the time when the amount of drainage is large, but prevents the outflow of oil by the blocking function of the grease interceptor 1 or the like, and operates intermittently during the time when the amount of drainage is small. Collect the oil.
- the oil / fat separation / recovery device 3 sucks at least (1) the floating oil in the grease interceptor 1 and the oil / fat outflow prevention tank 2 by the floating type schema 31 (water absorption unit), and (2) in the oil / fat separation / recovery unit 32. (3) Schema 31 is installed near the water surface of the grease interceptor 1 and the oil / fat outflow prevention tank 2 with an upward opening in order to efficiently suck oil, and grease is separated.
- the wastewater after the oil / water separation is returned to the grease interceptor 1 and the oil / fat outflow prevention tank 2 (return unit 33). Have.
- the outline of the operation of the oil / fat separation / recovery device 3 will be explained.
- the wastewater discharged to the oil-impregnated wastewater storage tank 11 mainly goes around the water surface in the oil-impregnated wastewater storage tank 11, hits the obstacle plate near the suction port, and swirls, and (floating) wastewater.
- a large amount of oil-containing wastewater is efficiently sucked from the suction unit (schema 31) and introduced into the oil-containing wastewater introduction oil separation chamber arranged inside the oil-water separation and recovery device 3.
- the wastewater in the lower layer floats upward, and the wastewater in the lower layer moves from the oil-containing wastewater introduction oil separation chamber to the wastewater chamber through the notch of the vertical partition plate (oil / fat separation / recovery unit 32).
- the wastewater reaches the wastewater discharge port on the upper side wall of the wastewater chamber, it is discharged to the oil-containing wastewater storage tank 11 (return unit 33) by the suction of the pump.
- oil is gradually accumulated in the oil / fat separation / recovery unit 32.
- the oil sensor In the oil / fat separation / recovery unit 32, when the oil layer is accumulated near the oil sensor and changes from the wastewater layer to the oil layer, the oil sensor is turned “ON” to output an oil detection signal, which is automatically preset. A notification message may be sent to the destination. The person in charge who received the message goes to each business site, stops the circulation of the oil-impregnated wastewater, and then uses a vacuum device or the like to collect the oil-containing wastewater in the oil-fat separation / recovery unit 32 of the oil-fat separation / recovery device 3. You can recover the oil you have.
- the grease interceptor 1 is connected to the oil-impregnated wastewater storage tank 11 in which the oil-impregnated wastewater flowing from the upstream side is temporarily stored and the downstream side of the oil-impregnated wastewater storage tank 11.
- a trap pipe 12 for discharging the wastewater after the oil is separated, and a PCM tank 13 filled with a latent heat storage material composition capable of heat exchange with the oil-impregnated wastewater stored in the oil-impregnated wastewater storage tank 11.
- the oil / fat recovery system S composed of the grease interceptor 1, the oil / fat outflow prevention tank 2, and the oil / fat separation / recovery device 3, only the oil content can be recovered more efficiently and automatically from the oil-containing wastewater. That is, the oil / fat separation / recovery device 3 can efficiently recover the wastewater oil / fat from the grease interceptor 1 and the oil / fat outflow prevention tank 2.
- the recovered wastewater fats and oils can be used as energy as a biomass resource, and the biofuel produced from the wastewater fats and oils can be used for (a) diesel power generation, (b) fuel for boilers, incinerators, etc., and can be used as renewable energy. As a result of CO2 reduction, recycling and water purification.
- the oil separation system S consisting of SHASE-certified grease interceptor 1 + oil and fat outflow prevention tank 2 + oil and fat separation and recovery device 3 is introduced to ensure the appropriate capacity of the oil and fat outflow prevention tank 2 + the appropriateness of the entire system. Perform standardization to produce.
- the SHASE-certified grease interceptor 1 is installed at each store + a common oil / fat outflow prevention tank 2 + oil / fat separation / recovery device 3 is used, and the appropriate capacity of the oil / fat outflow prevention tank 2 and the oil / fat separation / recovery device 3 It is also possible to design the storage tank section 20 to 50 L in size and standardize it to produce the appropriateness of the entire oil and fat recovery system.
- the PCM tank is a plate-shaped PCM tank 6 filled with PCM inside, for example, a stainless steel plate-shaped container filled with PCM.
- the PCM to be filled is the same as that of the first embodiment.
- the plate-shaped PCM tank 6 is thrown into (the bottom) of the oil-impregnated wastewater storage tank 11 (bottom), so that the temperature of the high-temperature wastewater is low and the temperature of the wastewater is low, as in the grease interceptor 1 according to the first embodiment described above. Can be achieved.
- the plate-shaped PCM tank 6 according to the second embodiment is suitable for use in an FRP grease interceptor or an existing grease interceptor.
- test 1 normal GT (that is, conventional GT without PCM tank 13) test (test 1), ii) new GT (PCM tank only, no water supply pipe or no water supply pipe used) Test (Test 2), iii) Test (Test 3) of the new GT (PCM + water supply pipe).
- Test 2 normal GT (that is, conventional GT without PCM tank 13) test (test 1), ii) new GT (PCM tank only, no water supply pipe or no water supply pipe used) Test (Test 2), iii) Test (Test 3) of the new GT (PCM + water supply pipe).
- the test environment is designed so that the room temperature is 20 ° C, the inflow water volume is 85 L / min, the GT storage capacity is 60 L, and the heat exchange temperature of the PCM is 45 ° C.
- Test 1 Understanding the standard capacity at the time of high temperature drainage inflow by normal GT", and the inflow water temperature is 60 ° C.
- the test procedure is as follows: (1) Fill the normal GT with water and control it to 20 ° C, (2) Install a temperature logger near the inlet and outlet of the normal GT, (3) Inflow x 5 times, After that, let it cool. (4) In the above (3), measure the water temperature of the second tank (logger once / minute, actual measurement once / 10 minutes), (5) measure the water temperature to 40 ° C. If it falls below, the process ends.
- Test 2 The outline of Test 2 is "Understanding the capacity of the heat storage material when the high temperature wastewater flows in by the new GT", the inflow water temperature is 60 ° C, and the test equipment is the new GT (there is a PCM tank 13 and there is no cooling water to the water supply pipe). ..
- the test procedure is the same as in Test 1 described above.
- the results of the temperature change of the second tank in Test 2 are shown in Table 22 of FIG. 12 and Table 23 of FIG.
