WO2021156923A1 - 電力変換器の制御システム - Google Patents

電力変換器の制御システム Download PDF

Info

Publication number
WO2021156923A1
WO2021156923A1 PCT/JP2020/003983 JP2020003983W WO2021156923A1 WO 2021156923 A1 WO2021156923 A1 WO 2021156923A1 JP 2020003983 W JP2020003983 W JP 2020003983W WO 2021156923 A1 WO2021156923 A1 WO 2021156923A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
power
carrier wave
carrier
Prior art date
Application number
PCT/JP2020/003983
Other languages
English (en)
French (fr)
Inventor
一誠 深澤
雅博 木下
健太 山邉
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to US17/754,651 priority Critical patent/US11942874B2/en
Priority to PCT/JP2020/003983 priority patent/WO2021156923A1/ja
Priority to JP2021575116A priority patent/JP7359228B2/ja
Publication of WO2021156923A1 publication Critical patent/WO2021156923A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present invention relates to a power converter control system.
  • Patent Document 1 discloses a power conversion system. According to the power conversion system, the carrier phases of a plurality of power converters can be synchronized.
  • An object of the present invention is to provide a power converter control system capable of synchronizing the carrier phases of a plurality of power converters with a simpler configuration.
  • the power converter control system is provided for each of a plurality of power converters connected between each of the plurality of DC power supplies and a common AC power supply, and is based on the AC voltage of the AC power supply. It is provided with a plurality of carrier wave generators, each of which generates a carrier wave.
  • the carrier wave is generated based on the AC voltage of the common AC power supply. Therefore, it is possible to synchronize the carrier phases of a plurality of power converters with a simpler configuration.
  • FIG. 5 is a configuration diagram of a control device to which the control system of the power converter according to the first embodiment is applied.
  • FIG. 5 is a conceptual diagram of a main part of a control device to which the control system of the power converter according to the first embodiment is applied.
  • FIG. 5 is a hardware configuration diagram of a control device to which the control system of the power converter according to the first embodiment is applied.
  • FIG. 5 is a conceptual diagram of a main part of a control device to which the control system of the power converter according to the second embodiment is applied.
  • FIG. 1 is a configuration diagram of a power system to which the control system of the power converter according to the first embodiment is applied.
  • a plurality of DC power supplies 1 are provided outdoors.
  • the DC power supply 1 is a solar cell.
  • four DC power supplies 1 are shown.
  • the AC power supply 2 is operated by an electric power company or the like.
  • the distributed power supply conversion system 3 is connected between the plurality of DC power supplies 1 and the AC power supply 2.
  • the distributed power conversion system 3 includes a plurality of power converters 4, a plurality of DC side circuit breakers 5, a plurality of AC side circuit breakers 7, an AC power supply side circuit breaker 8, and a control system 9.
  • Each input unit of the plurality of power converters 4 is connected to each output unit of the plurality of DC power supplies 1.
  • Each of the plurality of power converters 4 is provided so as to be able to convert DC power from each of the plurality of DC power sources 1 into AC power.
  • Each of the plurality of DC side circuit breakers 5 is connected between each of the plurality of DC power supplies 1 and each of the plurality of power converters 4.
  • Each of the plurality of DC side circuit breakers 5 converts each of the plurality of DC power supplies 1 and a plurality of powers when an overcurrent occurs between each of the plurality of DC power supplies 1 and each of the plurality of power converters 4. It is provided so that the connection with each of the vessels 4 can be cut off.
  • Each of the plurality of AC side circuit breakers 7 is connected between each of the plurality of power converters 4 and the AC power supply 2.
  • Each of the plurality of AC side circuit breakers 7 is located between each of the plurality of power converters 4 and each of the plurality of transformers 6 when an overcurrent occurs on each AC side of the plurality of power converters 4. It is provided so that the connection can be cut off.
  • the AC power supply side circuit breaker 8 is provided between the plurality of AC power supply side circuit breakers 7 and the AC power supply 2.
  • the AC power supply side circuit breaker 8 can cut off the connection between the plurality of AC power supply side circuit breakers 7 and the AC power supply 2 when an overcurrent occurs between the plurality of AC power supply side circuit breakers 7 and the AC power supply 2. It will be provided.
  • the control system 9 includes a plurality of control devices 10. Each of the plurality of control devices 10 is provided in each of the plurality of power converters 4. Each of the plurality of control devices 10 includes a current control phase generation unit 11 and a carrier wave generation unit 12.
  • the current control phase generation unit 11 generates the calculation result of the current control AC voltage phase for the corresponding power converter 4 based on the AC voltage of the AC power supply 2. For example, the current control phase generator 11 calculates the d-axis voltage and the q-axis voltage based on the U-phase voltage, the V-phase voltage, and the W-phase voltage of the AC power supply 2, and then corresponds to the power converter 4. The calculation results of the AC voltage phase for current control are generated respectively.
  • the carrier wave generation unit 12 generates a calculation result of the AC voltage phase for carrier wave generation for the corresponding power converter 4 based on the AC voltage of the AC power supply 2 separately from the current control phase generation unit 11.
  • the carrier wave generation unit 12 generates a carrier wave based on the calculation result of the AC voltage phase. For example, the carrier wave generator 12 calculates the d-axis voltage and the q-axis voltage based on the U-phase voltage, the V-phase voltage, and the W-phase voltage of the AC power supply 2, and then the carrier wave for the corresponding power converter 4.
  • the calculation result of the AC voltage phase for generation is generated respectively.
  • the carrier wave generation unit 12 generates a carrier wave so that the phase is synchronized with the calculation result of the AC voltage phase for carrier wave generation.
  • FIG. 2 is a diagram for explaining an example of a method of generating a carrier wave by the control system of the power converter according to the first embodiment.
  • ⁇ S is the calculation result of the AC voltage phase for carrier wave generation.
  • ⁇ s is a periodic signal that changes in a sawtooth pattern between 0 and 2 ⁇ during the AC power supply period T s with time.
