WO2018220296A1 - Composite à matrice céramique résistant à la corrosion et procédé de fabrication - Google Patents

Composite à matrice céramique résistant à la corrosion et procédé de fabrication Download PDF

Info

Publication number
WO2018220296A1
WO2018220296A1 PCT/FR2018/000148 FR2018000148W WO2018220296A1 WO 2018220296 A1 WO2018220296 A1 WO 2018220296A1 FR 2018000148 W FR2018000148 W FR 2018000148W WO 2018220296 A1 WO2018220296 A1 WO 2018220296A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
layer
carbon
refractory
layers
Prior art date
Application number
PCT/FR2018/000148
Other languages
English (en)
Inventor
Lionel Vandenbulcke
Mathieu VANDENBULCKE
Original Assignee
Lionel Vandenbulcke
Vandenbulcke Mathieu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lionel Vandenbulcke, Vandenbulcke Mathieu filed Critical Lionel Vandenbulcke
Publication of WO2018220296A1 publication Critical patent/WO2018220296A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62871Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62878Coating fibres with boron or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Definitions

  • the present invention relates to a ceramic matrix composite material protected against corrosion at medium and high temperature in the presence of constraints
  • Ceramic matrix composites are light materials known and used to manufacture parts exposed to conditions such as those encountered in aeronautical and space applications or in other fields, for example that of turbines industrial. They comprise a reinforcement by fibers, including carbon fibers and ceramic fibers, densified by a ceramic matrix. Between the fibers and the matrix, a continuous layer makes it possible to adjust the binding force between these two constituent elements of the CMCs; it is commonly called interphase.
  • the multilayer matrices comprising layers of different natures are intended both to deflect the cracks in a direction parallel to the reinforcing fibers but also to fill these cracks by the formation of glasses resulting from the oxidation of one or more of the layers. of different natures by oxygen and / or water vapor.
  • US Pat. No. 5,194,330 shows a C / C or C / SiC composite material protected against oxidation by forming a multilayer external coating by CVD which comprises an inner layer of a refractory carbide, typically silicon carbide (SiC ), an intermediate layer of boron (B) or a boron compound, typically boron carbide (B 4 C) and an outer layer of refractory carbide, typically silicon carbide (SiC).
  • the refractory carbide inner layer which does not contain boron has a thickness of at least 60 microns and allows to isolate the intermediate layer of the carbon contained in the composite. This coating allows you to increase
  • the combination of layers of silicon carbide and layers containing boron in the form of a multilayer material leads, under an oxidizing atmosphere, to training borosilicate glasses which protect the composite materials by partially or completely filling the cracks generated under thermomechanical stresses which cause deformations of the CMCs greater than their elastic deformation domain.
  • No. 5,965,266 proposes a multilayer material in which the precursor of the borosilicate glass is mixed with free carbon in order to more rapidly form a glass capable of sealing the cracks, especially in the low temperature range, of the order of 500 ° C, to moderately high, up to 850 ° C.
  • EP-2 548 855 (A1) and US-8 986 845 have the originality of combining in a multilayer material, a silicon-containing ceramic layer, typically silicon carbide, a crystallized elemental boron layer. which does not contain carbon, neither combined with boron, nor free.
  • US-5,194,330, already cited also shows that the formation of elemental boron in outer layers is possible through the use of a CVD process where the gaseous precursor reaches the surface at a speed sufficient to obtain a layer relatively continuous. It corroborates the results published in: J. Electrochem. Soc., Vol. 124, No. 12, 1977, pp. 1937-1942; "Structure of deposits - process relationships in the Chemical Vapor Deposition of Boron", L.
  • Vandenbulcke also shows that, in the same ICVI operation at low pressure, the deposition rates on substrates Massifs and porous substrates are very different because of the very large surface area of the porous materials and the much slower transfer rates therein.
  • This document shows that the ratio of the mass uptakes per unit area and therefore the CVD and CVI deposition rates is between 10 and 100.
  • the structures and morphologies of the layers are modified by these conditions.
  • the present invention relates to a ceramic matrix composite material protected against corrosion at medium and high temperature in the presence of constraints
  • thermomechanical as well as the process necessary for its realization.
  • It relates to a composite material comprising fiber reinforcement and a multilayer ceramic matrix in which the fibers coated with a layer
  • said ceramic matrix comprising: at least one continuous continuous layer of a material consisting of boron and carbon, the latter at a concentration of between 0.4 and 8 atomic percent; and at least two refractory layers, each consisting of at least one compound selected from the group of carbides, silicides and oxides, refractory layers, one of which is in contact with the interphase, and at least one other is further away from the fibers than any uniform continuous layer consisting of boron and carbon which is itself always inserted between at least two refractory layers located on either side.
  • a uniform continuous layer of a material consisting of boron and carbon, the latter at a concentration of between 0.4 and 8 atomic%, is obtained under conditions of variable speed elaboration as a function of CVI process used, forced CVI or ICVI.
  • different infiltration rates are used depending on the degree of progress of the ICVI infiltration process, that is to say as a function of the more internal or external position in the composite, and this to optimize the ICVI process.
  • a uniform continuous layer of a material consisting of boron and carbon, the latter at various concentrations included 0.4 to 8 atomic percent, has either an amorphous or crystalline structure.
  • a two-phase material which consists of a rhombohedral phase and another phase, either rhombohedral or quadratic.
  • a single quadratic phase can also be obtained, depending on the carbon concentration.
  • This composite has the particularity of containing at least one layer rich in boron and leaner in carbon than rhombohedral boron carbide or boron carbide containing free carbon, which layer has two major advantages: it is not constituted by the elemental boron with the aforementioned drawbacks and this layer contains little carbon, which element does not lead to the formation of protective glasses and which forms volatile carbon oxides. These must be released outside the material, which implies either rapid diffusion in the formed glass, or much more troublesome the creation of evacuation routes that break the continuity of the protective glass, especially if the temperature is above 900 ° C.
  • This layer rich in boron and low in carbon is, surprisingly compared to the deposition of elemental boron, deposited in the form of a uniform continuous layer without protruding or protruding clusters, both under CVD conditions, with high-speed transfer and high supersaturation of gaseous reactants containing boron and carbon elements, but also under slow growth conditions and low supersaturation of gaseous reactants at the gas-solid interface which allow chemical infiltration by CVI and ICVI into porous materials in large reactors, ie the formation of layers that are part of matrices
  • the present invention also relates to the method of manufacturing a composite material which comprises a reinforcement with fibers and a multilayer ceramic matrix in which the fibers coated with a thin layer called interphase are included, process characterized in that said ceramic matrix comprises several steps of forming: at least one uniform continuous layer of a material consisting of boron and carbon, the latter at a concentration of between 0.4 and 8 atomic%, uniform continuous layer which is manufactured by a chemical vapor infiltration process which uses a gaseous mixture comprising hydrogen, a boron halide, precursor of the incorporation of boron and at least one halide, precursor of the incorporation of carbon whose concentration is greater than 0.5% by volume relative to that of the pure boron halide; and at least two refractory layers, each consisting of at least one compound selected from the group of carbides, silicides and oxides, refractory layers, one of which is formed in contact with the interphase, and at least one other formed a greater distance from the fibers than any uniform continuous layer of a
  • the process of the invention makes it possible to supply boron but also carbon in the form of compounds halogen, for example chlorides, either from pure separated sources, or advantageously from a mixture of these chlorides present in the same source where the boron trichloride contains in a small proportion a chlorinated precursor of the carbon, a by-product of its synthesis.
  • FIG. 1 is a schematic representation of a section of a composite according to the invention.
  • FIG. 2 is a schematic representation of a section of another composite according to the invention.
  • FIG. 3 is a schematic representation of a section of another composite according to a variant of the invention.
  • FIG. 4 is a diagrammatic representation of an example of apparatus that makes it possible to implement the process for manufacturing a composite according to the invention.
  • Figure 1 schematically shows a ceramic matrix composite (1) consisting of a fiber reinforcement (10) densified by a multilayer ceramic matrix.
  • the cut is made here both inside a yarn, where the reinforcing fibers have the same direction perpendicular to the cut, and outside the yarn.
  • the composite according to the invention is manufactured by weaving the yarns which leads to a
  • the reinforcing fibers are shown in (10). These fibers may be carbon fibers, carbide or oxide fibers.
  • carbide fibers one of the best known is silicon carbide fiber which has variants depending on the impurity level and the structure which give it different mechanical properties.
  • oxide fibers the best known is alumina fiber.
  • a thin-film interphase (11) separates the fibers and the matrix so as to adjust the binding force between these two constituent elements of the composite and to confer on it the desired mechanical properties.
  • This interphase consists of materials that have a sheet structure or that include layers of different nature and properties.
  • This interphase is constituted by pyrolytic carbon or boron nitride or a multilayer material which includes at least two layers taken within the group consisting of pyrolytic carbon, boron nitride, silicon nitride, silicon carbide, ternary Si-BC and ternary Si-BN.
  • the matrix comprises above interphase layer (12a) which is here thick enough to densify the entire interior of the wire which has fibers of section substantially parallel to the section.
  • This is a refractory carbide used to isolate the fibers of the boron-rich layer, a possible precursor to the formation of a glass containing the boron element if a crack reaches the inside of the matrix.
  • This refractory carbide layer is often made of silicon carbide.
  • Adjacent to the layer (12a), the layer (13) is a uniform continuous layer of a material whose main constituent is boron and as a secondary constituent carbon, the latter at a concentration of between 0.4 and 8% by weight atomic. It is located here in an area external to the wire, in one of the interstices that exist between the yarns woven in several directions.
  • the layer of ceramic material (12b) is another layer of refractory carbide, in this case silicon carbide, the set of layers making it possible, when this inner part of the matrix is reached, to form a borosilicate glass by the simultaneous oxidation of the boron-rich layer and layers of silicon carbide.
  • Another uniform continuous layer (13) of a material having boron as its main constituent and carbon as the secondary constituent, the latter at a concentration of between 0.4 and 8 atomic% is placed outside the layer.
  • ceramic material (12b) is placed outside the second layer (13).
  • FIG. 2 schematically shows a ceramic matrix composite (1) according to the invention, in which the uniform continuous layer of a material whose main constituent is boron and the secondary constituent carbon, the latter at a concentration of between 0, 4 and 8% atomic percentage, is present in a more interior part of the composite material.
  • the first layer of refractory carbide (12a) for example silicon carbide.
  • the uniform continuous layer (13) of a material having boron as its main constituent and as a secondary component the carbon is here present inside the wires, in the smaller interstices situated between the fibers.
  • the refractory layer (12b) is present within these same interstices. Voids without material (14) may remain after densification by the matrix.
  • the part of the matrix further from the fibers, between the weaving threads, can be densified by a multilayer material alternating layers having as main constituent boron and as secondary constituent carbon, the latter at a concentration of between 0.4 and 8 atomic%%, and layers of refractory materials (12), either by the single refractory material ( 12).
  • FIG. 3 shows a composite (1) according to the invention which also comprises, in a variant, at least one layer (12d) less rich in boron, such as a layer of B-C-Si ternary or a layer of carbide of boron, layers possibly containing free carbon.
  • boron such as a layer of B-C-Si ternary or a layer of carbide of boron, layers possibly containing free carbon.
  • B-C-Si ternary it is in fact a homogeneous but two-phase layer combining silicon carbide and boric silicide.
  • the layer of a material having boron as its main constituent and carbon as the secondary constituent, the latter at a concentration of between 0.4 and 8 atomic percent is a continuous and uniform layer in thickness, without outgrowth or prominent cluster.
  • Example 1 The effectiveness of the invention which leads to a corrosion resistant composite is shown in Example 1 below.
  • a composite of the type shown in FIG. 1 comprises Hi-Nicalon TM silicon carbide fibers joined together into woven yarns so as to produce a 2.5D texture, a pyrolytic carbon interphase deposited on the fibers and then a matrix where the silicon carbide fills the space between the fibers within the wires.
  • the matrix then comprises, in the interstices between the wires, a first uniform continuous layer of a material whose main constituent is boron and the secondary constituent carbon, the latter at a concentration of between 0.4 and 8 atomic percent. then a layer of silicon carbide.
  • the matrix By going from the fibers to the surface of the composite, the matrix then comprises a second continuous layer of a material whose main constituent is boron and a secondary constituent carbon, followed by a layer of silicon carbide. Finally a third set of these two layers, not visible in Figure 1 leads to the surface of the composite material which is silicon carbide.
  • This composite is compared to a composite which comprises a homogeneous silicon carbide matrix.
  • the time required to obtain a break is from several tens to several hundred times longer with the composite according to the invention than with the composite comprising only silicon carbide in the matrix, which demonstrates the effectiveness of the combination of silicon carbide layers and boron-rich layers with carbon as a secondary constituent in the matrix.
  • Example 2 The effectiveness of the invention in a wider range of temperatures is shown in Example 2 where an additional layer (12d) less rich in boron allows the protection to be extended to higher temperatures while maintaining the proper protection at the same time.
  • low temperatures due to at least one uniform continuous layer of a material having as main constituent boron and as a secondary constituent carbon, the latter at a concentration of between 0.4 and 8 atomic percent.
  • the composite is identical, in its internal part to that described in Example 1; but it comprises, beyond the second continuous layer of a material whose main constituent is boron and as a secondary constituent carbon and the third layer of silicon carbide, a layer less rich in boron.
  • This layer consists of a material of the ternary system containing elements B, C and Si with a concentration of about 30% B, 30% C and 40% Si.
  • a layer of silicon carbide is disposed above. Finally a new set of the two previous layers leads to the surface of the composite which is silicon carbide.
  • This composite is compared to a composite which comprises a homogeneous silicon carbide matrix.
  • the time required to obtain a break is from several tens to several hundred times longer with the composite according to the invention than with the composite material comprising only silicon carbide in the matrix, which demonstrates the effectiveness of the combination of silicon carbide layers, boron-rich layers with carbon as the secondary constituent and layers of the ternary system containing the B, C and Si elements in the matrix; and this for various temperatures ranging from 600 to 1100 ° C.
  • Example 3 The efficiency of the invention at higher temperature is shown in Example 3 where two additional layers of ZrSi0 4 and Zr0 2 extend the protection to even higher temperatures.
