WO2021155587A1 - 数据传输方法、装置、设备和存储介质 - Google Patents

数据传输方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2021155587A1
WO2021155587A1 PCT/CN2020/074522 CN2020074522W WO2021155587A1 WO 2021155587 A1 WO2021155587 A1 WO 2021155587A1 CN 2020074522 W CN2020074522 W CN 2020074522W WO 2021155587 A1 WO2021155587 A1 WO 2021155587A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resources
configuration
sps
terminal
Prior art date
Application number
PCT/CN2020/074522
Other languages
English (en)
French (fr)
Inventor
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/074522 priority Critical patent/WO2021155587A1/zh
Priority to CN202080075338.7A priority patent/CN114616889A/zh
Publication of WO2021155587A1 publication Critical patent/WO2021155587A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communications, in particular to a data transmission method, device, equipment and storage medium.
  • NTN Non-Terrestrial Network
  • the signal propagation delay between the User Equipment (UE) and the satellite in NTN has increased significantly.
  • the continuity of data transmission can be guaranteed.
  • HARQ retransmission based on blind scheduling is still supported.
  • the network device does not receive an Acknowledgement (ACK)
  • ACK Acknowledgement
  • NACK Non-Acknowledgement
  • the robustness of downlink transmission can be improved by scheduling the retransmission of the same downlink transport block (TB) multiple times;
  • PUSCH physical uplink shared channel
  • an embodiment of the present application provides a data transmission method, and the method includes:
  • the terminal determines the binding relationship of the data transmission resource according to the resource configuration information of the data transmission resource sent by the network device;
  • the terminal transmits and receives data through data transmission resources with the same binding relationship.
  • an embodiment of the present application provides a data transmission method, and the method includes:
  • the network device After determining the activated data transmission resource, the network device sends the resource configuration information of the data transmission resource to the terminal;
  • the network device transmits and receives data through data transmission resources having the same binding relationship determined by the terminal.
  • an embodiment of the present application provides a data transmission device, including:
  • a determining module configured to determine the binding relationship of the data transmission resource according to the resource configuration information of the data transmission resource sent by the network device;
  • the processing module is used to send and receive data through data transmission resources with the same binding relationship.
  • an embodiment of the present application provides a data transmission configuration device, including:
  • the sending module is used to send the resource configuration information of the data transmission resource to the terminal;
  • the processing module is configured to transmit and receive data through data transmission resources with the same binding relationship determined by the terminal.
  • an embodiment of the present application provides a terminal, including: a processor, a memory, and a transceiver, where the processor, the memory, and the transceiver communicate with each other through an internal connection path,
  • the memory is used to store program code
  • the processor is configured to call the program code stored in the memory to cooperate with the transceiver to implement the steps of any one of the methods in the first aspect.
  • an embodiment of the present application provides a network device, including: a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver communicate with each other through an internal connection path.
  • the processor is configured to call the program code stored in the memory to cooperate with the transceiver to implement the steps of any one of the methods in the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, characterized in that, when the computer program is executed by a processor, the method of any one of the first aspects is implemented step.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, wherein the computer program is characterized in that, when the computer program is executed by a processor, the method of any one of the second aspects is implemented step.
  • the terminal determines the bundling relationship of the data transmission resource according to the resource configuration information of the data transmission resource sent by the network device, and transmits data through the same bundling relationship.
  • Resources send and receive data, even if the HARQ feedback function of the HARQ process reserved for data transmission resources is turned off, you can also determine the binding relationship of the data transmission resources through the resource configuration information sent by the network device, and then have the same binding relationship
  • Data transmission and reception are performed on the data transmission resources of the data transmission resources, that is, the data transmission resources with the same binding relationship are repeatedly received or sent, and the reliability of data transmission is ensured when the HARQ feedback function is turned off.
  • FIG. 1 is a schematic diagram of an application scenario of a data transmission method provided by an embodiment of the application
  • FIG. 2 is a flowchart of a data transmission method provided by an embodiment
  • FIG. 3 is a schematic diagram of a bundling relationship of SPS resources provided by an embodiment
  • FIG. 4 is a flowchart of determining the binding relationship of SPS resources according to an embodiment
  • FIG. 5 is a schematic diagram of a bundling relationship of CG configurations provided by an embodiment
  • FIG. 6 is a flowchart of determining the binding relationship of CG resources according to an embodiment
  • FIG. 7 is another flow chart for determining the binding relationship of SPS resources according to an embodiment
  • FIG. 8 is a schematic diagram of another SPS resource bundling relationship provided by an embodiment
  • FIG. 9 is another flowchart for determining the binding relationship of CG resources according to an embodiment
  • FIG. 10 is a schematic diagram of another CG resource bundling relationship provided by an embodiment
  • FIG. 11 is a flowchart of a data transmission method provided by an embodiment
  • FIG. 12 is a block diagram of a data transmission device according to an embodiment
  • FIG. 13 is a block diagram of a data transmission device according to an embodiment
  • FIG. 14 is a block diagram of a computer device provided by an embodiment
  • Fig. 15 is a block diagram of a computer device according to an embodiment.
  • Satellite communication is not restricted by the user's area.
  • general terrestrial communication cannot cover areas where communication equipment cannot be installed, such as oceans, mountains, and deserts, or areas that cannot be covered by communication due to sparse population.
  • a satellite can cover a larger ground.
  • satellites can orbit the earth. Therefore, in theory, every corner of the earth can be covered by satellite communications.
  • satellite communication has greater social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication distance increases, and the cost of communication does not increase significantly; finally, the stability of satellite communication is high, and it is not restricted by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude of low-orbit satellites ranges from 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure the coverage of satellites and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • NR has two levels of retransmission mechanisms: the HARQ mechanism at the Medium Access Control (MAC) layer and the HARQ mechanism at the Radio Link Control (RLC) layer.
  • the retransmission of lost or erroneous data is mainly handled by the HARQ mechanism of the MAC layer and supplemented by the retransmission function of the RLC layer.
  • the HARQ mechanism of the MAC layer can provide fast retransmission, and the ARQ mechanism of the RLC layer can provide reliable data transmission.
  • HARQ uses Stop-and-Wait Protocol to send data.
  • the stop-and-wait protocol after the sender sends a TB, it stops and waits for the confirmation message. In this way, the sender will stop and wait for confirmation after each transmission, which will result in very low user throughput. Therefore, NR uses multiple parallel HARQ processes. When one HARQ process is waiting for confirmation information, the sender can use another HARQ process to continue sending data. These HARQ processes together form a HARQ entity, which combines the stop-and-wait protocol to allow continuous data transmission.
  • HARQ is divided into uplink HARQ and downlink HARQ. Uplink HARQ is for uplink data transmission, and downlink HARQ is for downlink data transmission, and the two are independent of each other.
  • the downlink is called Semi-Persistent Scheduling (SPS), and the uplink is called Configured Grant (CG).
  • SPS Semi-Persistent Scheduling
  • CG Configured Grant
  • the network For each SPS configuration, the network configures a limited number of downlink HARQ processes for it, and the network uses these downlink HARQ processes in a polling manner to perform downlink transmission on SPS resources.
  • the network RRC configures transmission resources and transmission parameters including the period of time domain resources, the number of HARQ processes, etc.; and then configures the wireless network temporary identification (Configured Scheduling RNTI, CS). -RNTI)
  • the scrambled Physical Downlink Control Channel (PDCCH) activates the SPS-based Physical Downlink Shared Channel (PDSCH) transmission, and the configuration includes time domain resources, frequency domain resources, MCS, etc. Include other transmission resources and transmission parameters.
  • the UE receives the RRC configuration parameters, it cannot immediately use the resources and parameters configured by the RRC configuration parameters for PDSCH reception, but must wait for the corresponding PDCCH to be activated and configure other resources and parameters before PDSCH reception can be performed.
  • each HARQ entity maintains a set of parallel downlink HARQ processes and a set of parallel uplink HARQ processes.
  • each uplink and downlink carrier supports a maximum of 16 HARQ processes.
  • the base station can indicate the maximum number of HARQ processes to the UE through RRC signaling semi-static configuration according to the network deployment situation. If the network does not provide corresponding configuration parameters, the default number of HARQ processes in the downlink is 8, and the maximum number of HARQ processes supported by each carrier in the uplink is always 16.
  • Each HARQ process corresponds to a HARQ process identifier (ID).
  • ID HARQ process identifier
  • the Broadcast Control Channel BCCH
  • HARQ ID 0 is used for Msg3 transmission in the random process.
  • each downlink HARQ process can only process 1 TB at the same time; for terminals that support downlink space division multiplexing, each downlink HARQ process can process 1 or 2 TBs at the same time. Each uplink HARQ process of the terminal processes 1 TB at the same time.
  • HARQ is divided into two types, synchronous and asynchronous in the time domain, and divided into two types, non-adaptive and adaptive in the frequency domain.
  • Both NR uplink and downlink use asynchronous adaptive HARQ mechanism.
  • Asynchronous HARQ that is, retransmission can occur at any time, and the time interval between the retransmission of the same TB and the previous transmission is not fixed.
  • Adaptive HARQ can change the frequency domain resources and modulation and coding strategy (Modulation and Coding Scheme, MCS) used for retransmission.
  • MCS Modulation and Coding Scheme
  • the network configures a limited number of uplink HARQ process numbers for it, and the UE uses these uplink HARQ processes in a polling manner to perform uplink transmission on CG resources.
  • NR supports the following two types of uplink unauthorized transmission:
  • PUSCH Physical Uplink Shared Channel
  • the network RRC configures all transmission resources and transmission parameters including time domain resources, frequency domain resources, period of time domain resources, MCS, number of repetitions, frequency hopping, number of HARQ processes, etc. After receiving the RRC configuration, the terminal can immediately use the configured transmission parameters to perform PUSCH transmission on the configured time-frequency resources.
  • a two-step resource configuration method is adopted: first, the network RRC configures the transmission resources and transmission parameters including the period of time domain resources, the number of repetitions, the frequency hopping, the number of HARQ processes, etc.; and then the PDCCH scrambled by the CS-RNTI Activate the second type of PUSCH transmission based on configuration authorization, and configure other transmission resources and transmission parameters including time domain resources, frequency domain resources, MCS, etc. at the same time.
  • the UE receives the RRC configuration parameters, it cannot immediately use the resources and parameters configured by the configuration parameters for PUSCH transmission, but must wait for the corresponding PDCCH to be activated and configure other resources and parameters before PUSCH transmission can be performed.
  • the UE If the UE has no data to be sent on the PUSCH resources authorized by the first and second types of configurations, the UE will not send anything on the resources authorized by the configuration.
  • the network device can be configured to enable the HARQ function.
  • the UE does not need to send HARQ feedback for PDSCH to the network device.
  • the configuration of enabling or disabling the HARQ function can be performed based on the UE or the HARQ process.
  • the UE-based configuration mode that is, the HARQ functions of all HARQ processes of the UE are configured to be in the on or off state at the same time.
  • the HARQ process-based configuration mode that is, for multiple HARQ processes of a UE, the HARQ function of some of the HARQ processes can be configured to be in the on state, and the HARQ function of the other part of the HARQ processes to be in the off state.
  • the network can blindly schedule retransmissions, that is, for downlink transmission, the network does not have ACK/NACK feedback from the UE.
  • the robustness of the downlink transmission can be improved by scheduling the retransmission of the same downlink TB multiple times; for uplink transmission, the network can schedule the retransmission of the same uplink TB multiple times before receiving the PUSCH transmission from the UE.
  • the network device needs to send PDCCH signaling during each scheduling, which will bring a lot of PDCCH signaling overhead.
  • the data transmission method provided in this application can solve the technical problem that the cost of the existing method of dynamically scheduling HARQ retransmission is that it will bring a large amount of PDCCH signaling overhead. It should be noted that the data transmission method of this application is not limited to solving the above technical problems, but can also be used to solve other technical problems, which is not limited in this application.
  • FIG. 1 is a schematic diagram of an application scenario of a data transmission method provided by an embodiment of the application.
  • this scenario includes a network device 104 and a terminal 102, where the terminal 102 and the network device 104 communicate through the network.
  • the network device 104 can schedule resources. For example, the network device 104 configures transmission resources. Even when the HARQ feedback function of the HARQ process reserved for configuration authorization is turned off, the resource configuration information sent by the network device is used to determine the binding of data transmission resources. (bundling) relationship, data transmission and reception are performed on data transmission resources with the same bundling relationship.
  • the terminal 102 can be, but is not limited to, various personal computers, notebook computers, smart phones, tablet computers, and portable wearable devices.
  • the network device 104 can be a base station, etc., for example, it can be an independent base station or composed of multiple base stations. Base station cluster to achieve.
  • Fig. 2 is a flowchart of a data transmission method provided by an embodiment. This embodiment relates to a specific implementation process in which a terminal receives resource configuration information sent by a network device, determines the bundling relationship of data transmission resources according to the resource configuration information, and performs data transmission and reception on data transmission resources with the same bundling relationship. As shown in Figure 2, the method may include the following steps:
  • S201 The terminal determines the binding relationship of the data transmission resource according to the resource configuration information of the data transmission resource sent by the network device.
  • the resource configuration information may include the bandwidth part (Bandwidth part, BWP) configured for each serving cell of the terminal, and may also include the transmission resource configuration configured for each BWP.
  • the BWP may be Downlink (DL).
  • BWP which can also be an uplink (Up Link, UL) BWP
  • each BWP can be configured with at least one transmission resource configuration
  • the at least one transmission resource configuration can be a downlink resource configuration or an uplink resource configuration, for example, the transmission resource
  • the configuration can be SPS configuration or CG configuration, and the number of transmission resource configurations corresponding to each BWP is not limited.
  • the configuration is to configure multiple CG configurations for the UP BWP of each serving cell of the terminal, which can be configured according to actual requirements, and is not limited in this embodiment.
  • the transmission resource configuration can include the resource period, the number of HARQ processes reserved for transmission resources, the identification (ID) of the HARQ process, the HARQ feedback function status of the HARQ process, the number of retransmissions, etc., and can also include other parameters.
  • This application implements There is no restriction in the example.
  • the resource configuration information may be carried in radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the terminal may determine the bundling relationship of each data transmission resource after receiving the resource configuration information, and perform data transmission and reception on the data transmission resources with the same bundling relationship. For example, the terminal may start from a specific data transmission resource according to the resource configuration information, and determine multiple data transmission resources adjacent in the time domain as a group of data transmission resources with the same binding relationship. For example, if 4 SPS resources are configured in the resource configuration information, the terminal can start with the earliest SPS resource in the time domain and bind the 4 adjacent SPS resources in the time domain into a group, or configure 3 SPS resources in the resource configuration information CG resources, the terminal can start from the earliest CG resource in the time domain, and bind 3 adjacent CG resources in the time domain into a group.
  • Different data transmission resources may have different binding relationships, which are not limited in the embodiment of the present application.
  • S202 The terminal transmits and receives data through data transmission resources with the same binding relationship.
  • the terminal after receiving the resource configuration information, determines the binding relationship of each data transmission resource according to the resource configuration information, and performs data transmission and reception on data transmission resources with the same binding relationship, even if reserved for data transmission resources
  • the HARQ feedback function of the HARQ process is in the off state, and data can also be sent and received on the data transmission resources configured by the network equipment, without the need for dynamic scheduling of the network equipment. For example, if the network device configures multiple SPS resources for the DL and BWP of each serving cell of the terminal, the UE receives data on the SPS resources with the same binding relationship. Or, if the network device configures multiple CG resources for the UL and BWP of each serving cell of the terminal, the UE sends data on a group of CG resources with the same bundling relationship.
  • the terminal determines the bundling relationship of the data transmission resources according to the resource configuration information of the data transmission resources sent by the network device, and transmits and receives data through the data transmission resources with the same bundling relationship, even though The HARQ feedback function of the HARQ process reserved for data transmission resources is all off. It is also possible to perform data on data transmission resources with the same binding relationship after determining the binding relationship of the data transmission resources through the resource configuration information sent by the network device.
  • Transceiving that is, repeating data receiving or sending on data transmission resources with the same binding relationship, ensuring the reliability of data transmission when the HARQ feedback function is turned off, and when the HARQ feedback function is turned off, you can Data transmission resources with the same binding relationship are directly used for data reception or transmission, and there is no need for network equipment to schedule data transmission resources through PDCCH signaling multiple times, thereby avoiding a large amount of PDCCH signaling overhead.
  • step S201 the terminal determines the binding relationship of the data transmission resource according to the resource configuration information of the data transmission resource includes: the terminal determines the data transmission according to the activated data transmission resource and the resource configuration information of the data transmission resource The binding relationship of resources.
  • the above-mentioned data transmission resource may be an activated data transmission resource, and there may be multiple activation methods.
  • the data transmission resource is activated through PDCCH signaling, or,
  • the network device may also first determine the data transmission resource required by the terminal, and then activate the data transmission resource through PDCCH signaling, and then send the resource configuration information to the terminal, or the network device may also activate the data transmission resource through the resource configuration information, or
  • the network device may also use other methods to activate data transmission resources, and the embodiment of the present application is not limited to one time.
  • the terminal performs repeated data reception or transmission on the activated data transmission resources, ensuring the reliability of repeated data reception or transmission.
  • the network device may configure one data transmission resource for the BWP of each serving cell of the terminal. In other scenarios, the network device may configure multiple transmission resources for the BWP of each serving cell of the terminal. The following describes in detail the data transmission method provided in the embodiment of the present application through different scenarios.
  • Scenario 1 The network device configures multiple SPS resources for the terminal
  • the data transmission resource includes N semi-persistent scheduling SPS resources
  • the resource configuration information includes N SPS configurations, and N is an integer greater than 1.
  • the network device may configure N SPS resources for each DL BWP of each serving cell of the terminal, and the resource configuration information includes the SPS configuration corresponding to the N SPS resources.
  • the value of N is determined according to the number of times the network expects the same transmission block TB to use transmission resources to repeatedly receive, that is, the value of N depends on the number of times the network expects the same TB to use SPS resources to receive repeatedly.
  • the network device has configured SPS resource 1, SPS resource 2, SPS resource 3, and SPS resource 4 for the terminal.
  • the 4 SPS resources in the same SPS period can be determined as a group of SPS with the same binding relationship. Resources, the terminal can receive data through a group of SPS resources with the same binding relationship.