  • the carrier wave c is calculated by the following equation (1).
  • N is a natural number.
  • mod (N ⁇ s / (2 ⁇ ), 1) represents the remainder of N ⁇ s / (2 ⁇ ) divided by 1.
  • mod (N ⁇ s / (2 ⁇ ), 1) satisfies the following equation (2).
  • c becomes a sawtooth wave that changes with time between 0 and 1.
  • the period of c is 1/N of the period of the AC voltage.
  • a method of generating a carrier wave in which c is synchronized with the phase of the AC voltage and becomes a sawtooth wave having a period of 1 / N is described, but the phase is synchronized with the AC voltage and the period is 1 / N. You may calculate c so that it becomes a triangular wave.
  • FIG. 3 is a configuration diagram of a power converter to which the power converter control system according to the first embodiment is applied.
  • the power converter 4 includes a U-phase upper switching element 13a, a U-phase lower switching element 13b, a V-phase upper switching element 14a, a V-phase lower switching element 14b, and a W-phase upper switching element 15a. And a W-phase lower switching element 15b.
  • U-phase upper switching element 13a performs a switching operation based on the gate signal g Stay up-.
  • the U-phase lower switching element 13b performs a switching operation based on the gate signal gun.
  • the V-phase upper switching element 14a performs a switching operation based on the gate signal g bp.
  • the V-phase lower switching element 14b performs a switching operation based on the gate signal gvn.
  • the W-phase upper switching element 15a performs a switching operation based on the gate signal g wp.
  • the W-phase lower switching element 15b performs a switching operation based on the gate signal g wn.
  • FIG. 4 is a configuration diagram of a control device to which the control system of the power converter according to the first embodiment is applied.
  • the control device 10 includes a power control unit 16, a first inverse dq conversion unit 17, a U-phase proportional control unit 18, a V-phase proportional control unit 19, and a W-phase proportional control unit 20.
  • the d-axis low-pass filter unit 21, the q-axis low-pass filter unit 22, and the second inverse dq conversion unit 23 are provided.
  • the power control unit 16 calculates a d-axis current command value i d * and the q-axis current command value q d * based on the active power P of the AC power source 2 and the reactive power Q.
  • the first inverse dq conversion unit 17 converts the d-axis current command value id * from the power control unit 16 and the q-axis current command value i q * into the current control phase ⁇ from the current control phase generation unit 11. Based on this, the U-phase current command value i u * , the V-phase current command value i v *, and the W current command value i w * are calculated.
  • the U-phase proportional control unit 18 performs proportional control with respect to the deviation between the U-phase current command value i u * from the first inverse dq conversion unit 17 and the U-phase current actual value i u of the AC power supply 2.
  • V-phase proportional control unit 19 performs proportional control on the deviation between the V-phase current command value i v * and the AC power supply 2 V-phase actual current value i v from the first inverse dq converter 17.
  • the W-phase proportional control unit 20 performs proportional control with respect to the deviation between the W-phase current command value i w * from the first inverse dq conversion unit 17 and the W-phase current actual value i w of the AC power supply 2.
  • the d-axis low-pass filter unit 21 applies a low-pass filter to the actual d-axis voltage value Vd of the AC power supply 2.
  • the q-axis low-pass filter unit 22 applies a low-pass filter to the actual q-axis voltage value Vq of the AC power supply 2.
  • the second inverse dq conversion unit 23 is used for the actual d-axis voltage value from the d-axis low-pass filter unit 21, the actual q-axis voltage value from the q-axis low-pass filter unit 22, and the current control from the current control phase generation unit 11. calculates the U-phase voltage reference value v uf the V-phase voltage reference value v vf and W-phase voltage reference value v wf on the basis of the phase theta.
  • the U-phase voltage command value v u * is generated by adding the U-phase voltage reference value v uf from the second inverse dq inverse conversion unit and the output value of the U-phase proportional control unit 18.
  • the V-phase voltage command value v v * is generated by adding the V-phase voltage reference value v vf from the second inverse dq inverse conversion unit and the output value of the V-phase proportional control unit 19.
  • the W-phase voltage command value v w * is generated by adding the W-phase voltage reference value v wf from the second inverse dq inverse conversion unit and the output value of the W-phase proportional control unit 20.
  • the control device 10 includes a U-phase comparison unit 24, a U-phase logic denial unit 25, and a U-phase dead time generation unit 26.
  • the U-phase comparison unit 24 compares the U-phase voltage command value v u * with the value of the carrier wave based on the carrier phase generated in the carrier wave generation unit 12.
  • the U-phase logic denial unit 25 inverts the comparison result of the U-phase comparison unit 24.
  • the U-phase dead time generation unit 26 outputs a gate signal gun when the U-phase voltage command value v u * is smaller than the value of the carrier wave. In this case, U-phase dead time generator 26 is provided with a dead time switching between outputs of the gate signal g un gate signal g Stay up-.
  • the control device 10 includes a V-phase comparison unit 27, a V-phase logic denial unit 28, and a V-phase dead time generation unit 29.
  • V-phase comparison unit 27 compares the value of the carrier wave based on the V-phase voltage value v v * and the generated carrier phase in the carrier wave generating unit 12.
  • the V-phase logic denial unit 28 inverts the comparison result of the V-phase comparison unit 27.
  • the V-phase dead time generation unit 29 outputs a gate signal g bp when the V-phase voltage command value v v * is larger than the value of the carrier wave.
  • the V-phase dead time generation unit 29 outputs a gate signal g vn when the V-phase voltage command value v v * is smaller than the value of the carrier wave.
  • V-phase dead time generator 29 is provided with a dead time switching between outputs of the gate signal g vn of the gate signal g vp.
  • the control device 10 includes a W phase comparison unit 30, a W phase logic denial unit 31, and a W phase dead time generation unit 32.
  • the W phase comparison unit 30 compares the W phase voltage command value v w * with the value of the carrier wave based on the carrier phase generated in the carrier wave generation unit 12.
  • the W-phase logic denial unit 31 inverts the comparison result of the W-phase comparison unit 30.
