WO2021156549A1 - Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique - Google Patents

Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique Download PDF

Info

Publication number
WO2021156549A1
WO2021156549A1 PCT/FR2020/000284 FR2020000284W WO2021156549A1 WO 2021156549 A1 WO2021156549 A1 WO 2021156549A1 FR 2020000284 W FR2020000284 W FR 2020000284W WO 2021156549 A1 WO2021156549 A1 WO 2021156549A1
Authority
WO
WIPO (PCT)
Prior art keywords
interphase
fibers
matrix
boron trichloride
coated
Prior art date
Application number
PCT/FR2020/000284
Other languages
English (en)
Inventor
Lionel Vandenbulcke
Mathieu VANDENBULCKE
Original Assignee
Lionel Vandenbulcke
Vandenbulcke Mathieu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lionel Vandenbulcke, Vandenbulcke Mathieu filed Critical Lionel Vandenbulcke
Priority to CN202080099288.6A priority Critical patent/CN115515914B/zh
Publication of WO2021156549A1 publication Critical patent/WO2021156549A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62878Coating fibres with boron or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45559Diffusion of reactive gas to substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Definitions

  • the present invention relates to ceramic matrix composite materials, and more particularly to composites which comprise a reinforcement by fibers included in a matrix with at least one thin layer, called interphase, separating the fibers from the matrix.
  • CMCs Composites with ceramic matrices, hereinafter referred to as CMCs, are light materials known and used to manufacture parts exposed to conditions such as those encountered in aeronautical and space applications or in other fields, for example that of industrial turbines. They include reinforcement by fibers, including carbon fibers and ceramic fibers, densified by a ceramic matrix. Between the fibers and the matrix, at least one continuous or interphase layer makes it possible to adjust the bond strength between these two constituent elements of CMCs.
  • CMCs are materials which are used for their mechanical resistance in bending, traction, and against shocks but also especially for their ability to maintain their mechanical properties in a wide range of temperatures going from 500 to more than 1600 ° C. In the field of high temperatures, thermal and / or environmental barriers are used to increase their properties of resistance to attack by surrounding gases under thermomechanical conditions of use.
  • the invention relates mainly to composite materials with a ceramic matrix, the interphase of which is deposited by a chemical deposition (CVD) or chemical infiltration (CVI) process from the gas phase.
  • CVD chemical deposition
  • CVI chemical infiltration
  • these interphases often consist at least in part of a layer of boron nitride.
  • Such an interphase is deposited by CVD on yarns consisting of several hundred to several thousand reinforcing fibers, often by a continuous process where the yarns pass through the chemical reaction zone at a determined rate and are thus coated with a layer of given thickness, for example in US Pat. No. 2002066409A1.
  • a process of the forced CVD / CVI type also allows the deposition of layers, including boron nitride layers, continuously on fibers which constitute a thin textile manufactured by weaving, braiding or knitting the threads, a process which is described by example in US patent 2016 229 758 where the gas phase penetrates by forced convection and diffusion in the textile.
  • An interphase of boron nitride is also deposited by isothermal chemical infiltration from the gas phase (ICVI) in three-dimensional preforms made by three-dimensional weaving of the threads or weaving of layers of textile or piling of layers of textile as described in patents WO 9823555 and WO 2014049221, according to the infiltration process already optimized by M.
  • the object of the invention is: both to reduce the cost of manufacture and to optimize the interphases of ceramic matrix composites. It is thus a question of manufacturing high-performance CMCs, having properties at least equal to or greater than those obtained with boron nitride deposited on the fibers according to previous processes while reducing the manufacturing cost. This high manufacturing cost is partly due to the high cost of the gases used for the manufacture of these interphases, in particular that of the boron trichloride most often used to deposit the boron nitride.
  • boron trichloride is prepared by reacting chlorine, either on boron carbide in a molten borate, or on boron carbide in a fluidized bed in the presence of a catalyst which is a chloride of a metal of transition, or on boron oxide in the presence of carbon.
  • boron trichloride BC13 is heavily contaminated with carbonyl dichloride (COC12), which constitutes a major inconvenience and an additional cost in the synthesis of commercial BC13 which is purified.
  • COC12 carbonyl dichloride
  • BC13 its separation, for example by thermal or photochemical conversion of COC12 into CO and O 2, followed by fractional distillation leads to a significant additional cost in the synthesis of commercial BC13.
  • volatile gaseous impurities such as C12 and HCl which have a boiling point much lower than 0 ° C can be easily separated.
  • the product resulting from this simple separation is not BC13 as it may be called commercially but a mixture of BC13 and its main impurity, COC12, in a concentration which reaches up to about 5% in atomic percentage.
  • commercial chemically pure (CP) grade BC13 contains only 0.5% impurities but purities much greater than 99.5%, equal to or greater than 99.99%, can be used in particular.
  • boron nitride is most often deposited from a mixture of boron trichloride, ammonia and hydrogen, but none specifies the purity of the gases used, in particular the purity of the boron trichloride used. Neither does any indicate the presence of at least one other gas in substantial quantity, quantity such that it would not allow to designate by the only name tri boron chloride, the gas used for an application where it is used as reactive or synthesis gas of a boron compound such as boron nitride.
  • the present invention mainly uses the deposition or chemical infiltration of an interphase from a mixture of compound gas at least ammonia and hydrogen to which is added a mixture of boron trichloride and carbonyl dichloride, the latter in high concentration up to about 5% in atomic percentage relative to the boron trichloride, the mixture of boron and the main impurity formed during its synthesis thus containing enough carbon to lead to a type B [C] deposit comprising a lot of carbon, between 0.4 and 8% carbon in atomic percentage, when this BC13 is reduced by the only reactant hydrogen.
  • COC12 therefore plays an important role in deposition processes which use it in admixture with boron trichloride.
  • the invention thus relates to the manufacture of composite materials with a ceramic matrix of which G interphase is made, for the most part, from a mixture of BC13 + COC12 + NH3 + H2 where the COC12 has not been separated from BC13, unlike the previous processes which use, under the name boron trichloride, a necessarily purified reagent which contains only an amount of less than 1% of COC12, often 0.05% to manufacture boron nitride.
  • M. Leparoux M. Leparoux (Thesis, University of La, 1995) thus used a mixture BC13 + NH3 + H2 where all the gases had a purity of 99.995%.
  • the gas mixture used here can lead to a negative influence of the impurities and to a harmful initial interaction with the reinforcing fibers of the composite.
  • the method of the invention therefore specifically uses two stages of manufacturing the interphase which are linked without interruption.
  • the present invention therefore relates to a method of manufacturing a composite material comprising a reinforcement by fibers and a matrix mainly composed of ceramic, said matrix in which the fibers coated with a thin layer called interphase are included, process characterized in that it comprises:
  • interphase in two consecutive steps without interruption, said interphase being manufactured so as to form a thin layer on the fibers by chemical deposition or chemical infiltration from a gas phase formed, in a first step of manufacture, of a gas mixture composed of at least ammonia and hydrogen, the purity of which is equal to or greater than 99.9% and boron trichloride of purity equal to or greater than 99%, then constituted in a second step of fa- brication of a gas mixture composed of at least ammonia and hydrogen with a purity equal to or greater than 99.9%, boron trichloride with a purity less than 99% and carbonyl dichloride in a concentration greater than 1% in atomic percentage relative to the boron trichloride, the duration of the first stage being less than 20% of the total duration of manufacture of the interphase, the final thickness of which is between 0.1 and 1 pm,
  • the interphase is produced with boron trichloride of purity equal to or greater than 99.5%.
  • the manufacturing process of the invention is characterized in that the boron tri chloride is purified from only very volatile impurities which have a boiling point of less than 0 ° C, essentially C12 and HCl.
  • the present invention also comprises a manufacturing process where, in addition, a silicon precursor is added to the gas mixture in at least all or part of one of the two stages of chemical deposition or infiltration, this precursor being taken from the group comprising silane, one of the silicon chlorides and methyltrichlorosilane.
  • a silicon precursor is added to the gas mixture in at least all or part of one of the two stages of chemical deposition or infiltration, this precursor being taken from the group comprising silane, one of the silicon chlorides and methyltrichlorosilane.
  • This addition makes it possible to deposit an interphase containing at least one layer based on the ternary Si-B-N.
  • the concentration of gaseous species which are precursors of silicon is adjusted to obtain a silicon concentration in this layer of the interphase at least equal to 20% in atomic percentage.
  • the present invention relates to ceramic matrix composites which use a reinforcement by fibers of various types.
  • the fibers used are thus carbon, alumina, mullite or silicon carbide fibers.
  • the silicon carbide fibers contain carbon and silicon as major elements and, among other impurities, oxygen at a concentration between 0.05 and 14% in atomic percentage.
  • these fibers have very different thermal stabilities known to specialists. Depending on their thermal stability, they will be included in composites used for temperature applications between 550 and 1600 ° C. about.
  • the method of the invention uses fibers of variable diameter, most often between 7 and 15 ⁇ m. These fibers are not used alone but are organized so as to form threads which contain between a few hundred and a few thousand fibers. These wires can be coated directly by the phase using the method of the invention. These threads can also be organized in a textile of low thickness having a main extension in two directions (2D), a textile produced by weaving, braiding or knitting the threads. These 2D textiles are also coated by the phase according to the method of the invention.
  • the manufacture of the interphase is carried out by forced chemical deposition / infiltration from the gas phase (forced CVD / CVI) so as to coat all the fibers of the yarns or of the textile with the same interphase thickness, or at least an approximate thickness and a similar structure.
  • forced CVD / CVI forced chemical deposition / infiltration from the gas phase
  • the mass transfer to all the zones to be coated must be sufficiently rapid relative to the chemical kinetics at the surface thereof.
  • known for a very long time L. Vandenbulcke: J. Electrochem. Soc., 124 (12), 1977, pp. 1931-1937 and pp.
  • the direction of the flow of the gas phase in the deposition chamber is, according to the method of the invention, if not strictly perpendicular to the yarn or to the textile as in the publications cited above, but makes an angle greater than about 20 degrees with the main direction of the yarns or the plane of the textile.
  • the interphase G deposition temperature and the gas phase pressure also play an important role on the deposition kinetics and the mass transfer conditions from the gas phase to each fiber.
  • the deposition conditions by forced CVD / CVI allow the use of a fairly high deposition / infiltration temperature while maintaining good uniformity of the thicknesses of interphase G on each fiber.
  • the method of the invention thus uses an interphase G production on yarns and 2D textiles by chemical deposition / infiltration at a temperature equal to or greater than 1100 ° C and at a pressure between 0.2 and 10 kPa.
  • the manufacture of the interphase in the deposition chamber is carried out on one or more threads, or else on a 2D textile which are kept static. This manufacture is also carried out according to the method of the invention on one or more threads, or else a 2D textile which scrolls at a speed of between 2 and 500 centimeters per minute. In the latter case, the implementation of the process, although more complex, allows a much larger quantity of fibers to be coated without having to interrupt the process.
  • the heat treatment of the fibers coated with the interphase is not necessary when the manufacture of G interphase by forced CVD / CVI, on one or more threads or of course a 2D textile, is carried out at a sufficiently high deposition / infiltration temperature to ensure good stability of the interphase, temperature greater than 1100 ° C, preferably equal to or greater than approximately 1250 ° C.
  • the system used for implementing the method then comprises two interphase G manufacturing chambers in which the yarn (s) or the textile pass through. A system for using several consecutive chambers in order to carry out depositing operations therein is well known to those skilled in the art.
  • the invention comprises a method of manufacturing a composite material comprising a reinforcement by fibers and a matrix mainly composed of ceramic, said matrix in which the fibers coated with a thin layer called interphase are included, characterized method in that it includes:
  • the manufacture of an interphase in two consecutive steps without interruption said interphase being manufactured so as to form a thin layer on the fibers by chemical deposition or chemical infiltration from a gas phase formed, in a first step of manufacture, of a gas mixture composed of at least ammonia and hydrogen, the purity of which is equal to or greater than 99.9% and boron trichloride of purity equal to or greater than 99%, then constituted in a second step of making a gas mixture composed of at least ammonia and hydrogen with a purity equal to or greater than 99.9%, boron trichloride with a purity less than 99% and carbonyl dichloride in a concentration greater than 1% in atomic percentage relative to the boron trichloride, the duration of the first step being less than 20% of the total duration of manufacture of G interphase, the final thickness of which is between 0.1 and 1 ⁇ m, the manufacture being performed on one or several yarns or a 2D textile using a forced CVD / CVI process carried out at a temperature above
  • the preceding method only comprises two deposition chambers, without a heat treatment chamber when the deposition temperature used is greater than 1100 ° C, preferably in the highest temperature range, equal to or greater than approximately 1250 ° C. .
  • the system used comprises winding the thread (s) or the textile on a drum which is evacuated under a controlled atmosphere to be transported and positioned in the heat treatment chamber, this according to a well process. known, in particular in the field of electronics.
  • the present invention relates to a process characterized in that the first step has a zero duration, that is to say that the production of the interphase is carried out entirely with a gas mixture composed of at least ammonia and hydrogen with a purity equal to or greater than 99.9%, boron tri-chloride with a purity less than 99% and dichloride of carbonyl in a concentration greater than 1% relative to boron trichloride, the final thickness of G interphase being between 0.1 and 1 ⁇ m.
  • the manufacture of interphase G is then carried out in a single deposition / infiltration chamber and a heat treatment chamber.
  • the invention comprises a method of manufacturing a composite material comprising a reinforcement by fibers and a matrix mainly composed of ceramic, said matrix in which the fibers coated with a thin layer called interphase are included, characterized method. in that it includes:
  • interphase being manufactured so as to form a thin layer on the fibers by chemical deposition or chemical infiltration from a gas phase consisting of a gas mixture composed of at least ammonia and hydrogen of purity equal to or greater than 99.9%, boron trichloride of purity less than 99% and carbonyl dichloride in a concentration greater than 1% in atomic percentage relative to boron trichloride, said interphase having a thickness between 0.1 and 1 ⁇ m,
  • the method of the invention uses fibers of variable diameter, most often between 7 and 15 ⁇ m. These fibers are organized to form threads which contain between a few hundred and a few thousand fibers.
  • these yarns or the 2D textiles made with these yarns were coated with the interphase by forced CVD / CVI.
  • These yarns made up of fibers are also arranged to constitute three-dimensional fiber preforms manufactured by three-dimensional weaving of the yarns or weaving of layers of textile or stacking of layers of textile with a more or less strong reinforcement according to the third dimension, the layers of textile being kept stacked by holding tools made of solid perforated materials which allow the passage of gases to the fibers.
  • tools which also act as conformers for fiber preforms, are well known to those skilled in the art.