  • the composite is identical, in its internal part to that described in Example 2. It comprises, beyond the second continuous layer of a material whose main constituent is boron and as a secondary constituent carbon and the third layer silicon carbide, a layer less rich in boron.
  • This layer (12d) consists of a material of the ternary system containing elements B, C and Si with a concentration of about 10% B, 40% C and 50% Si.
  • a layer of silicon carbide is disposed above.
  • the matrix of the composite comprises a new layer consisting of ZrSiO 4 and a last zirconia layer Zr0 2 .
  • the time required to obtain a break is from several tens to several hundred times longer with the composite according to the invention than with the composite material comprising only silicon carbide in the matrix, which demonstrates the effectiveness of the combination: - layers of silicon carbide; boron-rich layers with carbon as the secondary constituent; layers of the ternary system containing the elements B, C and Si; - and oxide layers; this for high temperatures, here 1200 ° C.
  • a ceramic matrix composite material consisting of a fiber reinforcement coated with an interphase and densified by a multilayer ceramic matrix which comprises: at least one uniform continuous layer of a material consisting of boron and carbon, the latter at a concentration of between 0.4 and 8 atomic percent; at least two refractory layers, each consisting of one to several materials selected from the group of carbides, silicides and oxides, refractory layers of which at least one is in contact with the interphase and at least one other is further away from the fibers than any uniform continuous layer of a material containing the boron element; and at least one additional refractory layer of another ceramic material containing the boron element and at least one of the two elements selected from carbon and silicon, this layer containing two or three of these elements in the form of one or more compounds selected from carbides and silicides.
  • this composite material contains, for example, in the additional layer: either the three elements B, C and Si, in the form of carbides and silicides, where the
  • concentration of each of the three elements can vary between 5 and 90%; or a boron carbide, or a boron carbide containing free carbon, or a boron silicide.
  • the matrix also contains, according to another of the provisions of the invention, one to several ceramic layers containing no boron which are oxide layers.
  • oxide layers are oxide layers.
  • This or these oxide layers form borated glasses with the boron layer containing 0.4 to 8% carbon and borosilicate glasses in the presence of other layers containing silicon.
  • These new glasses formed with at least one additional metallic or metalloidal element provide increased protection by sealing cracks produced under the conditions of use. At a greater distance from the fibers and from any layer containing the boron element, they already supply oxygen into the matrix and provide protection against oxidation at a higher temperature.
  • a composite according to the invention consisting of a fiber reinforcement coated with an interphase and densified by a ceramic matrix, is manufactured by a method which is characterized in that it includes several layers forming steps as described. previously, that is to say: - at least one uniform continuous layer of a material consisting of boron and carbon, the latter at a concentration between 0.4 and 8% atomic percentage; and at least two refractory layers, each consisting of one to several materials selected from the group of carbides, silicides and oxides.
  • This method is implemented at least in part in a CVI apparatus.
  • Figure 4 schematically shows an example of such an apparatus.
  • the hydrogen is contained in a gas bottle (20), the BC1 3 in a gas bottle (21) and the carbon containing halide in a gas bottle (22). These gases are delivered with controlled flow rates in lines that include a shutoff valve (23), (24) and (25) and mass flow meters (26), (27) and (28).
  • the gaseous mixture of controlled composition is introduced via line (29) into the deposition reactor (30). This is placed in an enclosure (31) in which one can evacuate and control the atmosphere.
  • a susceptor (32) of conductive material for example graphite coated with silicon carbide, contains all of the fibrous texture (33) to be densified by the matrix.
  • This fibrous texture may already be coated with interphase according to one of the known methods; if it is not, the interphase will be deposited on the fibers from other gaseous precursors in an apparatus of the same type or directly in it.
  • An inductor (34) is connected to a high frequency generator (35) for heating the susceptor and the parts to be infiltrated.
  • Thermocouple (36) allows, with the aid of a temperature controller (37), to control the generator so as to bring the susceptor and the parts to be densified to the desired temperature.
  • a pump (38) makes it possible to make the initial vacuum in the chamber (31) and then to maintain the pressure in this chamber at the desired value via a sensor pressure set on the enclosure and a control valve (39).
  • a trap (40) located before the pump is intended to protect the pump and the halogenated corrosive gas control system. Additional gas lines make it possible to implement the entire process including a deposit of refractory carbide, for example the deposition of silicon carbide from methyltrichlorosilane, introduced from the source (41) with its valve (42). and its flowmeter (43), or the addition of carbon from one or more hydrocarbons from the bottle (44) with its accessories (45) and (46).
  • the uniform continuous layer of a material having boron as its main constituent and carbon as the secondary constituent, the latter at a concentration of between 0.4 and 8 atomic%, is a uniform continuous layer which is obtained by a process of chemical vapor infiltration which uses a gaseous mixture which comprises hydrogen, (20), a boron halide, (21), and a carbon-containing halide, (22).
  • the gaseous precursor of boron is, for example, boron trichloride while the precursor of carbon is carbonyl chloride (or phosgene, COCl 2 ) or
  • carbon tetrachloride (CCl 4 ) or a mixture of both.
  • the proportion of the boron precursor halide is large relative to that of the carbon precursor (s) whose concentration is greater than about 0.5% by volume relative to that of the pure boron halide.
  • the deposition conditions of such a layer are as follows: the concentration of the halides in the mixture with the hydrogen is in a wide range, between 10% and 40%, and the level of COCl 2 relative to pure BC1 3 is between 0.5 and 6% by volume.
  • the pressure in the enclosure (31) is maintained between 0.1 and 30 kPa, the temperature is between 850 and 1100 ° C and the total flow is about 400 cm 3 per minute under standard conditions (sccm).
  • the method of manufacturing the composite comprises at least two other manufacturing steps of at least two refractory continuous layers of a carbide-type ceramic material that does not contain boron.
  • This refractory carbide is often the carbide of silicon.
  • This is deposited and / or infiltrated, in another step of forming the matrix according to a known technique, using a gaseous mixture which contains hydrogen and the methyltrichlorosilane which is introduced into the reactor (30). ) from the source (41).
  • the conditions employed herein are a hydrogen to methyltrichlorosilane ratio of from 5 to 12, a pressure of from 0.1 to 40 kPa and a temperature of from 850 to 1100 ° C.
  • the total flow is about 300 sccm.
  • All layers of the composite as shown in Figure 1 are thus manufactured in successive stages of CVI in areas close to the fibers, inside the son, and between the son themselves.
  • the refractory carbide layer is sufficiently thick to densify only the son of the composite, whereas in Example 2 the uniform continuous layer of a material whose main constituent is boron and the secondary constituent carbon is also present. in the interstices between the fibers.
  • the refractory carbide layer for example silicon carbide
  • the refractory carbide layer for example silicon carbide
  • it can be infiltrated from the gas phase into an apparatus such as that shown in Figure 4 but also by other routes according to known methods: - by impregnating ceramic precursor polymers of Si and C elements, then pyrolysis; or by reactive or non-reactive impregnation of liquids, for example with liquid silicon which will react with carbon charges previously introduced into the fibrous texture.
  • the one or more continuous uniform layers (13) of a material, having as main constituent boron and as secondary constituent carbon, are then deposited as well as the refractory layers according to the process of the invention in an apparatus such as that of Figure 4. Only the outermost layers are possibly made by any other known method of chemical or physical deposition.
  • Another characteristic of the ceramic matrix composite manufacturing method according to the invention uses a less purified boron trichloride which contains at least 0.5% by volume of carbonyl chloride from the synthesis of boron trichloride, for example from the action of chlorine (Cl 2 ) on boron oxide (B 2 0 3 ) in the presence of carbon.
  • a boron trichloride which contains at least 0.5% by volume of carbonyl chloride from the synthesis of boron trichloride, for example from the action of chlorine (Cl 2 ) on boron oxide (B 2 0 3 ) in the presence of carbon.
  • the use of such a boron trichloride makes it possible to significantly lower the cost of the reagents used for depositing or infiltrating one or more uniform continuous layers (13) of a material whose main constituent is boron. and as a secondary constituent carbon.
  • the method according to the invention uses, to manufacture a layer (13), a mixture of hydrogen and boron trichloride and at least one carbon-containing halide, which mixture is obtained: either from three bottles containing these pure gases (20), (21) and (22); or from the bottle (20) and a bottle (21a), a source of boron trichloride containing at least 0.5% by volume of carbonyl chloride from the synthesis of BC1 3 , for example from the action of chlorine (Cl 2 ) on boron oxide (often called boron sesquioxide or boron trioxide, B 2 0 3 ) in the presence of carbon.
  • boron oxide often called boron sesquioxide or boron trioxide, B 2 0 3
  • a 2.5D fibrous texture composed of silicon carbide fibers, coated with a pyrolytic carbon interphase according to a known method is coated by ICVI with a layer of silicon carbide from a mixture of hydrogen from the source (20) and methyltrichlorosilane (MTS) from the source (41).
  • the level of COCl 2 relative to BC1 3 is 3% by volume.
  • Another continuous layer of silicon carbide is then deposited and a new continuous layer of the material having as main constituent boron and as a secondary constituent carbon.
  • a new set of two identical layers to the previous is then made and the process is stopped to study the last layer of the material having as main constituent boron and as a secondary constituent carbon.
  • the composition of this layer is approximately 5% carbon and 95% boron, atomic percentage (at%) and measurement uncertainties.
  • This layer is crystallized and has two phases of rhombohedral structure. The process is then resumed to deposit the last layer of silicon carbide which constitutes the surface of the composite.
  • This composite has the properties of the composite material as described in Example 1.
  • the first steps are identical to that of Example 4, including the deposition of the first layer of silicon carbide. But here, a different layer of the layer (13) is then infiltrated from a mixture
  • the elaboration of the matrix is continued by the infiltration of another layer of silicon carbide and then of a new layer using a mixture of 99.995% purity hydrogen from the source (20) and BC1 3 of purity 99.9% from the source (21).
  • the process is stopped at this stage to study the partially infiltrated composite.
  • the X-ray study shows that the deposition of the last layer is a crystallized boron deposit in rhombohedral form.
  • the first steps are identical to that of Example 4, including the deposition of the first layer of silicon carbide.
  • the first layer of material (13) having as main constituent boron and as a secondary constituent carbon, the latter at a concentration of between 0.4 and 8 atomic%, is deposited from a mixture of hydrogen of purity
  • Two other sets of silicon carbide layers and layers of material having as main constituent boron and as secondary constituent carbon are deposited as the two previous ones. The process is stopped in order to study the last layer. The carbon concentration in this layer is about 3.5 at.%, Given the measurement uncertainty. This layer is crystallized and has two phases of rhombohedral structure and quadratic structure. The process is then resumed to deposit the last layer of silicon carbide (12c) which constitutes the surface of the composite.
  • This composite has the properties of the composite material as described in Example 1.
  • the first steps are identical to that of example 4.
  • the continuous layer of material (13) having as principal constituent boron and as secondary constituent carbon, the latter at a concentration of between 0.4 and 8% in atomic percentage is deposited from a mixture of hydrogen and BC1 3 containing 2% COCl 2 from the source (2 Ibis) from the preparation of BC1 3 from the action of chlorine (Cl 2 ) on boron oxide (B 2 0 3 ) in the presence of carbon.
  • a new layer of silicon carbide is then deposited.
  • a different layer, layer (12d) of Figure 3 is then deposited from a mixture of hydrogen, 25% BC1 3 containing about 2% COCl 2 from the source (2 Ibis) from the preparation of BC1 3 , to which 8% of methane by volume is added.
  • the study of this new layer shows that it contains about 16 at. % of carbon. It is crystallized with a rhombohedral structure and is identified as boron carbide. The densification of the matrix is completed by the deposition of a layer of silicon carbide (12c).
  • Variants of the method make it possible to deposit, according to this example, additional layers (12d) which are: either ternary layers of the B-C-Si system; or carbon-rich B-C binary layers or B-Si layers.
  • the carbon-rich B-C binary layers consist either of rhombohedral boron carbide characterized by a concentration greater than about 10 atomic%, or of boron carbide and carbon, a layer characterized by a higher carbon concentration. at about 20% atomic percentage.
  • the method of manufacturing a ceramic matrix composite consisting of interphase-coated fiber reinforcement and densified by a ceramic matrix is manufactured by a method which is characterized by including several training steps. :
  • At least one is further away from the fibers than any uniform continuous layer of a material containing the boron element; and at least one additional refractory layer which is obtained by adding, to the gaseous mixture used to form the uniform continuous layer of a material consisting of boron and carbon, at least one precursor of carbon or silicon, or a mixture containing at least one precursor of carbon and at least one precursor of silicon, or a unique precursor of both carbon and silicon elements.
  • This or these additional layers are deposited from gaseous mixtures which contain hydrogen, a mixture of BCl 3 and COCl 2 or a boron trichloride containing at least COCl 2 , and: - one or more precursors of only carbon or only silicon; or one or more precursors of the two carbon and silicon elements.
  • One or more carbon precursors are selected from hydrocarbons, for example methane or propane or a mixture of methane and propane.
  • Precursors of carbon and silicon are contained in boron trichloride in the form of COCl 2 and SiCl 4 resulting from the synthesis of boron trichloride from the action of chlorine (Cl 2 ) on boron oxide ( B 2 0 3 ) in the presence of carbon, this synthesis being carried out in a silica reactor whose inner wall is not protected from the corrosive action of chlorine.
  • One or more additional precursors of carbon and / or silicon are selected from hydrocarbons and silicon chlorides, or consist of only methyltrichlorosilane.
  • the method is not limited to the use of carbide and silicide type refractory layers but it also includes the use of oxide layers to form composites such as that described in Example 3 where are used: - a mixed silicon oxide and zirconium which is a silicate; - and zirconia. This is obviously a non-limiting example.
  • a corrosion-resistant ceramic matrix composite consisting of interphase-coated fiber reinforcement and densified by a ceramic matrix
  • a method which is characterized in that it includes several formation steps: - at least one uniform continuous layer of a material consisting of boron and carbon, the latter at a concentration of between 0.4 and 8 atomic percent, continuous uniform layer which is obtained by a chemical vapor infiltration process which uses a gaseous mixture comprising hydrogen, a boron halide precursor of boron incorporation and at least one halide, precursor of the incorporation of the carbon whose concentration is greater than 0.5% by volume relative to that of the pure boron halide; and at least two refractory continuous layers, each consisting of one to several materials selected from the group of carbides, silicides and oxides, refractory layers, one of which is in contact with the interphase and at least one other is further from the fibers that any uniform continuous layer of a material containing the boron element, refractory
  • one or more of the oxide refractory layers are at least one oxide of one or more of Al, Si, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y, La and rare earths.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Products (AREA)