  • the W-phase dead time generation unit 32 outputs a gate signal g wp when the W-phase voltage command value v w * is larger than the value of the carrier wave.
  • the W-phase dead time generation unit 32 outputs a gate signal g wn when the W-phase voltage command value v w * is smaller than the value of the carrier wave.
  • the W-phase dead time generation unit 32 provides a dead time for switching between the output of the gate signal g wp and the output of the gate signal g wn.
  • FIG. 5 is a conceptual diagram of a main part of a control device to which the control system of the power converter according to the first embodiment is applied.
  • the current control phase generation unit 11 includes a current control dq conversion unit 33, a current control filter unit 34, and a current control PLL control unit 35.
  • the current control dq conversion unit 33 converts the AC voltage of the AC power supply 2 into dq.
  • the current control filter unit 34 filters the AC voltage converted by the current control dq conversion unit 33.
  • the current control PLL control unit 35 generates a current control phase based on the AC voltage filtered by the current control filter unit 34. The phase for current control is fed back to the dq conversion unit.
  • the carrier wave generation unit 12 includes a carrier dq conversion unit 36, a carrier filter unit 37, and a carrier PLL control unit 38.
  • the carrier dq conversion unit 36 converts the AC voltage of the AC power supply 2 into dq.
  • the carrier filter unit 37 filters the AC voltage converted by the carrier dq conversion unit 36.
  • the carrier PLL control unit 38 generates a calculation result of the AC voltage phase for the carrier based on the AC voltage filtered by the carrier filter unit 37. The calculation result of the AC voltage phase for the carrier is fed back to the dq conversion unit.
  • the carrier wave is generated based on the AC voltage of the common AC power supply 2.
  • the phase of each carrier wave is synchronized with the phase of a common AC voltage.
  • the phases of the carrier waves are synchronized.
  • communication between the control devices corresponding to the respective power converters 4 is not required. Therefore, the carrier phases of the plurality of power converters 4 can be synchronized with a simpler and cheaper configuration. As a result, cross current can be prevented between the plurality of power converters 4.
  • the calculation result of the AC voltage phase for carrier wave generation may be generated after applying a slower filter to the AC voltage of the AC power supply 2. In this case, it is possible to minimize the influence of changes in the phase, frequency, amplitude, etc. of the AC power supply 2. As a result, even if a transient difference occurs in the observation result of the AC voltage of the AC power supply 2 among the plurality of power converters 4 due to the disturbance of the AC power supply 2, the plurality of power converters 4 The carrier phase can be kept in sync. Further, even if the frequency, voltage, etc. of the AC power supply 2 fluctuate temporarily, a stable carrier wave can be generated for a certain period of time.
  • the calculation result of the AC voltage phase for current control may be generated after applying a faster filter to the AC voltage of the AC power supply 2.
  • the calculation result of the AC voltage phase for current control is filtered with a speed higher than that for generating the calculation result of the AC voltage phase for carrier wave generation on the AC voltage of the AC power supply 2. Just generate it.
  • the current controllability can be improved. As a result, it is possible to quickly follow changes in the phase, frequency, and the like of the AC power supply 2.
  • FIG. 6 is a hardware configuration diagram of a control device to which the control system of the power converter according to the first embodiment is applied.
  • Each function of the control device 10 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuit includes at least one dedicated hardware 200.
  • each function of the control device 10 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of the software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the control device 10 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, or the like.
  • the processing circuit comprises at least one dedicated hardware 200
  • the processing circuit may be implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • NS each function of the control device 10 is realized by a processing circuit.
  • each function of the control device 10 is collectively realized by a processing circuit.
  • a part may be realized by the dedicated hardware 200, and the other part may be realized by software or firmware.
  • the function of the current control phase generation unit 11 is realized by a processing circuit as dedicated hardware 200, and at least one processor 100a has at least one memory for functions other than the function of the current control phase generation unit 11. It may be realized by reading and executing the program stored in 100b.
  • the processing circuit realizes each function of the control device 10 by hardware 200, software, firmware, or a combination thereof.
  • FIG. 7 is a conceptual diagram of a main part of a control device to which the control system of the power converter according to the second embodiment is applied.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
  • the carrier wave generation unit 12 generates a calculation result of the AC voltage phase for carrier wave generation by correcting the current control phase generated by the current control phase generation unit 11. do.
  • the carrier wave generation unit 12 includes a carrier zero cross detection unit 39, a carrier proportional control unit 40, and a carrier filter unit 41.
  • the carrier zero cross detection unit 39 detects the zero cross point in the AC voltage of the AC power supply 2.
  • the carrier proportional control unit 40 calculates the correction amount of the carrier phase based on the detection result of the zero cross point by the carrier zero cross detection unit 39 and the carrier wave.
  • the carrier filter unit 41 filters the calculation result of the AC voltage phase for current control generated by the current control PLL control unit 35.
  • the calculation result of the AC voltage phase for carrier wave generation is generated by adding the correction amount from the carrier proportional control unit 40 to the calculation result of the AC voltage phase filtered by the carrier filter.
  • the carrier wave generation unit 12 generates the carrier phase by correcting the current control phase generated by the current control phase generation unit 11. Therefore, as in the first embodiment, the carrier phases of the plurality of power converters 4 can be synchronized with a simpler and cheaper configuration. As a result, cross current can be prevented between the plurality of power converters 4.
  • control system of the power converter according to the present invention can be used for the power system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