- Test 3 Understanding the heat storage material + cooling water capacity at the time of high temperature drainage inflow by the new GT", the inflow water temperature is 60 ° C, and the test equipment is the new GT (there is a PCM tank 13 and it is attached to the water supply pipe. With cooling water (8L / min)).
- the test procedure is as follows: (1) After the completion of test 2, add cooling water (8L / min), and (2) confirm that the heat storage material has returned to the normal state by judging the temperature of the heat storage material, etc., and (3) ) The following is the same as (1) to (5) of Test 1.
- the results of the temperature change of the second tank in Test 3 are shown in Table 24 of FIG. 14 and Table 25 of FIG.
- the time course of the temperature in these tests 1 to 3 is shown in the graph of FIG.
- the temperature change near the inflow port is 101,201,301
- the temperature change in the second tank is 102,202,302
- the temperature change near the outflow port is 103.,203,303.
- the time required for the temperature of the second tank to reach 40 ° C. or lower was 108 minutes in Test 1, 82 minutes in Test 2, and 87 minutes in Test 3.
- the new GT has a slower temperature rise in (i) GT when the high temperature drainage GT flows in: 14 ° C or more lower than the normal GT at the end of the first inflow.
- Table 26 of FIG. 17 shows the transition of the temperature change in the high-concentration wastewater test.
- the changes over time in the water temperature near the GT inflow port (° C), the water temperature near the BT inflow port (° C), and the water temperature near the BT outflow port (° C) are shown.
- the logger for water temperature measurement is once / minute, and the actual measurement is once / 10 minutes.
- the test procedure for the low-concentration drainage test is to replace the grease concentration of 5 g / L with the grease concentration of 0.3 g / L (a: 127.5 g) in the above-mentioned high-concentration drainage test procedures (5) to (10).
- Table 27 of FIG. 18 shows the transition of the temperature change in the low-concentration wastewater test.
- the changes over time in the water temperature near the GT inflow port (° C), the water temperature near the BT inflow port (° C), and the water temperature near the BT outflow port (° C) are shown.
- the logger for water temperature measurement is once / minute, and the actual measurement is once / 10 minutes.
- the amount of oil that sometimes flowed out was 1 g
- the amount of oil that remained in the BT (d 14.5 g)
- the amount of oil that remained in the BT at the end of the inflow was 90 g
- the amount of oil that remained after the fat separation and recovery device 3 was operated 14.5 g.
- the actual recovery rate of the oil / fat separation / recovery device 3 was 83.9%.
- the present invention is not limited to the configuration of the above embodiment, and various modifications can be made without changing the gist of the invention.
- the phase change temperature of the latent heat storage material filled in the PCM tank is not limited to 40 to 45 ° C., and it goes without saying that the phase change temperature can be appropriately changed by changing the composition of the PCM. stomach.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Sewage (AREA)