  • the interphase G manufacturing process is a chemical infiltration process from the gas phase (CVI) in continuous mode or in pulsed mode (PCVI) carried out at a temperature between 650 and 900 ° C and at a pressure between 0.1 and 5 kPa, always using at least 80% of the manufacturing time of G interphase a gas mixture composed of at least ammonia and hydrogen with a purity equal to or greater than 99.9%, boron trichloride with a purity less than 99% and carbonyl dichloride in a concentration greater than 1% in percentage atomic with respect to boron trichloride.
  • CVI gas phase
  • PCVI pulsed mode
  • the present invention therefore relates to a method of manufacturing a composite material comprising a reinforcement by fibers and a matrix mainly composed of ceramic, said matrix in which the fibers coated with a thin layer called interphase are included, process characterized in that it comprises:
  • interphase in two consecutive steps without interruption, said interphase being manufactured so as to form a thin layer on the fibers by continuous chemical filtration (CVI) or pulsed (PCVI) from a gas phase consisting, in a first manufacturing step, of a gas mixture composed of at least ammonia and hydrogen, the purity of which is equal to or greater than 99.9% and boron trichloride of purity equal to or greater than 99%, then formed in a second manufacturing step of a gas mixture composed of at least ammonia and hydrogen with a purity equal to or greater than 99.9%, boron trichloride with a purity less than 99% and of carbonyl dichloride in a concentration greater than 1% in atomic percentage relative to the boron trichloride, the duration of the first stage being less than 20% of the total duration of manufacture of the interphase, the final thickness of which is between 0 , 1 and 1 pm,
  • the holding tools are most often used, after heat treatment of the fibers coated with interphase G, to consolidate the preform with a first matrix layer manufactured by CVI. Densification of the matrix is then continued after extracting the preform from its holding tools.
  • the present invention relates to a process characterized in that the first step has a zero duration, that is to say that the manufacture of the interphase is entirely carried out with a gas mixture composed at least of ammonia and hydrogen with a purity equal to or greater than 99.9%, boron trichloride with a purity less than 99% and carbonyl dichloride in a concentration greater than 1% in atomic percentage relative to the boron trichloride, the final thickness the interphase being between 0.1 and 1 ⁇ m.
  • the method of the invention uses a heat treatment of the fibers coated with the interphase without the assembly being exposed to a oxidizing atmosphere after coating the fibers by the interphase.
  • This heat treatment is carried out at a temperature at least equal to 1100 ° C. for a period of less than or equal to 4 hours, preferably less than or equal to 2 hours.
  • the treatment temperature chosen depends on the thermal stability of the fibers. For silicon carbide fibers such as, for example, fibers from the Nippon Carbon company of the Nicalon TM type, good thermal stability is maintained between approximately 1100 ° C. and 1600 ° C. depending on the type of fiber.
  • the method of the invention uses a treatment of the coated fibers of the interphase at a temperature between about 1100 ° C and 1600 ° C.
  • the heat treatment is preferably carried out at a temperature and for a period of time which, under an inert atmosphere, does not alter the nominal intrinsic modulus of elasticity of the fibers supplied by the manufacturer by more than 5%.
  • the heat treatment is carried out in gaseous atmospheres such as rare gases, preferably argon, or in nitrogen.
  • the method of manufacturing a composite material according to the invention is continued by the inclusion of fibers coated with the phase deposited at high temperature or heat treated.
  • This matrix consists of at least one material taken from the group of oxides, carbides, nitrides and silicides or by a combination of materials taken from at least one of these groups.
  • a material widely used to constitute the matrix is silicon carbide.
  • the method of manufacturing a composite material according to the invention also comprises matrix materials which allow self-healing thereof when the interior of the matrix is exposed to an oxidizing atmosphere by cracks joining the surface, whether it originates from the manufacture or use of the composite.
  • the matrix is made up of layers of different natures which include silicon carbide and at least one carbide taken from the boron-carbon binary or the silicon-boron-carbon ternary as described for example in document US Pat. 246736 and document WO 2018220296.
  • these layers are infiltrated by CVI and the boron element is provided in all these layers of BC or Si-BC type by a gas phase preferably comprising a boron trichloride with a purity of less than 99%.
  • the method of manufacturing a composite material according to the invention which comprises a reinforcement by fibers and a matrix mainly composed of ceramic, said matrix in which the fibers coated with a thin layer called in terphase are included, can include various directions of reinforcement.
  • the composite comprises a reinforcement by fibers which constitute elongated yarns in a main direction of reinforcement (1D composite), or by yarns which constitute textiles with two main directions of reinforcement (2D composite) or which additionally comprise a partial reinforcement. in a third direction (2.5D composite), or which constitute a reinforcement in N directions where N> 3.
  • FIG.l is a schematic representation of a section of a composite reinforced in two directions and manufactured according to the invention.
  • the composite material (1) comprises a reinforcement by fibers (10) and a matrix (11) mainly composed of ceramic, the fibers coated with a thin layer called interphase (12) being included in said matrix.
  • FIG. 2 is a schematic representation of an example of an apparatus for making the interphase and the matrix by CVI. This is the infiltration of an in terphase into the fiber preforms inserted in their holding tools.
  • Hydrogen is contained in a gas cylinder (20), BC13 in a gas cylinder (21) and COC12 in a gas cylinder (22).
  • Ammonia is contained in a cylinder (23).
  • thermocouple (39) makes it possible, using a temperature regulator (40), to control the generator so as to bring the susceptor and the fiber preforms to be infiltrated to the desired temperature.
  • a pump (41) makes it possible to create an initial vacuum in the enclosure (34) then to maintain the pressure in this enclosure at the desired value by means of a pressure sensor fixed to the enclosure and a valve regulation (42).
  • a trap (43), located before the pump, is intended to protect the latter and the control system from corrosive halogenated gases. Additional gas lines allow the entire process to be carried out.
  • the heat treatment is thus carried out under a controlled atmosphere, for example argon introduced from the source (44) with its valve (45) and its flow meter (46).
  • An initial deposit of consolidation of the fiber preforms for example with a layer of silicon carbide can be carried out from a mixture of hydrogen contained in the bottle (20) and methyltrichlorosilane coming from an additional bottle with its accessories not pictured here.
  • the densification of the matrix with silicon carbide for example, can be continued in this same reactor after liberation of the fiber preform from its holding tools.
  • the ease of implementation, the versatility of the method and its variants, and the advantages of this method are demonstrated with the aid of more specific implementation examples.
  • Example 1 the method of manufacturing a composite material according to the invention uses a fiber preform made of textiles and reinforced in two directions (2D). It consists of Hi-Nicalon TM fibers produced by Nippon Carbon which have undergone a specific treatment to remove native oxide on its surface according to a well-known process.
  • the preform is placed in holding tools and the assembly is introduced into the deposition reactor (33) of [fig. 2] to deposit the interphase there by CVI.
  • a gas mixture composed of ammonia and hydrogen whose purity is equal to 99.95% and boron trichloride with a purity equal to 99.95% is used in a first step to infiltrate an interphase layer of 0 , 04pm at a temperature of 700 ° C, under a pressure of 1.3 kPa.
  • a mixture of gas composed of ammonia and hydrogen with a purity equal to 99.95%, boron trichloride with a purity equal to 99.95% and carbonyl dichloride in a concentration equal to 2.5% relative to the boron trichloride is used under the same temperature and pressure conditions to achieve a final thickness of G interphase of 0.2 ⁇ m.
  • the mixture of boron trichloride plus carbonyl dichloride used here corresponds to a boron trichloride which has been purified, after its synthesis, only of its volatile species, such as O2 and HCl.
  • a heat treatment of the interphase coated fibers is carried out under argon at a temperature of 1400 ° C for a period of 1 hour.
  • the preform, still kept in its tools is then consolidated by a ceramic layer, here the silicon carbide deposited by CVI from a mixture of methyltrichlorosilane (CH3SÎC13) and hydrogen (H2) according to a well process. known at a temperature of about 1000-1040 ° C and a pressure in the range 7.5 to 15 kPa.
  • the preform thus consolidated is then released from its holding tools and retains its shape and dimensions. Densification of the preform is continued by CVI to form the ceramic matrix, here still formed by infiltration of SiC. Note that other densification techniques could then be used as described above. Here the densification is continued to form a silicon carbide matrix and complete the composite material.
  • the outer surface of such a composite can be protected by a coating acting as a thermal and / or environmental barrier (EBC).
  • EBC environmental barrier
  • the purpose of this type of coating is to lower the temperature in the composite and to protect the composite against corrosion in an oxidizing or humid atmosphere.
  • Such coatings are described for example in US Patents 7,544,394, WO 9631687 (A1), US 9,133,541 and US 2018363476.
  • a tensile test specimen is machined from the composite thus formed without an external EBC type coating, after the stages of manufacture of interphase, heat treatment, consolidation of the preform and then terminal densification. This machining is carried out so as to obtain the main direction of the specimen in a direction of reinforcement of the 2D composite. It is then subjected to a tensile test at room temperature in air. Failure of the tensile specimen occurs for a stress of 300 MPa and a relative elongation of 0.4%.
  • a tensile test specimen is machined from an SiC / BN / SiC composite manufactured under the same conditions as Example 1 but with a conventional BN interphase of 0.2 ⁇ m deposited over its entire thickness with a mixture of pure gases composed of ammonia, hydrogen and boron trichloride, the purity of which is equal to 99.95%, without COC12.
  • a mixture of pure gases composed of ammonia, hydrogen and boron trichloride, the purity of which is equal to 99.95%, without COC12.
  • Example 2 the method of manufacturing a composite material according to the invention uses fiber preforms reinforced in two directions (2D). They consist of Nicalon-NLM202 TM fibers which have undergone a specific treatment to eliminate the native oxide on their surface according to a well known process.
  • the preforms are placed in holding tools and the assembly is introduced into the deposition reactor (33) of [fig.2] in order to deposit G interphase there by CVI.
  • a gas mixture composed of ammonia and hydrogen with a purity equal to 99.95%, boron trichloride with a purity equal to 99.95% and carbonyl dichloride in a concentration equal to 3 % with respect to boron trichloride is used under the same temperature and pressure conditions for a period of 150 minutes.
  • the reactor is filled with argon and the fiber preforms are brought to a temperature of 1100 ° C. for 2 hours.
  • the preforms, still held in their tools, are then consolidated by a layer of ceramic, here silicon carbide infiltrated by CVI from a mixture of methyltrichlorosilane and hydrogen according to the process already described in Example 1.
  • the preforms consolidated are then released from their holding tools and retain their shapes and dimensions.
  • the densification of the preforms is continued here by CVI to form the ceramic matrix. But this time the matrix is no longer made up of SiC alone but of a self-healing matrix as described in the initial patent US Pat. No. 5,246,736, then its variants US 5,965,266 and WO 2018220296.
  • SiC is infiltrated here and from the SiBC ternary system to starting from the mixture of hydrogen, methyltrichlorosilane and boron trichloride supplemented with 3% of COC12 relative to the boron trichloride, which corresponds, again, to the use of a boron trichloride purified of its only volatile elements after its synthesis.
  • SiC is infiltrated under the same conditions as in Example 1.
  • the ternary SiBC is produced by chemical vapor infiltration at a temperature between 850 and 1150 ° C and a pressure between 0.5 and 30 kPa.
  • Two tensile specimens are machined from the composite thus formed after the steps of manufacturing interphase G, heat treatment, consolidation of the preforms and then terminal densification with a self-healing matrix. This machining is carried out so as to obtain the main direction of the specimen in a direction of reinforcement of the 2D composite. After machining, each specimen is coated with a layer of silicon carbide to seal the pores that appear during machining.
  • the nature of the fibers used whose thermal stability hardly exceeds 1100 ° C and whose modulus is lower (around 220 Gpa) as well as the use of a self-healing matrix, make this composite particularly suitable for applications under constraints and temperatures. moderate, between 600 and 1100 ° C.
  • a comparative example 2 ' the same test is carried out on specimens machined from an SiC / BN / SiC-SiBC composite manufactured under the same conditions as Example 2 but with a conventional BN interphase deposited over its entire surface. thickness using a mixture of pure gases composed of ammonia, hydrogen and boron tri chloride with a purity of 99.95%, without COC12. The results obtained during tensile / tensile fatigue tests at 120 MPa in air, respectively at 800 and 1050 ° C, are lower than the previous ones with a service life of approximately 180 hours.
  • Example 3 the fibers used are Hi-Nicalon TM fibers manufactured by Nippon Carbon, fibers which have a modulus of 270 GPa.
  • the threads made from these fibers are woven so as to form a low thickness 2D textile.
  • Forced CVD / CVI infiltration is used here with a gas mixture which arrives in a direction substantially perpendicular to the surface of the textile, in an upward direction which allows natural convection to be associated with forced convection and diffusion under reduced pressure.
  • a textile is used here which replaces the preforms (36) of [fig.2].
  • the gas flow passing through by forced convection, the upward natural convection as well as the diffusion under reduced pressure make it possible to coat all the fibers with relatively close reactant concentration conditions at their surface, this however depending on the temperature used for the process relative to the mass transfer conditions as has been shown for a very long time in the case of deposition from gas jets impacting a flat surface (L. Vandenbulcke, J. Electrochem. Soc., 124 (1977)) 1932-1937).
  • the temperature used here is 1300 ° C with a gas pressure of 2kPa.
  • a gas mixture composed of ammonia and hydrogen whose purity is equal to 99.95% and boron trichloride with a purity equal to 99.95% is used in a first step to infiltrate an interphase layer of 0 , 04 pm.
  • a gas mixture composed of ammonia and hydrogen with a purity equal to 99.95%, boron trichloride with a purity equal to 99.95% and carbonyl dichloride in a proportion equal to 2 % relative to boron trichloride is used under the same temperature and pressure conditions to achieve a final thickness of the interphase of 0.2 ⁇ m.
  • the mixture of boron tri chloride and carbonyl dichloride used again here corresponds to a boron trichloride which was purified after its synthesis only of its only volatile species like C12 and HCl, but not of its main impurity, COC12 .
  • a tensile test specimen is machined from the composite thus manufactured. This machining is carried out so as to obtain the main direction of the specimen in a direction of reinforcement of the 2D composite. It is then subjected to a tensile test at room temperature in air. Failure of the tensile specimen occurs for a stress of 290 MPa and a relative elongation of 0.35%.
  • a tensile test specimen is machined in a SiC / BN / SiC composite manufactured under the same conditions as Example 3 but with a conventional interphase of BN of 0.2 ⁇ m deposited over its entire thickness using a mixture of pure gases composed of ammonia, hydrogen and Boron trichloride whose purity is equal to 99.95%, without COC12.
  • a mixture of pure gases composed of ammonia, hydrogen and Boron trichloride whose purity is equal to 99.95%, without COC12.
  • oxidation-resistant layers are thus formed when the percentage of silicon is equal to about 20% in atomic percentage.
  • This ternary can thus be used as an underlayer of the interphase on the fiber side or on the matrix side.
  • the silicon precursor, added to the gas mixture in at least all or part of one of the two chemical deposition or infiltration stages, is chosen from the group comprising silane, silicon chlorides and methyltrichlorosilane.
  • a protective layer after deposition of interphase G at high temperature.
  • This protective layer must be able to be removed after manufacture of the fibrous structure and before densification by the matrix.
  • Polymers are conventionally used which are in solution in a solvent and are applied by dipping or spraying with a spray. Removal is mainly done by heat treatment without leaving any residue on the surface of the fibers.