Abstract

Matériau composite (1) comprenant un renforcement par des fibres (10) et une matrice céramique dans laquelle les fibres revêtues d'une interphase (11) sont incluses, la dite matrice céramique étant caractérisée par le fait qu'elle comprend : - au moins une couche continue uniforme (13) d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8 % en pourcentage atomique; - et au moins deux couches réfractaires (12), chacune constituée d'un à plusieurs composés sélectionnés parmi le groupe des carbures, siliciures et oxydes, couches réfractaires dont une (12a) est en contact avec Γ interphase, et au moins une autre (12c) est plus éloignée des fibres que toute couche (13) constituée de bore et de carbone. Le procédé de fabrication du matériau composite (1) caractérisé en ce que la matrice céramique comporte plusieurs étapes de formation : - d'au moins une couche continue uniforme (13) d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, couche (13) qui est fabriquée par un procédé d'infiltration chimique en phase vapeur sous pression réduite qui utilise un mélange gazeux comprenant l'hydrogène, un halogénure de bore, précurseur de l'incorporation du bore et au moins un halogénure, le chlorure de carbonyle, dénommé aussi phosgène, précurseur de l'incorporation du carbone dont la concentration est supérieure à 0,5 % en volume relativement à celle de l'halogénure de bore pur; - et d'au moins deux couches réfractaires (12), chacune constituée d'un à plusieurs composés sélectionnés parmi le groupe des carbures, siliciures et oxydes.