Abstract
グリース阻集器1は、上流側から流れ込んだ含油廃水が一時的に貯留される含油廃水貯留槽11と、含油廃水貯留槽11の下流側に接続され、油分が分離された後の廃水を排出するトラップ管12と、含油廃水貯留槽11に貯留する含油廃水との熱交換が可能な潜熱蓄熱材組成物が充填されるPCM槽13と、を備える。この構成により、グリース阻集器1は含油廃水からの油分流出を最少化できる。
Description
本発明は、含油廃水を排出する店舗などに設置されるグリース阻集器、及び含油廃水から油分を効率的に回収する油脂回収システムに関する。
飲食料理店、ファーストフード店、レストラン、ホテル、食品加工場などの小規模事業所における厨房廃水には、様々の水質汚濁物質が含まれている。このような廃水を何ら処理することなく排水すると、廃水中の油分などが排水管に付着して固まり、詰まらせたりする。その結果、合併処理槽や下水処理場での水の浄化処理を困難にし、また、環境に悪影響を及ぼし、法的規制を受けて、営業を続けることができなくなる事態ともなり得る。 そこで、油分や沈殿物、浮遊物などの固形分を含む廃水を排出事業所単位で処理する方法、装置が種々提案されている。
その方法の一つとして、例えば含油廃水をプールし、浮いている上層の油分を汲み出し、吸着剤で吸着してろ過する等により、廃水中の油分などを物理的に除去する方法、装置である。しかし、この方法、装置では、廃水(のプール)から悪臭が発生し、油分の分離、除去が不完全となりやすく、また、大型のシステム、設備が必要であった。
その他、最近の環境問題に対する社会の流れに対応して、含油廃水を排出する前記の各小規模事業所などにおいて採用可能な、効率的で経済的な処理技術として、含油廃水から油分や沈殿廃棄物を効率的に移送し除去して浄化する装置が開示されている(例えば特許文献1参照)。また、油センサーやデータ送受信手段を有する制御装置を備え、含油廃水から油分を効率的に回収する油分離・管理装置も開示されている(例えば、特許文献2参照)。
一般的に、含油廃水を一時的にプールする装置はグリース阻集器(又はグリーストラップ:Grease Trap)と呼ばれる。グリース阻集器は、排水に含まれる油脂分や残飯、野菜くずなどの残渣を分離・収集し、排水口や配水管を詰まらせたり、油分や残渣が下水に直接流れ込むのを阻止する。
含油廃水を生む事業者に対しては、グリース阻集器の設置は、建設基準法や自治体条例で義務づけられている。また、グリース阻集器の維持管理については、「給排水設備技術基準」や「空気調和・衛生工学会規格」で定められ、水質汚濁防止法、下水道法、食品衛生法、ビル管理法なども順守する必要がある。
そして、近年、2020年東京オリンピックや2025年大阪万博の開催に相まって、大手デベロッパーによる大型商業施設の開業や大手鉄道会社の駅構内における店舗開発が活発化している。商業施設内には多数の飲食テナントが入り、厨房には必ずグリース阻集器が設置されている。
しかしながら、現状のグリース阻集器には以下のような問題がある。すなわち、現在、商業施設内の店舗などに設置されているグリース阻集器では、シンクに溜まった水を一気に流した時など、流入する水量によって阻集器内の浮上油分が押し流され、下水に流出してしまう現象が発生する。特に、現在使用されているグリース阻集器のほとんどは、水深が5~15cm程度の浅型タイプであり、この浅型タイプのグリース阻集器は浮上油分が流出しやすい。この結果、現実問題として、グリース阻集器からの油分流出を原因とする配管詰りによる漏水事故が多発している。例えば、2015年3月には埼玉県大宮駅エキュートでも漏水事故が発生しており、この漏水事故の発生抑制や未然防止対策は、社会的課題となっている。
また、近年、地球温暖化の問題が深刻化しており、炭酸ガスやメタンガスのような温室効果ガスの削減が図られる共に、自然エネルギーや廃棄物を再利用した再生可能エネルギーが注目されている。飲食店や食品工場等から排出されるバイオマス資源である廃水油脂は、日本全国で年間30万トン以上もの量になり、全世界を勘案するとさらに膨大な量となる。そして、近年、汚泥として産廃処分されるしかなかった廃水油脂から、独自のバイオマス燃料を製造し、ディーゼル発電機でバイオマス発電を行うシステムが開発されている。このバイオマス発電システムを提供することでCO2削減、リサイクル、水質浄化をもたらすことができる。すなわち、飲食店や食品工場等から排出される廃水油脂を効率よく回収して、再生可能な新たなエネルギー源として利用する技術の確立は急務となっている。
本発明は、上記課題に鑑みてなされたものであり、含油廃水からの油分流出を最少化できるグリース阻集器を提供することを目的とする。また、このグリース阻集器を備え、含油廃水から油分だけを、より効率的に回収できる油脂回収システムを提供することをも目的とする。
上記目的を達成するために本発明は、含油廃水から油脂を分離するグリース阻集器であって、上流側から流れ込んだ含油廃水が一時的に貯留される含油廃水貯留槽と、前記含油廃水貯留槽の下流側に接続され、油分が分離された後の廃水を排出するトラップ管と、前記含油廃水貯留槽に貯留する含油廃水との熱交換が可能な潜熱蓄熱材(PCM: Phase Change Material)組成物が充填されるPCM槽と、を備えることを特徴とする。
このグリース阻集器において、前記含油廃水貯留槽は、上面が開口した略直方体形状を有し、前記PCM槽は、少なくとも前記含油廃水貯留槽の底面及び長側面を外側から囲むように配置され、垂直断面が凹形状の外枠体と、前記外枠体の長手方向の両端側において内方に延出するように形成された凹条面と、前記外枠体の上縁と前記含油廃水貯留槽の長側面との間に形成されたスリット状の開口を覆うために前記外枠体の上側面に取り付けられたカバー板と、を備え、前記PCM槽の潜熱蓄熱材は、前記含油廃水貯留槽と前記外枠体及び前記凹条面との間に形成される内部空間に充填されることが好ましい。
このグリース阻集器において、前記カバー板は、垂直断面が略L字形状となり、前記カバー板は、その上面の一端側にはPCMを注入するためのPCM注入口、他端側には給水のための給水口を備えることが好ましい。
このグリース阻集器において、前記グリース阻集器は、さらに、前記含油廃水貯留槽の外側に隣接するように配置された流水管を備えることが好ましい。
このグリース阻集器において、前記流水管は、前記PCM槽の内部空間に配置され、前記流水管は、側面視で凹形状を有して対向するように配置された一対のヘッダー管と、当該一対のヘッダー管の間において当該ヘッダー管とは直交する方向で複数並設された送水管と、から構成されることが好ましい。
このグリース阻集器において、前記PCM槽は、内部にPCMが充填された板状PCM槽であって、当該板状PCM槽は、前記含油廃水貯留槽内に配置されることが好ましい。
このグリース阻集器において、前記PCM槽に充填される潜熱蓄熱材には、40~45℃の範囲内で相変化する潜熱蓄熱材を用いることが好ましい。
上記課題を解決するために、本発明は、含油廃水から油脂を回収するための油脂回収システムであって、前記グリース阻集器と、前記グリース阻集器の有するトラップ管の下流側に配管を介して接続され、当該トラップ管からの廃水を一時的に再貯留する油脂流出防止槽と、前記グリース阻集器及び前記油脂流出防止槽の貯留された含油廃水の少なくとも一方から浮上油分を回収する油脂分離回収装置と、を備えることを特徴とする。