より簡易な構成で、複数の電力変換器のキャリア位相を同期させることができる電力変換器の制御システムを提供する。電力変換器の制御システム(9)は、複数の直流電源(1)のそれぞれと共通の交流電源(2)との間に接続された複数の電力変換器(4)に対してそれぞれ設けられ、前記交流電源の交流電圧に基づいてキャリア波をそれぞれ生成する、複数のキャリア波生成部(12)、を備えた。当該構成によれば、より簡易な構成で、複数の電力変換器のキャリア位相を同期させることができる。

Description

電力変換器の制御システム
 この発明は、電力変換器の制御システムに関する。
 特許文献1は、電力変換システムを開示する。当該電力変換システムによれば、複数の電力変換器のキャリア位相を同期させることができる。
日本特開2019-24300号公報
 しかしながら、特許文献1に記載の電力変換システムにおいては、複数の電力変換器をそれぞれ制御する複数の制御装置の間で同期信号を通信する必要がある。このため、電力変換システムの構成が複雑になる。
 この発明は、上述の課題を解決するためになされた。この発明の目的は、より簡易な構成で、複数の電力変換器のキャリア位相を同期させることができる電力変換器の制御システムを提供することである。
 この発明に係る電力変換器の制御システムは、複数の直流電源のそれぞれと共通の交流電源との間に接続された複数の電力変換器に対してそれぞれ設けられ、前記交流電源の交流電圧に基づいて、キャリア波をそれぞれ生成する複数のキャリア波生成部、を備えた。
 この発明によれば、複数の電力変換器のそれぞれにおいて、キャリア波は、共通の交流電源の交流電圧に基づいて生成される。このため、より簡易な構成で、複数の電力変換器のキャリア位相を同期させることができる。
実施の形態1における電力変換器の制御システムが適用される電力システムの構成図である。 実施の形態1における電力変換器の制御システムによるキャリア波の生成方法の一例を説明するための図である。 実施の形態1における電力変換器の制御システムが適用される電力変換器の構成図である。 実施の形態1における電力変換器の制御システムが適用される制御装置の構成図である。 実施の形態1における電力変換器の制御システムが適用される制御装置の要部の概念図である。 実施の形態1における電力変換器の制御システムが適用される制御装置のハードウェア構成図である。 実施の形態2における電力変換器の制御システムが適用される制御装置の要部の概念図である。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1は実施の形態1における電力変換器の制御システムが適用される電力システムの構成図である。
 図1の電力システムにおいて、複数の直流電源1は、屋外に設けられる。例えば、直流電源1は、太陽電池である。図1においては、4台の直流電源1が図示される。交流電源2は、電力会社等により運用される。分散電源用変換システム3は、複数の直流電源1と交流電源2との間に接続される。
 分散電源用変換システム3は、複数の電力変換器4と複数の直流側遮断器5と複数の交流側遮断器7と交流電源側遮断器8と制御システム9とを備える。
 複数の電力変換器4の各々の入力部は、複数の直流電源1の各々の出力部に接続される。複数の電力変換器4の各々は、複数の直流電源1の各々からの直流電力を交流電力に変換し得るように設けられる。
 複数の直流側遮断器5の各々は、複数の直流電源1の各々と複数の電力変換器4の各々との間に接続される。複数の直流側遮断器5の各々は、複数の直流電源1の各々と複数の電力変換器4の各々との間において過電流が発生した際に複数の直流電源1の各々と複数の電力変換器4の各々との間の接続を遮断し得るように設けられる。
 複数の交流側遮断器7の各々は、複数の電力変換器4の各々と交流電源2との間に接続される。複数の交流側遮断器7の各々は、複数の電力変換器4の各々の交流側において過電流が発生した際に複数の電力変換器4の各々と複数の変圧器6の各々との間の接続を遮断し得るように設けられる。
 交流電源側遮断器8は、複数の交流側遮断器7と交流電源2との間に設けられる。交流電源側遮断器8は、複数の交流側遮断器7と交流電源2との間において過電流が発生した際に複数の交流側遮断器7と交流電源2との接続を遮断し得るように設けられる。
 制御システム9は、複数の制御装置10を備える。複数の制御装置10の各々は、複数の電力変換器4の各々に設けられる。複数の制御装置10の各々は、電流制御用位相生成部11とキャリア波生成部12とを備える。
 電流制御用位相生成部11は、交流電源2の交流電圧に基づいて、対応した電力変換器4に対する電流制御用の交流電圧位相の計算結果をそれぞれ生成する。例えば、電流制御用位相生成部11は、交流電源2のU相電圧とV相電圧とW相電圧とに基づいてd軸電圧とq軸電圧とを算出した上で対応した電力変換器4に対する電流制御用の交流電圧位相の計算結果をそれぞれ生成する。
 キャリア波生成部12は、電流制御用位相生成部11とは別に、交流電源2の交流電圧に基づいて、対応した電力変換器4に対するキャリア波生成用の交流電圧位相の計算結果を生成する。キャリア波生成部12は、交流電圧位相の計算結果に基づいて、キャリア波を生成する。例えば、キャリア波生成部12は、交流電源2のU相電圧とV相電圧とW相電圧とに基づいてd軸電圧とq軸電圧とを算出した上で対応した電力変換器4に対するキャリア波生成用の交流電圧位相の計算結果をそれぞれ生成する。キャリア波生成部12は、キャリア波生成用の交流電圧位相の計算結果に、その位相が同期するようにキャリア波を生成する。
 次に、図2を用いて、キャリア波の生成方法の一例を説明する。
 図2は実施の形態1における電力変換器の制御システムによるキャリア波の生成方法の一例を説明するための図である。
 図2おいて、θSは、キャリア波生成用の交流電圧位相の計算結果である。θは、時間とともに交流電源周期Tの間に0から2πの間でノコギリ波状に変化する周期信号となる。キャリア波cは、次の(1)式により計算される。
c=mod(Nθs/(2π)、1)   (1)
 ここで、Nは自然数である。mod(Nθs/(2π)、1)は、Nθs/(2π)を1で割った余りを表す。mod(Nθs/(2π)、1)は、次の(2)式を満たす。
0≦mod(Nθs/(2π)、1)<1   (2)
 このとき、cは、0から1の間で時間とともに変化するノコギリ波となる。cの周期は、交流電圧の周期のN分の1となる。また、θS=0となる位相において、c=0となる。すなわち、cの位相は、交流電圧の位相に同期する。ここでは、cが交流電圧の位相の同期し、周期がN分の1となるノコギリ波となるキャリア波の生成方法を説明したが、交流電圧の位相に同期し、周期がN分の1となる三角波となるようにcを計算してもよい。