Description

Composite à matrice céramique résistant à la corrosion et procédé de fabrication
La présente invention concerne un matériau composite à matrice céramique protégé contre la corrosion à moyenne et haute température en présence de contraintes
thermomécaniques, ainsi que le procédé nécessaire à sa fabrication. Les composites à matrices céramiques, ci-après désignés par CMC, sont des matériaux légers connus et utilisés pour fabriquer des pièces exposées à des conditions telles que celles rencontrées dans les applications aéronautiques et spatiales ou dans d'autres domaines, par exemple celui des turbines industrielles. Ils comportent un renforcement par des fibres, dont les fibres de carbone et les fibres céramiques, densifié par une matrice céramique. Entre les fibres et la matrice, une couche continue permet d'ajuster la force de liaison entre ces deux éléments constitutifs des CMC ; elle est couramment dénommée interphase.
Quand ces matériaux sont utilisés dans des conditions mécaniques pas trop sévères relativement à leurs propriétés mécaniques intrinsèques, c'est-à-dire dans leur domaine de déformation élastique, une protection située dans la partie extérieure de la matrice est souvent suffisante pour pallier les problèmes de sollicitations anormalement sévères qui peuvent être rencontrées ponctuellement dans des conditions d'utilisation exceptionnelle. Dans des conditions de sollicitations plus sévères qui conduisent à des probabilités de dépassement quasi permanent du seuil de déformation élastique, les matrices de ces matériaux composites à matrices céramiques se fissurent. Le renforcement fibreux et les matrices elles-mêmes doivent être alors protégées contre la corrosion sur une profondeur beaucoup plus grande, jusqu'à cœur du matériau. Les matrices multicouches comprenant des couches de natures différentes ont pour but, à la fois de dévier les fissures dans une direction parallèle aux fibres de renforcement mais aussi de combler ces fissures par la formation de verres issus de l'oxydation de une ou plusieurs des couches de natures différentes par de l'oxygène et/ou de la vapeur d'eau.
Il est connu de l'état de la technique un certain nombre de procédés et/ou de matériaux qui tentent de répondre aux problèmes posés par la tenue à la corrosion sous contraintes thermomécaniques des CMC et même des composites très oxydables tels que les composites à fibres de carbone et matrice de carbone (C/C) que ce soit par des protections externes ou des matrices multicouches. Parmi l'ensemble des procédés, ceux qui conduisent le plus aisément à la formation de couches continues multiples sont les procédés de dépôt chimique à partir de la phase gazeuse (CVD provenant de « Chemical Vapor Déposition ») pour les revêtements externes et d'infiltration chimique à partir de la phase gazeuse (CVI provenant de « Chemical Vapor Infiltration ») pour les couches internes à la matrice. Parmi les procédés d'infiltration chimique^ les procédés d'infiltration dans des conditions isothermes (ICVI) sont les plus aptes à permettre un traitement dans des fours industriels et sur des pièces de formes et d'épaisseurs variées. Ces procédés CVD et CVI, bien que similaires dans le principe qui consiste à déposer une couche solide à partir de la phase gazeuse, diffèrent par la vitesse d'apport à la surface des espèces gazeuses précurseurs du dépôt. Le transfert de masse de la phase gazeuse vers la surface s'effectue principalement par convection forcée des réactifs en CVD tandis qu'il s'effectue principalement par diffusion et plus lentement en ICVI vers les zones internes constituées par les textures fibreuses ; de plus le degré d'avancement des réactions chimiques est très différent du fait que la surface revêtue en CVI sur des matériaux très poreux est beaucoup plus grande qu'en CVD. Elle est souvent de un à plusieurs milliers de centimètres carrés par gramme de textures fibreuses de renforcement. La CVI forcée qui utilise un flux gazeux traversant les mèches ou les mono-strates de fibres est plus proche de la CVD que l'ICVI tout en restant très différente.
Ainsi le brevet US-5 194 330 montre un matériau composite C/C ou C/SiC protégé contre l'oxydation en formant par CVD un revêtement externe multicouches qui comprend une couche intérieure d'un carbure réfractaire, typiquement le carbure de silicium (SiC), une couche intermédiaire en bore (B) ou un composé du bore, typiquement le carbure de bore (B4C) et une couche extérieure en carbure réfractaire, typiquement le carbure de silicium (SiC). La couche intérieure en carbure réfractaire qui ne contient pas de bore a une épaisseur au moins égale à 60 microns et permet d'isoler la couche intermédiaire du carbone contenu dans le composite. Ce revêtement permet d'augmenter de façon
importante la durée de vie des composites C/C et C/SiC.
Strangman et al., dans U.S. Patent No. 4 668 579, protègent un matériau composite C/C contre l'oxydation en formant au moins une couche interne en carbure de bore et une couche externe en carbure de silicium. L'ensemble des couches protectrices est formé préférentiellement avant complète densification du matériau composite, c'est-à-dire dans une zone interne du composite, avant l'étape de densification finale du matériau.
Dans les deux cas, que ce soit sous forme d'un revêtement externe ou au sein de la matrice, l'association de couches de carbure de silicium et de couches contenant du bore sous forme d'un matériau multicouches conduit, sous atmosphère oxydante, à la formation de verres borosilicatés qui protègent les matériaux composites en remplissant partiellement ou totalement les fissures générées sous des contraintes thermomécaniques qui entraînent des déformations des CMC supérieures à leur domaine de déformation élastique.
Il a aussi été proposé dans le document US-5 246 736 de former par CVD à la surface de la matrice ou par CVI au sein de celle-ci au moins une phase continue constituée par un système ternaire Si-B-C. Le procédé est mis en œuvre à l'aide d'un procédé où les éléments silicium, bore et carbone sont apportés par une phase gazeuse contenant simultanément des précurseurs des trois éléments. Les éléments silicium, bore et carbone sont alors apportés dans une couche homogène qui permet de former un verre borosilicaté protecteur. Les proportions relatives de silicium, bore et carbone sont choisies pour permettre, par oxydation, la formation d'un verre ayant les caractéristiques de viscosité requises pour cicatriser des fissures aux températures d'utilisation envisagées.
Le document US-5 965 266 propose un matériau multicouches où le précurseur du verre borosilicaté est mélangé à du carbone libre pour former plus rapidement un verre capable d'obturer les fissures, spécialement dans le domaine de température faible, de l'ordre de 500 °C, à moyennement élevé, jusqu'à 850 °C.
Au contraire, les brevets EP-2 548 855 (Al) et US-8 986 845 ont pour originalité d'associer dans un matériau multicouches, à une couche céramique contenant du silicium, typiquement le carbure de silicium, une couche de bore élémentaire cristallisé qui ne contient donc pas de carbone, ni combiné au bore, ni libre. Le brevet US-5 194 330, déjà cité, montre aussi que la formation de bore élémentaire en couches externes est possible grâce à l'utilisation d'un procédé CVD où le précurseur gazeux arrive à la surface à une vitesse suffisante pour obtenir une couche relativement continue. Il corrobore les résultats publiés dans : J. Electrochem. Soc, Vol. 124 N°12, 1977, pages 1937-1942 ; « Structure of deposits - process relationships in the Chemical Vapor Déposition of boron », L.
Vandenbulcke and G. Vuillard. Ce document montre que des couches de bore continues uniformes peuvent être obtenues dans des conditions de transfert extrêmement rapide des réactifs à la surface, ce qui conduit à une forte sursaturation de ceux-ci à l'interface gaz- solide. Mais dans des conditions de plus faible sursaturation, des couches non-uniformes qui présentent des amas sont obtenues lors de la croissance de couches de bore cristallisé. Ainsi, même en CVD et encore plus en CVI où le transfert vers les zones internes du composite est lent, des protubérances de la couche de bore proviennent de la cristallisation du bore élémentaire sous forme d'amas de bore rhomboédrique, inconvénient aussi indiqué par un des auteurs précédents dans : Progress in Advanced Materials and Mechanics, Beijing, China, 1996 (Peking University Press, ISBN 7-301-03118-1) ; « Multilayer Systems based on B, B4C, SiC and SiBC for environmental composite protection », L.
Vandenbulcke and S. Goujard, pages 1198-1204. Ainsi, le matériau décrit dans les brevets EP-2 548 855 (Al) et US-8 986 845 implique l'utilisation d'un procédé où les conditions proches de celles utilisées en CVD, c'est à dire en CVI forcée à très fort flux de gaz, qui plus est sur un composite de petite dimension sont atteintes. Ces conditions sont favorisées par l'utilisation d'un réacteur de très petite dimension, dans un tube de 9 mm de diamètre, tel que décrit dans le brevet EP-2 548- 855 (Al) et le brevet US-8 986 845. Ces conditions qui permettent de déposer une couche continue de bore cristallisé, à partir d'un trichlorure de bore suffisamment pur, sur une ou quelques mèches de fibres en minimisant la formation d'amas proéminents ne peuvent être atteintes dans des grands réacteurs industriels, en CVI et spécialement en ICVI. En effet, le document J. Am. Ceram. Soc, 82, 5, 1999, pages 1187-1195 ; « Influence of isothermal Chemical Vapor Déposition and Chemical Vapor Infiltration on the déposition kinetics and structure of boron nitride » M. Leparoux and L. Vandenbulcke, montre aussi que, dans une même opération d'ICVI à basse pression, les vitesses de dépôt sur substrats massifs et substrats poreux sont très différentes du fait de la très grande surface des matériaux poreux et des vitesses de transfert beaucoup plus lentes dans ceux-ci. Ce document montre que le rapport des prises de masse par unité de surface et donc des vitesses de dépôt par CVD et CVI est compris entre 10 et 100. Bien entendu, les structures et les morphologies des couches sont modifiées par ces conditions de
sursaturation des réactifs très différentes à l'interface gaz-solide. Ceci implique d'ailleurs qu'aucun des résultats obtenus en CVD dans des conditions de forte sursaturation en réactifs, résultats qui concerne la composition, la structure et la morphologie des couches, ne peut être transposé a priori à la CVI et permettre de préjuger des résultats obtenus dans des conditions de faible sursaturation en réactifs inhérente à ce procédé. Dans le cas du bore, les conditions d'infiltration à vitesse lente des procédés CVI et ICVI dans des réacteurs industriels conduisent ainsi à des dépôts de bore cristallisés non uniformes, ce qui est un inconvénient majeur pour l'utilisation des couches de bore dans les composites.
La présente invention concerne un matériau composite à matrice céramique protégé contre la corrosion à moyenne et haute température en présence de contraintes
thermomécaniques, ainsi que le procédé nécessaire à sa réalisation.
Elle a pour objet un matériau composite comportant un renforcement par des fibres et une matrice céramique multicouches dans laquelle les fibres revêtues d'une couche
FEUILLE DE*RE'MPtA6E1VlENT -(REGLE E6)-- - mince dénommée interphase sont incluses, la dite matrice céramique comprenant : - au moins une couche continue uniforme d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8 % en pourcentage atomique ; - et au moins deux couches réfractaires, chacune constituée d'au moins un composé sélectionné parmi le groupe des carbures, siliciures et oxydes, couches réfractaires dont une est en contact avec l 'interphase, et au moins une autre est plus éloignée des fibres que toute couche continue uniforme constituée de bore et de carbone qui est elle-même toujours insérée entre au moins deux couches réfractaires situées de part et d'autre.
Dans ce composite, une couche continue uniforme d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, est obtenue dans des conditions d'élaboration à vitesse variable en fonction du procédé CVI utilisé, CVI forcée ou ICVI. De plus des vitesses d'infiltration différentes sont utilisées en fonction du degré d'avancement du procédé d'infiltration ICVI, c'est-à-dire en fonction de la position plus interne ou plus externe dans le composite, et ceci pour optimiser le procédé ICVI. Dans ces conditions où la sursaturation est variable à l'interface gaz-solide mais toujours faible par rapport à la sursaturation des réactifs en CVD, une couche continue uniforme d'un matériau constitué de bore et de carbone, ce dernier à des concentrations variées comprises entre 0,4 et 8% en pourcentage atomique, a une structure soit amorphe, soit cristallisée. Lorsqu'elle est cristallisée, il s'agit le plus souvent d'un matériau biphasé qui est constitué d'une phase rhomboédrique et d'une autre phase, soit rhomboédrique, soit quadratique. Une seule phase quadratique peut être aussi obtenue, en fonction de la concentration en carbone.
Ce composite présente la particularité de contenir au moins une couche riche en bore et plus pauvre en carbone que le carbure de bore rhomboédrique ou le carbure de bore contenant du carbone libre, couche qui présente deux avantages majeurs : elle n'est pas constituée par le bore élémentaire avec les inconvénients précités et cette couche contient peu de carbone, élément qui ne conduit pas à la formation des verres protecteurs et qui forme des oxydes de carbone volatils. Ceux-ci doivent être libérés à l'extérieur du matériau, ce qui implique, soit une diffusion rapide dans le verre formé, soit de façon beaucoup plus gênante la création de chemins d'évacuation qui rompent la continuité du verre protecteur, spécialement si la température est supérieure à 900 °C. Cette couche riche en bore et pauvre en carbone est, de façon surprenante par rapport au dépôt du bore élémentaire, déposée sous forme d'une couche continue uniforme sans excroissance ni amas proéminents, à la fois dans des conditions de CVD, avec un transfert à vitesse élevée et une forte sursaturation des réactifs gazeux contenant les éléments bore et carbone, mais aussi dans des conditions de croissance lente et sursaturation faible des réactifs gazeux à l'interface gaz-solide qui permettent l'infiltration chimique par CVI et ICVI dans des matériaux poreux dans de grands réacteurs, c'est-à-dire la formation de couches qui font partie de matrices
multicouches pour CMC, et ceci quelle que soit la structure de la couche telle que décrite précédemment, fonction des conditions d'infiltration et de composition comprise entre 0,4 et 8 at.% de carbone.
La présente invention concerne aussi le procédé de fabrication d'un matériau composite qui comporte un renforcement par des fibres et une matrice céramique multicouches dans laquelle les fibres revêtues d'une couche mince dénommée interphase sont incluses, procédé caractérisé en ce que la dite matrice céramique comprend plusieurs étapes de formation : - d'au moins une couche continue uniforme d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, couche continue uniforme qui est fabriquée par un procédé d'infiltration chimique en phase vapeur qui utilise un mélange gazeux comprenant l'hydrogène, un halogénure de bore, précurseur de l'incorporation du bore et au moins un halogénure, précurseur de l'incorporation du carbone dont la concentration est supérieure à 0,5 % en volume relativement à celle de l 'halogénure de bore pur ; - et d'au moins deux couches réfractaires, chacune constituée d'au moins un composé sélectionné parmi le groupe des carbures, siliciures et oxydes, couches réfractaires dont une est formée en contact avec l'interphase, et au moins une autre est formée à une distance des fibres plus grande que toute couche continue uniforme d'un matériau constitué de bore et de carbone qui est elle-même toujours insérée entre au moins deux couches réfractaires situées de part et d'autre.