  • each SPS configuration includes: SPS resource period, number of HARQ processes reserved for SPS resources, HARQ process identification, HARQ feedback function status information of HARQ process, and relationship indication information of N SPS configurations; relationship indication The information is used to indicate the reference SPS configuration in the N SPS configurations and the relative time offset of each SPS configuration.
  • the relative time offset represents the starting position of the time domain resource of each SPS configuration relative to the time domain resource of the reference SPS configuration The offset of the starting position.
  • the relative time offset is greater than or equal to 0, and the relative time offsets of each SPS configuration are not equal to each other.
  • the N SPS configurations correspond to the same SPS resource period; the same number of downlink HARQ processes is reserved for the N SPS configurations, and the same downlink HARQ process ID is set for the N SPS configurations, and these reserved
  • the HARQ feedback function for the downlink HARQ process of the SPS is all turned off; moreover, none of the N SPS configurations are configured with corresponding PUCCH resources for ACK/NACK feedback.
  • the network device can indicate the reference SPS configuration in multiple ways. For example, a reference identifier is set on one of the N SPS configurations, and the SPS configuration with the reference identifier is the reference SPS configuration, or, Set the relative time offset of the reference SPS configuration to 0, or configure a relative time offset for the remaining N-1 SPS configurations in the N SPS configurations, and the default SPS configuration without setting the relative time offset It is the reference SPS configuration, etc., which are not limited in the embodiment of the present application.
  • step S201 the terminal determines the binding relationship of the data transmission resource according to the resource configuration information of the data transmission resource sent by the network device.
  • the terminal Starting from the resource corresponding to the reference SPS configuration, the terminal determines the N time-domain adjacent SPS resources as a group of SPS resources with the same binding relationship; the N time-domain adjacent SPS resources are respectively configured with the N SPS resources Corresponding.
  • the network device configures 4 SPS resources for the terminal. From left to right, the leftmost SPS resource 1 is determined as the reference SPS resource, and the adjacent SPS resources 1, SPS Resource 2, SPS resource 3, and SPS resource 4 are determined as a group of SPS resources with the same binding relationship, and the N SPS resources in the same group of bundling correspond to N SPS configurations, and are mapped to the same HARQ process number.
  • the terminal uses a polling method to sequentially associate the HARQ process identifiers reserved for N SPS resources to groups of SPS resources with the same binding relationship, and a group of SPS resources with the same binding relationship corresponds to HARQ.
  • the IDs of the processes are the same.
  • the downlink HARQ process number reserved for the SPS resource is sequentially associated with each group of SPS with the same bundling relationship in a polling manner.
  • the terminal starts from the resource corresponding to the reference SPS configuration, and determines the N time-domain adjacent SPS resources as a group of SPS resources with the same binding relationship, and the terminal adopts a polling method.
  • the identities of the HARQ processes reserved for N SPS resources are sequentially associated with each group of SPS resources that have the same binding relationship.
  • the N time-domain adjacent SPS resources correspond to the N SPS configurations, and one group has the same.
  • the HARQ process identifiers corresponding to the SPS resources in the binding relationship are the same, and the terminal can repeatedly receive or send data on a group of transmission resources with the same binding relationship to ensure the reliability of repeated data transmission.
  • step S202 "the terminal transmits and receives data through data transmission resources with the same binding relationship,” includes: the terminal receives data through N SPS resources with the same binding relationship, and uses the data packets received M times The same HARQ process is cached; M is less than or equal to N.
  • the terminal can receive data on N SPS resources located in the same bundling, and use the same HARQ process for buffering data packets received M times, and use the same HARQ process for data packets received at most N times.
  • a HARQ process is buffered.
  • the terminal For N downlink receptions located in the same bundling, the data received later will not overwrite the data received earlier.
  • the terminal combines and decodes the received multiple data packets. Since the same data packet is repeatedly received on a group of SPS resources with the same binding relationship, the terminal can accurately merge and decode the data packet, and ensure the accuracy of repeated data transmission.
  • the terminal For SPS resources, after the terminal receives the resource configuration information issued by the network device, it also needs to configure the data transmission resources.
  • the above data transmission method further includes: the terminal receives activation signaling sent by the network device; activation; The signaling is used to activate the resources corresponding to the N SPS configurations.
  • the activation signaling is signaling carried in a physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PDCCH Physical Downlink Control Channel
  • an activation method is: the terminal receives an activation signaling sent by the network device; the activation signaling is used to indicate one time domain resource information and N frequency domain resource information, and the time domain resource information is used to indicate the reference SPS configuration Corresponding time domain resources, N frequency domain resource information is used to indicate frequency domain resources corresponding to each SPS configuration.
  • one PDCCH signaling can be used to activate N SPS resources, and one PDCCH signaling indicates one time domain resource information and N frequency domain resource information.
  • One time domain resource information is used to determine the time domain resources corresponding to the reference SPS configuration in the N SPS configurations, and the time domain resources corresponding to the remaining N-1 SPS configurations in the N SPS configurations pass the relative time in the above configuration information
  • the offset and the time domain resources corresponding to the reference SPS configuration are derived.
  • the N frequency domain resource information are respectively used to indicate frequency domain resources corresponding to the N SPS configurations.
  • time domain resources corresponding to the remaining N-1 SPS configurations in the N SPS configurations are derived from the relative time offset in the above configuration information and the time domain resources corresponding to the reference SPS configuration, there is no need for one-by-one instructions, which can reduce signaling. Overhead.
  • another activation method is: the terminal receives N activation signalings sent by the network device; the N activation signalings are respectively used to indicate time domain resources and frequency domain resources corresponding to each SPS configuration.
  • N PDCCH signaling can be used to activate N SPS resources respectively, which ensures the accuracy of activated resources.
  • Scenario 2 The network device configures multiple CG resources for the terminal
  • the data transmission resource includes N semi-persistent scheduling CG resources, and the resource configuration information includes N CG configurations, where N is an integer greater than 1.
  • the network device may configure N CG resources for each ULBWP of each serving cell of the terminal, and the resource configuration information includes the CG configuration corresponding to the N CG resources.
  • the value of N is determined based on the number of times the network expects the same transport block TB to use transmission resources to repeatedly send, that is, the value of N depends on the number of times the network expects the same TB to use CG resources to repeatedly send.
  • the network device configures CG resources 1, CG resources 2, CG resources 3, and CG resources 4 for the terminal.
  • the 4 CG resources in the same CG period can be determined as a group of CGs with the same binding relationship. Resources, the terminal can send data through a group of CG resources that have the same binding relationship.
  • each CG configuration includes: CG resource period, number of HARQ processes reserved for CG resources, HARQ process identification, HARQ feedback function status information of HARQ process, and relationship indication information of N CG configurations; relationship indication; The information is used to indicate the reference CG configuration in the N CG configurations and the relative time offset of each CG configuration.
  • the relative time offset indicates the starting position of the time domain resource of each CG configuration relative to the time domain resource of the reference CG configuration The offset of the starting position.
  • the relative time offset is greater than or equal to 0, and the relative time offsets of the various CG configurations are not equal to each other.
  • the N CG configurations correspond to the same CG resource period; the same number of downlink HARQ processes are reserved for the N CG configurations, and the same downlink HARQ process ID is set for the N CG configurations, and these reserved
  • the HARQ feedback function for the downlink HARQ process of the CG is in a closed state.
  • the network device can indicate the reference CG configuration in multiple ways. For example, a reference identifier is set on one CG configuration among the N CG configurations, and the CG configuration with the reference identifier is the reference CG configuration, or, Set the relative time offset of the reference CG configuration to 0, or configure a relative time offset for the remaining N-1 CG configurations of the N CG configurations, and the default CG configuration without setting the relative time offset It is a reference CG configuration, etc., which are not limited in the embodiment of the present application.
  • step S201 the terminal determines the binding relationship of the data transmission resource according to the resource configuration information of the data transmission resource sent by the network device.
  • the terminal determines the N time-domain adjacent CG resources as a group of CG resources with the same binding relationship; the N time-domain adjacent CG resources are respectively configured with the N CG resources Corresponding.
  • the network device configures 4 CG resources for the terminal. From left to right, the leftmost CG resource 1 is determined as the reference CG resource, and the adjacent CG resources 1, CG Resource 2, CG resource 3, and CG resource 4 are determined to be a group of CG resources with the same binding relationship, and the N CG resources in the same group of bundling correspond to N CG configurations, and are mapped to the same HARQ process number.
  • the terminal uses a polling method to sequentially associate the HARQ process identifiers reserved for N CG resources to each group of CG resources having the same binding relationship, and a group of CG resources having the same binding relationship corresponds to HARQ.
  • the IDs of the processes are the same.
  • the downlink HARQ process number reserved for the CG resource is sequentially associated with each group of CGs with the same bundling relationship in a polling manner.
  • the terminal starts from the resource corresponding to the reference CG configuration, and determines the N time-domain adjacent CG resources as a group of CG resources with the same binding relationship, and the terminal adopts a polling method.
  • the HARQ process identifiers reserved for N CG resources are sequentially associated with each group of CG resources with the same binding relationship.
  • the N time-domain adjacent CG resources correspond to the N CG configurations, and one group has the same.
  • the HARQ process identifiers corresponding to the CG resources in the binding relationship are the same, and the terminal can repeatedly receive or send data on a group of transmission resources with the same binding relationship to ensure the reliability of repeated data transmission.
  • step S202 the terminal transmits and receives data through data transmission resources with the same binding relationship
  • step S202 includes: the terminal transmits data through N CG resources with the same binding relationship.
  • the terminal can receive data on N CG resources located in the same bundling, and use the same HARQ process to buffer the data packets received M times, and use the same HARQ process for the data packets received at most N times.
  • a HARQ process is buffered.
  • the terminal combines and decodes the received multiple data packets. Since the same data packet is repeatedly received on a group of CG resources with the same bundling relationship, the terminal can accurately merge and decode the data packet to ensure the accuracy of repeated data transmission.
  • the configuration information further includes transmission types of N CG configurations, and the transmission type is PUSCH transmission authorized based on the first type of configuration or PUSCH transmission authorized based on the second type of configuration.
  • the CG configuration further includes the time-frequency resource configuration of each CG resource.
  • the N CG configurations also include the time-frequency resource configuration of the CG.
  • the method further includes: the terminal receives activation signaling sent by the network device; the activation signaling is used for activation N CG configuration corresponding resources.
  • the activation signaling is signaling carried in a physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PDCCH Physical Downlink Control Channel
  • an activation method is: the terminal receives an activation signaling sent by the network device; the activation signaling is used to indicate one time domain resource information and N frequency domain resource information, and the time domain resource information is used to indicate the reference CG configuration Corresponding time domain resources, N frequency domain resource information is used to indicate frequency domain resources corresponding to each CG configuration.
  • one PDCCH signaling can be used to activate N CG resources, and one PDCCH signaling indicates one time domain resource information and N frequency domain resource information.
  • One time domain resource information is used to determine the time domain resources corresponding to the reference CG configuration among the N CG configurations, and the time domain resources corresponding to the remaining N-1 CG configurations among the N CG configurations pass the relative time in the above configuration information
  • the offset and the time domain resource corresponding to the reference CG configuration are derived.
  • the N frequency domain resource information are respectively used to indicate the frequency domain resources corresponding to the N CG configurations.
  • time domain resources corresponding to the remaining N-1 CG configurations among the N CG configurations are derived from the relative time offset in the above configuration information and the time domain resources corresponding to the reference CG configuration, there is no need for one-by-one instructions, which can reduce signaling. Overhead.
  • another activation method is: the terminal receives N activation signalings sent by the network device; the N activation signalings are respectively used to indicate time domain resources and frequency domain resources corresponding to each CG configuration.
  • N PDCCH signaling can be used to activate N CG resources respectively, which ensures the accuracy of activated resources.
  • Scenario 3 The network device configures an SPS resource for the terminal
  • the data transmission resource includes an SPS resource
  • the resource configuration information includes an SPS configuration.
  • the SPS configuration includes: SPS resource period, the number of HARQ processes reserved for SPS resources, the HARQ feedback function status information of the HARQ process, and the number of retransmissions.
  • the network device may configure one SPS resource for each DLBWP of each serving cell of the terminal, and the resource configuration information includes the SPS configuration corresponding to the one SPS resource.
  • At least one DLBWP is configured, and for each of the configured at least one DLBWP, optionally, one SPS resource may be configured for the DLBWP, and the SPS configuration may include SPS resource period, the number of downlink HARQ processes reserved for SPS resources, etc.; the HARQ feedback function status configuration of the downlink HARQ process, configure the HARQ feedback functions of the downlink HARQ process reserved for SPS resources are all in the off state; the configuration uses the same The number of repeated transmissions of the SPS resource is N and so on.
  • the network device configures an SPS resource for each DLBWP of each serving cell of the terminal, so that when the HARQ feedback function of the HARQ process reserved for the SPS resource is in the off state, it can be configured One of the SPS resources is used for repeated data transmission, and the reliability of data transmission is guaranteed when the HARQ feedback function is turned off. Moreover, when the HARQ feedback function is turned off, the SPS resource configured by the resource configuration information can be directly used for data reception without the need for a network The device schedules SPS resources through PDCCH signaling multiple times, avoiding a large amount of PDCCH signaling overhead, and occupies one SPS resource during repeated data reception, which can save transmission resources.
  • step S201 the terminal determines the binding relationship of the data transmission resource according to the resource configuration information of the data transmission resource sent by the network device.
  • S701 Starting from the first SPS resource corresponding to the SPS configuration, the terminal determines N consecutive SPS resources in the time domain as a group of SPS resources with the same bundling relationship; N is greater than 1.
  • the terminal uses a polling method to associate the HARQ process identifiers reserved for the SPS resources to each group of SPS resources with the same binding relationship in turn, and a group of SPS resources with the same binding relationship corresponds to the HARQ process.
  • the identity is the same.
  • the identification of the HARQ process reserved for the SPS resource is sequentially associated with each group of SPS resources.
  • the HARQ processes reserved for SPS resources are numbered HARQ#0 and HARQ#1, and the polling associates HARQ#0 and HARQ#1 to each group of SPS resources.
  • the data transmission method provided by the embodiment of the present application starts from the first SPS resource corresponding to the SPS configuration, and determines N consecutive SPS resources in the time domain as a group of SPS resources with the same binding relationship; a group of bound SPS resources
  • the corresponding HARQ process identifiers are the same; the HARQ process identifiers reserved for SPS resources are associated with each group of bound SPS resources in turn by polling, and the terminal can repeatedly receive on a group of bound SPS resources Data to ensure the reliability of repeated data transmission.
  • step S202 the terminal transmits and receives data through data transmission resources with the same bundling relationship
  • step S202 includes: the terminal receives data through SPS resources with the same bundling relationship, and uses the same HARQ for data packets received M times The process is caching; M is less than or equal to N.
  • the terminal can receive data on 4 SPS resources located in the same bundling, and use the same HARQ process to buffer data packets received up to 4 times. For 4 downlink receptions in the same bundle, the data received later will not overwrite the data received earlier.
  • the terminal combines and decodes the received multiple data packets. Since the same data packet is repeatedly received on a group of SPS resources with the same binding relationship, the terminal can accurately merge and decode the data packet, ensuring the accuracy of repeated data transmission.
  • the terminal after the terminal receives the resource configuration information sent by the network device, it further includes: the terminal receives activation signaling sent by the network device; the activation signaling is used to activate a resource corresponding to an SPS configuration.
  • the terminal after receiving the configuration message sent by the network device, the terminal cannot perform repeated data transmission, and the network device is required. Activate the configured transmission resource.
  • one SPS resource configured by the network device can be activated through one PDCCH signaling, thereby ensuring the reliability of repeated data transmission.
  • Scenario 3 The network device configures a CG resource for the terminal
  • the data transmission resource includes a CG resource
  • the resource configuration information includes a CG configuration.
  • the CG configuration includes: CG resource period, the number of HARQ processes reserved for CG resources, the HARQ feedback function status information of the HARQ process, and the number of retransmissions.
  • the network device may configure one CG resource for each UL BWP of each serving cell of the terminal, and the resource configuration information includes the CG configuration corresponding to the one CG resource.
  • At least one DL BWP is configured, and for each of the configured at least one DLBWP, optionally, one CG resource can be configured for the DLBWP, and the CG configuration can be Including the CG resource period, the number of downlink HARQ processes reserved for CG resources, etc.; the HARQ feedback function status configuration of the downlink HARQ process, and the HARQ feedback function of the downlink HARQ process reserved for CG resources is all in the off state; the configuration and use are the same
  • the number of repeated transmissions for a CG resource is N and so on.
  • the network device configures a CG resource for each UL BWP of each serving cell of the terminal, so that when the HARQ feedback function of the HARQ process reserved for CG resources is turned off, the A configured CG resource is used for repeated data transmission.
  • the HARQ feedback function is turned off, the reliability of data transmission is ensured.
  • the CG resource configured by the resource configuration information can be directly used for data transmission.
  • the network device schedules CG resources through PDCCH signaling multiple times, avoiding a large amount of PDCCH signaling overhead, and occupies one CG resource in the process of repeated data transmission, which can save transmission resources.
  • step S201 the terminal determines the binding relationship of the data transmission resource according to the resource configuration information of the data transmission resource sent by the network device.
  • the terminal uses a polling method to sequentially associate the HARQ process identifiers reserved for CG resources to groups of CG resources with the same binding relationship, and the HARQ process corresponding to a group of CG resources with the same binding relationship.
  • the identity is the same.
  • the identifiers of the HARQ processes reserved for the CG resources are sequentially associated with each group of CG resources. As shown in Figure 10, the HARQ processes reserved for CG resources are numbered HARQ#0 and HARQ#1, and the polling associates HARQ#0 and HARQ#1 to each group of CG resources.
  • the data transmission method provided in the embodiment of the present application starts with the first CG resource corresponding to the CG configuration, and determines the N consecutive CG resources in the time domain as a group of CG resources with the same binding relationship; a group of bound CG resources
  • the corresponding HARQ process identifiers are the same; the HARQ process identifiers reserved for CG resources are associated with each group of bound CG resources in turn by polling, and the terminal can repeatedly send on a group of bound CG resources Data to ensure the reliability of repeated data transmission.
  • step S202 the terminal transmits and receives data through data transmission resources with the same binding relationship
  • step S202 includes: the terminal transmits data through CG resources with the same binding relationship.
  • the terminal can send data on 4 CG resources located in the same bundling. Since the same data packet is repeatedly sent on a group of CG resources with the same binding relationship, the terminal can Send data packets accurately to ensure the reliability of repeated data transmission.