Abstract

Des matériaux composites comportant un renforcement par des fibres et une matrice céramique dans laquelle les fibres revêtues d'une couche mince dénommée interphase sont incluses, sont fabriqués par un procédé caractérisé en ce qu'il comprend: - sur les fibres, la formation d'une interphase par dépôt ou infiltration chimique effectuée en deux étapes enchaînées sans interruption, la principale étape de fabrication étant caractérisée par l'utilisation, pendant au moins 80% du temps de dépôt de toute l'interphase, d'un mélange de gaz composé d'une part au moins d'ammoniac et d'hydrogène et d'autre part de trichlorure de bore et de dichlorure de carbonyle, la concentration de ce dernier étant comprise entre plus de 1% et environ 5% en pourcentage atomique par rapport au trichlorure de bore, interphase dont l'épaisseur totale finale est comprise entre 0,1 et 1 pm; - le traitement thermique des fibres ainsi revêtues de l'interphase, sans exposition à une atmosphère oxydante après revêtement des fibres par l'interphase, traitement thermique effectué à une température égale ou supérieure à environ 1100°C; - puis la fabrication du matériau composite par inclusion des fibres revêtues de l'interphase dans la matrice faite de céramique, au moins pour la plus grande partie. Des composites à matrice céramique performants sont fabriqués avec ce procédé moins onéreux.