Les procédés qui conduisent au dépôt de matériaux contenant des proportions beaucoup plus grandes de carbone lié au bore, tel que le carbure de bore, seul composé binaire de composition BgC à B4C universellement admis du diagramme bore-carbone, ou bien tel que le système ternaire Si-B-C, utilisent des précurseurs hydrocarbonés de type hydrocarbures ou du méthyltrichlorosilane. Ces procédés apportent le carbone séparément du bore dans des précurseurs où le bore est apporté par des halogénures de pureté égale ou supérieure à 99,9% et où le carbone est lié à l'hydrogène par des liaisons C-H. Le procédé de l'invention permet d'apporter le bore mais aussi le carbone sous forme de composés halogènes, par exemple de chlorures, soit à partir de sources séparées pures, soit avantageusement à partir d'un mélange de ces chlorures présents dans une même source où le trichlorure de bore contient en faible proportion un précurseur chloré du carbone, sous- produit de sa synthèse. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle les dessins suivants sont annexés :
- La figure 1 est une représentation schématique d'une coupe d'un composite selon l'invention.
- la figure 2 est une représentation schématique d'une coupe d'un autre composite selon l'invention.
- La figure 3 est une représentation schématique d'une coupe d'un autre composite selon une variante de l'invention.
- La figure 4 est une représentation schématique d'un exemple d'appareillage qui permet de mettre en œuvre le procédé de fabrication d'un composite selon l'invention.
La figure 1 montre de façon schématique un composite à matrice céramique (1) constitué d'un renforcement par des fibres (10) densifié par une matrice céramique multicouches. La coupe est effectuée ici à la fois à l'intérieur d'un fil, où les fibres de renforcement possèdent la même direction perpendiculaire à la coupe, et à l'extérieur du fil. Le composite selon l'invention est fabriqué par tissage des fils qui conduit à un
renforcement suivant deux ou trois directions (2D ou 3D), éventuellement un tissage qui conduit à un renforcement intermédiaire, dit 2,5D.
Les fibres de renforcement sont figurées en (10). Ces fibres peuvent être des fibres de carbone, des fibres de carbure ou d'oxyde. Parmi les fibres de carbure, l'une des plus connues est la fibre de carbure de silicium qui possède des variantes suivant le taux d'impureté et la structure qui lui confèrent des propriétés mécaniques différentes. Parmi les fibres oxydes, la plus connue est la fibre d'alumine.
Comme il a été indiqué dans la présentation du domaine de l'invention, une interphase sous forme de couche mince (11) sépare les fibres et la matrice de façon à ajuster la force de liaison entre ces deux éléments constitutifs du composite et à lui conférer les propriétés mécaniques recherchées. Cette interphase est constituée par des matériaux qui présentent une structure en feuillet ou qui comprennent des couches de nature et propriétés différentes. Cette interphase est constituée par le carbone pyrolytique ou le nitrure de bore ou un matériau multicouches qui inclut au moins deux couches prises au sein du groupe formé par le carbone pyrolytique, le nitrure de bore, le nitrure de silicium, le carbure de silicium, le ternaire Si-B-C et le ternaire Si-B-N.
La matrice comporte au-dessus de Γ interphase une couche (12a) qui est ici suffisamment épaisse pour densifier tout l'intérieur du fil qui comporte des fibres de section sensiblement parallèle à la coupe. Il s'agit ici d'un carbure réfractaire qui sert à isoler les fibres de la couche riche en bore, précurseur éventuel de la formation d'un verre contenant l'élément bore si une fissure atteint l'intérieur de la matrice. Cette couche de carbure réfractaire est souvent constituée par le carbure de silicium. Adjacente à la couche (12a), la couche (13) est une couche continue uniforme d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique. Elle est située ici dans une zone externe au fil, dans un des interstices qui existent entre les fils tissés suivant plusieurs directions.
La couche de matériau céramique (12b) est une autre couche de carbure réfractaire, ici du carbure de silicium, l'ensemble des couches permettant de former, en cas d'atteinte de cette partie interne de la matrice, un verre borosilicaté par l'oxydation simultanée de la couche riche en bore et des couches de carbure de silicium. Une autre couche (13) continue uniforme d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique est disposée à l'extérieur de la couche de matériau céramique (12b). Enfin une autre couche de matériau céramique (12c) est présente à l'extérieur de la seconde couche (13).
La figure 2 montre de façon schématique un composite à matrice céramique (1) selon l'invention où la couche continue uniforme d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, est présente dans une partie plus intérieure du matériau composite. Près des fibres (10), au-delà de rinterphase (11), est disposée la première couche de carbure réfractaire (12a), par exemple le carbure de silicium. La couche continue uniforme (13) d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone est ici présente à l'intérieur des fils, dans les interstices de plus faible dimension situés entres les fibres. La couche réfractaire (12b) est présente au sein de ces mêmes interstices. Des vides sans matériau (14) peuvent subsister après densification par la matrice. La partie de la matrice située plus loin des fibres, entre les fils de tissage, peut être densifiée soit par un matériau multicouches alternant des couches ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, et des couches de matériaux réfractaires (12), soit par le seul matériau réfractaire (12).
La figure 3 montre un composite (1) selon l'invention qui comporte aussi, en variante, au moins une couche (12d) moins riche en bore, telle qu'une couche du ternaire B- C-Si ou une couche de carbure de bore, couches contenant éventuellement du carbone libre. Dans le cas du ternaire B-C-Si, il s'agit en fait d'une couche homogène mais biphasée associant carbure de silicium et siliciure de bore.
Dans ces trois composites à matrices céramiques selon l'invention, la couche d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, est une couche continue et uniforme en épaisseur, sans excroissance ou amas proéminent.
L'efficacité de l'invention qui conduit à un composite résistant à la corrosion est montrée dans l'exemple 1 ci-dessous.
Un composite du type de celui représenté sur la figure 1 comporte des fibres de carbure de silicium Hi-Nicalon™ réunies en fils tissés de façon à produire une texture 2,5D, une interphase en carbone pyrolytique déposée sur les fibres puis une matrice où le carbure de silicium comble l'espace entre les fibres au sein des fils. La matrice comprend ensuite, dans les interstices entre les fils, une première couche continue uniforme d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, puis une couche de carbure de silicium. En allant des fibres vers la surface du composite, la matrice comporte ensuite une seconde couche continue d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone, puis une couche de carbure de silicium. Enfin un troisième ensemble des ces deux couches, non visible sur la figure 1 conduit à la surface du matériau composite qui est en carbure de silicium.
Ce composite est comparé à un composite qui comprend une matrice homogène en carbure de silicium.
Des tests en fatigue cyclique à 0,25 Hz, avec une sollicitation de 170 MPa, supérieure à la limite élastique de ces matériaux, sont réalisés à deux températures, 600°C et 900°C, sous air. Le temps nécessaire pour obtenir une rupture est de plusieurs dizaines à plusieurs centaines de fois plus longs avec le composite selon l'invention qu'avec le composite ne comprenant que du carbure de silicium dans la matrice, ce qui démontre l'efficacité de l'association des couches de carbure de silicium et des couches riches en bore avec comme constituant secondaire le carbone, dans la matrice.
L'efficacité de l'invention dans un domaine plus large de températures est montrée dans l'exemple 2 où une couche supplémentaire (12d) moins riche en bore permet d'étendre la protection vers de plus hautes températures tout en conservant la bonne protection aux températures faibles due à au moins une couche continue uniforme d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique. Le composite est identique, dans sa partie interne à celui décrit dans l'exemple 1 ; mais il comporte, au-delà de la seconde couche continue d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone et de la troisième couche de carbure de silicium, une couche moins riche en bore. Cette couche est constituée par un matériau du système ternaire contenant les éléments B, C et Si avec une concentration environ 30% B, 30 % C et 40 % Si. Une couche de carbure de silicium est disposée au dessus. Enfin un nouvel ensemble des deux couches précédentes conduit à la surface du composite qui est en carbure de silicium.
Ce composite est comparé à un composite qui comprend une matrice homogène en carbure de silicium.
Des tests en fatigue cyclique à 0,25 Hz, avec une sollicitation de 170 MPa, supérieure à la limite élastique de ces matériaux, sont réalisés à deux températures, 600°C et 1100°C, sous air. Le temps nécessaire pour obtenir une rupture est de plusieurs dizaines à plusieurs centaines de fois plus longs avec le composite selon l'invention qu'avec le matériau composite ne comprenant que du carbure de silicium dans la matrice, ce qui démontre l'efficacité de l'association des couches de carbure de silicium, des couches riches en bore avec comme constituant secondaire le carbone et des couches du système ternaire contenant les éléments B, C et Si, dans la matrice ; et ceci pour des températures variées allant de 600 à 1100°C.
L'efficacité de l'invention à plus haute température est montrée dans l'exemple 3 où deux couches supplémentaires de ZrSi04 et Zr02 permettent d'étendre la protection jusqu'à des températures encore plus élevées. Le composite est identique, dans sa partie interne à celui décrit dans l'exemple 2. Il comporte, au-delà de la seconde couche continue d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone et de la troisième couche de carbure de silicium, une couche moins riche en bore. Cette couche (12d) est constituée par un matériau du système ternaire contenant les éléments B, C et Si avec une concentration environ 10% B, 40 % C et 50 % Si. Une couche de carbure de silicium est disposée au dessus. Enfin la matrice du composite comprend une nouvelle couche constituée de ZrSi04 et une dernière couche de zircone Zr02.
Des tests en fatigue cyclique à 0,25 Hz, avec une sollicitation de 170 MPa, supérieure à la limite élastique de ces matériaux, sont réalisés à 1200°C, sous air. Le temps nécessaire pour obtenir une rupture est de plusieurs dizaines à plusieurs centaines de fois plus longs avec le composite selon l'invention qu'avec le matériau composite ne comprenant que du carbure de silicium dans la matrice, ce qui démontre l'efficacité de l'association : - des couches de carbure de silicium ; - des couches riches en bore avec comme constituant secondaire le carbone ; - des couches du système ternaire contenant les éléments B, C et Si ; - et des couches d'oxydes ; ceci pour des températures élevées, ici de 1200°C.
Plus généralement, fait donc aussi partie intégrante de l'invention, un matériau composite à matrice céramique constitué d'un renforcement par des fibres revêtues d'une interphase et densifié par une matrice céramique multicouches qui comprend : - au moins une couche continue uniforme d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique ; - au moins deux couches réfractaires, chacune constituée d'un à plusieurs matériaux sélectionnés parmi le groupe des carbures, siliciures et oxydes, couches réfractaires dont au moins une est en contact avec l'interphase et au moins une autre est plus éloignée des fibres que toute couche continue uniforme d'un matériau contenant l'élément bore ; - et au moins une couche réfractaire supplémentaire d'un autre matériau céramique contenant l'élément bore et au moins un des deux éléments pris parmi le carbone et le silicium, cette couche contenant deux ou trois de ces éléments sous forme d'un ou plusieurs composés sélectionnés parmi les carbures et les siliciures.
Ainsi, ce matériau composite contient par exemple, dans la couche supplémentaire : - soit les trois éléments B, C et Si, sous forme de carbures et de siliciures, où la
concentration de chacun des trois éléments peut varier entre 5 et 90 % ; - soit un carbure de bore, ou un carbure de bore contenant du carbone libre, ou un siliciure de bore.
La matrice contient aussi, selon une autre des dispositions de l'invention, une à plusieurs couches céramiques ne contenant pas de bore qui sont des couches d'oxydes. L'addition de ces couches d'oxydes présente deux avantages importants. A l'intérieur de la matrice, cette ou ces couches d'oxydes forment des verres boratés avec la couche de bore contenant 0,4 à 8% de carbone et des verres borosilicatés en présence d'autres couches contenant du silicium. Ces nouveaux verres formés avec au moins un élément métallique ou métalloïdique supplémentaire offrent une protection accrue en obturant les fissures produites dans les conditions d'usage. A distance plus grande des fibres et de toute couche contenant l'élément bore, elles apportent déjà de l'oxygène dans la matrice et assurent une protection contre l'oxydation à plus haute température.
Un composite selon l'invention, constitué d'un renforcement par des fibres revêtues d'une interphase et densifié par une matrice céramique, est fabriqué par un procédé qui est caractérisé en ce qu'il inclut plusieurs étapes de formation de couches telles que décrites précédemment, c'est-à-dire : - au moins une couche continue uniforme d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique ; - et au moins deux couches réfractaires, chacune constituée d'un à plusieurs matériaux sélectionnés parmi le groupe des carbures, siliciures et oxydes. Ce procédé est mis en œuvre au moins en partie dans un appareillage de CVI. La figure 4 montre schématiquement un exemple d'un tel appareillage.
L'hydrogène est contenu dans une bouteille de gaz (20), le BC13 dans une bouteille de gaz (21) et l'halogénure contenant le carbone dans une bouteille de gaz (22). Ces gaz sont délivrés avec des débits contrôlés dans des canalisations qui comportent une vanne d'arrêt (23), (24) et (25) et des débitmètres massiques (26), (27) et (28). Le mélange gazeux de composition contrôlée est introduit par la canalisation (29) dans le réacteur de dépôt (30). Celui-ci est placé dans une enceinte (31) dans laquelle on peut faire le vide et contrôler l'atmosphère. A l'intérieur du réacteur (30), un suscepteur (32) en matériau conducteur, par exemple du graphite revêtu de carbure de silicium, contient l'ensemble de la texture fibreuse (33) à densifier par la matrice. Cette texture fibreuse peut être déjà revêtue de l'interphase selon un des procédés connus ; si elle ne l'est pas, l'interphase sera déposée sur les fibres à partir d'autres précurseurs gazeux dans un appareillage du même type ou directement dans celui-ci. Un inducteur (34) est relié à un générateur haute fréquence (35) qui permet de chauffer le suscepteur et les pièces à infiltrer. Un
thermocouple (36) permet, à l'aide d'un régulateur de température (37), de piloter le générateur de façon à porter le suscepteur et les pièces à densifier à la température souhaitée. Une pompe (38) permet de faire le vide initial dans l'enceinte (31) puis de maintenir la pression dans cette enceinte à la valeur désirée par l'intermédiaire d'un capteur de pression fixé sur l'enceinte et d'une vanne de régulation (39). Un piège (40), situé avant la pompe, est destiné à protéger celle-ci et le système de régulation des gaz corrosifs halogénés. Des lignes de gaz supplémentaires permettent de mettre en œuvre l'ensemble du procédé dont un dépôt de carbure réfractaire, par exemple le dépôt de carbure de silicium à partir du méthyltrichlorosilane, introduit à partir de la source (41) avec sa vanne (42) et son débitmètre (43), ou l'ajout de carbone à partir d'un ou plusieurs hydrocarbures provenant de la bouteille (44) avec ses accessoires (45) et (46).