この油脂回収システムにおいて、前記油脂流出防止槽は、上面が開口した略直方体形状を有し、上流側の側面には前記配管と接続する配管接続口が形成され、下流側の側面には下水管に接続される排出管が配置されることが好ましい。
この油脂回収システムにおいて、前記油脂分離回収装置は、前記グリース阻集器に備わる含油廃水貯留槽又は前記油脂流出防止槽から含油廃水を吸入するスキーマ―と、前記スキーマ―で吸入した含油廃水を貯留し、当該水分離回収装置の内部に配置された油脂分離回収部と、前記油脂分離回収部において油脂が分離された廃水を前記含油廃水貯留槽又は前記油脂流出防止槽に排出する返送部と、を備えることが好ましい。
上記課題を解決するために、本発明は、含油廃水から油脂を分離するグリース阻集器に備わる含油廃水貯留槽内に配置され、内部にPCMが充填されることを特徴とする板状PCM槽である。
本発明に係る含油廃水から油脂を分離するグリース阻集器であって、上流側から流れ込んだ含油廃水が一時的に貯留される含油廃水貯留槽と、含油廃水貯留槽の下流側に接続され、油分が分離された後の廃水を排出するトラップ管と、含油廃水貯留槽に貯留する含油廃水との熱交換が可能な潜熱蓄熱材組成物が充填されるPCM槽と、を備える。この構成により、本発明に係るグリース阻集器では、含油廃水からの油分流出を最少化できる。
(実施の形態1)
本発明の実施の形態1に係るグリース阻集器及び当該グリース阻集器を備える油脂回収システムについて図1乃至図8を参照して説明する。厨房などより流れ込む高温の含油廃水はグリース阻集器の油水分離機能を阻害し、油分を下水管などへ流出させて配管詰まりを生じさせる主要な原因の一つとなる。そこで、本実施の形態1に係るグリース阻集器では、高温の含油廃水を効率的に低温度化する機能を付加し、油分流出の最少化を図るものである。
本発明の実施の形態1に係るグリース阻集器及び当該グリース阻集器を備える油脂回収システムについて図1乃至図8を参照して説明する。厨房などより流れ込む高温の含油廃水はグリース阻集器の油水分離機能を阻害し、油分を下水管などへ流出させて配管詰まりを生じさせる主要な原因の一つとなる。そこで、本実施の形態1に係るグリース阻集器では、高温の含油廃水を効率的に低温度化する機能を付加し、油分流出の最少化を図るものである。
最初に、本実施の形態1に係るグリース阻集器(GT:Grease Trap)の全体構造に関して図1及び図2を参照して説明する。グリース阻集器1は、含油廃水を一時的にプールする装置であり、排水に含まれる油脂分や残飯、野菜くずなどの残渣を分離・収集し、排水口や配水管を詰まらせ、油分や残渣が下水に直接流れ込むのを阻止する。
グリース阻集器1は、含油廃水から油脂を分離する装置であり、含油廃水貯留槽11とトラップ管12とPCM(Phase Change Material)槽13とを備える。含油廃水貯留槽11には、厨房などの上流側から流れ込んだ含油廃水が一時的に貯留される。トラップ管12は、含油廃水貯留槽11の下流側に接続され、油分が分離された後の廃水を排出する。PCM槽13には、含油廃水貯留槽11に貯留する含油廃水との熱交換が可能な潜熱蓄熱材組成物が充填される。
含油廃水貯留槽11は、図1に示すように、上面が開口した略直方体形状を有して、その内部空間には、生ゴミや残飯などを取り除く金網バスケットBが配置される第一槽1a、第一槽1aとは仕切り板11aで仕切られて水と油脂分を分離する第二槽1b、第二槽1bとは仕切り板11bで仕切られた第三槽1cを有する。第三槽1cにはトラップ管12が配置され、油脂分の少ない水が下流側に流される。グリース阻集器1は、例えば、横幅寸法1380(mm)×横幅寸法500(mm)×高さ寸法200(mm)程度の大きさを有し、容量は138Lを有する。
PCM槽13は、図3に示すように、外枠体13a、凹条面13a´及びカバー板13bを備える。外枠体13aは、少なくとも含油廃水貯留槽11の底面及び長側面を外側から囲むように配置され、垂直断面が凹形状となる。凹条面13a´は、外枠体13aの長手方向の両端側において内方に延出するように形成される。カバー板13bは、外枠体13aの上縁と含油廃水貯留槽11の長側面との間に形成されたスリット状の開口を覆うために外枠体13aの上側面に溶接などで取り付けられる。そして、PCM槽13の潜熱蓄熱材は、含油廃水貯留槽11と外枠体13a及び凹条面13a´との間に形成される内部空間に充填される。また、含油廃水貯留槽11は、外枠体13aの上面から嵌合される。
カバー板13bは、折り曲げ加工により垂直断面が略L字形状となり、その上面(一面)の一端側にはPCMを注入するためのPCM注入口13c、他端側には給水のための給水口13dを有する。PCM注入口13cや給水口13dにはソケットが用いられる。
PCM槽4の内部空間には、PCM注入口13cから潜熱蓄熱材組成物が充填される。この構成により、高温の含油廃水を素早く低温化することができる。ここで潜熱蓄熱材とは、物質の相変化に伴う熱の放出/吸収を利用した物質であり、融解点・凝固点(相転移温度)を向かえて固体・液体の状態に変化しているときに潜熱蓄熱材はほぼ一定の温度を保つ。また、潜熱蓄熱材は、常温下では水やコンクリートよりも何倍も大きな蓄熱量を保持できるという特性を有する。
特に、本実施の形態1においてPCM槽13の内部空間に充填される潜熱蓄熱材PCMは、主に40~45℃の範囲内で相変化する蓄熱材を用いることが好ましい。このことで、潜熱蓄熱材がグリース阻集器1の含油廃水貯留槽11に流入した含油廃水と熱交換し、含油廃水貯留槽を40~45℃に保って含油廃水貯留槽の温度上昇を抑えると共に、含油廃水を素早く低温化することができる。
潜熱蓄熱材はそれぞれ固有の相変化温度を有しており、製造工程において目的の温度に合わせるよう潜熱蓄熱材の融点調整剤などを調合して、相変化温度を調整できる。本実施の形態1に係るグリース阻集器1に用いる潜熱蓄熱材組成物は、例えば、主原料(実際に相変化して吸放熱する)として、硫酸ナトリウム10水塩、塩化カルシウム6水塩、炭酸ナトリウム1水塩、リン酸水素二ナトリウム10水塩、チオ硫酸ナトリウム5水塩、酢酸ナトリウム3水塩などの無機水和塩系や、パラフィンワックス、ポリエチレングリコールなどの有機材系を用いることができる。また、融点調整材(主原料が目的の温度で相変化するように調整する材料)としては、例えば、水、尿素、塩化アンモニウム、硫酸アンモニウム、臭化アンモニウム、塩化ナトリウム、塩化カリウム、臭化ナトリウムなどの1種若しくは2種以上を混合したものを用いることができる。さらに、過冷却防止材(確実に凝固点付近温度で結晶を析出させるための材料)としては、例えば、四ホウ酸ナトリウム、ピロリン酸ナトリウム、リン酸二ナトリウム、フッ化リチウム、塩化バリウム、塩化ストロンチウムなどの1種若しくは2種以上を混合させたものを用いることができる。さらに、相分離防止材(比重差による相の分離を防止するための材料)としては、例えば、ポリアクリル酸ナトリウム、ポリアクリルアミド、カルボキシメチルセルロース、アタパルジャイト、セピオライトなどの1種若しくは2種以上を混合させたものを用いることができる。