Description

Description
Titre de l'invention : Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique
[0001] La présente invention concerne les matériaux composites à matrice céramique, et plus particulièrement les composites qui comportent un renforcement par des fibres inclus dans une matrice avec au moins une couche mince, dite interphase, séparant les fibres de la matrice.
[0002] Les composites à matrices céramiques, ci-après désignés par CMCs, sont des matériaux légers connus et utilisés pour fabriquer des pièces exposées à des conditions telles que celles rencontrées dans les applications aéronautiques et spatiales ou dans d’autres domaines, par exemple celui des turbines industrielles. Ils comportent un ren forcement par des fibres, dont les fibres de carbone et les fibres céramiques, densifié par une matrice céramique. Entre les fibres et la matrice, au moins une couche continue ou interphase permet d’ajuster la force de liaison entre ces deux éléments constitutifs des CMCs. Les CMCs sont des matériaux qui sont utilisés pour leur résistance mécanique en flexion, traction, et contre les chocs mais aussi spécialement pour leur aptitude à conserver leurs propriétés mécaniques dans une large gamme de tem pératures allant de 500 à plus de 1600°C. Dans le domaine des hautes températures, des barrières thermiques et/ou environnementales sont utilisées pour accroître leurs propriétés de résistance aux agressions par les gaz environnants dans les conditions thermomécaniques d’emploi.
[0003] L’invention concerne principalement des matériaux composites à matrice céramique dont l’interphase est déposée par un procédé de dépôt chimique (CVD) ou d’infiltration chimique (CVI) à partir de la phase gazeuse. Pour obtenir une meilleure tenue à l’oxydation que le pyrocarbone, ces interphases sont souvent constituées au moins en partie d’une couche de nitrure de bore. Une telle interphase est déposée par CVD sur des fils constitués de plusieurs centaines à plusieurs milliers de fibres de ren forcement, souvent par un procédé en continu où les fils passent à travers la zone de réaction chimique à une vitesse déterminée et sont ainsi revêtues d’une couche d’épaisseur donnée comme par exemple dans le brevet US 2002066409A1. Cette technique proche de la CVD mais qui doit conduire à un revêtement d’épaisseur et structure contrôlées sur toutes les fibres jusqu’au cœur du fil sera plus précisément dénommée ici « CVD/CVI forcée » au sens où la phase gazeuse doit être dirigée vers le ou les fils pour permettre un dépôt satisfaisant par pénétration de la phase gazeuse et transfert de masse par convection forcée et diffusion vers la surface de toutes les fibres au sein du fil. Cette technique hybride se caractérise par un transfert de masse suf- fisamment rapide vers les fibres, ce qui offre la possibilité d’utiliser des températures relativement élevée comprises entre 1100 et 1500°C. Un procédé du type CVD/CVI forcée permet aussi le dépôt de couches, dont les couches de nitrure de bore, en continu sur des fibres qui constituent un textile de faible épaisseur fabriqué par tissage, tressage ou tricotage des fils, procédé qui est décrit par exemple dans le brevet US 2016229758 où la phase gazeuse pénètre par convection forcée et diffusion dans le textile. Une interphase de nitrure de bore est aussi déposée par infiltration chimique isotherme à partir de la phase gazeuse (ICVI) dans des préformes tridimensionnelles fabriquées par tissage tridimensionnel des fils ou tissage de couches de textile ou em pilement de couches de textile comme il est décrit dans les brevets WO 9823555 et WO 2014049221, selon le procédé d’infiltration déjà optimisé par M. Leparoux (Thèse, Université d’Orléans, 1995) et L. Vandenbulcke et M. Leparoux (Journal de Physique IV, 1995, 05 (C5), pp. C5-735 - C5-751, jpa-00253950). Dans ce procédé ICVI, la phase gazeuse circule de façon continue au sein du réacteur de dépôt entre l’entrée et la sortie de celui-ci. Un procédé de CVI pulsée (PCVI) est aussi employé tel que décrit par exemple dans WO 9823555 où l’interphase est déposée au cours de cycles consécutifs. Chaque cycle comprend une introduction de gaz réactif dans le réacteur de dépôt, un maintien de la phase gazeuse pendant la durée du dépôt suivi d’une évacuation par pompage ou balayage par un gaz inerte. Que ce soit en ICVI ou PCVI, la température de dépôt est beaucoup plus basse qu’en CVD/CVI forcée, souvent comprise entre 650 et 900°C.
[0004] Les matériaux de base qui composent ces composites tels que les fibres sont chers et les procédés de fabrication des interphases et des matrices sont des procédés coûteux qui font de ces composites des matériaux utilisables pour des applications à haute valeur ajoutée. Même dans ce cas, toute diminution du coût d’un composant ou d’un procédé est appréciable.
[0005] L’invention a pour objet : à la fois la diminution du coût de fabrication et l’optimisation des interphases de composites à matrice céramique. Il s’agit ainsi de fabriquer des CMCs performants, ayant des propriétés au moins égales ou supérieures à celles obtenues avec du nitrure de bore déposé sur les fibres selon les procédés an térieurs tout en diminuant le coût de fabrication. Ce coût de fabrication élevé est pour une partie dû au coût élevé des gaz utilisés pour la fabrication de ces interphases, en particulier celui du trichlorure de bore employé le plus souvent pour déposer le nitrure de bore.
[0006] Le trichlorure de bore commercial est préparé par réaction du chlore, soit sur le carbure de bore dans un borate fondu, soit sur le carbure de bore en lit fluidisé en présence d’un catalyseur qui est un chlorure d’un métal de transition, soit sur l’oxyde de bore en présence de carbone. Dans tous les cas, le trichlorure de bore BC13 est fortement contaminé par le dichlorure de carbonyle (COC12), ce qui constitue un in convénient majeur et un surcoût dans la synthèse du BC13 commercial qui est purifié. Ces deux molécules sont en effet difficiles à séparer, en particulier par distillation fractionnée, à cause des variations des pressions de vapeur en fonction de la tem pérature très proches pour ces deux espèces. Leur séparation par exemple par conversion thermique ou photochimique de COC12 en CO et 02 suivie d’une dis tillation fractionnée entraîne un surcoût important dans la synthèse du BC13 commercial. Par contre, les impuretés gazeuses volatiles telles que C12 et HCl qui ont un point d’ébullition très inférieur à 0°C peuvent être facilement séparées. Le produit issu de cette séparation simple n’est pas du BC13 tel qu’il peut être nommé commer cialement mais un mélange de BC13 et de son impureté principale, C0C12, en concentration qui atteint jusqu’à environ 5% en pourcentage atomique. Après puri fication, le BC13 commercial de grade chimiquement pur (CP) ne contient que 0,5% d’impuretés mais des puretés beaucoup plus grandes que 99,5%, égales ou supérieures à 99,99%, peuvent être utilisées en particulier dans le domaine de l’électronique alors que le BC13 dit technique contient 1% d’impuretés (Pubchem : « Impurities in Boron trichloride / BC13 », 1978, sections 7.4-7.5). L’ensemble des puretés disponibles chez les fabricants et fournisseurs de BC13 vont ainsi de 99 à 99,999% et la pureté de 99% est la pureté la plus faible qu’il est possible de se procurer sous l’appellation trichlorure de bore.
[0007] Dans les brevets précédemment cités, le nitrure de bore est le plus souvent déposé à partir de mélange de trichlorure de bore, ammoniac et hydrogène mais aucun ne précise la pureté des gaz employés, en particulier la pureté du trichlorure de bore utilisé. Aucun n’indique non plus la présence d’au moins un autre gaz en quantité sub stantielle, quantité telle qu’elle ne permettrait pas de désigner par le seul nom tri chlorure de bore, le gaz utilisé pour une application où il est employé comme gaz réactif ou de synthèse d’un composé du bore tel que le nitrure de bore. L’appellation de cette espèce chimique est en effet exclusivement employée pour un trichlorure de bore de pureté au moins égale à 99% pour un BC13 technique et la pureté du BC13 employé en tant que réactif chimiquement pur, soit « reagent grade » dans sa dénomination américaine, est de 99,5% (Pubchem : « Impurities in Boron trichloride / BC13 », 1978, sections 7.4-7.5). C’est ainsi qu’un BC13 de pureté « reagent grade » est employé dans les brevets EP 2548 855 Al et US 8986 845 pour la fabrication de couches de bore élémentaire infiltrées dans des matrices de CMCs à partir de mélanges trichlorure de bore et hydrogène. Dès qu’on utilise un trichlorure de bore de pureté inférieure à 99%, il ne s’agit plus de trichlorure de bore mais d’un mélange de trichlorure de bore avec sa principale impureté qui est COC12, mélange qui modifie la nature du solide déposé. C’est ainsi que dès qu’on utilise un mélange d’hydrogène et de BC13 de pureté in- férieure à 99%, on n’obtient plus des couches de bore élémentaire mais des couches de type B[C] de structures différentes où la concentration en carbone dans le solide déposé est très supérieure à 0,4% comme le montre le brevet WO 2018220296.
[0008] Au contraire des conditions de dépôt des interphases en nitrure de bore décrites dans les brevets et publications cités précédemment, la présente invention utilise princi palement le dépôt ou l’infiltration chimique d’une interphase à partir d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène auquel est ajouté un mélange de trichlorure de bore et de dichlorure de carbonyle, ce dernier en concentration élevée jusqu’à environ 5% en pourcentage atomique par rapport au trichlorure de bore, le mélange de trichlorure de bore et de la principale impureté formée au cours de sa synthèse contenant ainsi suffisamment de carbone pour conduire à un dépôt de type B[C] comprenant beaucoup de carbone, entre 0,4 et 8% de carbone en pourcentage atomique, lorsque ce BC13 est réduit par le seul réactif hydrogène. Le COC12 joue donc un rôle important dans les processus de dépôt qui l’utilisent en mélange avec le trichlorure de bore.
[0009] L’invention concerne ainsi la fabrication de matériaux composites à matrice céramique dont G interphase est fabriquée, pour sa plus grande partie, à partir d’un mélange de BC13+COC12+NH3+H2 où le COC12 n’a pas été séparé de BC13, au contraire des procédés antérieurs qui utilisent sous le nom trichlorure de bore un réactif forcément purifié qui ne contient qu’une quantité inférieure à 1% de COC12, souvent 0,05% pour fabriquer le nitrure de bore. Pour déposer/infiltrer BN, M. Leparoux (Thèse, Université d’Orléans, 1995) utilisait ainsi un mélange BC13+NH3+H2 où tous les gaz avaient une pureté de 99,995%.
[0010] Relativement aux résultats obtenus avec cette pureté et avec tout réactif dénommé tri chlorure de bore, le mélange gazeux utilisé ici peut conduire à une influence négative des impuretés et à une interaction initiale néfaste avec les fibres de renforcement du composite. Le procédé de l’invention utilise donc de façon spécifique deux étapes de fabrication de l’interphase qui sont enchaînées sans interruption.
[0011] La présente invention a donc pour objet un procédé de fabrication d’un matériau composite comportant un renforcement par des fibres et une matrice principalement composée de céramique, ladite matrice dans laquelle les fibres revêtues d’une couche mince dénommée interphase sont incluses, procédé caractérisé en ce qu’il comprend :
[0012] - la fabrication d’une interphase en deux étapes enchaînées sans interruption, ladite interphase étant fabriquée de façon à former une couche mince sur les fibres par dépôt chimique ou infiltration chimique à partir d’une phase gazeuse constituée, dans une première étape de fabrication, d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène dont la pureté est égale ou supérieure à 99,9% et de trichlorure de bore de pureté égale ou supérieure à 99%, puis constituée dans une deuxième étape de fa- brication d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de trichlorure de bore de pureté inférieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore, la durée de la première étape étant in férieure à 20% de la durée totale de fabrication de l’interphase dont l’épaisseur finale est comprise entre 0,1 et 1 pm,
[0013] - le traitement thermique des fibres ainsi revêtues de l’interphase, sans exposition à une atmosphère oxydante après revêtement des fibres par l’interphase, traitement thermique effectué à une température égale ou supérieure à 1100°C pendant une durée inférieure à 4 heures,
[0014] - puis la fabrication du matériau composite par inclusion des fibres revêtues de
G interphase dans la matrice.
[0015] Préférentiellement, dans la première étape du dépôt chimique ou de l’infiltration chimique à partir de la phase gazeuse, on fabrique l’interphase avec un trichlorure de bore de pureté égale ou supérieure à 99,5%. Durant la deuxième étape de fabrication de l’interphase, le procédé de fabrication de l’invention est caractérisé en ce que le tri chlorure de bore est purifié des seuls impuretés très volatiles qui ont une température d’ébullition inférieure à 0°C, essentiellement C12 et HCl.
[0016] Lors de la synthèse du trichlorure de bore, des impuretés autres que le dichlorure de carbonyle sont présentes telles que le tétrachlorure de silicium, SÎC14, en particulier quand la synthèse du trichlorure de bore est effectuée dans un réacteur en silice. La présente invention comprend aussi un procédé de fabrication où, en plus, un précurseur du silicium est ajouté au mélange gazeux dans au moins tout ou partie d’une des deux étapes de dépôt ou d’infiltration chimique, ce précurseur étant pris parmi le groupe comprenant le silane, un des chlorures de silicium et le méthyltrichlorosilane. Cet ajout permet de déposer une interphase contenant au moins une couche à base du ternaire Si- B-N. Préférentiellement, la concentration en espèces gazeuses précurseurs du silicium est ajustée pour obtenir une concentration en silicium dans cette couche de l’interphase au moins égale à 20% en pourcentage atomique.
[0017] La présente invention concerne des composites à matrice céramique qui utilisent un renforcement par des fibres de natures diverses. Les fibres employées sont ainsi des fibres en carbone, alumine, mullite ou carbure de silicium. Dans ce dernier cas, les fibres de carbure de silicium contiennent le carbone et le silicium comme éléments ma joritaires et, entre autres impuretés, de l’oxygène à une concentration comprise entre 0,05 et 14% en pourcentage atomique. En fonction de leur composition et de leur structure, ces fibres ont des stabilités thermiques très différentes connues des spé cialistes. En fonction de leur stabilité thermique, elles seront incluses dans des composites utilisés pour des applications à température comprise entre 550 et 1600°C environ.
[0018] Le procédé de l’invention utilise des fibres de diamètre variable, le plus souvent compris entre 7 et 15 pm. Ces fibres ne sont pas utilisées seules mais sont organisées de façon à former des fils qui contiennent entre quelques centaines et quelques milliers de fibres. Ces fils peuvent être revêtus directement par l’interphase en utilisant le procédé de l’invention. Ces fils peuvent être aussi organisés en un textile de faible épaisseur ayant une extension principale suivant deux directions (2D), textile fabriqué par tissage, tressage ou tricotage des fils. Ces textiles 2D sont aussi revêtus par l’interphase selon le procédé de l’invention. Dans les deux cas, sur un ou plusieurs fils alignés parallèlement ou sur un textile 2D, la fabrication de l’interphase est effectuée par dépôt/infiltration chimique forcée à partir de la phase gazeuse (CVD/CVI forcée) de façon à revêtir toute les fibres des fils ou du textile avec la même épaisseur d’interphase, ou au moins une épaisseur approchante et une structure proche. Pour obtenir un tel résultat, le transfert de masse vers toutes les zones à revêtir doit être suf fisamment rapide relativement à la cinétique chimique à la surface de celles-ci. Pour obtenir un tel résultat connu depuis très longtemps (L. Vandenbulcke : J. Electrochem. Soc., 124(12), 1977, pp. 1931-1937et pp.1937-1942), la direction de l’écoulement de la phase gazeuse dans la chambre de dépôt est, selon le procédé de l’invention, sinon strictement perpendiculaire au fil ou au textile comme dans les publications cités pré cédemment, mais fait un angle supérieur à environ 20 degrés avec la direction principale des fils ou le plan du textile. La température de dépôt de G interphase et la pression de la phase gazeuse jouent également un rôle important sur la cinétique de dépôt et les conditions de transfert de masse de la phase gazeuse vers chaque fibre. Les conditions de dépôt par CVD/CVI forcée permettent d’utiliser une température de dépôt/infiltration assez élevée tout en maintenant une bonne uniformité des épaisseurs de G interphase sur chaque fibre. Le procédé de l’invention utilise ainsi une fabrication de G interphase sur les fils et les textiles 2D par dépôt/infiltration chimique à tem pérature égale ou supérieure à 1100°C et à une pression comprise entre 0,2 et 10 kPa.