D'autres lignes supplémentaires non représentées permettent d'introduire des mélanges gazeux nécessaires au dépôt d'oxydes.
Enfin d'autres procédés de dépôt chimique ou physique connus peuvent être utilisés pour infiltrer ou déposer des couches, en particulier des couches de carbures mais aussi des couches d'oxydes, par CVI et par projection plasma par exemple.
La couche continue uniforme d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, est une couche continue uniforme qui est obtenue par un procédé d'infiltration chimique en phase vapeur qui utilise un mélange gazeux qui comprend l'hydrogène, en (20), un halogénure de bore, en (21), et un halogénure contenant le carbone, en (22).
Le précurseur gazeux du bore est par exemple le trichlorure de bore tandis que le précurseur du carbone est le chlorure de carbonyle (ou phosgène, COCl2) ou le
tétrachlorure de carbone (CC14) ou un mélange des deux. La proportion de l'halogénure précurseur du bore est grande par rapport à celle du ou des précurseurs du carbone dont la concentration est supérieure à environ 0,5 % en volume relativement à celle de l'halogénure de bore pur.
Les conditions de dépôt d'une telle couche sont les suivantes : la concentration des halogénures dans le mélange avec l'hydrogène est comprise dans un large domaine, entre 10 % et 40 %, et le taux de COCl2 relativement au BC13 pur est compris entre 0,5 et 6 % en volume. La pression dans l'enceinte (31) est maintenue entre 0,1 et 30 kPa, la température est comprise entre 850 et 1100°C et le débit total est d'environ 400 cm3 par minute dans les conditions standards (sccm).
Le procédé de fabrication du composite comporte au moins deux autres étapes de fabrication d'au moins deux couches continues réfractaires d'un matériau céramique de type carbure qui ne contient pas le bore. Ce carbure réfractaire est souvent le carbure de silicium. Celui-ci est déposé et/ou infiltré, dans une autre étape de formation de la matrice selon une technique connue, à l'aide d'un mélange gazeux qui contient de l'hydrogène et le méthyltrichlorosilane qui est introduit dans le réacteur (30) à partir de la source (41). Les conditions employées ici sont un rapport hydrogène sur méthyltrichlorosilane compris entre 5 et 12, une pression comprise entre 0,1 et 40 kPa et une température comprise entre 850 et 1100 °C. Le débit total est d'environ 300 sccm.
L'ensemble des couches du composite tel que représenté sur la figure 1 sont ainsi fabriquées dans des étapes successives de CVI dans des zones proches des fibres, à l'intérieur des fils, et entre les fils eux-mêmes. Dans cet exemple 1, la couche de carbure réfractaire est suffisamment épaisse pour densifier seule les fils du composite alors que dans l'exemple 2 la couche continue uniforme d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone est aussi présente dans les interstices entre les fibres.
Lorsque la couche de carbure réfractaire, par exemple de carbure de silicium, est épaisse et constitue une partie de matrice qui englobe entièrement les fils du composite comme dans l'exemple de la figure 1, elle peut être infiltrée à partir de la phase gazeuse dans un appareillage tel que celui représenté sur la figure 4 mais aussi par d'autres voies selon des procédés connus : - par imprégnation de polymères précurseurs céramiques des éléments Si et C, puis leur pyrolyse ; - ou par imprégnation réactive ou non de liquides, par exemple avec du silicium liquide qui va réagir avec des charges de carbone préalablement introduites dans la texture fibreuse. La ou les couches continues uniformes (13) d'un matériau, ayant pour constituant principal le bore et comme constituant secondaire le carbone, sont ensuite déposées de même que les couches réfractaires suivant le procédé de l'invention dans un appareillage tel que celui de la figure 4. Seules les couches les plus externes sont éventuellement réalisées par tout autre procédé connu de dépôt chimique ou physique.
Une autre caractéristique du procédé de fabrication d'un composite à matrice céramique selon l'invention utilise un trichlorure de bore moins purifié qui contient au moins 0,5 % en volume de chlorure de carbonyle issu de la synthèse du trichlorure de bore, par exemple à partir de l'action du chlore (Cl2) sur l'oxyde de bore (B203) en présence de carbone. L'utilisation d'un tel trichlorure de bore permet d'abaisser de façon importante le coût des réactifs utilisés pour le dépôt ou l'infiltration d'une ou plusieurs couches continues uniformes (13) d'un matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone. Ainsi le procédé selon l'invention utilise, pour fabriquer une couche (13), un mélange d'hydrogène et de trichlorure de bore et d'au moins un halogénure contenant du carbone, mélange qui est obtenu : - soit à partir de trois bouteilles contenant ces gaz purs (20), (21) et (22) ; - soit à partir de la bouteille (20) et d'une bouteille (21 bis), source de trichlorure de bore contenant au moins 0,5 % en volume de chlorure de carbonyle issu de la synthèse de BC13, par exemple à partir de l'action du chlore (Cl2) sur l'oxyde de bore (dénommé souvent sesquioxyde de bore ou trioxyde de bore, B203) en présence de carbone.
La facilité de mise en œuvre, la versatilité du procédé et de ses variantes, et les avantages de ce procédé sont démontrées ci-dessous à l'aide d'exemples de mises en œuvre plus spécifiques.
Dans l'exemple 4 selon le procédé, une texture fibreuse 2,5D composée de fibres de carbure de silicium, revêtues d'une interphase en carbone pyrolytique suivant un procédé connu, est revêtue par ICVI d'une couche de carbure de silicium à partir d'un mélange d'hydrogène issu de la source (20) et de méthyltrichlorosilane (MTS) issu de la source (41). Une couche continue uniforme de matériau, ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, est ensuite infiltrée à partir d'un mélange d'hydrogène de pureté 99,995% issu de la source (20), de BC13 de pureté 99,9% issu de la source (21) et de COCl2 issu de la source (22). Le taux de COCl2 relativement au BC13 est de 3% en volume. Une autre couche continue de carbure de silicium est ensuite déposée puis une nouvelle couche continue du matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone. Un nouvel ensemble de deux couches identiques aux précédentes est ensuite réalisé et le procédé est stoppé afin d'étudier la dernière couche du matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone. La composition de cette couche est d'environ 5% en carbone et 95% en bore, en pourcentage atomique (at. %) et aux incertitudes de mesures près. Cette couche est cristallisée et comporte deux phases de structure rhomboédrique. Le procédé est ensuite repris pour déposer la dernière couche de carbure de silicium qui constitue la surface du composite.
Ce composite possède les propriétés du matériau composite telles que décrites dans l'exemple 1.
Dans un exemple 5 selon l'art antérieur, les premières étapes sont identiques à celle de l'exemple 4, y compris le dépôt de la première couche de carbure de silicium. Mais ici, une couche différente de la couche (13) est ensuite infiltrée à partir d'un mélange
FEUILLE DE
Figure imgf000017_0001
d'hydrogène de pureté 99,995% issu de la source (20) et de BC13 de pureté 99,9% issu de la source (21). L'élaboration de la matrice est poursuivie par l'infiltration d'une autre couche de carbure de silicium puis d'une nouvelle couche en utilisant un mélange d'hydrogène de pureté 99,995% issu de la source (20) et de BC13 de pureté 99,9% issu de la source (21). Le procédé est arrêté à ce stade afin d'étudier le composite partiellement infiltré. L'étude par rayons X montre que le dépôt de la dernière couche est un dépôt de bore cristallisé sous forme rhomboédrique. Sur des coupes du matériau, on observe des couches irrégulières avec des amas proéminents du bore qui, à partir de la première couche de bore conduisent à une grande irrégularité en épaisseur des couches de bore déposées et à une déformation de l'ensemble des couches de bore et de carbure de silicium qui deviennent toutes irrégulières. De plus, des zones moins denses apparaissent, dans et autour des protubérances de bore. Ce matériau présente des défauts qui apparaissent trop importants pour poursuivre le procédé et conduire à un composite de bonne qualité.
Dans un exemple 6 selon le procédé, les premières étapes sont identiques à celle de l'exemple 4, y compris le dépôt de la première couche de carbure de silicium. Mais ici, la première couche de matériau (13) ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, est déposée à partir d'un mélange d'hydrogène de pureté
99,995%) et de BC13 contenant 2 % de COCl2 issu de la source (2 Ibis) provenant de la préparation de BC13 à partir de l'action du chlore (Cl2) sur l'oxyde de bore (B203) en présence de carbone. Deux autres ensembles de couches de carbure de silicium et de couches de matériau ayant pour constituant principal le bore et comme constituant secondaire le carbone sont déposées comme les deux précédentes. Le procédé est stoppé afin d'étudier la dernière couche. La concentration en carbone dans cette couche est d'environ 3,5 at.%, compte tenu de l'incertitude de mesure. Cette couche est cristallisée et comporte deux phases de structure rhomboédrique et de structure quadratique. Le procédé est ensuite repris pour déposer la dernière couche de carbure de silicium (12c) qui constitue la surface du composite.
Ce composite possède les propriétés du matériau composite telles que décrites dans l'exemple 1.
Dans un exemple 7 de fabrication d'un composite selon la figure 3, les premières étapes sont identiques à celle de l'exemple 4. Ici la couche continue de matériau (13) ayant pour constituant principal le bore et comme constituant secondaire le carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, est déposée à partir d'un mélange d'hydrogène et de BC13 contenant 2 % de COCl2 issu de la source (2 Ibis) provenant de la préparation de BC13 à partir de l'action du chlore (Cl2) sur l'oxyde de bore (B203) en présence de carbone. Une nouvelle couche de carbure de silicium est ensuite déposée. En variante, une couche différente, couche (12d) de la figure 3, est ensuite déposée à partir d'un mélange d'hydrogène, de 25 % de BC13 contenant environ 2% de COCl2 issu de la source (2 Ibis) provenant de la préparation de BC13, auquel on ajoute 8 % de méthane en volume. L'étude de cette nouvelle couche montre qu'elle contient environ 16 at. % de carbone. Elle est cristallisée avec une structure rhomboédrique et est identifiée comme du carbure de bore. La densification de la matrice se termine par le dépôt d'une couche de carbure de silicium (12c).
Ainsi est fabriqué en variante, un composite qui comporte une couche
supplémentaire (12d) moins riche en bore, mais qui a encore les propriétés du matériau composite telles que décrites dans l'exemple 1.
Des variantes du procédé permettent de déposer selon cet exemple des couches supplémentaires (12d) qui sont : - soit des couches ternaires du système B-C-Si ; - soit des couches binaires B-C plus riches en carbone ou des couches B-Si. Les couches binaires B- C plus riches en carbone sont constituées soit par le carbure de bore rhomboédrique caractérisé par une concentration supérieure à environ 10 % en pourcentage atomique, soit par du carbure de bore et du carbone, couche caractérisée par une concentration en carbone supérieure à environ 20 % en pourcentage atomique.
Ainsi le procédé de fabrication d'un composite à matrice céramique constitué d'un renforcement par des fibres revêtues d'une interphase et densifïé par une matrice céramique, est fabriqué par un procédé qui est caractérisé en ce qu'il inclut plusieurs étapes de formation :
- d'au moins une couche continue uniforme d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, couche continue uniforme qui est obtenue par un procédé d'infiltration chimique en phase vapeur qui utilise un mélange gazeux comprenant l'hydrogène, un halogénure de bore, précurseur de l'incorporation du bore et au moins un halogénure, précurseur de l'incorporation du carbone dont la concentration est supérieure à 0,5 % en volume relativement à celle de l'halogénure de bore pur ; - d'au moins deux couches continues réfractaires, chacune constituée d'un à plusieurs matériaux sélectionnés parmi le groupe des carbures, siliciures et oxydes, couches réfractaires dont au moins une est en contact avec l'interphase et au „
-18- moins une autre est plus éloignée des fibres que toute couche continue uniforme d'un matériau contenant l'élément bore ; - et d'au moins une couche réfractaire supplémentaire qui est obtenue en ajoutant, au mélange gazeux utilisé pour former la couche continue uniforme d'un matériau constitué de bore et de carbone, au moins un précurseur du carbone ou du silicium, ou un mélange contenant au moins un précurseur du carbone et au moins un précurseur du silicium, ou un précurseur unique des deux éléments carbone et silicium.
Cette ou ces couches supplémentaires sont déposées à partir de mélanges gazeux qui contiennent de l'hydrogène, un mélange de BC13 et COCl2 ou un trichlorure de bore contenant au moins du COCl2, et : - soit un ou plusieurs précurseurs du seul carbone ou du seul silicium ; - soit un ou plusieurs précurseurs des deux éléments carbone et silicium.
Un ou plusieurs précurseurs du carbone sont choisis parmi les hydrocarbures, par exemple le méthane ou le propane ou un mélange de méthane et de propane.
Les précurseurs du carbone et du silicium sont contenus dans le trichlorure de bore sous forme de COCl2 et de SiCl4 issu de la synthèse du trichlorure de bore à partir de l'action du chlore (Cl2) sur l'oxyde de bore (B203) en présence de carbone, cette synthèse étant réalisée dans un réacteur en silice dont la paroi interne n'est pas protégée de l'action corrosive du chlore.
Un ou plusieurs précurseurs additionnels du carbone et/ou du silicium sont choisis parmi les hydrocarbures et les chlorures de silicium, ou consiste en le seul méthyl- trichlorosilane.
Le procédé n'est pas limité à l'utilisation de couches réfractaires de type carbure et siliciures mais il inclut aussi l'utilisation de couches d'oxydes pour former des composites tels que celui décrit dans l'exemple 3 où sont utilisés : - un oxyde mixte de silicium et zirconium qui est un silicate ; - et la zircone. Il s'agit évidement d'un exemple non limitatif. Ainsi, une autre variante du procédé de fabrication d'un composite à matrice céramique résistant à la corrosion constitué d'un renforcement par des fibres revêtues d'une interphase et densifié par une matrice céramique, est fabriqué par un procédé qui est caractérisé en ce qu'il inclut plusieurs étapes de formation : - d'au moins une couche continue uniforme d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, couche continue uniforme qui est obtenue par un procédé d'infiltration chimique en phase vapeur qui utilise un mélange gazeux comprenant l'hydrogène, un halogénure de bore précurseur de l'incorporation du bore et au moins un halogénure, précurseur de l'incorporation du carbone dont la concentration est supérieure à 0,5 % en volume relativement à celle de l'halogénure de bore pur ; - et d'au moins deux couches continues réfractaires, chacune constituée d'un à plusieurs matériaux sélectionnés parmi le groupe des carbures, siliciures et oxydes, couches réfractaires dont une est en contact avec Γ interphase et au moins une autre est plus éloignée des fibres que toute couche continue uniforme d'un matériau contenant l'élément bore, couches continues réfractaires dont au moins une est un oxyde.
Dans ce cas, une à plusieurs des couches réfractaires en oxyde sont constituées par au moins un oxyde d'un ou plusieurs des éléments Al, Si, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y, La et les terres rares. La description précédente présente des exemples mais n'est évidemment pas de nature limitante. Des variantes ou des modifications peuvent y être apportées par l'homme de l'art sans que celles-ci sortent du cadre de l'invention. Toutefois le cadre de l'invention est déterminé classiquement par les revendications qui suivent.