 次に、図3を用いて、電力変換器4の概要を説明する。
 図3は実施の形態1における電力変換器の制御システムが適用される電力変換器の構成図である。
 図3に示されるように、電力変換器4は、U相上側スイッチング素子13aとU相下側スイッチング素子13bとV相上側スイッチング素子14aとV相下側スイッチング素子14bとW相上側スイッチング素子15aとW相下側スイッチング素子15bとを備える。
 U相上側スイッチング素子13aは、ゲート信号gupに基づいてスイッチング動作を行う。U相下側スイッチング素子13bは、ゲート信号gunに基づいてスイッチング動作を行う。V相上側スイッチング素子14aは、ゲート信号gvpに基づいてスイッチング動作を行う。V相下側スイッチング素子14bは、ゲート信号gvnに基づいてスイッチング動作を行う。W相上側スイッチング素子15aは、ゲート信号gwpに基づいてスイッチング動作を行う。W相下側スイッチング素子15bは、ゲート信号gwnに基づいてスイッチング動作を行う。
 次に、図4を用いて、ゲート信号の生成方法を説明する。
 図4は実施の形態1における電力変換器の制御システムが適用される制御装置の構成図である。
 図4の(a)に示されるように、制御装置10は、電力制御部16と第1逆dq変換部17とU相比例制御部18とV相比例制御部19とW相比例制御部20とd軸ローパスフィルタ部21とq軸ローパスフィルタ部22と第2逆dq変換部23とを備える。
 電力制御部16は、交流電源2の有効電力Pと無効電力Qとに基づいてd軸電流指令値i とq軸電流指令値q とを算出する。第1逆dq変換部17は、電力制御部16からのd軸電流指令値i とq軸電流指令値i と電流制御用位相生成部11からの電流制御用の位相θとに基づいてU相電流指令値i とV相電流指令値i とW電流指令値i とを算出する。
 U相比例制御部18は、第1逆dq変換部17からのU相電流指令値i と交流電源2のU相電流実績値iとの偏差に対して比例制御を行う。V相比例制御部19は、第1逆dq変換部17からのV相電流指令値i と交流電源2のV相電流実績値iとの偏差に対して比例制御を行う。W相比例制御部20は、第1逆dq変換部17からのW相電流指令値i と交流電源2のW相電流実績値iとの偏差に対して比例制御を行う。
 d軸ローパスフィルタ部21は、交流電源2のd軸電圧実績値Vに対してローパスフィルタを掛ける。q軸ローパスフィルタ部22は、交流電源2のq軸電圧実績値Vに対してローパスフィルタを掛ける。
 第2逆dq変換部23は、d軸ローパスフィルタ部21からのd軸電圧実績値とq軸ローパスフィルタ部22からのq軸電圧実績値と電流制御用位相生成部11からの電流制御用の位相θとに基づいてU相電圧基準値vufとV相電圧基準値vvfとW相電圧基準値vwfとを算出する。
 U相電圧指令値v は、第2逆dq逆変換部からのU相電圧基準値vufとU相比例制御部18の出力値とを加算することで生成される。V相電圧指令値v は、第2逆dq逆変換部からのV相電圧基準値vvfとV相比例制御部19の出力値とを加算することで生成される。W相電圧指令値v は、第2逆dq逆変換部からのW相電圧基準値vwfとW相比例制御部20の出力値とを加算することで生成される。
 図4の(b)に示されるように、制御装置10は、U相比較部24とU相論理否定部25とU相デッドタイム生成部26とを備える。
 U相比較部24は、U相電圧指令値v とキャリア波生成部12に生成されたキャリア位相に基づいたキャリア波の値とを比較する。U相論理否定部25は、U相比較部24の比較結果を反転する。U相デッドタイム生成部26は、U相電圧指令値v がキャリア波の値よりも大きい場合にゲート信号gupを出力する。U相デッドタイム生成部26は、U相電圧指令値v がキャリア波の値よりも小さい場合にゲート信号gunを出力する。この際、U相デッドタイム生成部26は、ゲート信号gupの出力とゲート信号gunの出力との切り替えにデッドタイムを設ける。
 図4の(c)に示されるように、制御装置10は、V相比較部27とV相論理否定部28とV相デッドタイム生成部29とを備える。
 V相比較部27は、V相電圧指令値v とキャリア波生成部12に生成されたキャリア位相に基づいたキャリア波の値とを比較する。V相論理否定部28は、V相比較部27の比較結果を反転する。V相デッドタイム生成部29は、V相電圧指令値v がキャリア波の値よりも大きい場合にゲート信号gvpを出力する。V相デッドタイム生成部29は、V相電圧指令値v がキャリア波の値よりも小さい場合にゲート信号gvnを出力する。この際、V相デッドタイム生成部29は、ゲート信号gvpの出力とゲート信号gvnの出力との切り替えにデッドタイムを設ける。
 図4の(d)に示されるように、制御装置10は、W相比較部30とW相論理否定部31とW相デッドタイム生成部32とを備える。
 W相比較部30は、W相電圧指令値v とキャリア波生成部12に生成されたキャリア位相に基づいたキャリア波の値とを比較する。W相論理否定部31は、W相比較部30の比較結果を反転する。W相デッドタイム生成部32は、W相電圧指令値v がキャリア波の値よりも大きい場合にゲート信号gwpを出力する。W相デッドタイム生成部32は、W相電圧指令値v がキャリア波の値よりも小さい場合にゲート信号gwnを出力する。この際、W相デッドタイム生成部32は、ゲート信号gwpの出力とゲート信号gwnの出力との切り替えにデッドタイムを設ける。
 次に、図5を用いて、制御装置10の要部を説明する。
 図5は実施の形態1における電力変換器の制御システムが適用される制御装置の要部の概念図である。
 図5の制御装置10において、電流制御用位相生成部11は、電流制御用dq変換部33と電流制御用フィルタ部34と電流制御用PLL制御部35とを備える。
 電流制御用dq変換部33は、交流電源2の交流電圧をdq変換する。電流制御用フィルタ部34は、電流制御用dq変換部33によりdq変換された交流電圧に対してフィルタを掛ける。電流制御用PLL制御部35は、電流制御用フィルタ部34によりフィルタを掛けられた交流電圧に基づいて電流制御用の位相を生成する。電流制御用の位相は、dq変換部にフィードバックされる。
 図5の制御装置10において、キャリア波生成部12は、キャリア用dq変換部36とキャリア用フィルタ部37とキャリア用PLL制御部38とを備える。
 キャリア用dq変換部36は、交流電源2の交流電圧をdq変換する。キャリア用フィルタ部37は、キャリア用dq変換部36によりdq変換された交流電圧に対してフィルタを掛ける。キャリア用PLL制御部38は、キャリア用フィルタ部37によりフィルタを掛けられた交流電圧に基づいてキャリア用の交流電圧位相の計算結果を生成する。キャリア用の交流電圧位相の計算結果は、dq変換部にフィードバックされる。