[0019] La fabrication de l’interphase dans la chambre de dépôt est effectuée sur un ou plusieurs fils, ou bien sur un textile 2D qui sont maintenus statique. Cette fabrication est aussi effectuée selon le procédé de l’invention sur un ou plusieurs fils, ou bien un textile 2D qui défilent à une vitesse comprise entre 2 et 500 centimètres par minute. Dans ce dernier cas, la mise en œuvre du procédé, bien que plus complexe permet de revêtir une beaucoup plus grande quantité de fibres sans avoir à interrompre le procédé.
[0020] Dans une variante du procédé de fabrication du matériau composite selon l’invention, le traitement thermique des fibres revêtues de l’interphase n’est pas nécessaire lorsque la fabrication de G interphase par CVD/CVI forcée, sur un ou plusieurs fils ou bien sur un textile 2D, est effectuée à une température de dépôt/infiltration suffisamment élevée pour assurer une bonne stabilité de l’interphase, température supérieure à 1100°C, pré férentiellement égale ou supérieure à environ 1250°C. Le système utilisé pour la mise en œuvre du procédé comprend alors deux chambres de fabrication de G interphase dans laquelle défilent le ou les fils ou bien le textile. Un système de mise en œuvre de plusieurs chambres consécutives pour y effectuer des opérations de dépôt est bien connu de l’homme de l’art.
[0021] Ainsi l’invention comprend un procédé de fabrication d’un matériau composite comportant un renforcement par des fibres et une matrice principalement composée de céramique, ladite matrice dans laquelle les fibres revêtues d’une couche mince dénommée interphase sont incluses, procédé caractérisé en ce qu’il comprend :
[0022] - la fabrication d’une interphase en deux étapes enchaînées sans interruption, ladite interphase étant fabriquée de façon à former une couche mince sur les fibres par dépôt chimique ou infiltration chimique à partir d’une phase gazeuse constituée, dans une première étape de fabrication, d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène dont la pureté est égale ou supérieure à 99,9% et de trichlorure de bore de pureté égale ou supérieure à 99%, puis constituée dans une deuxième étape de fa brication d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de trichlorure de bore de pureté inférieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore, la durée de la première étape étant in férieure à 20% de la durée totale de fabrication de G interphase dont l’épaisseur finale est comprise entre 0,1 et 1 pm, la fabrication étant effectuée sur un ou plusieurs fils ou bien un textile 2D selon un procédé de CVD/CVI forcée réalisé à une température su périeure à 1100°C,
[0023] - puis la fabrication du matériau composite par inclusion des fibres revêtues de
G interphase dans la matrice.
[0024] Le procédé précédent ne comprend que deux chambres de dépôt, sans chambre de traitement thermique lorsque la température de dépôt utilisée est supérieure à 1100°C, préférentiellement dans la gamme de température la plus élevée, égale ou supérieure à environ 1250°C.
[0025] Dans une autre version du procédé, le système utilisé comprend un enroulement du ou des fils ou bien du textile sur un tambour qui est évacué sous atmosphère contrôlée pour être transporté et positionné dans la chambre de traitement thermique, ceci selon un processus bien connu, en particulier dans le domaine de l’électronique.
[0026] Dans une variante du procédé CVD/CVI forcée principalement utilisée sur les fibres qui contiennent la plus grande quantité d’oxygène, la présente invention a pour objet un procédé caractérisé en ce que la première étape a une durée nulle, c’est à dire que la fabrication de l’interphase est entièrement effectuée avec un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de tri- chlorure de bore de pureté inférieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% par rapport au trichlorure de bore, l’épaisseur finale de G interphase étant comprise entre 0,1 et 1 pm. La fabrication de G interphase est alors effectuée dans une seule chambre de dépôt/infiltration et une chambre de traitement thermique.
[0027] Ainsi l’invention comprend un procédé de fabrication d’un matériau composite comportant un renforcement par des fibres et une matrice principalement composée de céramique, ladite matrice dans laquelle les fibres revêtues d’une couche mince dénommée interphase sont incluses, procédé caractérisé en ce qu’il comprend :
[0028] - la fabrication d’une interphase, ladite interphase étant fabriquée de façon à former une couche mince sur les fibres par dépôt chimique ou infiltration chimique à partir d’une phase gazeuse constituée d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de trichlorure de bore de pureté in férieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore, ladite interphase ayant une épaisseur comprise entre 0,1 et 1 pm,
[0029] - le traitement thermique des fibres ainsi revêtues de G interphase, sans exposition à une atmosphère oxydante après revêtement des fibres par l’interphase, traitement thermique effectué à une température égale ou supérieure à 1100°C pendant une durée inférieure à 4 heures,
[0030] - puis la fabrication du matériau composite par inclusion des fibres revêtues de
G interphase dans la matrice.
[0031] Comme nous l’avons vu, le procédé de l’invention utilise des fibres de diamètre variable, le plus souvent compris entre 7 et 15 pm. Ces fibres sont organisées de façon à former des fils qui contiennent entre quelques centaines et quelques milliers de fibres. Dans le procédé de l’invention tel que décrit précédemment, ces fils ou les textiles 2D fabriqués avec ces fils étaient revêtus de l’interphase par CVD/CVI forcée.
[0032] Ces fils constitués de fibres sont aussi agencés pour constituer des préformes fibreuses tridimensionnelles fabriquées par tissage tridimensionnel des fils ou tissage de couches de textile ou empilement de couches de textile avec un renforcement plus ou moins fort suivant la troisième dimension, les couches de textile étant maintenues empilées par des outils de maintien constitués de matériaux solide perforés qui permettent le passage des gaz vers les fibres. Ces outils qui jouent aussi le rôle de conformateurs pour les préformes fibreuses sont bien connus de l’homme de l’art.
[0033] Dans le cas de ces préformes fibreuses tridimensionnelles, le procédé de fabrication de G interphase est un procédé d’infiltration chimique à partir de la phase gazeuse (CVI) en mode continu ou en mode pulsé (PCVI) réalisé à une température comprise entre 650 et 900°C et à une pression comprise entre 0,1 et 5 kPa, toujours en utilisant au moins pendant 80% du temps de fabrication de G interphase un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de trichlorure de bore de pureté inférieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore.
[0034] La présente invention a donc pour objet un procédé de fabrication d’un matériau composite comportant un renforcement par des fibres et une matrice principalement composée de céramique, ladite matrice dans laquelle les fibres revêtues d’une couche mince dénommée interphase sont incluses, procédé caractérisé en ce qu’il comprend :
[0035] - la fabrication d’une interphase en deux étapes enchaînées sans interruption, ladite interphase étant fabriquée de façon à former une couche mince sur les fibres par in filtration chimique en continu (CVI) ou pulsée (PCVI) à partir d’une phase gazeuse constituée, dans une première étape de fabrication, d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène dont la pureté est égale ou supérieure à 99,9% et de trichlorure de bore de pureté égale ou supérieure à 99%, puis constituée dans une deuxième étape de fabrication d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de trichlorure de bore de pureté in férieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore, la durée de la première étape étant inférieure à 20% de la durée totale de fabrication de l’interphase dont l’épaisseur finale est comprise entre 0, 1 et 1 pm,
[0036] - le traitement thermique des fibres ainsi revêtues de G interphase, sans exposition à une atmosphère oxydante après revêtement des fibres par l’interphase, traitement thermique effectué à une température égale ou supérieure à 1100°C pendant une durée inférieure à 4 heures,
[0037] - puis la fabrication du matériau composite par inclusion des fibres revêtues de
G interphase dans la matrice.
[0038] Dans le cas du procédé CVI ou PCVI sur des préformes fibreuses les outils de maintien sont le plus souvent utilisés, après traitement thermique des fibres revêtues de G interphase, pour consolider la préforme par une première couche de matrice fabriquée par CVI. La densification de la matrice est ensuite poursuivie après avoir extrait la préforme de ses outils de maintien.
[0039] Bien entendu, les variantes de l’invention décrites précédemment pour le procédé CVD/CVI forcée s’appliquent aussi au procédé CVI et PCVI, excepté celle qui n’utilise pas de traitement thermique après infiltration de G interphase.
[0040] Dans une variante du procédé CVI/PCVI utilisée sur une préforme fibreuse tridimen- sionnelle, la présente invention a pour objet un procédé caractérisé en ce que la première étape a une durée nulle, c’est à dire que la fabrication de l’interphase est en tièrement effectuée avec un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de trichlorure de bore de pureté in férieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore, l’épaisseur finale de l’interphase étant comprise entre 0,1 et 1 pm.
[0041] En dehors des conditions de CVD/CVI forcée à des températures égales ou su périeures à 1250°C, le procédé de l’invention utilise un traitement thermique des fibres revêtues de l’interphase sans que l’ensemble soit exposé à une atmosphère oxydante après revêtement des fibres par l’interphase. Ce traitement thermique est effectué à une température au moins égale à 1100°C pendant une durée inférieure ou égale à 4 heures, préférentiellement inférieure ou égale à 2 heures. La température de traitement choisie dépend de la stabilité thermique des fibres. Pour les fibres en carbure de silicium telles que par exemple les fibres de la société Nippon Carbon de type Nicalon™, une bonne stabilité thermique est maintenue entre 1100°C et 1600°C environ selon le type de fibre. Les traitements thermiques seront donc effectués en tenant compte de ces tem pératures de façon à ne pas modifier de façon notable les propriétés mécaniques in trinsèques des fibres. C’est ainsi que le procédé de l’invention utilise un traitement des fibres revêtues de l’interphase à une température comprise entre 1100°C et 1600°C environ. Le traitement thermique est préférentiellement effectué à une température et selon une durée qui, sous atmosphère inerte, n’altèrent pas de plus de 5% le module d’élasticité intrinsèque nominal des fibres fourni par le fabricant. Le traitement thermique est effectué dans des atmosphères gazeuses telles que les gaz rares, préféren tiellement l’argon, ou dans l’azote.
[0042] Le procédé de fabrication d’un matériau composite selon l’invention est poursuivi par l’inclusion des fibres revêtues de l’interphase déposée à haute température ou traitée thermiquement. Cette matrice est constituée d’au moins un matériau pris parmi le groupe des oxydes, des carbures, des nitrures et des siliciures ou par une com binaison de matériaux pris parmi au moins un de ces groupes. Parmi ceux-ci, un matériau très employé pour constituer la matrice est le carbure de silicium.
[0043] L’inclusion des fibres revêtues de G interphase déposée à haute température ou traitée thermiquement est effectuée selon diverses techniques connues de l’homme de l’art, au moins en partie par :
[0044] - infiltration chimique à partir de la phase gazeuse (CVI) et/ou
[0045] - imprégnation par au moins un polymère précurseur de céramique suivi d’une pyrolyse et/ou
[0046] - en introduisant du carbone et/ou une poudre céramique au sein des fibres et en in- filtrant un métal à base de silicium à l’état fondu pour former un carbure de silicium.
[0047] Par exemple, le troisième procédé connu sous l’appellation de « melt infiltration » ou MI est décrit en particulier dans les brevets US 4889 686(A) et US 5015 540(A).
[0048] Le procédé de fabrication d’un matériau composite selon l’invention comprend aussi des matériaux de matrice qui permettent une auto-cicatrisation de celle-ci lorsque l’intérieur de la matrice est exposé à une atmosphère oxydante par des fissures re joignant la surface, qu’elles proviennent de la fabrication ou de G utilisation du composite. Dans ce cas, la matrice est constituée de couches de natures différentes qui comprennent le carbure de silicium et au moins un carbure pris parmi le binaire bore- carbone ou le ternaire silicium-bore-carbone comme il est décrit par exemple dans le document US 5 246736 et le document WO 2018220296. Dans la présente invention, ces couches sont infiltrées par CVI et l’élément bore est apporté dans toutes ces couches de type B-C ou Si-B-C par une phase gazeuse comprenant préférentiellement un trichlorure de bore de pureté inférieure à 99%.
[0049] Le procédé de fabrication d’un matériau composite selon l’invention qui comprend un renforcement par des fibres et une matrice principalement composée de céramique, ladite matrice dans laquelle les fibres revêtues d’une couche mince dénommée in terphase sont incluses, peut comporter diverses directions de renforcement. Le composite comporte un renforcement par des fibres qui constituent des fils allongés suivant une direction principale de renforcement (composite 1D), ou par des fils qui constituent des textiles avec deux directions principales de renforcement (composite 2D) ou qui comprennent en plus un renforcement partiel suivant une troisième direction (composite 2,5D), ou qui constituent un renforcement suivant N directions où N > 3.
[0050] D’autres caractéristiques et avantages de l’invention apparaîtront à la lecture de la description des figures jointes et des exemples qui suivent.
[0051] La [fig.l] est une représentation schématique d’une section d’un composite renforcé suivant deux directions et fabriqué selon l’invention. Le matériau composite (1) comporte un renforcement par des fibres (10) et une matrice (11) principalement composée de céramique, les fibres revêtues d’une couche mince dénommée interphase (12) étant incluses dans ladite matrice.
[0052] Des exemples d’appareillage permettant la mise en œuvre du procédé de fabrication de G interphase par CVD/CVI forcée sur des fils ou des textiles sont fournis par les documents US 6630029 et US 2016229758 par exemple. Les fils ou les textiles défilent dans la chambre de dépôt/infiltration selon une technique ancienne de dépôt du bore amorphe sur monofilament de tungstène pour former des filaments de bore amorphe de 100 pm de diamètre environ. Un autre type d’appareillage CVD/CVI forcée, basé sur des principes scientifiques proches mais en statique, est utilisé ici en variante de l’appareillage de CVI décrit de façon détaillée ci-dessous. Nous verrons qu’on y associe un transfert de masse par convection forcée essentiellement as cendante, à un transfert de masse par convection naturelle ascendante, à la diffusion des réactifs gazeux sous pression réduite.
[0053] La [fig.2] est une représentation schématique d’un exemple d’appareillage de fa brication de l’interphase et de la matrice par CVI. Il s’agit ici de l’infiltration d’une in terphase dans des préformes fibreuses insérées dans leurs outils de maintien. L’hydrogène est contenu dans une bouteille de gaz (20), le BC13 dans une bouteille de gaz (21) et le COC12 dans une bouteille de gaz (22). Le mélange formé par ces deux gaz, BC13 et COC12, ce dernier en quantité supérieure à 1% relativement au BC13, mélange issu de la synthèse du trichlorure de bore est reproduit ici artificiellement à partir d’un mélange des deux gaz purs. L’ammoniac est contenu dans une bouteille (23).Ces gaz sont délivrés avec des débits contrôlés dans des canalisations qui comportent chacune une vanne d’arrêt (24), (25), (26) et (27) et un débitmètre massique (28), (29), (30) et (31). Le mélange gazeux de composition contrôlée est ensuite introduit par la canalisation (32) dans le réacteur de dépôt (33). Celui-ci est placé dans une enceinte (34) dans laquelle on peut faire le vide et contrôler l’atmosphère. A l’intérieur du réacteur (33), un suscepteur (35) en matériau conducteur, par exemple du graphite revêtu de carbure de silicium, contient une ou plusieurs préformes fibreuses (36) à revêtir par l’interphase. Un inducteur (37) est relié à un générateur haute fréquence (38) qui permet de chauffer le suscepteur et les textures fibreuses à infiltrer par G interphase. Un thermocouple (39) permet, à l’aide d’un régulateur de température (40), de piloter le générateur de façon à porter le suscepteur et les préformes fibreuses à infiltrer à la température souhaitée. Une pompe (41) permet de faire le vide initial dans l’enceinte (34) puis de maintenir la pression dans cette enceinte à la valeur désirée par l’intermédiaire d’un capteur de pression fixé sur l’enceinte et d’une vanne de régulation (42). Un piège (43), situé avant la pompe, est destiné à protéger celle-ci et le système de régulation des gaz corrosifs halogénés. Des lignes de gaz supplémentaires permettent de mettre en œuvre l’ensemble du procédé. Le traitement thermique est ainsi effectué sous atmosphère contrôlée, par exemple d’argon introduit à partir de la source (44) avec sa vanne (45) et son dé bitmètre (46). Un dépôt initial de consolidation des préformes fibreuses, par exemple avec une couche de carbure de silicium peut être effectué à partir d’un mélange d’hydrogène contenu dans la bouteille (20) et de méthyltrichlorosilane provenant d’une bouteille supplémentaire avec ses accessoires non représentés ici.