  • the configuration information further includes transmission types of N CG configurations, and the transmission type is PUSCH transmission authorized based on the first type of configuration or PUSCH transmission authorized based on the second type of configuration.
  • the CG configuration further includes the time-frequency resource configuration of each CG resource.
  • the one CG configuration also includes the time-frequency resource configuration of the CG.
  • the method further includes: the terminal receives activation signaling sent by the network device; the activation signaling is used to activate a CG Configure the corresponding resources.
  • a CG resource that adopts Type 2 transmission mode similar to the configuration of N CG resources by a network device, for a CG resource that adopts Type 2 transmission mode, after the terminal receives the configuration message sent by the network device, it cannot repeat the data transmission.
  • the network device is required to configure the resource
  • the transmission resources are activated to ensure the reliability of repeated data transmission.
  • Fig. 11 is a flowchart of a data transmission method according to an embodiment. This embodiment relates to a specific implementation process in which a network device sends resource configuration information of a data transmission resource to a terminal, and performs data transmission and reception through data transmission resources with the same binding relationship determined by the terminal. As shown in Figure 11, the method may include the following steps:
  • the network device sends the resource configuration information of the data transmission resource to the terminal.
  • the resource configuration information may include the BWP configured by the network device for each serving cell of the terminal, and may also include the transmission resource configuration configured for each BWP.
  • the BWP may be DL BWP or UL BWP
  • each The BWP can be configured with at least one transmission resource configuration.
  • the at least one transmission resource configuration can be a downlink resource configuration or an uplink resource configuration.
  • the transmission resource configuration can be an SPS configuration or a CG configuration, and each BWP The number of corresponding transmission resource configurations is not limited.
  • the transmission resource configuration can include the resource period, the number of HARQ processes reserved for transmission resources, the identification (ID) of the HARQ process, the HARQ feedback function status of the HARQ process, the number of retransmissions, etc., and can also include other parameters.
  • This application implements There is no restriction in the example.
  • the resource configuration information may be carried in radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the terminal determines the bundling relationship of each data transmission resource, and performs data transmission and reception on the data transmission resources with the same binding relationship. Similarly, the network device can also determine the bundling relationship on the terminal. Data transmission and reception are performed on data transmission resources with the same binding relationship. For example, the terminal may start from a specific data transmission resource according to the resource configuration information, and determine multiple data transmission resources adjacent in the time domain as a group of data transmission resources with the same binding relationship.
  • the terminal can start with the earliest SPS resource in the time domain and bind the 4 adjacent SPS resources in the time domain into a group, or configure 3 SPS resources in the resource configuration information CG resources, the terminal can start from the earliest CG resource in the time domain, and bind 3 adjacent CG resources in the time domain into a group.
  • Different data transmission resources may have different binding relationships, which are not limited in the embodiment of the present application.
  • the network device transmits and receives data through data transmission resources with the same binding relationship determined by the terminal.
  • the terminal determines the bundling relationship of each data transmission resource according to the resource configuration information, and performs data transmission and reception on data transmission resources with the same bundling relationship, even if the data transmission resource is preset
  • the HARQ feedback functions of the remaining HARQ processes are all in the off state, and data can also be sent and received on the data transmission resources configured by the network equipment and determined by the terminal with the same binding relationship, without the need for dynamic scheduling of the network equipment. For example, if the network device configures multiple SPS resources for the DLBWP of each serving cell of the terminal, the UE receives data on the SPS resources with the same binding relationship, and the network device also sends data on the SPS resources with the same binding relationship.
  • the UE sends data on a group of CG resources with the same binding relationship, and the network device also uses the CG resources with the same binding relationship. Receive data.
  • a network device sends resource configuration information of data transmission resources to a terminal, and transmits and receives data through data transmission resources with the same binding relationship determined by the terminal, even if HARQ is reserved for data transmission resources.
  • the HARQ feedback function of the process is all in the off state.
  • the transmission resource is used for data reception or transmission, and there is no need for network equipment to schedule data transmission resources through PDCCH signaling multiple times, thereby avoiding a large amount of PDCCH signaling overhead.
  • the data transmission resource is an activated data transmission resource
  • the network device sending resource configuration information of the data transmission resource to the terminal includes: after determining the activated data transmission resource, the network device sends the resource of the data transmission resource to the terminal Configuration information.
  • the network device before the network device sends the resource configuration information of the data transmission resource to the terminal, it further includes: the network device configures N SPS resources for each downlink working bandwidth DLBWP corresponding to each serving cell of the terminal, where N is greater than 1. Integer.
  • the resource configuration information includes N SPS configurations; each SPS configuration includes: SPS resource period, number of HARQ processes reserved for SPS resources, HARQ process identification, HARQ feedback function status of HARQ process Information indicating the relationship between the information and the N SPS configurations; the relationship indicating information is used to indicate the reference SPS configuration in the N SPS configurations and the relative time offset of each SPS configuration, and the relative time offset indicates the time domain resources of each SPS configuration The offset of the start position relative to the start position of the time domain resource configured by the reference SPS.
  • the relative time offset is greater than or equal to 0, and the relative time offsets of each SPS configuration are not equal to each other.
  • the resource periods of the N SPS configurations are the same; the number of HARQ processes for the N SPS configurations are the same; the identifiers of the HARQ processes for the N SPS configurations are the same; the HARQ feedback function of the HARQ processes for the N SPS configurations All are closed.
  • the N SPS configurations correspond to the same SPS resource period; the same number of downlink HARQ processes are reserved for the N SPS configurations, and the same downlink HARQ process ID is set for the N SPS configurations, and these reserved
  • the HARQ feedback function for the downlink HARQ process of the SPS is all in the off state; moreover, none of the N SPS configurations are configured with corresponding PUCCH resources for ACK/NACK feedback.
  • the time domain resources of the N SPS resources do not overlap with each other; the frequency domain resources of the N SPS resources are the same or different; the resource sizes of the N SPS resources are the same; the modulation and coding strategy MCS of the N SPS resources The level is the same.
  • the network device can activate N SPS configuration resources through the PDCCH, and the N SPS resources have the following characteristics:
  • the time domain resources corresponding to the N SPS resources do not overlap each other, and the frequency domain resources corresponding to the N SPS resources may be the same or different;
  • N SPS resources have the same size, and N SPS resources have the same MCS level, that is, they can carry transmission blocks of the same size.
  • the method further includes: the network device sends activation signaling to the terminal; the activation signaling is used to activate resources corresponding to the N SPS configurations.
  • the network device sending activation signaling to the terminal includes: the network device sending an activation signaling to the terminal; the activation signaling is used to indicate one time domain resource information and N frequency domain resource information, and time domain resource information It is used to indicate the time domain resource corresponding to the reference SPS configuration, and the N pieces of frequency domain resource information are used to indicate the frequency domain resource corresponding to each SPS configuration.
  • the network device sending activation signaling to the terminal includes: the network device sending N activation signalings to the terminal; the N activation signalings are respectively used to indicate time domain resources and frequency domain resources corresponding to each SPS configuration.
  • the network device before the network device sends the resource configuration information of the data transmission resource to the terminal, it further includes: the network device configures N CG resources for each uplink working bandwidth ULBWP corresponding to each serving cell of the terminal, where N is greater than 1. Integer.
  • the resource configuration information includes N CG configurations; each CG configuration includes: CG resource period, number of HARQ processes reserved for CG resources, HARQ process identification, HARQ feedback function status of HARQ process Information indicating the relationship between the information and the N CG configurations; the relationship indicating information is used to indicate the reference CG configuration in the N CG configurations and the relative time offset of each CG configuration, and the relative time offset indicates the time domain resources of each CG configuration The offset of the start position relative to the start position of the time domain resource configured by the reference CG.
  • the relative time offset is greater than or equal to 0, and the relative time offsets of the various CG configurations are not equal to each other.
  • the resource periods of N CG configurations are the same; the number of HARQ processes of N CG configurations are the same; the identifiers of HARQ processes of N CG configurations are the same; the HARQ feedback function of HARQ processes of N CG configurations All are closed.
  • N CG configurations correspond to the same CG resource period; reserve the same number of uplink HARQ processes for N CG configurations, and set the same uplink HARQ process ID for N CG configurations, and these are reserved for The HARQ feedback function of the uplink HARQ process of the CG is in the closed state.
  • the time domain resources of the N CG resources do not overlap with each other; the frequency domain resources of the N CG resources are the same or different; the resource sizes of the N CG resources are the same; the modulation and coding strategy MCS of the N CG resources The level is the same.
  • the network device can activate the resources of N CG configurations through the PDCCH, no matter whether the N CG configurations are type 1 CG or type 2 CG, the time-frequency resources of the N CG configurations have the following characteristics:
  • the time domain resources corresponding to the N CG resources do not overlap each other, and the frequency domain resources corresponding to the N CG resources may be the same or different;
  • N CG resources have the same size, and N CG resources have the same MCS level, that is, they can carry transmission blocks of the same size.
  • the resource configuration information further includes: transmission types of N CG configurations, and the transmission type is PUSCH transmission authorized based on the first type of configuration or PUSCH transmission authorized based on the second type of configuration.
  • the CG configuration further includes the time-frequency resource configuration of each CG resource.
  • the method further includes: the network device sends activation signaling to the terminal; the activation signaling is used to activate the corresponding N CG configurations H.
  • the network device sending activation signaling to the terminal includes: the network device sending an activation signaling to the terminal; the activation signaling is used to indicate one time domain resource information and N frequency domain resource information, and time domain resource information It is used to indicate the time domain resource corresponding to the reference CG configuration, and the N pieces of frequency domain resource information are used to indicate the frequency domain resource corresponding to each CG configuration.
  • the network device sending activation signaling to the terminal includes: the network device sending N activation signalings to the terminal; the N activation signalings are respectively used to indicate time domain resources and frequency domain resources corresponding to each CG configuration.
  • the network device before the network device sends the resource configuration information of the data transmission resource to the terminal, it further includes: the network device configures an SPS resource for each downlink working bandwidth DLBWP corresponding to each serving cell of the terminal, and N is an integer greater than 1. .
  • the resource configuration information includes an SPS configuration; the SPS configuration includes: SPS resource period, the number of HARQ processes reserved for SPS resources, HARQ feedback function status information of the HARQ process, and the number of retransmissions.
  • the HARQ feedback function of the HARQ process corresponding to the SPS configuration is all in the off state.
  • the method further includes: the network device sends activation signaling to the terminal, and the activation signaling is used to activate a resource corresponding to an SPS configuration.
  • the method before the network device sends the resource configuration information of the data transmission resource to the terminal, the method further includes:
  • the network device configures a CG resource for each uplink working bandwidth UL BWP corresponding to each serving cell of the terminal, and N is an integer greater than 1.
  • the configuration information includes a CG configuration; the CG configuration includes: CG resource period, the number of HARQ processes reserved for CG resources, HARQ feedback function status information of the HARQ process, and the number of retransmissions.
  • the HARQ feedback functions of the HARQ process corresponding to the CG configuration are all in the off state.
  • the resource configuration information further includes: a transmission type of a CG configuration, and the transmission type is PUSCH transmission authorized based on the first type of configuration or PUSCH transmission authorized based on the second type of configuration.
  • the CG configuration if the transmission type of a CG configuration is PUSCH transmission authorized based on the first type of configuration, the CG configuration also includes the time-frequency resource configuration of each CG resource.
  • the method further includes: the network device sends activation signaling to the terminal; the activation signaling is used to activate a resource corresponding to a CG configuration .
  • a data transmission configuration device including:
  • the determining module 21 is configured to determine the binding relationship of the data transmission resources according to the resource configuration information of the data transmission resources sent by the network equipment;
  • the processing module 22 is configured to send and receive data through data transmission resources with the same binding relationship.
  • the data transmission resource is an activated data transmission resource
  • the determining module 21 is configured to determine the binding relationship of the data transmission resource according to the activated data transmission resource and the resource configuration information of the data transmission resource.
  • the data transmission resource includes N semi-persistent scheduling SPS resources
  • the resource configuration information includes N SPS configurations, and N is an integer greater than 1.
  • each SPS configuration includes: SPS resource period, number of HARQ processes reserved for SPS resources, HARQ process identification, HARQ feedback function status information of HARQ process, and relationship indication of N SPS configurations Information; the relationship indication information is used to indicate the reference SPS configuration in the N SPS configurations and the relative time offset of each SPS configuration.
  • the relative time offset indicates the starting position of the time domain resource of each SPS configuration relative to the reference SPS configuration The offset of the starting position of the time domain resource.
  • the relative time offset is greater than or equal to 0, and the relative time offsets of each SPS configuration are not equal to each other.
  • the determining module 21 is configured to determine the N time-domain adjacent SPS resources as a group of SPS resources with the same binding relationship, starting from the resource corresponding to the reference SPS configuration; the N time-domain adjacent SPS resources The SPS resources corresponding to the N SPS configurations respectively; and in a polling manner, the identification of the HARQ process reserved for the N SPS resources is sequentially associated with each group of SPS resources with the same binding relationship, and one group has the same binding relationship.
  • the identifiers of the HARQ processes corresponding to the SPS resources of the same binding relationship are the same.
  • the processing module 22 is configured to receive data through N SPS resources with the same binding relationship, and cache data packets received M times in the same HARQ process; M is less than or equal to N.
  • the device further includes:
  • the receiving module is used to receive the activation signaling sent by the network device; the activation signaling is used to activate the resources corresponding to the N SPS configurations.
  • the receiving module is used to receive an activation signaling sent by a network device; the activation signaling is used to indicate one time domain resource information and N frequency domain resource information, and the time domain resource information is used to indicate a reference SPS configuration Corresponding time domain resources, N frequency domain resource information is used to indicate frequency domain resources corresponding to each SPS configuration.
  • the receiving module is configured to receive N activation signalings sent by the network device; the N activation signalings are respectively used to indicate time domain resources and frequency domain resources corresponding to each SPS configuration.
  • the data transmission resource includes N configuration authorized CG resources, and the resource configuration information includes N CG configurations, where N is an integer greater than 1.
  • each CG configuration includes: CG resource period, the number of HARQ processes reserved for CG resources, the identification of the HARQ process, the HARQ feedback function status information of the HARQ process, and the relationship indication information of N CG configurations; relationship indication;
  • the information is used to indicate the reference CG configuration in the N CG configurations and the relative time offset of each CG configuration.
  • the relative time offset indicates the starting position of the time domain resource of each CG configuration relative to the time domain resource of the reference CG configuration The offset of the starting position.
  • the relative time offset is greater than or equal to 0, and the relative time offsets of the various CG configurations are not equal to each other.
  • the determining module 21 is used to determine the N time-domain adjacent CG resources as a group of bound CG resources starting from the resource corresponding to the reference CG configuration; the N time-domain adjacent CG resources are respectively Corresponds to N CG configurations; and uses a polling method to associate the HARQ process identifiers reserved for N CG resources to the N CG resources bound to each group in turn, and one set of bound CG resources corresponds to The identification of the HARQ process is the same.
  • the processing module 22 is configured to send data through N CG resources having the same binding relationship.
  • the configuration information further includes transmission types of N CG configurations, and the transmission type is PUSCH transmission authorized based on the first type of configuration or PUSCH transmission authorized based on the second type of configuration.
  • the CG configuration further includes the time-frequency resource configuration of each CG resource.
  • the apparatus further includes:
  • the receiving module is used to receive activation signaling sent by network equipment; the activation signaling is used to activate resources corresponding to N CG configurations.
  • the receiving module is used to receive an activation signaling sent by a network device; the activation signaling is used to indicate one time domain resource information and N frequency domain resource information, and the time domain resource information is used to indicate a reference CG configuration Corresponding time domain resources, N frequency domain resource information is used to indicate frequency domain resources corresponding to each CG configuration.
  • the receiving module is configured to receive N activation signalings sent by the network device; the N activation signalings are respectively used to indicate time domain resources and frequency domain resources corresponding to each CG configuration.
  • the data transmission resource includes an SPS resource
  • the resource configuration information includes an SPS configuration
  • the SPS configuration includes: SPS resource period, the number of HARQ processes reserved for SPS resources, HARQ feedback function status information of the HARQ process, and the number of retransmissions.
  • the processing module 22 is configured to determine, starting from the first SPS resource corresponding to the SPS configuration, N consecutive SPS resources in the time domain as a group of SPS resources with the same binding relationship; N is greater than 1;
  • a polling method is used to associate the HARQ process identifiers reserved for SPS resources to each group of SPS resources with the same binding relationship.
  • the HARQ process identifiers corresponding to a group of SPS resources with the same binding relationship are the same. ;.
  • the processing module 22 is configured to receive data through SPS resources with the same bundling relationship, and use the same HARQ process to buffer data packets received M times; M is less than or equal to N.
  • the device further includes:
  • the receiving module is used to receive activation signaling sent by the network device; the activation signaling is used to activate a resource corresponding to an SPS configuration.
  • the data transmission resource includes a CG resource
  • the resource configuration information includes a CG configuration
  • the CG configuration includes: CG resource period, the number of HARQ processes reserved for CG resources, the HARQ feedback function status information of the HARQ process, and the number of retransmissions.
  • the determining module 21 is configured to determine, starting from the first CG resource corresponding to the CG configuration, N consecutive CG resources in the time domain as a group of CG resources with the same binding relationship; N is greater than 1;
  • a polling method is used to associate the HARQ process identifiers reserved for CG resources to each group of CG resources with the same binding relationship.
  • the HARQ process identifiers corresponding to a group of CG resources with the same binding relationship are the same. .
  • the processing module 22 is configured to send data through CG resources with the same binding relationship.
  • the resource configuration information further includes a transmission type of a CG configuration, and the transmission type is PUSCH transmission authorized based on the first type of configuration or PUSCH transmission authorized based on the second type of configuration.
  • the CG configuration further includes the time-frequency resource configuration of each CG resource.
  • the apparatus further includes:
  • the receiving module is used to receive activation signaling sent by a network device; the activation signaling is used to activate a resource corresponding to a CG configuration.
  • a data transmission configuration device including:
  • the sending module 31 is configured to send resource configuration information of data transmission resources to the terminal;
  • the processing module 32 is configured to transmit and receive data through data transmission resources with the same binding relationship determined by the terminal.
  • the sending module 31 is configured to send the resource configuration information of the data transmission resource to the terminal after determining the activated data transmission resource.