 以上で説明した実施の形態1によれば、複数の電力変換器4のそれぞれにおいて、キャリア波は、共通の交流電源2の交流電圧に基づいて生成される。それぞれのキャリア波の位相は、共通の交流電圧の位相に同期する。その結果、それぞれのキャリア波同士の位相は同期する。このとき、それぞれの電力変換器4に対応する制御装置間での通信を必要としない。このため、より簡易かつ安価な構成で、複数の電力変換器4のキャリア位相を同期させることができる。その結果、複数の電力変換器4の間において、横流を防止することができる。
 なお、キャリア波生成用の交流電圧位相の計算結果は、交流電源2の交流電圧に対してより低速のフィルタを掛けたうえで生成すればよい。この場合、交流電源2の位相、周波数、振幅変化等の影響を極力受けないようにすることができる。その結果、交流電源2の擾乱等により、複数の電力変換器4の間での交流電源2の交流電圧の観測結果において、過渡的な差が発生しても、複数の電力変換器4に対してキャリア位相の同期を保つことができる。また、交流電源2の周波数、電圧等が一時的に変動しても、ある程度の時間において安定したキャリア波を生成することができる。
 これに対し、電流制御用の交流電圧位相の計算結果は、交流電源2の交流電圧に対してより高速のフィルタを掛けたうえで生成すればよい。例えば、電流制御用の交流電圧位相の計算結果は、交流電源2の交流電圧に対してキャリア波生成用の交流電圧位相の計算結果を生成する際のフィルタよりも高速のフィルタを掛けたうえで生成すればよい。この場合、電流制御性をより良くすることができる。その結果、交流電源2の位相、周波数等の変化に対して素早く追従することができる。
 次に、図6を用いて、制御装置10の例を説明する。
 図6は実施の形態1における電力変換器の制御システムが適用される制御装置のハードウェア構成図である。
 制御装置10の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア200を備える。
 処理回路が少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える場合、制御装置10の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ100bに格納される。少なくとも1つのプロセッサ100aは、少なくとも1つのメモリ100bに記憶されたプログラムを読み出して実行することにより、制御装置10の各機能を実現する。少なくとも1つのプロセッサ100aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ100bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。
 処理回路が少なくとも1つの専用のハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、制御装置10の各機能は、それぞれ処理回路で実現される。例えば、制御装置10の各機能は、まとめて処理回路で実現される。
 制御装置10の各機能について、一部を専用のハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、電流制御用位相生成部11の機能については専用のハードウェア200としての処理回路で実現し、電流制御用位相生成部11の機能以外の機能については少なくとも1つのプロセッサ100aが少なくとも1つのメモリ100bに格納されたプログラムを読み出して実行することにより実現してもよい。
 このように、処理回路は、ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで制御装置10の各機能を実現する。
実施の形態2.
 図7は実施の形態2における電力変換器の制御システムが適用される制御装置の要部の概念図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態2の制御装置10において、キャリア波生成部12は、電流制御用位相生成部11が生成する電流制御用の位相を補正することでキャリア波生成用の交流電圧位相の計算結果を生成する。
 キャリア波生成部12は、キャリア用ゼロクロス検出部39とキャリア用比例制御部40とキャリア用フィルタ部41とを備える。
 キャリア用ゼロクロス検出部39は、交流電源2の交流電圧におけるゼロクロス点を検出する。キャリア用比例制御部40は、キャリア用ゼロクロス検出部39によるゼロクロス点の検出結果とキャリア波とに基づいてキャリア位相の補正量を算出する。キャリア用フィルタ部41は、電流制御用PLL制御部35により生成された電流制御用の交流電圧位相の計算結果に対してフィルタを掛ける。キャリア波生成用の交流電圧位相の計算結果は、キャリア用フィルタによりフィルタを掛けられた交流電圧位相の計算結果に対してキャリア用比例制御部40からの補正量を加算することで生成される。
 以上で説明した実施の形態2によれば、キャリア波生成部12は、電流制御用位相生成部11が生成する電流制御用の位相を補正することでキャリア位相を生成する。このため、実施の形態1と同様に、より簡易かつ安価な構成で、複数の電力変換器4のキャリア位相を同期させることができる。その結果、複数の電力変換器4の間において、横流を防止することができる。
 以上のように、この発明に係る電力変換器の制御システムは、電力システムに利用できる。
 1 直流電源、 2 交流電源、 3 分散電源用変換システム、 4 電力変換器、 5 直流側遮断器、 6 変圧器、 7 交流側遮断器、 8 交流電源側遮断器、 9 制御システム、 10 制御装置、 11 電流制御用位相生成部、 12 キャリア波生成部、 13a U相上側スイッチング素子、 13b U相下側スイッチング素子、 14a V相上側スイッチング素子、 14b V相下側スイッチング素子、 15a W相上側スイッチング素子、 15b W相下側スイッチング素子、 16 電力制御部、 17 第1逆dq変換部、 18 U相比例制御部、 19 V相比例制御部、 20 W相比例制御部、 21 d軸ローパスフィルタ部、 22 q軸ローパスフィルタ部、 23 第2逆dq変換部、 24 U相比較部、 25 U相論理否定部、 26 U相デッドタイム生成部、 27 V相比較部、 28 V相論理否定部、 29 V相デッドタイム生成部、 30 W相比較部、 31 W相論理否定部、 32 W相デッドタイム生成部、 33 電流制御用dq変換部、 34 電流制御用フィルタ部、 35 電流制御用PLL制御部、 36 キャリア用dq変換部、 37 キャリア用フィルタ部、 38 キャリア用PLL制御部、 39 キャリア用ゼロクロス検出部、 40 キャリア用比例制御部、 41 キャリア用フィルタ部、 100a プロセッサ、 100b メモリ、 200 ハードウェア