Claims

REVENDICATIONS
1) Un matériau composite (1) comportant un renforcement par des fibres (10) et une matrice céramique multicouches dans laquelle les fibres revêtues d'une couche mince dénommée interphase (11) sont incluses, la dite matrice céramique comprenant :
- au moins une couche continue uniforme (13) d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8 % en pourcentage atomique,
- et au moins deux couches réfractaires (12), chacune constituée d'au moins un composé sélectionné parmi le groupe des carbures, siliciures et oxydes, couches réfractaires dont une (12a) est en contact avec l'interphase, et au moins une (12c) est plus éloignée des fibres que toute couche continue uniforme (13) constituée de bore et de carbone qui est elle- même toujours insérée entre au moins deux couches réfractaires.
2) Un matériau composite selon la revendication 1 comprenant au moins une couche continue uniforme (13) d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8 % en pourcentage atomique, matériau qui a une structure amorphe.
3) Un matériau composite selon la revendication 1 comprenant au moins une couche continue uniforme (13) d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8 % en pourcentage atomique, matériau qui a une structure cristalline comprenant deux phases rhomboédriques.
4) Un matériau composite selon la revendication 1 comprenant au moins une couche continue uniforme (13) d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8 % en pourcentage atomique, matériau qui a une structure cristalline comprenant une phase rhomboédrique et une phase quadratique.
5) Un matériau composite selon la revendication 1 comprenant au moins une couche continue uniforme (13) d'un matériau constitué de bore et de carbone, matériau qui a une structure cristalline quadratique.
6) Un matériau composite selon une quelconque des revendications 1 à 5 où au moins une couche réfractaire (12) du groupe des carbures est le carbure de silicium.
7) Un matériau composite selon une quelconque des revendications 1 à 5 où une couche réfractaire (12a) est constituée par le carbure de silicium et au moins une couche réfractaire (12d) contient l'élément bore et au moins un des deux éléments pris parmi le carbone et le silicium, cette couche contenant au moins deux de ces éléments sous forme d'un à plusieurs composés pris parmi le groupe des carbures et des siliciures. 8) Un matériau composite selon une quelconque des revendications 1 à 5 où au moins une couche réfractaire (12) est constituée par un oxyde d'au moins un des éléments Al, Si, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y, La et les terres rares.
9) Un procédé de fabrication d'un matériau composite (1) comportant un
renforcement par des fibres (10) et une matrice céramique multicouches dans laquelle les fibres revêtues d'une couche mince dénommée interphase (11) sont incluses, procédé caractérisé en ce que la dite matrice céramique comprend plusieurs étapes de formation :
- d'au moins une couche continue uniforme (13) d'un matériau constitué de bore et de carbone, ce dernier à une concentration comprise entre 0,4 et 8% en pourcentage atomique, couche continue uniforme qui est fabriquée par un procédé d'infiltration chimique en phase vapeur à une pression comprise entre 0,1 et 30 kPa, procédé
d'infiltration qui utilise un mélange gazeux comprenant l'hydrogène, un halogénure de bore comme précurseur de l'incorporation du bore et au moins un halogénure, le chlorure de carbonyle, dénommé aussi phosgène, précurseur de l'incorporation du carbone dont la concentration est supérieure à 0,5 % en volume relativement à celle de l'halogénure de bore pur,
- et d'au moins deux couches réfractaires (12), chacune constituée d'au moins un composé sélectionné parmi le groupe des carbures, siliciures et oxydes, couches réfractaires dont une (12a) est formée en contact avec l'interphase, et au moins une (12c) est formée à une distance des fibres plus grande que toute couche continue uniforme (13) d'un matériau constitué de bore et de carbone qui est elle-même toujours insérée entre au moins deux couches réfractaires.
10) Un procédé de fabrication, selon la revendication 9, où le précurseur du bore est le trichlorure de bore et les précurseurs du carbone sont le chlorure de carbonyle et le tétrachlorure de carbone.
11) Un procédé de fabrication, selon la revendication 9, où les précurseurs du bore et du carbone proviennent d'une même source gazeuse où le trichlorure de bore contient au moins 0,5 % en volume de chlorure de carbonyle, sous-produit de la synthèse du trichlorure de bore.
12) Un procédé de fabrication, selon une quelconque des revendications 9 à 11, caractérisé en ce qu'il inclut au moins une étape de formation d'au moins une couche réfractaire (12d) constituée de plusieurs composés sélectionnés parmi le groupe des carbures et des siliciures contenant du bore, couche qui est obtenue par un procédé de dépôt chimique ou d'infiltration chimique qui utilise un mélange gazeux comprenant l'hydrogène et du trichlorure de bore qui contient au moins 0,5 % en volume de chlorure de carbonyle et du chlorure de silicium, sous-produits de la synthèse du trichlorure de bore réalisée dans un réacteur en silice.
13) Un procédé de fabrication, selon une quelconque des revendications 9 à 11, caractérisé en ce qu'il inclut au moins une étape de formation d'au moins une couche réfractaire (12d) constituée de plusieurs composés sélectionnés parmi le groupe des carbures et des siliciures contenant du bore, couche qui est obtenue en ajoutant du méthyltrichlorosilane au mélange gazeux comprenant l'hydrogène et du trichlorure de bore qui contient au moins 0,5 % en volume de chlorure de carbonyle, sous-produit de la synthèse du trichlorure de bore.
14) Un procédé de fabrication, selon une quelconque des revendications 9 à 11 où au moins une couche réfractaire (12) est constituée par le carbure de silicium.
15) Un procédé de fabrication, selon une quelconque des revendications 9 à 11 où au moins une couche réfractaire (12) est constituée par un oxyde d'au moins un des éléments Al, Si, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Y, La et les terres rares.
PCT/FR2018/000148 2017-05-31 2018-05-30 Composite à matrice céramique résistant à la corrosion et procédé de fabrication WO2018220296A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1700581 2017-05-31
FR1700581A FR3067026A1 (fr) 2017-05-31 2017-05-31 Composite a matrice ceramique resistant a la corrosion et procede de fabrication

Publications (1)

Publication Number Publication Date
WO2018220296A1 true WO2018220296A1 (fr) 2018-12-06

Family

ID=60182604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/000148 WO2018220296A1 (fr) 2017-05-31 2018-05-30 Composite à matrice céramique résistant à la corrosion et procédé de fabrication

Country Status (2)