[0054] Après consolidation de la préforme fibreuse, la densification de la matrice par du carbure de silicium par exemple peut être poursuivie dans ce même réacteur après li bération de la préforme fibreuse de ses outils de maintien. [0055] La facilité de mise en œuvre, la versatilité du procédé et de ses variantes, et les avantages de ce procédé sont démontrés à l’aide d’exemples de mise en œuvre plus spécifiques.
[0056] Dans l’exemple 1, le procédé de fabrication d’un matériau composite selon l’invention utilise une préforme fibreuse constituée de textiles et renforcée suivant deux directions (2D). Elle est constituée de fibres Hi-Nicalon™ produites par Nippon Carbon qui ont subi un traitement spécifique pour éliminer l’oxyde natif à sa surface selon un procédé bien connu. La préforme est disposée dans des outils de maintien et l’ensemble est introduit dans le réacteur de dépôt (33) de la [fig.2] pour y déposer l’interphase par CVI. Un mélange de gaz composé d’ammoniac et d’hydrogène dont la pureté est égale à 99,95% et de trichlorure de bore de pureté égale à 99,95% est utilisé dans une première étape pour infiltrer une couche d’interphase de 0,04pm à la tem pérature de 700°C, sous une pression de 1,3 kPa. Dans une deuxième étape de fa brication, un mélange de gaz composé d’ammoniac et d’hydrogène de pureté égale à 99,95%, de trichlorure de bore de pureté égale à 99,95% et de dichlorure de carbonyle en concentration égale à 2,5% par rapport au trichlorure de bore, est utilisé dans les mêmes conditions de température et de pression pour atteindre une épaisseur finale de G interphase de 0,2 pm. Le mélange trichlorure de bore plus dichlorure de carbonyle utilisé ici correspond à un trichlorure de bore qui n’a été purifié, après sa synthèse, que de ses seules espèces volatiles, comme 02 et HCl.
[0057] Après balayage du réacteur de dépôt par de l’argon pour éliminer les réactifs précédents, un traitement thermique des fibres revêtues de l’interphase est effectué sous argon à une température de 1400°C pendant une durée de 1 heure.
[0058] La préforme, toujours maintenue dans ses outils est ensuite consolidée par une couche de céramique, ici le carbure de silicium déposé par CVI à partir d’un mélange de méthyltrichlorosilane (CH3SÎC13) et d’hydrogène (H2) selon un procédé bien connu à une température d’environ 1000-1040 °C et une pression dans le domaine 7,5 à 15 kPa. La préforme ainsi consolidée est alors libérée de ses outils de maintien et conserve sa forme et ses dimensions. La densification de la préforme est poursuivie par CVI pour former la matrice céramique, ici toujours constituée par infiltration de SiC. Notons que d’autres techniques de densification pourraient être alors employées telles qu’elles ont été décrites précédemment. Ici la densification est poursuivie pour former une matrice de carbure de silicium et terminer le matériau composite. Notons aussi que la surface extérieure d’un tel composite peut être protégée par un revêtement faisant office de barrière thermique et/ou environnementale (EBC). Ce type de revêtement a pour but l’abaissement de température dans le composite et la protection du composite contre la corrosion en atmosphère oxydante ou humide. De tels revêtements sont décrits par exemple dans les brevets US 7 544394, WO 9631687(A1), US 9 133 541et US 2018363476.
[0059] Une éprouvette de traction est usinée dans le composite ainsi formé sans revêtement extérieur de type EBC, après les étapes de fabrication de interphase, de traitement thermique, de consolidation de la préforme puis de densification terminale. Cet usinage est effectué de façon à obtenir la direction principale de l’éprouvette suivant une direction de renforcement du composite 2D. Elle est ensuite soumise à un test de traction à température ambiante dans l’air. La rupture de l’éprouvette de traction in tervient pour une contrainte de 300 MPa et une élongation relative de 0,4%.
[0060] Dans un exemple comparatif 1’, une éprouvette de traction est usinée dans un composite SiC/BN/SiC fabriqué dans les mêmes conditions que l’exemple 1 mais avec une interphase classique de BN de 0,2 pm déposée sur toute son épaisseur avec un mélange de gaz purs composé d’ammoniac, d’hydrogène et de trichlorure de bore dont la pureté est égale à 99,95%, sans COC12. Les résultats obtenus en traction à tem pérature ambiante dans l’air sont identiques aux précédents.
[0061] Dans l’exemple 2, le procédé de fabrication d’un matériau composite selon l’invention utilise des préformes fibreuses renforcées suivant deux directions (2D). Elles sont constituées de fibres Nicalon-NLM202™ qui ont subi un traitement spécifique pour éliminer l’oxyde natif à leur surface selon un procédé bien connu. Les préformes sont disposées dans des outils de maintien et l’ensemble est introduit dans le réacteur de dépôt (33) de la [fig.2] pour y déposer G interphase par CVI. Dans une première étape de fabrication, un mélange de gaz composé d’ammoniac et d’hydrogène dont la pureté est égale à 99,95% et de trichlorure de bore de pureté identique, égale à 99,95%, est utilisée à la température de 700°C, sous une pression de 1,3 kPa, pendant une durée de 5 minutes. Dans une deuxième étape de fabrication, un mélange de gaz composé d’ammoniac et d’hydrogène de pureté égale à 99,95%, de trichlorure de bore de pureté égale à 99,95% et de dichlorure de carbonyle en concentration égale à 3% par rapport au trichlorure de bore, est utilisé dans les mêmes conditions de température et de pression pendant une durée de 150 minutes. Après évacuation de ses gaz réactifs, le réacteur est rempli d’argon et les préformes fibreuses sont portées à une température de 1100°C pendant 2 heures. Les préformes, toujours maintenues dans leurs outils sont ensuite consolidées par une couche de céramique, ici le carbure de silicium infiltré par CVI à partir d’un mélange de méthyltrichlorosilane et d’hydrogène selon le procédé déjà décrit dans l’exemple 1. Les préformes consolidées sont alors libérées de leurs outils de maintien et conservent leurs formes et leurs dimensions. La densification des préformes est poursuivie ici par CVI pour former la matrice céramique. Mais cette fois la matrice n’est plus constituée de SiC seul mais d’une matrice auto-cicatrisante telle que décrite dans le brevet initial US 5 246736 puis ses variantes US 5965 266 et WO 2018220296. On infiltre ici des couches alternées de SiC et du système ternaire SiBC à partir du mélange hydrogène, méthyltrichlorosilane et trichlorure de bore additionné de 3% de COC12 relativement au trichlorure de bore, ce qui correspond, là aussi, à G utilisation d’un trichlorure de bore purifié de ses seuls éléments volatils après sa synthèse. SiC est infiltré dans les mêmes conditions que dans l’exemple 1. Le ternaire SiBC est réalisé par infiltration chimique en phase vapeur à une température comprise entre 850 et 1150 °C et une pression comprise entre 0,5 et 30 kPa.
[0062] Deux éprouvettes de traction sont usinées dans le composite ainsi formé après les étapes de fabrication de G interphase, de traitement thermique, de consolidation des préformes puis de densification terminale avec une matrice auto-cicatrisante. Cet usinage est effectué de façon à obtenir la direction principale de l’éprouvette suivant une direction de renforcement du composite 2D. Après usinage, chaque éprouvette est revêtue d’une couche de carbure de silicium pour obturer les pores apparus avec l’usinage. La nature des fibres employées dont la stabilité thermique ne dépasse guère 1100°C et dont le module est plus faible (environ 220 Gpa) ainsi que l’utilisation d’une matrice auto-cicatrisante destinent particulièrement ce composite à des applications sous contraintes et températures modérées, comprises entre 600 et 1100°C. Ces éprouvettes sont soumises à des tests de fatigue en traction/traction à 120 MPa sous air, respectivement à 800 et 1050°C. Pour les deux températures la durée de vie est d’environ 200 heures, ce qui est de façon surprenante une valeur supérieure à celle obtenue avec une interphase en nitrure de bore classique selon les procédés précédents comme nous allons le voir dans l’exemple comparatif qui suit.
[0063] Dans un exemple comparatif 2’, un même test est effectué sur des éprouvettes usinées dans un composite SiC/BN/SiC-SiBC fabriqué dans les mêmes conditions que l’exemple 2 mais avec une interphase de BN classique déposée sur toute son épaisseur en utilisant un mélange de gaz purs composé d’ammoniac, d’hydrogène et de tri chlorure de bore dont la pureté est égale à 99,95%, sans COC12. Les résultats obtenus lors de tests de fatigue en traction/traction à 120 MPa sous air, respectivement à 800 et 1050°C sont inférieurs aux précédents avec une durée de vie d’environ 180 heures.
[0064] Dans l’exemple 3, les fibres utilisées sont des fibres Hi-Nicalon™ fabriquées par Nippon Carbon, fibres qui ont un module de 270 GPa. Les fils constitués avec ces fibres sont tissées de façon à former un textile 2D de faible épaisseur. On utilise ici une infiltration par CVD/CVI forcée avec un mélange gazeux qui arrive avec une direction sensiblement perpendiculaire à la surface du textile, selon une direction ascendante qui permet d’associer la convection naturelle à la convection forcée et à la diffusion sous pression réduite. On utilise ici un textile qui remplace les préformes (36) de la [fig.2].
Il est disposé perpendiculairement à l’arrivée des gaz dans le réacteur (33) de la [fig.2] et obstrue presque toute la section du suscepteur (35) qui reçoit la plus grande partie du flux gazeux entrant dans le réacteur (33) grâce à la fermeture presque totale du passage entre le réacteur (33) et le suscepteur (35). Cette technique permet de créer une légère différence de pression entre la surface exposée à l’arrivée des gaz et la surface située du côté de leur évacuation vers la sortie du réacteur. Avec la faible épaisseur du textile, le flux de gaz traversant par convection forcée, la convection naturelle ascendante ainsi que la diffusion sous pression réduite permettent de revêtir toutes les fibres avec des conditions de concentration des réactifs à leur surface relativement proches, ceci dépendant cependant de la température utilisée pour le procédé relativement aux conditions de transfert de masse comme cela est montré depuis très longtemps dans le cas du dépôt à partir de jets gazeux impactant une surface plane (L. Vandenbulcke, J. Electrochem. Soc., 124 (1977) 1932-1937). La température utilisée est ici de 1300°C avec une pression des gaz de 2kPa. Un mélange de gaz composé d’ammoniac et d’hydrogène dont la pureté est égale à 99,95% et de trichlorure de bore de pureté égale à 99,95% est utilisé dans une première étape pour infiltrer une couche d’interphase de 0,04 pm. Dans une deuxième étape de fabrication, un mélange de gaz composé d’ammoniac et d’hydrogène de pureté égale à 99,95%, de trichlorure de bore de pureté égale à 99,95% et de dichlorure de carbonyle en proportion égale à 2% par rapport au trichlorure de bore, est utilisé dans les mêmes conditions de température et de pression pour atteindre une épaisseur finale de l’interphase de 0,2 pm. Le mélange de tri chlorure de bore et de dichlorure de carbonyle utilisé de nouveau ici correspond à un trichlorure de bore qui n’a été purifié après sa synthèse que de ses seules espèces volatiles comme C12 et HCl, mais pas de son impureté principale, COC12.
[0065] Aucun traitement thermique n’est effectué ici après le dépôt à haute température. Cette température de dépôt élevée permet en effet d’assurer une bonne stabilité de l’interphase telle que déposée. Douze textiles, constitués de fils comprenant les fibres revêtues de leur interphase, sont superposés étroitement dans des outils de maintien perforés pour permettre le passage des gaz. La structure fibreuse ainsi constituée est ensuite consolidée par une couche de céramique, ici le carbure de silicium déposé par CVI à partir d’un mélange de méthyltrichlorosilane (CH3SiC13) et d’hydrogène (H2) selon un procédé bien connu à une température d’environ 1000-1040 °C et une pression dans le domaine 7,5 à 15 kPa. La préforme ainsi consolidée est alors libérée de ses outils de maintien et la densification de la structure fibreuse cohérente est poursuivie ici par CVI pour former la matrice céramique, toujours constituée de SiC.
[0066] Une éprouvette de traction est usinée dans le composite ainsi fabriqué. Cet usinage est effectué de façon à obtenir la direction principale de l’éprouvette suivant une direction de renforcement du composite 2D. Elle est ensuite soumise à un test de traction à température ambiante dans l’air. La rupture de l’éprouvette de traction in tervient pour une contrainte de 290 MPa et une élongation relative de 0,35%.
[0067] Dans un exemple comparatif 3’, une éprouvette de traction est usinée dans un composite SiC/BN/SiC fabriqué dans les mêmes conditions que l’exemple 3 mais avec une interphase classique de BN de 0,2 pm déposée sur toute son épaisseur en utilisant un mélange de gaz purs composé d’ammoniac, d’hydrogène et de trichlorure de bore dont la pureté est égale à 99,95%, sans COC12. Les résultats obtenus en traction à tem pérature ambiante dans l’air sont identiques aux précédents.
[0068] Ces exemples démontrent qu’une grande partie de G interphase entre les fibres et la matrice peut être fabriquée avec un trichlorure de bore qui, après synthèse, n’a été purifié que pour éliminer les espèces très volatiles. Ce trichlorure de bore qui contient en particulier l’espèce COC12 en concentration supérieure à 1% jusqu’à environ 5%, évite le surcoût dû à sa difficile purification. Le résultat important et le plus inattendu concerne les propriétés des matériaux composites fabriqués avec ce type d’interphase. Celles-ci ne sont pas altérées par rapport à celles des composites fabriqués selon les procédés antérieurs qui utilisent un trichlorure de bore purifié conduisant à une in terphase classique en nitrure de bore. De façon surprenante, des résultats supérieurs sont même obtenus avec l’invention relativement aux matériaux composites fabriqués avec G interphase classique en nitrure de bore comme on peut le voir avec la com paraison des exemples 2 et 2’.
[0069] Ces exemples ne sont évidemment pas exhaustifs et de nombreuses variantes peuvent y être apportées en fonction des caractéristiques des fibres, de la structure de leur agencement en fils, textiles ou préformes fibreuses, des conditions de traitement thermique qui dépendent des fibres et des conditions de fabrication de l’interphase compte tenu de la structure de l’agencement des fils, de la nature des matrices qui sont utilisées et des procédés d’infiltrations variés qui existent.
[0070] De plus, il est possible d’infiltrer des sous-couches qui font partie intégrante de l’interphase. C’est ainsi que, lorsque le trichlorure de bore n’est purifié que des espèces chimiques très volatiles, il contient aussi du tétrachlorure de silicium, spécialement lorsque sa synthèse est effectuée dans un tube en silice. Il est possible, en première étape ou en fin de deuxième étape de fabrication de G interphase, d’ajouter au mélange H2, NH3, BC13 (+COC12), le BC13 étant de pureté égale ou supérieure à 99% ou mélangé à plus de 1% de COC12, un précurseur du silicium pour former une sous- couche à base du ternaire Si-B-N avec des proportions variables de silicium. Par exemple selon L. Vandenbulcke et al. (Proceedings of the 5th International Conférence on High Température Ceramic Matrix Composites (2005) ISBN: 978-1-574-98263-3), on forme ainsi des couches résistantes à l’oxydation lorsque le pourcentage de silicium est égal à environ 20% en pourcentage atomique. Ce ternaire peut ainsi être utilisé comme sous-couche de l’interphase du côté fibre ou côté matrice. Le précurseur du silicium, ajouté au mélange gazeux dans au moins tout ou partie d’une des deux étapes de dépôt ou d’infiltration chimique, est choisi parmi le groupe comprenant le silane, les chlorures de silicium et le méthyltrichlorosilane.
[0071] Pour faciliter la manipulation des tissus et surtout des fils, on peut aussi les enduire d’une couche de protection après dépôt de G interphase à haute température. Cette couche de protection doit pouvoir être éliminée après fabrication de la structure fibreuse et avant densification par la matrice. On utilise classiquement des polymères qui sont en solution dans un solvant et sont appliqués par trempage ou pulvérisation de spray. L’élimination se fait essentiellement par traitement thermique sans laisser de résidu à la surface des fibres.
[0072] Finalement, les matériaux composites fabriqués selon une quelconque des variantes du procédé décrit précédemment font partie intégrante de l’invention.
[0073] La description précédente présente des exemples qui ne sont évidemment pas li mitatifs. Des variantes ou des modifications peuvent y être apportées par l’homme de l’art sans que celles-ci sortent du cadre de l’invention. Toutefois le cadre de l’invention est déterminé classiquement par les revendications qui suivent.