Claims (6)

  1.  複数の直流電源のそれぞれと共通の交流電源との間に接続された複数の電力変換器に対してそれぞれ設けられ、前記交流電源の交流電圧に基づいて、キャリア波をそれぞれ生成する複数のキャリア波生成部、
    を備えた電力変換器の制御システム。
  2.  複数の直流電源のそれぞれと共通の交流電源との間に接続された複数の電力変換器に対してそれぞれ設けられ、前記交流電源の交流電圧に基づいて、前記複数の電力変換器のそれぞれに対する電流制御用の交流電圧位相をそれぞれ生成する複数の電流制御用交流電圧位相生成部と、
    を備え、
     前記複数のキャリア波生成部は、前記複数の電力変換器に対してそれぞれ設けられ、前記交流電源の交流電圧に基づいて、前記複数の電力変換器のそれぞれに対するキャリア波をそれぞれ生成する請求項1に記載の電力変換器の制御システム。
  3.  前記複数のキャリア波生成部は、前記複数の電流制御用交流電圧位相生成部のそれぞれが生成する電流制御用の交流電圧位相とは別にキャリア用交流電圧位相をそれぞれ生成し、前記キャリア用交流電圧位相に基づいてそれぞれのキャリア波を生成する請求項2に記載の電力変換器の制御システム。
  4.  前記複数の電流制御用交流電圧位相生成部は、前記交流電源の交流電圧に対してフィルタを掛けたうえで前記複数の電力変換器のそれぞれに対する電流制御用の交流電圧位相をそれぞれ生成し、
     前記複数のキャリア波生成部は、前記交流電源の交流電圧に対して前記複数の電流制御用位相生成部のそれぞれのフィルタよりも低速のフィルタを掛けたうえで前記複数の電力変換器のそれぞれに対するキャリア用交流電圧位相をそれぞれ生成する請求項3に記載の電力変換器の制御システム。
  5.  前記複数のキャリア波生成部は、前記複数の電流制御用位相生成部のそれぞれが生成する電流制御用の位相を補正した位相に基づいてキャリア波をそれぞれ生成する請求項2に記載の電力変換器の制御システム。
  6.  前記複数の電流制御用交流電圧位相生成部は、前記交流電源の交流電圧に対してフィルタを掛けたうえで前記複数の電力変換器のそれぞれに対する電流制御用の交流電圧位相をそれぞれ生成し、
     前記複数のキャリア波生成部は、前記複数の電流制御用交流電圧位相生成部のそれぞれが生成する電流制御用の交流電圧位相に対してフィルタを掛けた信号に基づいて前記複数の電力変換器のそれぞれに対するキャリア波をそれぞれ生成する請求項5に記載の電力変換器の制御システム。
PCT/JP2020/003983 2020-02-03 2020-02-03 電力変換器の制御システム WO2021156923A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/754,651 US11942874B2 (en) 2020-02-03 2020-02-03 Control system of power converter
PCT/JP2020/003983 WO2021156923A1 (ja) 2020-02-03 2020-02-03 電力変換器の制御システム
JP2021575116A JP7359228B2 (ja) 2020-02-03 2020-02-03 電力変換器の制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003983 WO2021156923A1 (ja) 2020-02-03 2020-02-03 電力変換器の制御システム