潜熱蓄熱材は、試験管レベルにおいて恒温器で応答実験を続けた場合、相変化10000回以上は劣化度合が1割未満となり、使用条件により異なるが、グリース阻集器1に備わるPCM槽13内に充填される潜熱蓄熱材は30年使用可能であると想定される。
次に、グリース阻集器1に備わる流水管に関して図4を参照しながら説明する。グリース阻集器1のPCM槽13の内部空間には、含油廃水貯留槽11の外側(ここでは底面と長側面)に隣接するように流水管14が配置される。流水管14は、図4に示すように、ヘッダー管14a及び送水管14bから構成される。ヘッダー管14bは、給水口13dに接続されて、水道水を複数の送水管14b(例えばフレキ管)にヘッダー方式で給水するため、側面視で凹形状を有して対向するように配置される。送水管14bは、ヘッダー管14aと接続され、一対のヘッダー管14aの間において当該ヘッダー管14aとは直交する方向で複数で並設される。一方のヘッダー管14aは給水側に、他方のヘッダー管14aは排水側に配置され、水道水などが流水管14を通っている間にグリース阻集器1の含油廃水貯留槽11の貯留している高温廃水によって温められた循環水(温水)が排水側の給水口13dから出水される。ここで、並設された送水管14b同士の間隔は例えば50mmであり、この構成により、送水管14b内部を流れる水道水を効率的に温水にすることができる。
なお、図4に示す給水管14を構成するヘッダー管14a及び送水管14bの配列は一例であり、熱交換効率が高く(表面積が大きいなど)送水ができる構造を有していればよい。またフレキ管を用いる場合、フレキ管の材質は、熱伝導率からアルミや銅、耐腐食性があるSUS(オーステナイト系)の304や316が好適である。フレキ管は、一般的に肉薄な製品が多く、熱交換材として利用も可能である。
次に、油脂流出防止槽2(BT:Binary Trap)の構造に関して図5乃至図7を参照しながら説明する。油脂流出防止槽2は、グリース阻集器1の有するトラップ管12の下流側に配管4を介して接続されて、トラップ管12からの廃水を一時的に再貯留する機能を有して、油分流出の防止を確実にする。油脂流出防止槽2は、マンホール5などの下方に位置されたグリース阻集器1と比較して小型の貯留槽であり、例えば、横幅寸法410(mm)×横幅寸法500(mm)×高さ寸法240(mm)程度の大きさを有し、容量は50Lを有する。本実施の形態1において、油脂流出防止槽2は、上面が開口した略直方体形状を有し、上流側の側面には配管4と接続する配管接続口2aが形成され、下流側の側面には下水管に接続される排出管2bが配置される。ここで、油脂流出防止槽2には残飯、野菜くずなどの残渣が流入しないため、排出管2bの口は斜め下方に向けられ、確実に廃水を下水管に送出する。
次に、本実施の形態1における油脂回収システムSに関して説明する。油脂回収システムSは、含油廃水から油脂を効率的に回収するためのシステムであって、グリース阻集器1と油脂流出防止槽2と図8に示す油脂分離回収装置3とから構成される。この油脂分離回収装置3の詳細に関して図8を参照しながら説明する。
油脂分離回収装置3(商品名:環吉君Jr(登録商標))は、既存のグリース阻集器1及び油脂流出防止槽2の少なくとも一方に後付けで設置して、浮上油分を回収する装置であり、グリース阻集器1などの性能を維持、長期化させる。油脂分離回収装置3は、排水量が多い時間帯は運転せずに、グリース阻集器1などの持っている阻集機能によって油分の流出を阻止し、排水量が少ない時間帯に間欠的に運転することで油分を回収する。油脂分離回収装置3は、少なくとも、(1)グリース阻集器1や油脂流出防止槽2内の浮上油分を浮上タイプのスキーマ31(吸水部)で吸引する、(2)油脂分離回収部32内で、比重差を利用して浮上分離する、(3)スキーマ31は効率的に油分を吸引するために、グリース阻集器1及び油脂流出防止槽2の水面付近に上向き開口の状態で設置され、グリース阻集器1及び油脂流出防止槽2の壁面に偏る浮上油分を吸水部に誘導するために、油水分離後の廃水はグリース阻集器1及び油脂流出防止槽2に返送(返送部33)する機能を有する。
具体的に油脂分離回収装置3の動作概要を説明する。図8において、モーターのスイッチオンによって、例えば含油廃水貯留槽11に排出された廃水が主に含油廃水貯留槽11内の水面を廻り、吸入口付近でじゃま板に当たって渦を巻き、(浮遊)廃油分の多い含油廃水を吸入部から効率的に吸入(スキーマ31)して、油水分離回収装置3の内部に配置される含油廃水導入油分離室に導入される。この際、油層は比重が水より軽いために上に浮いて、下層の廃水は縦仕切り板の切欠きを通って含油廃水導入油分離室から廃水室に移動する(油脂分離回収部32)。廃水が廃水室の側壁上部の廃水排出口に達すると、ポンプの吸引によって含油廃水貯留槽11に排出(返送部33)される循環となる。その結果、油脂分離回収部32では油が次第に蓄積されることになる。
なお、油脂分離回収部32において、油層が油センサー付近まで蓄積されて廃水層から油層に変わると、油センサーが「ON」となって油検知信号を出力して、自動的に予め設定された送信先に通知メッセージを送信してもよい。メッセージを受信した担当者は、各事業所に赴いて、含油廃水の循環を止めたのち、バキューム機器などを使用して、含油廃水からの油脂分離回収装置3の油脂分離回収部32に溜まっている油を回収できる。
以上の説明のように、本実施の形態に係るグリース阻集器1は、上流側から流れ込んだ含油廃水が一時的に貯留される含油廃水貯留槽11と、含油廃水貯留槽11の下流側に接続され、油分が分離された後の廃水を排出するトラップ管12と、含油廃水貯留槽11に貯留する含油廃水との熱交換が可能な潜熱蓄熱材組成物が充填されるPCM槽13と、を備える。この構成により、高温の含油廃水を効率的に低温度化(高温廃水の低温化)する機能を付加し、含油廃水からの油分流出を最少化(より好ましくは油分の流出率を10%未満)できる。この結果、グリース阻集器1により油分を起因とする配管詰まりを抑制し、漏水事故を減すことで、事故処理&水処理コストの削減、営業機会損失を防止する。
また、グリース阻集器1と油脂流出防止槽2と油脂分離回収装置3とから構成される油脂回収システムSを用いると、含油廃水から油分だけを、より効率的に且つ自動的に回収できる。すなわち、油脂分離回収装置3がグリース阻集器1及び油脂流出防止槽2から廃水油脂を効率的に回収することができる。この回収した廃水油脂はバイオマス資源としてエネルギー利用でき、廃水油脂から製造されたバイオ燃料は、(a)ディーゼル発電、(b)ボイラーや焼却炉等の燃料などでの利用が可能となり、再生可能エネルギーとしてCO2削減、リサイクル、水質浄化をもたらすことができる。
また、例えば、既存製品のグリース阻集器のみの場合、油分流出率60%、店舗の作業負担大、コストが高いなどの問題がある。既存製品のグリース阻集器に対して油脂分離回収装置を用いたとしても油分流出率30%、浅型GTに使用不能、コストを要する。一方、本実施の形態1に係る油脂回収システムを用いると油分流出率10%未満、浅型GTでも使用可能、コストの大幅な低減ができる。
さらに、商業施設や店舗の新規開店及びリニューアル時の設計段階からグリース阻集器1を組み込んでもらうため、製品の標準化を行う必要もある。例えば、個店別設置タイプではSHASE認定のグリース阻集器1+油脂流出防止槽2+油脂分離回収装置3の構成の油分分離システムSを導入し、油脂流出防止槽2の適正容量+システム全体の適正を生み出す標準化を行う。一方、複数店舗共同設置タイプではSHASE認定のグリース阻集器1は各店ごと設置+共同の油脂流出防止槽2+油脂分離回収装置3を用い、油脂流出防止槽2の適正容量、油脂分離回収装置3の貯留タンク部20~50Lサイズ設計、油脂回収システム全体適正を生み出す標準化を行うこともできる。