  • the device further includes: a configuration module, configured to configure N SPS resources for each downlink working bandwidth DLBWP corresponding to each serving cell of the terminal, where N is an integer greater than 1.
  • the resource configuration information includes N SPS configurations; each SPS configuration includes: SPS resource period, number of HARQ processes reserved for SPS resources, HARQ process identification, HARQ feedback function status of HARQ process Information indicating the relationship between the information and the N SPS configurations; the relationship indicating information is used to indicate the reference SPS configuration in the N SPS configurations and the relative time offset of each SPS configuration, and the relative time offset indicates the time domain resources of each SPS configuration The offset of the start position relative to the start position of the time domain resource configured by the reference SPS.
  • the relative time offset is greater than or equal to 0, and the relative time offsets of each SPS configuration are not equal to each other.
  • the resource periods of the N SPS configurations are the same; the number of HARQ processes for the N SPS configurations are the same; the identifiers of the HARQ processes for the N SPS configurations are the same; the HARQ feedback function of the HARQ processes for the N SPS configurations All are closed.
  • the time domain resources of the N SPS resources do not overlap with each other; the frequency domain resources of the N SPS resources are the same or different; the resource sizes of the N SPS resources are the same; the modulation and coding strategy MCS of the N SPS resources The level is the same.
  • the sending module 31 is also used to send activation signaling to the terminal; the activation signaling is used to activate resources corresponding to the N SPS configurations.
  • the sending module 31 is used to send an activation signaling to the terminal; the activation signaling is used to indicate a piece of time domain resource information and N pieces of frequency domain resource information, and the time domain resource information is used to indicate the corresponding reference SPS configuration Time domain resources, N frequency domain resource information is used to indicate frequency domain resources corresponding to each SPS configuration.
  • the sending module 31 is configured to send N activation signalings to the terminal; the N activation signalings are respectively used to indicate time domain resources and frequency domain resources corresponding to each SPS configuration.
  • the device further includes: a configuration module configured to configure N CG resources for each uplink working bandwidth ULBWP corresponding to each serving cell of the terminal, where N is an integer greater than 1.
  • the resource configuration information includes N CG configurations; each CG configuration includes: CG resource period, number of HARQ processes reserved for CG resources, HARQ process identification, HARQ feedback function status of HARQ process Information indicating the relationship between the information and the N CG configurations; the relationship indicating information is used to indicate the reference CG configuration in the N CG configurations and the relative time offset of each CG configuration, and the relative time offset indicates the time domain resources of each CG configuration The offset of the start position relative to the start position of the time domain resource configured by the reference CG.
  • the relative time offset is greater than or equal to 0, and the relative time offsets of the various CG configurations are not equal to each other.
  • the resource periods of N CG configurations are the same; the number of HARQ processes of N CG configurations are the same; the identifiers of HARQ processes of N CG configurations are the same; the HARQ feedback function of HARQ processes of N CG configurations All are closed.
  • the time domain resources of the N CG resources do not overlap with each other; the frequency domain resources of the N CG resources are the same or different; the resource sizes of the N CG resources are the same; the modulation and coding strategy MCS of the N CG resources The level is the same.
  • the resource configuration information further includes: transmission types of N CG configurations, and the transmission type is PUSCH transmission authorized based on the first type of configuration or PUSCH transmission authorized based on the second type of configuration.
  • the CG configuration further includes the time-frequency resource configuration of each CG resource.
  • the sending module 31 is also used to send activation signaling to the terminal; the activation signaling is used to activate the corresponding N CG configurations H.
  • the sending module 31 is used to send an activation signaling to the terminal; the activation signaling is used to indicate one time domain resource information and N frequency domain resource information, and the time domain resource information is used to indicate the corresponding reference CG configuration Time domain resources, N frequency domain resource information is used to indicate frequency domain resources corresponding to each CG configuration.
  • the sending module 31 is used to send N activation signalings to the terminal; the N activation signalings are respectively used to indicate time domain resources and frequency domain resources corresponding to each CG configuration.
  • the device further includes: a configuration module configured to configure an SPS resource for each downlink working bandwidth DLBWP corresponding to each serving cell of the terminal, and N is an integer greater than 1.
  • the resource configuration information includes an SPS configuration; the SPS configuration includes: SPS resource period, the number of HARQ processes reserved for SPS resources, HARQ feedback function status information of the HARQ process, and the number of retransmissions.
  • the HARQ feedback function of the HARQ process corresponding to the SPS configuration is all in the off state.
  • the sending module 31 is used to send activation signaling to the terminal, and the activation signaling is used to activate a resource corresponding to an SPS configuration.
  • the device further includes: a configuration module, configured to configure a CG resource for each uplink working bandwidth ULBWP corresponding to each serving cell of the terminal, and N is an integer greater than 1.
  • the configuration information includes a CG configuration; the CG configuration includes: CG resource period, the number of HARQ processes reserved for CG resources, HARQ feedback function status information of the HARQ process, and the number of retransmissions.
  • the HARQ feedback functions of the HARQ process corresponding to the CG configuration are all in the off state.
  • the resource configuration information further includes: a transmission type of a CG configuration, and the transmission type is PUSCH transmission authorized based on the first type of configuration or PUSCH transmission authorized based on the second type of configuration.
  • the CG configuration further includes the time-frequency resource configuration of each CG resource.
  • the sending module 31 is also used to send activation signaling to the terminal; the activation signaling is used to activate a resource corresponding to a CG configuration.
  • Each module in the above-mentioned data transmission configuration device can be implemented in whole or in part by software, hardware and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 14.
  • the computer equipment includes a processor, a memory, a communication interface, a display screen and an input device connected through a system bus.
  • the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the computer device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be implemented through WIFI, an operator's network, NFC (near field communication) or other technologies.
  • WIFI wireless fidelity
  • NFC near field communication
  • an information reporting method is realized.
  • the display screen of the computer equipment can be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer equipment can be a touch layer covered on the display screen, or it can be a button, trackball or touch pad set on the housing of the computer equipment , It can also be an external keyboard, touchpad, or mouse.
  • a computer device is provided.
  • the computer device may be a network device, and its internal structure diagram may be as shown in FIG. 15.
  • the computer equipment includes a processor, a memory, a network interface, and a database connected through a system bus. Among them, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer equipment is used to store data transmission configuration data.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor to realize a data transmission method.
  • FIG. 14 or FIG. 15 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied.
  • the computer device may include more or fewer components than shown in the figures, or combine certain components, or have a different component arrangement.
  • An embodiment of the present application further provides a terminal, including: a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver communicate with each other through an internal connection path, and the memory is used to store program code;
  • the processor is configured to call the program code stored in the memory to cooperate with the transceiver to implement the steps of the method described in any embodiment on the terminal side.
  • An embodiment of the present application also provides a network device, including: a processor, a memory, and a transceiver, where the processor, the memory, and the transceiver communicate with each other through an internal connection path,
  • the memory is used to store program code
  • the processor is configured to call the program code stored in the memory to cooperate with the transceiver to implement the steps of the method described in any embodiment on the network device side.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in any embodiment on the terminal side are implemented.