Publications (1)

Publication Number Publication Date
WO2021156923A1 true WO2021156923A1 (ja) 2021-08-12

Family

ID=77199806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003983 WO2021156923A1 (ja) 2020-02-03 2020-02-03 電力変換器の制御システム

Country Status (3)

Country Link
US (1) US11942874B2 (ja)
JP (1) JP7359228B2 (ja)
WO (1) WO2021156923A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103076A (ja) * 1989-09-14 1991-04-30 Mitsubishi Electric Corp 自励式電力変換器の制御装置
JPH04289775A (ja) * 1991-02-21 1992-10-14 Mitsubishi Electric Corp インバータ
JP2005020947A (ja) * 2003-06-27 2005-01-20 Fuji Electric Systems Co Ltd Pwm搬送波の同期方法及び電力変換システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103076B1 (ja) 1999-12-24 2000-10-23 株式会社キティー 発酵液及びそれを利用した肉軟化処理剤
JP4289775B2 (ja) 2000-09-29 2009-07-01 日本碍子株式会社 多孔質金属基複合材料
DE102014119502B3 (de) * 2014-12-23 2016-03-24 Sma Solar Technology Ag Netzgekoppelter Wechselrichter, Wechselrichteranordnung und Betriebsverfahren für eine Wechselrichteranordnung
JPWO2017006400A1 (ja) * 2015-07-03 2018-03-29 東芝三菱電機産業システム株式会社 電力変換装置の制御装置
JP2019024300A (ja) 2017-07-21 2019-02-14 富士電機株式会社 電力変換システム
US11533013B1 (en) * 2021-07-29 2022-12-20 Rivian Ip Holdings, Llc Pulse width modulation clock synchronization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103076A (ja) * 1989-09-14 1991-04-30 Mitsubishi Electric Corp 自励式電力変換器の制御装置
JPH04289775A (ja) * 1991-02-21 1992-10-14 Mitsubishi Electric Corp インバータ
JP2005020947A (ja) * 2003-06-27 2005-01-20 Fuji Electric Systems Co Ltd Pwm搬送波の同期方法及び電力変換システム

Also Published As

Publication number Publication date
JPWO2021156923A1 (ja) 2021-08-12
US11942874B2 (en) 2024-03-26
US20230291328A1 (en) 2023-09-14
JP7359228B2 (ja) 2023-10-11

Similar Documents

Publication Publication Date Title
JP5877648B2 (ja) 分散型電源システム
EP2491644B1 (en) System and method for offsetting the input voltage unbalance in multilevel inverters or the like
JP5585371B2 (ja) 分散型電源システム
KR102009512B1 (ko) 3상 인버터의 옵셋 전압 생성 장치 및 방법
KR20160122923A (ko) 3상 인버터의 옵셋 전압 생성 장치 및 방법
CN110120755B (zh) 逆变器控制设备
JP2012205325A5 (ja)
US11329593B2 (en) Power conversion device and rotating machine drive system
KR20130078380A (ko) 회생형 고압 인버터의 제어장치
WO2022269811A1 (ja) 制御装置、および電力変換装置
WO2021156923A1 (ja) 電力変換器の制御システム
KR101639825B1 (ko) 인버터의 전류 제어 장치
Corzine et al. Distributed control of hybrid motor drives
EP0913917B1 (en) Control device for selfexciting current source power converter
JP7316259B2 (ja) 3レベル電力変換器の制御装置
KR20120051912A (ko) 불평형 전원을 보정하기 위한 장치 및 그 방법
Pushparani et al. Simulation and Analysis of SVHM Technique for DCMLI under Transient Conditions with Non-Linear Loads
JP3182322B2 (ja) Npcインバータのpwm制御装置
JP3598308B2 (ja) 自励式電力変換装置用pwm制御装置
JP6041250B2 (ja) 系統連系装置
JP2020150693A (ja) 電力変換装置
JP2020114049A (ja) 電力変換装置、鉄道車両および電力変換装置制御方法
JP7374395B1 (ja) 電力変換システム
WO2023233454A1 (ja) 電力変換装置、および制御装置
JP7249471B1 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917575

Country of ref document: EP

Kind code of ref document: A1