(実施の形態2)
本発明の実施の形態2に係るグリース阻集器について、図9を参照して説明する。なお、上記実施の形態1と同様の構成には同一の符号を付し、その詳細な説明は省略する(以下同じ)。
本発明の実施の形態2に係るグリース阻集器について、図9を参照して説明する。なお、上記実施の形態1と同様の構成には同一の符号を付し、その詳細な説明は省略する(以下同じ)。
本実施の形態2では、PCM槽は、内部にPCMが充填された板状PCM槽6であって、例えばステンレス製の板状容器にPCMを充填したものである。充填されるPCMは上記実施の形態1と同様である。使用方法としては、この板状PCM槽6を、含油廃水貯留槽内11(の底部)に投げ込み設置することで、上述した実施の形態1に係るグリース阻集器1と同様に、高温廃水の低温化を図ることができる。特に、本実施の形態2に係る板状PCM槽6は、FRP製グリース阻集器や既設のグリース阻集器への使用に適する。
<実験例1>
次に、上記実施の形態1に係るグリース阻集器1(以下GTと記載する)を用いた場合の、貯留槽11内の含油廃水の温度変化(高温廃水テスト)に関して検証する。なお、本実験は、空気調和衛生工学会(SHASE)の認定試験をベースに、認定試験装置と同じ試験設備&環境、及び認定試験条件を踏まえて実施するものである。
次に、上記実施の形態1に係るグリース阻集器1(以下GTと記載する)を用いた場合の、貯留槽11内の含油廃水の温度変化(高温廃水テスト)に関して検証する。なお、本実験は、空気調和衛生工学会(SHASE)の認定試験をベースに、認定試験装置と同じ試験設備&環境、及び認定試験条件を踏まえて実施するものである。
本実験では、i)通常GT(すなわちPCM槽13のない従来型のGT)でのテスト(試験1)、ii)新型GT(PCM槽のみ、給水管なし若しくは給水管の使用なし)の場合のテスト(試験2)、iii)新型GT(PCM+給水管)のテスト(試験3)となる。試験環境として室温は20度、流入水量は85L/分、GTの貯留容量は60L、PCMの熱交換温度は45℃として設計する。
試験1の概要は“通常GTによる高温排水流入時における基準能力の把握”であり、流入水温は60℃である。試験手順としては、(1)通常GTへ張り水を行い、20℃に制御する、(2)通常GTの流入口付近、流出口付近に温度ロガーを設置する、(3)流入×5回、その後、放冷する、(4)上記(3)中、第二槽の水温を測定する(ロガーは1回/分、実測は1回/10分)、(5)実測により、水温が40℃を下回ったら、終了とする。なお、試験1における第二槽の温度変化の結果を図10の表20及び図11の表21に示す。
試験2の概要は“新型GTによる高温排水流入時における蓄熱材能力の把握”であり、流入水温は60℃、試験装置は新型GT(PCM槽13があり給水管への冷却水はなし)である。試験手順は上述の試験1と同様となる。なお、試験2における第二槽の温度変化の結果を図12の表22及び図13の表23に示す。
試験3の概要は“新型GTによる高温排水流入時における蓄熱材+冷却水能力の把握”であり、流入水温は60℃であり、試験装置は新型GT(PCM槽13があり、給水管への冷却水あり(8L/min))である。試験手順は(1)試験2の終了後、冷却水を入れ(8L/min)、(2)蓄熱材の温度等の判断により、蓄熱材が通常の状態に戻ったことを確認し、(3)以下は試験1の(1)~(5)と同様となる。なお、試験3における第二槽の温度変化の結果を図14の表24及び図15の表25に示す。
そして、これら試験1~3における温度の経時変化を、図16のグラフに示す。流入口付近の温度変化は101,201,301、第二槽での温度変化は102,202,302、流出口付近での温度変化は103.,203,303である。本実験の結果、第二槽が40℃以下となるまでに要した時間は、試験1では108分、試験2では82分、試験3では87分であった。また、通常GT(試験1)と比較し、新型GTの方が、高温排水のGT流入時において(i)GT内の温度上昇が遅い:1回目流入終了時が通常GTよりも14℃以上低いこと、(ii)GT内の温度が早く下がる:通常GTより40分も早く45℃に下がったことが把握できる。上記の結果より、新型GTは通常GTに比較して貯留槽内の含油廃水の温度上昇が抑えられると共に、より早く高温廃水を低温化できることが確認できた。なお、本試験においてPCM槽13に実装したPCMは45℃で熱交換をするように設計製造したが、PCMの熱交換温度を40℃で設計製造し、実装することで、より一層の効果が期待できる。
<実験例2>
次に、油分流出(油分除去能力)試験を行った。この実験例2の概要は“新型GT+油脂流出防止槽(以下BTと記す)による油分除去能力の把握”であり、流入水温は40℃、試験装置は新型GT+BT+油脂分離回収装置、冷却水あり(8L/min)とした。ここでは、以下の高濃度排水テスト及び低濃度排水テストの2つを行った。
次に、油分流出(油分除去能力)試験を行った。この実験例2の概要は“新型GT+油脂流出防止槽(以下BTと記す)による油分除去能力の把握”であり、流入水温は40℃、試験装置は新型GT+BT+油脂分離回収装置、冷却水あり(8L/min)とした。ここでは、以下の高濃度排水テスト及び低濃度排水テストの2つを行った。
高濃度排水テストの試験手順としては、(1)上記の試験3終了後、冷却水を入れる(8L/min)、(2)蓄熱材の温度等の判断により、蓄熱材が通常の状態に戻ったことを確認する、(3)70回分のグリース29,619gをGTの2室に投入する、(4)新型GTの流入口付近、BT流入口付近、流出口付近に温度ロガーを設置する、(5)グリース濃度0g/L×流入5回、GTからの流出に油分なしを確認する、(6)グリース濃度 5g/L×流入5回(a: 85L×5g×5回=2125g)、(7)BTに油脂分離回収装置(登録商標:環吉君Jr).を取り付け、グリースを回収し、回収したグリース重量bを測定する、(8)BTから流出したグリース重量cを測定する、(9)BT内に残存したグリース重量dを測定する、(10)上記(6)~(8)中、水温を測定する(ロガーは1回/分、実測は1回/10分)、(11)計算という手順となる。ここでの計算は、BT流入グリース量:b+c+d、GTグリース除去率:(a-(b+c+d))/a、BTグリース除去率:(b+c)/(b+c+d)、油脂分離回収装置3での回収率:b/(b+c+d)である。
高濃度排水テストの温度変化の推移を図17の表26に示す。ここでは、GTの流入口付近水温(℃)、BT流入口付近水温(℃)、BT流出口付近水温(℃)の温度の経時変化を示す。水温測定のロガーは1回/分、実測は1回/10分となる。
高濃度排水テストの計算の結果は、70回分の油投入量29619g、高濃度油投入量(a=2125g)、油脂分離回収装置3で回収した油分量(b=42.4g(ここでは、下記の試験(低濃度排水テスト)の油脂分離回収装置3の実質の回収率から算出)、BTから流出した油分量(c=66g)、流入終了時にBTから流出した油分量65g、油脂分離回収装置3を稼働させた時に流出した油分量1g、BT内に残存した油分量(d=8.1g)、流入終了時にBT内に残存した油分量50.5g、油脂分離回収装置3を稼働させた後の残存した油分量8.1g、BT流入油量(b+c+d=116.5g)、GT油除去率(a-(b+c+d)/a=94.5%)、BT油除去率((b+d)/(b+c+d)=43.3%)、油脂分離回収装置3の回収率(b/(b+c+d)=36.4%、油脂分離回収装置3の実質の回収率83.9%であった。