  • An embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in any of the embodiments on the network device side are implemented.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种数据传输方法、装置、设备和存储介质,终端接收网络设备发送的配置信息;所述配置信息包括为所述终端的每个服务小区配置的至少一个工作带宽BWP,和,每个所述BWP对应的至少一个传输资源配置;所述终端在所述至少一个传输资源配置对应的传输资源上进行数据重复传输,在关闭HARQ反馈功能的情况下保证数据传输可靠性,而且,在关闭HARQ反馈功能的情况下,可以直接使用配置信息配置的传输资源进行数据重复传输,无需网络设备多次通过PDCCH信令调度传输资源,避免带来大量的PDCCH信令开销。

Description

数据传输方法、装置、设备和存储介质 技术领域
本申请涉及通信领域,特别是涉及一种数据传输方法、装置、设备和存储介质。
背景技术
目前第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)正在研究非地面通信网络(Non Terrestrial Network,简称NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。
与传统新空口(New Radio,NR)采用的蜂窝网络相比,NTN中用户设备(User Equipment,UE)与卫星之间的信号传播时延大幅增加,为了在不增加混合自动重复请求(HybridAutomatic Repeat Request,HARQ)进程数目的情况下,能保证数据传输连续性,目前标准化过程中已经同意可以关闭HARQ进程的HARQ反馈功能。
在关闭HARQ进程的HARQ反馈功能的情况下,为了保证数据传输可靠性,仍然支持基于盲调度的HARQ重传,例如,对于下行传输,网络设备在没有接收到来自UE的确认(Acknowledgement,简称ACK)/非确认(Non-Acknowledgement,简称NACK)反馈信息的情况下,可通过多次调度同一个下行传输块(Transport Block,TB)的重传来提高下行传输的鲁棒性;对于上行传输,网络设备在接收到来自UE的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输之前,可通过多次调度同一个上行TB的重传开提高上行传输的鲁棒性。
发明内容
基于此,有必要提供一种数据传输方法、装置、设备和存储介质。
第一方面,本申请的实施例提供一种数据传输方法,所述方法包括:
终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系;
所述终端通过具有相同捆绑关系的数据传输资源进行数据的收发。
第二方面,本申请的实施例提供一种数据传输方法,所述方法包括:
在确定激活的数据传输资源后,网络设备向终端发送数据传输资源的资源配置信息;
所述网络设备通过所述终端确定的具有相同捆绑关系的数据传输资源进行数据的收发。
第三方面,本申请的实施例提供一种数据传输装置,包括:
确定模块,用于根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系;
处理模块,用于通过具有相同捆绑关系的数据传输资源进行数据的收发。
第四方面,本申请的实施例提供一种数据传输配置装置,包括:
发送模块,用于向终端发送数据传输资源的资源配置信息;
处理模块,用于通过所述终端确定的具有相同捆绑关系的数据传输资源进行数据的收发。
第五方面,本申请的实施例提供一种终端,包括:处理器、存储器和收发器,所述处理器、所述存储器和所述收发器通过内部连接通路互相通信,
所述存储器,用于存储程序代码;
所述处理器,用于调用所述存储器中存储的程序代码,以配合所述收发器实现第一方面任一项所述方法的步骤。
第六方面,本申请的实施例提供一种网络设备,包括:处理器、存储器和收发器,所述处理器、所述存储器和所述收发器通过内部连接通路互相通信,所述存储器,用于存储程序代码;
所述处理器,用于调用所述存储器中存储的程序代码,以配合所述收发器实现第二方面任一项所述方法的步骤。
第七方面,本申请的实施例提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现第一方面任一项所述的方法的步骤。
第八方面,本申请的实施例提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现第二方面任一项所述的方法的步骤。
本申请实施例提供的数据传输方法、装置、设备和存储介质,终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系,并通过具有相同捆绑关系的数据传输资源进行数据的收发,即使为数据传输资源预留的HARQ进程的HARQ反馈功能均处于关闭状态,也可以在通过网络设备发送的资源配置信息确定数据传输资源的捆绑关系之后,在具有相同捆绑关系的数据传输资源上进行数据收发,也即,在具有相同绑定关系的的数据传输资源上进行数据重复接收或发送,在关闭HARQ反馈功能的情况下保证数据传输可靠性,而且,在关闭HARQ反馈功能的情况下,可以直接使用具有相同捆绑关系的数据传输资源进行数据接收或发送,无需网络设备多次通过PDCCH信令调度数据传输资源,避免带来大量的PDCCH信令开销。
附图说明
图1为本申请实施例提供的数据传输方法的应用场景示意图;
图2为一个实施例提供的一种数据传输方法的流程图;
图3为一个实施例提供的一种SPS资源的捆绑关系示意图;
图4为一个实施例提供的一种确定SPS资源的绑定关系的流程图;
图5为一个实施例提供的CG配置的捆绑关系示意图;
图6为一个实施例提供的一种确定CG资源的绑定关系的流程图;
图7为一个实施例提供的另一种确定SPS资源的绑定关系的流程图;
图8为一个实施例提供的另一种SPS资源的捆绑关系示意图;
图9为一个实施例提供的另一种确定CG资源的绑定关系的流程图;
图10为一个实施例提供的另一种CG资源的捆绑关系示意图;
图11为一个实施例提供的一种数据传输方法的流程图;
图12为一个实施例提供的一种数据传输装置的框图;
图13为一个实施例提供的一种数据传输装置的框图;
图14为一个实施例提供的一种计算机设备的框图;
图15为一个实施例提供的一种计算机设备的框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
下面对本申请实施例涉及到的部分背景相关知识进行介绍。
NTN相关背景
目前3GPP正在研究NTN技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如,一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此,理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大,通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
1.LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
2.GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
NR HARQ机制
NR有两级重传机制:媒质接入控制(Medium Access Control,MAC)层的HARQ机制和无线链路控制(Radio Link Control,RLC)层的HARQ机制。丢失或出错的数据的重传主要是由MAC层的HARQ机制处理的,并由RLC层的重传功能进行补充。MAC层的HARQ机制能够提供快速重传,RLC层的ARQ机制能够提供可靠的数据传输。
HARQ使用停等协议(Stop-and-Wait Protocol)来发送数据。在停等协议中,发送端发送一个TB后,就停下来等待确认信息。这样,每次传输后发送端就停下来等待确认,会导致用户吞吐量很低。因此,NR使用多个并行的HARQ进程,当一个HARQ进程在等待确认信息时,发送端可以使用另一个HARQ进程来继续发送数据。这些HARQ进程共同组成了一个HARQ实体,这个实体结合了停等协议,允许数据连续传输。HARQ有上行HARQ和下行HARQ之分。上行HARQ针对上行数据传输,下行HARQ针对下行数据传输,两者相互独立。
CG/SPS
为了更好地服务于周期性的业务,引入了预配置的资源的概念,下行称为半持续调度(Semi-Persistent Scheduling,SPS),上行称为配置授权(Configured Grant,CG)。
对每个SPS配置来说,网络为其配置有限个数的下行HARQ进程,网络采用轮询的方式使用这些下行HARQ进程在SPS资源上进行下行传输。
SPS采用两步资源配置的方式:首先,由网络RRC配置包括时域资源的周期、HARQ进程数等在内的传输资源和传输参数;然后由使用配置调度无线网络临时标识(Configured Scheduling RNTI,CS-RNTI)加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH)激活基于SPS的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输,并同时配置包括时域资源、频域资源、MCS等在内的其他传输资源和传输参数。UE在接收到RRC配置参数时,不能立即使用该RRC配参数配置的资源和参数进行PDSCH接收,而必须等接收到相应的PDCCH激活并配置其他资源和参数后,才能进行PDSCH接收。
基于目前NR协议的规定,终端对应每个服务小区都有各自的HARQ实体。每个HARQ实体维护一组并行的下行HARQ进程和一组并行的上行HARQ进程。目前每个上下行载波均支持最大16个HARQ进程。基站可以根据网络部署情况通过RRC信令半静态配置向UE指示最大的HARQ进程数。如果网络没有提供相应的配置参数,则下行缺省的HARQ进程数为8,上行每个载波支持的最大HARQ进程数始终为16。每个HARQ进程对应一个HARQ进程标识(ID)。对于下行,广播控制信道(Broadcast Control Channel,BCCH)使用一个专用的广播HARQ进程。对于上行,随机过程中的Msg3传输使用HARQ ID 0。
对于不支持下行空分复用的终端,每个下行HARQ进程只能同时处理1个TB;对于支持下行空分复用的终端,每个下行HARQ进程可以同时处理1个或者2个TB。终端的每个上行HARQ进程同时处理1个TB。
HARQ在时域上分为同步和异步两类,在频域上分为非自适应和自适应两类。NR上下行均使用异 步自适应HARQ机制。异步HARQ即重传可以发生在任意时刻,同一个TB的重传与上一次传输的时间间隔是不固定的。自适应HARQ即可以改变重传所使用的频域资源和调制与编码策略(Modulation and Coding Scheme,MCS)。
对每个CG配置来说,网络为其配置有限个数的上行HARQ进程号,UE采用轮询的方式使用这些上行HARQ进程在CG资源上进行上行传输。
NR支持以下两类上行免授权传输:
1.基于第一类配置授权(configured grant Type 1)的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输
由网络RRC配置包括时域资源、频域资源、时域资源的周期、MCS、重复次数、跳频、HARQ进程数等在内的全部传输资源和传输参数。终端接收到该RRC配置后,可立即使用所配置的传输参数在配置的时频资源上进行PUSCH传输。
2.基于第二类配置授权(configured grant Type 2)的PUSCH传输
采用两步资源配置的方式:首先,由网络RRC配置包括时域资源的周期、重复次数、跳频、HARQ进程数等在内的传输资源和传输参数;然后由使用CS-RNTI加扰的PDCCH激活第二类基于配置授权的PUSCH传输,并同时配置包括时域资源、频域资源、MCS等在内的其他传输资源和传输参数。UE在接收到RRC配置参数时,不能立即使用该配参数配置的资源和参数进行PUSCH传输,而必须等接收到相应的PDCCH激活并配置其他资源和参数后,才能进行PUSCH传输。
如果UE没有数据需要在第一类和第二类配置授权的PUSCH资源上发送,UE不会在配置授权的资源上发送任何内容。
与传统NR采用的蜂窝网络相比,NTN中UE与卫星之间的信号传播时延大幅增加,为了在不增加HARQ进程数目的情况下保证数据传输连续性,目前标准化过程中已经同意可以关闭HARQ进程的HARQ反馈功能,并形成了以下明确的结论:
1、网络设备可以配置是否开启HARQ功能。
2、如果HARQ功能关闭,则UE不需要向网络设备发送针对PDSCH的HARQ反馈。
3、在关闭HARQ反馈的情况下,为了保证数据传输可靠性,仍然支持基于盲调度的HARQ重传。
4、可以基于UE或者基于HARQ进程进行HARQ功能开启或关闭的配置。对于基于UE的配置的方式,即配置UE的所有HARQ进程的HARQ功能同时处于开启或关闭状态。对于基于HARQ进程的配置方式,即对于一个UE的多个HARQ进程,可以配置其中一部分HARQ进程的HARQ功能为开启状态,另一部分HARQ进程的HARQ功能为关闭状态。
5、需要分别研究开启HARQ和关闭HARQ这两种情况下,对其他过程的影响。
基于目前的标准化结论,在关闭HARQ进程的HARQ反馈功能的情况下,为了保证数据传输的可靠性,网络可以盲调度重传,即对于下行传输,网络在没有来自UE的ACK/NACK反馈信息的情况下,可以通过多次调度同一个下行TB的重传来提高下行传输的鲁棒性;对于上行传输,网络在接收到来自UE的PUSCH传输之前,可以通过多次调度同一个上行TB的重传来提高上行传输的鲁棒性。但是,这种动态调度HARQ重传的方法,每次调度时,网络设备需要发送PDCCH信令,会带来大量的PDCCH信令开销。
本申请提供的数据传输方法可以解决现有的动态调度HARQ重传的方法的代价是会带来大量的PDCCH信令开销这一技术问题。需要说明的是,本申请的数据传输方法并不仅限于解决上述技术问题,还可以用以解决其它的技术问题,本申请中不加以限制。
图1为本申请实施例提供的数据传输方法的应用场景示意图。如图1所示,该场景包括网络设备104和终端102,其中,终端102与网络设备104通过网络进行通信。网络设备104可以调度资源,例如,网络设备104配置传输资源,即使在为配置授权预留的HARQ进程的HARQ反馈功能都处于关闭状态时,使用网络设备发送的资源配置信息确定数据传输资源的捆绑(bundling)关系,在具有相同捆绑关系的数据传输资源上进行数据收发。其中,终端102可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,网络设备104可以是基站等,例如,可以用独立的基站或者是多个基站组成的基站集群来实现。
图2为一个实施例提供的一种数据传输方法的流程图。本实施例涉及的是终端接收网络设备发送的资源配置信息,根据资源配置信息确定数据传输资源的捆绑关系,并在具有相同捆绑关系的数据传输资源进行数据的收发的具体实现过程。如图2所示,该方法可以包括以下步骤:
S201、终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系。
其中,资源配置信息中可以包括为终端的每个服务小区配置的工作带宽(Bandwidth part,BWP),也可以包括为每个BWP配置的传输资源配置,例如,BWP可以为下行(Down Link,DL)BWP,也可以为上行(Up Link,UL)BWP,每个BWP可以至少配置一个传输资源配置,该至少一个传输资源配置可以为下行资源配置,也可以为上行资源配置,例如,该传输资源配置可以为SPS配置,也可以为CG配置,而且,每个BWP对应的传输资源配置的数量不限定,可以为每个BWP配置一个传输资源配置,也可以是为每个BWP配置多个传输资源配置,例如,为终端的每个服务小区的DL BWP配置一个SPS配置,为终端的每个服务小区的UP BWP配置一个CG配置,或者,为终端的每个服务小区的DL BWP配置多个SPS配置,为终端的每个服务小区的UP BWP配置多个CG配置,可根据实际需求来配置,本实施例不加以限制。传输资源配置中可以包括资源周期、为传输资源预留的HARQ进程数、HARQ进程的标识(ID)、HARQ进程的HARQ反馈功能状态、重传次数等,还可以包括其他的参数,本申请实施例中不加以限制。
可选地,该资源配置信息可以携带在无线资源控制(Radio Resource Control,RRC)信令中。
在本实施例中,终端可以在接收到该资源配置信息后,确定各数据传输资源的bundling关系,在 具有相同捆绑关系的数据传输资源上进行数据收发。例如,终端可以根据资源配置信息,从一个特定的数据传输资源开始,将多个时域相邻的数据传输资源确定为一组具有相同绑定关系的数据传输资源。例如,资源配置信息中配置了4个SPS资源,终端可以从时域最早的SPS资源开始,将时域相邻的4个SPS资源绑定为一组,或者,资源配置信息中配置了3个CG资源,终端可以从时域最早的CG资源开始,将时域相邻的3个CG资源绑定为一组。不同的数据传输资源可以具有不同的捆绑关系,本申请实施例中不加以限制。
S202、终端通过具有相同捆绑关系的数据传输资源进行数据的收发。
在本实施例中,终端接收到该资源配置信息后,根据资源配置信息确定各数据传输资源的捆绑关系,并在具有相同捆绑关系的数据传输资源进行数据的收发,即使为数据传输资源预留的HARQ进程的HARQ反馈功能均处于关闭状态,也可以在网络设备配置的数据传输资源上进行数据收发,无需网络设备动态调度。例如,若网络设备为终端的每个服务小区的DL BWP配置了多个SPS资源,则UE在具有相同捆绑关系的SPS资源上接收数据。或者,若网络设备为终端的每个服务小区的UL BWP配置了多个CG资源,则UE在具有相同捆绑关系的一组CG资源上发送数据。
本申请实施例提供的数据传输方法,终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系,并通过具有相同捆绑关系的数据传输资源进行数据的收发,即使为数据传输资源预留的HARQ进程的HARQ反馈功能均处于关闭状态,也可以在通过网络设备发送的资源配置信息确定数据传输资源的捆绑关系之后,在具有相同捆绑关系的数据传输资源上进行数据收发,也即,在具有相同绑定关系的的数据传输资源上进行数据重复接收或发送,在关闭HARQ反馈功能的情况下保证数据传输可靠性,而且,在关闭HARQ反馈功能的情况下,可以直接使用具有相同捆绑关系的数据传输资源进行数据接收或发送,无需网络设备多次通过PDCCH信令调度数据传输资源,避免带来大量的PDCCH信令开销。
在一些场景中,数据传输资源需要被激活才能使用,例如,对于SPS资源或者是使用Type 2的CG资源,都需要进行激活后终端才能实现数据收发,因此,在一个实施例中,数据传输资源为激活的数据传输资源,步骤S201“终端根据数据传输资源的资源配置信息,确定数据传输资源的捆绑关系,”包括:终端根据激活的数据传输资源和数据传输资源的资源配置信息,确定数据传输资源的捆绑关系。
在本实施例中,上述数据传输资源可以为被激活的数据传输资源,激活方式可以有多种,例如,网络设备在发送配置信息之后,再通过PDCCH信令进行数据传输资源的激活,或者,网络设备也可以先确定终端所需的数据传输资源,然后通过PDCCH信令激活该数据传输资源,再向终端发送资源配置信息,或者,网络设备也可以通过资源配置信息来激活数据传输资源,或者,网络设备还可以采用其他的方式激活数据传输资源,本申请实施例中并不一次为限。终端在激活的数据传输资源上进行数据重复接收或发送,保证了数据重复接收或者发送的可靠性。
在一些场景中,网络设备可以为终端的每个服务小区的BWP配置一个数据传输资源,在另一些场景中,网络设备可以为终端的每个服务小区的BWP配置多个传输资源。下面通过不同的场景分别详细介绍本申请实施例提供的数据传输方法。
场景一:网络设备为终端配置多个SPS资源
在一个实施例中,数据传输资源包括N个半持续调度SPS资源,资源配置信息包括N个SPS配置,N为大于1的整数。
在本实施例中,网络设备可以为终端的每个服务小区的每个DL BWP配置N个SPS资源,则该资源配置信息中包括该N个SPS资源对应的SPS配置。可选地,N的取值为根据网络期望同一个传输块TB使用传输资源重复接收的次数确定的,也即,N的取值取决于网络期望同一个TB使用SPS资源重复接收的次数。如图3所示,网络设备为终端配置了SPS资源1、SPS资源2、SPS资源3、SPS资源4,可以将同一个SPS周期内的4个SPS资源确定为具有相同捆绑关系的一组SPS资源,终端可以通过具有相同捆绑关系的一组SPS资源进行数据接收。
其中,各SPS配置包括:SPS资源周期、预留给SPS资源的混合自动重复请求HARQ进程数、HARQ进程的标识、HARQ进程的HARQ反馈功能状态信息和N个SPS配置的关系指示信息;关系指示信息用于指示N个SPS配置中的基准SPS配置和各SPS配置的相对时间偏移量,相对时间偏移量表示各SPS配置的时域资源的起始位置相对于基准SPS配置的时域资源的起始位置的偏移量。可选地,相对时间偏移量大于或等于0,且,各SPS配置的相对时间偏移量互不相等。
在本实施例中,该N个SPS配置对应相同的SPS资源周期;为N个SPS配置预留相同的下行HARQ进程数,以及为N个SPS配置设置相同的下行HARQ进程ID,并且这些预留给SPS的下行HARQ进程的HARQ反馈功能都处于关闭状态;而且,N个SPS配置都没有配置相应的用于反馈ACK/NACK的PUCCH资源。
在本实施例中,网络设备可以采用多种方式指示基准SPS配置,例如,在N个SPS配置中的一个SPS配置上设置一个基准标识,带基准标识的SPS配置即为基准SPS配置,或者,将基准SPS配置的相对时间偏移量设置为0,或者,为N个SPS配置中的其余N-1个SPS配置分别配置一个相对时间偏移量,没有设置相对时间偏移量的SPS配置默认为基准SPS配置,等等,本申请实施例中不加以限制。
进一步地,如图4所示,步骤S201“终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系”,包括:
S401、终端从基准SPS配置对应的资源开始,将N个时域相邻的SPS资源确定为一组具有相同绑定关系的SPS资源;N个时域相邻的SPS资源分别与N个SPS配置相对应。
在本实施例中,如图3所示,网络设备为终端配置了4个SPS资源,从左向右,将最左边的SPS资源1确定为基准SPS资源,将相邻的SPS资源1、SPS资源2、SPS资源3和SPS资源4确定为一组具有相同捆绑关系的SPS资源,位于同一组bundling的N个SPS资源分别对应于N个SPS配置,并且映射到相同的HARQ进程号。
S402、终端采用轮询的方式,将预留给N个SPS资源的HARQ进程的标识依次关联到各组具有相同绑定关系的SPS资源上,一组具有相同绑定关系的SPS资源对应的HARQ进程的标识相同。
在本实施例中,对于网络设备配置的N个SPS资源中的每一个SPS资源,分别采用轮询的方式将预留给SPS资源的下行HARQ进程号依次关联到各组具有相同捆绑关系的SPS资源上。如图3所示,为SPS资源预留的下行HARQ进程号为HARQ#0和HARQ#1,N=4,则将HARQ#0关联到SPS配置1、SPS配置2、SPS配置3和SPS配置4上,再将则将HARQ#1关联到SPS配置1、SPS配置2、SPS配置3和SPS配置4上,以此方式轮询关联。