Claims

Revendications
[Revendication 1] Un procédé de fabrication d’un matériau composite (1) comportant un renforcement par des fibres (10) et une matrice principalement composée de céramique, ladite matrice (11) dans laquelle les fibres revêtues d’une couche mince dénommée interphase (12) sont incluses, procédé caractérisé en ce qu’il comprend :
- la fabrication d’une interphase en deux étapes enchaînées sans in terruption , ladite interphase étant fabriquée de façon à former une couche mince sur les fibres par dépôt chimique ou infiltration chimique à partir d’une phase gazeuse constituée, dans une première étape de fa brication, d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène dont la pureté est égale ou supérieure à 99,9% et de tri- chlorure de bore de pureté égale ou supérieure à 99%, puis constituée dans une deuxième étape de fabrication d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de trichlorure de bore de pureté inférieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore, la durée de la première étape étant in férieure ou égale à 20% de la durée totale de fabrication de G interphase dont l’épaisseur finale est comprise entre 0,1 et 1 pm,
- le traitement thermique des fibres ainsi revêtues de l’interphase, sans exposition à une atmosphère oxydante après revêtement des fibres par G interphase, traitement thermique effectué à une température égale ou supérieure à 1100°C pendant une durée inférieure à 4 heures,
- puis la fabrication du matériau composite par inclusion des fibres revêtues de G interphase dans la matrice.
[Revendication 2] Un procédé de fabrication selon la revendication 1 caractérisé en ce que, durant la première étape, on fabrique G interphase avec un trichlorure de bore de pureté égale ou supérieure à 99,5%.
[Revendication 3] Un procédé de fabrication selon la revendication 1 caractérisé en ce que, durant la deuxième étape de fabrication de G interphase le trichlorure de bore utilisé n’est, après sa synthèse, purifié que des seuls éléments très volatils qui ont une température d’ébullition inférieure à 0°C.
[Revendication 4] Un procédé de fabrication selon une quelconque des revendications 1 à 3 où un précurseur du silicium est ajouté au mélange gazeux dans au moins tout ou partie d’une des deux étapes de dépôt ou d’infiltration chimique, ce précurseur étant pris parmi le groupe comprenant le silane, un des chlorures de silicium et le méthyltrichlorosilane.
[Revendication 5] Un procédé selon une quelconque des revendications 1 à 4 où les fibres sont des fibres en carbone, alumine, mullite ou carbure de silicium.
[Revendication 6] Un procédé selon la revendication 5 où les fibres de carbure de silicium contiennent le carbone et le silicium comme éléments majoritaires et, entre autres impuretés, de l’oxygène à une concentration comprise entre 0,05 et 14% en pourcentage atomique.
[Revendication 7] Un procédé selon une quelconque des revendications 1 à 4 où les fibres constituent un fil qui contient plusieurs centaines de fibres ou un textile fabriqué par tissage, tressage ou tricotage des fils.
[Revendication 8] Un procédé selon la revendication 7 où la fabrication de G interphase est effectuée par dépôt/infiltration chimique forcée à partir de la phase gazeuse, CVD/CVI forcée, dans une chambre de dépôt où la direction de l’écoulement de la phase gazeuse incidente et la direction principale des fils ou bien le plan du textile font un angle supérieur à environ 20 degrés, la fabrication de G interphase étant effectuée à une température égale ou supérieure à environ 1100°C et à une pression comprise entre 0,2 et 10 kPa.
[Revendication 9] Un procédé de fabrication selon la revendication 8 où le fil ou les fils, ou bien le textile, tous comprenant les fibres sont maintenus statiques dans la chambre de dépôt.
[Revendication 10] Un procédé de fabrication selon la revendication 8 où le fil ou les fils, ou bien le textile, défilent dans la chambre de dépôt à une vitesse comprise entre 2 et 500 centimètres par minute.
[Revendication 11] Un procédé de fabrication selon une quelconque des revendications 8 à 10 où la fabrication de l’interphase est effectuée par dépôt/infiltration chimique forcée à partir de la phase gazeuse, CVD/CVI forcée, dans un réacteur de dépôt où le positionnement du ou des fils ou bien du textile est horizontal et où le flux de gaz de l’entrée à la sortie du réacteur de dépôt/infiltration chimique est essentiellement ascendant, le transfert de masse vers toutes les fibres associant la convection forcée à la convection naturelle ascendante et la diffusion sous pression réduite.
[Revendication 12] Un procédé selon une quelconque des revendications 1 à 4 où les fibres constituent une préforme tridimensionnelle fabriquée par tissage tridi mensionnel des fils ou tissage des fils en couches de textile ou em pilement de couches de textile, les couches de textile étant maintenues empilées par des outils de maintien constitués de matériaux solides perforés qui permettent le passage des gaz vers les fibres constituant les fils.
[Revendication 13] Un procédé selon la revendication 12 où la fabrication de l’interphase est effectuée par infiltration chimique à partir de la phase gazeuse en mode continu (CVI) ou pulsé (CVI pulsée) à une température comprise entre 650 et 900°C et à une pression comprise entre 0,1 et 5 kPa.
[Revendication 14] Un procédé selon les revendications 12-13 où, après traitement thermique des fibres revêtues de G interphase, les outils de maintien sont utilisés pour consolider la préforme par une première couche de matrice fabriquée par CVI, la densification de la matrice étant poursuivie après avoir extrait la préforme de ses outils de maintien.
[Revendication 15] Un procédé selon une quelconque des revendications 1 à 6 où le traitement thermique est effectué, selon la nature des fibres, à une tem pérature comprise entre 1100°C et 1600°C et selon une durée inférieure ou égale à 2 heures.
[Revendication 16] Un procédé selon la revendication 15 où le traitement thermique est effectué à une température et selon une durée qui, sous atmosphère inerte, n’altèrent pas de plus de 5% le module d’élasticité intrinsèque nominal des fibres indiqué par le fabricant des fibres.
[Revendication 17] Un procédé selon une quelconque des revendications 1 à 4 où la matrice est constituée d’au moins un matériau pris parmi les groupes des oxydes, des carbures, des nitrures ou des siliciures ou par une com binaison de matériaux pris parmi au moins un de ces groupes.
[Revendication 18] Un procédé selon la revendication 17 où la matrice est constituée de carbure de silicium.
[Revendication 19] Un procédé selon les revendications 1 à 4 où l’inclusion des fibres revêtues de G interphase dans la matrice est effectuée au moins en partie par infiltration chimique à partir de la phase gazeuse (CVI).
[Revendication 20] Un procédé selon la revendication 19 où la matrice est constituée de couches de natures différentes qui comprennent le carbure de silicium et au moins un carbure pris parmi le binaire bore-carbone ou le ternaire silicium-bore-carbone, l’élément bore étant préférentiellement apporté dans toutes ces couches par une phase gazeuse comprenant un tri- chlorure de bore de pureté inférieure à 99%.
[Revendication 21] Un procédé selon une quelconque des revendications 1 à 4 où l’inclusion des fibres revêtues de l’interphase dans la matrice est effectuée au moins en partie par imprégnation par au moins un polymère précurseur de céramique suivi d’une pyrolyse.
[Revendication 22] Un procédé selon une quelconque des revendications 1 à 4 où l’inclusion des fibres revêtues de l’interphase dans la matrice est effectuée au moins en partie en introduisant du carbone et une poudre céramique au sein des fibres et en infiltrant un métal à base de silicium à l’état fondu.
[Revendication 23] Un procédé selon une quelconque des revendications 1 à 4 où le composite comporte un renforcement par des fibres qui constituent des fils allongées suivant une direction principale de renforcement (composite 1D), par des fils qui constituent des textiles avec deux di rections principales de renforcement (composite 2D) ou qui com prennent en plus un renforcement partiel suivant une troisième direction (composite 2,5D), ou qui constituent un renforcement suivant N di rections où N > 3.
[Revendication 24] Un procédé de fabrication d’un matériau composite comportant un ren forcement par des fibres et une matrice principalement composée de céramique, ladite matrice dans laquelle les fibres revêtues d’une couche mince dénommée interphase sont incluses, procédé caractérisé en ce qu’il comprend :
- la fabrication d’une interphase en deux étapes enchaînées sans in terruption, ladite interphase étant fabriquée de façon à former une couche mince sur les fibres par dépôt chimique ou infiltration chimique à partir d’une phase gazeuse constituée, dans une première étape de fa brication, d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène dont la pureté est égale ou supérieure à 99,9% et de tri- chlorure de bore de pureté égale ou supérieure à 99%, puis constituée dans une deuxième étape de fabrication d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de trichlorure de bore de pureté inférieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore, la durée de la première étape étant in férieure ou égale à 20% de la durée totale de fabrication de G interphase dont l’épaisseur finale est comprise entre 0,1 et 1 pm, la fabrication étant effectuée sur un ou plusieurs fils ou bien un textile 2D selon un procédé de CVD/CVI forcée réalisé à une température supérieure à 1100°C,
- puis la fabrication du matériau composite par inclusion des fibres revêtues de G interphase dans la matrice.
[Revendication 25] Un procédé de fabrication d’un matériau composite comportant un ren forcement par des fibres et une matrice principalement composée de céramique, ladite matrice dans laquelle les fibres revêtues d’une couche mince dénommée interphase sont incluses, procédé caractérisé en ce qu’il comprend :
- la fabrication d’une interphase, ladite interphase étant fabriquée de façon à former une couche mince sur les fibres par dépôt chimique ou infiltration chimique à partir d’une phase gazeuse constituée d’un mélange de gaz composé au moins d’ammoniac et d’hydrogène de pureté égale ou supérieure à 99,9%, de trichlorure de bore de pureté in férieure à 99% et de dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore, ladite interphase ayant une épaisseur comprise entre 0,1 et 1 pm,
- puis, lorsque la température de dépôt chimique ou d’infiltration chimique est inférieure ou égale à 1100°C, le traitement thermique des fibres ainsi revêtues de G interphase sans exposition à une atmosphère oxydante après revêtement des fibres par G interphase, traitement thermique effectué à une température égale ou supérieure à 1100°C pendant une durée inférieure à 4 heures,
- puis la fabrication du matériau composite par inclusion des fibres revêtues de G interphase dans la matrice.
[Revendication 26] Un matériau composite fabriqué par un procédé selon l’une quelconque des revendications 1 à 24.
[Revendication 27] Un matériau composite fabriqué par un procédé selon la revendication 25, matériau composite qui comprend une interphase entièrement fabriquée à partir d’une phase gazeuse comprenant, parmi les gaz réactifs, du dichlorure de carbonyle en concentration supérieure à 1% en pourcentage atomique par rapport au trichlorure de bore.
PCT/FR2020/000284 2020-02-05 2020-12-22 Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique WO2021156549A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080099288.6A CN115515914B (zh) 2020-02-05 2020-12-22 一种包含特定界面相的陶瓷基体复合材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2001173 2020-02-05
FR2001173A FR3106829B1 (fr) 2020-02-05 2020-02-05 Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique

Publications (1)

Publication Number Publication Date
WO2021156549A1 true WO2021156549A1 (fr) 2021-08-12

Family

ID=72178602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/000284 WO2021156549A1 (fr) 2020-02-05 2020-12-22 Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique

Country Status (3)

Country Link
CN (1) CN115515914B (fr)
FR (1) FR3106829B1 (fr)
WO (1) WO2021156549A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084162A1 (fr) * 2022-10-21 2024-04-25 Safran Ceramics Procédé de fabrication d'une pièce en matériau composite à matrice céramique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117003566B (zh) * 2023-09-27 2023-12-08 中国航发北京航空材料研究院 连续化学气相沉积薄带界面涂层的制备装置及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889686A (en) 1989-02-17 1989-12-26 General Electric Company Composite containing coated fibrous material
US5015540A (en) 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
US5246736A (en) 1990-10-26 1993-09-21 Societe Europeenne De Propulsion Process for the manufacture of a refractory composite material protected against corrosion
WO1996031687A1 (fr) 1995-04-06 1996-10-10 General Electric Company Procede et composite pour proteger un revetement servant d'isolant thermique au moyen d'une couche d'isolation impermeable
WO1998023555A1 (fr) 1996-11-28 1998-06-04 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) MATERIAU COMPOSITE A MATRICE CERAMIQUE ET RENFORT EN FIBRES SiC ET PROCEDE POUR SA FABRICATION
US5965266A (en) 1995-03-28 1999-10-12 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Composite material protected against oxidation by a self-healing matrix, and a method of manufacturing it
US20020066409A1 (en) 2000-12-04 2002-06-06 General Electric Company Fiber coating method and reactor
US7544394B2 (en) 2004-12-06 2009-06-09 General Electric Company Method for producing a thermal barrier coating/environmental barrier coating system
EP2548855A1 (fr) 2011-07-22 2013-01-23 United Technologies Corporation Article céramique composite à matrice céramique laminaire
FR2995892A1 (fr) * 2012-09-27 2014-03-28 Herakles Procede de fabrication d'une piece en cmc
US9133541B2 (en) 2006-02-20 2015-09-15 Rolls-Royce Corporation Article including environmental barrier coating system
US20160229758A1 (en) 2015-02-11 2016-08-11 United Technologies Corporation Continuous chemical vapor deposition/infiltration coater
WO2018220296A1 (fr) 2017-05-31 2018-12-06 Lionel Vandenbulcke Composite à matrice céramique résistant à la corrosion et procédé de fabrication
US20180363476A1 (en) 2017-06-15 2018-12-20 General Electric Company Coated ceramic matrix composition component and a method for forming a coated ceramic matrix composition component
CN109592987A (zh) * 2019-01-15 2019-04-09 湖南世鑫新材料有限公司 一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882356B1 (fr) * 2005-02-23 2008-08-15 Snecma Propulsion Solide Sa Procede de fabrication de piece en materiau composite a matrice ceramique et piece ainsi obtenue
FR2933970B1 (fr) * 2008-07-21 2012-05-11 Snecma Propulsion Solide Procede de fabrication d'une piece en materiau composite thermostructural et piece ainsi obtenue
FR3057864B1 (fr) * 2016-10-25 2018-11-23 Safran Ceram Procede d'infiltration ou de depot chimique en phase vapeur mettant en oeuvre le precurseur ci2bnh2 pour former du nitrure de bore
FR3062336B1 (fr) * 2017-02-02 2019-04-12 Safran Ceramics Procede de fabrication d'une piece en materiau composite

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015540A (en) 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
US4889686A (en) 1989-02-17 1989-12-26 General Electric Company Composite containing coated fibrous material
US5246736A (en) 1990-10-26 1993-09-21 Societe Europeenne De Propulsion Process for the manufacture of a refractory composite material protected against corrosion
US5965266A (en) 1995-03-28 1999-10-12 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Composite material protected against oxidation by a self-healing matrix, and a method of manufacturing it
WO1996031687A1 (fr) 1995-04-06 1996-10-10 General Electric Company Procede et composite pour proteger un revetement servant d'isolant thermique au moyen d'une couche d'isolation impermeable
WO1998023555A1 (fr) 1996-11-28 1998-06-04 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) MATERIAU COMPOSITE A MATRICE CERAMIQUE ET RENFORT EN FIBRES SiC ET PROCEDE POUR SA FABRICATION
US20020066409A1 (en) 2000-12-04 2002-06-06 General Electric Company Fiber coating method and reactor
US6630029B2 (en) 2000-12-04 2003-10-07 General Electric Company Fiber coating method and reactor
US7544394B2 (en) 2004-12-06 2009-06-09 General Electric Company Method for producing a thermal barrier coating/environmental barrier coating system
US9133541B2 (en) 2006-02-20 2015-09-15 Rolls-Royce Corporation Article including environmental barrier coating system
EP2548855A1 (fr) 2011-07-22 2013-01-23 United Technologies Corporation Article céramique composite à matrice céramique laminaire
US8986845B2 (en) 2011-07-22 2015-03-24 United Technologies Corporation Ceramic composite article having laminar ceramic matrix
FR2995892A1 (fr) * 2012-09-27 2014-03-28 Herakles Procede de fabrication d'une piece en cmc
WO2014049221A1 (fr) 2012-09-27 2014-04-03 Herakles Procede de fabrication d'une piece en cmc
US20160229758A1 (en) 2015-02-11 2016-08-11 United Technologies Corporation Continuous chemical vapor deposition/infiltration coater
WO2018220296A1 (fr) 2017-05-31 2018-12-06 Lionel Vandenbulcke Composite à matrice céramique résistant à la corrosion et procédé de fabrication
FR3067026A1 (fr) * 2017-05-31 2018-12-07 Lionel Gerard Vandenbulcke Composite a matrice ceramique resistant a la corrosion et procede de fabrication
US20180363476A1 (en) 2017-06-15 2018-12-20 General Electric Company Coated ceramic matrix composition component and a method for forming a coated ceramic matrix composition component
CN109592987A (zh) * 2019-01-15 2019-04-09 湖南世鑫新材料有限公司 一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
L. VANDENBULCKE ET AL., PROCEEDINGS OF THE 5TH INTERNATIONAL CONFÉRENCE ON HIGH TEMPERATURE CERAMIC MATRIX COMPOSITES, 2005, ISBN: 978-1-574-98263-3
L. VANDENBULCKE, J. ELECTROCHEM. SOC., vol. 124, no. 12, 1977, pages 1932 - 1937,1937-1942
M. LEPAROUX: "Thèse", 1995, UNIVERSITÉ D'ORLÉANS
SAEKI A ET AL: "PROPERTIES OF CVD BN-COATED HI-NICALON FIBER REINFORCED SIC/SIC COMPOSITE", CERAMIC ENGINEERING AND SCIENCE PROCEEDINGS, AMERICAN CERAMIC SOCIETY INC, US, vol. 21, no. 3, 23 January 2000 (2000-01-23), pages 363 - 370, XP009010807, ISSN: 0196-6219 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084162A1 (fr) * 2022-10-21 2024-04-25 Safran Ceramics Procédé de fabrication d'une pièce en matériau composite à matrice céramique
FR3141170A1 (fr) * 2022-10-21 2024-04-26 Safran Ceramics Procédé de fabrication d’une pièce en matériau composite à matrice céramique

Also Published As

Publication number Publication date
CN115515914A (zh) 2022-12-23
CN115515914B (zh) 2024-02-09
FR3106829A1 (fr) 2021-08-06
FR3106829B1 (fr) 2023-09-29

Similar Documents

Publication Publication Date Title
EP2038238B1 (fr) Poudres de phase max et procede de fabrication desdites poudres
EP0385869B1 (fr) Procédé de fabrication d'un matériau composite à matrice céramique à ténacité améliorée
EP0483009B1 (fr) Procédé d'élaboration d'un matériau composite réfractaire protégé contre la corrosion
JP6170160B2 (ja) Cmc製部品の製造方法
EP2782886B1 (fr) Procédé pour revêtir une pièce d'un revêtement de protection contre l'oxydation par une technique de dépôt chimique en phase vapeur, et revêtement et pièce
FR2710635A1 (fr) Procédé de fabrication d'un matériau composite à interphase lamellaire entre fibres de renfort et matrice, et matériau tel qu'obtenu par le procédé.
WO2021156549A1 (fr) Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique
FR3059322A1 (fr) Piece en materiau composite
EP2791080B1 (fr) Pièce en matériau cmc
EP3478870B1 (fr) Procédé d'infiltration ou de dépôt chimique en phase vapeur
FR3057864A1 (fr) Procede d'infiltration ou de depot chimique en phase vapeur mettant en oeuvre le precurseur ci2bnh2 pour former du nitrure de bore
WO2018220296A1 (fr) Composite à matrice céramique résistant à la corrosion et procédé de fabrication
EP3544939B1 (fr) Piece en materiau composite comprenant une couche d'interphase en nitrure de bore dope par de l'aluminium
WO2022069812A1 (fr) Procede de fabrication d'une barriere environnementale
FR3101629A1 (fr) Procédé de fabrication d'une pièce en CMC
EP0955281A1 (fr) Matériau composite de type carbone/carbone ayant une résistance accrue à l'oxydation
WO2022269178A1 (fr) Procede de traitement d'une fibre de carbure de silicium
FR3136463A1 (fr) Procédé de traitement d’au moins une fibre en céramique ou en carbone
WO2020201202A1 (fr) Procede de fabrication d'une piece en cmc
FR3141171A1 (fr) Procédé de fabrication d’une pièce en matériau composite à matrice céramique
WO2024084153A1 (fr) Procede de fabrication d'une piece en materiau composite a matrice ceramique
WO2021250341A1 (fr) Procede de fabrication d'une piece en materiau composite a l'aide d'un promoteur d'adhesion comportant un complexe ou un acide de lewis
WO2024084163A1 (fr) Infiltration d'une structure fibreuse comprenant une couche anti-mouillante au silicium liquide
WO2022269164A1 (fr) Procede de revetement d'au moins une fibre par une interphase de nitrure de bore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20845680

Country of ref document: EP

Kind code of ref document: A1