低濃度排水テストの試験手順としては、上記高濃度排水テストの手順(5)~(10)において、グリース濃度 5g/L を グリース濃度 0.3g/Lに読み替える(a:127.5g)ものである。
低濃度排水テストの温度変化の推移を図18の表27に示す。ここでは、GTの流入口付近水温(℃)、BT流入口付近水温(℃)、BT流出口付近水温(℃)の温度の経時変化を示す。水温測定のロガーは1回/分、実測は1回/10分となる。
低濃度排水テストの計算結果は、70回分の油投入量29619g、低濃度油投入量(a=127.5g)、油脂分離回収装置3で回収した油分量(b=75.5g(試験5(低濃度)の油脂分離回収装置3の実質の回収率から算出)、BTから流出した油分量(C=89.5g)、流入終了時にBTから流出した油分量88.5g、油脂分離回収装置3を稼働させた時に流出した油分量1g、BT内に残存した油分量(d=14.5g)、流入終了時にBT内に残存した油分量90g、油脂分離回収装置3を稼働させた後の残存した油分量14.5g、BT流入油量(b+c+d=179.5g)、GT油除去率(a-(b+c+d)/a=-40.8%)、BT油除去率((b+d)/(b+c+d)=50.1%)、油脂分離回収装置3の回収率(b/(b+c+d)=42.1%、油脂分離回収装置3の実質の回収率83.9%であった。
以上の油分流出テストから、高濃度排水でも、低濃度排水でも、GTから流出する50%の油分を油分流出防止槽2(BT)でトラップでき、トラップした油分の80%以上を油脂分離回収装置3で回収できることが分かった。すなわち、上記実施の形態1に係る油脂回収システムSの機構で油分流出を最少化できることが明確となった。実際の現場ではグリース阻集器1からの油分流出量が相当に多いため、成果は飛躍的な成果となり得ることが予測される。
なお、本発明は、上記実施の形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、上記実施の形態においてPCM槽に充填される潜熱蓄熱材の相変化温度は40~45℃に限定されるものではなく、PCMの組成を変更することで相変化温度を適宜変更できることは言うまでもない。
1 グリース阻集器
2 油脂流出防止槽
2a 配管接続口
2b 排出管
3 油脂分離回収装置
4 配管
6 板状PCM槽
11 含油廃水貯留槽
12 トラップ管
13 PCM槽
13a 外枠体
13a´ 凹条面
13b カバー板
13c PCM注入口
13d 給水口
14 流水管
14a ヘッダー管
14b 送水管
31 スキーマ―
32 油脂分離回収部
33 返送部
2 油脂流出防止槽
2a 配管接続口
2b 排出管
3 油脂分離回収装置
4 配管
6 板状PCM槽
11 含油廃水貯留槽
12 トラップ管
13 PCM槽
13a 外枠体
13a´ 凹条面
13b カバー板
13c PCM注入口
13d 給水口
14 流水管
14a ヘッダー管
14b 送水管
31 スキーマ―
32 油脂分離回収部
33 返送部
Claims (11)
- 含油廃水から油脂を分離するグリース阻集器であって、
上流側から流れ込んだ含油廃水が一時的に貯留される含油廃水貯留槽と、
前記含油廃水貯留槽の下流側に接続され、油分が分離された後の廃水を排出するトラップ管と、
前記含油廃水貯留槽に貯留する含油廃水との熱交換が可能な潜熱蓄熱材(PCM: Phase Change Material)組成物が充填されるPCM槽と、を備えることを特徴とするグリース阻集器。 - 前記含油廃水貯留槽は、上面が開口した略直方体形状を有し、
前記PCM槽は、少なくとも前記含油廃水貯留槽の底面及び長側面を外側から囲むように配置され、垂直断面が凹形状の外枠体と、
前記外枠体の長手方向の両端側において内方に延出するように形成された凹条面と、
前記外枠体の上縁と前記含油廃水貯留槽の長側面との間に形成されたスリット状の開口を覆うために前記外枠体の上側面に取り付けられたカバー板と、を備え、
前記PCM槽の潜熱蓄熱材は、前記含油廃水貯留槽と前記外枠体及び前記凹条面との間に形成される内部空間に充填される、ことを特徴とする請求項1記載のグリース阻集器。 - 前記カバー板は、垂直断面が略L字形状となり、
前記カバー板は、その上面の一端側にはPCMを注入するためのPCM注入口、他端側には給水のための給水口を備える、ことを特徴とする請求項2記載のグリース阻集器。 - 前記グリース阻集器は、さらに、前記含油廃水貯留槽の外側に隣接するように配置された流水管を備える、ことを特徴とする請求項1乃至3の何れか一項に記載のグリース阻集器。
- 前記流水管は、前記PCM槽の内部空間に配置され、
前記流水管は、側面視で凹形状を有して対向するように配置された一対のヘッダー管と、当該一対のヘッダー管の間において当該ヘッダー管とは直交する方向で複数並設された送水管と、から構成されることを特徴とする請求項4記載のグリース阻集器。 - 前記PCM槽は、内部にPCMが充填された板状PCM槽であって、
当該板状PCM槽は、前記含油廃水貯留槽内に配置される、ことを特徴とする請求項1記載のグリース阻集器。 - 前記PCM槽に充填される潜熱蓄熱材には、40~45℃の範囲内で相変化する潜熱蓄熱材を用いる、ことを特徴とする請求項1乃至6の何れか一項に記載のグリース阻集器。
- 含油廃水から油脂を回収するための油脂回収システムであって、
前記請求項1に記載のグリース阻集器と、
前記グリース阻集器の有するトラップ管の下流側に配管を介して接続され、当該トラップ管からの廃水を一時的に再貯留する油脂流出防止槽と、
前記グリース阻集器及び前記油脂流出防止槽の貯留された含油廃水の少なくとも一方から浮上油分を回収する油脂分離回収装置と、を備えることを特徴とする油脂回収システム。 - 前記油脂流出防止槽は、上面が開口した略直方体形状を有し、
上流側の側面には前記配管と接続する配管接続口が形成され、下流側の側面には下水管に接続される排出管が配置される、ことを特徴とする請求項8記載の油脂回収システム。 - 前記油脂分離回収装置は、
前記グリース阻集器に備わる含油廃水貯留槽又は前記油脂流出防止槽から含油廃水を吸入するスキーマ―と、
前記スキーマ―で吸入した含油廃水を貯留し、当該水分離回収装置の内部に配置された油脂分離回収部と、
前記油脂分離回収部において油脂が分離された廃水を前記含油廃水貯留槽又は前記油脂流出防止槽に排出する返送部と、を備えることを特徴とする請求項8又は9記載の油脂回収システム。 - 含油廃水から油脂を分離するグリース阻集器に備わる含油廃水貯留槽内に配置され、内部にPCMが充填される、ことを特徴とする板状PCM槽。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020506849A JP6835342B1 (ja) | 2020-02-05 | 2020-02-05 | グリース阻集器、及び当該グリース阻集器を備える油脂回収システム |