本申请实施例提供的数据传输方法,终端从基准SPS配置对应的资源开始,将N个时域相邻的SPS资源确定为一组具有相同绑定关系的SPS资源,终端采用轮询的方式,将预留给N个SPS资源的HARQ进程的标识依次关联到各组具有相同绑定关系的SPS资源上,N个时域相邻的SPS资源分别与N个SPS配置相对应,一组具有相同捆绑关系的SPS资源对应的HARQ进程的标识相同,终端可以在一组具有相同捆绑关系的传输资源上重复接收或者发送数据,保证数据重复传输的可靠性。
再进一步地,步骤S202“终端通过具有相同捆绑关系的数据传输资源进行数据的收发,”包括:终端通过具有相同绑定关系的N个SPS资源进行数据接收,并将接收M次的数据包采用同一个HARQ进程进行缓存;M小于或等于N。
在本实施例中,终端可以在位于同一个bundling的N个SPS资源上接收数据,并将接收到M次的数据包采用同一个HARQ进程进行缓存,最多将N次接收到的数据包使用同一个HARQ进程进行缓存。对于位于同一个bundling的N次下行接收,后面接收的数据不会覆盖前面接收的数据。终端将接收到的多次数据包进行合并解码。由于在具有相同捆绑关系的的一组SPS资源上重复接收同一个数据包,使得终端可以准确的进行数据包的合并和解码,保证数据重复传输的准确性。
对于SPS资源,终端接收到网络设备下发的资源配置信息之后,还需要对数据传输资源进行配置,在一个实施例中,上述数据传输方法还包括:终端接收网络设备发送的激活信令;激活信令用于激活N个SPS配置对应的资源。
可选地,激活信令为承载于物理下行控制信道(Physical Downlink Control Channel,PDCCH)中的信令。
可选地,一种激活方式为:终端接收网络设备发送的一个激活信令;激活信令用于指示一个时域资源信息和N个频域资源信息,时域资源信息用于指示基准SPS配置对应的时域资源,N个频域资源信息用于指示各SPS配置对应的频域资源。
在本实施例中,可以使用1个PDCCH信令激活N个SPS资源,1个PDCCH信令指示1个时域资源信息和N个频域资源信息。1个时域资源信息用于确定N个SPS配置中作为基准SPS配置对应的时域资源,N个SPS配置中的其余N-1个SPS配置对应的时域资源通过上述配置信息中的相对时间偏移和基准SPS配置对应的时域资源推导得到。N个频域资源信息分别用于指示N个SPS配置对应的频域资源。由于N个SPS配置中的其余N-1个SPS配置对应的时域资源通过上述配置信息中的相对时间偏移和基准SPS配置对应的时域资源推导得到,无需一一指示,可以减少信令开销。
可选地,另一种激活方式为:终端接收网络设备发送的N个激活信令;N个激活信令分别用于指示各SPS配置对应的时域资源和频域资源。在本实施例中,可以使用N个PDCCH信令分别激活N个SPS资源,保证了激活资源的准确性。
场景二、网络设备为终端配置多个CG资源
在一个实施例中,数据传输资源包括N个半持续调度CG资源,资源配置信息包括N个CG配置,N为大于1的整数。
在本实施例中,网络设备可以为终端的每个服务小区的每个ULBWP配置N个CG资源,则该资源配置信息中包括该N个CG资源对应的CG配置。可选地,N的取值为根据网络期望同一个传输块TB使用传输资源重复发送的次数确定的,也即,N的取值取决于网络期望同一个TB使用CG资源重复发送的次数。如图5所示,网络设备为终端配置了CG资源1、CG资源2、CG资源3、CG资源4,可以将同一个CG周期内的4个CG资源确定为具有相同捆绑关系的一组CG资源,终端可以通过具有相同捆绑关系的一组CG资源进行数据发送。
其中,各CG配置包括:CG资源周期、预留给CG资源的混合自动重复请求HARQ进程数、HARQ进程的标识、HARQ进程的HARQ反馈功能状态信息和N个CG配置的关系指示信息;关系指示信息用于指示N个CG配置中的基准CG配置和各CG配置的相对时间偏移量,相对时间偏移量表示各CG配置的时域资源的起始位置相对于基准CG配置的时域资源的起始位置的偏移量。可选地,相对时间偏移量大于或等于0,且,各CG配置的相对时间偏移量互不相等。
在本实施例中,该N个CG配置对应相同的CG资源周期;为N个CG配置预留相同的下行HARQ进程数,以及为N个CG配置设置相同的下行HARQ进程ID,并且这些预留给CG的下行HARQ进程的HARQ反馈功能都处于关闭状态。
在本实施例中,网络设备可以采用多种方式指示基准CG配置,例如,在N个CG配置中的一个CG配置上设置一个基准标识,带基准标识的CG配置即为基准CG配置,或者,将基准CG配置的相对时间偏移量设置为0,或者,为N个CG配置中的其余N-1个CG配置分别配置一个相对时间偏移量,没有设置相对时间偏移量的CG配置默认为基准CG配置,等等,本申请实施例中不加以限制。
进一步地,如图6所示,步骤S201“终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系”,包括:
S601、终端从基准CG配置对应的资源开始,将N个时域相邻的CG资源确定为一组具有相同绑定关系的CG资源;N个时域相邻的CG资源分别与N个CG配置相对应。
在本实施例中,如图5所示,网络设备为终端配置了4个CG资源,从左向右,将最左边的CG资源1确定为基准CG资源,将相邻的CG资源1、CG资源2、CG资源3和CG资源4确定为一组具 有相同捆绑关系的CG资源,位于同一组bundling的N个CG资源分别对应于N个CG配置,并且映射到相同的HARQ进程号。
S602、终端采用轮询的方式,将预留给N个CG资源的HARQ进程的标识依次关联到各组具有相同绑定关系的CG资源上,一组具有相同绑定关系的CG资源对应的HARQ进程的标识相同。
在本实施例中,对于网络设备配置的N个CG资源中的每一个CG资源,分别采用轮询的方式将预留给CG资源的下行HARQ进程号依次关联到各组具有相同捆绑关系的CG资源上。如图5所示,为CG资源预留的下行HARQ进程号为HARQ#0和HARQ#1,N=4,则将HARQ#0关联到CG配置1、CG配置2、CG配置3和CG配置4上,再将则将HARQ#1关联到CG配置1、CG配置2、CG配置3和CG配置4上,以此方式轮询关联。
本申请实施例提供的数据传输方法,终端从基准CG配置对应的资源开始,将N个时域相邻的CG资源确定为一组具有相同绑定关系的CG资源,终端采用轮询的方式,将预留给N个CG资源的HARQ进程的标识依次关联到各组具有相同绑定关系的CG资源上,N个时域相邻的CG资源分别与N个CG配置相对应,一组具有相同捆绑关系的CG资源对应的HARQ进程的标识相同,终端可以在一组具有相同捆绑关系的传输资源上重复接收或者发送数据,保证数据重复传输的可靠性。
再进一步地,步骤S202“终端通过具有相同捆绑关系的数据传输资源进行数据的收发,”包括:终端通过具有相同绑定关系的N个CG资源进行数据发送。
在本实施例中,终端可以在位于同一个bundling的N个CG资源上接收数据,并将接收到M次的数据包采用同一个HARQ进程进行缓存,最多将N次接收到的数据包使用同一个HARQ进程进行缓存。对于位于同一个bundling的N次下行接收,后面接收的数据不会覆盖前面接收的数据。终端将接收到的多次数据包进行合并解码。由于在具有相同捆绑关系的的一组CG资源上重复接收同一个数据包,使得终端可以准确的进行数据包的合并和解码,保证数据重复传输的准确性。
可选地,配置信息还包括N个CG配置的传输类型,传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
在一个实施例中,若N个CG配置的传输类型均为基于第一类配置授权的PUSCH传输,CG配置还包括各CG资源的时频资源配置。在本实施例中,如果上述N个CG配置都是type1CG资源,则所述N个CG配置中还包含CG的时频资源配置,终端接收到网络设备发送的配置信息之后,就可以确定CG资源进行数据重复发送。
在另一个实施例中,若所述N个CG配置的传输类型均为基于第二类配置授权的PUSCH传输,该方法还包括:终端接收网络设备发送的激活信令;激活信令用于激活N个CG配置对应的资源。
可选地,激活信令为承载于物理下行控制信道(Physical Downlink Control Channel,PDCCH)中的信令。
可选地,一种激活方式为:终端接收网络设备发送的一个激活信令;激活信令用于指示一个时域资源信息和N个频域资源信息,时域资源信息用于指示基准CG配置对应的时域资源,N个频域资源信息用于指示各CG配置对应的频域资源。
在本实施例中,可以使用1个PDCCH信令激活N个CG资源,1个PDCCH信令指示1个时域资源信息和N个频域资源信息。1个时域资源信息用于确定N个CG配置中作为基准CG配置对应的时域资源,N个CG配置中的其余N-1个CG配置对应的时域资源通过上述配置信息中的相对时间偏移和基准CG配置对应的时域资源推导得到。N个频域资源信息分别用于指示N个CG配置对应的频域资源。由于N个CG配置中的其余N-1个CG配置对应的时域资源通过上述配置信息中的相对时间偏移和基准CG配置对应的时域资源推导得到,无需一一指示,可以减少信令开销。
可选地,另一种激活方式为:终端接收网络设备发送的N个激活信令;N个激活信令分别用于指示各CG配置对应的时域资源和频域资源。在本实施例中,可以使用N个PDCCH信令分别激活N个CG资源,保证了激活资源的准确性。
场景三、网络设备为终端配置一个SPS资源
在一个实施例中,数据传输资源包括一个SPS资源,资源配置信息包括一个SPS配置。可选地,SPS配置包括:SPS资源周期、为SPS资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
在本实施例中,网络设备可以为终端的每个服务小区的每个DLBWP配置一个SPS资源,则该资源配置信息中包括该一个SPS资源对应的SPS配置。
在本实施例中,对于终端的每个服务小区,配置至少一个DLBWP,并且对于配置的至少一个DLBWP中的每一个DLBWP,可选地,可以为该DLBWP配置1个SPS资源,SPS配置可以包括SPS资源周期、为SPS资源预留的下行HARQ进程数等;下行HARQ进程的HARQ反馈功能状态配置,配置这些预留给SPS资源的下行HARQ进程的HARQ反馈功能都处于关闭状态;配置使用同一个SPS资源进行重复传输的次数N等。
本实施例提供的数据传输方法,网络设备为终端的每个服务小区的每个DLBWP配置一个SPS资源,使得预留给SPS资源的HARQ进程的HARQ反馈功能都处于关闭状态时,可以通过在配置的一个SPS资源进行数据重复传输,在关闭HARQ反馈功能的情况下保证数据传输可靠性,而且,在关闭HARQ反馈功能的情况下,可以直接使用资源配置信息配置的SPS资源进行数据接收,无需网络设备多次通过PDCCH信令调度SPS资源,避免带来大量的PDCCH信令开销,并且,数据重复接收过程中占用一个SPS资源,可以节省传输资源。
进一步地,如图7所示,步骤S201“终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系”,包括:
S701、终端从SPS配置对应的第一个SPS资源开始,将时域连续的N个SPS资源确定为一组具有相同捆绑关系的SPS资源;N大于1。
在本实施例中,N为重传次数,如图8所示,N=4,从最左边的第一个SPS资源开始,将时域连续的4个SPS资源确定为一组具有相同捆绑关系的SPS资源,该组捆绑的SPS资源对应的HARQ进程号为HARQ#0,依次循环,确定各组捆绑的SPS资源。
S702、终端采用轮询的方式,将预留给SPS资源的HARQ进程的标识依次关联到各组具有相同绑定关系的SPS资源上,一组具有相同绑定关系的SPS资源对应的HARQ进程的标识相同。
在本实施例中,确定各组具有相同捆绑关系的SPS资源之后,将预留给SPS资源的HARQ进程的标识依次关联到各组SPS资源上。如图8所示,预留给SPS资源的HARQ进程为号为HARQ#0和HARQ#1,轮询将HARQ#0和HARQ#1关联到各组SPS资源上。
本申请实施例提供的数据传输方法,从SPS配置对应的第一个SPS资源开始,将时域连续的N个SPS资源确定为一组具有相同捆绑关系的SPS资源;一组绑定的SPS资源对应的HARQ进程的标识相同;采用轮询的方式,将预留给SPS资源的HARQ进程的标识依次关联到各组绑定的SPS资源上,终端可以在一组绑定的SPS资源上重复接收数据,保证数据重复传输的可靠性。
进一步地,步骤S202“终端通过具有相同捆绑关系的数据传输资源进行数据的收发”,包括:终端通过具有相同捆绑关系的SPS资源进行数据的接收,并将接收M次的数据包采用同一个HARQ进程进行缓存;M小于或等于N。
在本实施例中,如图8所示,终端可以在位于同一个bundling的4个SPS资源上接收数据,并将接收到最多4次的数据包采用同一个HARQ进程进行缓存。对于位于同一个bundling的4次下行接收,后面接收的数据不会覆盖前面接收的数据。终端将接收到的多次数据包进行合并解码。由于在一组具有相同捆绑关系的SPS资源上重复接收同一个数据包,使得终端可以准确的进行数据包的合并和解码,保证数据重复传输的准确性。
可选地,终端接收到网络设备发送的资源配置信息之后,还包括:终端接收网络设备发送的激活信令;激活信令用于激活一个SPS配置对应的资源。
在一个实施例中,与网络设备配置N个传输资源相似,对于SPS资源和采用Type 2传输方式的CG资源,终端接收到网络设备发送的配置消息之后,还不能进行数据重复传输,需要网络设备对配置的传输资源进行激活。在本实施例中,由于配置了一个SPS资源,因此,可以通过一条PDCCH信令激活网络设备配置的一个SPS资源,从而保证数据重复传输的可靠性。
场景三、网络设备为终端配置一个CG资源
在一个实施例中,数据传输资源包括一个CG资源,资源配置信息包括一个CG配置。可选地,CG配置包括:CG资源周期、为CG资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
在本实施例中,网络设备可以为终端的每个服务小区的每个UL BWP配置一个CG资源,则该资源配置信息中包括该一个CG资源对应的CG配置。
在本实施例中,对于终端的每个服务小区,配置至少一个DL BWP,并且对于配置的至少一个DLBWP中的每一个DLBWP,可选地,可以为该DLBWP配置1个CG资源,CG配置可以包括CG资源周期、为CG资源预留的下行HARQ进程数等;下行HARQ进程的HARQ反馈功能状态配置,配置这些预留给CG资源的下行HARQ进程的HARQ反馈功能都处于关闭状态;配置使用同一个CG资源进行重复传输的次数N等。
本实施例提供的数据传输方法,网络设备为终端的每个服务小区的每个UL BWP配置一个CG资源,使得预留给CG资源的HARQ进程的HARQ反馈功能都处于关闭状态时,可以通过在配置的一个CG资源进行数据重复发送,在关闭HARQ反馈功能的情况下保证数据传输可靠性,而且,在关闭HARQ反馈功能的情况下,可以直接使用资源配置信息配置的CG资源进行数据发送,无需网络设备多次通过PDCCH信令调度CG资源,避免带来大量的PDCCH信令开销,并且,数据重复发送过程中占用一个CG资源,可以节省传输资源。
进一步地,如图9所示,步骤S201“终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系”,包括:
S901、终端从CG配置对应的第一个CG资源开始,将时域连续的N个CG资源确定为一组具有相同捆绑关系的CG资源;N大于1。
在本实施例中,N为重传次数,如图10所示,N=4,从最左边的第一个CG资源开始,将时域连续的4个CG资源确定为一组具有相同捆绑关系的CG资源,该组捆绑的CG资源对应的HARQ进程号为HARQ#0,依次循环,确定各组捆绑的CG资源。
S902、终端采用轮询的方式,将预留给CG资源的HARQ进程的标识依次关联到各组具有相同绑定关系的CG资源上,一组具有相同绑定关系的CG资源对应的HARQ进程的标识相同。
在本实施例中,确定各组具有相同捆绑关系的CG资源之后,将预留给CG资源的HARQ进程的标识依次关联到各组CG资源上。如图10所示,预留给CG资源的HARQ进程为号为HARQ#0和HARQ#1,轮询将HARQ#0和HARQ#1关联到各组CG资源上。
本申请实施例提供的数据传输方法,从CG配置对应的第一个CG资源开始,将时域连续的N个CG资源确定为一组具有相同捆绑关系的CG资源;一组绑定的CG资源对应的HARQ进程的标识相同;采用轮询的方式,将预留给CG资源的HARQ进程的标识依次关联到各组绑定的CG资源上,终端可以在一组绑定的CG资源上重复发送数据,保证数据重复传输的可靠性。
进一步地,步骤S202“终端通过具有相同捆绑关系的数据传输资源进行数据的收发”,包括:终端通过具有相同捆绑关系的CG资源进行数据的发送。
在本实施例中,如图10所示,终端可以在位于同一个bundling的4个CG资源上发送数据,由于在一组具有相同捆绑关系的CG资源上重复发送同一个数据包,使得终端可以准确的进行数据包发送,保证数据重复传输的可靠性。
可选地,配置信息还包括N个CG配置的传输类型,传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
在一个实施例中,若一个CG配置的传输类型为基于第一类配置授权的PUSCH传输,CG配置还包括各CG资源的时频资源配置。在本实施例中,如果上述一个CG配置都是type1 CG资源,则所述一个CG配置中还包含CG的时频资源配置,终端接收到网络设备发送的配置信息之后,就可以确定CG资源进行数据重复发送。
在另一个实施例中,若所述一个CG配置的传输类型为基于第二类配置授权的PUSCH传输,该方法还包括:终端接收网络设备发送的激活信令;激活信令用于激活一个CG配置对应的资源。
在一个实施例中,与网络设备配置N个CG资源相似,对于采用Type 2传输方式的CG资源,终端接收到网络设备发送的配置消息之后,还不能进行数据重复发送,需要网络设备对配置的传输资源进行激活,从而保证数据重复传输的可靠性。
图11为一个实施例提供的一种数据传输方法的流程图。本实施例涉及的是网络设备向终端发送数据传输资源的资源配置信息,并通过终端确定的具有相同捆绑关系的数据传输资源进行数据的收发的具体实现过程。如图11所示,该方法可以包括以下步骤:
S1101、网络设备向终端发送数据传输资源的资源配置信息。
其中,资源配置信息中可以包括网络设备为终端的每个服务小区配置的BWP,也可以包括为每个BWP配置的传输资源配置,例如,BWP可以为DL BWP,也可以为UL BWP,每个BWP可以至少配置一个传输资源配置,该至少一个传输资源配置可以为下行资源配置,也可以为上行资源配置,例如,该传输资源配置可以为SPS配置,也可以为CG配置,而且,每个BWP对应的传输资源配置的数量不限定,可以为每个BWP配置一个传输资源配置,也可以是为每个BWP配置多个传输资源配置,例如,为终端的每个服务小区的DL BWP配置一个SPS配置,为终端的每个服务小区的UP BWP配置一个CG配置,或者,为终端的每个服务小区的DL BWP配置多个SPS配置,为终端的每个服务小区的UP BWP配置多个CG配置,可根据实际需求来配置,本实施例不加以限制。传输资源配置中可以包括资源周期、为传输资源预留的HARQ进程数、HARQ进程的标识(ID)、HARQ进程的HARQ反馈功能状态、重传次数等,还可以包括其他的参数,本申请实施例中不加以限制。
可选地,该资源配置信息可以携带在无线资源控制(Radio Resource Control,RRC)信令中。
在本实施例中,网络设备将资源配置信息发送给终端后,终端确定各数据传输资源的bundling关系,在具有相同捆绑关系的数据传输资源上进行数据收发,同样,网络设备也可以在终端确定的具有相同捆绑关系的数据传输资源上进行数据收发。例如,终端可以根据资源配置信息,从一个特定的数据传输资源开始,将多个时域相邻的数据传输资源确定为一组具有相同绑定关系的数据传输资源。例如,资源配置信息中配置了4个SPS资源,终端可以从时域最早的SPS资源开始,将时域相邻的4个SPS资源绑定为一组,或者,资源配置信息中配置了3个CG资源,终端可以从时域最早的CG资源开始,将时域相邻的3个CG资源绑定为一组。不同的数据传输资源可以具有不同的捆绑关系,本申请实施例中不加以限制。
S1102、网络设备通过终端确定的具有相同捆绑关系的数据传输资源进行数据的收发。
在本实施例中,网络设备将该资源配置信息后,终端根据资源配置信息确定各数据传输资源的捆绑关系,并在具有相同捆绑关系的数据传输资源进行数据的收发,即使为数据传输资源预留的HARQ进程的HARQ反馈功能均处于关闭状态,也可以在网络设备配置的、终端确定的具有相同捆绑关系的数据传输资源上进行数据收发,无需网络设备动态调度。例如,若网络设备为终端的每个服务小区的DLBWP配置了多个SPS资源,则UE在具有相同捆绑关系的SPS资源上接收数据,网络设备也在具有相同捆绑关系的SPS资源上发送数据。或者,若网络设备为终端的每个服务小区的UL BWP配置了多个CG资源,则UE在具有相同捆绑关系的一组CG资源上发送数据,网络设备也在具有相同捆绑关系的CG资源上接收数据。
本申请实施例提供的数据传输方法,网络设备向终端发送数据传输资源的资源配置信息,并通过终端确定的具有相同捆绑关系的数据传输资源进行数据的收发,即使为数据传输资源预留的HARQ进程的HARQ反馈功能均处于关闭状态,也可以在通过网络设备发送的资源配置信息确定数据传输资源的捆绑关系之后,在具有相同捆绑关系的数据传输资源上进行数据收发,也即,在具有相同绑定关系的的数据传输资源上进行数据重复接收或发送,在关闭HARQ反馈功能的情况下保证数据传输可靠性,而且,在关闭HARQ反馈功能的情况下,可以直接使用具有相同捆绑关系的数据传输资源进行数据接收或发送,无需网络设备多次通过PDCCH信令调度数据传输资源,避免带来大量的PDCCH信令开销。
在一个实施例中,数据传输资源为激活的数据传输资源,网络设备向终端发送数据传输资源的资源配置信息,包括:在确定激活的数据传输资源后,网络设备向终端发送数据传输资源的资源配置信息。
在一个实施例中,网络设备向终端发送数据传输资源的资源配置信息之前,还包括:网络设备为终端的各服务小区对应的每个下行工作带宽DLBWP配置N个SPS资源,N为大于1的整数。
在一个实施例中,资源配置信息包括N个SPS配置;各SPS配置包括:SPS资源周期、预留给SPS资源的混合自动重复请求HARQ进程数、HARQ进程的标识、HARQ进程的HARQ反馈功能状态信息和N个SPS配置的关系指示信息;关系指示信息用于指示N个SPS配置中的基准SPS配置和各SPS配置的相对时间偏移量,相对时间偏移量表示各SPS配置的时域资源的起始位置相对于基准SPS配置的时域资源的起始位置的偏移量。
在一个实施例中,相对时间偏移量大于或等于0,且,各SPS配置的相对时间偏移量互不相等。
在一个实施例中,N个SPS配置的资源周期均相同;N个SPS配置的HARQ进程数均相同;N个SPS配置的HARQ进程的标识均相同;N个SPS配置的HARQ进程的HARQ反馈功能均处于关闭状态。
在本实施例中,该N个SPS配置对应相同的SPS资源周期;为N个SPS配置预留相同的下行HARQ 进程数,以及为N个SPS配置设置相同的下行HARQ进程ID,并且这些预留给SPS的下行HARQ进程的HARQ反馈功能都处于关闭状态;而且,N个SPS配置都没有配置相应的用于反馈ACK/NACK的PUCCH资源。
在一个实施例中,N个SPS资源的时域资源相互不重叠;N个SPS资源的频域资源相同或不相同;N个SPS资源的资源大小相同;N个SPS资源的调制与编码策略MCS等级相同。
在本实施例中,网络设备可以通过PDCCH激活N个SPS配置的资源,N个SPS资源具有以下特性:
a)N个SPS资源对应的时域资源相互不重叠,N个SPS资源对应的频域资源可以相同也可以不相同;
b)N个SPS资源大小相同,N个SPS资源的MCS等级相同,即可以承载相同大小的传输块。
在一个实施例中,该方法还包括:网络设备向终端发送激活信令;激活信令用于激活N个SPS配置对应的资源。