Country Link
FR (1) FR3067026A1 (fr)
WO (1) WO2018220296A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106829A1 (fr) 2020-02-05 2021-08-06 Lionel Gérard Vandenbulcke Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique
CN115160000A (zh) * 2022-07-06 2022-10-11 青岛正望新材料股份有限公司 一种用于生产炼钢用功能性耐火材料的复合泥料及其制备方法和应用
WO2024084162A1 (fr) * 2022-10-21 2024-04-25 Safran Ceramics Procédé de fabrication d'une pièce en matériau composite à matrice céramique

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000855A1 (fr) 1977-08-08 1979-02-21 INSTITUT DE RECHERCHES DE LA SIDERURGIE FRANCAISE (IRSID) France Procédé de préréglage d'un train continu à cages tandem pour le laminage à chaud de produits métalliques
EP0002548A1 (fr) 1977-12-08 1979-06-27 Shell Internationale Researchmaatschappij B.V. Procédé de préparation de résines dispersables dans l'eau, et leur utilisation dans des revêtements de surface
US4668579A (en) 1984-02-01 1987-05-26 The United States Of America As Represented By The Secretary Of The Air Force Interstitially protected oxidation resistant carbon-carbon composite
US5194330A (en) 1990-10-26 1993-03-16 Societe Europeenne De Propulsion Method of providing anti-oxidation protection for a composite material containing carbon, and a material protected thereby
US5246736A (en) 1990-10-26 1993-09-21 Societe Europeenne De Propulsion Process for the manufacture of a refractory composite material protected against corrosion
US5965266A (en) 1995-03-28 1999-10-12 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Composite material protected against oxidation by a self-healing matrix, and a method of manufacturing it
EP2548855A1 (fr) 2011-07-22 2013-01-23 United Technologies Corporation Article céramique composite à matrice céramique laminaire
EP2735544A2 (fr) * 2012-11-27 2014-05-28 Ulusal Bor Arastirma Enstitusu (Boren) Réacteur conçu pour procédé de dépôt chimique en phase vapeur, procédé de production de bore élémentaire et poudres céramiques avancées avec ce réacteur

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000855A1 (fr) 1977-08-08 1979-02-21 INSTITUT DE RECHERCHES DE LA SIDERURGIE FRANCAISE (IRSID) France Procédé de préréglage d'un train continu à cages tandem pour le laminage à chaud de produits métalliques
EP0002548A1 (fr) 1977-12-08 1979-06-27 Shell Internationale Researchmaatschappij B.V. Procédé de préparation de résines dispersables dans l'eau, et leur utilisation dans des revêtements de surface
US4668579A (en) 1984-02-01 1987-05-26 The United States Of America As Represented By The Secretary Of The Air Force Interstitially protected oxidation resistant carbon-carbon composite
US5194330A (en) 1990-10-26 1993-03-16 Societe Europeenne De Propulsion Method of providing anti-oxidation protection for a composite material containing carbon, and a material protected thereby
US5246736A (en) 1990-10-26 1993-09-21 Societe Europeenne De Propulsion Process for the manufacture of a refractory composite material protected against corrosion
US5965266A (en) 1995-03-28 1999-10-12 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Composite material protected against oxidation by a self-healing matrix, and a method of manufacturing it
EP2548855A1 (fr) 2011-07-22 2013-01-23 United Technologies Corporation Article céramique composite à matrice céramique laminaire
US8986845B2 (en) 2011-07-22 2015-03-24 United Technologies Corporation Ceramic composite article having laminar ceramic matrix
EP2735544A2 (fr) * 2012-11-27 2014-05-28 Ulusal Bor Arastirma Enstitusu (Boren) Réacteur conçu pour procédé de dépôt chimique en phase vapeur, procédé de production de bore élémentaire et poudres céramiques avancées avec ce réacteur

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ADVANCES IN CERAMIC MATRIX COMPOSITES 2014 ELSEVIER LTD., 2014, pages 369 - 409, DOI: 10.1533/9780857098825.2.369 *
DATABASE COMPENDEX [online] ENGINEERING INFORMATION, INC., NEW YORK, NY, US; 2014, REBILLAT F: "Advances in self-healing ceramic matrix composites", XP002779091, Database accession no. E20172603841927 *
HU CHENGLONG ET AL: "Long-term oxidation behavior of carbon/carbon composites with a SiC/B4C-B2O3-SiO2-Al2O3coating at low and medium", CORROSION SCIENCE, OXFORD, GB, vol. 94, 28 February 2015 (2015-02-28), pages 452 - 458, XP029147533, ISSN: 0010-938X, DOI: 10.1016/J.CORSCI.2015.02.026 *
L. VANDENBULCKE ET AL: "Outstanding Ceramic Matrix Composites for High Temperature Applications", ADVANCED ENGINEERING MATERIALS., vol. 7, no. 3, 1 March 2005 (2005-03-01), DE, pages 137 - 142, XP055346951, ISSN: 1438-1656, DOI: 10.1002/adem.200400197 *
L. VANDENBULCKE; G. VUILLARD: "Structure of deposits - process relationships in the Chemical Vapor Déposition of boron", J. ELECTROCHEM. SOC., vol. 124, no. 12, 1977, pages 1937 - 1942, XP055347056, DOI: doi:10.1149/1.2133200
L. VANDENBULCKE; S. GOUJARD: "Progress in Advanced Materials and Mechanics", 1996, PEKING UNIVERSITY PRESS, article "Multilayer systems based on B, B C, SiC and SiBC for environmental composite protection", pages: 1198 - 1204
M. LEPAROUX; L. VANDENBULCKE: "Influence of isothermal Chemical Vapor Deposition and Chemical Vapor Infiltration on the deposition kinetics and structure of boron nitride", J. AM. CERAM. SOC., vol. 82, no. 5, 1999, pages 1187 - 1195, XP055458519, DOI: doi:10.1111/j.1151-2916.1999.tb01894.x
PUBCHEM: "Impurities in BORON TRICHLORIDE | BCl3", 1 January 1978 (1978-01-01), XP055347123, Retrieved from the Internet <URL:https://pubchem.ncbi.nlm.nih.gov/compound/boron_trichloride#section=Impurities&fullscreen=true> [retrieved on 20170217] *
VANDENBULCKE ET AL: "Multilayer systems based in B, B4C, SiC and SiBC for environmental composite protection", 1 January 1996, PROGRESS IN ADVANCED MATERIALS AND MECHANICS : PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS, AUGUST 12-15, 1996, BEIJING, C,, PAGE(S) 1198 - 1204, ISBN: 7-301-03118-1, XP008183313 *
VANDENBULCKE L ET AL: "Composition and structural changes of boron carbides deposited by chemical vapour deposition under various conditions of temperature and supersaturation", JOURNAL OF THE LESS-COMMON METALS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 82, 1 November 1981 (1981-11-01), pages 49 - 56, XP025446597, ISSN: 0022-5088, [retrieved on 19811101], DOI: 10.1016/0022-5088(81)90196-X *
VINCENT CHOLET ET AL: "Chemical Vapor Infiltration of Boron Nitride Interphase in Ceramic Fiber Preforms: Discussion of Some Aspects of the Fundamentals of the Isothermal Chemical Vapor Infiltration Process", JOURNAL OF THE AMERICAN CERAMIC SOCIETY., vol. 76, no. 11, 1 November 1993 (1993-11-01), US, pages 2846 - 2858, XP055494908, ISSN: 0002-7820, DOI: 10.1111/j.1151-2916.1993.tb04026.x *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106829A1 (fr) 2020-02-05 2021-08-06 Lionel Gérard Vandenbulcke Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique
WO2021156549A1 (fr) 2020-02-05 2021-08-12 Lionel Vandenbulcke Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique
CN115515914A (zh) * 2020-02-05 2022-12-23 莱昂内尔·范登布尔克 一种包含特定界面相的陶瓷基体复合材料的制造方法
CN115515914B (zh) * 2020-02-05 2024-02-09 冯倩 一种包含特定界面相的陶瓷基体复合材料的制造方法
CN115160000A (zh) * 2022-07-06 2022-10-11 青岛正望新材料股份有限公司 一种用于生产炼钢用功能性耐火材料的复合泥料及其制备方法和应用
CN115160000B (zh) * 2022-07-06 2023-03-14 青岛正望新材料股份有限公司 一种用于生产炼钢用功能性耐火材料的复合泥料及其制备方法和应用
WO2024084162A1 (fr) * 2022-10-21 2024-04-25 Safran Ceramics Procédé de fabrication d'une pièce en matériau composite à matrice céramique
FR3141170A1 (fr) * 2022-10-21 2024-04-26 Safran Ceramics Procédé de fabrication d’une pièce en matériau composite à matrice céramique

Also Published As

Publication number Publication date
FR3067026A1 (fr) 2018-12-07

Similar Documents

Publication Publication Date Title
EP0483009B1 (fr) Procédé d&#39;élaboration d&#39;un matériau composite réfractaire protégé contre la corrosion
EP0486347B1 (fr) Procédé pour la protection antioxydation d&#39;un matériau composite contenant du carbone, et matériau ainsi protégé
EP0721438B1 (fr) Procede de fabrication d&#39;un materiau composite a interphase lamellaire entre fibres de renfort et matrice, et materiau tel qu&#39;obtenu par le procede
WO2018220296A1 (fr) Composite à matrice céramique résistant à la corrosion et procédé de fabrication
JP4191247B2 (ja) 炭素繊維もしくは炭素で被覆された繊維から成る補強材を有する耐酸化性の向上した高温複合材料
US8986845B2 (en) Ceramic composite article having laminar ceramic matrix
FR2901721A1 (fr) Poudres de phase max et procede de fabrication des dites poudres
JP5722330B2 (ja) セラミックマトリックスを有する複合材料部品およびその製造方法
WO2013076274A1 (fr) Procédé pour revêtir une pièce d&#39;un revêtement de protection contre l&#39;oxydation par une technique de dépôt chimique en phase vapeur, et revêtement et pièce
EP0482994B1 (fr) Pièce en matériau composite carboné, protégée contre l&#39;oxydation et son procédé de fabrication
WO2021156549A1 (fr) Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique
FR2692254A1 (fr) Matériaux céramiques composites, notamment pour la réalisation d&#39;aubes de turbines à gaz.
FR3059322A1 (fr) Piece en materiau composite
EP3455192B1 (fr) Pièce en matériau composite à matrice ceramique
FR2654094A1 (fr) Procede de fabrication d&#39;un materiau carbone protege contre l&#39;oxydation par du nitrure d&#39;aluminium et materiau obtenu par ce procede.
EP3478870B1 (fr) Procédé d&#39;infiltration ou de dépôt chimique en phase vapeur
US20180141870A1 (en) Ceramic composite article and method therefor
EP2933353A1 (fr) Utilisation de précurseurs de silicium et de carbone pour produire des matériaux composites renforcés par des fibres
EP0955281B1 (fr) Matériau composite de type carbone/carbone ayant une résistance accrue à l&#39;oxydation
EP3544939B1 (fr) Piece en materiau composite comprenant une couche d&#39;interphase en nitrure de bore dope par de l&#39;aluminium
WO2024084163A1 (fr) Infiltration d&#39;une structure fibreuse comprenant une couche anti-mouillante au silicium liquide
Tsirlin et al. Strength and Oxidation Resistance of SiC Fibers Coated with Various Si‐Containing Compositions
WO2024084155A1 (fr) Infiltration d&#39;une structure fibreuse comprenant une couche reactive au silicium liquide
FR2877016A1 (fr) Realisation de materiau composite a matrice ceramique ayant une tenue amelioree a haute temperature sous atmosphere corrosive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18734275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18734275

Country of ref document: EP

Kind code of ref document: A1