PCT/JP2020/004440 WO2021156988A1 (ja) | 2020-02-05 | 2020-02-05 | グリース阻集器、及び当該グリース阻集器を備える油脂回収システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/004440 WO2021156988A1 (ja) | 2020-02-05 | 2020-02-05 | グリース阻集器、及び当該グリース阻集器を備える油脂回収システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021156988A1 true WO2021156988A1 (ja) | 2021-08-12 |
Family
ID=74661709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/004440 WO2021156988A1 (ja) | 2020-02-05 | 2020-02-05 | グリース阻集器、及び当該グリース阻集器を備える油脂回収システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6835342B1 (ja) |
WO (1) | WO2021156988A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0742991U (ja) * | 1993-12-28 | 1995-08-11 | 株式会社フジクラ | ケーブル冷却システム |
JP2004091636A (ja) * | 2002-08-30 | 2004-03-25 | Sumitomo Seika Chem Co Ltd | 蓄熱材料 |
JP2005218913A (ja) * | 2004-02-03 | 2005-08-18 | Kowa Shokusan Kk | グリース廃棄装置 |
WO2018181096A1 (ja) * | 2017-03-28 | 2018-10-04 | シャープ株式会社 | 保温具、保冷具、物流梱包容器、物流システムおよび物流方法 |
JP2019002237A (ja) * | 2017-06-19 | 2019-01-10 | 株式会社竹中工務店 | 油脂分阻集装置、及び、給排水システム |
-
2020
- 2020-02-05 JP JP2020506849A patent/JP6835342B1/ja active Active
- 2020-02-05 WO PCT/JP2020/004440 patent/WO2021156988A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0742991U (ja) * | 1993-12-28 | 1995-08-11 | 株式会社フジクラ | ケーブル冷却システム |
JP2004091636A (ja) * | 2002-08-30 | 2004-03-25 | Sumitomo Seika Chem Co Ltd | 蓄熱材料 |
JP2005218913A (ja) * | 2004-02-03 | 2005-08-18 | Kowa Shokusan Kk | グリース廃棄装置 |
WO2018181096A1 (ja) * | 2017-03-28 | 2018-10-04 | シャープ株式会社 | 保温具、保冷具、物流梱包容器、物流システムおよび物流方法 |
JP2019002237A (ja) * | 2017-06-19 | 2019-01-10 | 株式会社竹中工務店 | 油脂分阻集装置、及び、給排水システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021156988A1 (ja) | 2021-08-12 |
JP6835342B1 (ja) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bahadori et al. | Essentials of water systems design in the oil, gas, and chemical processing industries | |
CA2816918A1 (en) | A process and apparatus for recovering energy from wastewater | |
JP2015014088A (ja) | 地下排水ポンプ設備 | |
CN203360157U (zh) | 气浮与电动刮油相结合的隔油装置 | |
CN201400587Y (zh) | 伴热式浮动收油装置 | |
CN201400607Y (zh) | 酚水分离净化装置 | |
WO2021156988A1 (ja) | グリース阻集器、及び当該グリース阻集器を備える油脂回収システム | |
CN201865148U (zh) | 空气造水设备 | |
CN111302539B (zh) | 一种核电站用凝结水循环装置 | |
CN205740439U (zh) | 一种隔油池 | |
CN108395024B (zh) | 自控楼层内雨水杂水分流过滤消毒储存水箱 | |
CN201386031Y (zh) | 污水浮油隔离装置 | |
CN216998048U (zh) | 油水分离提升设备 | |
CN106995226A (zh) | 一种浮油收集系统及其收集方法 | |
CN206395878U (zh) | 一种油水分离器的进水口排渣装置 | |
CN203411445U (zh) | 一种含油污泥两级分离处理设备 | |
CN202220090U (zh) | 用于下水的油水分离器 | |
RU56892U1 (ru) | Устройство для очистки сточных вод | |
CN201180295Y (zh) | 厨房排污滤渣隔油器 | |
JP2014073819A (ja) | 船舶の機関室ビルジ処理システム | |
RU2549035C2 (ru) | Способ и контурная система для отбора тепловой энергии от отработанных вод | |
CN203269621U (zh) | 集成型全自动隔油提升一体化设备 | |
RU2321546C2 (ru) | Установка для очистки сточных вод в системах оборотного водоснабжения при мойке автотранспортных средств | |
JP6913526B2 (ja) | 油脂分阻集装置、及び、給排水システム | |
CN210485680U (zh) | 一种干熄焦锅炉底层集水井及干熄焦锅炉排水系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020506849 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20917473 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20917473 Country of ref document: EP Kind code of ref document: A1 |