在一个实施例中,网络设备向终端发送激活信令,包括:网络设备向终端发送一个激活信令;激活信令用于指示一个时域资源信息和N个频域资源信息,时域资源信息用于指示基准SPS配置对应的时域资源,N个频域资源信息用于指示各SPS配置对应的频域资源。
在一个实施例中,网络设备向终端发送激活信令,包括:网络设备向终端发送N个激活信令;N个激活信令分别用于指示各SPS配置对应的时域资源和频域资源。
在一个实施例中,网络设备向终端发送数据传输资源的资源配置信息之前,还包括:网络设备为终端的各服务小区对应的每个上行工作带宽ULBWP配置N个CG资源,N为大于1的整数。
在一个实施例中,资源配置信息包括N个CG配置;各CG配置包括:CG资源周期、预留给CG资源的混合自动重复请求HARQ进程数、HARQ进程的标识、HARQ进程的HARQ反馈功能状态信息和N个CG配置的关系指示信息;关系指示信息用于指示N个CG配置中的基准CG配置和各CG配置的相对时间偏移量,相对时间偏移量表示各CG配置的时域资源的起始位置相对于基准CG配置的时域资源的起始位置的偏移量。
在一个实施例中,相对时间偏移量大于或等于0,且,各CG配置的相对时间偏移量互不相等。
在一个实施例中,N个CG配置的资源周期均相同;N个CG配置的HARQ进程数均相同;N个CG配置的HARQ进程的标识均相同;N个CG配置的HARQ进程的HARQ反馈功能均处于关闭状态。
在本实施例中,N个CG配置对应相同的CG资源周期;为N个CG配置预留相同的上行HARQ进程数,以及为N个CG配置设置相同的上行HARQ进程ID,并且这些预留给CG的上行HARQ进程的HARQ反馈功能都处于关闭状态。
在一个实施例中,N个CG资源的时域资源相互不重叠;N个CG资源的频域资源相同或不相同;N个CG资源的资源大小相同;N个CG资源的调制与编码策略MCS等级相同。
在本实施例中,网络设备可以通过PDCCH激活N个CG配置的资源,无论N个CG配置是type1 CG还是type2 CG,所述N个CG配置的时频资源具有以下特性:
a)N个CG资源对应的时域资源相互不重叠,N个CG资源对应的频域资源可以相同也可以不相同;
b)N个CG资源大小相同,N个CG资源的MCS等级相同,即可以承载相同大小的传输块。
在一个实施例中,资源配置信息还包括:N个CG配置的传输类型,传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
在一个实施例中,若N个CG配置的传输类型均为基于第一类配置授权的PUSCH传输,CG配置还包括各CG资源的时频资源配置。
在一个实施例中,若N个CG配置的传输类型均为基于第二类配置授权的PUSCH传输,方法还包括:网络设备向终端发送激活信令;激活信令用于激活N个CG配置对应的资源。
在一个实施例中,网络设备向终端发送激活信令,包括:网络设备向终端发送一个激活信令;激活信令用于指示一个时域资源信息和N个频域资源信息,时域资源信息用于指示基准CG配置对应的时域资源,N个频域资源信息用于指示各CG配置对应的频域资源。
在一个实施例中,网络设备向终端发送激活信令,包括:网络设备向终端发送N个激活信令;N个激活信令分别用于指示各CG配置对应的时域资源和频域资源。
在一个实施例中,网络设备向终端发送数据传输资源的资源配置信息之前,还包括:网络设备为终端的各服务小区对应的每个下行工作带宽DLBWP配置一个SPS资源,N为大于1的整数。
在一个实施例中,资源配置信息包括一个SPS配置;SPS配置包括:SPS资源周期、为SPS资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
在一个实施例中,SPS配置对应的HARQ进程的HARQ反馈功能均处于关闭状态。
在一个实施例中,该方法还包括:网络设备向终端发送激活信令,激活信令用于激活一个SPS配置对应的资源。
在一个实施例中,网络设备向终端发送数据传输资源的资源配置信息之前,还包括:
网络设备为终端的各服务小区对应的每个上行工作带宽UL BWP配置一个CG资源,N为大于1的整数。
在一个实施例中,配置信息包括一个CG配置;CG配置包括:CG资源周期、为CG资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
在一个实施例中,CG配置对应的HARQ进程的HARQ反馈功能均处于关闭状态。
在一个实施例中,资源配置信息还包括:一个CG配置的传输类型,传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
在一个实施例中,若一个CG配置的传输类型为基于第一类配置授权的PUSCH传输,CG配置还 包括各CG资源的时频资源配置。
在一个实施例中,若一个CG配置的传输类型为基于第二类配置授权的PUSCH传输,该方法还包括:网络设备向终端发送激活信令;激活信令用于激活一个CG配置对应的资源。
上述实施例提供的网络设备侧的数据传输方法的实现原理和有益效果可参照终端的侧的数据传输方法的实现原理和有益效果,此处不再赘述。
应该理解的是,虽然图2-11的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-11中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图12所示,提供了一种数据传输配置装置,包括:
确定模块21,用于根据网络设备发送的数据传输资源的资源配置信息,确定数据传输资源的捆绑关系;
处理模块22,用于通过具有相同捆绑关系的数据传输资源进行数据的收发。
在一个实施例中,数据传输资源为激活的数据传输资源,确定模块21,用于根据激活的数据传输资源和数据传输资源的资源配置信息,确定数据传输资源的捆绑关系。
在一个实施例中,数据传输资源包括N个半持续调度SPS资源,资源配置信息包括N个SPS配置,N为大于1的整数。
在一个实施例中,各SPS配置包括:SPS资源周期、预留给SPS资源的混合自动重复请求HARQ进程数、HARQ进程的标识、HARQ进程的HARQ反馈功能状态信息和N个SPS配置的关系指示信息;关系指示信息用于指示N个SPS配置中的基准SPS配置和各SPS配置的相对时间偏移量,相对时间偏移量表示各SPS配置的时域资源的起始位置相对于基准SPS配置的时域资源的起始位置的偏移量。
在一个实施例中,相对时间偏移量大于或等于0,且,各SPS配置的相对时间偏移量互不相等。
在一个实施例中,确定模块21,用于从基准SPS配置对应的资源开始,将N个时域相邻的SPS资源确定为一组具有相同绑定关系的SPS资源;N个时域相邻的SPS资源分别与N个SPS配置相对应;并采用轮询的方式,将预留给N个SPS资源的HARQ进程的标识依次关联到各组具有相同绑定关系的SPS资源上,一组具有相同绑定关系的SPS资源对应的HARQ进程的标识相同。
在一个实施例中,处理模块22,用于通过具有相同绑定关系的N个SPS资源进行数据接收,并将接收M次的数据包采用同一个HARQ进程进行缓存;M小于或等于N。
在一个实施例中,装置还包括:
接收模块,用于接收网络设备发送的激活信令;激活信令用于激活N个SPS配置对应的资源。
在一个实施例中,接收模块,用于接收网络设备发送的一个激活信令;激活信令用于指示一个时域资源信息和N个频域资源信息,时域资源信息用于指示基准SPS配置对应的时域资源,N个频域资源信息用于指示各SPS配置对应的频域资源。
在一个实施例中,接收模块,用于接收网络设备发送的N个激活信令;N个激活信令分别用于指示各SPS配置对应的时域资源和频域资源。
在一个实施例中,数据传输资源包括N个配置授权CG资源,资源配置信息包括N个CG配置,N为大于1的整数。
在一个实施例中,各CG配置包括:CG资源周期、预留给CG资源的HARQ进程数、HARQ进程的标识、HARQ进程的HARQ反馈功能状态信息和N个CG配置的关系指示信息;关系指示信息用于指示N个CG配置中的基准CG配置和各CG配置的相对时间偏移量,相对时间偏移量表示各CG配置的时域资源的起始位置相对于基准CG配置的时域资源的起始位置的偏移量。
在一个实施例中,相对时间偏移量大于或等于0,且,各CG配置的相对时间偏移量互不相等。
在一个实施例中,确定模块21用于从基准CG配置对应的资源开始,将N个时域相邻的CG资源确定为一组绑定的CG资源;N个时域相邻的CG资源分别与N个CG配置相对应;并采用轮询的方式,将预留给N个CG资源的HARQ进程的标识依次关联到各组绑定的N个CG资源上,一组绑定的CG资源对应的HARQ进程的标识相同。
在一个实施例中,处理模块22用于通过具有相同绑定关系的N个CG资源进行数据发送。
在一个实施例中,配置信息还包括N个CG配置的传输类型,传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
在一个实施例中,若N个CG配置的传输类型均为基于第一类配置授权的PUSCH传输,CG配置还包括各CG资源的时频资源配置。
在一个实施例中,若N个CG配置的传输类型均为基于第二类配置授权的PUSCH传输,该装置还包括:
接收模块,用于接收网络设备发送的激活信令;激活信令用于激活N个CG配置对应的资源。
在一个实施例中,接收模块,用于接收网络设备发送的一个激活信令;激活信令用于指示一个时域资源信息和N个频域资源信息,时域资源信息用于指示基准CG配置对应的时域资源,N个频域资源信息用于指示各CG配置对应的频域资源。
在一个实施例中,接收模块,用于接收网络设备发送的N个激活信令;N个激活信令分别用于指示各CG配置对应的时域资源和频域资源。
在一个实施例中,数据传输资源包括一个SPS资源,资源配置信息包括一个SPS配置。
在一个实施例中,SPS配置包括:SPS资源周期、为SPS资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
在一个实施例中,处理模块22,用于从SPS配置对应的第一个SPS资源开始,将时域连续的N个SPS资源确定为一组具有相同绑定关系的SPS资源;N大于1;并采用轮询的方式,将预留给SPS资源的HARQ进程的标识依次关联到各组具有相同绑定关系的SPS资源上,一组具有相同绑定关系的SPS资源对应的HARQ进程的标识相同;。
在一个实施例中,处理模块22用于通过具有相同捆绑关系的SPS资源进行数据的接收,并将接收M次的数据包采用同一个HARQ进程进行缓存;M小于或等于N。
在一个实施例中,装置还包括:
接收模块,用于接收网络设备发送的激活信令;激活信令用于激活一个SPS配置对应的资源。
在一个实施例中,数据传输资源包括一个CG资源,资源配置信息包括一个CG配置。
在一个实施例中,CG配置包括:CG资源周期、为CG资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
在一个实施例中,确定模块21,用于从CG配置对应的第一个CG资源开始,将时域连续的N个CG资源确定为一组具有相同绑定关系的CG资源;N大于1;并采用轮询的方式,将预留给CG资源的HARQ进程的标识依次关联到各组具有相同绑定关系的CG资源上,一组具有相同绑定关系的CG资源对应的HARQ进程的标识相同。
在一个实施例中,处理模块22用于通过具有相同绑定关系的CG资源进行数据的发送。
在一个实施例中,资源配置信息还包括一个CG配置的传输类型,传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
在一个实施例中,若一个CG配置的传输类型为基于第一类配置授权的PUSCH传输,CG配置还包括各CG资源的时频资源配置。
在一个实施例中,若一个CG配置的传输类型为基于第二类配置授权的PUSCH传输,装置还包括:
接收模块,用于接收网络设备发送的激活信令;激活信令用于激活一个CG配置对应的资源。
在一个实施例中,如图13所示,提供了一种数据传输配置装置,包括:
发送模块31,用于向终端发送数据传输资源的资源配置信息;
处理模块32,用于通过终端确定的具有相同捆绑关系的数据传输资源进行数据的收发。
在一个实施例中,发送模块31,用于在确定激活的数据传输资源后,网络设备向终端发送数据传输资源的资源配置信息。
在一个实施例中,该装置还包括:配置模块,用于为终端的各服务小区对应的每个下行工作带宽DLBWP配置N个SPS资源,N为大于1的整数。
在一个实施例中,资源配置信息包括N个SPS配置;各SPS配置包括:SPS资源周期、预留给SPS资源的混合自动重复请求HARQ进程数、HARQ进程的标识、HARQ进程的HARQ反馈功能状态信息和N个SPS配置的关系指示信息;关系指示信息用于指示N个SPS配置中的基准SPS配置和各SPS配置的相对时间偏移量,相对时间偏移量表示各SPS配置的时域资源的起始位置相对于基准SPS配置的时域资源的起始位置的偏移量。
在一个实施例中,相对时间偏移量大于或等于0,且,各SPS配置的相对时间偏移量互不相等。
在一个实施例中,N个SPS配置的资源周期均相同;N个SPS配置的HARQ进程数均相同;N个SPS配置的HARQ进程的标识均相同;N个SPS配置的HARQ进程的HARQ反馈功能均处于关闭状态。
在一个实施例中,N个SPS资源的时域资源相互不重叠;N个SPS资源的频域资源相同或不相同;N个SPS资源的资源大小相同;N个SPS资源的调制与编码策略MCS等级相同。
在一个实施例中,发送模块31还用于向终端发送激活信令;激活信令用于激活N个SPS配置对应的资源。
在一个实施例中,发送模块31用于向终端发送一个激活信令;激活信令用于指示一个时域资源信息和N个频域资源信息,时域资源信息用于指示基准SPS配置对应的时域资源,N个频域资源信息用于指示各SPS配置对应的频域资源。
在一个实施例中,发送模块31用于向终端发送N个激活信令;N个激活信令分别用于指示各SPS配置对应的时域资源和频域资源。
在一个实施例中,该装置还包括:配置模块,用于为终端的各服务小区对应的每个上行工作带宽ULBWP配置N个CG资源,N为大于1的整数。
在一个实施例中,资源配置信息包括N个CG配置;各CG配置包括:CG资源周期、预留给CG资源的混合自动重复请求HARQ进程数、HARQ进程的标识、HARQ进程的HARQ反馈功能状态信息和N个CG配置的关系指示信息;关系指示信息用于指示N个CG配置中的基准CG配置和各CG配置的相对时间偏移量,相对时间偏移量表示各CG配置的时域资源的起始位置相对于基准CG配置的时域资源的起始位置的偏移量。
在一个实施例中,相对时间偏移量大于或等于0,且,各CG配置的相对时间偏移量互不相等。
在一个实施例中,N个CG配置的资源周期均相同;N个CG配置的HARQ进程数均相同;N个CG配置的HARQ进程的标识均相同;N个CG配置的HARQ进程的HARQ反馈功能均处于关闭状态。
在一个实施例中,N个CG资源的时域资源相互不重叠;N个CG资源的频域资源相同或不相同;N个CG资源的资源大小相同;N个CG资源的调制与编码策略MCS等级相同。
在一个实施例中,资源配置信息还包括:N个CG配置的传输类型,传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
在一个实施例中,若N个CG配置的传输类型均为基于第一类配置授权的PUSCH传输,CG配置还包括各CG资源的时频资源配置。
在一个实施例中,若N个CG配置的传输类型均为基于第二类配置授权的PUSCH传输,发送模块 31还用于向终端发送激活信令;激活信令用于激活N个CG配置对应的资源。
在一个实施例中,发送模块31用于向终端发送一个激活信令;激活信令用于指示一个时域资源信息和N个频域资源信息,时域资源信息用于指示基准CG配置对应的时域资源,N个频域资源信息用于指示各CG配置对应的频域资源。
在一个实施例中,发送模块31用于向终端发送N个激活信令;N个激活信令分别用于指示各CG配置对应的时域资源和频域资源。
在一个实施例中,该装置还包括:配置模块,用于为终端的各服务小区对应的每个下行工作带宽DLBWP配置一个SPS资源,N为大于1的整数。
在一个实施例中,资源配置信息包括一个SPS配置;SPS配置包括:SPS资源周期、为SPS资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
在一个实施例中,SPS配置对应的HARQ进程的HARQ反馈功能均处于关闭状态。
在一个实施例中,发送模块31用于向终端发送激活信令,激活信令用于激活一个SPS配置对应的资源。
在一个实施例中,该装置还包括:配置模块,用于为终端的各服务小区对应的每个上行工作带宽ULBWP配置一个CG资源,N为大于1的整数。
在一个实施例中,配置信息包括一个CG配置;CG配置包括:CG资源周期、为CG资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
在一个实施例中,CG配置对应的HARQ进程的HARQ反馈功能均处于关闭状态。
在一个实施例中,资源配置信息还包括:一个CG配置的传输类型,传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
在一个实施例中,若一个CG配置的传输类型为基于第一类配置授权的PUSCH传输,CG配置还包括各CG资源的时频资源配置。
在一个实施例中,若一个CG配置的传输类型为基于第二类配置授权的PUSCH传输,发送模块31还用于向终端发送激活信令;激活信令用于激活一个CG配置对应的资源。
上述实施例提供的一种数据传输配置装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
关于数据传输配置装置的具体限定可以参见上文中对于数据传输方法的限定,在此不再赘述。上述数据传输配置装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图14所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种信息上报方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是网络设备,其内部结构图可以如图15所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储数据传输配置数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种数据传输方法。
本领域技术人员可以理解,图14或图15中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本申请实施例还提供一种终端,包括:处理器、存储器和收发器,所述处理器、所述存储器和所述收发器通过内部连接通路互相通信,所述存储器,用于存储程序代码;
所述处理器,用于调用所述存储器中存储的程序代码,以配合所述收发器实现终端侧任一实施例所述方法的步骤。
本申请实施例还一种网络设备,包括:处理器、存储器和收发器,所述处理器、所述存储器和所述收发器通过内部连接通路互相通信,
所述存储器,用于存储程序代码;
所述处理器,用于调用所述存储器中存储的程序代码,以配合所述收发器实现网络设备侧任一实施例所述方法的步骤。
上述实施例提供的一种计算机设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现终端侧任一实施例所述方法的步骤。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现网络设备侧任一实施例所述方法的步骤。
上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此 不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (68)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系;
    所述终端通过具有相同捆绑关系的数据传输资源进行数据的收发。
  2. 根据权利要求1所述的方法,其特征在于,所述数据传输资源为激活的数据传输资源,所述终端根据数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系,包括:
    所述终端根据所述激活的数据传输资源和所述数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系。
  3. 根据权利要求1所述的方法,其特征在于,所述数据传输资源包括N个半持续调度SPS资源,所述资源配置信息包括N个SPS配置,N为大于1的整数。
  4. 根据权利要求3所述的方法,其特征在于,各所述SPS配置包括:SPS资源周期、预留给SPS资源的混合自动重复请求HARQ进程数、HARQ进程的标识、所述HARQ进程的HARQ反馈功能状态信息和所述N个SPS配置的关系指示信息;所述关系指示信息用于指示所述N个SPS配置中的基准SPS配置和各所述SPS配置的相对时间偏移量,所述相对时间偏移量表示各所述SPS配置的时域资源的起始位置相对于所述基准SPS配置的时域资源的起始位置的偏移量。
  5. 根据权利要求4所述的方法,其特征在于,所述相对时间偏移量大于或等于0,且,各所述SPS配置的相对时间偏移量互不相等。
  6. 根据权利要求4或5所述的方法,其特征在于,所述终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系,包括:
    所述终端从所述基准SPS配置对应的资源开始,将N个时域相邻的SPS资源确定为一组具有相同绑定关系的SPS资源;所述N个时域相邻的SPS资源分别与所述N个SPS配置相对应;
    所述终端采用轮询的方式,将预留给所述N个SPS资源的HARQ进程的标识依次关联到各组具有相同绑定关系的SPS资源上,所述一组具有相同绑定关系的SPS资源对应的HARQ进程的标识相同。
  7. 根据权利要求3所述的方法,其特征在于,所述终端通过具有相同捆绑关系的数据传输资源进行数据的收发,包括:
    所述终端通过具有相同绑定关系的N个SPS资源进行数据接收,并将接收M次的数据包采用同一个HARQ进程进行缓存;M小于或等于N。
  8. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述网络设备发送的激活信令;所述激活信令用于激活所述N个SPS配置对应的资源。
  9. 根据权利要求8所述的方法,其特征在于,所述终端接收所述网络设备发送的激活信令,包括:
    所述终端接收所述网络设备发送的一个激活信令;所述激活信令用于指示一个时域资源信息和N个频域资源信息,所述时域资源信息用于指示所述基准SPS配置对应的时域资源,所述N个频域资源信息用于指示各所述SPS配置对应的频域资源。
  10. 根据权利要求8所述的方法,其特征在于,所述终端接收所述网络设备发送的激活信令,包括:
    所述终端接收所述网络设备发送的N个激活信令;所述N个激活信令分别用于指示各所述SPS配置对应的时域资源和频域资源。
  11. 根据权利要求1所述的方法,其特征在于,所述数据传输资源包括N个配置授权CG资源,所述资源配置信息包括N个CG配置,N为大于1的整数。
  12. 根据权利要求11所述的方法,其特征在于,各所述CG配置包括:CG资源周期、预留给CG资源的HARQ进程数、HARQ进程的标识、所述HARQ进程的HARQ反馈功能状态信息和所述N个CG配置的关系指示信息;所述关系指示信息用于指示所述N个CG配置中的基准CG配置和各所述CG配置的相对时间偏移量,所述相对时间偏移量表示各所述CG配置的时域资源的起始位置相对于所述基准CG配置的时域资源的起始位置的偏移量。
  13. 根据权利要求12所述的方法,其特征在于,所述相对时间偏移量大于或等于0,且,各所述CG配置的相对时间偏移量互不相等。
  14. 根据权利要求12或13所述的方法,其特征在于,所述终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系,包括:
    所述终端从所述基准CG配置对应的资源开始,将N个时域相邻的CG资源确定为一组绑定的CG资源;所述N个时域相邻的CG资源分别与所述N个CG配置相对应;
    所述终端采用轮询的方式,将预留给所述N个CG资源的HARQ进程的标识依次关联到各组绑定的N个CG资源上,所述一组绑定的CG资源对应的HARQ进程的标识相同。
  15. 根据权利要求11所述的方法,其特征在于,所述终端通过具有相同捆绑关系的数据传输资源进行数据的收发,包括:
    所述终端通过具有相同绑定关系的N个CG资源进行数据发送。
  16. 根据权利要求12所述的方法,其特征在于,所述配置信息还包括所述N个CG配置的传输类型,所述传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
  17. 根据权利要求16所述的方法,其特征在于,若所述N个CG配置的传输类型均为基于第一类配置授权的PUSCH传输,所述CG配置还包括各CG资源的时频资源配置。
  18. 根据权利要求16所述的方法,其特征在于,若所述N个CG配置的传输类型均为基于第二类配置授权的PUSCH传输,所述方法还包括:
    所述终端接收所述网络设备发送的激活信令;所述激活信令用于激活所述N个CG配置对应的资源。
  19. 根据权利要求18所述的方法,其特征在于,所述终端接收所述网络设备发送的激活信令,包括:
    所述终端接收所述网络设备发送的一个激活信令;所述激活信令用于指示一个时域资源信息和N个频域资源信息,所述时域资源信息用于指示所述基准CG配置对应的时域资源,所述N个频域资源信息用于指示各所述CG配置对应的频域资源。
  20. 根据权利要求19所述的方法,其特征在于,所述终端接收所述网络设备发送的激活信令,包括:
    所述终端接收所述网络设备发送的N个激活信令;所述N个激活信令分别用于指示各所述CG配置对应的时域资源和频域资源。
  21. 根据权利要求1所述的方法,其特征在于,所述数据传输资源包括一个SPS资源,所述资源配置信息包括一个SPS配置。
  22. 根据权利要求21所述的方法,其特征在于,所述SPS配置包括:SPS资源周期、为SPS资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
  23. 根据权利要求22所述的方法,其特征在于,所述终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系,包括:
    所述终端从所述SPS配置对应的第一个SPS资源开始,将时域连续的N个SPS资源确定为一组具有相同绑定关系的SPS资源;N大于1;
    所述终端采用轮询的方式,将预留给所述SPS资源的HARQ进程的标识依次关联到各组具有相同绑定关系的SPS资源上,所述一组具有相同绑定关系的SPS资源对应的HARQ进程的标识相同。
  24. 根据权利要求21所述的方法,其特征在于,所述终端通过具有相同捆绑关系的数据传输资源进行数据的收发,包括:
    所述终端通过具有相同捆绑关系的SPS资源进行数据的接收,并将接收M次的数据包采用同一个HARQ进程进行缓存;M小于或等于N。
  25. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述网络设备发送的激活信令;所述激活信令用于激活所述一个SPS配置对应的资源。
  26. 根据权利要求1所述的方法,其特征在于,所述数据传输资源包括一个CG资源,所述资源配置信息包括一个CG配置。
  27. 根据权利要求26所述的方法,其特征在于,所述CG配置包括:CG资源周期、为CG资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
  28. 根据权利要求27所述的方法,其特征在于,所述终端根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系,包括:
    所述终端从所述CG配置对应的第一个CG资源开始,将时域连续的N个CG资源确定为一组具有相同绑定关系的CG资源;N大于1;
    所述终端采用轮询的方式,将预留给所述CG资源的HARQ进程的标识依次关联到各组具有相同绑定关系的CG资源上,所述一组具有相同绑定关系的CG资源对应的HARQ进程的标识相同。
  29. 根据权利要求26所述的方法,其特征在于,所述终端通过具有相同捆绑关系的数据传输资源进行数据的收发,包括:
    所述终端通过具有相同绑定关系的CG资源进行数据的发送。
  30. 根据权利要求27所述的方法,其特征在于,所述资源配置信息还包括所述一个CG配置的传输类型,所述传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
  31. 根据权利要求30所述的方法,其特征在于,若所述一个CG配置的传输类型为基于第一类配置授权的PUSCH传输,所述CG配置还包括各CG资源的时频资源配置。
  32. 根据权利要求30所述的方法,其特征在于,若所述一个CG配置的传输类型为基于第二类配置授权的PUSCH传输,所述方法还包括:
    所述终端接收所述网络设备发送的激活信令;所述激活信令用于激活所述一个CG配置对应的资源。
  33. 一种数据传输方法,其特征在于,所述方法包括:
    网络设备向终端发送数据传输资源的资源配置信息;
    所述网络设备通过所述终端确定的具有相同捆绑关系的数据传输资源进行数据的收发。
  34. 根据权利要求33所述的方法,其特征在于,所述数据传输资源为激活的数据传输资源,所述网络设备向终端发送数据传输资源的资源配置信息,包括:
    在确定所述激活的数据传输资源后,所述网络设备向所述终端发送所述数据传输资源的资源配置信息。
  35. 根据权利要求33所述的方法,其特征在于,所述网络设备向终端发送数据传输资源的资源配置信息之前,还包括:
    所述网络设备为所述终端的各服务小区对应的每个下行工作带宽DL BWP配置N个SPS资源,N为大于1的整数。
  36. 根据权利要求35所述的方法,其特征在于,所述资源配置信息包括N个SPS配置;各所述SPS配置包括:SPS资源周期、预留给SPS资源的混合自动重复请求HARQ进程数、HARQ进程的标识、所述HARQ进程的HARQ反馈功能状态信息和所述N个SPS配置的关系指示信息;所述关系指示信息用于指示所述N个SPS配置中的基准SPS配置和各所述SPS配置的相对时间偏移量,所述相对时间偏移量表示各所述SPS配置的时域资源的起始位置相对于所述基准SPS配置的时域资源的起始位置的偏移量。
  37. 根据权利要求36所述的方法,其特征在于,所述相对时间偏移量大于或等于0,且,各所述SPS配置的相对时间偏移量互不相等。
  38. 根据权利要求36所述的方法,其特征在于,
    所述N个SPS配置的资源周期均相同;
    所述N个SPS配置的HARQ进程数均相同;
    所述N个SPS配置的HARQ进程的标识均相同;
    所述N个SPS配置的HARQ进程的HARQ反馈功能均处于关闭状态。
  39. 根据权利要求36所述的方法,其特征在于,
    所述N个SPS资源的时域资源相互不重叠;
    所述N个SPS资源的频域资源相同或不相同;
    所述N个SPS资源的资源大小相同;
    所述N个SPS资源的调制与编码策略MCS等级相同。
  40. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送激活信令;所述激活信令用于激活所述N个SPS配置对应的资源。
  41. 根据权利要求40所述的方法,其特征在于,所述网络设备向所述终端发送激活信令,包括:
    所述网络设备向所述终端发送一个激活信令;所述激活信令用于指示一个时域资源信息和N个频域资源信息,所述时域资源信息用于指示所述基准SPS配置对应的时域资源,所述N个频域资源信息用于指示各所述SPS配置对应的频域资源。
  42. 根据权利要求40所述的方法,其特征在于,所述网络设备向所述终端发送激活信令,包括:
    所述网络设备向所述终端发送N个激活信令;所述N个激活信令分别用于指示各所述SPS配置对应的时域资源和频域资源。
  43. 根据权利要求33所述的方法,其特征在于,所述网络设备向终端发送数据传输资源的资源配置信息之前,还包括:
    所述网络设备为所述终端的各服务小区对应的每个上行工作带宽UL BWP配置N个CG资源,N为大于1的整数。
  44. 根据权利要求43所述的方法,其特征在于,所述资源配置信息包括N个CG配置;各所述CG配置包括:CG资源周期、预留给CG资源的混合自动重复请求HARQ进程数、HARQ进程的标识、所述HARQ进程的HARQ反馈功能状态信息和所述N个CG配置的关系指示信息;所述关系指示信息用于指示所述N个CG配置中的基准CG配置和各所述CG配置的相对时间偏移量,所述相对时间偏移量表示各所述CG配置的时域资源的起始位置相对于所述基准CG配置的时域资源的起始位置的偏移量。
  45. 根据权利要求44所述的方法,其特征在于,所述相对时间偏移量大于或等于0,且,各所述CG配置的相对时间偏移量互不相等。
  46. 根据权利要求44所述的方法,其特征在于,
    所述N个CG配置的资源周期均相同;
    所述N个CG配置的HARQ进程数均相同;
    所述N个CG配置的HARQ进程的标识均相同;
    所述N个CG配置的HARQ进程的HARQ反馈功能均处于关闭状态。
  47. 根据权利要求43所述的方法,其特征在于,
    所述N个CG资源的时域资源相互不重叠;
    所述N个CG资源的频域资源相同或不相同;
    所述N个CG资源的资源大小相同;
    所述N个CG资源的调制与编码策略MCS等级相同。
  48. 根据权利要求44所述的方法,其特征在于,所述资源配置信息还包括:所述N个CG配置的传输类型,所述传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
  49. 根据权利要求48所述的方法,其特征在于,若所述N个CG配置的传输类型均为基于第一类配置授权的PUSCH传输,所述CG配置还包括各CG资源的时频资源配置。
  50. 根据权利要求48所述的方法,其特征在于,若所述N个CG配置的传输类型均为基于第二类配置授权的PUSCH传输,所述方法还包括:
    所述网络设备向所述终端发送激活信令;所述激活信令用于激活所述N个CG配置对应的资源。
  51. 根据权利要求50所述的方法,其特征在于,所述所述网络设备向所述终端发送激活信令,包括:
    所述网络设备向所述终端发送一个激活信令;所述激活信令用于指示一个时域资源信息和N个频域资源信息,所述时域资源信息用于指示所述基准CG配置对应的时域资源,所述N个频域资源信息用于指示各所述CG配置对应的频域资源。
  52. 根据权利要求50所述的方法,其特征在于,所述所述网络设备向所述终端发送激活信令,包括:
    所述网络设备向所述终端发送N个激活信令;所述N个激活信令分别用于指示各所述CG配置对应的时域资源和频域资源。
  53. 根据权利要求33所述的方法,其特征在于,所述网络设备向终端发送数据传输资源的资源配置信息之前,还包括:
    所述网络设备为所述终端的各服务小区对应的每个下行工作带宽DL BWP配置一个SPS资源,N为大于1的整数。
  54. 根据权利要求53所述的方法,其特征在于,所述资源配置信息包括一个SPS配置;所述SPS 配置包括:SPS资源周期、为SPS资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
  55. 根据权利要求54所述的方法,其特征在于,所述SPS配置对应的HARQ进程的HARQ反馈功能均处于关闭状态。
  56. 根据权利要求53所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送激活信令,所述激活信令用于激活所述一个SPS配置对应的资源。
  57. 根据权利要求33所述的方法,其特征在于,所述网络设备向终端发送数据传输资源的资源配置信息之前,还包括:
    所述网络设备为所述终端的各服务小区对应的每个上行工作带宽UL BWP配置一个CG资源,N为大于1的整数。
  58. 根据权利要求57所述的方法,其特征在于,所述配置信息包括一个CG配置;所述CG配置包括:CG资源周期、为CG资源预留的HARQ进程数、HARQ进程的HARQ反馈功能状态信息、重传次数。
  59. 根据权利要求58所述的方法,其特征在于,所述CG配置对应的HARQ进程的HARQ反馈功能均处于关闭状态。
  60. 根据权利要求58所述的方法,其特征在于,所述资源配置信息还包括:所述一个CG配置的传输类型,所述传输类型为基于第一类配置授权的PUSCH传输或基于第二类配置授权的PUSCH传输。
  61. 根据权利要求60所述的方法,其特征在于,若所述一个CG配置的传输类型为基于第一类配置授权的PUSCH传输,所述CG配置还包括各CG资源的时频资源配置。
  62. 根据权利要求60所述的方法,其特征在于,若所述一个CG配置的传输类型为基于第二类配置授权的PUSCH传输,所述方法还包括:
    所述网络设备向所述终端发送激活信令;所述激活信令用于激活所述一个CG配置对应的资源。
  63. 一种数据传输装置,其特征在于,包括:
    确定模块,用于根据网络设备发送的数据传输资源的资源配置信息,确定所述数据传输资源的捆绑关系;
    处理模块,用于通过具有相同捆绑关系的数据传输资源进行数据的收发。
  64. 一种数据传输装置,其特征在于,包括:
    发送模块,用于向终端发送数据传输资源的资源配置信息;
    处理模块,用于通过所述终端确定的具有相同捆绑关系的数据传输资源进行数据的收发。
  65. 一种终端,处理器、存储器和收发器,所述处理器、所述存储器和所述收发器通过内部连接通路互相通信,其特征在于,
    所述存储器,用于存储程序代码;
    所述处理器,用于调用所述存储器中存储的程序代码,以配合所述收发器实现权利要求1至32中任一项所述方法的步骤。
  66. 一种网络设备,包括:处理器、存储器和收发器,所述处理器、所述存储器和所述收发器通过内部连接通路互相通信,其特征在于,
    所述存储器,用于存储程序代码;
    所述处理器,用于调用所述存储器中存储的程序代码,以配合所述收发器实现权利要求33至62中任一项所述方法的步骤。
  67. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至32中任一项所述的方法的步骤。
  68. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求33至62中任一项所述的方法的步骤。
PCT/CN2020/074522 2020-02-07 2020-02-07 数据传输方法、装置、设备和存储介质 WO2021155587A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/074522 WO2021155587A1 (zh) 2020-02-07 2020-02-07 数据传输方法、装置、设备和存储介质
CN202080075338.7A CN114616889A (zh) 2020-02-07 2020-02-07 数据传输方法、装置、设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074522 WO2021155587A1 (zh) 2020-02-07 2020-02-07 数据传输方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021155587A1 true WO2021155587A1 (zh) 2021-08-12

Family

ID=77199170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074522 WO2021155587A1 (zh) 2020-02-07 2020-02-07 数据传输方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN114616889A (zh)
WO (1) WO2021155587A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646202A (zh) * 2009-08-25 2010-02-10 普天信息技术研究院有限公司 一种半静态调度下行传输的实现方法
US20160302224A1 (en) * 2015-04-09 2016-10-13 Samsung Electronics Co., Ltd. Method and system for hybrid automatic repeat request operation in a semi-persistent scheduling (sps) interval
CN110519025A (zh) * 2019-08-16 2019-11-29 中国信息通信研究院 一种半静态调度混合自动重传请求反馈方法和设备
CN110830183A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 上行传输方法、用户设备、基站和计算机可读介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646202A (zh) * 2009-08-25 2010-02-10 普天信息技术研究院有限公司 一种半静态调度下行传输的实现方法
US20160302224A1 (en) * 2015-04-09 2016-10-13 Samsung Electronics Co., Ltd. Method and system for hybrid automatic repeat request operation in a semi-persistent scheduling (sps) interval
CN110830183A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 上行传输方法、用户设备、基站和计算机可读介质
CN110519025A (zh) * 2019-08-16 2019-11-29 中国信息通信研究院 一种半静态调度混合自动重传请求反馈方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CMCC, HUAWEI, HISILICON, SONY, KT CORP.: "Further consideration on HARQ configuration in NTN", 3GPP DRAFT; R2-1913173 FURTHER CONSIDERATION ON HARQ CONFIGURATION IN NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051791186 *
CMCC: "MAC impacts on DL SPS", 3GPP DRAFT; R2-1905914 MAC IMPACTS ON DL SPS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. RENO, NEVADA, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051710261 *
CMCC: "Repetitions Transmission for SPS configurations", 3GPP DRAFT; R2-1912930 REPETITIONS TRANSMISSION FOR SPS CONFIGURATIONS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051790963 *

Also Published As

Publication number Publication date
CN114616889A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US20230318751A1 (en) Systems and Methods for Reliable Transmission Over Network Resources
EP3408959B1 (en) Systems and methods for determining harq-ack transmission timing for shortened tti
EP3459195B1 (en) Systems and methods for frequency-division duplex transmission time interval operation
US20180375621A1 (en) Data retransmission
CN109327905A (zh) 数据传输的方法、终端及计算机可读介质
US20190132106A1 (en) Uplink transmission method and apparatus
CN114556832A (zh) 基于服务的上行链路重传
CN109586856B (zh) 传输、配置harq-ack反馈信息的方法及相应的用户设备、基站
CN114731238B (zh) 配置授权定时器的使用方法与装置、终端设备和网络设备
CN113330762B (zh) 无线通信的方法及设备
WO2020218231A1 (ja) 端末、基地局、受信方法及び送信方法
WO2021184266A1 (zh) 一种数据包重组方法、电子设备及存储介质
US20230199799A1 (en) Wireless communication method, terminal device and network device
EP3874637B1 (en) Harq-ack handling with multiple pucch in multi-trp transmission in nr
WO2021155587A1 (zh) 数据传输方法、装置、设备和存储介质
WO2021184317A1 (zh) 生效时间的确定方法、终端及网络设备
US11894931B2 (en) Selective bundling techniques for HARQ-ACK feedback
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
WO2021179204A1 (zh) 下行数据的接收方法、发送方法、装置、设备及存储介质
EP4144011A1 (en) Methods and devices for transmitting and receiving pdsch
WO2024065855A1 (en) Fractional rate harq feedback
WO2022205482A1 (zh) 无线通信方法和终端设备
WO2021088789A1 (zh) 电子设备、通信方法和存储介质
WO2021174411A1 (zh) 信息处理方法、装置、设备及存储介质
KR20240068505A (ko) 유형 1 구성된 승인들을 지원하기 위한 네트워크 제어식 리피터(ncr) 절차들

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917546

Country of ref document: EP

Kind code of ref document: A1